EFFECT OF DEFOLIATION AT PANICLE EMERGENCE AND ANTHESIS ON GRAIN YIELD IN RICE (Oryza sativa L_{0})

THESIS

SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENT FOR THE DEGREE MASTER OF SCIENCE IN AGRICULTURE
(AGRICULTURAL BOTANY)
FACULTY OF AGRICULTURE
KERALA AGRICULTURAL UNIVERSITY

DEPARTMENT OF AGRICULTURAL BOTANY COLLEGE OF AGRICULTURE, VELLAYANI TRIVANDRUM

BEOHARATOM

I hereby dealers that this thesis entitled nifiect of defoliation at panicle cuexgence and anthesis on grain yield in rice (Onega gativa I.)" is a bonafide record of research work done by me during the come of research and that the the ais has not previously format the basis for the award to me of any degree, diploma, associateship, fellowship or other similar title, of any University or Society.

College of Agriculture, Vellayani.
Sim. Onahiu

111

CRET MFICATP

Certified that this theaig, entitled nefect of defollation at panicle energence and anthesis on grain yield in rice (Grya setiva y_{*})" is a record of research work done independently by Shri. SYD HOSTIN rbRAILM. under wy gutdance and superviaion and that it hes not previously formed the babis for the abard of any degree; fellowghip, or associateahip to hin.

Vellayand,
14 th Auguat. 1979.

APPROVED BY:

Ohalman:

Rembera:

2. Dr. V.Gopinamian Nain \rightarrow (yob
3. ShPi. E.J. THONAS TTROMAD

$$
\begin{aligned}
& \text { A. K. Chandparehkaran Nair } \\
& \text { (Exterinal Excwrier) If foucharefhams }
\end{aligned}
$$

AOKWOUTSDGTLIENTS

I express my deep sense of gratitude and indeotedness to Shri. H. Gopinathan Hair, Ohairman, Advisory Comattee, Associate professor of Agricultural Botany, College of Agriculture, Vellayani For suggesting the problem, for his sustainod and keen interest, constructive criticiams, valuable guidance, timely suggestions and constant encouragement evinced at overy stage of the investigation and in the preparation of this theols.

I an thankful to Shri. A.T Abraham, Associate Professor of Agricaltural Botany and Dr. V.Gopinathan Hair, Associate professor of Agricultural Hotany, College of Agriculturc, Vollayani, for proviaing practical suggestions in this investigations.

I am deoply indebted to Prof. E.J. Thomas, Head of the Department of Agrieultural Statistics Por the help and assistance rondered by him during the course of analysis of date and interpretation of results.

I am thankful to Dr. (Hirs.) Hary K. George, Profossor of Agricultural botany for the encouragement and suggestions given by her arring the course of research.

Lisit op tables

Page ina.
sable I.
A. hean 1eaf araa of different leaves at panicle emergonce and anthesis (in aq.ca). 25
B. persentage reduction in lear area Aus to defolietion trcatments. 26
O. Mean leaf area (in sq.om) of two stages. 27
D. Hean leaf aroa (in eq.om) of all varietien 23
Table II. Leaf angle at pantcle emergence. 30
gable III. Chlorophy2l content. 31
fable IV.
A. Percontage reauotion in yield. 34
B. Yiela (in ga) and percentage of reduotion (average of two atages). 36
C. Yield (in gal and percontage of reduction (Average of all varietien). 37
D. riela ing (Avarago of aefoliation treatmenta including control). 39
S. Intoraction of acfoliation treatments on ylald (peroentage). 39
Table V.
A. Percentage reauction in nuaber of fillea graine. 41
B. number of filled grains and pexcentage of reduction (Average of two stages). 43
O. Mumior of fillea grains and percontage of reduotion (Avorage of all varieties). 44
D. Manber of fillea grains (Average of defoliation tromtants including oontrol). 46

viii

HINT OR PABLES

Egre 30.
gable VI.
A. Percentage reduotion in 1000 grain weight. ss
B. 1000 urain weight (in ga) and percentage
of reduction (Average of two stages). 50
C. 1000 grain welght (in ga) and percentage
of reduction (Avorage of all varietiea). 51
D. 1000 grein waight in go (Average of defoliation treationta including control).

53

ix

TISN OF ILTUSRRATTOHS

Fig. I. Iray out plan of the exporiment.
plate I. Ieaf area growth after paniele eargence.
A. Flag lear
B. Ponuitimate leaf
C. The leaf lower to the penultimato leaf

Plate II. plant charecters.
A. Jyothi (V_{1})
B. Ptb. $10\left(\nabla_{2}\right)$
O. Jaya (∇_{3})

Plate III. Fiold and yield componenta
A. Pantele lengin
B. Sige and number of filled grains

INTRODUCTION

Ninemtenths of the worldes rioe is protuced and consumed in the Far East. A revieu of the trends in area, production, and yield of sice from 1934 to 1960 shows that the increased production in the major rice producing countries of tropical Asia, more or less kopt paoe with population increase, but the change in yields has been negligible. Apparently, rice breeding had no significant iapact on yields auring this period. At a symposian on the mineral nutrition of rice plants in 1964, what rioe seientists call 'plant type' received considerable attention from physiologists and breedere. The concept of the plant type had tremendous impact on rice breeding as it lormed the basis for evolving high yielaing varieties of rice.

The physiological processes involved in grain production such as vegetative growth, forsation of storage organs ania grain filling also have been subjeoted to extensive invegtigations. It has been found that most of the carbohyarates required for filling the grain are derived from photosynthesis taking place after ear emergence. The lamina is the only significent organ, though under certain conditions other organs like leaf sheaths, peduncles, and ears ace liaportant contributors of photosynthetic products especially during
the grain filling period.
Defoliation studies conducted by Klinok and Sim (1976) in oats indicated that the grain yiela decreased more with leaf lamins removal at paniele emergence then at anthesis. The perioi between panicie omergence and anthesis though only 5 days in their work, appeared to be an important one in terms of plant response ta leaf damage. They found that yield reductions resulting from dofoliation at panicle emergence were almost double those from the sawe treatment at the later stage. It was pointed out that mechanical demage to the leaves by hail, insecte or other agents or gevere leaf disease infection at the early heading stage could have drastic effects on grain field.

In rice, as in oate, there is a short perioi jetween panicle emergence and anthesis. A number of aiseases and peate are known to canse aevere leaf damage in riee, at this stage. Soiae of the diseases which are important in this respect are blast, helminthosporiose, bacterial blight, bheath blight, and sheath rot. The damage caused to rice Leaves by insect peste like noctuid cut worms, array worms, leaf folders, leaf rollers, and grass-hoppers is well. dooumoned.

The present study was undertaken to find out, whether the period between paniole emergence end anthesis in rice is important in terns of plant reaponse to leaf damage, as recorded in arta.

REVIEW OF LITERATURE

Since Taunota's (1959a, $1959 \mathrm{~b}, 1960,1962,1964$) pioneering work, in which he compared high and low yielaing rice varieties, conolderable attention has been paid to the relationship botween morpholozical characters and yielding ability. Donald (1963) described the morphological requirsment for wheat ideotype. The morphological characters of leaf, culm, tiller and panicle associated with high yielding potential of rice varietiee had been desoribed by Yoshide (1972).
onderstanding the phystological proceaces involved in grain produotion such as vegetative growth, formation of storage organs and grain Pilling helps deteraine the best combination of the above tinee factorg and suggest the improvesente that can be made to achieve a further increase in grain yield unier a given conaltion. The association between the relative photosynthetio activity of alfferent plant atructures ana grain prounctivity in cereal crope, pariticularly wheat (iritioum aestivilin. and barley (Hordeum valgare I_{4}) has been the subject of many investigations. Hxtensive revieus on this aspect had beon propared by Yobhiaa (1972), Austin and Jones (1974) and Thorne (1974).

5

The leaf lamina is the only gignificant organ of photobynthesis (zelitoh, 1971), though under certain conditione other organs like leaf shoaths, peameles, ana ears are important contributors of photosynthetic produots especially during the grain filling period. According to Yoshlda (1972) thick leaves are associated with more orect habits peraitting higher photosynthetic rate por unit arca. Short and small leaves ace associated with more erect hablits and help in the even distribution of leaves in a canopy. nrect leaves increase 'Sun lit' leaf surface area, thereby permitting more even diatribution of incidental light. The contribution of leaves to grain filling in cereals has been studied in great detail and it was found that varieties differ maricediy in leaf and other oharacters.

