SELECTION INDICES ON <u>GOATS</u>-A COMPARATIVE STUDY

BY

REMA T. P.

THESIS

SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENT FOR THE DEGREE OF

Master of Science (Agricultural Statistics)

FACULTY OF AGRICULTURE

KERALA AGRICULTURAL UNIVERSITY

DEPARTMENT OF STATISTICS

COLLEGE OF VETERINARY AND ANIMAL SCIENCES

MANNUTHY - TRICHUR

DECLARATION

I hereby declare that this thesis entitled "SELECTION INDICES ON GOATS-- A COMPARATIVE STUDY" is a bonafide record of research work done by me during the course of research and that the thesis has not previously formed the basis for the award to me of any degree, diploma, associateship, fellowship or other similar title of any other University or Society.

REMA T.P.

Nannuthy 18-6-1985

CERTIFICATE

Certified that this thesis entitled " SELECTION INDICES ON GOATS-- A COMPARATIVE STUDY " is a record of research work done independently by Smt. Rema, T.P. under my guidance and supervision and that it has not previously formed the basis for the award of any degree, fellowship or associateship to her.

Mr. K. L. SUNNY,

Mannuthy,

Assistant Professor of Statistics.

.

(Chairman, Advisory Board).

•

ACKNOWLEDGENENT

I place on record most sincerely, my gratitude to Mr. K.L.Sunny, Assistant Professor of Statistics and chairman of advisory board for his ardent encouragement, stable support, friendly guidance and constructive criticisms at each stage.

I am equally grateful to Dr. K.C.George, Professor of Statistics who has been a constant source of succour and inspiration to me by his vast orudition and untiring perseverence.

Grateful acknowledgement is made to Dr. B.R.Krishnan Nair, Professor of Animal Breeding and Genetics and Dr. A.Ramakrishnan, Professor of Poultry Science for the unstinted help zendered by them during the period of study.

My thanks are also due to Mrs. T.K. Indirabai, Assistant Professor of Statistics and Dr.(Mrs) N.Kunjikutty, Professor of Animal Nutrition for the help rendered by them in collecting the data.

I wish to express my thanks to Dr. M.Krishnan Nair, Dean, Faculty of Veterinary and Animal Sciences for providing facilities for the study. I am grateful to Kerala Agricultural University for granting me followship for undergoing the post graduate studies.

And last but not the least, I record my heartful thanks to my husband, Dr. N.R.Viswambharan for inspiration and persuation.

REMATT.P. Dent

CONTENTS

,

	Page.
INTRODUCTION	I
REVIEW OF LITERATURE	5
MATERIALS AND METHODS	17
RESULTS	34
TABLES	52
DISCUSSION	ខថ
SUMMARY	9 3
REFERENCES	96
ABSTRACT	102

Introduction

INTRÒDUCTION

One of the important aspects of animal breeding is selection or choosing of superior parents for the next generation. Individual selection is the simplest form, in which individuals with better phenotypic value for a trait are selected with the objective of increasing the mean value of that trait in future generations. But, the relative economic merit of individuals in a breed or variety will often depend on the better performance in different traits and how should one take them all into account in selection? Simultaneous selection for several characters, when all the characters considered are not equally important, is most effectively accomplished by constructing selection indices.

Since various traits are weighted, selection on the basis of selection index gives the best possible economic results. The advantages of this method are:

 The relative net economic importance of a change in each of the traits, assumes importance as a composite of the several traits, weighted by their relative net economic importance, forms the goal of improvement rather than a single trait.

2. The heritability or the magnitude of the genetic

variance for each of the traits and phenotypic variance for each trait also get due consideration.

3. The phenotypic and genetic covariances among each trait form part of the index or phenotypic and genetic correlations are also considered.

If relative economic values (a_i) are assigned to the traits, the net breeding value or merit H of an individual can be defined as a weighted function of breeding value (G_i) for various traits. is $H = \sum_i a_i G_i$. Now the problem of index construction is to find out a suitable function I of phenotypic observations (P_i) available on each individual in such a manner that the individuals with higher H values con be identified. It is the simplest to have a linear function I $I = \sum_i b_i P_i$, where b_i 's are estimated in such a manner that the individual in such a manner that the simplest to have a linear function I $I = \sum_i b_i P_i$, where b_i 's are estimated in such a manner that

The major difficulty in the construction of selection indices lies in establishing the relative economic value of each trait required in framing the net merit of the individual. The relative economic values depend upon the amount by which each unit of variation in it actually increases or decreases the net profit. Smith (1983) reported that the efficiency of index construction is very sensitive to changes in economic weights. So the use of economic values based on the information about the cost of production will always improve the efficiency of index

selection.

This index $I = \sum_{i}^{\infty} b_i P_i$ is expected to result in maximum progress in the aggregate genotypic economic value H. While the use of I result in maximum progress in H, the means of G_i will change either in a positive or negative direction depending on the genetic association between them. That is to say, the use of the selection index may sometimes result in depressing the genotypic value of the component traits. In this case the breeder is interested in that selection index which would maximise the economic value, but at the same time ensure constant mean performances in some of the component traits or some linear functions of these. Such restricted selection indices were first constructed by Kempthorne and Nordskog (1959).

The function of selection index is to make optimal use of the information available about the animals for selection. The prospective parent can be selected based on the information of own performance and of the progenies. But as far as sex limited characters are concerned, the record of own performance which is limited to the other sex cannot be observed. In this case optimum selection indices can be constructed combining information from full-sib and half-sib family averages, considering equivalent individual characters. Based on the intensity of selection those animals having the highest scores would be selected.

The efficiency of production of a dairy goat would depend on the birth weight, age at first kidding, body weight at first kidding and first lactation milk yield. The production per day per goat in the flock would combine these characters and could be considered as a criterion for comparison among 'animals within breed and among breeds. Some of the characters deciding the worth of an animal are available sufficiently late in life. It will therefore be necessary to consider traits available early in life which can predict efficiently the production capacity of an individual having high heritabilities and bear large genetic correlation with milk production. Selection based on such traits separately or in combination may allow maximization of genetic gain in milk production. Comparison of various selection indices and identifying more efficient among them and suitable under local conditions would certainly help future selection procedures for goats for given traits.

The objectives of the present investigation are:

- To compare the different selection indices which provide estimates of breeding worth of individual goats under K.A.U farm conditions.
- To study the relative efficiencies of different selection indices based on goats maintained in the K.A.U farm.
- 3. To suggest a suitable selection index on the basis of the above.

.

REVIEW OF LITERATURE

In practice, selection can seldom be limited to a single trait, and several traits have to be considered simultaneously. The old method of evaluation of animals by scoring with different maximum points for different traits and then adding the points alloted, was an attempt to achieve a balance between the traits. The weight given to individual traits should express their comparative economic importance. This must be taken as an important step in striving for rationalisation in animal production.

Selection index is a numerical score assigned to individual to estimate its breeding value and is constructed by combining credits for the individual's merits and penalties for its defects. It brings about maximum genetic gain by giving an appropriate weightage to all the characters considered at selection.

This index is the best estimate of the individual's true breeding value by the following properties:

- It maximises the correlation between the true breeding value and the index.
- 2. It maximizes the probability of correctly ranking the individuals on their true breeding value.

- 3. It maximises the genetic progress through selection .
- 4. it maximises the mean square difference between the true breeding value and the index.

In as early as 1936, Fairfield Smith constructed an index for selecting varieties of Wheat. He expressed the value of a plant as a linear function of its characters. Then using the concept of a 'discriminant function', a linear function of the observable characters is derived which will be the best available guide to the genetic value of each line. He showed how the expectation of 'genetic advance' over the mean of the unselected population for any given selection intensity may be estimated and used to compare the relative efficiencies of various breeding programmes.

Hazel and Lush (1942) compared the efficiency of index selection with that of the other two methods, tandem selection and independent culling method. They showed, the genetic gain from these three methods are in the rank order index selection > independent culling > tandem selection.

Hazel (1943) extended the technique of selection index to selection between individuals in an interpreeding population. He developed a method of computation of linear selection index on the basis of Wright's path coefficients.

Panse (1946) compared straight selection with selection

index constructed on the basis of 'discriminant function' in poultry. The traits included in his study were rate of lay, agg weight, age and body weight at first egg. Based on this study he concluded that selection index method is superior to straight selection.

Lerner et al. (1947) conducted a study in a randomly selected sample of the progeny of a New Hampshire flock with respect to body weight, shank length, keel length and breast width at twelve weeks of age. The results expected from the use of indices involving these characters were found to increase the efficiency in rate of improvement by 16 to 14 percent.

Krugger <u>et al</u>. (1952) constructed an index for selecting birds to improve egg production. The h^2 of their particular measure of this character was 0.28; that of the index which involved seven other traits (early and later body weight, sexual maturity, extent of short and long pauses in the course of the laying period, persistency of production and viability) was 0.35.

Bernard <u>et al.</u> (1954) constructed two selection indices for the improvement of pigs under farm conditions.

Abplanalp and Asmundson (1956) tested the effectiveness of a selection index for the improvement of breast width in New Hampshire Fryers. Two lines were derived from a single

population by means of mass selection. Parents of the line were selected for increased breast width. Those of the second were selected on the basis of an index by combining body weight, breast width, shank length and keel length. Index selection had been predicted to give 13 percent more rapid gains in breast width than selection on the basis of breast width only.

Osborne (1957b) explained the use of size and dam family averages in increasing the efficiency of selective breeding under hierarchical mating system.

Hanson and Johnson (1957) developed methods for calculating and evaluating a general selection index obtained by pooling information from two or more experiments. A point of interest noticed by them was that the ratio of expected genetic advance expected for the data utilizing a selection index is the expected correlation between the indices of phenotypic values obtained with the two indices.

Yamada (1958) constructed an index in Poultry by incorporating the traits sexual maturity, egg production, egg weight and body weight for the use under Japanese conditions.

Nogsett and Nordskog (1958) studied the application of selection indices using data from fifteen lines of poultry

at Iowa State University. The characters included were egg weight, body weight and laying rate. The authors found that placing restriction on egg weight would cause a reduction in net efficiency by only 8 percent compared to the index in which no such restriction was placed on any character. But placing restriction on body weight reduced the net efficiency by 46 percent. Selection on laying rate alone would reduce the net efficiency by 35 percent.

Kempthorne and Nordskog (1959) presented an interesting method of maximizing genetic progresses under the restrictions that progress in certain linear functions be zero.

Ahmed (1961) constructed selection index for Haryana cattle of Indian Veterinary Research Institute using five traits: age at first calving, first calving interval, first lactation yield, body weight at first calving and butter fat percentage. The first index was formed by combining all the five traits, second one involving the first four traits and the third involving only the first three traits. The third index was found to be the most efficient (R_{HI} =0.625).

Tallis (1962) extended the method of Kempthorne (1959) in the case of selection for an optimum genotype.

Binet (1965) dealt with indirect selection where some components of value were not included in the index. He

treated only the case of two traits, but indicated the possibility of extension to many traits.

Acharya (1966) developed the index for Haryana cattle of Government Live Stock Farm, Hissar using three characters: age at first calving, first lactation milk yield and first calving interval. In this case the correlation between I and H was 0.86.

James (1968) obtained an index to maximize genetic improvement in linear functions of several traits under the condition that linear restrictions are imposed on the index coefficients and on changes in the means of certain characters. Through this modification changes in some of the characters can be restricted without affecting the development in the others.

Singh, Acharya and Sundaresan (1968) showed the method of calculating the relative economic values. In this paper different selection indices for genetic advancement in Haryana cattle ware calculated by using the six characters: birth weight, weight at first calving, age at first calving, milk yield in the first lactation, first service period and first dry period. Two series of selection indices, each comprising of the same types of 18 indices incorporating different combinations of six traits were developed. In the first series, the economic weightages assigned to all the six characters were the same as that actually been calculated for each. In the second series equal economic weightage was given to service period and dry period whereas for the other traits those remained the same as before. Comparison of the relative efficiencies of the selection indices of the two series showed that the index incorporating all the six traits was the most efficient for both series ($R_{HI}=0.9099$). The second best was the index computed by omitting birth weight in both series.

Singh, Acharya and Biswas (1970) constructed an index comprising age at first kidding and first lactation milk yield. The use of this index resulted in an increase of 21.5 kg in first lactation milk yield, a decrease in age at first kidding by 80.6 days and an increase in kidding interval by 14.2 days.

Marutiram, Jain and Gopalan (1972) constructed selection index for the improvement of Poultry based on the combined information of full-sib and half-sib families by combining information on dam in addition to full-sibs and half-sibs. The breeding value of a bird was given by them as:

A $I = G = b_1 P + b_2 \overline{H} + b_3 \overline{C} + b_4 D$ where P = own performance $\overline{H} = mean of it's paternal half-sibs$ $\overline{C} = mean of it's full-sibs$ D = dam's performance

For selection among females, two combinations with and without the use of record of dam were considered. Similar combinations were considered for selection among males excluding the individual's performance which will not be available for sex limited characters. From the comparisons of the indices, it was observed that the inclusion of dam's record in addition to information on sibs resulted in an appreciable gain of 4 to 6 percent in females and 6 to 33 percent in males when size and dam families were small and heritability is low.

Prasad and Prasad (1973) constructed three selection indices for improving Tharparkar herd at Patna. The traits included in their atudy were first lactation yield, lactation length, first calving interval and age at first calving.

A comparison of selection indices was done by Bouillon and Ricordeau (1975) for the three characters; 100 day milk yield, milking time and milk protein content in goats. They constructed five selection indices incorporating all these characters and estimated the genetic gain associated with each of them. It was concluded that selection for protein yield is as effective as any other selection index.

Ranganathan et al. (1979) made a comparative study of index selection for egg production and egg weight versus

selection for egg mass in chicken.

Part record egg number and percent production upto 280 days of age were compared by Kotaiah and Renganathan (1980) by using them as components of indices constructed along with age at sexual maturity, body weight and egg weight using different sets of economic values in White Leghorn flock.

Singh and Acharya (1980) constructed selection indices for a closed flock of Beetal goats located at Hissar, Haryana. Henderson's modification of Hazel's method of constructing selection indices (Karam et al. 1953) to maximize genetic gain in lifetime production was used in this investigation. Indices were computed with possible combinations of age at first kidding, first lactation yield, first lactation length and first kidding interval. It was concluded that an index combining all the four traits would maximize not only the genetic gains in lifetime production but would maximize improvement in all these traits. However, if selection was to be based only on one trait, the selection based on the first lactation milk yield will bring the largest direct positive response in first lactation milk yield and also the largest correlated response in lifetime production. The correlated responses in the other traits in a desirable direction would be rather small relative to direct selection for these traits or selection based on the

index combining all the traits.

Akbar (1981) made a study for commercial egg production in two breeds, Barred Plymouth Rock and Rhode Island Red. Eighteen selection indices were constructed from the four traits viz. rate of lay, age at first egg, adult body weight and mature egg weight for each breed. These included one conventional index, two non-weighted indices, six restricted indices, six optimum indices, two retrospective indices and one base index. These indices were ranked according to (1) correlation between aggregate breeding value and the index and (2) the expected progress in genetic economic value after one generation. The two methods gave identical results. The conventional index was the most effective linear combination of the four traits for each breed.

Ahuja, Prakash Babu and Aggrewal (1981) constructed selection indices for the improvement of four week body weight in Japanese quail.

Saxena, Mohapetra and Mehta (1982) collected data on White Rock and New Hampshire females over two generations and constructed indices for dam line stock. The traits considered were body weight at 10 week of age, rate of lay to 40 week and egg weight at 49 week age. The accuracy of those indices were 0.64 and 0.46 for White Rock and New Hampshire respectively.

Narayanikutty (1983) made a comparative study of selection indices in Poultry. The characters under her study were 20 week and 40 week body weights, egg weight and selection indices Of the general aga production. constructed for selection among males and females, the one including the record of dam was found to be more efficient than the one without the record of dam. The simultaneous selection index combining all the traits was found to be superior to straight selection. From the three restricted selection indices constructed by restricting egg weight, 40 week body weight independently and egg weight and 40 week body weight combinedly, only the restriction on egg weight was found to be effective. Out of the seven phenotypic indices constructed, the index between the main trait egg -production and the auxiliary traits 29 week body weight and 49 week body weight was found to be the best in improving the main trait egg production. Combined selection indices for males combining information from full-sib and half-sib family averages were also constructed for each character and these indices were arranged in descending order to choose the bost parents. The expected response due to this index was also calculated for each trait.

The importance of clutch size in a multi-trait selection index was studied by Renganathan <u>et al.</u> (1983) in single comb White Leghorn parents. The characters included in his study were clutch size with egg number, egg mass, egg

weight and age at sexual maturity. Nine selection indices were constructed ; these included clutch size with various combinations of their production traits. The most efficient index was the one which included all the characters. Omission of clutch size reduced the net efficiency of the index by 15 to 20 percent.

Dev Roy <u>et al</u>. (1983) constructed four selection indices in male, female and in combined sex, taking combinations of body weights at 4,6 and 8 weeks of age in broiler chicks. The accuracy of the indices ranged from 0.47 to 0.51 in males; 0.62 to 0.65 in females and 0.51 to 0.52 in the combined sex. Maximum genetic gain was expected from the index incorporating parameter estimates of female progenies.

,

.

1

,

MATERIALS AND METHODS

The data collected for the present investigation pertain to the Malabari, Sannen X Malabari (SM), Alpine X Malabari (AM) and AM X AM (F₂ A) goats maintained under the same management practices in the farm of the AICRP on goats for milk at Mannuthy. These include records from 71 Malabari goats, mates of 19 sires; 95 SM goats, mates of 8 sires; 143 AM goats, mates of 5 sires and 64 F_2A goats, mates of 5 sires. The data were spread over 11 years (1974 through 1984). Kidding took place throughout the year. Birth weight, body weight at first kidding and first lactation yield in 126 days of lactation were recorded in kilograms whereas age at first kidding was taken in days. Sires with atleast 3 progenies were only considered.

Heritability coefficients for the four characters were estimated using half-sib analysis for each breed.

Relative Economic Values:

Relative economic values were calculated according to the method presented by Singh <u>et al.</u> (1968). The relative economic value for the two traits viz. age at first kidding and first lactation milk yield were calculated by taking into consideration the amounts of feeds and fodders fed per head per day to the various categories of animals, their monthly labour, supervisory and miscellaneous charges. For this purgose, animals were categorised as kids (upto 3 months of age), female young stock (3 to 6 months of age) and female stock (6 months to age at first kidding). Relevant information was collected for a period of 2 complete years, from January 1982 to December 1983. Information on such items as the amount of grass grazed in the pasture, expenses on housing and shelter provided, medicinal charges and income from animals in the form of manure and sale proceeds not directly available and hence not of goats were collected. Costs for the different varieties of feeds and fodders during this period were also collected. Appropriate cost for total amounts of different varieties of feeds and fodders fed during this period to the various categories of animals were calculated. To these the labour, supervisory and miscellaneous charges evaluated separately for each category of animals were added. The organisation of labour was such that one separate labourar was engaged for every 20 kids, for every 30 animals of female young stock and for adult animals. Two stockman and an animal evory 40 attendent each drawing a salary of 599 rupees per month are taking care of the animals. The cost per head per day for attaining the age at first kidding was computed by giving due weightage to the length of age and labour paid to the different categories of animals. The cost value of milk was

calculated from the rates at which milk was sold during the different parts of the 2 years. The economic values for birth weight and body weight at first kidding were estimated directly on the basis of the simple regression of first lactation milk yield on these two traits.

