CONFOUNDED ASYMMETRICAL FACTORIAL DESIGNS CONSTRUCTION AND ANALYSIS

THESIS

Submitted in partial fulfilment of the requirements for the degree of

flaster of Sxiente (Agricultural Statistics)

Faculty of Agriculture
Kerala Agricultural University

Department of Statistics
COLLEGE OF VETERINARY AND ANIMAL SCIENCES
Mannuthy - Trichur

> Dedicated to My Geloved $P_{r o f e s i o r ~}$
> Late Dr. $\mathfrak{P} . \mathfrak{U}$. Surendran

DOCHRATIOK

I hereby declare that this thesis entitled "OONFOWIDED ASYEAETRICAL FACTORIAL DESIGNSCCASTRUCSION NND ANALYSIS" is a bonafiee record of research work done by me during the course of research and that the thesis has not previously formed the basie for the award to ne of any other degree, diploma, associateship, fellow nip, or other similar title, of any other University or society.

place: Mannuthye
Date : 31-1-8.4

CERTIFICATE

Cortified that this theain. entikled "Cosyoundid ASYMAETRICAL FACTORIAL DESIGUS - COHSTRUCTION AHD NAALYSIS" $1 e$ a record of recearch vork done independently by Kumeri Santy Goorge unier my guidance and superision and that it has not proviounly formed the basis for the adard of any cegree. Eellownhip. or sassociateship to her.

Blace: Nannuthy. Date: 31-1-84

$$
\begin{aligned}
& K \cdot C \cdot G e \\
& \text { DF. K.C. GEORGE, } \\
& \text { (Chairman. Buviarory Board), } \\
& \text { Ezofezgor and itead. } \\
& \text { Department of statistics. }
\end{aligned}
$$

ACINOHLEDGZ2EATS

With deep sense of gratitude and indovtednens I excress my acknowledgenento to:

Dr. K.C. George, profagtor and Head, Nopartment of Statiaticg. for the valuable help and guteancg given to ne as the Chofrman of the Rdvisory Comittec.

Late Dr. P.U. Surenciran, Eomer Profeanor and ffac. Dopartment of statioties, who hav auggested this problem for me and has given the initial guideline of this work.

Gri. K.L. Gunny, Isaistant Professor, Department of Statistics, Dr. K.pavithran. Assaciete Frofessor. Doparment of Dairy Science end Dr. M. Soman, protestor, Department of Veterinary Public Health, who were the Menhers of the Advisory Committac Eor thele kefind co-operation and help during the courae of the study.

Stafe and Students. Department of statistics. my roon mates. friends and all others whone tirely help and encouragement anabled me to fulfil this venture.

Dr. Hokrishnan Wair. Dean. Collage of Vaterinary and Animal scifncer, for providing the faclifties for uncergoing this stucy.

Kerala ngricultural University for providing me with Junior Fellogenip during the courso of ay atudy. Gri. Rbolul Salam, College of horticulture, Wellanikkera and Eri. Brillin, C., College of Agriculture Eor allowing ms to illustrate wy work with the data collected by the:a.

Sr1. Vas. Skandakumar for neatly typing the manuscript.

COMTENTS

	page Ho		
Trifordction	**	**	1
REVIEN OF LITERATURE	**	*	5
masterials mud membons	*	**	21
RESULIS	**	- *	26
DISCUSSIOR	*	-	67
	**	- ${ }^{\prime}$	72
REFERETCES	-	-*	75

Ontroduction

Factoriml experiments is one of the Amportant developments in the field of design of experiments initiated by many statiatical research workers in the beginning of the twenticth century* As the oymetrical Eactorial experiment need a large number of treatment combinations for ita conplete layout, it feced a lot of aifficulties in the initial seages of its introduction. people who worked in this espect were mainly Fisher. Yates, Boee, Kibhen, Walr, Reo, Das atc. In order to apply this design in a more efficlant manner, a special technique known as confounding wee introduced by the sane authora. After the introduction of confounded factorial experinents, the layout of the experiment and the efficiency of ita enalyois Increased coneiderably. Hence, this confounded factorial experiment became more prevalent technique in design of experimente especially In the field of agriculture. A lot of literature in available in this espect by many authors. The prominent among them are Yates, Remethorne, Cochran and Cox, Nair, Roo, Kishen, Das etc.

The Eactoriol experiment confounded or not confourded require the application of each factor in equal levela.

Hence a large number of treatment combinations are needed while making the levels of each factor aqual, eventhough, we may not require all these levels in most of the日ituations. This mangs for the gake of balanced arrangement an experimentor has to face lot of inconveniences by way of taking ursanted levels of different factors. This certainly is a main disadivantage of the symetrical Eactorial experiment.

Many research workers started thinking in this line and arrived at common decision of including only the needed levels of the various factors under consideration. This means the symmetry of the previous factorial experiment cannot be maintained. Only the needed levels will be taken into consideration while taking the factorial combinations of various factorg. This concept led to the Introduction of asymperical factorial experiments. Confounding also is gractised in order to reduce the block size in asymatrical factorial deaign. The workers in this Eleld are mainly Yatea, Nair, Rao, Rempthorne, Zelen, Good, Kishen, Srivastava, Li, Dag, Tyagi, Eardena, Raghava Rao, Eanerjee, Dean, John and many others. Most of these authors constructed asympetrical factorial designs which are suited to the specific fields of their investigations and gencralisation of their results within
that field only. For example, Yates (1937) has given the construction and analysis of agmmetrical factorial designs involving factors at two or three levels of powers of these lavela only. But, Chakravarti (1950) has givan a general type of asymatrical factorial design viz.. $\theta_{1}^{m_{1}} x 8_{2}^{\mathrm{m}_{2}} x \cdots g_{g}^{\mathrm{mg}}$ through orthogonal arrays, but the construction imposes a lot of reatrictions, hence cannot be practised in all aituations. lence on gasy method of conetruction and analysis of anymetricol factorial design for a general situation ig not available.

In the preagnt invertigation an attempt is made with the objective to construct asymmetrical fectorial layouts suiting mony of the aituations which the provious authors had not attempted. Another objective of the present Investigation is to give an easy and afficient analysis to any type of asymetrical factorial layout.

These objectives have been met by constructing asymetrical factorlal layouts by means of four approaches vize.

1. uaing Galois field,
2. $p \times q \times t$ designs from $p \times p$ desfgns $(p>q \geqslant t$).
3. using factorg at two lavele and
4. using balanced dosigns.

An easy and modified analysid by means of sum and difference method in the line of Yater modified by Good is aloo attempted. Many examples of asymetrical factorial designs suiting to different levele of factors are also worked out. Finally two practical examples of abymetrical factorial designs fron the field of agriculture have been analysed by the new technique of analysia developed in the present investigation.

Review of Literature

REVIEH OF LITTERATURE

In agricultural experiments the yield or response will be effected by a number of factors. Experimants to test the response of each factor at different levels are often of Interest to the experimenter. These can De teated by conducting different experimente. A more precise test can be obtained by using a class of experiments known as factoriel experiments.

Factorial experiments are experiments where the treatments consiats of all possible combinations of two or more factors at two or more levels. If the number of levels of each factor in the game then, it is a symetrical factorial; othorwise it is an asymuetrical factorial.

In practical oituations the use of gymaterical Eactorial is iimited as in most cases it will result in unimportant of unvanted level testinge or exclusion of soms important levels.

In factorial experimenta all poasible treatment combinatione mugt be applied to experimantal unitg. It If inconvenient to conjuct the experiment with large blocks. When there are large number of factors or number of levels of factors is large, the total number of treatment combinations also will be large. One of the
devicea reaorted in auch circungtance is confounding. Confounding is inextricably mixing up main effects or Interactione with block effects. In otherkords, information on some effects or interactions is secrificed to obtain others mote precisely.

Confounding in symmetrical factorial is well developed through the vorks of Elsher, Yates, Das, Bose. Kiahen, Noir, Rao and othors. Asymmetrical factorial has achieved attention only in recent past. The people mainly worked on this aspect are Yates, Naiz, Rao, Rishen, Dad, Srivastava, Dey and many otherg. Still a general technique to construct conGounded asymmetrical factorials do not exist.

Confounded asymetrical factoriala in introduced in the literature by Yates (1937). Yates has given methoa of confounding with fectors at two and three levele and all factoriala reducible to them. The cieaign is obtained by confounding as far as possible, the highot orcer interactions. These ©ssigns involve pertial confounding of more important interactions also. The confounded degrees of freedon in any raplication is divided between different setm of treatment degrees of freedon. The fraction of informetion secrificed on the more important interactions is quite smoll. In order to balance the
design the number of replications used is some multiple of number of replications required for a bulanced arrangement. The analysif given here is using orthogonal contrasts.

Nair and Rao (1948) have givan combinatorial set up of asymetrical experimanta. The arrengement is such that
(i) mutually orthogonal estimates are obtained for various main effecta and interactiong,
(il)degrees of Ereedon confounding is the game for every component of particular main effect or interaction.

These arrangemento are called balanced confounded arrangenenta. The analyais of a two fector confounded arrangement is given. Method of leest squares is made use of here. Analysis given here consista of
(1) estimation of treatment differences,
(i1) efficiency and amount of information and
(iii) tests of significance.

Kempthorne (1952) had attempted to extent confounding in symmetrical factorial experiments with levels as a prime number to asymetrical factorial with levels as different powers of same prime. He hed obtained
confouncied $2^{2} \times 4^{2}$ without confounding any main effect, in blocke of eight plots.

Orthogonal arrays are made use of by Chakravarti (1956) for conotructing Eractional replicates of asymnetrical factorial. For this, the asymmetric fectorial in grouped into different grouph with factors at same number of levels felliag into a group. In this paper a factorial design of the type $\mathrm{a}_{1}^{\mathrm{m}_{1}} \times \mathrm{a}_{2}^{\mathrm{m}_{2}} \times \ldots \mathrm{B}_{\mathrm{g}}^{\mathrm{m}_{\mathrm{g}}}$ is considered. Then orthogonal arrays ($N_{1}, m_{1}, a_{i}, k_{1}+d_{i}-1, \lambda 1$) ard constructed with N_{1} assemblies, m_{i} constraints, strength $k_{i}+d_{i}-1$. Index λ_{1} and with elements as members of $\operatorname{GF}\left(s_{1}\right)$. Fractional replicates of the factorial is obtained by taking the product of these arrays. It has been shown that from such a derived array it ia possible to estimate all main effects and interactions involving $r=\frac{g}{i=1} r_{i}$ factors ($0<r \leqslant g k, \quad 0 \leqslant r_{i} \leqslant k_{1}$) becomes measurable, where, r_{1} factors are chosen from the first set of m_{1} fectors and x_{2} Eron second set of m_{2} fectors and so on. Orthogonal contrasts are obtained for various main effects and estimable interactions.
zelen (1958) constructed confounded asymetrical factoriala using group divielble designs. The factors are Eirst grouped into two groups with factors A_{B} at m_{s} levals falling into one group and factors B_{r} at n_{r}
levela forming the other group ($s=1, \ldots \mathrm{~g}, \mathrm{r}=1, \ldots$.... $)$ $m=\frac{g}{\sum_{m}} m_{s}, \quad n=\prod_{r=1}^{1} n_{r}$ and $\quad v=m n$ 。

The v treatments are grouped into m groups of n members each. Two treatments belonging to the same class are first associates and belonging to different clasbes are eecond assoclates. So, there are ($\mathrm{n}-1$) first associates and $n(m-1)$ becond aseociates for each treatment. The treatment combinations are arranged in an man array, assigning treatment combinations of A Eactors to the columns and B factors to the rows. The resulting design will be a pared with two association classes. The analysia cited by the author is based on method of least squares.

Cood (1958) has given interaction algorithon for asymmetrical factorial experinente Hatrix Fl_{4} corresponding to factor A_{1} with Z_{1} levels is taken from Yatea Tables (1937). An asymnetrical Eectorial with levela $t_{1}, t_{2}, \ldots t_{n}$ is considered. Direct product of matrices $H_{1},(1=1, \ldots n)$ will yield to matrix A. Inceraction contrasts are obtalned as

$$
X=A Y
$$

where, X denote interaction contrast vector, Y the vector of yielda arranged in atandard order. Inverse algorithan
is obtained by taking direct product of inverses of matrices M_{1} and is

$$
Y=\lambda^{-1} X
$$

Kishen and Srivabtava (1959) made use of Galois field for constructing confounded asymmetrical factorial experiments. Construction of $a_{1}{ }^{6} G_{2} \times \ldots g_{n}$ (where, $s_{1} \geqslant s_{2}, \ldots \geqslant s_{n}$ and a_{1} a prime number) with a_{1} blocles in each replication is obtained as follows. Suitable polynomials are chosen that will take only a_{1} valuss in the Galois fiela. For confounding a k Eactor interaction involving F_{1}, the blocks are obtained by taking ${ }^{\prime}$ flate of tha pencil

$$
\begin{aligned}
& x_{1}+\left(a_{12} x_{12}+\ldots a_{1 k-1} x_{i k-1}\right)=\alpha, \alpha \in G F\left(s_{1}\right), \\
& a_{i r} \in G F\left(s_{1}\right), x=2,3, \ldots k-1
\end{aligned}
$$

Li (1944) constructed $5 \times 2 \times 2$ design in 10 plot blocka with five replications. The mathod uned by in is as follows:

Lesignate by \propto the treatmant combinations (0,0) and (1,1) of last two factors and by β the level combinations (0,1) and (1,0). Two $\alpha 3$ and threa βs are distributed over five levels of first factor to get one blocks. In the next block the role of α and β are intarchanged.

The blocke together will give one repilcation of the treatmenta. In the ame bay other blocks of the other replications are also obtiained. Shah (1960) proved that the design given by his is only partially balanced. He suggeated an alternative method which differa only in allotmant of α and β. He has obeained a balanced but not resoluable design.

Exg (1960) has given a gethod of construetion and analyais of asymetrical factorials $a_{1} \times x^{m}$ and $s_{1} \times s_{2} \times s^{m}$ through Eractional replicateo in bymintrical Eactorial. Conotruction of $a_{1} \times a^{m}$ factorial is on follows:

Attsen p pseudo factors (each at levels and are denoted by X_{1}, X_{2} etc) to the factor of asymetry (bay X). p is chosen auch that $s^{p-1}<g_{2} \leqslant B^{D}$. Regular factora are denoted by $\mathrm{A} . \mathrm{B}$ etc. Conatruct a confounded aymetrical fectorial $\varepsilon^{\mathrm{m}+\mathrm{p}}$ in a^{L} blocks of $a^{\mathrm{p}+\mathrm{k}}$ plots each k a $\mathrm{M}-\mathrm{L}$. Care should ba taken not to confound any man effect or interaction of procio fectora alone. Thin deaign is called 'parent deeign' and the sat of confounded interactions is called 'confounding aet'.

Onit $s^{2}-g_{1}$ trestinent combinations of psewab factors and rensan z_{1} factors as s_{1} levels of first factor x. These combinations ore called 'y onitted combinations'
and the factorial will be E_{1} / s^{p} fraction of orlginal Eactorial.

If any Intoraction of the parent design containa $p^{\prime}>0$ peeudo factors together with some real factors then It will correapond to that interaction in which the paeudo factor interaction is replaced by X.

A replicate of $\theta_{1} \times s_{2} x \quad s^{m}$ design cen be obtained in the sane way from the parent deaign g^{M} in blocks of $\mathrm{s}^{\mathrm{PI}+\mathrm{p}_{2}+\mathrm{k}}$ plots where p_{1} and p_{2} are obtained from $\mathrm{a}^{\mathrm{P}_{1}-1}<\mathrm{s}_{1} \leqslant \mathrm{~g}^{\mathrm{P}_{1}}$ and $\mathrm{s}^{\mathrm{p}_{2}^{-1}}<\mathrm{B}_{2} \leqslant \mathrm{~s}^{\mathrm{P}_{2}}$ and $M=p_{1}+p_{2}+m$. The p_{1} factorn corresponding to X are called ' x - pseudo factors' and corresponding to Y are called 'y= pseudo factors'.