Leaf ares auration

In physiological stuaies of the evolution of wheat it has been shown that modern cuitivated variaties have been seleoted for larger leaf area and larger grain size. A high yielding seal dwarf wheat variety, has a high leaf photogynthetic rate, but shows a low reletive growth rate because of low leaf area ratio, (Binghain, 1967). Venicateswarlu (1976) working in paidy reported that the leaf detormined not only the degree of the plant's performance but also conditioned the level of unfilled spikelets.

Venkatoswarlu and raddulety (1976) observed that increasea grain number in paday could come mainly through two ways; (1) by increased number of panicles, and (ii) through the supply of more photosynthates to the spikelets. In any case, the realization is depentent on the effective finctional capacity of the leaf only.

The leaf area duration of a crop is a meabure of its ability to produce leaf area on unit area of land throughout its life and hence of its whole opportunity for assinilation (Watson, 1952). As sarly as 1929, Boonstra observed that four varteties of oats aiffered in the length of life of corresponding leaves and found some evidence of an essociation of long life with high gield. Williams and Rijven (1965) suggested that the varietal differences in crain yield are determinea by the combined effects of duration of photosynthetic activity, photosynthetic rate and potentiality for growth of the grain itself. The amount of photosynthesis in wheat depenals first on the size and duration of the photosynthetic systea and seconaly on its efficienoy (Geloant et al. , 1966). Reddy and Pyace lal (1976) reported that the leaf area duration was positively correlated with grain yield in triticale and wheat varieties.

Photosynthetic efficiency is found to decline with the age of the leaf. Saekl (1959) observed that each leaf showed a maximun rate of photobynthesis before it was fully expanded followed by a progressive decline in phascolue viriaiasinus and hagophyrug esonlentum. Hopkinson (1964) found that oach leaf incuouaber showed a maximun rate of photosynthesis before it was fully expanded followed by a progressive decline. Jew1ss and woledge (1967) noticed the progressive decline in apparont photosynthesis with inoreasing age of leaf in tall feacur and concluded that the fall in apparent photosynthesis with leaf age was aue to a fall in the rate of real photosynthesis.

The reports on the influence of the age of the leaf on transport of assimilates are conilicting. Motronosov and Bubenshchikova (1961) observed that the moveraent of assimilates into the condscting vessels of potato is greator in youns than in old Pully expanded leaves. Thrower (1962) on the other hand, reported that in soybean very yoping leaves obtain carbohydrates required for their growth from older leaves. Evidence presented by milthorope (1966) showed that antil a leaf is almost nature there will be iittle export of carbohydrates.

Hear orsentation

Watson and witts (1959) found that a cultivated variety of augar beet characterizea by erect leaves produced dry matter more rapidily than three wild species with more prostrate leaves and the emaller yield of the wild plente was attributed to less anfform distribution of light over their leaves. According to fonteith (1965) in sugar beet, sugaroane, kale and sub-terranean olover with a leaf area inder of above 5, light utiliaation is better when the leaves are erect in comparison with leaves which are prose trate. Buttrose and May (1965) emphaised the importance of the leaves in contributing assimilates to the grain of cereale varies with light conditions. Dunoan et al. (1967) predicted irom mathematical models that leaf angles less than 19° might inorease efficiency even more particularly when a high ini is present. The seai dwarf lines in rice that had more orect tlag leaves had higher grain yields, and this trait showed the largest disect effect on grain耳ieli (Chang and sagumay, 1970). Leaf angle has been olosely comrelated with nitrogen reaponce in rice, barley and wheat (Yoshida, 1972). .

Ghlorophyll contont

Accoraing to 3roughais (1960), production of ary matter by pasture and orop speciea is ultimately linatied

9

by the amount of ohlorophyll. Hunt and Cooper (1967) found that the differences among teaperate grass species in chlorophyll per unit leaf aree were closely associated with the rato of dry matter accmalation. Salisbury and Ross (1969) observed that there is little correlation between chlorophyll content and photosynthesis. The resultis obtained by Heddy and Pyare lal (1976) also showed poor oorrelation betwoen ohlorophyil content at different stages and grain yield in both triticale and wheat varieties, whereas Lalit (1976) noted that irrespective of stagen rioe varietied bhowad high oblorophyll content per unit area of land and this was eorrelated with thoir higher grain yield.

Grain Pilling Deriod

Davidson (1965) gtated that the photosyntheais taking place in the leat ance prior to ear emergence excerts a major influence on the potential grain size and ultimately influence the grein ficld in wheat, whereas leaf area followng ear erergence would be of major lmportance in grain filling. Thorne (1965) suggested that after anthesis the ary matter of the wheat grain was largely dorived from the producte of Co_{2} assicilation in the ear, the flag leaf mith ita aneath and peduncle. Welbank ot al. (1966) reported that wheat
varleties had grain yielde nearly proportional to their leaf area axations, primarily flas loaf area from anthesis pather than panicle eaergence during grain development. Phurata (1964), De Datte and Zarate (1970), reported that the yield of zioe has been correlated with solar radiation from 10 to 15 lays before Elowering until harvest, and it was. sregested that the grain yield is related to the amount of photosyntheass during these periode. Yoshlaa at al. (1972 b) reported that in paidiy the grain yield and LhI at heading are olosely comelated. According to Ready and Pyare lal (1976) the $a n y$ matien in wheat after heading was better assogiated with grain yteld than the ary matter before neading.

Heaf photosynthes1.

Slaty per cont of the dry matter in the wheat grain 1s aerived from the photobynthesis in the flag leaf laminae, sheath and peduncle and 17 per cent from the porte of shoot below the base of the flag Leaf sheath (Boonstra, 1937). Fanner and Daynard (1967) reported the great potential contribution of the midale leaves of a corn canopy to grain Field. Acoording to Klinck and Sin (1976) in wheat the contribution of the leal inmediately below the flat leaf to grain filling was nowe than one thire of that of the flag lear.

11

Current photosynthetic contribution was found to be the major determinant of yield in rice, though the late duration variotios draw comparatively more photosynthates from the regerve oarbohydrates (Venkateswarlu, 1977).

Whe upper tiree leaves in rice export their assiaiLation products to the grains during the ripening periou (Tanaka, 1958 b). Wardlaw (1963) found that the contribution of the lower leaves in rice is more important than that in the other cereals. Tripatiai and Purohit (1971) suggested that the first 3-4 leavea at the top are most important in dry matter production in rice. It was pointed out by Yoshida (1972) that the second (penultimate) and third leaves are relatively important in rice.

Sinks and sompoes

Bonnemain (1965) pointed out that the lower leaves act as the source of asaimilates for roots, whereas the upper leaves perform this function for the shoot apex, and leaves in an intermediete position may supply assimilates in either or both directions. Lupton (1966) reported that in wheat the translocation of carbohydrates from the glumes and flag leaf was almost entirely towards the grain whereas the translocation from the and or the 3 ri leaves was partily towards the grain and partly downwards with evidence of vanietal aifforences.

Eas photobynthegis

Bar photosynthesid accounted for 34 per cent of the grain yield in cereals (Boongtra, 1937). Archbold (1942) exphasised the importance of photosynthegis in the oar as a feator deteraining yield in barley. Removing ams of barley decreased grain waight by 10 per cent (watson, 1952). Aocoraing to Buttrose (1962) ear photosynthesis in cereals contributed 50 per cent to grain yield. Ehotosynthotic activity of the inilorescence of cereals contributes 30 per oent or more towsud grain dry weight at harrest (Thorne and Gillian, 1963). Jennings and Shibloe (1963) found the contribution of piotosyntiater by spike in oats townde grain Pilling was more than that of other plant parts after ear energeace. Contribution of ear photosynthesis to the grain ranged fron 10 to 49 per cent for wheat, and 26 to 76 per cent. for barley. In rice and corn compared With the leaf blades, net photosynthesis of ear and leaf sheath was very low. The contribution of ear photosynthesis to the grain ranged froa 3 to 23 per cent for rice (Yoshida, 1972).