Simultaneous Selection Indices:

Selection index was constructed by combining the four important economic traits, viz. birth weight, age at first kidding, body weight at first kidding and first lactation milk yield according to the construction of Smith's discriminant function (1936).

Let P_i be the phenotypic value of the character i for an individual, made up additively of two parts, a genotypic value G_i defined as the average of the population values possible over a population of environments, and an environmental contribution E_i , i.e. $P_i = G_i + E_i$

Assume that the genotypic value G_i is composed entiroly of additive effect of genes and therefore G_i is also the breeding value of the character i, and G_i and E_i are uncorrelated. Further $H = \sum_{i=1}^{4} G_i$ define the net merit of an individual and a_i , the

Since G_i 's are unknown, it cannot be used as a criterion of selection. Under the circumstances, selection has to be

relative economic weight given to the trait i.

based on some phenotypic values of the various characters. Now the function

I = $\sum_{i=1}^{\infty} b_i P_i$ where b_i 's are unknown coefficients to be determined; in such a manner that the function I may best discriminate those individuals with the highest genotypic economic score, H. The principle of determining b_i 's, therefore is that the correlation $r_{\rm RI}$ between H and I is a maximum. For this the normal simultaneous equations for the four traits were set up as:

where $\underline{P} = (P_{ij})$ is the phenotypic variance-covariance matrix. $\underline{G} = (G_{ij})$ is the genotypic variance-covariance matrix. $\underline{b} =$ the column vector of regression coefficients. $\underline{a} =$ the column vector of economic values.

The discriminent function or the selection index was then constructed as

 $I = b_1 X_1 + b_2 X_2 + b_3 X_3 + b_4 X_4$ where b_1 , b_2 , b_3 and b_4 are the weighting factors determined from the normal equations and X_1 , X_2 , X_3 and X_4 represent the characters birth weight, age at first kidding, body weight at first kidding and first lactation milk yield respectively.

The expected genetic advance at five percent intensity of selection was calculated using the formula

where q is the intensity of selection and z is the ordinate of the unit normal distribution corresponding to the point of selection.

The expected genetic advance due to straight selection was obtained by putting $b_i = a_i$ and using the formula

for the same intensity of selection.

The percent gain in efficiency in expected genetic advance due to selection index over that due to straight selection was calculated using the formula:

Expected genetic advance due to selection index (Expected genetic advance due to straight selection

This index was constructed for each character and for each breed.

<u>Restricted</u> Selection indices:

The principle underlying the construction of restricted selection indices is to maximize the aggregate genotypic economic value $A = \sum_{i=1}^{n} G_i$ based on n characters, subject to the constraints that the genotypic value of r (<n) characters do not change. ie. $G_k = V_k$ (k = 1, 2, 3,...,r)

The linear function $I = \sum_{i=1}^{n} b_i P_i$ of phenotypic values are to be determined such that r_{AI} is maximum subject to the condition $cov(I,G_k) = 0$

If

$$\mathbf{C}_{1} = \begin{bmatrix} \mathbf{1} \\ \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \end{bmatrix} \qquad \mathbf{C}_{2} = \begin{bmatrix} \mathbf{0} \\ \mathbf{1} \\ \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \end{bmatrix} \qquad \cdots \qquad \mathbf{C}_{\gamma} = \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \end{bmatrix}$$

be the column vectors each of a elements, then $cov(I_rG_k) = b' GC_k$, k = 1, 2, ..., rMaximizing r_{A1} subject to the condition $cov(I_rG_k) = 0$, we get

$$\underline{b} = [\underline{x} - \underline{p}^{1}\underline{G}\underline{C} (\underline{c}'\underline{G}\underline{p}^{-1}\underline{G}\underline{C}\underline{C})^{T}\underline{C}\underline{G}] = \underline{p}^{-1}\underline{G}\underline{G}\underline{c}$$

where

 $\mathbf{x} = \mathbf{n} \mathbf{x} \mathbf{n}$ identity matrix $\mathbf{p}^{1} = \mathbf{inverse}$ of the phenotypic variance-covariance matrix

G = genotypic variance-covariance matrix

a = column vector of economic values

The restricted selection index I $ab_1X_1 + b_2X_2 + b_3X_3 + b_4X_4$ imposing restriction on birth weight (X_1) was constructed. In this case, the transpose of coefficient vector was taken as (1000)

The estimate of 'b' values which maximizes the correlation between the breeding value A of the individual and the index (I) and at the same time do not allow any change in X_i was obtained from the above formula for four characters.

The S.D of b (restricted) was obtained from SD = $\sqrt{a'G}$ b

The genetic advance (ΔX) in individual characters was calculated using the formula:

Similar procedure was adopted for the construction of restricted solection index for each of the other two charactors- age at first kidding and body weight at first kidding.

Restricted selection index imposing restriction on both birth weight and age at first kidding was also constructed. The coefficient vector taken in this case was

$$\mathbf{C}' = \begin{pmatrix} \mathbf{1} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{0} \end{pmatrix}$$

.

The 'b' values were obtained as estimated in the above case.

The genetic advance in individual character was calculated as

$$\Delta \underline{X}_{\underline{i}} = \frac{\mathbf{z} \cdot \mathbf{G} \mathbf{b}}{\mathbf{q} \sqrt{\mathbf{a}' \mathbf{G} \mathbf{b}}}$$

Similarly selection indices were constructed to determine the effect of various combinations of the three traits viz. birth weight, age at first kidding and body weight at first kidding for each breed.

Phenotypic Selection Indices

Phenotypic selection indices for selection of the main trait first lactation milk yield (Y) was constructed according to Narain and Mishra (1975) by taking into consideration the auxiliary traits birth weight (X_1) , age at first kidding (X_2) and body weight at first kidding (X_5) .

The phonotypic index between the main trait-first lactation milk yield (Y) and birth weight (X_{j}) was given by

 $\mathbf{I_1} = \mathbf{Y} - \mathbf{b}_1 \mathbf{X}_1$

 b_i , the regression coefficient of Y on X was calculated as

$$\mathbf{b}_1 = \int \mathbf{x}_1 \int \mathbf{x}_1 \mathbf$$

where

- $YX_1 = phenotypic correlation between first lactation$ milk yield (Y) and birth weight (X₁).
 - OY = phonotypic S.D of the main trait first lacation milk yield (Y)

 $6X_1$ = phenotypic S.D of the trait, birth weight (X_1). Efficiency of this index was estimated as

$$E = \frac{1 - P_{XX_i} (Y_{XX_i} h_{X_i} / h_y)}{\sqrt{1 - P_{XX_i}^2}}$$

where

- $Y_{X_1} = genetic correlation between the traits, first$ lactation milk yield (Y) and birth weight (X₁).
 - h_{X_1} = square-root of the heritability coefficient for the trait birth weight (X_1).
 - $h_y =$ square-root of the heritability coefficient for the trait, first lactation all yield (Y).

The phonotypic index between the main trait- first lactation milk yield (2) and the auxiliary trait- age at first kidding (X_2) was calculated as

$$\mathbf{I}_2 = \mathbf{Y} = \mathbf{b}_2 \mathbf{X}_2$$

where $b_2 = regression$ of X on X_2

= $\int_{Y} x_2 \frac{\sigma_Y}{\sigma_{x_2}}$ $\int_{YX_2}^{YX_2}$ phenotypic correlation between Y and x_2 σ_{X_2} = phenotypic S.D of x_2 .

Efficiency of this index was tested by

$$E = \frac{1 - P_{XX_2}(Y_{X_2} + h_{x_2}/h_y)}{\sqrt{1 - P_{XX_2}}}$$

Phenotypic index between the main trait- first lactation milk yield (Y) and the auxiliary trait- body weight at first kidding (X_3) was calculated as $I_3 = Y = b_3 X_{3^*}$

where
$$b_3 = \int X_5 \frac{\partial Y}{\partial X_3}$$

where $\int X_5 =$ phenotypic correlation between Y and X_5 .
 $h_{X_5} =$ square-root of the heritability coefficient
for the trait X_3 .

Phenotypic index between the main trait- first lactation milk yield (Y) and the auxiliary traits- birth weight (X_i) and age at first kidding (X_2) was constructed as

 $I_4 = Y = b_1 X_1 = b_2 X_2$

$$\frac{\nabla \mathbf{Y} (\mathbf{Y} \mathbf{X}_{1} - \mathbf{Y} \mathbf{X}_{2} \mathbf{X}_{1} \mathbf{X}_{2})}{\nabla \mathbf{X}_{1} \quad (1 - \mathbf{P}^{2} \mathbf{X}_{1} \mathbf{X}_{2})}$$

wh

and
$$b_2 = \underbrace{\operatorname{Or}_{\mathbf{X}_2}}_{\operatorname{OX}_2} \underbrace{\operatorname{Pr}_{\mathbf{X}_2}}_{(1-\operatorname{Pr}_{\mathbf{X}_1}\mathbf{X}_2)}$$

where $X_1 X_2 =$ phenotypic correlation between X_1 and X_2 .

Efficiency of this index was given by

$$(1 - f_{x_{1}x_{2}}^{2}) - f_{yx_{1}}(f_{yx_{1}} - f_{x_{1}}^{h_{x_{1}}} - f_{yx_{2}}^{h_{x_{2}}} - f_{x_{1}x_{2}}^{h_{x_{2}}}) + f_{yx_{2}}(f_{yx_{1}} - f_{x_{1}}^{h_{x_{1}}} - f_{x_{1}x_{2}}^{h_{x_{2}}} - f_{yx_{2}}^{h_{x_{2}}}) + f_{y}^{h_{y}} + f_{yx_{1}}^{h_{x_{1}}} - f_{yx_{2}}^{h_{x_{2}}} - f_{yx_{2}}^{h_{x_{2}}} + f_{yx_{2}}^{h_{x_{2}}}) + f_{y}^{h_{y}} + f_{yx_{2}}^{h_{y}} + f_{yx_{2}}^{h_{y}} - f_{yx_{2}}^{h_{y}} + f_{yx_{2}}^{h_{y$$

The phenotypic index between the main trait-first lactation milk yield (Y) and the auxiliary traits- birth weight (X_1) and body weight at first kidding (X_3) was fitted as

 $I_{5} = Y = b_{1}X_{1} = b_{3}X_{3}$

where	b ₁ •	$\overline{\text{OX}} (P_{X_1} - P_{X_3} P_{X_1 X_3})$ $\overline{\text{OX}}_1 (1 - P_{X_1}^2 X_3)$
	b ₃ a	$\begin{array}{c} \nabla \mathbf{x} & (f\mathbf{x}_{3} - f\mathbf{x}_{1} f\mathbf{x}_{1} \mathbf{x}_{3}) \\ \nabla \mathbf{x}_{3} & (1 - f^{2} \mathbf{x}_{1} \mathbf{x}_{3}) \end{array}$

where $\int_{X_1}^{X_3} x_3$ = phenotypic correlation between X_1 and X_3 .

To test efficiency of this index, the following formula was used.

$$(1 - \int_{x_{1}x_{3}}^{2}) - \int_{yx_{1}}^{2} (\int_{yx_{1}}^{h_{x_{1}}} - \int_{yx_{5}}^{h_{x_{5}}} \int_{x_{1}x_{3}}^{h_{x_{3}}}) + \int_{yx_{3}}^{h_{x_{1}}x_{3}} (\int_{yx_{1}}^{h_{x_{1}}} \int_{x_{1}}^{h_{x_{1}}} - \int_{yx_{5}}^{h_{x_{5}}} \int_{y_{5}}^{h_{x_{3}}}) + \int_{yx_{3}}^{h_{x_{3}}} (\int_{yx_{1}}^{h_{x_{1}}} \int_{yx_{1}}^{h_{x_{1}}} \int_{x_{5}}^{h_{x_{5}}} - \int_{yx_{5}}^{h_{x_{5}}} \int_{y_{5}}^{h_{x_{5}}})$$

E = $\int_{yx_{1}}^{2} (1 - \int_{x_{1}x_{5}}^{2}) (1 - \int_{yx_{1}}^{2} - \int_{yx_{5}}^{2} - \int_{x_{1}}^{2} \int_{x_{5}}^{h_{x_{5}}} (1 - \int_{x_{1}x_{5}}^{2}) (1 - \int_{x_{1}}^{2} \int_{yx_{5}}^{2} - \int_{x_{1}}^{2} \int_{yx_{5}}^{2} - \int_{x_{1}}^{2} \int_{yx_{5}}^{2} \int_{yx_{1}}^{2} \int_{yx_{5}}^{2} \int_{yx_{5}}^{2} \int_{yx_{5}}^{2} \int_{yx_{1}}^{2} \int_{yx_{5}}^{2} \int_{yx_{5}}^{2$

The phenotypic index between the main trait-first lactation milk yield (Y) and the auxiliary traits- age at first kidding (X_2) and body weight at first kidding (X_3) was given by

 $I_{\xi} = Y - b_2 X_2 - b_3 X_3$

where
$$b_2 = \frac{\overline{0y} (\beta x_2 - \beta x_3 \beta x_2 x_3)}{\overline{0x}_2 (1 - \beta x_2 x_3)}$$

 $b_{3} = \frac{\nabla y}{\nabla x_{5}} \cdot \frac{(P_{X_{5}} - P_{X_{2}} + R_{2} + x_{5})}{(1 - P_{X_{2}}^{2} + x_{5})}$

where $\int_{X_2X_3}^{P} phenotypic correlation between <math>X_2$ and X_3 .

Efficiency of this index was tested by

$$(1 - P_{x_{2}x_{3}}^{2}) - P_{yx_{2}}(Y_{yx_{2}} - Y_{yx_{3}} - Y_{yx_{3}} - X_{yx_{3}} - X_{yx_{3}}) + P_{yx_{3}}(Y_{yx_{3}} - Y_{yx_{3}} - Y_{y$$

The phenotypic index I_7 constructed between the main trait- first lactation milk yield (Y) and the auxiliary traits- birth weight (X₁), age at first kidding (X₂) and body weight at first kidding (X₅) was given by

$$I_{\eta} = Y - b_1 X_1 - b_2 X_2 - b_3 X_3$$

 b_1 , b_2 , b_3 were evaluated by the following formulae:

$$\frac{\nabla Y}{\nabla x_{1}} \left\{ \frac{\Gamma Y x_{1}}{\nabla x_{1}} \left(1 - P^{2} x_{2} x_{3} \right) + \frac{\Gamma x_{1} x_{2}}{\nabla x_{2}} \left(\frac{\Gamma Y x_{3}}{\nabla x_{2}} \frac{\Gamma x_{2} x_{3}}{\nabla x_{2}} - \frac{\Gamma x_{2}}{\nabla x_{2}} \frac{\Gamma x_{2}}{\nabla x_{2}} - \frac{\Gamma x_{2}}{\nabla x_{2}} \frac{\Gamma x_{3}}{\nabla x_{2}} \left(\frac{\Gamma Y x_{3}}{\nabla x_{2}} \frac{\Gamma x_{2} - \Gamma^{2} x_{1} x_{3}}{\nabla x_{2}} - \frac{\Gamma x_{3} x_{1}}{\nabla x_{3}} \right) + \frac{\Gamma x_{2} x_{3}}{\nabla x_{2}} \left(\frac{\Gamma x_{3}}{\nabla x_{3}} \frac{\Gamma x_{3}}{x_{3}} \right) + \frac{\Gamma x_{2} x_{3}}{\nabla x_{3}} \left(\frac{\Gamma x_{3}}{\nabla x_{3}} \frac{\Gamma x_{3}}{x_{3}} \frac{\Gamma x_{3}}{\nabla x_{3}} + \frac{\Gamma x_{2} x_{3}}{\nabla x_{3}} \right) + \frac{\Gamma x_{2} x_{1}}{\nabla x_{3}} \left(\frac{\Gamma x_{3}}{\nabla x_{3}} \frac{\Gamma x_{3}}{x_{3}} - \frac{\Gamma x_{3}}{\nabla x_{3}} \right) + \frac{\Gamma x_{2} x_{1}}{\nabla x_{3}} \left(\frac{\Gamma x_{3}}{x_{2}} \frac{\Gamma x_{3}}{x_{3}} - \frac{\Gamma x_{3}}{x_{3}} \right) + \frac{\Gamma x_{3}}{\nabla x_{3}} \left(\frac{\Gamma x_{3}}{\nabla x_{3}} \frac{\Gamma x_{3}}{x_{3}} - \frac{\Gamma x_{3}}{\nabla x_{3}} \right) + \frac{\Gamma x_{3}}{\nabla x_{3}} \left(\frac{\Gamma x_{3}}{x_{3}} \frac{\Gamma x_{3}}{x_{3}} - \frac{\Gamma x_{3}}{x_{3}} \right) + \frac{\Gamma x_{3}}{\nabla x_{3}} \left(\frac{\Gamma x_{3}}{x_{3}} \frac{\Gamma x_{3}}{x_{3}} - \frac{\Gamma x_{3}}{x_{3}} \right) + \frac{\Gamma x_{3}}{\nabla x_{3}} \left(\frac{\Gamma x_{3}}{x_{3}} \frac{\Gamma x_{3}}{x_{3}} - \frac{\Gamma x_{3}}{x_{3}} \right) + \frac{\Gamma x_{3}}{\nabla x_{3}} \left(\frac{\Gamma x_{3}}{x_{3}} \frac{\Gamma x_{3}}{x_{3}} - \frac{\Gamma x_{3}}{x_{3}} \right) + \frac{\Gamma x_{3}}{\nabla x_{3}} \left(\frac{\Gamma x_{3}}{x_{3}} \frac{\Gamma x_{3}}{x_{3}} - \frac{\Gamma x_{3}}{x_{3}} \right) + \frac{\Gamma x_{3}}{\nabla x_{3}} \left(\frac{\Gamma x_{3}}{x_{3}} \frac{\Gamma x_{3}}{x_{3}} - \frac{\Gamma x_{3}}{x_{3}} \right) + \frac{\Gamma x_{3}}{\nabla x_{3}} \left(\frac{\Gamma x_{3}}{x_{3}} \frac{\Gamma x_{3}}{x_{3}} - \frac{\Gamma x_{3}}{x_{3}} \right) + \frac{\Gamma x_{3}}{\nabla x_{3}} \left(\frac{\Gamma x_{3}}{x_{3}} \frac{\Gamma x_{3}}{x_{3}} - \frac{\Gamma x_{3}}{x_{3}} \right) + \frac{\Gamma x_{3}}{\nabla x_{3}} \left(\frac{\Gamma x_{3}}{x_{3}} \frac{\Gamma x_{3}}{x_{3}} - \frac{\Gamma x_{3}}{x_{3}} \right) + \frac{\Gamma x_{3}}{\nabla x_{3}} \left(\frac{\Gamma x_{3}}{x_{3}} \frac{\Gamma x_{3}}{x_{3}} - \frac{\Gamma x_{3}}{x_{3}} \right) + \frac{\Gamma x_{3}}{\nabla x_{3}} \left(\frac{\Gamma x_{3}}{x_{3}} \frac{\Gamma x_{3}}{x_{3}} \right) + \frac{\Gamma x_{3}}{\nabla x_{3}} \left(\frac{\Gamma x_{3}}{x_{3}} \frac{\Gamma x_{3}}{x_{3}} - \frac{\Gamma x_{3}}{x_{3}} \right) + \frac{\Gamma x_{3}}{\nabla x_{3}} \left(\frac{\Gamma x_{3}}{x_{3}} \frac{\Gamma x_{3}}{x_{3}} \right) + \frac{\Gamma x_{3}}{\nabla x_{3}} \left(\frac{\Gamma x_{3}}{x_{3}} \frac{\Gamma x_{3}}{x_{3}} \right) + \frac{\Gamma x_{3}}{\nabla x_{3}} \left(\frac{\Gamma x_{3}}{x_{3}} \frac{\Gamma x_{3}}{x_{3}} \right) + \frac{\Gamma x_{3}}{\nabla x_{3}} \left(\frac{\Gamma x_{3}}{x_{3}} \frac{\Gamma x_{3}}{x_{3}} \right) + \frac{\Gamma x$$

Combined Selection Indices:

Optimum selection indices for the selection of males and females for the four characters separately were constructed according to Narain <u>et al.</u> (1973 a,b). Information on the breeds-Malabari, SM, AM and F_2A were pooled together because of the insufficiency of full-sibs in individual flocks.