The get of all main effecta and interactions of pseudo factorn confounded in Y ofitted combinations is called 'partitioning get'.

The sat formed by (i) partitioning set (1i) confounding set (1i1) interaction between the two, from which interaction with real factor only is onitted, is called 'total confounded set.'

Single replicates has a complex anelyais. So by taking a cuitable set of confounced interactions the design is balanced. In parent deaign it is possible to
got more thon one confounding seta such that (i) each aet correaponds to the gane set of interaction of the asymmetric deaign (ii) each set give rise to the same total confounded get. These sets are called "similar sets". If there are n sindiar sets then a balanced design can be obtained by taking them in n different replications. IE $\boldsymbol{G}_{1}=\boldsymbol{F}$. balanced decign will be obtained with gingle replication.

A method when σ_{1} in non-prime is also given. Lot $s=r$. To construct $s_{1} \times s^{m}$ construct $\mathrm{F} \times \mathrm{s}^{\mathrm{m}}$ and attach t levels to each treatment combinations and rename rit treatment combinations of first two factors as s_{1} levels of X_{0}

Rishen and Tyagi (1964) constructed conEounded abymatrical factorial experiments through paimise balanced designs. They congtructed $4 \times 2 \times 2$ design maiding use of pairwise balanced design with q treatmenta (0.0) and (1.1) of last two factors are denoted by x_{0} and (0.1) and (1.0) combinations by X_{1}. They obtained the design by writing x_{0}, x_{1} in the pattern of pairwise balanced design and filling the remaining places with X_{1}, X_{o}. For congeructing $q \times 3^{2}, J_{0}, J_{1}, J_{2}$ are arranged In a painwise balanced design and the remaining places are filled with J_{1}, J_{2}, J_{0}.

Another method of constructing $q \times 2^{2}$ is. in a
palmiae balanced design when
$b=25, \quad$ and
$k_{1}=k_{2}=q / 2$ when q is even
$k_{1}=(q-1) / 2$ and $k_{2}=(q+1) / 2$ when q 1e odd.
Then, arrange X_{o} in the $p \in$ design and fill the remaining places with X_{1}. Hare only half the replication is necessary for balance compared to the previous one. For constructing $9 \times 3 \times 3$ design the use of resolvable palruise balanced design will reduce the number of replications required for balancing coneiderably.

Reaolvable $E B$ deaigns are resorted to, Eor conntructing balanced confounded $q \times p^{2}(q>p \geqslant 4)$ and p prime or prime potser.

Pseudo factors are mede use for constructing $1 \times 5 \times 5\left(1=B^{m}\right)$, E , being prime in blocks of 1 s plote esch.

Ealanced confounded asymmatrical Eactorial designs of the clasa $q \times t \times \theta\left(t=s^{m}\right)$ from $q \times a \times s$ designs algo is conntructed.

SarAana and mas (1965) constructed $p \times 3 \times 2$ designe Erom confounded $p \times p$ designs. A balanced confounded $p \times p$ in p plot blocks and (p-1) replications is constructed. Collapsing ($p-3$) levels of the second
fector (B) will result in px3 in three plot blocke. Two levels of the third factor C is attached to every treatment combinatione in a block. The resulting design will be $q \times 3 \times 2$ in six plot blocks and with ($p-1$) seplications and the design vill be a balanced one.

The analyaig of $p \times 3 \times 2$ design in aix plot blocks and with ($p-1$) replications also have been attempted here.

Das and Rao (1967) introjuced a new method of confounding $3^{n} \times 2^{\text {n }}$ factorials from 2^{M} factorial in 2^{k} plot blocke by confounding suitable interactions. Oroup the first 2 n factors into pairs. The levele are denoted by -1 and 1. By adalng the levels corresponding to each pair will yield to n factors at three levele and the remaining m fectors at two lovely. An advantege of this method is that some degrect of frecion will be left for error. Analyais of the design suggested by the authors in a modification of Yated addition subtraction method. The analysia using contrasts also have been attempted.

Banerjee and Das (1969) constructed confounded asymmetrical factorials through an association with 2^{n} factorial debigns. Corresponding to p_{1} levale of a factor A_{i} a number n_{i} is obtained such that

$$
2^{n_{1}-1}<p_{1} \leqslant 2^{n_{1}} .
$$

The effecti and interactions of first $\left(n_{1}-1\right)$ factors are confounded in 2^{n} factorial after denoting the levels by -1 and 1. The blooks are arranged in such a way that firat $2^{n_{1}-2}$ blocks has combinations with level -1 of the first factor. First $2 p_{1}{ }^{-1} 2^{n_{1}}$ levels of A_{1} 。 are assigned to $p_{1}-2^{n_{1}-1}$ blocks and the remaining $2^{n_{1}}-p_{1}$ levels are assigned to each of the remaining blocke. An asymatrical $p_{1} \times p_{2} \times \ldots p_{k}$ experiment is conetructed by toking a 2^{n} confounced design khere $\sum_{1} n_{1}=n_{\text {. }}$ They have also obtained contrasts for estimating various effecta andinterections in 5×7 and 6×7 factoriale.

Conatruction of a confounced $q \times$ a factorial with main effect B partially confounded is given by Tyagi and tha (1969), where, $g a I m, q$ and m are any positive integers and 1 is a prime or prime power. For construction, a balanced $1 \times m$ design in m plot blocks is constructed with 1-1 raplicationg. Then q levels of the firgt factor are asaoclated with each treatment and rename the $1 m$ levels as $\operatorname{lm} a$ a levels of the eecond factor.
9×6 partially balanced designs are conatructed using a balanced confounded asyrantrical Eactorial 3×2 and pairwise balanced designs. Laast square estimates of effects and interoctions also is given.

Confounded \& $\times 2 \times 2$ designs ate constructed by Tyagi (1971). The procedure adopted by him is as follows. In a pairwise balanocd design with q treatanta (1,0,0) and (i,1,1) treatmant cominacions are alloted in a block if, the $i^{\text {th }}$ treatment occurg in that block. otherwise ($1,0,1$) and ($1,1,0$) are alloted in that block. Then $b-2 x$ blocks with $(1,0,0)$ and $(1,1,1)$ or $25-b$ blocks with (1,0.1) and (1,1,0) are adacd to the design according ag $2 x \leqslant b$. Tho design obtained will be balanced confounded asymnetrical factorial design.

Raghava Rao (1971) constructed $3^{n} \times 2^{n}$ in $3^{n-1} 2^{n}$ and $3^{n} 2^{n-1}$ plot blocke and $v: x o^{a t}$ in $v 0^{n-1}$ Elot blocks using pencils and (n-1) Elats of FG(m,s). A problem of confounding in $\mathbf{t}^{17} \times \mathfrak{s}^{n}$ where $t=p^{\infty}$. $s=p^{\beta}$ and p is a prime almo hag been solved following a method siallar to nas (1960). \propto paeudo factors are associated to factors at t lovels and β factors to cach factors at s levelv. Confounding in $p^{\operatorname{mac}+\pi / \beta}$ is done using some well known methots with oufficient cere taken not to confound main effects of orlginal factors.

Ray (2972) obealned $p^{\text {ma }} \times q^{n}$ in blocks of alte $p^{t} \times q^{n}$ where me n, t are integera, p prime pover. q a prime number $p=g^{b}, g$ mime number, b an integer. A design with (mb $+n$) factors nb fectora at g levela
and n factors at q levels is constructed in $g^{b t} q^{n}$ plot blocks mb factors at g levels are grouped into m groups of b factors each and the p levals of original fectors are assigned to this.

Dean and John (1975) constructed single replicate deaign for asymmetrical factorial experiments uaing group divisible designs. Construction of $v=\prod_{i=1}^{n} m_{i}$. In b blocks of k plots each is given. Using a single initial treatment the initial block is constructed as EOLlows.

Mis token as the least common multiple of $\mathrm{m}_{1}, m_{2}, \ldots \mathrm{~m}_{\mathrm{n}}$ us denote the combinations obtained by multiplying an n-tuple a by u and taking each $u a_{1}$ as mod m_{1} where, $a=\left(a_{1}, a_{2}, \ldots a_{n}\right), t=$ highest common factor of $\left(\mu, a_{1} \mu / m_{1}, \ldots a_{n} \mu / m_{n}\right)$ then, $0, a, 2 a, \ldots(\mu / t-1) a$ will form the inftial block with $k=\mu / t$.

If there are p generators say $b_{1}, b_{2}, \ldots b_{p}$. Then
$q=\frac{p}{i^{M} 1} q_{1}$

Initial blocke will have
$u_{1} b_{1}+u_{2} b_{2}+\ldots u_{p} b_{p}$ as the general element
$\left(u_{1}=0,1, \ldots q_{1}-1 ; 1=1, \ldots p\right)$.
Conatruction of 3×6 deaigns using rectengular
deaign has been given by Aggarwal and Virk (1976). A rectangular partially balancad incomplete block design Utin parameters $v=(3)(6), b=(6)(5), \quad r=5, k=3$. $\lambda_{1}=\lambda_{2}=0$ and $\lambda_{3}=1$ ie congtructed using a belenced arrey ($30,3,6,2,0,1$). A detailed analyois of the game is given using method of least squares.

Banerjee (1977) tacieled the problem of conetructing 5×7 factorial in fewer replications and ito analyais. A symbetrical 2^{6} factorial is used for the construction of the gama. A 2^{3} experiment ia congtructed in two plot blocits. The first two levels are associated to the first block. The remaining levels each to tho remaining blocks. In the case of the factor at 7 levels. Eirst three blocks are uaed to denote the first $s i x$ levels and lest blocis the last level. Confounding is sone in 2^{6} factorial and the analysis is carried out by the ageociation botween symmetric and esymmeric factoriala.

Leuls (1979) constructed asymmetrical resolution III Eractions fron generaltsed cyclic dasigns. Any block of the dosign will give orthogonal estimates.

Another method of conatruction of balanced asymmetrical factorial has been given by Des (1979). He congloered $p_{1} \times p_{2} \cdots p_{t}=p$ where, p_{1} in the number of levels of $1^{\text {th }}$ factor P_{1}. For tha method of construction

Given here $p=W R$, where R is the block size and N a prime power bay s^{k}. The design is constructed using an association with aymetric factorial. Factors at s levels are called real factors and others are called factor of asymmetry. The P_{i} levels of the Eactor of asymmety are represented by. F_{i} elements of $\mathrm{GF}(\mathrm{s})$ if $p_{i} \leqslant a_{\text {e }}$ or p_{i} levels combinations of n_{i} pseudo Eactors each at s levels if, $s^{n_{1}-1}<p_{1} \leqslant s^{n_{1}}$

Eatimates of various effecta and interactions are obtained by meking use of the agsociation between symmetrical and asymmetrical factorials. Analysis is done after adjusting to block effects.

Hardamard matrices are made use of by Anle and Dey (1982) for constructing Eractions of asymetrical factorial. They have obeained orthogonal main effect plans for 8×2^{m} factorial in $4 n$ runs.

Rahul sukerjee (1982) constructed balanced main effect plang for asymotrical factorials using difference arrayt. Thege difference arrays are conftructed by cyclic rotation.

Agrawal and Dey (1933) mede use of tardemard matrices for constructing orthogonal main effect plans for $4^{n} \times 3^{3} \times 2^{3 n-3}(x+a)$ Eactorial in 4nis Funs. This is an extension of method used by Anie and Dey (1981).

Materials and Methods

MATERIALS AND VETHODS

The asymatrical factorial deaign cepends mainly on method of construction. Several methods are used for constructing sucin designs by different workers. In this present study it is atterapted to construct confounded asymetrical Eactorial designs through four different approaches.

1. using Galois field.
2. $\mathrm{p} \times \mathrm{q} \times \mathrm{t}$ designs from $\mathrm{p} \times \mathrm{p}$ deaigns.
3. using factore at two levels and
4. using balanced designs.
5. Construction using Galois Field

A Eicla with finite number of elements is a Galois field. A Galols field with e elements 18 denoted by GF(s), a will be a prime number or power of a prime number. If s is a prime number the elements of GF(s) will be $0,1, \ldots$ s-l. If a is not a prime but power of a prime number the elements ara members of the realdue class of minimum function of the Eield. Minimun function of GF(4) used for constructing designe here is

$$
x^{2}+x+1
$$

Kishen and Srfvastava (1959) Introduced the method of using Galols field Eor constructing confounded asymetrical factorial designs. These designs require polynomials that will take only gpecific number of values (which are the number of levels of diferrent factors) in GF(a). .

In the present inveatigation it is shown that x^{d} will take only $(s-1) / a+1$ distinct values in $G F(s)$. where. d is a divisor of ($s-1$) and designs are constructed using this. A general method of obtaining these polynomiala by inverting the matrix with elementa as elements of $G F(s)$ arranged in the standard order also is given.
2. Construction of $p x q x t$ deaigns Erom $p x p$ designs

Sardana and Das (1961) constructed px 3×2 deaigns by constructing confounded $p \times p$ with $p-1$ replications. p-3 levels of the second factor are collapsed to get a px 3 design in three plot blocks. To this design, two levels of the third factor are associated.

In the present atudy an attempt is mace to construct $p \times q \times t,(p>q \geqslant t)$ confounded factorial design making use of the Sardana and Das's approach, by constructing a $p \times p$ confounded deoign and collapsing the laot $p-q$
levels of the second factor. The resulting deaign will be $p \times q \times t$ in $q \times t$ plot blocks and with p-1 replications.
3. Construction using factors at two levels
A. Das and tao (1967) conatructed $3 \times 3 \times 2$ design In eight plot blocks using on association with 2^{5} design. In the present study construction of confounded $4^{p} \times 3^{q} \times 2^{r}$ is attempted. The method of construction adopted here is as follows.

Agsociate two preudo Eactors each at two levels to. factors at three and four levela. Construct a confounded $2^{2 p+2 q+r}$ design in 2^{k} plot blocks. Group the firgt 2 (p+q) factors in pairs. Renarg the four combinations of two factors as four levels of p factors and three levels of q factors 08 follows:

Lavelt of poeudo Eactoza

Levels of factor at four levels

Levels of factor at three levels

0	0	0	0
0	1	1	1
1	0	2	1
1	1	3	2

B. Banerjee and Das (1967) constructed asymmetrical factorial from symnetrical 2^{n} factorial by suitably designating the levels of arch of the factors of abymetrical design by one or more combinations of a certain number of factors anch at two levels. The wame technique ia used for constructing asymaterical factorial with one factor at 13 levels. Contrests of the asynmetrical factorial also is given. The technique adopted here ia as given below. $A 2^{4}$ factorial confounding all main effects and Interections of first three factora in two plot blocks is conotructed. The blocis are arranged in such a way that first four blocks has the lowar level of the first factor. Designate first five blocka as firgt ten levels of the factor and remaining threc blocke are used for representing the remaining three levels.
4. Construction using balanced designs

Tyagi (1971) constructed confounded abymmetrical factorials uaing balanced deaigns. This methor is made use of for constructing a $4 \times 2 \times 2$ design in eight plot blocks and with three replicaticna. A $7 \times 2 \times 2$ factorial design with four replications is algo obtained by uaing the same method.

Analysis

Yatea (1937) analyoed 2^{n} design by eddition oubtraction method. Thin was modificd by Good (1958). Good has given the algorithn for analyoing asymmetrical factorials.