Defollation etuaiea

To estimate the over all contribution of aifferent plant parts to grein production, various techniques have been
devised: ear and leaf shading, leaf removal, kernel competition, and the chort or long tern measurenent of CO_{2} exchange rate. The combination of the first two techniques has been most extenalvely used because they are the easiost to use. Such estimation, however, is subject to lamge varlation due to such somees as the amount of the stored carbohydrate, timing of defollation treatmont, and panicle size. Therefore, a relatively high yield for defoliated plant does not necessarizy mean that the leaves contribute little to grain filling. On the other hand, a low yield indicates that photosynthesis by leaves oontributes much to the grain gield (Yoshida, 1972).

Miller at al. (1943) found in eight vaileties of wheat a mean redaction in jield of only 10.5 por cent for complete defoliation at the ligule, one week after anthesis and 4.3 per cont yield reduction when half of every leaf was renoved. Sheding and defoliation erperiment Quinlan and Sagar (1962) showed that the upper leaves, sten, and ear were responsible for supporting 30 per cent to 90 per cent of the grain growth in wheat. Lucas and Asana (1963) reported that removal of the fifth and sixth leaves reduced the grain yield in wheat by about 5 per cent. They found that reduction in yield due to defoliation was the result of reductions in both grain number and 1000 grain weight. Bagga and Asana (1972)
observed that the excleion of the laminae of the fifth (penultimate) and sixth (Slag) leaves aftor anthesis on the shoots of 3 cultivars of wheat (Triticun eestivam) depressed the grain yield through grain number per ear. The results obtained by walpole and Morgen (1974) showed that severe deroliations reduced grain weight in wheat. Klincts and Sin (1976) conducted leai defoliation studies in oats and found that yield reductions resulting from defoliation at panicle emergence werealmost double those from similar treatments at the later stage.

Defoliation stuates in rice
Takeda and Mruta (1956) found that the removal of the seeond to fourth Leaves' in rice decreased the grain yield much more than removing the rlag leaf and they also observed that the complete defollation at flowering decreased the grain weight to 55 per cent. riatsushima (1957) reported that complete desoliation in rice at flowering deoreased the ripening percentage to 36 per cent of the control. According to Owen (1968) the complete defollation in paddy at flowering deoreasea the grain weight 31 to 83 per cent. The semoval of halt the flag. leof at panicle emergence reduced the grain yield in paddy by 14 per cent, grain number by 5 per cent, and increased sterility by 9 per cent whereas complete semoval of flag leaf reduced grain yield

15

by 19 per cent, grain number by 13 por cont, and inoreased sterility by 13.2 per cont (ripathi and furohit, 1971). Sikder and Das Gupta (1976) conaucted defoliation studies at panicle emorgence in paddy and found 20.9 per cent contribution froi the top two leaves to grain filling.

MATERIALS AND METHODS

The presont staly was conducted in the Division of Agrioultural Botany, College of Agrioulture, Vellayani, during the year 1977-78.
A. MATGRTALS

Waterials used in the present investigation consisted of three varieties oi rice (Oryza gativa I.):

1. Jyothi, a thort duration dwarf ingroved variety of about 105 days duration. The seeds were oupplied oy the Instructional Fara, Colloge of Agrioulture, Vellayani.
2. Ptb.10, a short dusation tall improved local veriety of about 100 dags duration. The seeds were obtained from Central Rice Regearch Station, Pattambi.
3. Jaya, a medium duration dwari improved variety of about 125 days duration. The seed material was supplied by the Governnent Soed Farm, Uloow.
B. MEIHODS

Defoliation was adopted as the method for assessing the contribution of leavea to grain filling:

A split plot experiment was laid out in Randomised Block Design with three replications and with three varieties and two stages as major treatments and defoliations as minor

FIG. 1.
LAY OUT - SPLIT PLOT EXPERIMENT IN RANDOMISED BLOCK DESIGN

treatments (Flge I), the details of wheh are given below:

Blook size	$-10.6 \mathrm{~m} \times 6.9 \mathrm{~m}$
Maln plot sige	$-5.4 \mathrm{~m} \times 1.1 \mathrm{~m}$
Sab plot gize	$-1.1 \mathrm{~m} \times 60 \mathrm{an}$

A aub plot consisted of 3 grose rows, each containing 22 plants. iach treatment comprised of 20 plents in the central row, bordered on each side by an untreated guard zow.

Major treatments
The main plots comprised of six combinations of thee varteties and two stages of development at which defoliation was effected.

Vamiecter
Jyothi $-V_{1}$
peb. $10-V_{2}$
Jaya $-V_{3}$

Stages of devcloment

1. Panicle amergence (Mip emergence) - s_{γ}
2. Anthesie - Right days after paniclo
enorgence (mid anthesis) - s_{2}
Gombinatione or major treatments
3. Defollation at panicle eacrgence in Jyothi $-V_{1} S_{1}$
4. Deroliation at anthesis in Jyothi
$-V_{1} S_{2}$

Fanctional Leaves

Jaya had five functional leaves and Jyothi and Ptb. 10 only four functional leaves, each at panicle amergence. Exeept when completely defoliated Jaya had an adaitional leaf in all treatments when compared with Jyothi and ptb, 10.

Unfiorm sized geads were hand som on 13th April 1977, with a epacing of 20 cm between rows, and 5 cm within rows at
the rate of 3 seede per hole. The population was reduced to one plant per hole ten days after sowing. To ensure undrornity, all plants were reduced to the main culm by oare filly removing new tillerg, as and when they appeared, without deuaging the main plant.
fanuring, imfigation and plant protection were adopted acoording to standard practices to ensure healthy growth of plante.

Observationc

Observations on the following aspects were recosded.

1. Leaf area of each functional leaf
2. Leaf angle (leaf openess) of oach leaf at panicle emergence
3. Chlorophyll content of leaves
4. Wumber of filized geains per plant
5. Wumber of unfiliea grains per plant
6. 1000 grain weight in each treatment (dry weight)
7. Total yiold per plant (dry weight of filled graine and partially filled grains and chaft)
8. Heaf area detormination

A set of ten loaves in each oatogory was removed from border plants. Uatline of each leaf was traced on eraph paper and the actual leof area was found ost. Care was taken to apoid folding of the leaves whlle banding thea. The leaves were then antea to congtant weight in an air oven at $100^{\circ} \mathrm{C}$ to $105^{\circ} \mathrm{C}$ and ary weight of each leaf was recordea. A Innear regression
equation was developed for each leaf from its actual leaf area and dry welght, to obtain the lear area.

Variety	Stage of defoliation	Leaf lamina	Regression equation
Jyothi	Panicle omergence	Plag leaf	y00.0391x + 12.4695
		penultimate leaf	$y=0.104 x+12.1320$
		Third leaf	$y=0.1039 x+13.2530$
		Fourth leaf	$y=0.0 .916 x+17.1766$
	Anthesis	Plag leaf	$y=0.0939 x+17.9609$
		penultimate leat	$y=0.0966 x+16.9033$
		Third leat	y $00.0703 x+21.4142$
		Fourth 1eaf	y $=0.0392 x+25.5756$
Ptb. 10	Panicle emergonoe	Flag leat	$y=0.1516 x+6.4966$
		Penultimato leaf	$y=0.0766 x+19.5700$
		Thira leap	y=0.0705x +22.9733
		Fourth leaf	ym0.0669x +28.0133
	Anthesis	Plag Leat	y $\mathbf{0} 0.1003 \mathrm{x}+24.0507$
		penultimate lear	$y=0.1035 x+19.6214$
		Thimd lear	$y=0.0972 x+18.1277$
,		Pourth lear	$y=0.05 x+26.6300$
Jaga	Panicle emergence	plag leat	$y=0.095 x+7.3100$
		Penultimate leaf	$\mathrm{y}=0.1087 \mathrm{x}+12.7350$
		Thira lear	y=0.104x + 12.4278
		pourth leaf	$y=0.0325 x+25.2500$
		Firth leat	$y=0.1007 x+22.1934$
	Anthesis	Flag lear	$y=0.091 x+16.4469$
		Penultimate lear	ym0.101x + 19.0342
		maird lear	y=0.0927x +18.6565
		Pourth leaf	y=0;0.101x +26.2050
		Fifth laat	y=0.0355x + 26.3934

21

2. Measymement of leaf angle (Teaf openess)

The nethod followed by Yoshida at al. (1969) was adopted.