The optimum selection index combining information from individual's own performance with those of full-sib and half-sib family averages was given by

 $I_{f} = (P - \overline{P}) + \overline{b}_{1} (P_{FS} - \overline{P}) + \overline{b}_{2} (P_{HS} - \overline{P})$ P = daughter's own performance $\overline{P} = \text{flock average}$ $P_{FS} = \text{full-sib family average}$ $P_{HS} = \text{half-sib family average}$

$$\begin{array}{c} 2 \ \overline{n_i} (1 - h^2) \\ b_1 \\ 1 \\ \left[4 + (\overline{n_i} - 2) h^2 \right] \end{array}$$

$$4 \overline{n_i \overline{d}} (1 - h^2) (2 - h^2)$$

$$b_2 = \frac{4 + (\overline{n_i} - 2) h^2}{(4 + (\overline{n_i} - 2) h^2) (4 + (\overline{n_i} (1 + \overline{d}) - 2) h^2)}$$
where \overline{d} = average number of dams per size.
 $\overline{n_i}$ = average number of daughters per dam family for the size i.
 h^2 = heritability value for the trait.

The optimum selection index for the selection of males combining information from full-sib and half-sib family averages was also constructed as

$$t_m = b_1 (P_{FS} - \overline{P}) + b_2 (P_{HS} - \overline{P})$$

 b_1 and b_2 can be calculated using the formulae given above.

The expected response due to selection for females based on the index at 25% intensity of selection was given by

$$B_{f} = \frac{1}{2} i_{f} (\overline{p} h^{2} \left[\frac{(\overline{n} - 1)}{2 \overline{n} (2 - h^{2})} + \frac{(\overline{d} - 1) (\overline{n} + 2)}{4 \overline{n} \overline{d} (4 + (\overline{n} - 2) h^{2})} \right]$$

$$= \frac{(\overline{n} (1 + \overline{d}) + 2)}{4 \overline{n} \overline{d} (4 + (\overline{n} - 2) h^{2})}$$

where

if = 2/q where q is the intensity of selection and z is the ordinate at the point of selection.
 ()p = phenotypic S.D of the trait.
 h² = heritability value.
 d = average number of dams per sire.
 a = average number of daughters per dam family.

The expected response due to selection for males based on an index combining information from full-sib and half-sib family averages for the intensity of selection $\mathbf{1}_m$ was given by the formula

$$R_{m} = \frac{1}{2} i_{m} G \bar{p} h^{2} \left[\frac{\bar{n}}{\bar{a}} \left[\frac{(\bar{a} - 1)}{(\bar{a} + (\bar{n} - 2) h^{2})} + \frac{(\bar{a} + 1)^{2}}{(\bar{a} + 1)^{2}} \right]^{\frac{1}{2}}$$

General Selection Indices:

Marutiram et al. (1972) reported that the index with the use of record of dam was more efficient than the one without the use of record of dam for selection among females and males. But information pertaining to the four characters under study were not available for most of the dams. Also the number of full-sibs in each breed was found to be very less. So general selection indices for the selection among males were constructed according to the modified form of Osborne's index (1957b)

 $\mathbf{1} = \mathbf{A} = \mathbf{b}_1 \mathbf{P} + \mathbf{b}_2 \mathbf{H}^{-1}$

even though this index was proved to be less efficient than the Marutiram's index (1972),

32

where P = own performance

H = mean of it's 'n' paternal half-sibs.

The 'b' values were estimated using the formulae

$$b_1 = h^2 (16 - h^2 N) / Q$$

 $b_2 = 4 h^2 N (1 - h^2) / Q$
 $Q = 16 - h^4 N$

where

$$h = \frac{h}{1 + (n - 1) h^2/4}$$

where h^2 is the heritability coefficient.

The multiple correlation between the index (1) and the breeding value (A) was obtained from

$$\mathbf{R}_{AI} = \sqrt{\mathbf{b}_1 + \frac{1}{4} \mathbf{b}_2}$$

These indices were constructed for each character and for each breed.

RESULTS

The relative economic values for the four traits viz. birth weight, age at first kidding, body weight at first kidding and first lactation milk yield were calculated by taking into consideration the cost of production of each trait.

Cost for the different varieties of feeds and fodders during the period (January, 1982 to December, 1983) were as given below

Average cost of kid-startor = 1.93 Rs/Kg Average cost of concentrated feed = 1.57 Rs/Kg Average cost of fodder including transportation charges = 0.19 Rs/Kg

Average quantity of milk fed to a kid based on its body weight during the period of the first three months had been calculated as 511 gms/day.

Sl.No Category Feed items (daily re			ration)	No.of			
			fodder milk fød (kg) (ym)		goats	labour (RS)	head/ day (RS)
1.	Kids (kid	390 1-startor)	9.7 5	511	369	3.97	1.94
2.	Female young stock (kić		1.25	-	317	8.85	1.06
3.	Adult				372	0.03	1.12
	Adults	490	2.03	-			
	4th month of prognancy		3.00	-			
	5th month of pregnancy	-	3.65	-			

The cost per head per day for attaining the age at first kidding was computed by giving due weightage to the length of age (in days) pertaining to kids, female young stock and adults as follows:

Rs 1.94 X 98 days + Rs 1.96 X 98 days + Rs 1.12 X 423 days 98 days(kids) + 98 days(female young stock) + 423 days(adults)

1.23 Rs. per head per day

or 36.9 Rs. per head per month.

The cost value of milk was calculated from the rates at which milk was sold at different parts of the 2 years. Different rates were:

Rate from 1.1.82 to 15.9.83 (for 28.5 months) = 2.28 Rs/kg

Rate from 15.9:83 to 31.12.83 (for 3.5 months) = 2.68 Rs/kg

The average rate at which milk was sold comes to

The regression coefficient of milk yield on birth weight was 12.96 and on weight at first kidding was 3.83.

Since older age at first kidding is not desirable from the economic point of view, the relative economic weight for this trait was assigned a negative sign. The economic weights for the other three traits were given positive signs, because any increase in each of them would consequently increase the net value of the animals. To make the calculations easy and meaningful, a constant value of +17 had been added to each of them.

Table 2. Relative Economic Values of the four Characters. ***** Relative Corrected Unit of Cost/unit Trait measuzement (Rs) economic relative values economic values *** Birth weight (X_1) Kg 29.28 12,96 29.96 Age at first kidding(X₂) Month 36.90 -16.33 0.67 Weight at first kidding (X_3) Kg 3.663.83 20.83 First lactation 2.26 milk yield (X_4) Kg 1.96 19.00

The corrected economic values coded in Table 2. were used in the construction of selection indices.

Estimate of heritability coefficients, computed by half-sib analysis method for the breeds Malabari, Sannen X Malabari (SM), Alpine X Malabari (AM) and AM X AM (F_2A) were presented in Table 3.

Selection indices were constructed by different methods for each breed separately to make a comparative study of these indices breedwise for the improvement of goats.

<u>Elmultaneous</u> <u>Selection</u> <u>Indices</u>

Simultaneous selection indices were constructed by incorporating the four important economic traits viz. birth weight, age at first kidding, body weight at first kidding and first lactation milk yield. The relative economic value for each trait in rupues was calculated as 29.96 for birth weight, 9.67 for age at first kidding, 20.83 for body weight at first kidding and 18.00 for first lactation milk yield.

The index $I = b_1 X_1 + b_2 X_2 + b_3 X_3 + b_4 X_4$ constructed for each breed was given in Table 4.

The expected genetic advance due to the index constructed for Malabari bread at five percent intensity of selection was found to be 5442.7574 and that due to straight selection was 2561.2345. The percent gain in efficiency in

expected genetic advance due to selection index over that due to straight selection was worked out as 112.51% (Table 4). From this it was concluded that selection based on an index was more efficient than straight selection.

In the case of the breed SM, the expected genetic advance due to selection index at five percent intensity of selection was calculated as 769.1024 and that due to straight selection was 312.3529. The percent gain in efficiency in expected genetic advance due to selection index over that due to straight selection was found to be 146.23% (Table 4). It was confirmed that index selection is superior to straight selection.

The selection index constructed for the breed AM, brought about an expected genetic gain of 265.7435 at five percent intensity of selection and that due to straight selection was only 114.3664. The percent gain in efficiency in expected genetic advance due to selection index over that due to straight selection was found to be 132.364 (Table 4).

The expected genetic advance due to selection index was found to be 1052.9766 for the breed, P_2A and that due to straight selection was 817.7718. The percent gain in efficiency in expected genetic advance due to index selection over that due to straight selection was worked out as 28.76% (Table 4). This showed that selection based on selection index was more efficient then straight selection.

Restricted Selection Indices

Restricted selection index for each breed constructed by imposing restriction on birth weight was given in Table 5. The expected genetic advance obtained in individual characters were also presented in the same table. The expected genetic advance for birth weight was found to be zero for the breeds Malabari, SM and F_2A . Hence we can conclude that the index constructed by imposing restriction on birth weight would maximize the genetic progress in the other three characters without any change in birth weight. But effective restriction on birth weight was not possible for the breed AM. In this case, the expected genetic advance of the restricted character was not equal to zero.

Another index, imposing restriction on age at first kidding was also constructed for each breed. The genetic advance obtained for the four characters were also presented in Table 5. For none of the breeds, the expected genetic advance for age at first kidding was equal to zero. Hence it was not able to maximize the genetic advance in the other three characters, by imposing restriction on age at first kidding.

The third index was constructed by imposing restriction on body weight at first kidding. The expected genetic advances in individual characters were also calculated and presented in Table 5. The genetic progress in the character,

body weight at first kidding was found to be equal to zero for the breeds AM and F_2 A. Hence it was able to achieve maximum genetic advances in the other three characters by stabilizing any improvement in body weight at first kidding. But in the case of Malabari and SM breeds, the expected genetic advance for the restricted trait was not equal to zero. This indicated that effective restriction of body weight at first kidding was not possible for these breeds.

Restricted solection indices, constructed by imposing restrictions on birth weight and age at first kidding simultaneously were presented in Table 5. From the genetic advances obtained for the four characters, it was found that for none of the breeds, the genetic advances for the restricted characters were not equal to zero. Hence it was not possible to attain maximum genetic advances in body weight at first kidding and first lactation milk yield, without any change in birth weight and age at first kidding.

Restricted selection indices were also constructed by restricting the characters, birth weight and body weight at first kidding. The genetic advances obtained in individual characters corresponding to this index in each breed were also presented in Table 5. For none of the breeds, the genetic advances in the restricted traits were found to be

equal to zero. Hence it was not possible to maximize the genetic advances in age at first kidding and first lactation milk yield, by keeping birth weight and body weight at first kidding at constant levels.

Restricted selection indices, constructed for each breed, by imposing restriction on age at first kidding and body weight at first kidding were also presented in Table 5. The expected genetic advances for the four characters, in each case were also worked out and given in the same table. For none of the breads, the genetic advances in age at first kidding and body weight at first kidding were found to be equal to zero. Hence the genetic advances in birth weight and first lactation milk yield could not be maximized, by restricting the improvements in age at first kidding and body weight at first kidding.

The expected genetic advances obtained for the four characters, corresponding to the restricted selection index, constructed for each breed, by imposing restriction on birth weight, age at first kidding and body weight at first kidding were also given in Table 5. The expected genetic advances for the restricted traits were not equal to zero in any breed. This showed that maximum genetic progress in milk yield could not be attained without any progress in the other three traits.

Phenotypic Selection Indices

For each breed, seven phenotypic selection indices were constructed for the selection of the main trait- first lactation milk yield (Y) by taking into consideration the sumiliary traits viz. Firth weight (X_1) , ago at first kidding (X_2) and body weight at first kidding (X_5) . The efficiency of each phenotypic index for selection as compared to phenotypic value of the main trait Y alone, was given in Table 6.

The index $I_1 = Y - 7.897925 X_1$ for improving the first lactation milk yield (Y) in Malabari goats by taking into consideration the auxiliary trait- birth weight (X₁), brought about a decline in the efficiency of selective breeding by 25.528. The phonotypic index constructed was

$$I_2 = Y = 0.001920 X_2$$

when age at first kidding was taken as auxiliary trait. But the decrease in efficiency of selective breeding was only 3% in this case. The phenotypic index formed between the main trait Y and the auxiliary trait- body weight at first kidding was

$$I_3 = Y - 1.819596 X_3$$

This index resulted in a decrease in efficiency of selective breeding by 26.48%.

The relative efficiency of the index,

$$I = Y - 7.944020 X_1 + 0.000595 X_2$$

constructed by using both the auxiliary traits- birth weight and age at first kidding simultaneously to correct variations in milk production, was found out to be decreased by 12.39%.

The use of birth weight and body weight at first kidding as auxiliary traits resulted in a decline in efficiency of selective breeding by 59.85%. The index, so constructed was

Is X - 5.273175 X1- 1.734767 X3.

The index $I_6 = Y + 0.00920 X_2 - 1.956887 X_3$ resulted in a decrease in efficiency of selective breeding by 25.62%; when age at first kidding and body weight at first kidding were used as auxiliary traits, to correct variations in first lactation milk production.

Efficiency of selective breeding was the least for the index.

I, = Y - 5.879830 X1 + 8.010649 X2 - 1.883882 X3

where the auxiliary traits considered were birth weight, age at first kidding and body weight at first kidding to correct variations in first lactation milk production. In this

case, the efficiency of selective breeding was decreased by 69.87%.

The above results indicated that selection based on the phenotypic value of main trait- first lactation milk yield was the most efficient method compared to any phenotypic selection index for the Malabari gosts.

Phenotypic indices constructed for the selection of the main trait, first lactation milk yield (Y) in SM goats by considering the auxiliary traits viz. birth weight (X_1) , age at first kidding (X_2) and body weight at first kidding (X_3) were given in Table 6. The relative efficiencies of these indices were also presented in the same table.

Prom the index $I_1 = X - 6.484237 X_1$ for selection of the main trait- first lactation milk yield by using birth weight as the auxiliary trait resulted in a decrease in the efficiency of selective breeding by 14.6 percent. The most efficient among this series of indices was

I.= Y - 0.021071 X2

where age at first kidding was used as the auxiliary trait. In this case, the efficiency of selective breeding was increased by 12.33 percent. But the efficiency was decreased by 27.3 percent in

 $I_3 = Y - 2.752958 X_3$ when body weight at first kidding was used as auxiliary trait. In the case of

÷.

$I_x = Y - 6.614413 X_1 - 6.019841 X_2$

when both birth weight and age at first kidding were used as auxiliary traits simultaneously, the relative efficiency was decreased by 2.45 percent.

There was 42,43 percent decrease in efficiency in

$$I_{5} = Y - 1.757431 X_{1} - 0.079792 X_{3}$$

when both birth weight and body weight at first kidding were used as auxiliary traits simultaneously to correct variations in milk production.

The index $T_6 = Y + 0.021811 X_2 - 3.102313 X_5$ showed a decrease in officiency of 45.10 percent when both age at first kidding and body weight at first kidding were used simultaneously as auxiliary traits. The relative efficiency was decreased by 23.95 percent in

 $I_7 = Y - 1.583389 X_1 + 0.736968 X_2 - 3.067000 X_3$

when all the three traits viz. birth weight, age at first kidding and body weight at first kidding were used as auxiliary traits to correct variations in milk production.

Seven phenotypic selection indices for AM goats

 $I_1 = Y - b_1 X_1$ $I_2 = Y - b_2 X_2$

$$I_{5} = Y - b_{3}X_{3}$$

$$I_{4} = Y - b_{1}X_{1} - b_{2}X_{2}$$

$$I_{5} = Y - b_{1}X_{1} - b_{3}X_{3}$$

$$I_{6} = Y - b_{2}X_{2} - b_{3}X_{3}$$

$$I_{7} = Y - b_{1}X_{1} - b_{2}X_{2} - b_{5}X_{3}$$

constructed between the main trait-first lactation milk yield (Y) and the auxiliary traits viz. birth weight (X_1) , age at first kidding (X_2) and body weight at first kidding (X_3) and their relative efficiencies were given in Table 6.

The index $I_1 = Y = 9.698900 X_1$ when birth weight was used as auxiliary trait for improving the main trait- first lactation milk yield, resulted in an increase in efficiency of selective breeding by about 23.60 percent.

The increase in efficiency was 10.45 percent for the index

 $I_2 = Y - 0.042736 X_2$ when age at first kidding was used as the auxiliary trait.

The third phenotypic index formed was

I₅ = Y = 2.893867 X₃

when body weight at first kidding was used as the auxiliary trait for improving the first lactation milk yield. This index increased the efficiency of selective breading by about 42.46 percent. The index,

 $I_4 = Y - 6.397871 X_1 - 6.036259 X_2$ where birth weight and age at first kidding were used as auxiliary traits simultaneously to correct variations in milk production, resulted in an increase in efficiency of selective breeding by 16.85 percent.

The increase in efficiency was risen to 52.16 percent for the index

I_- Y - 3.698261 X1 - 2.898186 X3

when birth weight and body weight at first kidding were used as auxiliary traits simultaneously for improving the first lactation milk yield.

In the case of $I_6 = Y - Q.004767 X_2 = 2.831548 X_3$, when both age at first kidding and body weight at first kidding were used as auxiliary traits simultaneously, the relative efficiency of selective breeding was increased by about 42.91 percent.

It was interesting to note that the relative efficiency was the highest for the index

 $I_7 \approx Y - 3.584284 X_1 - 0.001716 X_2 - 2.788382 X_3$ when all the three characters viz. birth weight, age at first kidding and body weight at first kidding were used as auxiliary traits to correct variations in milk production. In this case, the increase in efficiency of selective breeding was found to be 71.21 percent.