In this study the analysis is done by a simplified and modificd form of method of sums and difference Introduced by Yates with Good's modification.

Rasults

RESUETS

The main objective of the present inve日tigation was to construct confounded anymutrical factorial designs. Four different techniquen were used here.

1. Construction of Canfounded Anymetrical Factorial Deaigna using Galois Field

To construct amymetrical Eactorial by confounding certain effects, it was gufficient if we replece sont of the factors by suitable polynomials, such that these polynomials would take only deaired number of valuea in the Galois field GF(s). Two methods of constructing thege polynomials were explained here. Conseructions are based on two Iemse.

Lama (1).
If GF(s) is a Galois field with elements end a 1s a divisor of $\mathrm{g}-1$. then x^{d} can asome only ($8-1$)/d +1 distinct values in GF(s) as x asmunes all the g values in $G P(a)$ where $s=p^{n}$ and p is a prime and n any integer.
proof.
Let s elements of $G P(e)$ bs denoted by $0 . \alpha, \alpha^{2} \ldots \alpha^{8-1}$. where α is a primitive element of GF(o). Since d in a
divine of ($\mathrm{s}-1$).

$$
\begin{aligned}
& \text { ami }=\mathrm{md} \text {, where } m \text { is an integer. } \\
& \text { Lat } x=\alpha_{k}^{k}, k=1, \ldots *-1 \text {. }
\end{aligned}
$$

The different valued x^{d} can ambura are

$$
\alpha_{\infty}^{d} \quad \alpha^{2 d} \cdots \cdots \quad \alpha^{(5-1) d} .
$$

These can be requitten as

But for GP (s)

$$
\alpha_{\alpha}^{s-1}=\operatorname{mad}_{\infty}^{\operatorname{mo}} 1
$$

so that the values x^{d} can around are only

$$
\left.\underset{\alpha}{d} \quad \frac{2 d}{\infty}, \ldots \quad \ln _{\alpha}-1\right) d, 1
$$

x^{6} will take the value zero, when x taken the value zero. In otherwords. x^{G} will toke only mil. which is $(3-1) / d+1$ volume in $G F(a)$ wile x takes all the valued in $G E(s)$.

Lemon (2).
If 3 and T are two square matrices of order $\mathbf{s - 1}$ such
that

$$
s=\left[\begin{array}{cccc}
\alpha_{1} & \alpha_{1}^{2} & \cdots & \alpha_{1}^{n-1} \\
\alpha_{2} & \alpha_{2}^{2} & \cdots & \alpha_{2}^{9-1} \\
\cdots & \cdots & \cdots & \cdots \\
\alpha_{m-1} & \alpha_{i s-1}^{2} & \cdots & \cdots \\
\alpha_{0-1}^{n-1}
\end{array}\right]
$$

then 5 and T are inverses of each other.

Prows.

In order to alow that t is the invars of s. it is enough to show that $S T$ is an identity matrix.

The $t^{\text {th }}$ ron $k^{\text {th }}$ element of $3 T$ be $r_{\text {th. }}$ Then two cases arise

Case 1. When $t=k$ in,

$$
\begin{aligned}
& r_{t k}=\left\langle\alpha_{t} \alpha_{k}^{B-2}+\alpha_{t}^{2} \alpha_{k-3}^{s-3}+\ldots+\alpha_{t}^{\theta-1} \alpha_{k}+\alpha_{t}^{3-1}\right) /(p-1) \\
& \left.=\left(\alpha_{k} / \alpha_{k}\right) \alpha_{k}^{3-1}+\left(\alpha_{k}^{2} / \alpha_{k}^{2}\right) \alpha_{k}^{k-1}+\cdots+\left(\alpha_{t}^{E-1} \rho \alpha_{k}^{0-1}\right) \alpha_{k}^{E-1}+1\right) /(p-1)
\end{aligned}
$$

mut in $G F(s), \alpha_{j}^{3-1}=1$ for $j=1,2, \ldots$ ne and
$\mathcal{L}_{\mathrm{c}} \alpha_{\mathrm{k}}$ will be an element of or (o) say $\mathrm{x}_{\mathrm{*}}$ Hence, it
in possible to write $x_{\text {th }}$ in the following form

$$
5_{t x}\left(x+x^{2}+\ldots x^{g-2}+2\right) /(p-1)
$$

$$
\text { se, } \quad r_{t k}=\frac{x^{g-1}-1}{(x-1)(p-1)} 0 \text {, aince } x^{s-1}=1
$$

Gase 2. when $t=k$.

$$
\begin{aligned}
& x_{t t^{\prime}}=\left(\alpha_{t} \alpha_{t}^{s-2}+\ldots \alpha_{t}^{g-2} \alpha_{t}+\alpha_{t}^{s-1}\right) /(p-1) \\
& \quad=(1+1+\ldots 1) \\
& \quad=(s-1) /(p-1)=1
\end{aligned}
$$

making use of promattes of $\operatorname{GF}(\mathrm{s})$.
This bhows that $S T=I$ an identity matrix or T
and s are inverses of esch other.
Construction.
Let us teke a polynomial ag,

$$
a_{1} x+a_{2} x^{2}+\cdots a_{5-1} x^{3 m 1}
$$

when x take the values $\alpha_{1}, \alpha_{2} \ldots \alpha_{3-1}$ in GF(s), this polynomial will take tha values

$$
\begin{aligned}
& a_{1} \alpha_{1}+a_{2} \alpha_{1}^{2}+\ldots a_{s-1} \alpha_{1}^{a-1} \\
& a_{1} \alpha_{2}+a_{2} \alpha_{2}^{2}+\cdots a_{s-1} \alpha_{2}^{\operatorname{s-1}} \\
& \ldots \ldots \ldots \\
& a_{1} \alpha_{B-1}+a_{2} \alpha_{B-1}^{2}+\ldots a_{B-1} \alpha_{B-1}^{g-1}
\end{aligned}
$$

In order to reetrict thene valuar to a deairod munder which is the number of levels of the factor it is enough
to solve for a_{i} : by multiplying the matrix T with the vactor which consiats of the leveln of the eactor an - Iomenta of GF(s).

Examla 1.

Lemala (1) was mode ume of Ecr constructing a $3 \times 3 \times 2$ design in blocke ne size six confounding AEC the three factor interaction. ifere, the polynonsal used for conotructing the blocke wae
$x_{1}+x_{2}+x_{3}^{2}$, here the factor x_{3} ia replaced.by x_{3}^{2} and $1 t$ takes only two values zero and one in $G F(3)$. x_{1} and x_{2} takes all tho three values of $G F(3)$. Then tho different blocke satigeying the polymonial rere ess EOllods

$(0,0,0)$	$(1,0,0)$	$(2,0,0)$
$(0,2,1)$	$(1,2,1)$	$(2,2,1)$
$(1,2,0)$	$(2,2,0)$	$(0,2,0)$
$(1,1,1)$	$(2,1,1)$	$(0,1,1)$
$(2,0,1)$	$(0,0,1)$	$(1,0,1)$
$(2,1,0)$	$(0,1,0)$	$(1,1,0)$

Supmooe we considered arrangement confounding anc and $A b^{2} c$ then we would get a belanced arrangenent. Fine polynontala trece

$$
\begin{aligned}
& x_{1}+x_{2}+x_{3}^{2} \quad \text { and } \\
& x_{1}+2 x_{2}+x_{3}^{2}
\end{aligned}
$$

Corresponding blocke of the two replications ware

Thid design would be the aame as one obtalned by confounding $A B C$ ard $A B^{2} C$ in $3 \times 3 \times 3$ dasigns and collapsing the lapt level of the third factor.

Exambe_2.

$3 \times 2 \times 2$ in four plot blocks confounding AEC vas obealned an

$(0,0,0)$	$(1,0,0)$	$(2,0,0)$
$(1,1,1)$	$(2,1,1)$	$(0,1,1)$
$(2,0,1)$	$(0,0,1)$	$(1,0,1)$
$(2,1,0)$	$(0,1,0)$	$(1,1,0)$

This wad constructed by taking the polynomidel $x_{2}+x_{2}^{2}+x_{3}^{2}$, where x_{2}^{2} and x_{3}^{2} vere polynoniala that takes only two valued zcro and one in GF(3).

Example 3.

$4 \times 2 \times 2$ in four plot blocks confounding ngc with three degrees of freedom. The polynomial for constructing such a confounding design was

$$
x_{1}+x_{2}^{3}+x_{3}^{3}
$$

Here the factors x_{2} and x_{3} ware replaced by x_{2}^{2} and x_{3}^{3} respectively so that these wild tole only tho values zero and one in GF(A).

Different blocks of the design were

$(0,0,0)$	$(1,0,0)$	$(2,0,0)$	$(3,0,0)$
$(0,1,1)$	$(1,1,1)$	$(2,1,1)$	$(3,1,1)$
$(1,0,1)$	$(0,0,1)$	$(3,0,1)$	$(2,0,1)$
$(1,1,0)$	$(0,1,0)$	$(3,1,0)$	$(2,1,0)$

It could be sec n that the design obtained above was same as on d obtained by dropping higher levala of B and C in a $4 \times 4 \times 4$ design confounding ABC.

Trample 4

$4 \times 4 \times 2$ design confounding $A B C$ in eight plot blocisw The polynomial for constructing such a design was

$$
x_{1}+x_{2}+x_{3}^{3}
$$

lURe, the factor x_{3} is ropluead by x_{3}^{3} which taken only
two values in $G F(4)$ vinile x_{1} and x_{2} take all tho Four valuse and the reauitimg blocks were

$(0,0,0)$	$(1,0,0)$	$(2,0,0)$	$(3,0,0)$
$(1,1,0)$	$(0,1,0)$	$(3,1,0)$	$(2,1,0)$
$(1,0,1)$	$(0,0,1)$	$(3,0,1)$	$(2,0,1)$
$(0,1,1)$	$(1,1,1)$	$(2,1,1)$	$(3,1,1)$
$(2,2,0)$	$(3,2,0)$	$(0,2,0)$	$(1,2,0)$
$(3,3,0)$	$(2,3,0)$	$(1,3,0)$	$(0,3,0)$
$(2,3,1)$	$(3,3,1)$	$(0,3,1)$	$(1,3,1)$
$(1,0,1)$	$(2,2,1)$	$(1,2,1)$	$(0,2,1)$

Fromple 5

$5 \times 3 \times 2$ design in eix plot blocks is constructed. The polynorial for conctructing the blocke wae

$$
x_{1}+x_{2}^{2}+x_{3}^{4}
$$

Hince, x_{2} and x_{3} ward replaced by x_{2}^{2} and x_{3}^{4} Ferpectively so that x_{2}^{2} would taise only three values end x_{3}^{4} uanld take only two values in tit Gilole field or(5) where x_{1} took all the Eive values of $1 t$. The blocke vere obtasned as

$(0,0,0)$	$(1,0,0)$	$(2,0,0)$	$(3,0,0)$	$(4,0,0)$
$(2,2,1)$	$(3,2,1)$	$(4,2,1)$	$(0,2,1)$	$(1,2,1)$
$(3,1,1)$	$(4,1,1)$	$(0,1,1)$	$(1,1,1)$	$(2,1,1)$
$(3,2,0)$	$(4,2,0)$	$(0,2,0)$	$(1,2,0)$	$(2,2,0)$
$(4,0,1)$	$(0,0,1)$	$(1,0,1)$	$(2,0,1)$	$(3,0,1)$
$(4,1,0)$	$(0,1,0)$	$(1,1,0)$	$(2,1,0)$	$(3,1,0)$

Examio 6.

$4 \times 4 \times 3$ in 12 plot blocks. Hare two wan not a divisor of three so that second leman wan made use of for getting a polynomial in x_{3} that took only three values zero, one and α of $\operatorname{GF}(4)$.

In tire polynomial

$$
a_{1} x_{3}+a_{2} x_{3}^{2}+a_{3} x_{3}^{3}
$$

evolved for a_{1}, a_{2} and a_{3} from the following equation

$$
\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right)=\left[\begin{array}{lll}
1 & \alpha^{2} & \alpha^{4} \\
1 & \alpha & \alpha^{2} \\
1 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
1 \\
\alpha \\
0
\end{array}\right)=\left[\begin{array}{c}
0 \\
\alpha \\
\alpha+1
\end{array}\right]
$$

Hence x_{3} was replaced by $\left.\alpha x_{3}^{2}+(\alpha, 1)\right) x_{3}^{3}$, so that ft would take only three values in Ge (4).

The polynomial for constructing the bosk was

$$
x_{1}+x_{3}+\alpha x_{n}^{2}+(\alpha+1) x_{n}^{3}
$$

The blocks obtained fron these polynoniala after converting tine levela into natural numbere vere

$(0,0,0)$	$(1,0,0)$	$(2,0,0)$	$(3,0,0)$
$(0,2,2)$	$(1,2,2)$	$(2,2,2)$	$(3,2,2)$
$(0,1,1)$	$(1,1,1)$	$(2,1,1)$	$(3,1,1)$
$(1,1,0)$	$(0,1,0)$	$(3,1,0)$	$(2,1,0)$
$(1,0,1)$	$(0,0,1)$	$(3,0,1)$	$(2,0,1)$
$(1,3,2)$	$(0,3,2)$	$(3,3,2)$	$(2,3,2)$
$(2,0,2)$	$(3,0,2)$	$(0,0,2)$	$(1,0,2)$
$(2,2,0)$	$(3,2,0)$	$(0,2,0)$	$(1,2,0)$
$(2,3,1)$	$(3,3,1)$	$(0,3,1)$	$(1,3,1)$
$(3,1,2)$	$(2,1,2)$	$(1,1,2)$	$(0,1,2)$
$(3,2,1)$	$(2,2,1)$	$(1,2,1)$	$(0,2,1)$
$(3,3,0)$	$(2,3,0)$	$(1,3,0)$	$(0,3,0)$

Examole 7.

$7 \times 4 \times 3$ in tweiva plot blocke was constructed using tha polynomiel $x_{1}+x_{2}^{2}+x_{3}^{3}$ where the eactors x_{2} and x_{3} wera repleced by x_{2}^{2} and x_{3}^{3} respectively to that x_{2}^{2} would take only fous values and x_{3}^{3} toois only three qazueg in Gr(7).

The blocks onthined vera

$(0,0,0)$	$(1,0,0)$	$(2,0,0)$	$(3,0,0)$	$(4,0,0)$	$(5,0,0)$	$(0,0,0)$
$(2,3,2)$	$(3,3,2)$	$(4,3,2)$	$(5,3,2)$	$(0,3,2)$	$(0,3,2)$	$(1,3,2)$
$(3,2,2)$	$(4,2,2)$	$(5,2,2)$	$(6,2,2)$	$(0,2,2)$	$(1,2,2)$	$(2,2,2)$
$(3,3,1)$	$(1,3,1)$	$(5,3,1)$	$(6,3,1)$	$(0,3,1)$	$(1,3,1)$	$(2,3,1)$
$(4,2,2)$	$(5,1,2)$	$(6,1,2)$	$(0,1,2)$	$(1,2,2)$	$(2,1,2)$	$(3,1,2)$
$(4,3,0)$	$(5,3,0)$	$(6,3,0)$	$(0,3,0)$	$(1,3,0)$	$(2,3,0)$	$(3,3,0)$
$(5,1,1)$	$(6,1,1)$	$(0,1,1)$	$(1,1,1)$	$(2,1,1)$	$(3,1,1)$	$(4,1,1)$
$(5,2,0)$	$(6,2,0)$	$(0,2,0)$	$(1,2,0)$	$(2,2,0)$	$(3,2,0)$	$(4,2,0)$
$(6,0,1)$	$(0,0,1)$	$(1,0,1)$	$(2,0,1)$	$(3,0,1)$	$(4,0,1)$	$(5,0,1)$
$(6,1,0)$	$(0,1,0)$	$(1,1,0)$	$(2,1,0)$	$(3,1,0)$	$(4,2,0)$	$(5,1,0)$

Eramole 日.