Teaf angles were measured in ten plants of each varicty, at panicle eqergency and their mean values were recorded. A vertical board covered with paper was placed behind the main cula, which acted as the vertical axis. With the leaves drooping normally fros the axis, the positions of the tip and collar of each leaf were marked on the paper: A line between the two points were drawn and the angle between the line and the vertical axis was measured uith a protractor. The leaf angle was expressed as the angle of inclination from the vertical line.

3. Batermination of chlorophyll content

The ohlorophyll content of the different leaves at panicle omergence and anthesis wore estimated by following the procedure adopted by arnon (1959).

After recording the fresh weight of the leaf 1 gn of Presh leaf tissue was taken and homogenised with 20 ml of 80\% acetone, and centrifixged at 3000 mpa for 5 minutes. Supernatant was separated and 10 ml of 90% acetone was added to the pellet and once again centrifuged. This was repeated till the pellet beceme white. All the supernatant was pooled and made to a sinal volume of 50 ml . The optical Density (00)

22

of the bare was read at 645 mj and $663 \mathrm{~m} / \mathrm{a}$ and the ohlorophyll content was celculated as per the formula: Ohloroplyll content (ag/al) $=(0.0202 \times 01.645)+$

$$
(0.00302 \times 00.663)
$$

fotal chlorophyll content in the different leaves wore then arrived at. 4. Separation of pilled grains and chafe

The procedure followed by Vonkatoowarlid (1976) was adopted for this parpose.

The graine were put in sodiun chloride solution having a epecific gravity of 1.06 and the grains which submerged were considered to be fully filled graing. The rest of the grains whioh floated were collected and manually separated as partially filled graing, and chaft. The grains aboge the floating ones that touched hard to the finger were taken as partially filled graing and the rest as chete, Ihe partially rilled grains were added to fully fillod grains to obtain filled grains. Filled grains and ohaff were dried in an oven for 43 howrs at $100^{\circ} \mathrm{C}$ to $105^{\circ} \mathrm{C}$ and their try wighte recorded. 1000 grain weight was found out from the total dry weight of filled graing and tho number of fillod groins.

23

5 Interaction eficets

The interaction effects in derolistion treatmenta were analybed by adopting Yate's method (Kempthorne, 1952). 6. Anslyais op deta

The data obtained were tabulated and analysed.

RESULTS

RESTITS

The results of this stualy are presented in this chapter.

HEAP AREA
The analysis of variance table reveals that the leaf area defoliated alfered aignticantly between varieties and stages (Appendix I).

As shown in the table I marimum finotional leaf area was met with in Jaya, whoh had an adaitional funational leaf, when compared with Jyothi and Ptb.10, having fow functional leaves each. Jaya hed a total leaf area of 175.1 sq,om at panicle ongrgence, ani 183.74 sq . on at anthesis. It was followed by ptb. 10 with a leaf area of $152.36 \mathrm{aq.on}$ at panicle emorgence, and 159.09 aq. cm at anthesis and its Leaf area was congiderably hagher than that of Jyothi which haid a lat area of $10 G .4 \mathrm{sq} . \mathrm{cm}$ at paniole emergence ani 113.87 aq. on at antheais. The increase in leaf area of flag leaf after paniolo emergence was more striking than that of penultimate leat. Leaf area of the lower leaves dia not register notable inoreabes aftor paniole emergonce. Ptb. 10 had the largest Plag leaf and Jjothi had the amallest fleg leaf at both panicle omergenoe and anthesis. In all the varieties, the area of the aifferent leaves progrossively

25

Table I A. Mean leaf area of aifferent leaves at panicle energence and anthesis (in sq.ea).

Leaf	Jyothi		Ptb. 10		Jaya	
	Panicle emergence	Anthesis	mandele oncrsence	Anthesis	Eanicle gacr- gence	Anthegia
Plag leai	22.25	25.90	32.30	33.19	25.52	30.13
$\begin{aligned} & \text { penultinate } \\ & \text { leas } \end{aligned}$	24.81	26.90	36.51	39.38	33.78	35.06
mhira lear	29.97	30.77	42.32	40.63	36.37	38.00
Fourth leaf	29.37	30.30	41.73	41.90	39.31	39.99
Fifth leaf	*	*	\#	*	39.62	40.56
rotal leaf area	106.40	113.87	152.96	159.09	175.10	193.74

* Non functional

Table 1 B. Percentage reduction in leas area due to defoliation treatments

Leen semoved	S_{1}	$s_{2}^{V_{1}}$	$\begin{aligned} & \text { itean of } \\ & \mathrm{S}_{1} \text { E } \mathrm{S}_{2} \\ & \hline \end{aligned}$	S_{1}	$\begin{gathered} V_{2} \\ S_{2} \end{gathered}$	$\begin{aligned} & \text { hean of } \\ & S_{1} \text { \& } S_{2} \\ & \hline \end{aligned}$	S_{1}	${ }^{3} \mathrm{~S}_{2}$	$\begin{aligned} & \text { gean of } \\ & S_{1} \quad \mathrm{~S}_{2} \end{aligned}$
D+	0	0	0	0	0	0	0	0	0
F	20.91	22.82	21.36	21.13	24.00	22.56	14.57	16.40	15.43
P	23.41	23.62	23.51	23.39	24.12	24.00	19.29	19.08	19.18
$\mathrm{F}+\mathrm{P}$	44.23	46.37	45.30	45.02	48.12	46.57	33.37	35.43	34.67
P*	28.17	27.02	27.59	27.59	25.54	26.61	20.77	20.68	20.72
P $+{ }^{1}$	49.08	49.77	49.42	49.32	49.54	49.18	35.35	37.08	36.21
$\mathrm{Pr} \mathrm{P}^{\prime}$	51.48	50.65	51.06	51.57	49.66	50.61	40.06	39.76	39.91
$E+P+{ }^{\prime \prime}$	72.40	73.39	72.89	72.70	73.66	73.14	54.64	56.16	55.40
D-	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
O.D.	0.15	0.14		0.11	0.10		0.09	0.08	

27

Table I C. Mean leaf arca (in ag.em) of two atages.

Leaf	Jyothi	Ptb.10	Jaya
Mleg leaf	24.07	35.24	27.82
Ponultimate leaf	25.35	37.44	34.42
Thira leaf	30.37	41.34	37.18
Fourth leaf	29.33	41.81	39.90
Fifth leaf	$*$	$*$	40.09
Total Ieas area	110.13	155.97	179.42

- Moneunctional

Table I D. Mean leaf area (in aq. Ca) of all varieties.

Leaf	Panicle energence	Anthesis
Hlag leaf	26.69	31.40
Penultinate leaf	31.70	33.44
Mhira leaf	36.22	36.46
Fourth leaf	36.97	37.39
Potal leaf area	144.79	152.23

29

accreased irom the lower most leaf to the upper most leaf vig., the flag leaf.

Leat area reduotion due to dofoliation

The percentage of reduction in leaf area due to aifferent defoliation treatments is presented in table I B_{0} In all the varieties leaf axea dofoliated aifferca signifloantly betweon treatments in both stages. The poreentage of leaf area lost on the removal of flag lenp, penultimate leat and the third leaf were 72.39 in Jyothi and 73.18 in Ptb. 10 and 55.4 in Jaya. graibion of two leaves in combination reducea lear area from 45.3 to 51.06 per cent in Jyothi, from 43.12 to 49.66 per cent in Ptb. 10 and 34.67 to 39.91 par cent in Jaya. The flag lear removal resulted in the least reduotion in Leaf area in all varieties. '

Mean leat area of two stages

The results (lable I o) ohow that Jaya had the maxima functional leaf area with an area of 179.42 al.om, followed by Pth. 10 with 155.97 ad.em and Jyothi 110.13 sc.om. Anong varieties Ptb, 10 recordes the highost leaf area for individual leaves. It was Lollowed by Jaya and Jyothi respectively.

thean leaf area of all variecier

It is seen from table $I \mathbb{y}$ that the flag leaf and the penultimate leaf recorted inoreases in area after panicle

Table It. Teaf angle at paniale amergence.