A similar type of seven phenotypic selection indices were constructed for F_2 A goats also. The relative

efficiency of selective breeding was also calculated for each index and was presented in Table 6.

The index $I_i = Y - 22.298827 X_i$, between the main trait milk production and birth weight as auxiliary trait resulted in a decrease in efficiency of selective breeding by 16.31 percent.

In the case of the index $I_2 = Y - 0.018437 X_2$, when age at first kidding was used as the auxiliary trait to correct variations in milk production, the decrease in efficiency was found to be 11.88 percent.

But the efficiency was decreased by 27.60 percent in $I_3 = Y - 1.919154 X_3$, when body weight at first kidding was used as auxiliary trait.

In the case of $I_4 = Y - 23.059273 X_1 - 0.024765 X_2$, when both birth weight and age at first kidding were used as auxiliary traits simultaneously, the relative officiency was decreased by 34.33 percent.

There was 38,08 percent decrease in efficiency in

 $I_5 = Y - 17.588452 X_1 - 1.616655 X_3$ when both birth weight and body weight at first kidding wore used as auxiliary traits to correct variations in milk yield.

The index $I_6 = Y - 0.010231 X_2 - 0.074330 X_3$ showed a

decrease in afficiency of selective breeding by 34.48 percent, when both age at first kidding and body weight at first kidding were used as auxiliary traits simultaneously.

The relative efficiency was decreased by 66.78 percent

 $I_y = Y - 18.268427 X_1 - 6.016652 X_2 - 1.558772 X_3$, when all the three traits viz. birth weight, age at first kidding and body weight at first kidding were used as auxiliary traits simultaneously, to correct variations in first lactation milk production.

Combined Selection Indices

Optimum selection indices combining information from individual's performance with those of full-sib and half-sib family averages were constructed for individual characters. These indices in descending order were presented in Table 7 to 10. If 25 percent best animals are to be selected as parents, corresponding to the intensity of selection (9.32/8.25) = 1.27, we have to choose the first 17 animals with scores given in Table 11.

In the case of birth weight, the score of the selected animals ranged from 0.4569 to 1.9607. For the character age at first kidding, the individuals with the least scores were preferred. The selection scores of the animals ranged from -262.9947 to -506.0299. (Reduction in age at first kidding

increases the economic value of the animal). But for the trait body weight at first kidding, the scores ranged from 7.0349 to 25.7974. The range was found to be 35.8352 to 137.4889 for the trait first lactation milk yield.

The expected responses due to combined selection for females, when the information from individual's performance was combined with full-sib and half-sib family averages in an optimal manner were also calculated and given in Table 11.

The expected response due to selection of females for the traits birth weight, age at first kidding, body weight at first kidding and first lactation milk yield were found to be 24.29 percent, 1878.99 percent, 38.45 percent and 543.42 percent respectively.

Optimum selection indices were constructed for males combining information from full-sib and half-sib family averages for individual characters. The calculated scores of the full-sib families in descending order for each character were given in Table 12 to 15. 7 out of 33 families were selected with an intensity of selection 1.335.

The selection scores of the selected males ranged from 0.001771 to 0.004035 for birth weight, -152.5735 to -197.5535 for age at first kidding, 6.4003 to 13.0312 for body weight at first kidding and 24.3403 to 48.9525 for

first lactation milk yield. The expected responses due to selection of males, combining information from full-sib and half-sib family averages from Table 16 showed 49.50 percent for birth weight, 5479.93 percent for age at first kidding, 67.24 percent for body weight at first kidding and 868.37 percent for first lactation milk yield.

General Selection Indices

General selection indices for the selection among males were constructed for each character and for each breed. The values of b_1 , b_2 , the multiple correlation R_{AI} and the range of \hat{A} for males were given from Table 17 through 20. The range of values of R_{AI} for the above traits were found to be 0.7366 to 0.7532, 0.6962 to 0.7178, 0.7116 to 0.7308 and 0.5790 to 0.6166 respectively for Malabari breed; 0.7560 to 0.7736, 0.8080 to 0.6191, 0.6482 to 0.6852 and 0.4835 to 0.5505 respectively for the breed SM; 0.7622 to 0.7209, 0.7443 to 0.7565, 0.7343 to 0.7479 and 0.6067 to 0.6421 respectively for the breed AM; 0.6634 to 0.6920, 0.7363 to 0.7541, 0.6838 to 0.7091 and 0.6324 to 0.6661 respectively for the breed $F_2 A$.

Heritabilities with Standard Errors. Table 3. Breed Characters Heritability with S.E. Malabari Birth weight 9.5241 ± 0.4442 Age at first kidding 0.4636 ± 0.4297 Body weight at first kidding 0.4855 ± 0.4344 First lactation milk yield 9.3169 ± 9.3861 SM Birth weight 9.5547 ± 0.4104 Age at first kidding 0.6403 ± 0.4399 Body weight at first kidding 0.3988 ± 0.3615 Pirst lactation milk yield 0.2113 ± 0.2906 AM Birth weight 0.4478 + 0.3703 Age at first kidding 0.5144 ± 0.4034 Body weight at first kidding 0.4994 ± 0.3961 First lactation milk yield 0.3119 ± 0.2980 **P**, **A** Birth weight 0.4120 ± 0.4638 Age at first kidding 0.5195 ± 0.5126 Body weight at first kidding 0.4405 ± 0.4771 Pirst lactation milk yield 0.3704 ± 0.4439

Table 4.	Simultaneous selection indices for the breeds under study
Szeed	Simultaneous selection index & gain in officiency
Malabari	-554.6106X ₁ -4.3909X ₂ +935.7179X ₃ - 93.2678X ₄ . 112.51
SM	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
AM	$-101.0579X_1 + 0.6199X_2 + 15.3065X_3 - 1.5552X_4 - 1.32.36$
PA	238.6308X ₁ +2.3150X ₂ +49.4416X ₃ + 3.9022X ₄ . 28.76
**************************************	Birth weight
X ₂ =	Age at first kidding
X ₃●	Body weight at first kidding
×4•	First lactation milk yield

,

.

.

:

ı

÷

d aarabaaaaaaaa Ahayaabaa (a)		
Character(s)	Restricted selection	Genetic advance in
on which	index constructed	individual
restriction(s)	characters obtained
is(are)impose	d 	ال میں جب برای شد میں ایک ایک ایک بڑی ہوں میں این بڑی ہوں ایک
Birth weight	30099.2514x1 -7.7516x2-	$\Delta x_i = 0.0010$
	24.0268x ₃ -141.8009x ₄	$\Delta X_2 = -1330.5198$
		∆x ₃ = 731.5087
		∆x ₄ = 2.3772
Age at first	753.5414X1-0.6805X2+	∆X ₁ = 53.7171
kidding	514.8775x ₃ -29.6436x ₄	∆X2= -9.058]
		∆x ₃ = 79.9829
		∆x ₄ = 5.1312
Body weight at	-58.0864X, -3.0996X2+ .	∆X ₁ = 88.9093
first kidding	685.7276X3-68.0574X4	∆x2= 189.8078
	5 7	∆x _a = -6.6345
		∆X ₄ = 4.2673
	nd 477.4936X ₁ +5.9725X ₂ +	
age at first	103.2241X3+58.4046X4	∆x₂= 85.0997
kidding ·	· ·	∆X3= 162.4001
simultaneously		∆X ₄ = 21.1516
	,	

Table 5. Restricted selection indices and their expected

.

.

.

Table 5. contd.....

:

Character(s)	Restricted selection	Genetic advance in		
on which	index constructed	individual		
restriction(s)		characters obtained		
is (are) imposed				
Birth weight and	-3.7264X1+0.8747X2+	∆ X ₁ = -0,4891		
body weight at	1.3269x ₃ +7.9422x ₄	$\Delta x_2 = 334.6170$		
first kidding		∆ X ₃ = -1.9786		
simultaneously		∆X4 = 19.9987		
Age at first	14.4199X ₁ -5.6462X ₂ +	$\Delta x_i = 129.4389$		
kidding and	396.7211x ₃ -74.4720x ₄	∆X2= -0.3041		
body weight		∆x ₃ = 0.0307		
at first kidding		∆X ₄ = -9.2517		
simultaneously				
Birth weight, Ag	e 279.4633X ₁ -3.0697X ₂ +	$\Delta \mathbf{x}_1 = \mathbf{S} \cdot S$		
at first kidding	∆X ₂ = -150,8476			
Body weight at		∆x ₃ ≖ 1.9195		
first kidding		∆x4= 18.8134		
simultaneously				

.

1

t

:

٤

.

Table 5. contd.....

.

-

.

.

Character(s)	Restricted selection.	selection. Gene		
on which	index constructed	individual		
restriction(s)		characters obtain		
is(are) imposed	•			
Birth weight	-42.4762X1+9.1631X2+	∆ X ₁ =	-0.000098	
	27,2736x ₃ -Ø.1265x ₄ .	∆ X₂ ≊	118.5601	
		∆ x ₃ =	2.5440	
		∆ X ₄ =	2.2426	
Age at first	263.4564X ₁ -2.5090X ₂ +	∆x ₁ =	Ø .7272	
kidding	61.9948×3-2.5954×4.	∆ X₂ =	-157.8669	
		∆ X ₃ =	-1.2178	
		∆ x ₄ ≖	21.1774	
Body weight at	354.0430x ₁ -2.9261x ₂ +	∆.x _i =	9,7926	
first kidding	75.9906x ₃ -2.9573x ₄ .	∆ X ₂ ●	-162.9966	
		∆ x ₃ ≖	-0,9753	
	<u>.</u>	∆ x ₄ =	23,0105	
Birth weight and	-36.4476×+0.0603×2+	∆X _i ∝	0.9487	
Age at first	1.0682X3+32.2500X4.	$\Delta x_2 =$	-287.5204	
kidding		∆x ₃ =	5.7185	
simultaneously		∆x ₄ =	41.1176	
Birth weight and	-55.9611x ₁ -7.9934x ₂ +	∆x _i =	2.0973	
Body weight at	229.2489×3-8.2234×4.	∆ X₂ =	-398.8841	
first kidding		∆ X ₃ ■	-4,1209	
simultaneously		△¾₄ ≈	71.1377	

:

.

- . .

.

-

•

.

.

Table 5. contd..... Genetic advance in Character(s) Restricted selection on which index constructed individual characters obtained restriction(s) is (are) imposed ∆x₁ = Age at first 41.1711x₁-0.8011x₂+ 0.5969 $35.7529x_3 - 3.8215x_4 \cdot \Delta x_2 = 0.0881$ kidding and $\Delta X_3 = -0.0025$ Body weight at $\Delta X_{4} = 17.9091$ first kidding simultaneously Birth weight, Age 279.4633X₁-0.0697X₂+ $\Delta X_1 = 0.8948$ at first kidding 2.6405 X_3 -1.6005 X_4 . $\triangle X_2 = -150.8476$ $\Delta X_3 = 1.9195$ and Body weight at first kidding $\Delta X_{A} = 18.8134$ simultaneously

Table 5. contd..... Breed: AM Restriction selection Character(s) Genetic advance on which index constructed in individual restriction(s) characters obtained is(are) imposed $-158.4183X_{1}+8.6132X_{2}+ \Delta X_{1} = -8.1737$ Birth weight $6.8171X_3 + 8.8260X_4$. $\triangle X_2 = 34.0446$ ∆X5 = 0.9605 ∆ X₄= 5.7723 -108.9744X1+8.3236X2- $\Delta X_{i} = -0.1923$ Age at first 1.6773X₃+0.9761X₄. $\Delta x_2 = 0.7106$ kidding ∆X₂= -9.2598 ∆ X₄ = 4.5351 -132.0594x1 +0.2727x2+ $\Delta x_1 = -0.1531$ Body weight at first kidding 2.5984X₃+0.6411X₄. \triangle X₂= 11.9042 ∆X₃ = 0.0986 1.1. ∆X4 = 4.2539 Bizth weight and 3.8242X1-8.0049X2+ ∆X₁≈ 0.0250 Age at first 0.0244X3+0.1508X4. ∆X2 = 7.3590 kidding - $\Delta x_3 = 0.5234$ $\Delta X_4 = -1.1195$ óimultaneously 👘 Birth weight and -45.4839x, -0.1594x₂+ $\Delta x_1 = -0.0529$ Body weight at 7.1841x3-9.3599x4. ∆ X₂ ≈ 28.8645 first kidding ∆x_s= -0.6864 simultaneously , ∆X₄ **= 4.1**268

Table 5. contd.....

.

.

Character (s)	Restricted selection	Genetic advance in		
on which	index constructed	individual		
restriction(s)		characters obtained		
is (are) imposed				
Age at first	-76.6006X1+9.8842X2 -	$\Delta X_{i} = 1.1620$		
kidding and	5.5612x ₃ +1.1359x ₄ .	∆x₂= 570.4113		
Body Weight at		∆x ₅ = 23.7693 ·		
first kidding		∆x ₄ = -7.1521		
simultaneously				
Birth weight, Age	-927.4260X ₁ +27.1049X ₂ +	$\Delta X_1 = 1.6551$		
at first kidding	7.4001x3+0.0057x4.	∆X2 = 909.8289		
and Body weight	· · ·	∆ X _∂ = 943.9732		
at first kidding		∆x ₄ = -6.3599		
simultaneously		'		

.

.

-

-

Table 5. contd.....

-

,-

Breed: F ₂ A	· · · · · · · · · · · · · · · · · · ·			
Character(s)	Restricted selection	Genetic advance in		
on which .	index constructed	indivįdual		
restriction(s)		characters obtained		
is(are) imposed				
Birth weight	-141.2664X ₁ +2.1196X ₂ +	4x ₁ = 0.0642		
	8.4023X3+5.2540X4.	$\Delta X_2 = 96.0227$		
	' .	∆x ₃ = 2.8017		
		∆× ₄ ≈ 15.6321		
Age at first	-119.1193X ₁ +0.8613X ₂ +	$\Delta x_i = -0.6268$		
kidðing	23.8838X3-6.9352X4.	∆X ₂ = 16.3459		
		∆x ₃ = -8.2179		
		∆× ₄ = 9.9642		
Body weight at	-236.9347×1+9.6148×2+	$\Delta x_i = -3.0417$		
first kidding	20.1670x ₃ -3.1681x ₄	$\Delta X_2 = 42.3065$		
		∆x ₅ = 0.0013		
		∆ X ₄ = 8.7999		
Birth weight	240.5623X ₁ +1.1326X ₂ +	$\Delta x_1 = 2.1620$		
and Age at	Ø.1956X3-1.6688X4.	$\Delta X_2 = 64.9329$		
first kidding		∆x ₃ = 4.1932		
sigultaneously		∆x ₄ = 22.0954		
Birth weight	-195.1164X ₁ +0.4487X ₂ +	$\Delta x_1 = -0.0018$		
and Dody weight	25.4147× ₃ -3.9776× ₄ .	∆X2 = 67.2143		
at first kidding		∆×3= -0.0146		
simultaneously .		∆x ₄ = 18.3598		

Table 5. contd..... Restricted selection Genetic advance in Character(s) individual on which index constructed restriction(s) characters obtained is (are) isposed Age at first 98.0021x,+0.7791x2+ ∆x₁ = 0.9958 18.9458×3-6.1157×4. $\Delta \chi_2 = 13.1810$ kidding and ∆X₃ = 1.6128 Body weight at △ 🛵 = 20.7115 first kidding simultaneously 6.0578X, +3.4078X2+ $\Delta X_1 = -0.0832$ Birth weight, Age at first 10.2871X3-5.2266X4. ∆X₂ = 152.7978 ∆⊼₃≈ kidding and 4.6465 △¾₄= 36.2421 Body weight at 🐇 Eirst kidding simultaneously

Brred	Phenotypic selection indices Relative	efficiency
Malabar	$iI_i = Y = 7.897525X_i$	74.48
	1 ₂ = Y - 0.891929X ₂	97.08 -
	I ₃ = Y -1.819596X ₃	73.52
	I ₄ = Y -7.944028X ₁ +0.000595X ₂	87.61
	I5= Y -5.273175X1 -1.734767X3	46.15
	I6 = X +3.039202X2 -1.955887X3	74.38
	$I_7 = Y - 5.879830X_1 + 0.010649X_2 - 1.883882X_3$	30.13
	Selection on Y alone	188.09
SM	I ₁ = Y -6.404297X ₁	85,60
	I ₂ = Y -0.021071X ₂	112.33
	1 ₃ = Y -2,752958X ₃	72.79
	1 ₄ = Y -6.014413X ₁ - 0.019841X ₂	97.55
	I5 = Y -1.757431X1-0.079792X3	57.57
	I6 = Y +0.021011X2-3.102313X3	54.90
	I7 = Y -1.583389X1 +8.736968X2 -3.867688X3	76.05
	Selection on X along	108.38

.

.

Table 6. Phenotypic selection indices and their relative

ī

-

•

....

Breed	Phenotypic selection indices	Relative afficiencys
AM	$I_1 = Y - 9.698900X_1$	123.60
	I ₂ = Y -8.942736X ₂	119,45
,	I ₃ = ¥ -2.893867X3	142.40
	1 ₄ =x -6.397871x ₁ -9.036259x ₂	116.85
	I ₅ = Y -3.698261X ₁ -2.868186X ₅	152.16
	I ₆ = Y -0.004767X ₂ -2.831548X ₅	142.91
	I ₇ = X -3.584284X ₁ -6.661716X ₂ -2.	788382× ₃ 171.21
	Selection on Y alone	109.00
P ₂ A	I ₁ = Y -22.298827X ₁	83.69
	I ₂ = Y -0.018437X ₂	88,12
	13= ¥ -1.910154X3	72.40
	I4 = Y -23.059273X1-8.024765X2	65.67
	I ₅ • Y -17.588452X ₁ -1.616655X ₃	61.92
	I ₆ = ¥ -0.010231x ₂ -0.074330x ₃	65,52
	1 ₇ • ¥ -18.268427X ₁ -9.016652X ₂ -1	•558772X ₃ 33•22
	Selection on Y along	100.00

•

.

.

.

· · ·

-

1. j. j. j. 19. j. s.