$4 \times 3 \times 2 \times 2$ in 12 plot blocise. The polynominl for constructing the blocies was

$$
x_{1}+\alpha x_{2}^{2}+(x-1) x_{2}^{3}+x_{3}^{3}+x_{4}^{3}
$$

For constructimg this polynonial the foctor x_{2} was xaplaced by $\alpha x_{2}^{2} *(\alpha+1) x_{2}^{3}$ and x_{3} by x_{3}^{3} and x_{4} by x_{4}^{3} mo that they would take three, two and two valuea
respectively in G (4). Tha blocks obtained by making use of this polynondal were

$(0,0,0,0)$	$(1,0,0,0)$	$(2,0,0,0)$	$(3,0,0,0)$
$(0,0,1,1)$	$(1,0,1,1)$	$(2,0,1,1)$	$(3,0,1,1)$
$(0,1,1,0)$	$(1,1,1,0)$	$(2,1,1,0)$	$(3,1,1,0)$
$(0,1,0,1)$	$(1,1,0,1)$	$(2,1,0,1)$	$(3,1,0,1)$
$(1,0,1,0)$	$(0,0,1,0)$	$(3,0,2,0)$	$(2,0,1,0)$
$(1,0,0,1)$	$(0,0,0,1)$	$(3,0,0,1)$	$(2,0,0,1)$
$(1,1,0,0)$	$(0,1,0,0)$	$(3,1,0,0)$	$(2,1,0,0)$
$(1,1,1,1)$	$(0,1,1,1)$	$(3,1,1,1)$	$(2,1,1,1)$
$(2,2,0,0)$	$(3,2,0,0)$	$(0,2,0,0)$	$(1,2,0,0)$
$(2,2,1,1)$	$(3,2,1,1)$	$(0,2,1,1)$	$(1,2,1,1)$
$(3,2,0,1)$	$(2,2,0,1)$	$(1,2,0,1)$	$(0,2,0,1)$

2. Construction of $p x q x t$ designs frog $p x p$ designs

As explained in the materings and methoois, firat a pxp confounded Eactorial design in (p-1) replications bas constructec. Collopsing the last ($\mathrm{p}-\mathrm{q}$) levels of the second factor and attaching the t lavela of the third Factor to each of the treatmant combinations an asymmorical confounded factorial dasign of aise $\mathrm{p} \times \mathrm{q} x \mathrm{t}$ in qt plot blocks with (p-1) raplications was obtained.

Exymle 1.

$4 \times 3 \times 2$ design in aix plot blocks. A confounded 4×4 symactical factorial loyout in Eow plot blocite with three roplications was constructed Eirst. Iat the two gectors lu A and B. Last lovel of B war collapaed to obeain a $4 x 3$ gesign in three plot blocks. Two levela of the third factor C vere amaociated to esch treatrmat of the 4×3 layout in every block. The design thus obtained was a $4 \times 3 \times 2$ amonetrical Eactorial layout in oix plot blocks with three replication prartiolly confounding A and AB. The three replication of the $4 \times 3 \times 2$ layout ware πs given balow.

Fxplicetion I

$(0,0,0)$	$(1,0,0)$	$(2,0,0)$	$(3,0,0)$
$(0,0,1)$	$(1,0,1)$	$(2,0,1)$	$(3,0,1)$
$(2,1,0)$	$(0,2,0)$	$(3,1,0)$	$(2,1,0)$
$(1,1,1)$	$(0,1,1)$	$(3,1,1)$	$(2,1,1)$
$(2,2,0)$	$(3,2,0)$	$(0,2,0)$	$(1,2,0)$
$(2,2,1)$	$(3,2,1)$	$(0,2,1)$	$(1,2,1)$

Eequication II.

$(0,0,0)$	$(1,0,0)$	$(2,0,0)$	$(3,0,0)$
$(0,0,1)$	$(1,0,1)$	$(2,0,1)$	$(3,0,1)$
$(2,1,0)$	$(3,1,0)$	$(0,1,0)$	$(1,1,0)$
$(2,1,1)$	$(3,1,1)$	$(0,1,1)$	$(1,1,1)$
$(3,2,0)$	$(2,2,0)$	$(1,2,0)$	$(0,2,0)$
$(3,2,1)$	$(2,2,1)$	$(1,2,1)$	$(0,2,1)$

neollcation IIT.

$(0,0,0)$	$(1,0,0)$	$(2,0,0)$	$(3,0,0)$
$(0,0,1)$	$(1,0,1)$	$(2,0,1)$	$(3,0,1)$
$(1,2,0)$	$(0,2,0)$	$(3,2,0)$	$(2,2,0)$
$(1,2,1)$	$(0,2,1)$	$(3,2,1)$	$(2,2,1)$
$(3,1,0)$	$(2,1,0)$	$(1,1,0)$	$(0,1,0)$
$(3,1,1)$	$(2,1,1)$	$(1,1,1)$	$(0,1,1)$

Example 2

Congtruction of oonfounted $5 \times 4 \times 3$ asymmetrical factorial deaign. A confounded 5×5 gymaeticol factorial design in Eive plot hlocis with four raplicationa was conctructed firgt. Lat the factora be A and B. The last lovel of B weg colispged to get a 5×4 anymetrical layout in four plot blocike. The ehrec levelw of the thind factor vore ansociated to each treatmant cocinination in every hook. The roulting demign was a $5 \% 4 \times 3$ agmantrical layout in suelve plot blocity and
with Eour cepileatione partially conEounding A and $A B$ and ware ex given below.

Raplication I.

$(0,0,0)$	$(1,0,0)$	$(2,0,0)$	$(3,0,0)$	$(4,0,0)$
$(0,0,1)$	$(1,0,1)$	$(2,0,1)$	$(3,0,1)$	$(4,0,1)$
$(0,0,2)$	$(1,0,2)$	$(2,0,2)$	$(3,0,2)$	$(4,0,2)$
$(2,3,0)$	$(3,3,0)$	$(4,3,0)$	$(0,3,0)$	$(1,3,0)$
$(2,3,1)$	$(3,3,1)$	$(4,3,1)$	$(0,3,1)$	$(1,3,1)$
$(2,3,2)$	$(3,3,2)$	$(4,3,2)$	$(0,3,2)$	$(1,3,2)$
$(3,2,0)$	$(4,2,0)$	$(0,2,0)$	$(1,2,0)$	$(2,2,0)$
$(3,2,1)$	$(4,2,1)$	$(0,2,1)$	$(1,2,1)$	$(2,2,1)$
$(3,2,2)$	$(4,2,2)$	$(0,2,2)$	$(1,2,2)$	$(2,2,2)$
$(4,1,0)$	$(0,1,0)$	$(1,1,0)$	$(2,1,0)$	$(3,1,0)$
$(4,1,1)$	$(0,1,1)$	$(1,1,1)$	$(2,1,1)$	$(3,1,1)$
$(4,1,2)$	$(0,1,2)$	$(1,1,2)$	$(2,1,2)$	$(3,1,2)$

Replication II.

$(0,0,0)$	$(1,0,0)$	$(2,0,0)$	$(3,0,0)$	$(4,0,0)$
$(0,0,1)$	$(1,0,1)$	$(2,0,1)$	$(3,0,1)$	$(4,0,1)$
$(0,0,2)$	$(1,0,2)$	$(2,0,2)$	$(3,0,2)$	$(4,0,2)$
$(1,2,0)$	$(2,2,0)$	$(3,2,0)$	$(4,2,0)$	$(0,2,0)$
$(1,2,1)$	$(2,2,1)$	$(3,2,1)$	$(4,2,1)$	$(0,2,1)$
$(1,2,2)$	$(2,2,2)$	$(3,2,2)$	$(4,2,2)$	$(0,2,2)$
$(3,1,0)$	$(4,1,0)$	$(0,1,0)$	$(1,1,0)$	$(2,1,0)$
$(3,1,1)$	$(4,1,1)$	$(0,1,1)$	$(1,1,1)$	$(2,1,1)$
$(3,1,2)$	$(4,1,2)$	$(0,1,2)$	$(1,1,2)$	$(2,1,2)$
$(4,3,0)$	$(0,3,0)$	$(1,3,0)$	$(2,3,0)$	$(3,3,0)$
$(4,3,1)$	$(0,3,1)$	$(1,3,1)$	$(2,3,1)$	$(3,3,1)$
$(4,3,2)$	$(0,3,2)$	$(1,3,2)$	$(2,3,2)$	$(3,3,2)$

Egulicstion TKE

$(0,0,0)$	$(1,0,0)$	$(2,0,0)$	$(3,0,0)$	$(4,0,0)$
$(0,0,1)$	$(1,0,1)$	$(2,0,2)$	$(3,0,1)$	$(4,0,1)$
$(0,0,2)$	$(1,0,2)$	$(2,0,2)$	$(3,0,2)$	$(4,0,2)$
$(1,3,0)$	$(2,3,0)$	$(3,3,0)$	$(4,3,0)$	$(0,3,0)$
$(1,3,1)$	$(2,3,1)$	$(3,3,1)$	$(4,3,1)$	$(0,3,1)$
$(1,3,2)$	$(2,3,2)$	$(3,3,2)$	$(4,3,2)$	$(0,3,2)$
$(2,1,0)$	$(3,1,0)$	$(4,1,0)$	$(0,1,0)$	$(1,1,0)$
$(2,1,1)$	$(3,1,1)$	$(4,1,1)$	$(0,1,1)$	$(1,1,1)$
$(1,1,2)$	$(3,1,2)$	$(4,1,2)$	$(0,1,2)$	$(1,1,2)$
$(4,2,0)$	$(0,2,0)$	$(1,2,0)$	$(2,2,0)$	$(3,2,0)$
$(4,2,1)$	$(0,2,1)$	$(1,2,1)$	$(2,2,1)$	$(3,2,1)$
$(4,2,2)$	$(0,3,2)$	$(1,2,2)$	$(2,2,2)$	$(3,2,2)$

Replication IV.

$(0,0,0)$	$(1,0,0)$	$(2,0,0)$	$(3,0,0)$	$(4,0,0)$
$(0,0,1)$	$(1,0,1)$	$(2,0,1)$	$(3,0,2)$	$(4,0,1)$
$(0,0,2)$	$(1,0,2)$	$(2,0,2)$	$(3,0,2)$	$(4,0,2)$
$(2,2,0)$	$(3,2,0)$	$(4,2,0)$	$(0,2,0)$	$(1,2,0)$
$(2,2,1)$	$(3,2,1)$	$(4,2,1)$	$(0,2,1)$	$(1,2,1)$
$(2,2,2)$	$(3,2,2)$	$(4,2,2)$	$(0,2,2)$	$(1,2,2)$
$(3,3,0)$	$(4,3,0)$	$(0,3,0)$	$(1,3,0)$	$(2,3,6)$
$(3,3,1)$	$(4,3,1)$	$(0,3,1)$	$(1,3,1)$	$(2,3,1)$
$(3,3,2)$	$(4,3,2)$	$(0,3,2)$	$(1,3,2)$	$(2,3,2)$
$(4,1,0)$	$(0,1,0)$	$(1,1,0)$	$(2,1,0)$	$(3,1,0)$
$(4,1,2)$	$(0,1,2)$	$(1,2,1)$	$(2,1,1)$	$(3,1,1)$

Examole 3
Construction of $7 \times 6 \times 3$ consonsided asymotrical Eactorlal denign. A conEounded $7 \approx 7$ aymatric factorlal dagicn in seven plot blocise with aix replications wao conptructed. The last level of the cecond Eactor was collapsed so as to reault in a 7 z6 asyometrical layout In alx plot blocis. Tha threc leveia of the third factor vere ascociated to each tractment combinations in a block. Thus en aqumetrical $7 \times 6 \times 3$ fectorial were obtained. The blocks of the cealgn were

Replycation I.

$(0,0,0)$	$(1,0,0)$	$(2,0,0)$	$(3,0,0)$	$(4,0,0)$	$(5,0,0)$	$(6,0,0)$
$(0,0,1)$	$(1,0,1)$	$(2,0,1)$	$(3,0,1)$	$(4,0,1)$	$(5,0,1)$	$(6,0,1)$
$(0,0,2)$	$(1,0,2)$	$(2,0,2)$	$(3,0,2)$	$(4,0,2)$	$(5,0,2)$	$(6,0,2)$
$(2,5,0)$	$(3,5,0)$	$(4,5,0)$	$(5,5,0)$	$(6,5,0)$	$(0,5,0)$	$(1,5,0)$
$(2,5,1)$	$(3,5,1)$	$(4,5,1)$	$(5,5,1)$	$(6,5,1)$	$(0,5,1)$	$(2,5,1)$
$(2,5,2)$	$(3,5,2)$	$(0,5,2)$	$(5,5,2)$	$(6,3,2)$	$(0,5,2)$	$(1,5,2)$
$(3,4,1)$	$(4,4,1)$	$(5,4,1)$	$(6,4,1)$	$(0,4,1)$	$(1,4,1)(2,4,1)$	
$(3,4,0)$	$(4,4,0)$	$(5,4,0)$	$(6,4,0)$	$(0,4,0)$	$(3,4,0)(2,4,0)$	
$(3,4,2)$	$(4,4,2)$	$(5,4,2)$	$(6,4,2)$	$(0,4,2)$	$(1,4,2)$	$(2,4,2)$
$(4,3,0)$	$(5,3,0)$	$(6,3,0)$	$(0,3,0)$	$(1,3,0)$	$(2,3,0)$	$(3,3,0)$
$(4,3,1)$	$(5,3,1)$	$(6,3,1)$	$(0,3,2)$	$(1,3,1)$	$(2,3,1)$	$(3,3,2)$
$(4,3,2)$	$(5,3,2)$	$(6,3,2)$	$(0,3,2)$	$(1,3,2)$	$(2,3,2)$	$(3,3,2)$
$(5,2,0)$	$(6,2,0)$	$(0,2,0)$	$(1,2,0)$	$(2,2,0)$	$(3,2,0)$	$(4,2,0)$
$(5,2,1)$	$(6,2,1)$	$(0,2,1)$	$(2,2,1)$	$(2,2,1)$	$(3,2,1)$	$(4,2,1)$
$(5,2,2)$	$(6,2,2)$	$(0,2,2)$	$(1,2,2)$	$(2,2,2)$	$(3,2,2)$	$(4,2,2)$
$(6,1,0)$	$(0,1,0)$	$(1,1,0)$	$(2,1,0)$	$(3,1,0)$	$(4,1,0)$	$(5,1,0)$
$(6,1,1)$	$(0,1,1)$	$(1,1,1)$	$(2,1,2)$	$(3,1,1)$	$(4,1,1)$	$(5,1,1)$
$(6,1,2)$	$(0,1,2)$	$(1,1,2)$	$(2,1,2)$	$(3,2,2)$	$(4,1,2)$	$(5,1,2)$

Replycation II.