Vamiety	Hear	Angla or inclination
Jaya	Flag Leaf	3°
	Penultimate leax	$9{ }^{\circ}$
	Mhind leai	11°
	Fourth leaf	13°
	Tifth leaf	18°
Jyothi	Flas Leal	10°
	Ponultimate Leal	21°
	Shlea lear	17°
	Wometh leas	32°
P40. 10	Flag leaf	94°
	Penultimate leat	71°
	third leaf	55°
	Pourtin lear	69°

Table III. Malorophyll content

Variety	Stage	Tegs	Ohlorophyll. in ag per gia of frosh 1aaf	Sotal chloro- phyy 11 In mg por leaf
Jeya	Panicle omergence	Plag lear	2.199	0.080
		Penultinate	,	
		1eaf	2.173	1.096
		Third leat	1.766	0.927
		Fourth lear	1.434	0.609
		Bifth leas	1.390	0.596
	Anthesis	Mlag leas	2.892	1.446
		Penultimate		
		lear	2.004	1.102
		Third leaf	1.562	0.359
		Fourth leaf	1.231	0.492
		Pieth leas	4.139	0.494
Jyothi	panicle emergence	Flag leaf	2.050	0.854
		Penalthaze		
		leas	2.022	1.104
		mhind leas	1.659	1.006
		Fourth Leas	1.322	0.739
	Anthesis	Plag lear	2.350	0.302
		Penultimate		
		Ieas	2.017	1.122
		Ihtrd leaf	1.512	0.604
		Borsth leax	1.091	0.422

Table III continued

Variety	Stage	Leax	Chlorophyll in tig per gat of treah leaf	Total chloro- phyll in ms per 1eaf
2tb. 10	Panicle emergence	Plag leaf penultimate	2.010	0.854
		leaf	1.920	1.104
		Thira lear	1.610	1.006
		Fourth leaf	1.477	0.739
	Anthesis	Flag leaf	2.280	1.083
		Penultimate		
		leap	1.903	1.149
		Third leaf	1.325	0.823
		Yourth leas	1.317	0.724

emergence. The growth of the flag leaf was more marked than that of the pennilimate leaf.

Lear Angra

The average leaf angles of various leavoe at panicle emergence are presented in table. II. It reveals the vertical orientation of the leaves of Jaya. The leaves of Ptb. 10 wore drooping and produced a wide angle. Jyothi possersed eroot leavos though they made a wider angle than Jaya. The Ilag leaves of Jaya and Jyothl were more erect than their lower leaves. In contrast the flag leaf in Ptb. 10 made the largest angle when compared with the lower leaves. GHIOROPHYLL CONLEMS

The chlorophyll oontent per gran of fresh weight of leaf (Table XII) was found to be the highest in Jaya, Lollowed by Jyothi and Rtb.10, reapeotively. However the ohlorophyll content per leat differed between varieties and leaves Aue to differences in laaf area. Onlorophyll content in the flag leaf registored an inorease after panicle emergence. In all the other leaves olazorophyll content was found to decrease after panicle erergence. Flag leaf registered the highost ohlorophyll content per gram of leat and the chlorophyli oontents in different leaves were found to vary in the following order, viz., flag leaf> penultimate leaf> third leaf $>$ fourth leaf $>$ fifth leaf (Juya only).

Sable IT A. Peroentacc reduction in yield

Treatraent	W_{1}		V_{2}		V_{3}	
	S1.	8_{2}	β_{1}	S_{2}	S_{1}	S_{2}
D\%	0	0	0	0	0	0
F	13.76	8.32	22.32	11.23	17.24	9.20
p	14.30	9.61	13925	11.40	16.61	8.16
$2+2$	26.22	15.55	29.25	15.41	25.09	16.99
$p:$	9.77	5.94	. 6.05	3.26	13.00	5.12
$\underline{T}+{ }^{\text {d }}$	21.79	12.96	23.83	15.91	24.46	13.28
$\mathrm{P}+\mathrm{P}^{\prime}$	27.03	16.95	30.01	16.17	27.52	16.32
$\mathrm{F}+\mathrm{P}+\mathrm{PO}$	35.65	19.98	35.31	24.69	35.92	21.92
D	39.73	22.35	39.60	26.57	37.55	24.57
C.D.	1.90	1.81	2.11	2.10	1.51	1.59

Yield differed significantly in all the three varieties as acreant of dofoliation, effectea at panicle emergence as well as at anthesis. The interaction between variety and atage and that between minor and major treatments were signiLicant (Appendix II).

percentage reduetion in yiela

table if a shows por cont reduotion in yiela in all the varietien, on defoliation. Gomplete defoliation reauced yiold by 39.73 per cent and 22.35 per cent in Jyothi, 39.6 per cent and 26.5 per cent in Ptb .10 and 37.55 per cent and 24.57 per cent in Jaya at paniole energenco and anthesis respectively. Yiela reductions were graato when the number of leaven deroliated was more, one leas< two leaves < three leaves < complete defoliation, Defoliation of thas leaf and peniltmate leat showed afnor differonces in effect but thesa were not Eignificant. Plas leaf and penultimate loaf when removed alone resulted in greater and significant yield redictions when coapared to the defoliation of the third leat.

Variotal aifferences

. The mean yield of the two stages of dofoliation in the different variatieg is given in table IV 3. Significant differonces in yield were found to exist among the three varletiea, Jaya giving the higheat yield followed by Jyothi

Table IV B. Yiela (in gm) and percentage of reduction (Average of two stages).

Treatment	Jyothi		Ptb. 10		Jeya	
	Yield	Percent reduction	Yield	Per cent reduction	Yield	per cent reduction
T	2.681	10.56	2.206	16.79	3.123	13.32
P	2.653.	14.60	2.253	14.82	3.153	12.49
$\mathrm{P}+\mathrm{P}$	2.386	20.49	2.073	21.30	2.841	21.15
pt	2.776	7.50	2.523	4.64	3.273	9.16
$F^{+\prime}$	2.491	16.99	2.125	19.34	2.918	19.01
P+P ${ }^{1}$	2.353	21.59	2.040	23.05	2.306	22.12
$\mathrm{P}+\mathrm{P}+\mathrm{Pr}$	2.180	27.36	1.856	29.99	2.555	29.09
D-	2.093	30.59	1.775	33.04	2.473	31.22

Yield in No defoliation (Control)
Jyothi -3.001
Ptb. $10-2.651$
Jaya -3.603.
C.D. $\quad 0.064$

Table IV G. Viold (in gm) and percentage of reduction (Average of all varietiee).

mreatraent	Panicle emergence		Anthesis	
	. Yield	per cent reduction	Yield	per cent redsetion
F	2.547	17.60	2.793	9.49
$\underline{2}$	2.535	16.37	2.791	9.56
$\mathrm{F}+\mathrm{P}$	2.276	26.37	2.591	46.04
P^{\prime}	2.782	10.00	2.936	4.86
$\mathrm{F}+\mathrm{P}^{\prime}$	2.366	23.46	2.656	13.93
$\mathrm{P}+\mathrm{pr}$	2.222	23.11	2.577	16.49
$\mathrm{Fr}+\mathrm{P}^{\prime}$	1.983	35.69	2.405	22.07
D-	1.891	33.92	2.333	24.40

Yield in No defoliation (outeot)
Pantole enerefuce $=3.091$
Anthesis - 3.036
C.D. $=0.074$
and ptb. 10 reapectivaly. Increasing the number of leaves defoliatea was accompaniod by a progressive decrease in yield. The affierence in pield found on the removal of three leaves when oompared with complete defoliation was aignisicant in the short duration varieties, but not in Joya. Removal of three leaves led to significantly lower yielde When compared to the removal of two leaves. Significant diferences ald not exist between flog leai removal and penultimate leaf renovel. Eut their offect differea significantly frois that of the third leaf.

Stage of deroliation and viela

Average yield of all the three varieties on lefoliation at panicle omergenco and anthesis is given in table iv 0. Enhancing the severity of defoliation pacultad in progressive reductions in yield at both stages. Defoliation at panicle energence had a more pronounced adverse effect on yigld than defoliation at anthesis. The yield rediaction due to oomplete defoliation at peniole emorgence was one and a helf times that reconded on defoliation at anthesis. The adverse effeot on jield due to the various depoliation treatments were in the following oxden vise, complete defoliation> defoliation of two leaves $>$ defoliation of one leaf, the differencee between them being significant.