.

fema	les c	ombining	informat	ion from in	ndividual':	s performanc	;e
with	those	e of ful	l-sib and	half-sib :	family ave	ages.	
no:	Dam I no:	Daughter no:		$b_1 (P_{FS} - \bar{P})$	b ₂ (P _{HS} - 1	ē) I _f	¢.
S293	58	715	1.9559	0.0035	0.0013	1.9607	
⁻ 59	249	6675	1.6559	0.0027	0.0001	1.6587	
62	A25	6505	1.5590	0.0027	0.0016	1.1584	
59	161	618ø	1.1559	0.0011	0.0001	1.1571	
S293	63	795.	1.0559	0.0024	0.0013	1.0597	
S293	8Ø	69Ø	Ø.9559	0.0015	0.0013	Ø.9587	
S293	63	796	0.7559	0.0024	0.0013	0.7597	
S293	58	716 756	Ø.6559	0.0035	0.0013	0.6607	
S293	119	756	Ø.6559		0.0013	Ø.6587	
62 © 4	A25	6506	Ø.6559	0.0027	-0.0002	0.6584	•
84 84	A89 A89	921 [.] 922	Ø.6559 Ø.6559	Ø.ØØ18 Ø.ØØ18		0.6576	
58	58	6376	Ø.6559	0.0018	-0.0001	0.6576	
50 62	A62	6397	Ø.6559	0.0001	-0.0002 -0.0002	Ø.6568	
62	28	6418	Ø.6559	-0.0005		Ø.6562 Ø.6551	
S293	119	757	Ø.4559	0.0015	0.0013	Ø.4587	
6304	6226	41	Ø.4559	0.0009	0.0001	Ø.4569	
62	185	6195	Ø.4559		-0.0002		
S293	85	713	Ø.3559		0.0013	Ø • 3579	
s293	8ø	609	Ø.1559	Ø.ØØ15	Ø.ØØ13	Ø.1587	
S293	85	714		0.0007	0.0013	Ø.1579	
6304	6226	42	Ø.1559	0.0009	0.0001	Ø.1569	
58	58	6377	Ø.1559	0.0011	-0.0002	Ø.1568	
58	A97	6365	Ø.1559	0.0004	-0.0001	Ø.1561	
58	A97	6366	Ø.1559	0.0004		Ø.1561	
62	114	6239	Ø.1559	-0.0003			
402	28Ø	3166	Ø.1559	0.00001	-0.0007	Ø.1552	
59	A24	6185	0.0559	-0.0004	0.0001	0.0556	
62	290	6319	Ø.Ø559	-0.0001	-0.0002	0.0556	
62	29Ø	632Ø	-0.1441	-0.0001	-0.0002	-0.1444	
402	28Ø	3222	-0.1441	-0.0001	-0.0007	-0.1448	
402	6Ø	3241	-0.2441	-0.0008	-0.0007	-0.2440	
63Ø4	6252	34	-0.2441	-0.0004	0.0001	-Ø.2444	
84	29Ø	9 <u>4</u> 9	-0.2441	-0.0007	-0.0001	-0.2449	
84	29Ø	95Ø	- Ø.2441	-0.0007	-0.0001	-0.2449	
6162	6468	185	-Ø.2441	-0.0012	-0.0011	-Ø.2451	
59	221	6284	-0.3441	-0.0016	0.0001	-Ø.3426	
59	161	6012	-Ø.3441	0.0011	0.0001	-Ø.3429	
402	A41	3202	-Ø.3441	-0.0016	-0.0007	-0.3432	
62	A62	6619	-Ø.3441	0.0005	-0.0002	-Ø 3438	
402	60	3242	-Ø.3441	-0.0008	-0.0007	-0.3440	
59	A24	6498	-0.3441	-0.0004	0.0001	-Ø.3444	

.

Table 7. Birth weight: Combined selection index for

e,

.

.

.

	Dam no:	Daughter no:	P - P	b ₁ (P _{FS} - P)	$b_2 (P_{HS} - \bar{P})$	1 ^f
62	114	6343	-0.3441	-2.9883	-0.0002	-0.3445
59	299	6696	-0.3441	-9.99 39	0.0001	-0,3449
59	290	6697	-0.3441	-#.9999	0.0001	-0.3449
62	494	6744	-0.3441	-9.9919	-9.0092	-0.3453
62	494	6745	+9.3441	-9.0010	-0.0002	-0.3453
58	A126	6471	-0,3441	-9,3016	-0.0002	-0.3459
402	3027	3177	-0.3441	-0.0016	-0.8007	-0.3464
59	249	6288	-0.3441	0.0927	0.0001	-0.3531
58	- A49	6500	-0.3441	-9.6009	-9.0002	-3.3536
58	- A49	6501	-9.3441	-0.0009	-0.0082	-8.3536
62	28	6709	-9.4441	-0.0006	-0.0002	-0.4449
62	A82	6163	-8.4441	-0.0013	-0.0002	-0.4456
62	A82	6164	-9.4441	-0.0013	-8.0092	-0.4456
5162	6468	186	-3.5441	-0.9012	-0.0011	-0.5451
34	1	969	-8.5441	-9.0916	-9.9891	-0.5458
84	1	970	-0.6441	-0.0016	-9.0091	-0.6448
59	221	6693	-9.8441	-0.0016	-0.0001	-0.8426
492	- A41	3263	-0.8441	-8.8916	-0.0007	-0.6432
62	28	6719	-0.8441	-8.0006	-0.8092	-8.8449
62	185		-9.8441	-0.0012	-0.0002	-0.8455
62	185	6705	-9.8441	-9.9912	-0.0002	-0.8455
58	A126	6472	-0.8441	-9.9916	-0.0092	-0.8459
482	3Ø27	3178	-8.8441	-0.0016	-0.0007	-9.8464
5162	6297	172	-3.8441	-9.0925	-5.6911	-0.8464
5162	6297	173	-0.8441	-9.0025	-8.8011	-0.8464

.

.

• . .

.

.

Table	в 8. <u>А</u>	<u>qe at f</u>	irst kiddi	ing: Combin	ed selection	index for
fema.	les co	abining	informati	ion from in	dividual's g	erformance
with	those	of ful	l-sib and	half-sib f	amily averag	165 .
Sire	Dam D no:	aughter no:	₽ - ₽ t) ₁ (P _{FS} - P)	$b_2(P_{HS} - \bar{P})$	r f
	Live Live					
6364	6226	42	373.5588	175.2994	282.9493	831.8975
59	161	6189	507.5588	252.7396	22,3161	782.6145
6394	6252	34	231.5588	96,1609	282.9493	610.6696
6304	6226	41	142.5598	175.2994	282,9493	600.8075
5293	119	756	281.5588	172,9218	88.5896	543.0702
59	161	6012	236.5588	252.7396	22.3161	511.6145
S293	119	757	227.5588	172.9218	88.5996	489.9792
6304	6252	33	51.5588	96.1609	282.9493	430.6690
59	A24	6185	208.5588	62,5356	22.3161	293.4105
S293	85	714	127.5508	67.2907	88.5896	283.4391
58	A77	6365	184.5588	19.0604	59,3825	263.0017
\$293	85	713	70.5588	67.2907	88.5896	226.4391
58	58	6376	144.5582	10,9988	59.3825	214.8501
58	A126	6472	89,5582	39.0997	59,3825	188.0404
52 93	8 <i>9 '</i>	698	71.5588	23,7492	88.5896	182.8976
62	299	6319	263.5588	11.6567	-92.3350	182.8895
402	60	3242	143.5588	89.7976	-57.4458	175.8206
84	1	969	153.5508	55.7426	-38.1514	171.1500
58	A40	6500	66.5588	44.8738	59.3825	170.8151
58	A40	6501	65.5588	44.8738	59.3025	169.8151
402	60	3241	120.5588	89.7876	-57.4458	152.8206
58	a126	6471	25.5582	39.0997	59.3825	124.0464
\$293	58	716	16,5588	- · ·	88.5896	114.0193
5293	80	609	-3.4412	23.7492	88.5896	108.8976
\$293	58	715	9.5588	8,8709	88.5896	107.0193
62	A62	639 7	156.5538	29.6375	-92.3350	93.8563
62	29	6418	238.5582	-72.2537	-92.3350	73.9695
59	A24	6498	-24.4412	62.5356	22.3161	68.4105
62	A25	6596	103.5588	43.1231	~92.335 5	54.3469
84	1	97ø	10.5588	55.7426	-38.1514	28.1500
\$293	63	795	-11.4412	-59.3988	88.5896	17.7496
59	249	6288	2.5588	-45.1335	22.3161	-20.2586
402	841 -	3263	58.5508	-24.7545	-57.4458	-23.6415

Table 8. contd.....

.

.

.

ire no:	Dam no:	Daughter no:	9 - 9	$b_1 (P_{FS} - \overline{P})$	$b_2 (P_{HS} - \overline{P})$	ıt
84	298	950	9,5588	3,7761	-38.1514	-24.8165
84	290	949	1.5583	3.7761	-38,1514	-32.8165
62	A25	6535	11.5232	43,1231	-92.3350	-37.6237
58	58	6377	-112.4412		59.3825	-42.1499
58	A77		-128.4412	19.0604	59.3825	-49.9988
62	A8 2	6163	72.5508	-46.0381	-92.3350	-59.8143
402	3927	31 7 8	26.5588	-69,2486	-57.4458	-100.1356
162	6297	173	26.5588	-32.5664	-107.1863	-113.1939
293	63	796	-163.4412	-59.3988	88.5896	-134.2504
62	A62		-77.4412	29.6375	-92.3350	-140.1397
59	249	6675	-135.4412	-45.1335	22.3161	-158.2586
162	6468	135	4,5583	-78.2576	-107.1863	-172.8951
59	221	. 6284	-108.4412	-91.6655	22.3161	-177.7906
62	185	61.95	-2.4412	-103.7201	-92.3350	-198.4963
402	841		-131.4412	-24.7545	-57.4458	-213.6415
59	221		-151.4412		22.3161	-230.7996
62	494	6744	-41.4412	-98.4757	-92.3350	+232.2519
162	6297	172	-122.4412	-32.5664	-107.5664	-262,1939
62	114		-	-105.2195	-92.3350	-262.9947
59	290			-124.9512	22.3161	-289.0763
59	290			-124.9512	22.3161	-293.0763
62	A82		~179.4412		-92.3350	-311.0243
62	290		-232.4412		-92.3350	-313.1195
402	280			-105.9308	-57.4458	-313.0178
84	A89			-114.4221	-38.1514	-319.3147
84	A89			-114,4221		-323.0147
462	289			-105.9308	-57.4458	-324,8178
62	28			-72.2537	-92.3350	-351.0299
402	3027			-69.2486	-57.4458	-357.1356
62	185			-103.7201	-92.3350	-379.4963
162	6468			-70.2676	-107.1863	-388.8951
62	493		-221.4412		-92,3350	-412.2519
62	114			-105.2185	-92.3350	-412.9947
62	185			-103.7201	-92,3350	-425.4963
62	28	6710	-341.4412	-72.2537	-92.3350	~506.0299

.

Table 9. Body weight at firt kidding: Combined selection

.

index for famales combining information from full-sib

and half-sib family averages.

.

		*****	- 	*****		
Sire no:	Dom no:	Daughter no:	9 - P	$b_1 (P_{FS} - \bar{P})$	$b_2 (P_{HS} - \overline{P})$. I f
\$293	63	795	13.7779	7.4372	4.5823	25.7924
58	58	6376	10.7779	4.4312	6.7964	22.0055
58	A49	6501	8.2779	6.2348	6,7964	21.3091
58	A40	6588	7.2779	6.2348	6.7964	29.3091
S293	63	796	4.7779	7.4372	4.5823	16.7974
\$293	119	756	9.7779	1.8260	4.5823	16.1862
6304	6226	42	7.7779	5.0324	3,2295	16.0398
6364	6226	41	4.7779	5.4324	3.2295	13.0398
5293	- 85	714	6.7779	2.8664	4.5823	12,9266
58	A77	6365	5.7779	-9.5788	6.7964	11.9955
58	58	63 77	8.2779	4.4312	6.7964	11.5055
59	161	6812	8.7779	2.0264	-9.1191	10.6942
62	A25	6505	8.2779	5.8151	-3.5501	10.5349
58	A126	6471	3.2779	0.2228	6.7964	10.2971
62	28	6418	12.2779	1.5541	-3.5581	10.1739
5293	86	689	3 .777 9	6.1426	4.5923	8.5028
62	A25	6506	4.7779	5.8151	-3.5581	7.0349
S293	85	713	-1.1221	2.9664	4.5823	5,5266
59	<u>A</u> 24	6185	2.7779	2.2268	-0.1101	4.8946
S 9	A24	6498	2.7779	2,2268	-0.1101	4.8946
. 402	. 60	3241	2.7779	2.2268	-8.6016	4.4031
492	.60	3242	2.7779	2.2268	-9.6016	4.4031
58	A126	6472	-2.7221	0.2228	6.7964	4.2971
462	3ø27	3178	3.2779	0.8240	-0.6016	3.5003
84	. 1	96 9	2.7779	1.0244	-0.4699	3.3328
5293	80	690	-3.4221	0.1426	4.5823	1.3028
6293	119	757	-5.2221	1.6260	4.5823	1.1862
6293	58	716	-8.7221	-2.7832	4.5823	1.0776
59	249	6288	0.7779	-Ø.2983	-9.1101	0.3695
84	1	970	-0,2221	1.0244	-0.4695	0.3328
84	299	958	1.2779	-0.5799	-0.4695	8.2296
62	28	6710	-2,2221	1.5541	-3,5581	3.2181
62	185	6195 -	3.7779	-0.3463	-3.5581	-0.1265

j contd.. Table 9.

•

ire no:		Daughter n o:	P - P	$b_1 (P_{FS} - \overline{P})$	$b_2 (P_{HS} - \overline{P})$	rf
462	A41	3263	1.7779	-1.3894	-9.6916	-0.2341
492	3927	3177	-1.2221	0.8246	-0.6016	-0.9997
58	A77	6366	-7.2221	-0.5788	6.7964	-1.0045
62	A62	6397 1	4.2779	-1,7567	-3.5581	-1.0369
59	161	6180	-3.7221	2.9264	-9.1101	-1.8058
62	494	6745	2.7779	1.0886	-3.5581	-1.8638
9	249	6675	-1.5221	-0.2983	-0.1191	-1.9305
462	289	3222	C.7779	-2.5828	-0.6016	-2.4069
304	62	52 3 3	-3.2221	~2,5828	3.2295	-2.5754
304	6252	34	-3.2221	-2.5828	3.2295	-2.5754
84	A89	921	-1.2221	-0.9796	-0.4695	-2.6712
84	A89	922	-1.2221	-9.9796	-0.4695	-2.6712
59	298	669 7	-0.2221	-2.3824	-3.1101	-2,7148
59	221	6284	-1.7221	-1.9816	-0,1101	-2,8138
84	290	949	-2.7221	-8.5788	-0.4695	-3.7794
293	58	715	-6.2221	-2.7832	4.5823	-4.4230
62	185	6704	-2,2221	-0.3463	-3.5581	-6.1265
59	221	6693	-4.2221	-1.9315	-0.1101	-6,3138
62	185	6795	-2.7221	-0.3463	-3.5581	-6.6265
62	. 28	6769	-4.2221	1.5541	-3.5581	-6.7261
492	_ A41	3202	-5.2221	-1,3864	-0.6016	-7.2041
59	290	6696	-5.2221	-2.3824	-0.1101	-7.7140
62	494	6744	-5.2221	-1.0886	-3.5581	-9.8688
52	<u>_ 882</u>	6163	-2.2221	-4.2064	-3.5581	-9.9860
402	280	3166	-7.2221	-2.5828	-0.6016	-10,406
5162	6468	185	1.7779	-1.3804	-11.0380	-10.6459
62	A62	6619	-8.2221	-1.7567	-3.5581	-13.5369
62	_ A82	6164	-7.2221	-4.2064	-3.5581	-14.986(
62	114	6239	-5.2221	-0.3463	-3.5581	-14.9989
5162	6468	186	-5.2221	-1.3884	-11.0380	-17.649
62	290	6320	-7.6221	-7.0570	-3.5581	-13.237
62	114	6343	-8.7221	-6.2107	-3.5581	-19:4909
62	293	6319	-8.2221	-7.6576	-3.5581	-18.837
	6297		-7.2221	-6.9916	-11.0380	-25.2517
162	6297	173	-10.2221	-6.9916	-11.0380	-28.2517
	•			· .		• •
				•.		•

69

!

,

Table 10. First lactation milk yield: Combined selection index for females combining information from individual's performance with those of full-sib and balf-aib family

averages

sire	Dam	Daught	er P - P	$b_1 (P_{rs} - \tilde{P})$	$b_2(P_{HS}-\bar{P})$	It
no:	no:	no:		- 13		1
58	58	6376	93.3826	26.3953	17.7110	137.4889
\$293	63	795	63.7825	30.2884	18.6641	112,7351
6304	6226	41	56.7326	29.3322	16.3942	102.4596
6394	6226	42	50.6326	29.3322	16.3942	96.3590
S293	63	796	47.0826	30.2884	18.6641	96.0351
S293	119	756	64.1426	11.1671	18.6641	93.9738
62	A25	6586	65.7326	30.5970	-6.5504	89,7792
5293	85	714	55.1826	4.9091	13.6641	89.7548
S293	86	689	\$5.5326	9.3859	18.6641	83.5826
58	A40	6501	30_9826	15.8634	17.7110	64.5570
62	Δ25	6505	36.6326	36.5978	-6.5584	68.6792
58	24 <i>4</i>	6509	27.0826	15,8634	17.7110	60.6570
84	1	969	36.7826	13.7461	-1.7714	48.7573
58	58	6377	3.2326	26,3953	17.7110	47.3389
S 8	A77	6365	21.6826	6.6293	17.7110	46.0229
62	28	6418	45.0826	9.7 070	-6.5964	39,2392
492	68	3242	29.9826	7.8997	-2.0471	35.8352
62	A62	6397	37.9826	-0.9669	-6.3504	30.4653
58	Δ77	6366	2,5926	6.6293	17.7110	26.9229
s293	50	715	6.2826	6.0312	13.6641	25.6279
84	1	970	13.5326	13.7461	-1.7714	25.5973
402	3027	3178	10,4826	3.8153	-2.0471	20.2548
402	280	3222	19.7326	0.8921	-2.0471	18.5776
S293	58	716	-3.9574	0.8812	15.6641	16.4879
59	249	6288	18.7926	6.2741	-14.8317	18.2250
52	A126	6472	-2.2674	-5,8969	17.7110	9.5467
\$293	Eg	690	-21.1774	9.3859	18.6641	6.8726
S293	119	757	~23.2674	11.1671	18.6641	6.5638
402	60	3241	-1.0674	7.8997	-2.0471	4.7852
6304	6252	34	-8.1174	-9.4349	16.3942	-1.1581
402	3027	3177	-4.5174	3.9153	-2.0471	-2.7492
59	249	6675	4.1826	6.2741	-14.6317	-4.3750
62	28	6710	C.9826	0.7073	-6.5504	-4.9608

Table 10. contd.....