$(0,0,0)$	$(1,0,0)$	$(2,0,0)$	$(3,0,0)$	$(4,0,0)$	$(5,0,0)$	$(6,0,0)$
$(0,0,1)$	$(1,0,1)$	$(2,0,1)$	$(3,0,1)$	$(4,0,1)$	$(5,0,1)$	$(6,0,1)$
$(0,0,2)$	$(1,0,2)$	$(2,0,2)$	$(3,0,2)$	$(4,0,2)$	$(5,0,2)$	$(6,0,2)$
$(1,3,0)$	$(2,3,0)$	$(3,3,0)$	$(4,3,0)$	$(5,3,0)$	$(6,3,0)$	$(0,3,0)$
$(1,3,1)$	$(2,3,1)$	$(3,3,1)$	$(4,3,1)$	$(5,3,1)$	$(6,3,1)$	$(0,3,1)$
$(3,2,2)$	$(2,3,2)$	$(3,3,2)$	$(4,3,2)$	$(5,3,2)$	$(6,3,2)$	$(0,3,2)$
$(3,2,1)$	$(4,2,0)$	$(5,2,0)$	$(6,2,0)$	$(0,2,0)$	$(1,2,0)$	$(2,2,0)$
$(3,2,2)$	$(1,2,2)$	$(5,2,1)$	$(6,2,1)$	$(0,2,1)$	$(1,2,1)$	$(2,2,1)$
$(4,5,0)$	$(5,5,0)$	$(6,5,0)$	$(6,2,2)$	$(0,2,2)$	$(1,2,2)$	$(2,2,2)$
$(4,5,1)$	$(5,5,1)$	$(6,5,1)$	$(0,5,0)$	$(1,5,0)$	$(2,5,0)$	$(3,5,0)$
$(4,5,2)$	$(5,5,2)$	$(6,5,2)$	$(2,5,2)$	$(1,5,1)$	$(2,5,1)$	$(3,5,1)$
$(5,1,0)$	$(6,1,0)$	$(0,1,0)$	$(1,1,0)$	$(2,1,0)$	$(2,5,2)$	$(3,5,2)$
$(5,1,1)$	$(6,1,1)$	$(0,1,1)$	$(1,1,1)$	$(2,1,1)$	$(3,1,0)$	$(4,1,0)$
$(6,1,2)$	$(6,1,2)$	$(0,1,2)$	$(1,1,2)$	$(2,1,2)$	$(3,1,2)$	$(4,1,1)$
$(6,4,0)$	$(0,4,0)$	$(1,4,0)$	$(2,4,0)$	$(3,4,0)$	$(4,4,0)$	$(5,4,0)$
$(6,4,2)$	$(0,4,1)$	$(1,4,1)$	$(2,6,1)$	$(3,4,1)$	$(4,4,1)$	$(5,4,1)$

Renilcation TII.

$(0,0,0)$	$(1,0,0)$	$(2,0,0)$	$(3,0,0)$	$(4,0,0)$	$(5,0,0)$	$(6,0,0)$
$(0,0,1)$	$(1,0,1)$	$(2,0,1)$	$(3,0,1)$	$(4,0,1)$	$(5,0,1)$	$(0,0,1)$
$(0,0,2)$	$(1,0,2)$	$(2,0,2)$	$(3,0,2)$	$(4,0,2)$	$(5,0,2)$	$(6,0,2)$
$(1,2,0)$	$(2,2,0)$	$(3,2,0)$	$(4,2,0)$	$(5,2,0)$	$(6,2,0)$	$(0,2,0)$
$(1,2,1)$	$(2,2,1)$	$(3,2,1)$	$(4,2,1)$	$(5,2,1)$	$(6,2,1)$	$(0,2,1)$
$(2,2,2)$	$(2,2,2)$	$(3,2,2)$	$(4,2,2)$	$(5,2,2)$	$(6,2,2)$	$(0,2,2)$
$(2,4,1)$	$(3,4,0)$	$(4,4,0)$	$(5,4,0)$	$(6,4,0)$	$(0,4,0)$	$(1,4,0)$
$(2,4,2)$	$(3,4,2)$	$(4,4,1)$	$(5,4,1)$	$(6,4,1)$	$(0,4,1)$	$(1,4,1)$
$(4,1,0)$	$(5,1,0)$	$(6,1,0)$	$(5,4,2)$	$(6,4,2)$	$(0,4,2)$	$(1,4,2)$
$(4,1,1)$	$(5,1,1)$	$(6,1,1)$	$(0,1,1)$	$(1,1,0)$	$(2,1,0)$	$(3,1,0)$
$(4,1,2)$	$(5,1,2)$	$(6,1,2)$	$(0,1,2)$	$(2,1,1)$	$(2,1,1)$	$(3,1,1)$
$(5,3,0)$	$(6,3,0)$	$(0,3,0)$	$(1,3,0)$	$(2,3,0)$	$(3,1,2)$	$(3,1,2)$
$(5,3,1)$	$(6,3,1)$	$(0,3,1)$	$(1,3,1)$	$(2,3,1)$	$(3,3,1)$	$(4,2,0)$
$(6,5,0)$	$(6,3,2)$	$(0,3,2)$	$(1,3,2)$	$(2,3,2)$	$(3,3,2)$	$(4,3,1)$
$(6,5,1)$	$(0,5,0)$	$(1,5,0)$	$(2,5,0)$	$(3,5,0)$	$(4,5,0)$	$(5,5,0)$
$(6,5,2)$	$(0,5,2)$	$(1,5,1)$	$(2,5,1)$	$(3,5,1)$	$(4,5,1)$	$(5,5,1)$
	$(2,5,2)$	$(3,5,2)$	$(4,5,2)$	$(5,5,2)$		

Raplication IV.

(0,0,0)	(1,0,0)	(2,0,0)	(3.0.0)	(4,0,0)	$(5,0.0)$	(6,0,0)
$(0,0,1)$	(1,0,1)	(2,0,1)	(3,0,1)	(4,0,1)	(5,0,1)	(6,0,1)
(0,0.2)	(1,0,2)	(2,0.2)	$(3,0,2)$	(4,0,2)	(5,0.2)	(6,0.2)
$(1,5,0)$	$(2,5,0)$	(3,5,0)	$(6,5,0)$	(5.5 .0$)$	$(6,5,0)$	(0,5,0)
(1.5.1)	(2.5.1)	(3.5.2)	(4,5,1)	(5,5,1)	(6,5.1)	$(0,5,1)$
(1,5,2)	(2.5.2)	(3,5,2)	(4,5,2)	$(5,5,2)$	$(6,5,2)$	(0,5,2)
(2,3,0)	(3,3,0)	(4, 3, 0)	$(5,3,0)$	$(6,3,0)$	(0,3,0)	$(1,3,0)$
$(2,3,1)$	(3,3,1)	(4.3,1)	$(5,3,2)$	$(6,3,1)$	(0,3,1)	$(1,3,2)$
$(2,3,2)$	(3,3,2)	(4,3,2)	$(5,3,2)$	$(6,3,2)$	$(0,3,2)$	$(1,3,2)$
$(3,1,0)$	$(4,1,0)$	($5,1.0$)	(6,1.0)	(0,2,0)	(1,1,0)	$(2,1,0)$
(3,1,1)	$(4,1,1)$	(5,1,1)	$(6,1,1)$	(0,1,2)	(1,1,1)	(2,1,1)
$(3,1,2)$	(4,1.2)	$(5,1,2)$	$(6,1,2)$	(0,1,2)	$(1,1,2)$	(2,1,2)
(5,4,0)	$(6,4,0)$	(0,4,0)	(1.4.0)	$(2,4,0)$	(3.4.0)	($4,4,0$)
(5,4,1)	(6.4.1)	(0.4.1)	(1,4.1)	($2,4,1$)	(3,4,1)	(4,4,1)
$(5,4,2)$	$(6,4,2)$	(0.4.2)	(2,4,2)	(2,4.2)	(3,4.2)	$(4,4,2)$
$(6,2,0)$	(0,2,0)	(1,2,0)	$(2,2,0)$	$(3,2.0)$	(4,2,0)	$(5,2,0)$
4, $6,2,1$)	(0,2,1)	(1,2,1)	(2,2,1)	(3.2.1)	$(0,2,1)$	$(5,2,1)$
(0,2,2)	(0.2.2)	(1.2.2)	(2,2,2)	(3,2,2)	(0,2,2)	(5.4.2)

Eeplication

(0.0.0)	$(1,0,0)$	$(2,0,0)$	(3,0,0)	\{4,0,0)	(5,0,0)	(6,0.0)
(0.0.1)	(1,0,1)	(2,0,1)	(3.0.1)	(4,0,1)	$(5,0,1)$	(6,0,1)
(0.0.2)	(1,0,2)	(2,0,2)	(3.0,2)	(4,0,2)	$(5,0,2)$	(6,0.2)
(1,4.0)	(2,4,0)	(3,4,0)	$(4,4,0)$	(5.4 .0$)$	$(6,4,0)$	(0,4,0)
$(1,4,2)$	(2,4,1)	(3,6,1)	(4,4,1)	($5,4,1$)	(6,4,2)	(0.4.1)
$(1, A, 2)$	(2,4,2)	(3,4,2)	(1,4.2)	(5,4,2)	(6,4,2)	(0.4.2)
(2,2.0)	$(3,1,0)$	($4,1,0)$	(5,1.0)	(0.1.0)	(0,1,0)	$(1,1,0)$
$(2,3,1)$	(3,1,1)	$(4,1,1)$	$(5,1,1)$	(6,1,1)	$(0,1,1)$	(1,1,1)
$(2,1,2)$	(3.1.2)	(4, 1.2)	(5,1,2)	$(6,1,2)$	$(0,1,2)$	$(1,1,2)$
$(3,5,0)$	(4,5,0)	$(5,5,0)$	$(6,5,0)$	(0,5,0)	(1,5,0)	(2,5,0)
$(3,5,1)$	(4,5,1)	(5,5,1)	$(6,5,1)$	(0,5,1)	$(1,5,2)$	$(2,5,1)$
(3.5.2)	(4,5,2)	(5,5,2)	(6,5,2)	(0.5,2)	$(1,5,2)$	$(2,5,2)$
(4.9.0)	$(5,5,0)$	(6,2,0)	(0.2.0)	(1,2,0)	(2,2,0)	(3,2,0)
$(4,2,1)$	$(5,2,1)$	(6.2.1)	(0.2.1)	$(1,2,1)$	(2,2,1)	(3,2,1)
(4,2,2)	$(5,2,2)$	$(6,2,2)$	(0.2.2)	(1,2,2)	$(2,2,2)$	$(3,2,2)$
$(5,3,0)$	$(0,3,0)$	(1,3.0)	(2.3.0)	$(3,3,0)$	$(4,3,0)$	($5,3.0$)
$(6,3,1)$	$(0,3,1)$	(2,3,1\}	\{2,3.1)	(3,3,1)	$(4,3,1)$	(5,3,1)
(6,3,2)	(0,3,2)	(1,3,2)	(2,3,2)	$(3,3,2)$	(4,3,2)	$(5,3,2)$

Replication VI.

$(0,0,0)$	$(1,0,0)$	$(2,0,0)$	$(3,0,0)$	$(4,0,0)$	$(5,0,0)$	$(6,0,0)$
$(0,0,1)$	$(1,0,1)$	$(2,0,1)$	$(3,0,1)$	$(4,0,1)$	$(5,0,1)$	$(6,0,1)$
$(0,0,2)$	$(1,0,2)$	$(2,0,2)$	$(3,0,2)$	$(4,0,2)$	$(5,0,2)$	$(6,0,2)$
$(1,1,0)$	$(2,1,0)$	$(3,1,0)$	$(4,2,0)$	$(5,1,0)$	$(6,1,0)$	$(0,1,0)$
$(1,1,1)$	$(2,1,1)$	$(3,1,1)$	$(4,1,1)$	$(5,1,1)$	$(6,1,1)$	$(0,1,1)$
$(1,1,2)$	$(2,1,2)$	$(3,1,2)$	$(4,2,2)$	$(5,1,2)$	$(6,1,2)$	$(0,1,2)$
$(2,2,1)$	$(3,2,0)$	$(4,2,0)$	$(5,2,0)$	$(6,2,0)$	$(0,2,0)$	$(1,2,0)$
$(2,2,2)$	$(3,2,2)$	$(4,2,1)$	$(5,2,1)$	$(6,2,1)$	$(0,2,1)$	$(1,2,1)$
$(3,3,0)$	$(4,3,0)$	$(5,3,2)$	$(5,2,2)$	$(6,2,2)$	$(0,2,2)$	$(1,2,2)$
$(3,3,1)$	$(4,3,1)$	$(5,3,1)$	$(6,3,0)$	$(0,3,0)$	$1,3,0)$	$(2,3,0)$
$(3,3,2)$	$(4,3,2)$	$(5,3,2)$	$(6,3,2)$	$(0,3,1)$	$(1,3,1)$	$(2,3,1)$
$(4,4,0)$	$(5,4,0)$	$(6,4,0)$	$(0,4,0)$	$(1,4,0)$	$(1,5,2)$	$(2,3,2)$
$(4,4,1)$	$(5,4,1)$	$(6,4,1)$	$(0,4,1)$	$(1,4,1)$	$(2,4,0)$	$(3,4,0)$
$(5,4,2)$	$(5,4,2)$	$(6,4,2)$	$(0,4,2)$	$(1,4,2)$	$(2,4,2)$	$(3,4,1)$
$(5,5,1)$	$(6,5,0)$	$(0,5,0)$	$(1,5,0)$	$(2,5,0)$	$(3,5,0)$	$(4,5,2)$
$(5,5,2)$	$(6,5,2)$	$(0,5,1)$	$(1,5,5,2)$	$(2,5,1)$	$(3,5,1)$	$(4,5,1)$

3. Construction of anymatrical actorial design using Eactors at two lavel:
A. Construction in the isne of pat ond nieo.

As alreedy explatned in the matorials end methods a General confounfad agymetrical fectoriel ceaign of order $4^{p} \times 3^{3} \times 2^{r}$ wan constructed Eollowing the line of Den and Rao.

First a $2^{2 p+2 q+5}$ confouncod aymetrie factorial design in $2^{\text {k }}$ plot blocka wore constructec. Tho first $2 p+2 q$ factore were faired. The fory combinations of two factors were renente as four levels of p factors and
threc levels of q factors as ancon bolos

pheurco	of tors	Lavals of factor at Ecric levels	Levels of factor at threa levels
0	0	0	0
0	2	1	1
1	0	2	1
3	1	3	2

Sabotituting thene new lowis a $4^{p} \times 3^{G} \times 2^{5}$ factorial sersign ham constructed.

Exmole Ie

$4 \times 4 \times 2$ design in eight plot blocie. x confomied 2^{5} factorial deaign confoundimy atco ant ref was congtructed in aleint plot blocke. pour comitnationg of firat two paly of lectors are renamed as four lovela of eactors of asymatry. Thus a $4 \times 4 \times 2$ design in eight plot blocks mag olvtajned as anow below

$(2,1,0)$	$(2,0,0)$	$(2,1,1)$	$(2,0,1)$
$(1,1,1)$	$(1,0,1)$	$(1,1,0)$	$(1,0,0)$
$(0,3,1)$	$(0,2,1)$	$(0,3,0)$	$(0,2,0)$
$(3,0,1)$	$(3,1,1)$	$(3,0,0)$	$(3,1,0)$
$(2,2,1)$	$(2,3,1)$	$(2,2,0)$	$(2,3,0)$
$(1,2,0)$	$(1,3,0)$	$(1,2,1)$	$(1,3,1)$
$(3,3,0)$	$(3,2,0)$	$(3,3,1)$	$(3,2,1)$
$(0,0,0)$	$(0,2,0)$	$(0,0,1)$	$(0,1,1)$

Exapole 2.