Table IV D. Yield in gin (Average of defoliation treatments including control).

Stage of depoliation	Jyothi	Stb.10	Jaya
Danicle emergence	2.322	2.045	2.382
Anthegis	2.703	2.291	3.062

$$
0.3 .=0.043
$$

Table IV De Intoreotion of defoliation treatments on yield (Percentage).

	Jrothi		Ptb. 10		Jaya	
	S_{1}	S_{2}	s_{1}	S_{2}	S_{1}	s_{2}
EXP	+1.40	+1.59	$+6.20$	+3.01	+1.38	$+0.74$
ExP'	+1.12	+1.04	+2.27	-1.65	+1.49	+1.08
EXP'	-1.06	-0.29	-2.80	- 4.50	-0.65	-0.97
EXPXP'	+0.27	+0.39	$+0.03$	-0.56	+0.96	+0.54

hean yield of all treatments

Table If D provides the averase yield of all treatmonts Ancluding control. It wo found earlier that differencos in yield exiated anong varletieg, and thet defoliation effected at paniele amergenoe and antheate led to rodurtiong in yield. Data reveals that yield reduction on defoliation at paniole omergence was aignipicantly higher than that at anthemis. Interaction or aefoliation treatmento on yiole

Interaction cefect (Rabla IV B) on the poavol of the apper three leaves was positive at both stages, in all the verieties with one gxception in Ptin. 10 in which it was negative at anthesis. The interaction effect oxhibited by penutimete leax together with the thind leaf was negative in all the varicties. The removal of the plag leaf with the third leaf produed positive intoraction in all the varieties at both gitageg, excopt in pto. 10 in winion there mas nogative internction at antheais. Interaction effect of flag leaf and penatitato lear vas minisomity pomtive.

MUWBER OR UNTIGED GRATHS PBR PTAR

Anclyein of variance of transformed valued (Appendix itr) peveals thet defollation load to algnificant differenoer in the number of unililed greins produced, between gtagen and varieties. Gtage x vamiety, and way x minor treatmont interactiona were significant.

Table V A. Percentage reduction in nuber of filled grains

mreatmont	V_{1}		V_{2}		V_{3}	
	S_{1}	S_{2}	S_{1}	S_{2}	S_{1}	S_{2}
D+	0	0	0	0	0	0
F	12.23	0.01	22.94	5.26	15.63	3.41
P	15.57	1.17	17.94	3.22	17.97	4.99
$\mathrm{P}+\mathrm{P}$	22.46	3.22	27.94	9.36	25.57	10.76
P'	9.98	0.01	6.76	3.51	12.65	1.84
$\mathrm{P}+\mathrm{P}^{\text {+ }}$	18.56	1.17	23.53	12.57	22.33	7.35
$\mathrm{P}+\mathrm{P}^{\prime}$	20.36	2.05	30.00	10.23	26.05	10.76
$\mathrm{P}+\mathrm{P}^{+} \mathrm{P}^{\prime}$	31.44	3.80	32.65	15.20	33.01	13.12
D*	32.93	6.44	34.41	. 15.21	34.24	16.29
C.D.	1.90	1.85	1.90	1.35	1.57	1.66

The number of tilled grains that developed on 3efoliation affered aignipicantly betwoen stages and varLetiog. Stage x variety and major x minow treatment intoractions weye also aignificant (Appendix IV). Percontage reduction in numer of fillod giaine

Table P A provides the per eent roduction in the number of filled grains per plant, on defoliation. Rumber of fillou grains was reduced as a result of defoliation, the reductiong being more pronounced when the leaf aroa renoved was greater and were in the following order, one leaf $<$ two leaves $<$ three leaves $<$ oomplete defoliation. The thind Leaf bhowed the least influence on filled grain numbor. She oontribution of the flas leaf and ponutinate leaf wore similar gonerally whereas their individual contributions wore groater than that of the thisd loaf.

Verieta? differencos

The mean ranber of silled gratne at the two stacea
 aignificant differonce in the nuber of filled greine between the two short auration verietios, whereas in Jaya the number of filled greins was gignificantly blgher. the numbr of filled graine that pormed on oouplete defoliation differed significantly between varieties. All the treataents

Table V B. Wumber of fillod gratni and percentage of reauction (Average of two stages).

Ireatment	Jyothi		Ptb. 10		Jaya	
	Nanber 09 filled graine	per cent reduotion	Inamber of fllled gradne	Per cent reduction	Number of filled grains	Per oent reduction
B	106	6.19	93	14.04	118	9.92
P	103	8.85	99	13.16	116	11.45
$\mathrm{F}+\mathrm{P}$	93	13.27	92	19.30	109	17.55
P'	109	4.42	103	5.26	121	7.63
F+PI	101	10.62	93	18.42	111	15.27
$P+P^{\prime}$	100	11.50	90	21.05	106	19.08
$\mathrm{P}+\mathrm{P}+\mathrm{Pr}$	93	17.70	86	24.56	100	23.66
D	91	20.35	86	24.56	97	25.95

Numbor of filled grains in wo defoliation (Control)
Jyothi - 113
Ptb. 10 - 114
Jaya - 131
C.D. $\quad 4.099$

Table V. Fumber of iilled grains and percentege of zeduction (Average of all varietieg).

Treatment	Paniclo emergence		Anthesis	
	Number of fillad geains	$\begin{aligned} & \text { Pex cont } \\ & \text { reduotion } \end{aligned}$	$\begin{aligned} & \text { Wumber of } \\ & \text { filled } \\ & \text { graine } \end{aligned}$	Par cent reduction
F	99	17.50	115	. 2.54
P	93	18.33	116	2.23
$\mathrm{P}+\mathrm{P}$	90	25.00	109	7.63
P'	103	10.00	117	0.35
$F+{ }^{1}$	94	21.67	110	6.78
$P+P^{t}$	99	25.83	109	7.63
$P+P+P^{\prime}$	81	32.50	106	10.17
D-	79	34.17	103	12.71

Wumber of isiled grains in no defoliation (Control)

Panicle earrgenoe	$=120$
Anthesis	$=113$

C.D. $=3.347$
were found to reduce grain number aignificantig in all varieties. Within the variety there was no significant difference between grain number that formed on complete defollation and that on reaoval of the upper three leavos. Differences in offect between the treatments in which two leaves were removed in combination were not significant except in Jaya in whioh significant differences existed between the combinations of peniltimate leaf with third leaf and flag leaf with third leaf. Among individual leaves, there was no significant difference botween the effeots of flag leaf and penultimate leaf in all the varieties; The thira leaf when removed resultea in the lowest reduction in grain number.

Stage of defoliation and grain nurnber

Hoan filled grain number of all the three varieties on tefoliation at paniole emergence and anthesis is given in table C .

It was noted that deqoliation at panicle emergence caused a marked reduotion in number of filled grains, when compared to that at anthesis. The reduction in the number of filled gains resulting trom complete defoliation at panicle emergenoe was nearky three times that observed on defoliation at anthesis. The number of filled greing formed on defoliation showed a tendency to decrease as the number of leaves renoved increased. There wes no bignificant differenee

Table V D. Nuber of filled grains (averago of defoliation treatments including control).

Stage of defoliation	Jyothi	Itb.10	Jaya
Peniele emergence	91	39	107
Antheois	112	105	117

0.D. 1.932
botween the reduction in number of filled grains that resulted by complete defoliation and the defoliation of the upper throe leaves, at panicle eaergence as woll as anthesis. balike that at anthesie, the removal of two leaves at panicle emergence rosilted in significant differences between the combinations. Among different leaved the flag leaf and penultimate were found to cause greater reductions in filled grain number compared to that of the third leaf on defoliation. The offeots realiting from romoval of either flag leaf or penulimate leaz were not aignificantly different. Mean inlled grain number of all treatmento

Table ZV provides the mean number of filled grains of all treatments incluaing control. It was founa earlier that dofoliation at panicie elaergence ani antheals led to reductions in grain number. It is seen from this table that defoliation at panicle exergence lea to a greater reduction In filled grain number when compared to thet at anthesis. This difference was statiotically significant in all the varieties.