•

.

	a and and and an				
Sice	Da:A	Daughter P - P	$b_1 (p_c - \overline{p})$	$b_2(P_{HS} - \bar{P})$	ıt
no:	no:	ПО:	1 F3	- 113	1
 58	A126	6471 -19,3174	~5.8969	17.7110	-7.5633
62	114	6239 3.7926	-5.0558	-6.5504	-7.9036
59	A24	6135 0.4826	-9.2280	-14.8317	-14.5771
492	290	3166 -16.4674	0.8921	-2.0471	-17.6224
6384	6252	33 -26.4174	-9.4349	16.3942	-19.4581
64	290	949 -12.7174	-7.7137	-1.7714	-22.2025
62	A82	6163 -8.7674	-8.0657	-6.5504	-23.3835
84	A89	921 -12.4174	-9.2573	-1.7714	-23.4461
\$293	85	713 -48.2174	4.9081	18.6641	-24.6452
84	290	950 -15.5174	-7.7137	-1.7714	-25.0025
62	114	6343 -20.6174	-5,0558	-6.5504	-32.2236
84	A89	922 -21.4674	-9.2573	-1.7714	-32.4961
492	241	3202 -12.9174	-17.5762	-2.8471	-32.5407
62	A82	6164 -18.2174	-8.0657	-6.5504	-32,8335
62	185	6195 -16.6174	-11.6177	-6.5504	-34.1855
59	Δ24	6493 -1.3174	-9.2280	-14.8327	-34.2717
52	185	6704 -16.7674	-11.6177	-6.5504	-34.9355
59	290	6696 -6.7174	-16,6883	-14.8017	-38.2374
62	185	6705 -25.5174	-11.6177	-6.5504	-43.6855
59	161	3912 -12.7174	-16.2376	-14.8317	-43.7867
62	28	6709 -42.4174	8 .7 878	-6.5504	-48.2698
62	A62	6619 -41.2174	-9,9669	-5.5504	-48.7347
6162	6468	185 -15.0674	-8.5889	-25.6770	~49.3324
6162	6468	135 -16.3674	-8.5880	-25.6770	-50,6324
62	494	6745 -26.9174	-18.4226	-6.5504	-51.8904
59	221	6284 -21.6174	-16.1226	-14.8317	-54.5717
62	.290	6320 -29,0674	-20,1861	-6.5504	-55.0039
62	494	6744 -34.7174	-18.4225	-6.5504	-59.6904
62	290	6319 -38.4674	-20.1861	-0.5504	-65.2039
402	A41	3263 -51.4174	-17.5762	-2.8471	-71.6407
59	221	6693 -44.7174	-19.1226	-14.0317	-77.6717
59	161	6180 -46.7174	-16,2376	-14.8317	-77.7367
59	299	6697 -54.3674	-16.6883	-14.8317	-85,8874
6162	6297	172 -40.3174	-22.5758	-25.6770	-88,3792
6162	6297	173 -42.3174	-22.5758	-25,6770	-90.5702

-

•

Table 11. Selected female animals with their selection

scores for the four characters under study.

Birth Weight:

. •

Sire No:	Dam No:	Daughter No:	ıţ	Expected response due to combined selection (%)
5293 59 62 59 5293 5293 5293 5293 5293 5293 5293	58 249 A25 161 63 80 63 58 119 A25 A89 A09 58 A09 58 A62 28	715 6575 6505 6196 795 698 796 716 756 6506 921 922 6376 6397 6418	1.9607 1.6587 1.1584 1.1571 1.0597 0.9507 0.7597 0.6507 0.6587 0.6584 0.6584 0.6576 0.5576 0.6568 0.6568 0.6568	24.29
5293 5304 Age at	119 6226 first 1	757 41 kidding:	0.4587 0.4569	
Sire No:	Dam No:	Daughter No:	г _f	Expected response due to combined selection (%)
62 62 62 62 62 62 62 62 402 62 84 84 84 402 62 59 59 59 62	28 185 114 494 6458 185 3027 28 290 290 290 290 290 290 296 114	6705 6343 6745 186 6704 3177 6709 3166 921 922 3222 6320 6164 6697 6696	-506.0299 -425.4963 -412.9947 -412.2519 -388.8951 -379.4963 -357.1356 -351.0299 -324.8178 -323.0147 -319.0147 -319.0147 -313.1195 -311.8143 -293.0763 -289.0763 -262.9947	1378.99

.

.

Sire No:	Dam No:	Daughter No:		Expected response due to combined selection (1)
	ارک خان میں براہ میں خور ہوتا ہو		د. ال الي في الله علي الله الله الله الله علي الله الله علي الله علي الله الله الله الله علي الله علي الله علي ال	و ه بين جه من من جو خو خو خو من جه من جه من
5293	63	795	25.7974	
58	58	6376	22.0055	
58	A48	6501	21.3091	
58	A40	6500	20.3091	
3293	63	796	16.7974	
3293	119	756	16.1862	
5304	6226 6226	42 41	16.0398	38.45
6384 5293	5225 85	714	13.0398 12.9226	20 • 4 2
58 58	85 877	6365	11,9955	
58	58	6377	11.5055	r
59 59	161	6012	10.6942	-
62	A25	6595	10.5349	
58	A126	6471	10.2971	
52	28	6418	10.1739	
3293	80	609	8.5028	
62	A25	6506 on milk yie	7.0349	- Al न्यून कही होता होता सेवल होता होता होता रहा रहा न्यून न्यून का स्थित न्यून होता न्यून होता सेवल होता सेती सी ?
62	A25	6506	7.0349	Expected response due to combined selection (%)
62 First Sire No:	A25 lactati Dam No;	6506 on milk yie Daughter No:	7.0349 1a: ¹ f	due to combined
62 First Sire No: 58	A25 lactat1 Dam No; 58	6506 on milk yie Daughter No: 6376	7.0349 1d: ¹ f 137.4889	due to combined
62 First Sire No: 58 593	A25 lactat1 Dam No; 58 63	6506 on milk yie Daughter No: 6376 795	7.0349 1d: ¹ f 137.4889 112.7351	due to combined
62 First Sire No: 58 593 5394	A25 lactat1 Dam No; 58 63 6226	6506 on milk yie Daughter No: 6376 795 41	7.0349 1d: ¹ f 137.4889 112.7351 102.4590	due to combined
62 First Sire No: 58 5293 5304 5364	A25 lactat1 Dam No: 58 63 6226 6226 6226	6506 on milk yie Daughter No: 6376 795 41 42	7.0349 1d: ¹ f 137.4889 112.7351 102.4590 96.3590	due to combined
62 First Sire No: 58 5293 5304 5364 5364 5364	A25 lactat1 Dam No; 58 63 6226 6226 6226 63	6506 on milk yie Daughter No: 6376 795 41 42 796	7.0349 1d: 1f 137.4889 112.7351 102.4590 96.3590 96.0351	due to combined
62 First No: 58 5293 5394 5364 5364 5293 5293	A25 lactat1 Dam No; 58 63 6226 6226 63 119	6506 on milk yie Daughter No: 6376 795 41 42 796 756	7.0349 1d: 1 _f 137.4889 112.7351 102.4590 96.3590 96.0351 93.9730	due to combined
62 First Siro No: 58 5293 5304 5364 5293 5293 5293 5293 5293 5293 5293	A25 lactat1 Dam No; 58 63 6226 6226 6226 63 119 A25	6506 on milk yie Daughter No: 6376 795 41 42 796 756 6596	7.0349 1d: 1 _f 137.4889 112.7351 102.4590 96.3590 96.0351 93.9738 89.7792	due to combined
62 fire No: 58 293 394 5364 5293 62 5293 62 5293	A25 lactat1 Dam No; 58 63 6226 6226 63 119	6506 on milk yie Daughter No: 6376 795 41 42 796 756	7.0349 1d: 1 _f 137.4889 112.7351 102.4590 96.3590 96.0351 93.9730	due to combined selection (%)
62 ire No: 58 293 394 364 293 62 293 62 293	A25 lactat1 Dam No; 58 63 6226 6226 6226 63 119 A25 85	6506 on milk yie Daughter No: 6376 795 41 42 796 756 6596 714	7.0349 1d: 1f 137.4889 112.7351 102.4590 96.3590 96.3590 96.0351 93.9730 89.7792 89.7548	due to combined selection (%)
62 ire No: 58 593 5364 5364 5364 5364 5364 5364 5364 536	A25 lactat1 Dam No; 58 63 6226 6226 63 119 A25 85 80 A40 A25	6506 on milk yie Daughter No: 6376 795 41 42 796 756 6506 714 609 6501 6505	7.0349 1d: 1f 137.4889 112.7351 102.4590 96.3590 96.0351 93.9738 89.7792 89.7548 83.5826 64.5570 66.6792	due to combined selection (%)
62 iret No: 58 293 304 364 293 62 293 62 293 62 58 62 58	A25 lactat1 Dam No; 58 63 6226 63 6226 63 119 A25 85 80 A40 A25 A40 A25 A40	6506 on milk yie Daughter No: 6376 795 41 42 796 756 6506 714 609 6501 6505 6509	7.0349 1d: 1f 137.4889 12.7351 102.4590 96.3590 96.3590 96.9351 93.9738 89.7792 89.7792 89.7548 83.5626 64.5570 66.6792 60.6570	due to combined selection (%)
62 1rst 1rst 1rs 1rs 1rs 1 58 293 364 293 62 293 62 293 62 58 62 58 62 58 84	A25 Lactat1 Dam No; 58 63 6226 63 6226 63 119 A25 85 80 A40 A25 80 A40 A25 A40 A25 A40 1	6506 on milk yie Daughter No: 6376 795 41 42 796 756 6506 714 609 6501 6505 6509 969	7.0349 1d: 1f 137.4889 112.7351 102.4590 96.3590 96.0351 93.9738 89.7792 89.7548 83.5826 64.5570 66.6792 60.6570 48.7573	due to combined selection (%)
62 iret No: 58 5293 5394 5394 5394 5393 5394 5393 5394 5393 5394 5393 5394 5393 5394 5393 5394 5393 5393	A25 lactat1 Dam No; 58 63 6226 6226 6226 6226 63 119 A25 85 80 A40 A25 80 A40 A25 A40 1 58	6506 on milk yie Daughter No: 6376 795 41 42 796 756 6506 714 659 6501 6505 6509 969 6377	7.0349 1d: 1f 137.4889 112.7351 102.4590 96.3590 96.0351 93.9738 89.7792 89.7548 83.5826 64.5570 66.6792 60.6570 48.7573 47.3389	due to combined selection (%)
62 First Sire No: 5393 5394 6364 5293 5293 5293 5293 5293 5293 5293 5293	A25 Lactat1 Dam No; 58 63 6226 63 6226 63 119 A25 85 80 A40 A25 80 A40 A25 80 A40 A25 80 A40 A25 80 A40 A25 A40 A25 A40 A77	6506 on milk yie Daughter No: 6376 795 41 42 796 756 6506 714 609 6501 6505 6509 969 6377 5365	7.0349 1d: 1f 137.4889 112.7351 102.4590 96.3590 96.0351 93.9738 89.7792 89.7548 83.5826 64.5570 66.6792 60.6570 48.7573 47.3389 46.0229	due to combined selection (%)
62 Firet Sire No: 58 5293 5304 5304 5304 5304 5304 5304 5304 530	A25 lactat1 Dam No; 58 63 6226 6226 6226 6226 63 119 A25 85 80 A40 A25 80 A40 A25 A40 1 58	6506 on milk yie Daughter No: 6376 795 41 42 796 756 6506 714 659 6501 6505 6509 969 6377	7.0349 1d: 1f 137.4889 112.7351 102.4590 96.3590 96.0351 93.9738 89.7792 89.7548 83.5826 64.5570 66.6792 60.6570 48.7573 47.3389	due to combined selection (%)

· · · ·

•

.

,

Table 12. Birth weight: Combined selection index for

males combining information from full-sib and half-sib

•

family	averages.
--------	-----------

2

1

· ,

Sire No:	Dam No:	$b_1 (P_{FS} - \bar{P})$	$b_2(P_{HS} - \bar{P})$	I _{m.}
s293	58	0.003526	0.992399	6,964835
S293	63	9.382446	0.001309	8.803755
59	249	0.002716	0.000121	0.002837
S29 3	119	0.001501	9.001309	\$.99281 9
\$293	86	9.001561	0.001309	0,992910
62	A25	0.002669	-0.000162	8,002507
s293	85	8.088691	0.091309	5.092909
84	A89	5.001771	-0.000111	0.001669
59	161	5.001096	9.000121	0.001217
6394	6226	0.000991	9.000148	0.001049
58	58	8.001096	-0.000172	0.000924
62	A62	9.900459	-8.000162	0,030298
58	A97	0.000421	-0.000172	0.000249
59	A24	-0.869389	Ø.090121	-0.000269
6384	6252	-9-998425	6.000148	-0.000277
62	290	-0.000130	-0.000162	-0.800292
62	114	-9.000277	-9.600162	-0.800439
462	280	0.000016	-0.000675	-0.000659
84	290	-0.000659	-6.660111	-0.000770
62	28	-9.000621	-6.060162	-0.669793
59	290	-0.000929	C.000121	-0.999809
58	A40	-0.000929	-0.000172	-0.001101
62	494	-6.001914	-3.903162	-3.001176
62	185	-3.001210	-3.998162	-0.001372
432	60	-9.699794	-3.889675	-9.001470
62	A82	-9.001308	-0.000162	-0.001470
· 59	221	-3,001604	-9.030121	-3.001484
84	1	-0.001604	-9.090111	-0.001715
58	A126	-0.001604	-0.000172	-8.001776
402	3827	-3.001604	-0.080675	-9.032279
492	A41	-0.001604	-8,000675	-0.002279
6162	6468	-2.001161	-9.901132	-0.002293
6162	6297	-9.002487	-9.001132	-9.003619

.

·, '

ź

· · ·

Table 13. Age at first kidding: Combined selection

index for males combining information from full-sib and

half-sib family avorages.

Sire No: .	Dam No:	$b_1(P_{FS} - \vec{P})$	$b_2(P_{HS} - \bar{P})$	I m
6304	6226	175,2994	282.9493	458.2487
6304	6252	96.1609	282.9493	379.1102
59	161	252.7396	22,3161	275.0557
8293	119	172.9218	88.5896	261.5114
s293	85	67.2907	88,5896	155.8803
s293	- 8g	23.7492	88,5896	112.3388
58	A40	44.8738	59,3825	104.2563
58	A126	39.0997	59.3825	98.4822
S293	58	8.8709	88.5896	97.4695
59	A24	62,5356	22.3161	84.8517
58	b77	19,0604	59.3825	73.4429
58	58	19,9988	59.3825	70.2913
492	60	89.7976	-57.4458	32.2618
S293	63	-59.3988	88.5896	29.1998
84	• 1	55.7426	-38.1514	17.5912
59	249	-45.1335	> 22.3161	-22.8174
84	290	3.7761	-38,1514	-34.3753
62	A25	43.1231	-92.3350	-49.2119
62	A62	29.6375	-92.3350	-62.6975
59	221	-91.6655	22.3161	-69.3494
62	299	11.6567	-92.3350	-89.6783
402	A41	-24.7545	-57.4458	-82.2003
59	298	-124,9512	22.3161	-102.6351
462	3627	-69,2486	-57.4458	-126.5944
62	V85	-49.8381	-92.3350	-132.3731
6162	6297	-32.5664	-107.1863	-139.7527
84	A89	-114,4221	-38.1514	-152.5735
402	280	-105.9308	-57,4458	-163.3766
62	28	-72.2537	+92,3350	-164.5887
6162	6468	-70.2676	-107.1863	-177.4539
62	494	-98.4757	-92.3350	-196.8167
62	185	-103,7261	-92.3350	-196.0551
62	114	-195.2185	-92.3350	-197.5535

.

Table	14.	Body	weight	<u>at</u>	first	kidding:	Combined

selection index for males combining information from

.

full-sib and half-sib family averages.

.

-

.

.

,

,

Sire No:	Dam No:	$b_1(P_{FS} - \bar{P})$	$b_2(P_{HS} - \bar{P})$. I m
 58	A40	6.2348	6.7964	13.0312
s293	63	7.4372	4.5823	12.0195
58	58	4,4312	6.7964	11.2276
6304	6226	5.0324	2.2295	7.2519
58	A126	0.2228	6.7964	7.0192
S293	119	1.8260	4.5823	6.4083
S293	35	2.0664	4.5823	6.2176
58	A77	-8.5799	6.7964	6.2176
8293	80	9.1426	4.5823	4.7249
62	A25	5.8151	-3.5581	2.2570
59	A24	2.2268	-9,1191	2.1167
59	161	2.0254	-8.1101	1,9163
S293	58	-2,7832	4.5823	1.7993
402	60	2.2268	-9.6016	1.6252
84	1	1.0244	-0.4695	0.5549
462	3827	0.8240	-0.6016	0.2224
6304	6252	-2.5828	2.2295	-0.3533
59	249	-8.2983	-0.1101	-0.4084
84	298	-0.5788	-0.4695	-1.0403
84	A89	-0.9796	-0.4695	-1.4491
482	A41 '	-1.3804	-0.6016	-1.9828
62	28	1.5541	-3.5581	-2.0040
59	221	-1,9816	-0.1101	-2.0917
59	290	-2.3824	-6.1101	-2.4925
402	280	-2.5828	-9.6016	-3.1844
62	185	-0.3463	-3.5581	-3.9644
62	494 -	-1.9885	-3.5581	-4.6467
62	A62	-1.7569	-3.5581	-5.3156
62	A82	-4.2064	-3.5581	-7.7645
62	114	-6,2107	-3.5581	-9.7688
62	290	-7.0570	-3.5581	-10,6151
6162	6468	-1.3804	-11.0308	-12,4112
6162	6297	-6.9916	-11.0308	-18.0224

. .

Table 15. First lactation milk yield: Combined

selection index for males combining information from -

Yull-sib and half-sib family averages.

Sire No:	Dam No:	$b_1(P_{FS} - \bar{P})$	$b_2 (\mathbf{P}_{HS} - \mathbf{\bar{P}})$	Im
5293	63	30.2884	18.6641	48.9525
6304	6226	29.3322	16.3942	45.7264
58	58	26.3953	17.7110	44.1863
58	A40	15.8834	17.7110	33.5450
S293	119	11.1671	18.6641	29.8312
\$293	85	9,3359	18.6641	28.0509
58	877	6,6293	17.7110	24.3403
62	A25	30.5970	-6.5504	24.0466
5293	85	4.9881	18.6641	23.5722
\$293	58	0.8012	18.6641	19.5453
84	ì	13.7461	-1.7714	11.9747
58	3126	-5,8969	17.7110	11.8141
6304	6252	-9.4349	16.3942	-6.9593
492	60	7.8997	-2.8471	5.8526
402	3027	3.8153	-2.0471	1.7682
492	287	0,8921	-2.0471	-1.1550
62	28	U.7670	-6.5504	-5.8434
62	A62	-0.9669	-6.5594	-7.9173
59	249	6.2741	~14.8317	-8.5576
B 4°	290	~7.7137	-1.7714	-9.4851
84	A89	-9.2573 ·	-1.7714	-11.9287
62	114	-5.0588	-6.5584	-11.6892
62	AS 2	-8.9657	-6.5504	-14.6161
59	Λ24	-0.2280 -	-14.8317	-15.0597
62	1.85	-11.6177	-6.5504	-18,1681
402	A43.	-17.5762	-2.0471	-19.6233
62	494	-18.4226	-6.5504	-24.9730
62	296	-29.1851	-6.5504	-26.7365
59	161	-15.2376	-14.8317	-31.0693
59	298	-1.6,6883 .	-14.8317	-31.5360
59	221	-18.1226	-14.3317	-32.9543
5162	5455	-8,5889	-25.6770	-34,2650
8162	6297	-22,5758 .	-25.6773	-48.2528

•

.

•

Table 16. Selected size-dam pairs for the four characters

.

under study.