$3 \times 3 \times 2 \times 2$ in eight plot blocke. A conEounded 2^{6} factarial design confounding $\lambda B D, C D s$ and ACF was constructed. The four combintions of firot two paire of factors were designated as three lavelo of factore of agymatiy. Thin rgaulted in a 3 x $3 \times 2 \times 2$ deaign in efght ploe blocko, as given belew

$(1,1,1,1)$	$(1,1,1,0)$	$(1,1,0,1)$	$(1,1,0,0)$
$(1,1,1,0)$	$(1,1,1,1)$	$(1,1,0,0)$	$(1,1,0,1)$
$(0,1,1,1)$	$(0,1,1,0)$	$(0,1,0,1)$	$(0,1,0,0)$
$(1,0,0,1)$	$(2,0,0,2)$	$(2,0,1,1)$	$(2,0,1,0)$
$(1,2,0,0)$	$(1,2,0,1)$	$(1,2,1,0)$	$(1,2,1,1)$
$(1,2,0,1)$	$(1,2,0,0)$	$(1,2,1,1)$	$(1,2,1,0)$
$(2,1,1,0)$	$(2,1,1,1)$	$(2,1,0,0)$	$(2,1,0,1)$
$(0,0,0,0)$	$(0,0,0,1)$	$(0,0,1,0)$	$(0,0,1,1)$

B. Conseruction in the ling of Baneylec and ras.

A confounded agymatrical fectorial design with one factor at p levela following the line of Bonerjee and Dat (1969) vere also conmerncted from aymatrical $2^{\text {n }}$ factoriol, where, $2^{n-1}<p \leqslant 2^{n}$. The nothod of construetion ware an follows

First e $2^{\text {n }}$ Esctorial layout consounding main effecta and interections in two plot blocks were congtructed in such a wey that tha first half blocke and the lower level of the

Eirst fector. The firgt $p-2^{n-1}$ blocks were uncd for designating $2 p-2^{n}$ levela and the remaining blocks were used for designating one level occh. The contraste of the agymetricel factorial were obtained by taining the oontrasto of the $2^{\text {n }}$ armatrical design.

A confounged x^{4} design in two plot blocios were conatrineted. Tho lovela are denoted by -1 and 1. Arrange the blocks in such a may that the first four blocks had comblnations with first factor at lower level. Tha first Ilve blocks were used for deaignating the firgt ten Levels and remaining blockss Eor dasignaefng each level. The Iovelt of the asymaterical \#actorial and coobination of the 2^{4} factorlal with corremponaing contragts ward as ghoma in table 1.

Expmelet.

Construction of $13 \times 3 \times 2$ agymetricel confounded factorial layout sonfounding the tires Eactor interaction. A confoundes 2^{7} factortal confoundirg $x_{1} y_{1} 2$ and $x_{2} x_{3} y_{2}$ was conotructed $\pm 1 r s t$, where $x_{2} * x_{2} * x_{3}$ and x_{4} correbponas to tha factor at 13 lovels. Y_{1} and Y_{2} correspond to the second factor at threc levels and z was tagen as tha Enctor at ewo levals. The treatmant combinations thus obtained ware renemed as 13 levels of firat factor as ahoun in the table 1 and an the three lavels of the second factor. The resulting loyont was as shom in table 2.

Table 1. Table shosing the levala and contragts of the ammmetrical factorial layout with the first factor at 13 levels

Combinationa of aymetric design	Lavels of abynmetrical factor	Contrast of the asymetrical deaign											
-1 -1 -1 -1	0	$+$	4	$+$	$+$	$+$	$+$	-	*	$+$	0	0	0
$\begin{array}{llllll}-1 & -1 & -1 & 1\end{array}$	1	$+$	$+$	4	4	\downarrow	$+$	-	4	-	0	0	0
-1 1 1 -1-1	2	\dagger	-	\pm	-	+	-	+	\cdots	+	0	0	0
$\begin{array}{lllll}-1 & 1 & -1 & 2\end{array}$	3	$+$	\cdots	*	-	-	-	$\stackrel{.}{ }$	\div	-	0	0	0
$\begin{array}{lllll}-1 & -1 & 1 & -1\end{array}$	4	+	$+$	\rightarrow	-	-	\square	-	0	0	$+$	-	0
$\begin{array}{llllll}-1 & -1 & 1 & 1\end{array}$	5	+	$+$	\cdots	$+$	-	-	-	0	0	-	+	0
-1 1 1 1-1	6	$+$	-	-	-	-	+	$+$	0	0	+	-	0
$\begin{array}{llllll}-1 & 1 & 1 & 1\end{array}$	7	$+$	-	\rightarrow	-	\cdots	4	$+$	0	0	-	$+$	0
1-1-1-1	1	-	+	4	-	-	+	-	0	0	0	0	$+$
1-1 -1-1	9	-	\div	+	\cdots	-	${ }^{*}$	-	0	0	0	\bigcirc	-
$1 \begin{array}{lllll}1 & 1 & -1 & -1\end{array}$	10	-	-	$+$	\rightarrow	-	-	+	0	0	0	0	0
$1 \begin{array}{llll}1 & 1 & 1\end{array}$	10	-	-	$+$	4	\cdots	-	$+$	0	0	0	0	0
1-1 1 -1	11	-	+	\rightarrow	-	+	-	4	0	0	0	\bigcirc	0
$1-111$	11	-	+	\cdots	-	4.	\cdots	$+$	0	\bigcirc	0	0°	0
1 1 1-1	12	-	-	-	*	$+$	+	-	0	0	0	0	0
11111	12	-	\cdots	\cdots	+	4	$\stackrel{+}{+}$	-	0	0	0	0	\bigcirc

Table 2. Layout of a $13 \times 3 \times 2$ agymetrical factorial design

$(0,0,0)$	$(0,0,1)$	$(0,1,0)$	(0,1,1)
$(0,2,1)$	(0,2,0)	$(0.2,1)$	$(0,2,0)$
$(1,0,0)$	(1,0,1)	$(1,1,0)$	(1,1,1)
$(1,2,1)$	$(1,2,0)$	(1,2,1)	$(1,2,0)$
(2,1,0)	$(2,1,1)$	(2,0.0)	(2,0,1)
$(2,2,1)$	(2,2,0)	$(2,2,1)$	$(2,2,0)$
$(3,1,0)$	$(3,1,1)$	(3,0,0)	(3,0.2)
(3,2,1)	(3,2.0)	(3,2,1)	$(3,2,0)$
($4,2,0$)	(4, 1, 1)	(4,0,0)	(4,0,1)
$(4,2,1)$	(4,2,0)	(4,2,2)	$(4,2,0)$
$(5,1,0)$	$(5,1,1)$	$(5,0,0)$	(5.0.1)
$(5,2,0)$	$(5,2,1)$	$(5,2,0)$	(5,2,1)
$(6,0.0)$	($0,0.1$)	($6,1,0)$	(6,1,1)
(6,2,1)	$(6,2,0)$	(6,2,1)	$(5,2,0)$
(7.0.0)	(7,0,1)	$(7,1,0)$	(7.2.1)
(7,2.1)	$(7,2,0)$	$(7,2,1)$	$(7,2.0)$
(3,0,1)	$(3,0,0)$	(0,1,1)	$(0,1,0)$
$(8,2,0)$	($0,2,1$)	$(3,2,0)$	($3,2,1$)
$(9,0,2)$	(9,0.0)	$(9,1,1)$	$(9,1.0)$
$(9,2,0)$	$(9,2,1)$	$(9,2,0)$	(9.2.1)
$(10,1,1)$	$(10,1,0)$	(10.0.1)	$(10,0,0)$
$(10.1 .1)$	(10.1.0)	(10,0,1)	($10.0,0$)
$(10,2,0)$	(10,2,1)	$(10,2,0)$	(10.2.1)
(10,2.0)	$(10,2,1)$	$(10,2.0)$	(10,2,1)
(11,2,1)	$(11,1,0)$	(11,0,1)	(11,0,0)
(11,1,1)	(11,1,0)	(11,0,1)	(11,0,0)
(11,2,0)	(11,2,1)	$(12,2,0)$	$(11,2,1)$
(11.2.0)	(11.2.1)	(11.2.0)	$(11,2,1)$
(12,0,1)	$(12,0,0)$	$(12.1,1)$	(12,1,0)
(12,0,1)	(12.0.0)	(12,1,1)	$(12,2,0)$
(12.2.0)	$(12,2,1)$	$(12,2,0)$	(12,2,1)
$(12,2,0)$	(12.2,1)	(12,2,0)	(12,2,1)

4. Construction of consounded asymmetrical fectorial designs uning balaneed destenn

Followitrg the line of Tyagt (1971) $p \times 2 \times 2$ designs vere constructed uaing a bilanced design with p treatments. In the inctient outriz of the godgn one was replaced by α and zoro by β. The p treatmente vere then faentiefen os pevela of the first Eactor. The combinations (0,0) and (1,1) of the last two treatnones were then attachge to a level where \propto occur and (0.1) and $(1,0)$ vere attechac to a level where β oecurs. Now, (2r-b) rove with pwere added to this inctidence matrix if $\mathrm{b}\langle 2 \mathrm{r}, 2 \mathrm{rab}$ row with α ware added ocherwise.

Examis.

A $4 \times 2 \times 2$ belanced dealgn tans constructed using a balanced desion with sour treatmont, sis blociks, threa replicationd, with blocir size two and with $\lambda=1$. The Inctacme matrix of the above desion sas

$$
N=\left(\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0
\end{array}\right) \quad N=\left[\begin{array}{llll}
\alpha & \alpha & \beta & \beta \\
\beta & \beta & \alpha & \alpha \\
\alpha & \beta & \alpha & \beta \\
\beta & \alpha & \beta & \alpha \\
\alpha & \beta & \beta & \alpha \\
\beta & \alpha & \alpha & \beta
\end{array}\right]
$$

where the catrix ti wos obtained by replecing one by ∞ and zaro by β. Corresponding blocke wera obtained an shsm belou

$(0,0,0)$	$(0,0,1)$	$(0,0,0)$	$(0,0,1)$	$(0,0,0)$	$(0,0,1)$
$(0,1,1)$	$(0,1,0)$	$(0,1,1)$	$(0,1,0)$	$(0,1,1)$	$(0,1,0)$
$(1,0,0)$	$(1,0,1)$	$(1,0,1)$	$(1,0,0)$	$(1,0,1)$	$(2,0,0)$
$(1,1,1)$	$(1,1,0)$	$(1,1,0)$	$(1,1,1)$	$(1,1,0)$	$(1,1,1)$
$(2,0,1)$	$(2,0,0)$	$(2,0,0)$	$(2,0,1)$	$(2,0,1)$	$(2,0,0)$
$(2,1,0)$	$(2,1,1)$	$(2,1,1)$	$(2,1,0)$	$(2,1,0)$	$(2,1,1)$
$(3,0,1)$	$(3,0,0)$	$(3,0,1)$	$(3,0,0)$	$(3,0,0)$	$(3,0,1)$
$(3,1,0)$	$(3,1,1)$	$(3,1,0)$	$(3,1,1)$	$(3,1,1)$	$(3,1,0)$

Examoloz.

$7 \times 2 \times 2$ confounded aoymmetrical balanced design was obtained by taking the incidence matrix if of a BIBD with geven treatrant as stwon below

$$
H=\left(\begin{array}{lllllll}
1 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 2 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 1 \\
1 & 1 & 0 & 1 & 0 & 0 & 0
\end{array}\right)
$$

Tho tronstonwed matrix a obtainad by replecimg zero by f
and one byocen augrenting a ros vector with xas alemento was as Eollows

$$
M=\left|\begin{array}{lllllll}
\alpha & \beta & \beta & \beta & \alpha & \alpha & \beta \\
\beta & \alpha & \beta & \beta & \beta & \alpha & \alpha \\
\beta & \beta & \infty & \alpha & \beta & \alpha & \beta \\
\beta & \beta & \beta & \alpha & \alpha & \beta & \alpha \\
\beta & \alpha & \infty & \beta & \alpha & \beta & \beta \\
\alpha & \beta & \alpha & \beta & \beta & \beta & \alpha \\
\propto & \alpha & \beta & \alpha & \beta & \beta & \beta \\
\alpha & \alpha & \infty & \infty & \alpha & \alpha & \alpha
\end{array}\right|
$$

Corresponcing blocks obtained were

Analysis

In the present study an attorat is mede to generalise the method of ame and atefarence in the line of Yatea (1937) nodieked by cood (2959). Thin method is much armpler than that of good.

A general analysia of athreo Eactor agynmetrical design is grplained here. Tula method can be easily extended to deasigs with any muber of Eactors.

Let F_{1}, F_{2} and F_{3} be tirreg fectora at levels p. q and t respectively $(\eta \geqslant \theta \geqslant t)$. Arrance mt treatment comonations in the dictionary sequence with F_{1} preceeding F_{2} and is succoedes by r_{3}. Drite tha aum of responces for ach treatant combinations in all replications against them. Group these aumers into ge groups of p Items each in the ame order as thay are Written. Theso group suns will form 1/p fraction of the next column te, the third colusn. In the nest $1 / \mathrm{p}$ Exaction linest contrasts corresponding to number p, of those grouph aze written. 1Faxt i/p fraction will De Eomed by quandradic contrasto and noxt fraction cuble contrast and so on. orthogonal contraety can be obeansd Froa Fialer and Tatas Tables (1933). Fourth coluran is obtained Erom tha third colum in a minilur Eashion os thind colmm ia obtained fyon the seconc colum, but the
grouping here ia done into pt groups of q items and contrasts also correspond to the number f. Following the anme line with the muber t, Erom the fourth colum Eleth colum fo obtained. The EiEth column will consiate of contraats of the finol design.

Divisora of contrast muares are ohtaind by taking Kronecker product A of matrices $H_{1} \cdot M_{2}$ and H_{3} in the reverse order, were, i_{1} io a p x p matrix mith all Glemanto in the firgt rod as unity ond coefticients of contraste in the remaining rous. sionlarly he is a $q \times g$ matris and $\mathrm{Al}_{3} \mathrm{a}$ t x t metrix whose elemento are taken almilar to that of M_{1}. A will be a prt x pat matrix with all elements of first row an unity. Thece matriceg are man as H_{2} natrices given by good (1959). Diagonal elementg of AN^{\prime} when tultiplied with number of replications will provice divinofs of diffarent contrasts.

Thile dolng the antire procedurg, care should be coren not to violate the ordex.
λ particular cams.
Condider the case $p m 4, q=3$ and $t a 2$, which resuite in a $4 \times 3 \times 2$ ageign writa the difegrent treatment combinations in the atandard order. In the second colum correspowing treatnent totala in alfeerent xeplicationg are to be written. This colum in grouped

Into groups of four treatnente. These group totale form first one fourth of thirs column. Remaining portlons are filled with linear guadratic and cuble contrasta reapectively. For conetructing the fourth colum third colum is grouped into grovpe of three items and their sums. linear and quadratic cantraste are taken. Thia coluran io again paired and sunt snd difegrances of these poirs will given the contrast of the Einal deaign. matrix A is obtained by toking the Fronecker product of matrices H_{2}, H_{2} and M_{3}. Here
$A_{1}=\left[\begin{array}{rrrr}1 & 1 & 1 & 1 \\ -3 & -1 & 1 & 3 \\ 1 & -1 & -1 & 1 \\ -1 & 3 & -3 & 1\end{array}\right]$

$$
\begin{aligned}
& N_{2}=\left[\begin{array}{rrr}
1 & 1 & 1 \\
-1 & 0 & 1 \\
1 & -2 & 1
\end{array}\right] \quad \text { and } \quad N_{3}\left(\begin{array}{rr}
1 & 1 \\
-1 & 1
\end{array}\right) \\
& A=H_{3}\left(* M_{2}(3) H_{1}=\right.
\end{aligned}
$$

The procecure for sinding the contragts by the surn end Aifference mothod 15 as shotm in the table 3.