1000 GHATN WETGET (DEY GETMIT)
Analysis of variance (Appenaix V) shows that 1000 grain weight differea aignificantly between stages and varieties as a result of defoliation. The interaction between variety

Table VI A. Percentage reduotion in 1000 grain weight.

Treatment	V_{1}		V_{2}		V_{3}	
	S_{1}	s_{2}	S_{1}	s_{2}	S_{1}	S_{2}
D.	0	0	0	0	0	0
F	3.21	9.54	1.64	7.21	3.19	7.35
P	4.57	9.27	2.26	8.76	1.52	4.92
F+ ${ }^{\text {P }}$	7.59	13.45	2.26	10.30	6.34	10.65.
p	1.11	7.40	0.40	0.62	0.99	4.23
P+P'	5.34	12.70	2.72	6.71	5.80	10.02
PrP'	9.86	16.04	5.17	8.99	5.49	9.76
$\mathrm{P}+\mathrm{P}+\mathrm{p}$	12.65	18.67	10.26	14.63	10.10	15.05
D-	15.20	20.09	10.57	18.09	11.03	15.21
O.D.	3.41	3.32	3.35	3.86	3.28	3.28

49

and stage was bignificant. rajor $\%$ ainor treatment interaction was also significant.

Porcontego reduction in 1000 grein welght
The table VIA reveals that defoliation tends to decrease 1000 grain weight. Comparison of the iniluence of different treataente on 1000 grain weight showed that complete defoliation was the nont effective in reducing 1000 grain weight followed by reaoval of three leavos, two leaves and aingle leaf rospeotively. The diferonces betwoen thora were not algnificant, However, significant difforencee were observed when leaf lautink removed were mambedy different from each other in area.

Yarlatal differenoes

The mean 1000 grain weight of the two atages of defoliation in the three varieties is presentei in table VIs. The reduction in 1000 grain wesght dxe to dofollation diffored signifscantly between vapieties. Jaya recorded the highest 1000 grain weight followed by Jyothi and pto. 10 tegpectively. In all varietiog, the highoat reauction in 1000 grain weight was caused by complete defoliation which was followed by the defoliation of tirce leaves, two leaver and one leaf respectively. Plag leaf removal causea gignt;icant differences in 1000 grain woight when compared with penultinate leaf,

50

Table VI B. 1000 grain weight (in ga) and percentage of reduction (Average of two stages).

Preatment	Jyothi		Ptb. 10		Jaye	
	$\begin{aligned} & 1000 \\ & \text { grain } \\ & \text { weight } \end{aligned}$	Per cent seduction	$\begin{aligned} & 1000 \\ & \text { grain } \\ & \text { weight } \end{aligned}$	per cent reduction	1000 Erain	per cent reduction
F	24.768	6.42	22.112	4.42	25.818	5.27
P	25.020	5.47	21.998	4.82	26.223	3.77
$5+P$	23.675	10.55	21.683	6.29	24.910	8.60
P1	25.330	4.30	23.017	0.51	26.542	2.62
$\mathrm{F}+\mathrm{Pl}^{\prime}$	24.002	9.31	22.045	4.71	25.093	7.92
$\mathrm{P}+\mathrm{PP}$	23.028	12.99	21.499	7.03	25.175	7.63
$F+P+P^{\prime}$	22.312	15.70	20.212	12.64	23.327	12.58
D-	21.738	17.63	19.821	14.32	23.670	13.15

1000 grain weight in No defoliation (Control)

$$
\begin{array}{ll}
\text { Jyothi } & -26.467 \\
\text { Ptb.10 } & -23.135 \\
\text { Jaya } & -27.255
\end{array}
$$

O.D. $\quad 0.243$

Table VI C. 1000 grain weight (in gm) and percentage of reduction (Average of all varieties).

mreatment	Paniolo emergence		Anthesis	
	$\begin{aligned} & 1000 \\ & \text { grain } \\ & \text { weight } \end{aligned}$	Per cent reduotion	$\begin{aligned} & 1000 \\ & \text { grain } \\ & \text { weight } \end{aligned}$	Per cent roduction
F	24.800	2.73	23.656	8.04
P	25.138	1.40	23.690	7.97
$p+p$	24.057	5.53	22.759	11.59
p	25.278	0.36	24.643	4.25
$\mathbf{F}+\mathbf{P}^{\prime}$	24.251	4.83	23.179	9.96
$p+p^{\prime}$	23.740	6.39	22.723	11.71
$F+\underline{p}$	22.686	11.02	21.549	16.29
D-	22.351	12.34	21.169	17.77

1000 grain weight in no deroliation (Control)
panical emergence
Anthesis
C.D. . 0.198

- 25.496
$=25.742$
in the improved varietiea. But in the looal variety the difference die to flag leaf on penultimate leaf reaoval was not aignificant. Ihe effect of the removal of the third leaf was significantiy less than that of any of the top two leaves in all varieties.

Stege of defoliation and 1000 grain weight

Mean 1000 grain weight of all the three variaties in minor treatments at paniole eirergence and anthesis is given in table VIC. Increasing the number of leaves defoliated led to a progressive decrease in 1000 grain weight. Defoliation at anthesis caused greator raduction in 1000 grain weight as compared to that at panicle emergence. the reduction in 1000 grain weight due to complete defoliation at antheris is one and a half times that secorded on suon depoliation at panicle eargence. The difference in 1000 Grain welght between leaf lamina removal at panicle emergance and that at anthesis was always significant in all defoliation treatments. The effect of removal of the upper three leaves was significantly lower than that due to complete defoliation and it was followed by defoliation of two leaves and one leaf respectively. In general gignificant differences in effect were not observed among the top three leaves except that between Plag leaf and penultimate leaf at panicle emergence.

Table VI D. 1000 grain woight in gra (Average of defoliation treatments including control).

| Stage of defoliation | Jyothi | Ptb. 10 | Jaya |
| :--- | :---: | :---: | :---: | :---: |
| Panicle emergence | 24.477 | 22.232 | 25.349 |
| Anthesis | 23.609 | 21.166 | 24.934 |

$$
\text { C.D. }=0.114
$$

Hean 1000 srain weight of gll treatments
Llable vid bhows the average 1000 grain weight of all treatments including control. Defoliation at anthesis led to a greater reduction in 1000 grain weight when comparea to that at panicle energence. This difference was statigtically gignificant in all tho varioties.

DISCUSSION

55
DISOUSSION

The results of the present investigation showed that the three varieties differed among themselves in yield and yield oomponents. Jaya, the medium duration laproved variety performed better than the short auration varieties, with higher yield, higher number of filled grains and 1000 grain weight. Yoshida (1972) has reported a positive correlation between growth dusation and length of period from panicle initiation to heading. Possibly the number of spitselets per car in cereal crop can be increased by increasing the length of growth period for the paniele. Cock and Yoehida (1972) pointed out that the sajor factor responsible for yield differences in rice is grain number. Venkateswarlu et al. (1977) worked out the relationship between growth duration and parameters governing productivity with 21 rice varieties from early, medium, and late duration groups. The study revealed that for reallsing higher yields, the optimum diration was around 130 to 135 days. It may be noted that Jaya is a medium duration variety of 125 days.

The short duration varieties, Ptb. 10 and Jyothi showed differences in yield. Though the grain numbers were similar, Jyothi recorded a better yield as a result of
higher grain woight. Yoshida (1972) pointed out that grain weight is quite a stable varietal chavacter.

Comparison of the leaf characters of these varieties brought out important differences. Jaya had higher leat number than the other two varieties. The number of functional leaves in short duration varieties was only four whereas in Jaya it was five. Conseguently Jaya had more leaf area. A close correlation was found betweon grein yield and LaI in corn at silking (Elis and Hanway, 1966; Okubo and Iwata, 1963 and Tanaka et al. 1969 a). Grain yield of rice is closely correlated with IAI at flowering (Yoshita ett al. 1972 a). One of the reasons for the better performance of Jaya was its larger leaf area.