Birth Weight:

Sire No:	Dam No:	Ĭm	Expected response due to combined selection(%)
s293	58	8.094835	수 약 수 있는 것은 수 있는 것은 가 있는 것 같은 것은 것은 것은 수 있는 것은
8293	63	9.003755	ι.
59	249	0.002837	
Ś293	119	0.002819	49.50
5293	80	0.002819	
62	A25	0.002507	
S293	85	0.002006	
Age at f	irst kiddin		
01		*	
Sice 🦾	Dam	±	Expected response due
Not	Dam No:	Im	to combined selection(%)
,		-197.5535	
110 t 62	NO: 114	-197,5535	
tiot	No:	-197.5535 -196.0551	
10 1 62 62 62	No: 114 185	-197,5535	to combined selection(%)
10 1 62 62 62	No: 114 185 494	-197.5535 -196.0551 -190.8107 -177.4539	
62 62 62 6162	No: 114 185 494 6468	-197.5535 -196.0551 -190.8107	to combined selection(%)
10: 62 62 62 62 6162 62	No: 114 185 494 6468 28	-197.5935 -196.0551 -190.8107 -177.4539 -164.5837	to combined selection(%)
No: 62 62 62 6162 62 492	No: 114 185 494 6468 28 285	-197.5535 -196.0551 -190.8107 -177.4539 -164.5837 -163.3716	to combined selection(%)
No: 62 62 62 6162 62 442	No: 114 185 494 6468 28 285	-197.5535 -196.0551 -190.8107 -177.4539 -164.5837 -163.3716	to combined selection(%)

78

.

Sire No:	Dam No‡	. 1 _m	Expected response due to combined selection (\$
58	A49	13.0312	
S293	63	12,0195	
58	58	11,2276	
6384	6226	7.2619	67.24
58	A126	7.0192	,
s 29 3	85	6.2176 .	
S293	119	6,4083	۰. ۱
Sire	ctation mil	k yield:	Expected response due
فتقريبها فيدحين ويدقين متداري	میں ایرین کارد جاری کریں میلیا رکی کریز باری مارد کی۔ 		Expected response due to combined selection (*
Sire	, Dam Not	k yield: I _m	
Sire No:	, Dam	k yield: Im 458.2487	
Sire No: 6304	Dam No: 5226	k yield: Im 458.2487 379.1192	
Size No: 6304 6304	Dam Not 5226 6252	k yield: Im 458.2487	
Sire No: 6304 6304 59	Dam No: 6226 6252 161	k yield: Im 458.2487 379.1192 275.0557	to combined selection (%
Sire No: 6304 6304 59 S293	Dam No: 6226 6252 161 119	k yield: Im 458.2487 379.1102 275.0557 261.5114	to combined selection (%

79

.

Table 17. <u>Malabari</u>. General selection indices. The coefficients b_1 , b_2 , multiple correlation R_{AI} and the ranges of \hat{A} for males.

Birth weight:

÷

Sire No:	b ₁	b ₂	R _{AI}	, Range of Â for males
101	8.4874	0.2803	6.7466	1.3159 to 1.6571
102	8.4957	9.2168	8.7416	0.8382 to 1.5322
157	0.4898	0.2620	0.7452	0.9277 to 1.6624
364	6.4892	8.3348	0.7509	1.3891 to 1.9983
314	8.4957	9.2168	0.7416	9.7949 to 1.2906
357	0.5039	0.1545	0.7366	1.9520 to 1.5559
402	0.4765	0.3630	8.7532	1.0621 to 1.6339
3174	6.4957	0.2168	0.7416	0.8878 to 1.5818
3179	0.4925	0.2410	Ø.7435	0.9675 to 1.6570
~ * ~ ~	~	0 9109	0 9410	
3182 Age at	9.4957 first kid	0.2168 ding:	0.7416	Ø.6893 to Ø.8299
Ag e at Sire			R _{AI}	Range of Â
Age at	first kid	ding:		
Ag e at Sire	first kid	ding:		Range of Â for males
Age at Sire No:	first kid	b ₂	R _{AI}	Range of Â for males 424.7590 to 626.335
Age at Sire No: 101 102 157	first kid b ₁ Ø.4298	ding: b ₂ 0.2919	R _{AI} Ø.7691	Range of Â for males 424.7590 to 626.335 383.4759 to 595.808
Age at Sire No: 101 102	first kid b ₁ Ø.4298 9.4378	ding: b ₂ Ø.2919 Ø.2226	R _{AI} Ø.7691 Ø.7025	Range of Â for males 424.7590 to 626.335 383.4759 to 595.808 439.9220 to 586.835
Age at Sire No: 101 102 157	first kid b ₁ Ø.4298 9 .4378 Ø.4321	0.2919 0.226 0.2718	R _{AI} Ø.7091 Ø.7025 G.7071	Range of Â for males 424.7590 to 626.335 383.4759 to 595.808 439.9220 to 586.835 555.8388 to 1135.783
Age at Sire No: 101 102 157 364	5.4298 5.4378 9.4321 6.4227	b ₂ Ø.2919 Ø.2226 Ø.2718 Ø.353Ø	R _{AI} Ø.7091 Ø.7025 G.7071 G.7148	Range of Â for males 424.7590 to 626.335 383.4759 to 595.808 439.9220 to 586.835 555.8388 to 1135.783
Age at Sire No: 101 102 157 364 314	first kid b ₁ Ø.4298 9.4378 Ø.4321 Ø.4227 Ø.4378	b ₂ 0.2919 0.2226 0.2718 0.3530 0.2226	R _{AI} Ø.7091 Ø.7025 G.7071 G.7148 Ø.7025	Range of Â for males 424.7590 to 626.335 383.4759 to 595.808 439.9220 to 586.835 555.8388 to 1135.783 337.0539 to 597.107 333.5667 to 565.672
Age at Sire No: 101 102 157 364 314 357 402	first kid b ₁ Ø.4298 9.4378 Ø.4321 Ø.4321 Ø.4227 Ø.4378 Ø.4455	b ₂ Ø.2919 Ø.2226 Ø.2718 Ø.353Ø Ø.2226 Ø.1565	R _{AI} Ø.7091 Ø.7025 Ø.7071 G.7148 Ø.7025 Ø.6962	Range of Â for males 424.7596 to 626.335 383.4759 to 595.868 439.9220 to 586.835 555.8388 to 1135.783 337.8539 to 597.187 333.5667 to 565.672 421.5444 to 731.185
Age at Sire No: 101 102 157 364 314 357	first kid b ₁ 0.4298 9.4378 0.4321 0.4321 0.4227 0.4378 0.4455 0.4190	b ₂ Ø.2919 Ø.2226 Ø.2718 Ø.353Ø Ø.2226 Ø.1565 Ø.3852	R _{AI} Ø.7091 Ø.7025 Ø.7071 G.7148 Ø.7025 Ø.6962 Ø.7178	Range of Â for males 424.7590 to 626.335 383.4759 to 595.808 439.9220 to 586.835 555.8388 to 1135.783 337.0539 to 597.107 333.5667 to 565.672 421.5444 to 731.185

Sire No:	ь ₁	b ₂	R _{AI}	Range of Â for males
101	0.4505	9.2885	8.7229	12.9494 to 17.9049
192	Ø.4587	Ø.2212	0.7169	9.2706 to 15.2339
157	0.4529	0.2690	0.7212	11.8826 to 19.3554
364	6.4434	0.3472	9.7282	15.9668 to 22.1744
314	0.4587	0.2212	0.7169	9.7833 to 16.3428
357	Ø.4665	0.1563	0.7110	12.6135 to 15.1793
462	0.4396	0.3789	0.7308	15.6290 to 21.4316
3174	J.4 587	0.2212	0.7169	15.9311 to 20.9768
3179	9.4556	9.2468	9.7192	11.2764 to 13.7822
3182	0.4587	Ø.2212	9.7169	10.8400 to 14.5096
	M # # 101	¥ • 4 4 1 4	u • / 205	10.8400 to 14.5096
	lactation			
?irst	lactation	milk yield		
irst				18.8400 to 14.5096 Range of Â for males
irst Sire No:	lactation b ₁	milk yield b ₂	R _{AI}	Range of Â for males
irst Sire No: 101	lactation b ₁ Ø.2886	milk yield b ₂ Ø.2865	: R _{AI} Ø.6ØØ2	Range of Â for males 11.6421 TO 28.3665
first No: 101 102	lactation b ₁ Ø.2886 Ø.2947	milk yield b ₂ Ø.2865 Ø.2091	* R _{AI} Ø.6ØØ2 Ø.5091	Range of Â for males 11.6421 TO 28.3665 8.3438 to 16.3744
7irst Sire No: 101 102 157	lactation b ₁ 0.2886 0.2947 0.2904	milk yield b ₂ Ø.2865 Ø.2091 Ø.2633	R _{AI} Ø.6ØØ2 9.5891 Ø.5968	Range of Â for males 11.6421 TO 28.3665 8.3438 to 16.3744 12.2310 to 24.9796
First Sire No: 101 102 157 364	0.2886 0.2947 0.2994 0.2994 0.2994 0.2829	milk yield b ₂ 0.2865 0.2091 0.2633 0.3606	R _{AI} Ø.6ØØ2 Ø.5891 Ø.5968 Ø.6108	Range of Â for males 11.6421 TO 28.3665 8.3438 to 16.3744 12.2310 to 24.9796 15.1376 to 29.7041
First No: 101 102 157 364 314	lactation b ₁ 0.2886 0.2947 0.2904 8.2829 0.2947	milk yield b ₂ Ø.2865 Ø.2091 Ø.2633 Ø.3606 Ø.2091	R _{AI} Ø.6ØØ2 9.5891 Ø.5968 Ø.6108 Ø.5891	Range of Â for males 11.6421 TO 28.3665 8.3438 to 16.3744 12.2310 to 24.9796 15.1376 to 29.7041 9.1696 to 20.9783
irst No: 101 102 157 364 314 357	D.2886 0.2886 0.2947 0.2994 0.2994 0.2829 0.2947 0.2999	milk yield b ₂ Ø.2865 Ø.2091 Ø.2633 Ø.3606 Ø.2091 Ø.1413	R _{AI} 0.6002 0.5091 0.5968 0.6108 0.6108 0.5091 0.5790	Range of Â for males 11.6421 TO 28.3665 8.3438 to 16.3744 12.2310 to 24.9796 15.1376 to 29.7041 9.1696 to 20.9783 14.0710 to 19.2383
First No: 101 102 157 364 314 357 402	Dectation Dectation 0.2886 0.2947 0.2994 0.2994 0.2829 0.2947 0.2999 0.2796	milk yield b ₂ Ø.2865 Ø.2091 Ø.2633 Ø.3606 Ø.2091 Ø.1413 Ø.4022	R _{AI} 0.6002 0.5891 0.5968 0.6108 0.5891 0.5891 0.5790 9.6166	Range of Â for males 11.6421 TO 28.3665 8.3438 to 16.3744 12.2310 to 24.9796 15.1376 to 29.7041 9.1696 to 20.9763 14.0719 to 19.2383 19.7498 to 42.7050
First No: 101 102 157 364 314 357	D.2886 0.2886 0.2947 0.2994 0.2994 0.2829 0.2947 0.2999	milk yield b ₂ Ø.2865 Ø.2091 Ø.2633 Ø.3606 Ø.2091 Ø.1413	R _{AI} 0.6002 0.5091 0.5968 0.6108 0.6108 0.5091 0.5790	Range of Â for males 11.6421 TO 28.3665 8.3438 to 16.3744 12.2310 to 24.9796 15.1376 to 29.7041 9.1696 to 20.9783 14.0710 to 19.2383

.

.

81

ı,

,

-

ī

Table 18. <u>Dreed: SM</u>. General selection indices. The coefficients b_1 , b_2 , multiple correlation R_{AI} and the ranges of \hat{A} for males.

· Birth weight:

\$295 \$0.5170 \$0.2719 \$0.7648 1.13 \$299 \$0.5291 \$0.1845 \$0.7584 1.91	-		b ₁		Ъ ₂		Ŕ _{AI}	1 des ett att a			of Â ales
\$297 0.5336 0.1519 0.7560 0.87 \$293 0.4897 0.4036 0.7685 1.97		ទ ទ ទ	517 529 500 533 489	0 1 1 6 7	0.27 6.18 0.39 8.15 0.40	19 45 36 19 36	0.7548 0.7584 0.7736 0.7560 0.7689	- 	1.1390 1.9199 1.5768 0.8728	to to to to	2.6872 2.2764 2.4490 2.6770 1.8867 2.4663 2.0486

```
Age at first kidding:
```

Sire No:	b ₁	b ₂	RAI	Range of Â for males			
S294 S295 S299 S292 S297 S293 S293 83 83	0.5940 0.6918 0.6135 0.5864 0.6181 0.5859 0.6135 0.5910	Ø.2893 Ø.2405 Ø.1672 Ø.3368 Ø.1389 Ø.3398 Ø.1672 Ø.3080	0.8163 0.8136 0.8095 0.8189 0.8080 0.8080 0.8191 0.8095 0.8173	368.8005 to 364.7403 to 307.1699 to 494.4178 to 459.9273 to 537.1127 to 311.9339 to 500.6383 to	721.6477 664.8314 893.1698 494.7771 1038.6431 489.2354		

Body weight at first kidding:

Sire No:	b _i	b _{2.}	R _{AL}	Rang e for ma	-
\$294 \$295 \$299 \$292 \$297 \$293 \$3 83 84	G.3612 G.3693 G.3847 G.3525 G.3535 G.3518 G.3518 G.3847 G.3579	0.3770 0.2693 0.4171 0.4650 0.1533 0.4710 0.4171 0.4105	0.6749 0.6659 0.6482 9.6846 0.6856 0.6852 0.6852 0.6482 0.6786	14.4067 to 14.7755 to 13.9216 to 19.6188 to 15.0321 to 29.1254 to 14.7011 to 18.0106 to	19.0225 17.7686 27.5478 16.3743 27.6891 19.1351

Sire	b ₁	b ₂	R AT	Range	of â
NOI	-	-		for a	ales
5294	Ø.1934	0.3390	3.5274	24.6137 t	0 40.2308
S295	0,1982	0.2474	0.5699	21.7049 t	0 42.3871
\$299	8.2936	0.1453	0.4898	31.6848 t	o 45.0715
6 2 92	0.1872	0.4568	8.5490	31.3761 t	o 48.6547
s297	9.2053 -	8.1139	Ø.4835	15.7137 t	o 28.4751
5293	9.1867	0.4655	0.5505	35.7104 t	0 / 57.0689
83	0.2036	0.1453	6.4898	12.0684 t	0 29.5678
84	0.1912	0.3814	9.5353	26.5198 t	0 54.3452

.

6 1 -

,

Table 19. <u>Breed: AM</u>. General selection indices. The values of b_1 , b_2 , the multiple correlation R_{A1} and the range of \hat{A} for males.

Birth Weight:

Sire No:	b ₁	b ₂	R _{AI}	Range of Â for males	
59 58 63 75 62	0.3906 0.3923 0.4119 0.4594 0.3895	Ø.5106 Ø.4954 Ø.3284 Ø.3432 Ø.5207	Ø.7199 Ø.7184 Ø.7022 Ø.7037 Ø.7209	1.3925 to 2.8612 1.3336 to 2.1182 1.6808 to 2.0507 0.9242 to 1.3336 1.3954 to 2.2134	
Age at first kidding:					
Sire No:	b ₁	b ₂	R _{AI}	Range of A for males	
59 58 63 75 62	0.4542 0.4558 0.4724 0.4724 0.4531	Ø.4694 Ø.4560 Ø.3265 Ø.3265 Ø.4767	9.7559 0.7549 0.7443 0.7443 0.7565	455.4780 to 831.1014 477.4570 to 716.1194 550.3170 to 854.5426 416.6019 to 780.3499 433.8100 to 748.2614	
Body	weight at	first ki	dding:		
Sire No:	b 1	b ₂	R _{A1}	Range of Â for males	
59 58 63 75 62	8.4397 9.4413 9.4598 8.4581 8.4338	Ø.4785 Ø.4655 Ø.3176 Ø.3310 Ø.4906	9.7479 8.7469 6.7343 8.7354 9.7469	18.9764 to 26.4513 18.7099 to 26.6524 20.2654 to 30.1511 14.3725 to 23.9926 17.8605 to 26.1027	
First lactation milk yield:					
Sire No:	b ₁	b ₂	Ř _{ĄI}	Range of Â for males	
59 58 63 75 62	0.2676 0.2693 0.2864 0.2850 0.2664	Ø.5685 Ø.5462 Ø.3279 Ø.3446 Ø.5836	0.6401 0.6371 0.6067 0.6092 0.6421	24.9838 to 44.8156 34.5123 to 72.8931 17.5218 to 48.8675 28.2726 to 43.5714 29.2865 to 66.2835	

Table 20. Breed: FA. General Selection Indices. The values of b_1 , b_2 , the multiple correlation R_{A1} and the range of \hat{A} for males

Birth Weight:

Sire No:	·b ₁	b ₂	R _{AI}	Range of Å for males
6024 6304 6162 6730 6714	0.3923 0.3710 0.3747 0.3652 0.3761	0.1913 0.3979 0.3624 0.4548 0.3482	0.6634 0.6859 0.6821 0.6920 0.6906	3.9280to1.12421.2938to1.53770.8506to1.39031.1946to1.72551.0345to1.7867
Age a	t first)	cidding:		
Sire No:	b _i	b ₂	R _{AI}	Range of Â for males
5024 6304 6162 6730 6714	0.4950 6.4721 0.4758 0.4664 6.4773	0.1388 0.3649 0.3364 0.4091 0.3248	Ø.7363 Ø.7506 Ø.7483 Ø.7541 Ø.7473	298.7646 to 474.4896 459.4510 to 741.7668 418.6692 to 538.5708 424.3677 to 620.7221 373.9365 to 492.3977
Body	weight af	t first ki	dding:	
Sire No:	b ₁	b ₂	R _{A1}	Range of Å for males
6924 6304 6162 6739 6714	0.4106 0.3974 0.4011 0.3915 0.4026	0.1961 0.3916 9.3579 6.4456 0.3444	0.6838 0.7038 0.7004 0.7091 0.6991	18.7192 to 15.6168 18.4429 to 27.1857 13.5771 to 18.3993 15.4834 to 24.6836 15.9938 to 22.7480
First lectetion milk yield:				
Sire No:	ь <u>і</u>	b ₂	R _{AI}	Range of Â for males
6024 6304 6162 6730 6714	0.3530 0.3330 0.3366 0.3273 0.3380	0.1875 9.4034 9.3652 9.4654 9.3501	0.6324 0.6587 0.6541 0.6661 0.6523	13.3245 to 21.5494 25.1117 to 64.5898 15.5582 to 36.1758 26.4895 to 51.1739 19.1851 to 37.6399

DISCUSSION

To make a comparative study of selection indices for the improvement of dairy goats, selection indices were constructed by different methods using the four characters: birth weight, age at first kidding, body weight at first kidding and first lactation milk yield.

Estimates of heritabilities of lactation yield in dairy goats range from 0.06 to 0.72 (Ronningen, 1967; Singh <u>et al.</u>, 1970a; Prakash <u>et al.</u>, 1971; Bouillon and Ricardeau, 1975; and Stein, 1976). Estimates of heritabilities of age at first kidding range from 0.10 to 0.68 (Singh <u>et al.</u>, 1970a and Bouillon and Ricardeau, 1975). In this study also, estimates of heritability coefficients obtained for these two characters were found to lie in the ranges given above(Table 3).