Teblo 3. Jathod of gun and affeerence for the caloulation of contraats

1	2	3	4	5	6
x1	$x 1+2 x^{2}+\times 3+x 4(y 1)$	71+y2+y3(21$)$	21422 (c1)	24r (91)	$\stackrel{2}{c 1 / 01}$
x^{2}	$x 5+x 6 \div x 7+89(y 2)$	y $4+y 5+y 6$ ($x z$)	23424 (c2)	120r (da)	$\stackrel{2}{c} / g 2$
263	$x 9+x 10+x 11+x 22(y 3)$	y7+y $9+y^{9}(23)$	25+86(03)	$24 \times$ (d3)	$\stackrel{2}{c 3 / a 3}$
84	$x 13+x 24+x 154 \times 16(y 4)$	$y 10+y 12+812(84)$	27+23 (c4)	120r (a4)	$\begin{gathered} 2 \\ 04 / 84 \end{gathered}$
x5	$x 17+518+x 19+200(y 5)$	Y1 $3+y 14+y 15(z 5)$	294z10(c5)	16: (d5)	$\stackrel{2}{45 / a 5}$
$\times 6$	$x 21+2 c 22 * \times 23+x 24(y 6)$	$y 16+y 17+y 13(z 6)$	411+212 (c5)	E0x (ds)	${ }_{c}^{2} / 86$
87	$-3 \times 1-582 \times 3+3 \times 4(y 7)$	y194y20+z21(27)	$213.214(c 7)$	16x (d7)	c
80	$-3 \times 5-305 \times 743 \times 9$ (y 9)	$y 22+y 23+y 24(83)$	215+816 (c8)	$80 r(d 9)$	$\stackrel{2}{63 / 69}$
$x 9$	-3xp-x10**11+3x12 (y9)	$-\mathrm{y} 1+\mathrm{y} 3(\mathrm{~m} 9)$	217+818(c9)	485 (a9)	$\stackrel{2}{c 9 / a s}$
210	$-3 \times 13-514+\times 15+3 \times 16$ (y10)	$-y^{4}+y^{6}(210)$	210+z20(c10)	240 r (110)	$\stackrel{2}{610 / a 10}$
$\times 11$	$\rightarrow 3 \times 17-2194 \times 19+3 \times 00$ (Y11)	$-y^{7}+y^{9}(z 11)$		$485(211)$	$\stackrel{2}{c 11 / a 11}$
$x 12$	$-3 \times 21-2 \times 22+\times 234 \times 24(y 12)$	-y10 ${ }^{\text {y }} 12$ (z12)	223+2024 (c12)	240x(812)	$01^{2} / a 12$
					(conto

Table 3. Coned.......

1	2	3	4	5	6
$\times 13$	$x x^{1}-x^{2}-x 3+x 4(y 13)$	-y1 $3+y 15(213)$	$-31+22(c 13)$	24r(813)	$\begin{gathered} 2 \\ \text { c } 3 / a 13 \end{gathered}$
214	$x 5-x 6-x 7+x 3(y 14)$	-y16+y10(214)	- $23+84$ (c16)	120: (A15)	$014 / d 14$
$x 15$	x9-xionxil $+\times 12(y 15)$	- y19+y22 (215)	-25 -26 (c15)	245(a15)	$\stackrel{2}{\text { e15/a15 }}$
$\times 16$	$x 13-\times 14-x 15+x 15$ (y 16)	- y $22+y 24(816)$	$-27+30(c 16)$	120r (d16)	916/a16
$\times 17$	$x 17-\times 10-x 19+x 20(y 17)$	$-\mathrm{y} 1-2 \mathrm{y}^{2}+\mathrm{y} 3(817)$	$-20+210(\mathrm{cl7})$	16 r (d27)	$017 / 017$
$x 18$	$x 21-\times 22-x 23+x 24$ (y20)	y4-2y5+y 6 (213)	$-211+222(c 18)$	Orr (313)	$\stackrel{2}{\text { cie/ale }}$
x19	$-\mathrm{x} 1+3 \times 2-3 \times 3 \times 84$ (y19)	97-2y0+y9 (219)	-213+814 (c19)	16r (d19)	$\begin{gathered} 2 \\ 019 / a 19 \end{gathered}$
$\times 20$	$\cdots \times 5+3 \times 0-3 x 7+x 8(y 20)$	y10-2y11 +y12 (z20)	-215+z16 (c20)	Bor (d20)	$c 20 / 820$
$x 21$	$-89+3 \times 10-3 \times 11+x 12$ (y21)	y13-2y14+y15 (z21)	-817+ali (e21)	10r (d21)	$c 21 / a 21$
222	-513+3x14-3x15+x16 (y22)	y16-2y17+y18(z22)	-819+220(c22)	240r (923)	$\stackrel{2}{\mathrm{c} 22 / \mathrm{d} 22}$
2×23	- $\times 17+3 \times 10-3 \times 19+\times 20$ (Y23)	y19-2y20+y21 (223)	$-\mathrm{z} 21+222$ (c23)	485 (823)	$\mathrm{c} 2^{2} 3 / 023$
$\times 24$	- $\times 21+3 \times 22-3 \times 23+x 24$ (y24)	y22-2y23+y24 (z24)	-723+224 (c2s)	240r(124)	c24/824
Notes I is the number of replications and d is the product of the diagonal element of the matrix AA with the replication and matrix A is ag givan in table 4.					

Table 4. A matrix for a $4 \times 3 \times 2$ dessgn
$\begin{array}{llllllllllllllllllllllllll}1 & 1\end{array}$ $\begin{array}{lllllllllllllllllllllllll}-3 & -1 & 1 & 3 & -3 & -1 & 1 & 3 & -3 & -1 & 1 & 3 & -3 & -1 & 1 & 3 & -3 & -1 & 1 & 3 & -3 & -1 & 1 & 3\end{array}$ $\begin{array}{lllllllllllllllllllllllll}1 & -1 & -1 & 1 & -1 & -1 & -1 & -1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1\end{array}$

 $\begin{array}{lllllllllllllllllllllllll}3 & 1 & -1 & -3 & 0 & 0 & 0 & 0 & -3 & -1 & 1 & 3 & 3 & 1 & -1 & -3 & 0 & 0 & 0 & 0 & -3 & -1 & 1 & 3\end{array}$

 $\begin{array}{llllllllllllllllllllllllll}1 & 1 & 1 & 1 & -2 & -2 & -2 & -2 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & -2 & -2 & -2 & -2 & 1 & 1 & 1 & 1\end{array}$ $\begin{array}{lllllllllllllllllllllllllll}-3 & -1 & 1 & 3 & 6 & 2 & -2 & -6 & -3 & -1 & 1 & 3 & -3 & -1 & 1 & 3 & 6 & 2 & -2 & -6 & -3 & -1 & 1 & 3\end{array}$ $\begin{array}{lllllllllllllllllllllllll}1 & -1 & -1 & 1 & -2 & 2 & 2 & -2 & 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & -2 & 2 & 2 & -2 & 1 & -1 & -1 & 1\end{array}$ $\begin{array}{lllllllllllllllllllllllll}-1 & 3 & -3 & 1 & 2 & -6 & 6 & -2 & -1 & 3 & -3 & 1 & -1 & 3 & -3 & 1 & 2 & -6 & 6 & -2 & -1 & 3 & -3 & 1\end{array}$ $\begin{array}{lllllllllllllllllllllllll}-1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}$ $\begin{array}{lllllllllllllllllllllllllll}3 & 1 & -1 & -3 & 3 & 1 & -1 & -3 & 3 & 1 & -1 & -3 & -3 & -1 & 1 & 3 & -3 & -1 & 1 & 3 & -3 & -1 & 1 & 3\end{array}$ $\begin{array}{llllllllllllllllllllllllll}-1 & 1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & 1 & -1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1\end{array}$

 $\begin{array}{llllllllllllllllllllllll}1 & -1 & -1 & 1 & 0 & 0 & 0 & 0 & -1 & 1 & 1 & -1 & -1 & 1 & 1 & -1 & 0 & 0 & 0 & 0 & 1 & -1 & -1 & 1\end{array}$
 $\begin{array}{lllllllllllllllllllllllllll}-1 & -1 & -1 & -1 & 2 & 2 & 2 & 2 & -1 & -1 & -1 & -1 & 1 & 1 & 1 & 1 & -2 & -2 & -2 & -2 & 1 & 1 & 1 & 1\end{array}$

In the case of pore thon three factara aly in Eactors the contrasts are obtained by siailar to adeltion and subecaction method appliad n times. The treatment totals are grouped into difEarent mets. Eirst in tho order of M matrix, accond in the order of M_{2} matrix etce The contradte will be obtained in the $(n+2)^{\text {th }}$ colwm and the divisors can be obtainad from the A matrix.

$$
A=k_{n}(5) H_{n-1}(6) \cdots N_{1}
$$

more. H_{1}, M_{2} etc. are the matricea obtained by writing tho Eirist rows as unit elemants end reatining row as tha coefficiontg of contrasto as given in Pishar and Yates Talles (1933) for the i different factors under consideretion. The aivisory are the olajonal eiemants of fin multiplied by the number of replications.

JIlustrotive Example I-

Data on dry weight of shoota (in kofay) at panicle intiation gtoge of rice (orima gativa) from an experiment conductod by Aboul Salan (19B3) at Tanil fadu Agricultural Univarsity during tocth East fonsoon season was tajan. The design wat $4 \times 3 \times 2$ Eactorials with trestments four levels of N. threc levels of P and tio levele of z. The data were as bhown in table 5.

Taisle 5. Ery welgiat of shoote at panicle initiation stage of rice

Treatment	$\begin{aligned} & \text { RoplIcation } I \\ & (\text { Ro/ma }) \end{aligned}$	$\begin{gathered} \text { Replication II } \\ (\mathrm{rg} / \mathrm{hra}) \end{gathered}$	Total
nopozo	2700	2100	4800
nopoze	3150	2250	5400
noples	3250	2450	5700
noplz1	3300	2750	6050
nop20	2700	3350	6050
nopand	2805	2700	5500
nlposi	2850	2400	5350
$n \mathrm{n}$ ¢ nl^{1}	2800	2700	5500
niplzo	2950	3900	6550
nlplal	3600	5100	8700
n1p2s0	3300	4200	7590
n1p2z1	3350	4300	7650
n2pozo	3400	3800	7000
n2p3al	3550	3750	7300
n2plas	3700	3000	7600
naplzi	4000	4200	8200
n2p2z0	3930	3900	7800
n2pazi	4050	4000	8050
naporo	4200	4500	8700
n3pued	4500	4800	9300
n3plz0	4900	5000	9800
n3plel	5105	5200	10305
n3p ${ }^{2}=0$	5200	5100	10300
n3pari	5200	5100	10300

Table 6. Table of contrasta

1	3	3	4	5	0
nopozo	4800	25753	07350	179005	49
napaza	5259	29950	92255	$301: 5$	280
n2puey	7000	31650	39550	4005	43
п3ºz	8700	27500	40565	11705	240
nopla	5700	33255	B350	9500	32
niplzo	6050	31500	1455	900	160
neplo	7600	13450	3950	-2000	32
n2plzo	9800	13050	7555	9300	160
nopero	6050	13050	500	-1001	96
nis2zo	7500	13500	4000	4170	400
n2p2es	7300	12265	-400	3290	96
n3p2s?	10300	16800	1300	11110	430
mopozi	5400	1250	-200	4905	45
nlonel	5500	105 ?	-1900	1015	243
nappe	7300	105\%	4700	-1095	49
ก3poz1	9300	190	5100	4005	240
nople1	6050	-545	-2500	-1900	32
niplel	8700	100	-7510	1700	160
n2plz1	6200	-135	400	-1600	32
n3plal	10305	1950	3770	400	160
nopzal	5500	3350	200	-5010	98
n1pzer	7650	-1500	3050	3370	487
n2!nizi	8050	5755	-1700	2990	96
n3p2:1	10300	3600	-2410	-7710	430

Source	df	56	SS	F
Block	1	174604.69	274608.69	0.999
Treattient				
${ }^{\mathbf{1}}$	3	27795249.00	9265093.00	53.05**
p	2	4106563.30	2053231.69	11.76**
2	1	501229.68	501229.68	2.87
NP	6	1136440.60	789476.76	4.52
H2	3	145939.06	49646.35	0.23
P2	2	374271.87	187135.93	1.07
HfEz	6	333565.61	55594.27	0.31
Errar	23	4017015.36	174652.84	
Total	47	38410274.43		

Inference: Change in the levals of N and p nava got gignificant effect in bhoot dry veight Whereas change in the levelo of z ita no cffect and interactions are also not significant.

Illustrative Fxamie II
The dota on winged bean (Fbophocarpus tetrangonolobus) obtaincd from a fertiliaar trial conducted by Erillin (1983) at college of Agriculturc, veslayani had been taken. Tho dosign odopted wod a $4 \times 3 \times 3$ asyumetrical factoriol confounding Nk^{2} in two replications. The data were an given in table 3.

Table 7. keekly weight of winged bean

Trastment	Replication I	Replication IX	Total
nokop2	690	910	1600
nokopl	630	1035	1660
nokreo	540	1225	1765
n2k 2 p 3	565	1815	2300
nokop	635	1475	2110
n2kepa	945	2550	3495
n252pl	020	2655	3675
nikipl	660	1335	2045
n2k2pl	1185	2440	3625
n1kip	1100	3185	4285
-1k1p3	1690	3175	4865
niklp2	1040	3330	4370
n2kep3	1320	100,	3120
nok2pu	775	1590	2365
nimopl	1305	565	1090
n2klpz	3350	3105	6985
nok2p2	3360	2600	5750
n2lc1pl	1200	2030	3230
nikopt	2570	2635	5255
nilspa	1335	3500	4835
n2k190	1450	2535	3935
nikopo	2470	1300	3770
notr2pl	2795	2705	5550
n2:1p3	1240	3625	4365
nokipl	1175	2545	3730
nlk2p2	1745	5160	6905
n1k2以	1870	2595	4455
netope	595	3935	4530
nokipo	703	2695	3395
n21rop3	715	2040	2755
nik2pi	735	4935	5570
n21001	675	2550	3225
nokipa	1705	2930	4635
nlk3p3	345	2470	2315
noklp3	930	2010	2940
n3koro	1230	2702	3932

Table 8. Tablo of contrasts

2	2	3	4	5	6
nokopo	1765	7135	37327	137072	72
nokopl	1660	15750	49320	11284	360
notop2	1500	14422	50425	-12688	72
nokop3	2110	14590	5309	-42072	360
nikopo	3770	15565	10010	8932	48
nilopl	1890	19065	-4035	-2156	240
nlkop2	5255	16715	1007	2902	48
nilop3	4935	19745	-650	- 16102	240
n21000	3932	13965	-13045	-16108	144
nekopl	3225	975	-13597	-9836	720
n2kop2	4530	6560	-19050	-9653	144
nekop3	2755	-2226	-0495	20958	720
noklp	3395	-450	7307	13093	48
nokipl	3720	4055	4375	-9364	240
noklp2	4635	6395	-2750	14052	43
nokip3	2940	2675	-3201	5102	240
n17:1po	4285	-3585	6345	10057	32
nlispl	2045	-3125	-5900	2599	160
nutip2	4370	615	-1633	5613	32
n1) 2 p	4865	1460	655	2317	160
n2kIpo	3985	-1068	3930	1113	95
n2kIpl	3239	-2020	-5617	21091	480
n2k1p2	6985	2735	-7185	5943	96
nekilp	4865	-1365	-3330	-5053	430
nolezos	2295	-5935	-2923	-10398	144
notepl	5550	-5205	2625	-13746	720
nok2p2	5750	-1955	-3910	-10739	144
nok2p3	3120	525	-14371	17868	720
nlk 2 p	4455	-9030	-2105	-4193	96
nlk2pl	5570	-5092	6720	-22691	480
n1k2p2	6905	-3200	-3373	937	96
nik2p3	2315	-6395	-3855	5453	430
n2k200	3625	-10385	2570	-23003	283
n2t201	3675	225	13493	-3201	1440
n2k2pz	4285	-5645	-975	16907	288
n2k2p3	2330	-3075	8440	23983	1440

A브ㄴㅗㅗ

Source	$d E$	55	145	F
Blocks	5	39946917.83	7589383.57	26.0**
Freatmente				
N	2	3463955.10	1731977.59	5. ${ }^{\text {** }}$
P	3	7506412.60	2502137.50	8.0**
K	2	4397370.50	2198685.20	7.4**
Ne	6	2667307.90	444551.35	1.5
NK	2	5157894.20	2578947.10	8.6
PK	6	6319199.90	1053033.30	3.5**
SJPK	12	4948029.66	412335.30	1.4
Error	33	9836336. 31	293072.31	
Total	71	34242474.00		

Conclugions:

All main effects and $H K$ and $p E$ interactions were highly significant.