Simultaneous selection index constructed for each breed incorporating the four economically important traits viz. birth weight, age at first kidding, body weight at first kidding and first lactation milk yield. Relative economic value calculated for each trait, based on the cost of production of each trait helped in improving the efficiency of the index. The expected genetic advance due to the index and that due to straight selection were 5442.7574 and 2561.2345; 769.1024 and 312.3521; 265.7435 and 114.3664 and, 1052.9766 and 817.7718 for the breads Malabari, SM, AM and P_2A respectively. The percent gain in efficiency in expected genetic advance due to the selection index and that due to straight selection for the above four breeds were found to be 112.51%, 146.23%, 132.36% and 28.76% respectively (Table 4).

Hence from this study, it was concluded that selection based on an index was more efficient than straight selection, when the characters having unequal variances and heritabilities were considered simultaneously. So the result obtained from this study was found to be in perfect agreement with those reported by Hazel and Lush (1942), Panse (1946) and Young (1961).

Seven restricted selection indices were constructed for each breed. The first three of them were constructed by imposing restriction on birth weight, age at first kidding and body weight at first kidding respectively. But in the fourth, fifth and sixth indices, restrictions were imposed simultaneously on the following combinations of characters: birth weight and age at first kidding, birth weight and body weight at first kidding and age at first kidding and body weight at first kidding respectively. The seventh index was constructed by imposing restriction on all the three

auxiliary traits simultaneously. The expected genetic advance in individual characters were also calculated in each case (Table 5).

The index obtained for Malabari goats by restricting birth weight was found to maximize the expected genetic advance in the other three traits. The use of this index reduced age at first kidding considerably and increased body weight at first kidding and first lactation milk yield. But the index obtained by restricting birth weight in F_2A goats, increased age at first kidding eventhough this index was useful in improving the genetic advances in the other two characters. Effective restriction of birth weight was possible for SM breed also. But this index also increased age at first kidding, body weight at first kidding and first lactation milk yield. In those cases, the expected genetic advance in the restricted character was equal to zero.

The restriction on body weight at first kidding (body weight kept as a constant) was found maximizing the genetic gain in the other three characters of AM and F_2A goats. The increase in age at first kidding due to selection of F_2A goats based on this index was comparatively less to that obtained by the index with restriction on birth weight. Also the increase in first lactation milk yield due to selection based on this index was less compared to the other one. Selection based on the index constructed by imposing

restriction on body weight at first kidding increased age at first kidding and first lactation milk yield of AM goats. In all these cases the expected genetic gains in the restricted character was found to be equal to zero. Restriction on the other characters were found to be of no use with reference to this study.

Seven phonotypic selection indices were constructed between the main trait- first lactation milk yield and the auxiliary traits- birth weight, age at first kidding and body weight at first kidding for each bread. Reletive efficiencies corresponding to these indices were also calculated (Table 6). In the case of the breeds Malabari and F_2A , each of these indices was found to decrease the efficiency of selective breeding. Hence it was concluded that in these breeds, selection on the basis of the main trait- first lactation milk yield alone is the bast method rather than using any trait as an auxiliary trait for improving milk production.

It was apparent from the table that I_1 , the index between milk yield and birth weight increased the efficiency of selective breeding in AM goats by 23.6 percent. But the increase in efficiency due to I_2 , the index when age at first kidding was used as an auxiliary trait was 19.45 percent. But it was found that when these traits were simultaneously used as auxiliary traits (I_4), the increase

in efficiency was 16.85 percent. An increase in efficiency of 42.49 percent was noticed for I_3 , the index between first lactation milk yield and body weight at first kidding. Birth weight and body weight at first kidding together as auxiliary traits (I_5) , for improving the milk production gave an increase in efficiency of 52.16 percent. An increase in efficiency of 42.91 percent was noticed in I_6 , the index when age at first kidding and body weight at first kidding were used as auxiliary traits. But when all these characters were simultaneously considered as auxiliary traits (I_7) gave an increase in efficiency of 71.21 percent.

So it was concluded from the study that for the AM breed, I₇, the index between first lactation milk yield and the cumiliary traits- birth weight, age at first kidding and body weight at first kidding was the best.

Also it was apparent from the table that out of the phenotypic indices constructed for SM breed, only the index I_2 , was more efficient then selection based on main trait alone. Relative efficiency due to this index was 12.31 percent. All the other indices were found to decrease the efficiency of selective breeding.

Optimum selection indices were constructed by combining information from individual's performance with those of full-sib and half-sib family averages for the selection of females for each character (Table 7 to 10). Also optimum

selection indices for males combining information from full-sib and half-sib family averages were also constructed for each character (Table 12 to 15). The first 25% of females selected had selection scores in terms of birth weight, age at first kidding, body weight at first kidding and first lactation milk yield between 0.4569 to 1.9607, -262.9947 to -506.0299, 7.0349 to 25.7974 and 35.8352 to 137.4889 respectively. But the full sisters and the selected male parents had selection scores in terms of the same characters between 0.001660 to 0.004035, -152,5935 to -197.5535, 6.4003 to 13.0312 and 24.3403 to 48.9525 respectively.

The expected response due to selection of females due to birth weight, age at first kidding, body weight at first kidding and first lactation milk yield were found to be 24.29 percent, 1978.99 percent, 38.45 percent and 543.42 percent respectively and that due to selection of males for these characters were 49.59 percent, 5479.91 percent, 67.24 percent and 868.37 percent.

The expected response due to the selection of females and males for the characters- age at first kidding and first lactation milk yield were found to be very high. This may be because of the high phenotypic variances in these characters. This may be because of combining the information on full-sibs of various breeds, which showed a

marked difference in the performance of the individuals for these characters.

selection indices were constructed for General selection among males for each character and for aach breed. The ranges of multiple correlation R_{AT} , between the index I and the corresponding breeding value \widehat{A} for the characters- birth weight; age at first kidding, body weight at first kidding and first lactation milk yield (Table 17 to 26) were found to be 0.7366 to 0.7532, 0.6962 to 0.7178, 0.7110 to 0.7308 and 0.5790 to 0.6166 respectively for Malabari breed; 0.7736 to 0.7784, 0.8080 to 0.8191, 0.6482 to 0.6852 and 0.4835 to 0.5505 respectively for SM breed; 0.7022 to 0.7209, 0.7443 to 0.7565, 0.7343 to 8.7479 and 9.6867 to 0.6427 respectively for AM breed and 0.6634 to 0.6920, 8.7363 to 8.7541, 8.6830 to 8.7891 and 8.6324 to 0.6661 respectively for FoA breed.

SUMMARY

Using the data from 71 Malabari goats, mates of 19 sires, 95 Sannen X Malabari (SM) goats, mates of 8 sires, 143 Alpine X Malabari (AM) goats, mates of 5 sires and 64 AM/X AM (F_2A) goats, mates of 5 sires located at the farm of AICRP on goats for milk at Mannuthy, birth weight, age at first kidding, body weight at first kidding and first lectation milk yield were combined into different selection indices to make a comparative study of the indices and the breeds.

Simultaneous selection indices constructed were iscorporating all the four characters under study, assigning economic values on the basis of cost of production of each trait. Expected genetic advance due to index as well as due to, straight selection was calculated for each breed. The percent gain in efficiency due to selection based on index over that due to straight selection was also calculated for each breed. In each case, selection based on index was found to be more efficient than straight selection.

. / Effect of imposing restriction on birth weight, age at first kidding, body weight at first kidding separately and on combinations of these characters simultaneously were studied for each breed. Restriction on birth weight was found to be effective for Malabari, SM, and F_2A breeds. All these three indices helped in improving body weight at first kidding and first lactation milk yield. But, only the index constructed for Malabari breed was found reducing the age at first kidding. Imposing restriction on body weight at first kidding was effective only for AM and F_2A breeds. These indices were found improving the birth weight and first lactation milk yield together with an increase in age at first kidding. In the other cases restriction was of no use in improving the genetic advance in the unrestricted characters.

Seven phenotypic selection indices were constructed for each breed, between the main trait- first lactation milk yield and the auxiliary traits viz. birth weight, age at first kidding and body weight at first kidding. In the case of Malabari and F₂A breads, none of the phenotypic index constructed was found more efficient than selection based on the main trait alone. For SM breed, relative efficiency was more for the index, constructed between main trait- first lactation milk yield and the auxiliary trait- age at first kidding (12.33%). The index between main trait- first lactation milk yield and the auxiliary traits viz. birth weight, age at first kidding and body weight at first kidding simultaneously was found to be the best for improving first lactation milk yield of AM goats. Relative

efficiency of this index was 71.21%.

Selection indices for females combining information from individual's own performance with those of full-sib and half-sib family averages were also constructed for individual characters and these indices were arranged in descending order. While selecting the best 25% females, 17 females having the highest scores were selected for each of the characters birth weight, body weight at first kidding and first lactation milk yield and those having the least scores for age at first kidding. Selection indices for males combining information from full-sib and half-sib family averages were also constructed for individual characters and these indices were arranged in descending order. Seven families having the best scores were selected for each of the characters. The expected responses due to both of these indices were also calculated for each character.

General selection indices were also constructed for selection among males for each character and for each breed. The value of R_{AI} were also calculated for each index.

References

REPERENCES

- Abplanalp,H. and Asmundson,V.S. (1956). Effectiveness of selection index for the improvement of breast width in New Hampshire Fryers. Poult. Sci. 35 : 1129.
- *Acharya,R.M. (1966). Genetic analysis of a closed herd of Indian cattle.Ph.D. Dissertation, Iowa State University of Science and Technology, Amos, Iowa. <u>Anim. Breed. Abstr.</u> 35 : 3467.
- *Ahmed,M.S. (1961). Gontic estimates of some characters of economic importance in Haryana cows at Izatnagar and construction of selection indices. M.V.Sc. Dissertation, Post Graduate College of Animal Sciences, Indian Veterinary Institute, Izatnagar, U.P.
- Ahuja,S.D.; Prakash Babu,M. and Agrawal,S.K. (1981).
 Relative efficiency of various criteria of selection for
 four week body weight in Japanese Quail. <u>Indian J. Poult.</u>
 <u>Sci.</u> 16 (2) :98-101.
- *Akbar,M.K. (1981). Construction of selection indices for commercial egg production. <u>Diss. Abstr. Int., B</u> 42 (6) : 2223-2224.

Bernard, C.S.; Chapman, A.B. and Grummer, R.H. (1954).

Selection of pigs under farm conditions: Kind and amount practised and a recommended selection index.

J. Anim. Sci. 13 : 389-404.

Binst,F.E. (1965). On the construction of an index for indirect selection. <u>Biometrics</u>. 21 : 291-299,

- *Bouillon,J. and Ricordeau,G. (1975). Genetic parameters of growth and milk production in the goats at the testing station. Estimates of direct and indirect resources of selection. <u>Anim. Breed. Abstr.</u> 44 : 3247.
 - Daya Singh; Acharya, R.M. and Sundaresan, S. (1968). Effectiveness of different selection indices for genetic advancement in Haryana cattle. <u>Indian J. Anim. Sci.</u> 36 (6) : 473-487.
- Dev Roy, A.K.; Mohapetra, S.C.; Sharma, B.P. <u>et al</u> (1983). Relative efficiency of index selection for Broiler Weight. <u>Indian J. Poult. Sci.</u> 18 : 52-56.
- Franz Pierchner. (1968). Population Genetics in Animal Breeding. W.H. Freeman and Company.
- *Garcia,B.O. (1971). Heritabilities of milk and butter fat production in goats. <u>Anim. Broad. Abstr.</u> 40 : 2898.

*Hanson,W.D. and Johnson,H.W. (1957). Methods of calculating and evaluating a general selection index obtained by pooling information from two or more experiments. <u>Genetics</u>. 42 : 421-432. *Hazel,L.N. (1943). Genetic basis of constructing selection indices. <u>Genetics</u>. 28 : 476-490.

*Hazel,L.N. and Lush,J.L. (1942). The efficiency of three methods of selection. J. Heredity. 33 : 393-399.

Jain, J.P. (1982). Statistical Techniques in Quantitative Genetics. Tata McGraw-Hill Publishing Company Limited, New Delhi.

James, J.W. (1968). Index selection with restriction. Biometrics. 24 : 1015-1018.

- Rempthorne,O. and Nordskog,A.W. (1959). Restricted selection indices. <u>Biometrics</u>. 15 : 10-19.
- Kotaiah,T. and Renganathan,P. (1980). Relative efficiency of part record of egg number and percent production in multiple trait selection. <u>Indian J. Poult. Sci.</u> 15 : 67-68.
- Krueger,W.F.; Dickerson,G.E.; Kinder,Q.B. and Kempster,H.L. (1952). The genetic and environmental relationship of total egg production to its components and to body weight in domestic fowl. <u>Poult. Sci.</u> 31 : 922-923.
- Lerner, I.M.; Asmundson, V.S. and Cruden, D.M. (1947). The improvement of New Hampshire Fryers. <u>Poult. Sci.</u> 26 (5) : 515-524.
- Marutiram, B.; Jain, J.p. and Gopalan, R. (1973a). A selection index for the improvement of poultry. <u>Indian J. Anim.</u> <u>Sci.</u> 43 :524-534.

*Narain,P, and Mishra,A.K. (1975). Efficiency of selective breeding on a phenotypic index. <u>J. Genetics</u>. 62 : 69-76. Narayanikutty,U. (1983). A comparative study of selection

indices for the improvement of Poultry. M.Sc. Thesis, Faculty of Agriculture, Kerala Agricultural University. Nogsett,M.L. and Nordskog,A.W. (1958). Genetic economic

value in selecting for egg production rate, body weight, egg weight. <u>Poult. Sci.</u> 37 : 1404.

*Osborne,R. (1957b). The use of sire and dam family averages in increasing the efficiency of selective breeding under a hierarchical mating system. <u>Heredity</u>. 11 : 93-116.
*Panse,V.G. (1946). An application of discriminent function

for selection in Poultry. J. Genetics. 47 : 242-248.
Prakash,C.; Acharya,R.M. and Dhillon,J.S. (1971). Sources of
variation in milk production in Beetal goats. Indian
J. Anim. Sci. 41 : 356-360.

Prasad,R.J. and Prasad,R.B. (1973). Construction and use of selection indices for improving Tharparkar herd at Patna. Indian Vet. J. 50 (2) : 157-164.

*Rao,C.R. (1962). Problems of selection with restrictions. J. Roy. Stat. Soc. 24 : 401-505.

Renganathan, P.; Mohapetra, S.C.; Ayyagari.V.B.;

Venkatramaiah, A. and Chaudhuri, D. (1979). A comparative study on index selection for egg production and egg weight versus selection for egg mass in chickens. <u>Indian Vet. J.</u> 56 (9) : 757-763. Renganathan, P.; Thiagasundaram, T.S. and Ayyagari, V. et al. (1983). Efficiency of index selection with clutch size as a component. <u>Indian J. Anim. Sci.</u> 53 : 872-879.
*Ronningen, K. (1967). A study of genetic parameters for milk characteristics in goat. <u>Anim. Breed. Abstr.</u> 36 : 3787.
Saxena, S.C.; Mohapetra, S.C. and Mehta, N.T. (1982). Index selection and genetic progress in broiler dams.

Indian J. Poult. Sci. 17 (3) : 227-231.

- Singh,R.N. and Acharya,R.M. (1980). Beetal Goat: Genetic selection for maximising life time milk production. <u>Int. Goat and Sheep Res.</u> 1 (3) : 226-233.
- *Singh,R.N.; Acharya,R.M. and Biswas,D.K. (1979a). Evaluation of genetic and non-genetic factors affecting some economic traits in goat.<u>Acta Agr. Scand.</u> 20 : 10-14.
- *Singh,R.N.; Acharya,R.M. and Biswas,D.K. (1970b). Selection index for goats: expected, direct and correlated responses. <u>Acta Agr. Scand.</u> 20 : 61-64.
- *Smith,C. (1983). Effects of changes in economic weights on efficiency of index selection. <u>J. Anim. Sci.</u> 56 (5) : 1057-1064.
- *Smith, H.F. (1936). A discriminent function for plant selection. <u>Ann. Eugen.</u> 7 : 240-250.
- *Steine,T.A. (1976). Genetic and phenotypic parameters for the production characters in goats. <u>Anaim. Breed.</u> <u>Abstr.</u> 44 : 5751.

Tallis, G.M. (1962). A selection index for optimum genotype. Biometrics. 18 :129-122.

Yamada,Y.; Bohren,B.B. and Crittenden,L.B. (1958). Genetic analysis of White Leghorn closed flock apparently plateaued for egg production.<u>Poult. Sci.</u> 37 (3) : 565-580.
*Young.S.S.Y. (1961a). A' further examination of the relative efficiency of three methods of selection for genetic gains under less restricted conditions. <u>Genet. Res.</u> <u>Camb.</u> 2 : 106-121.

^{*} Originals were not referred.

SELECTION INDICES ON GOATS-A COMPARATIVE STUDY

BY

REMA T. P.

ABSTRACT

SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENT FOR THE DEGREE OF

Master of Science (Agricultural Statistics)

FACULTY OF AGRICULTURE

KERALA AGRICULTURAL UNIVERSITY

•

DEPARTMENT OF STATISTICS

COLLEGE OF VETERINARY AND ANIMAL SCIENCES

MANNUTHY - TRICHUR

ABSTRACT

Records on birth weight, age at first kidding, body weight at first kidding and first lactation milk yield of Malabari, Sannen X Malabari (SM), Alpine X Malabari (AM) and AM X AM (F_2 A) goats from 1974-1984 were examined to make a comparative study of selection indices constructed by employing different methods.

The relative economic value of each trait in rupees was calculated as 29.96 for birth weight, 0.67 for age at first kidding, 20.83 for body weight at first kidding and 18 for first lactation milk yield.

Simultaneous selection indices were constructed by incorporating all the traits together for each breed and on finding the percent gain in efficiency of each index over that due to straight selection, the efficiency of index selection was proved.

Out of the seven restricted selection indices constructed for each breed, imposing restriction on birth weight was found effective for Malabari, SM and P_2h breeds and restriction on body weight at first kidding was effective for both F_2h and AM breeds. But all these effective restricted selection indices, except the one for Malabari breed (when birth weight was restricted) were increasing the age at first kidding.

Seven phenotypic selection indices were constructed for each breed. But none of them was found improving the first lactation milk yield of Malabari and F_2A goats. For SM breed, the best index was the one constructed between the main trait first loctation milk yield and the auxiliary trait age at first kidding. Relative efficiency was the largest, when all the auxiliary traits were considered simultaneously for improving the first lactation milk yield of AM goats.

Combined selection indices for females combining information from individual's own performance with those of full-sib and half-sib family averages were constructed for each character and these indices were arranged in descending order to choose the best females. Also combined selection indices combining information from full-sib and half-sib family averages were constructed for each character and these indices were arranged in descending order to choose the best parents. The expected response due to selection of females and males were also calculated.

General selection indices were also constructed for selection among males and the value of R_{AI} was calculated in each case.