Discussion

The present invertigation uas aimed at tina conetruction of espmetrical factordal deaigns for oitferent aituations ant also to givo a general and ensy analysia of this aeymetrical fectorial loyouta.

In thie inventigation four difecrent mothods oit conatruction were attempted

1. oonetruction of confounded esymotrical Eactorial gesigns using caloie sield.
2. congtruction of $a x q x t$ design troma $p \times p$ design.
3. conotruction of arymetrical factorial designs uning Eactors at two levels and
4. construction of confounded agymatricial designs uaing balanced designe.

In the firat wethod of construction of aeymatric fectoriel designs using Galois Eield, two lemas were derived.

The firgt lempa.
arf of(o) is a Galoio field with a alemente and a is a alviacr of $s-1$, then x^{d} can assurse only $(g-1) / d+1$ distinct values in GP(a) a x asaunes all the a value of $\operatorname{Or}(a)^{\circ}$.
was used to construct asymmetrical factorial designs in which the first factor would be having a levels where a in a prime or prine power and the levels of the second Eactor vab taken as ($\mathrm{G}-1$)/d +1 where d is suitabla Atvisor of \mathbf{x}.

Uning the second lema.
"If S and T are square matrices of order $s \rightarrow 1$ much that

$$
s=\left(\begin{array}{cccc}
\alpha_{1} & \alpha_{1}^{2} & \cdots & \alpha_{1}^{g-1} \\
\alpha_{2} & \alpha_{2}^{2} & \cdots & \alpha_{2}^{g-2} \\
\cdots & \cdots & \cdots & \cdots \\
\alpha_{E-1} & \alpha_{0-1}^{2} & \cdots & \alpha_{s-1}^{g-1}
\end{array}\right) \quad \text { and }
$$

$$
\eta=\frac{1}{p-1}\left[\begin{array}{cccc}
\alpha_{1}^{s-2} & \alpha_{0}^{s-2} & \cdots & \alpha_{\mathrm{E}-1}^{\mathrm{s-2}} \\
\alpha_{1}^{s-3} & \alpha_{2}^{3-3} & \cdots & \alpha_{0-1}^{3-3} \\
\cdots & \cdots \cdots & \cdots & \cdots \\
\alpha_{1} & \alpha_{2} & \cdots & \alpha 0,1 \\
1 & 1 & \cdots & 1
\end{array}\right]
$$

then, S and i are inversec of each other: asymetrical factorial designs were also conotructed by
tajeng two gequarg matrices s and 2 of onder ent wach that T is the inverse of S_{4} This methos gave guitabla polynomials which took reatricted valueg while conatructing the loyouts of the ammentrical factorials. Eight examplea of construction of asynntrical fectorial designs using those two lemas were given.

In the construction of $3 \times 3 \times 2,3 \times 2 \times 2$, $4 \times 3 \times 2,4 \times 4 \times 2,5 \times 3 \times 2$ and $7 \times 4 \times 3$ 2ayouts the Eirgt lema was mode use of, homaag, in the congtruction of $4 \times 4 \times 3$ and $4 \times 3 \times 2 \times 2$ the mecond lempe wan made ute of.

A general methos of construction of $p \times q x t$ designs fron $p \times p$ designs ($p>q \geqslant t$) was explained in the second wathod. This rettod wan illuatrated with the construction of three examples viz. Construction of $4 \times 3 \times 2$, $5 x 4 \times 3$ and $7 \times 6 \times 3$ asymmatrical layoute.

Thile constructing asymatrical factorlal deaigns using Factors at two Iovals two types of construction ware attompted.
A. Eollowing the line of Das and Rac,
13. Eollowing the line of Danarjee and Das.

In the mothod (\hat{A}), a general procedure for construetion of confoundod asymnetrical factorial design $4^{3} \times 3^{G} \times 2^{r}$ was given. This wethod was illustraced by two examplas vis.
constructions of $4 \times 4 \times 2$ and $3 \times 3 \times 2 \times 2$ asymmetrical layouts. In method (B) a gencral method of construction of asymmetrical factorial degign through symmetrical $2^{\text {n }}$ fectorial at p levels, where $2^{n-1} p \leqslant 2^{n}$ was described. This was illustrated through an example of construction of $13 \times 3 \times 2$ asymmetrical confounded leyout.

In the fourth method a gencral method of construction of contounded asymetrical factorial design in the line of Tyagi (1977) had been explained. This method was illustrated With two examples viz. $4 \times 2 \times 2$ and $7 \times 2 \times 2$ balanced confounded asymetrical layouto.

The present investigation included a general and simplified analysis in the line of am and difference approach given by Yotes (1937) modified by Good (1958). This method was more simple than that of Good. In this method different matrices say H_{2}, H_{2}, M_{3} etc. according to the number of levels of various factors tere considered. Each of this matrix wes constituted by elements unity in the firat row, cocfficients of contragts in the other rows according to the levels of that partlcular factor. The divisors of various contrasts obtained in the final column of operation warg obtained fron the elements of Rronecker profuct or these matrices taken in the reverse order. The
method of sun and difearence for calculation of contrasta and mum of gruares vore illuotrated in table 2 for a $4 \times 3 \times 2$ design.

Elnally this analyaig was fllustrateó by taking data Eron two agricultural experiments one, dry beight of ohoots at panicle inftiation stage of rice, an experiment conducted by Abeul salam (1933) at Tanil Madu Agricultural University end another the data on yield of winged bean, a fertilizex trial conductod by Brillin (1993) at the College of Agriculture, Vellayani.

All these Eour methois of construction wete modifications and generalisation of the previova exieting mettiods. In this inveatigation proper care was also taken to give the eabicat possible conotruction techntad and analygis of asymutrical factorial experiments.

Summary

The objective of the present study were to construct confounded asymetricol factorial designs suitable for practical experineatal aituationo ond to obtain thair analyais.

In the present investigation confounded asymetrical Factorials were conatructed using four different technignes.

1. uoing Galola field.
2. $p x$ q $x t$ degigns fron $p x p$ deaigno,
3. using factoro at tro levels end
4. using balanced densona.

Using the firat method esoht layouts were conotructed based on tro lemmas. The layouts $3 \times 3 \times 2,3 \times 2 \times 2$. $4 \pi 2 \times 2,4 \pi 4 x 4,5 \times 3 \times 2$ and $7 \times 4 \times 3$ werc constructed wased on lemma (1) mereas layouts $4 \times 4 \times 3$ and $4 \times 3 \times 2 \times 2$ were constructed baned on lema (2).

A general methed of construction of $p \times q \times t$ ($p>q \geqslant t$) ecosigns from $p x p$ designs were explained with £llustrative exaples of conotruction of $4 \times 3 \times 2$, $5 \times 4 \times 3$ and $7 \times 6 \times 3$ layouto.

Tho different approaches vara mede while constructing asymetrical factorials fron symetrical factorials with factoro at two levelo.
A. Following the line of cag and Rao amd
D. Folloring the line of nanerjec and nas.

Das and Rao's eechnique was axtended to construct a general $4^{p} \times 3^{q} \times 2^{r}$ confounded factorlal. Two examples of construction of aaymutrical deaigns vis. $4 \times 4 \times 2$ and $3 \times 3 \times 2 \times 2$ vere given to illustrate this.

In the line of Benerjee end Das a general methox of construction of confounded noymatrical factorial was descrimed with special eqphots given to a foctoriel with one Eoctor at 13 levels. The ame was illuotzated with $13 \times 3 \times 2$ confourded layout.

In the last mathod of construction a balanced confounder asymetricol factorsal dealgn was constructed with a balnnced incomplete blocis oeaign (armp). $4 \times 2 \times 2$ contounded lapout wes obtalned from a gind with four treatmants and $7 \times 2 \times 2$ layout from a mTbo wich geven treatrento.

In the seeond part of the atudy a genaral and simpliEled analysis of Eactorial experinents applicable to both oymatrical and agymetrical Eaetorfal was deceribed In the line of Yates (1937) modizied by Goor (1959). This method 13 more ainple than that of Good's method. The general method of analysis of $5 \times 3 \times 2$ denign sam
descrived in estail. The method of analyais qua lllugerated wth manerbut exempe of a $4 \times 3 \times 2$ tigoina by taking date on dry wisint of anocte at pancle initiatin stage of

 using sato on yield on uingel tean fiom on evperimnt
 Vellajeni.

References

REFERETCES

Jggarwal. K.R. and Virk, H.S. (3976). Confounded 3×6 Aoymatrical Eactordal experiment, manographed aerics Ho. Oot, Department of Maths and Statistics. Panjeb Agricultural University, Lacmiana.

Agraval. Y. and Day. A. (1903). A mote on orthogonal madn efect plan for asymetrical factorials. Sankhya. 4s 7 (3): 270-282.

7nic. C. and Dey, A. (1991). Eone orthogonal maln effect plans for asymetrical factoriala. Sonthya. 43 (3) (3) 384-391.

Benerfac. A.k. (1977). On construction and analysta of p x q coneounded abymetrical factorial eesigns. Jour. Ind. Sac. Nori. Stat. 29(2): 42-52.

Danerjee, A, k and Das, $\mathrm{A} . \mathrm{H}$. (1969). On a method of conctruetion of confounded asymetrical factorial designo. Cal. Stat. Agsoc. Eul1. 18: 163-177.

Chakravarit. H. (1956). Fractional replicatione in asymatrical factorfal damignm and partially balanced arrays. sandinya. 172 143-164.

Cochran. W.G. and Com, G.A. (1957). Sxparimental Geakng. visely, licw Xork, 2nd Ed. bp. 148-370.

Das. fisp. (1960). Fractional replicates as agymetrycal Scotorial designo. Jour. Ing. Soc. Agri. Stat. 12 (2): 154-174.

Das. H**. and Giri. E.C. (1979). Eegign anitanalyala of gsperimente lilley Eastern Lta., Hew Delhi, pp. 120-143.

Dac. thef. and Roo, 2.S. (1967). Congtruction and analysia of soms new acrias of contounded eaynmetricel Eectorial destgns. Blonetrics. $23(4)$: E13-322.

Dean, त. H_{e} and Joh, 3 A . (1975). Single replicate Eactorial expardment in GC design - agymaterical arrongenent. U. Roy Statist. Sog. 378 (1):72-76. *Tisher. R.A. (1935). The desion of ercextmenta. Olivar ant Boyd litde. Edinhurgh.

Figher, R. . and Yates, E (1933). Statigtical Tahles for use in plological. inctcultural and 解dical Reacorcir. ollver and Royd leca.e Edinkurgh.

Good. Iav. (1950). The Interection algorithm and practical
 361-372.

Kenpthornc. 0. (1952). Beston end Analyoss of experiments. Mlley Eastern Lec.. Dea DelhL. pp. 346-364.

* Kibhen. K. and Erivastava, JoN. (1959). Mathematical thoory of confounting in asymmetricel and symmetricel factorial desions. Jour. Tng. Soc. Raris. Stat. 11: 73-110.

Kishen, Z. and Tyagi, BeIf. (1964). On conotruction and analyofs of some balanced asymutrical sactorial designs. Gal Stat. Asboc. Bull 13 (1a2): 123-149.

Ruricjan. E. ond zelen. A. (1962). λ calculur of factoriel arrongement. 太nn. Math. Statist. 33 (2): 600-619.

Lewis. S.F.(1979). Construction of regolution $\pm x I$ fractiong Erom genarallsed cyclic designe. J. Roy. Statiat. Sec. 418 (3): 352-357.

* Li and Jerome. C.f.(2934). Demyn and Enelymin of some confouncied Eactorial experiments. Jowe nazi. Exo. Stat. Rege Rull. 333.

Nasi. K.R. and Rto. C.R. (1943:. Confoumding in asymatrical factorial expriments. ㅎ. Roy statigt. soce 10B (1): 109-129.

Ragnove Reo. D. (1071). Conptruction and combinatorial broblema in diston of exogrimente. John Hiley End Sons. Weu York, ppe 264-270.

Romul buiter foc (1982). Conatruction of Eactorial deeigns wif all main effecto balanced. Eanthys. A4ig(2)t 154-166.
Ray. S. (1972). Construction and Enalyade of confounded ammetrical factorfal deaigns with some Eactora having levele grual to princ pouer. Jour. ind. Soc. Ag:i. 5tat. 26(2):35-36

Sarcars, H.G. and Dag, 却N. (1965). On congtruction and analyais of com confounded asparmetrical factorial

Shah. H.V. (1960). Note on 5×2^{2} factorial daeign. Biapetrics. 16 (1): 115-118.

Tyagi. 日**. (1971). Confounged asymmetrical Eactorial cosignc. Byometrice 27(1): 229-232.

Tyagi. F3. F . and tha. H.P. (1969). On constriction and analysis of a class of partially belencod asymmetrical fectorlal designs. Jour. Ind. Stat hggoc. 3 (1 ke 2): 37-42.
Yatar. F. (1937). Desicn and analygia of factorial Experimente Imn Bur. Soll. Sci. Tech Com. No. 35. 116-133.
zelen. li. (2953). The use of group oivisible designs for confounding esymetrical factorial arrangemanta. Ann. Anth Statist $29(1): 22-40$.

* Originals not consulted.

CONFOUNDED ASYMMETRICAL FACTORIAL DESIGNS CONSTRUCTION AND ANALYSIS

By
SANTY GEORGE

ABSTRACT OF A THESIS
 Submitted in partial fulfilment of the requirements for the degree of flaster of Sxiente (Agricultural Statistits)

Faculty of Agriculture
Kerala Agricultural University

Department of Statistics
COLLEGE OF VETERINARY AND ANIMAL SCIENCES
Mannuthy - Trichur
1984

Boperdmots in agriculture roquire aeveral types of designs. Situations in which treatmenta are combinetions of fectors whth asymotrical factorg are meny. Fhen the cotal number of treatrant combinations is large. confounding 4 proccised in order to get more prectac entinatea. Confounding it inextricanle mixing up interaction effects with block effertu.

In the rresent study four difierent mathods of conatruction of esymatrical designs arg attempted. In tho Eirst method polymaniols in Galofs atela are used for ennstruction. Thase polynontale are devied on the besta of two lennas and follosing the line of Richen ond Srivastava (1959).

Gecord mathod of congtruction is obtained by EoIlowing siardana and mas (1955). A general three foctor deasgn in constructed.

In the third method fectors at two levelo ame wed for constructing asymotrical destens Eollowing the 1 ine of Das and Rao (1967) and Eanerjac and has (1969).

Fourth method of construction of agymotrical fectarial Gesigns are fron kalenced destans. This methot of construction is in the ines of ryagi (1071).

A general motuod of analyois apolicable to boch whmetrical and agyametricol designs also is established Follosing the line of Yates (1937). Then method of enelyoto have tean illustrated by two gxamplan sron the Ficld of agriculture.