Variation in total chlorophyll per leaf and chlorophyll content per gram of leaf tissue also existed among varieties. The highest chlocophyll content per leaf and chlorophyll content per gram of leaf was met with in Jaya. Brougham (1960) stated that the production of ary matter by pasture and orop species is ultimately limited by the amount of chlorophyll. Rediy and Pyare lal (1976) found poor correlam tion between chlorophyll content at aifferent stages and grain yield in both triticale and wheat varieties. Palit et al. (1976) reported that irrespective of stages the dwarf varieties showed higher chlorophyll content in both
leaf and shoot, which was correlated with their higher grain yield in rice. The higher chlorophyll content in Jaya was another factor which contributed to higher yield. The study of the leaf angles in the aifferent varieties showed that the leaf angles in Jaya ranged from 8° for the flag leas and 13° for the fifth leaf. Direot ovidence of offeot of erect leaves in inereasing photom synthesis and hence yields have been reported for rice (Natsushina et al., 1964 and Tanaka et al., 1969). Manner at al. (1966) have shown the extreme nsefulness of leaf angle and leaf width for solection of hich fielding varieties. Duncen (1967) predicted from mathomatical models that leaf angles less than 19° might inorease the efficiency of CO_{2} fixation, even more particularly when a high lai is present. Lenaka et al. (1969 b) demonstrated by mechanical manipulation that a horizontally leaved canopy showed a low photosynthetio rate while an orect leaved canopy showed a high photosynthetio rate and increased its photoayntheals with increasing LAI. The higher photosynthetio activity of an erect leavea canopy produced higher grain yield. Pendleton et al. (1968) also showed that the corn canopies with leaves positioned upright by mechanical manipulation gave higher yielde than the untreated canopy. As pointed out by Yoshida (1972) the beneficial effect of upright leaven result from greater

Lllumation of the leaves. Among several leaf characters associated with high yielding ability orect leaf habit seeas the most important (Yoshide, 1972). Leal angle has been used sucoessfully as a eelection oriterion for broeding high yielding rice varieties at rimi (Yoshida at ai., 1972 a).

Differences existed in the performance of the short duration varieties, Jyothi the dwarf variety and Ptb. 10 the tall variety. Jjothi gave higher gielas than Ptb. 10 though Ptb. 10 had 40 per cent more leaf area, The total ohloropayll content per plant was also higher in Ptb.10. However the chlorophyll content per cren of leaf tissue was more in Jyothi. It appears that the photoaynthetic effiolency of Jyothi was better as the higher yielas in Jyothi indieate. Comparison of the culme of Jyothi and Jeya showed that Jyothi had short, stlff and upright oulm whereas Ptb. 10 was tall and lodging. an upright cula peraite greater penotration of inoident light into canopy (Tgunoda, 1964) and Tanaka et a1. 1966). The leat angles in Jyothi ranged from 10° to 32° whereas the leaf anglos in Ptb. 10 ranged from 55° to 34°. Jyothi had orect leavee peraitting batter illumination. The nuch wider loaf angles and the drooping nature of the leaves in pto. 10 resulted in mutual ghading.

In rioe and corn compared with the leaf blades net
photosynthesis of ear and sheath is very low and sometimes It is negative (Takade and Maruta, 1956; Katsusinma, 1957 Tanaka, 1958 a; Tanaka et az. 1971 and Yoshica and Cock, 197i). The ears of improved rice varieties tend to bend and are positioned below the plag-leaf and hence do not chade the leaf canopy (Yoshida, 1972), but not so in Peb. 10. The aigher yielde obtained in Jyothi were due to better illumination of its leaves when compared with ptb .10 , whose leaves recelved less light due to shading by other leaves and the panicle.

DEFOLIARTON SPUDIES

Reductions in yield and yield conponents following dePoliation at panicle emergence and anthesis gave a zeneral picture of the relative contribution of the aifferent leaves to grain filling at these stages. The effect of defoliation followed similar trends in all the varieties and the reductions in yield were in the order, defoliation of all leaves > defoliation of three leavea> defoliation of two leaves> defollation of one leaf.

Complete uefoliation

Though leaf area lost on oomplete defoliation dipfered in the three varieties the reduction in yield was more or less almilar ranging froin 30.59 to 33.04 per oent.

The por cent reduction in fillod grain number and 1000 graia weight also were not markedily different. Such reauctions in yield on complete defoliation have been obaerved in other orope as well as in rice. In rice complete defoliation at flowering decreased the ripening percentage to 36 per cent of the control (katsushica, 1957), and the grain weight to 55 per cent in one example (Takeda and raviuta, 1956), and 89 per cent to 89 per cent in another (Owen, 1963). Venkateswarlia (1976) sound that reaoval of all leaves at flowering resultod in only 30 per cent of grains maturing compared with 55 per oent in control and a reduction in grain yield of 50 per cent. These estinations, however, are subject to lerge variation alae to such sources as the amount of stored carbohyarate, timing of defoliation treatment and panicle size.

The resulta indicated that sources other than loeves, also contributed to grain filling in rice. Apart from the leaves, the sourcee that contrioute to grain filling are stored carbohydrate, and photosynthesis by plant parts other than lear lamina. The reported estimateg of the lose of carbohydrate from the vegetative parts are 0 to 40 per cent for rice depending upon the rate of nitrogen application and growth duration (Sogari et Bl. 1954; Nurayama et al. 1955; Lakeda and idurata, 1956; Soga and

Nozalc1, 1957: Wada, 1969 and Yoahida and Ahn, 1963), 20 per cent for barley (Archbold and Muiserjee, 1942), 5 to 10 per cent to less than 50 per cent for wheat (Asana and Joseph, 1964; Barnell, 1936 and Wardlaw and Porter, 1967) and 12 to 14 per cont for corn (Duncan and Hatfield, 1965; and Tanaka and Ishifulsa, 1969). It is to be noted that part of the carbohyarates thus lost from vegetative parts might have been consumed in reapiration. Cools and Soshida (1972) showed that under norral field conditions the amount - of the carbohydxate translocated from the vegetative parts was equal to about 21 por cent of grain carbohydrate.

The estimated contribution of ear photosynthesis to the grain ranges from 8 to 23 per cent for rice (inyi, 1962 and Takeda and Hurata, 1956), 10 to 49 per cent for wheat (Boonstra, 1929 and K riedemann, 1966) and 26 to 76 per cont for barley (Watson et al. 1958 and Frey-wyssiling and Buttrose, 1959). In rice and corn corapared with the lear blades net photoeynthesis of ear and leaf sheath is very lowi some times it is negative (Yoshida, 1972). The contributions of rebesve food, ster, panicle and leaf to yleld was 14.7, 13.1, 19.7 and 47.5 per cont respectively In Jaya; and 12.7, 19.7, 13.1 and 54.5 per cent respectively in Sona (Venkateswarlu, 1976). Such great variations in contributions to grain filling could be attributed to
differences in teohniques eaployed, varietal difierences and differences in growing conditions (Yosinida, 1972).

Dofoliation of the top three leaves

Removal of the top three leaves resulted in drastic reduction in leat area, the reductions in leaf area in short duration varieties viz., Ptb. 10 and Jyothi were $114.02 \mathrm{sq} . \mathrm{cm}$ and 30.29 sq .0 m respectively, whereas in Jaya it was 99.42 sq .0 ra . The per cent reduction in leaf area in Ptb. 10 and Jyothi was 73.18 and 72.89 respeotively whereas it was only 55.4 in base of Jaya. The aifference in leaf area reduction wes due to the fact that Jaya had two leaves left intact when compared with Jyotiai and Ptb. 10 which had only one leaf each. The contribution of the leaves (fourth leas in short duration varietiee and the fourth and pifth leaf in Jeya) thus retained in the plants, was not substantial in grain filling. This was evidenced from the fact that their preance did not improve the total yiela, grain number, and 1000 grain weight by not more than a Sev per cent. . Tanara (1958 b) pointed out that the top three leaves are important for grain filling in rice. The relatively gmall contribution of the fourth and flifth leaves was due to various reasons. Bonnemain (1965) pointed out that in tomato the lower leaves act as the main source of assimilates for roots. Panake (1958 a) found that the
lower leaves in rice sent their aspimilates to the roots. The progressive decline in apparent photosynthesis with increasing age of leaf may also be an ingortant factor as was found in tall feacue by Jewiss and Woledge (1967). The leaf angles of the lower leaves were relatively large. They were drooping and shaded and received less illimination, The chlorophyll content of these leaves also were low. Another fector for low contribution thay be the afstance from the panicle. Eastin (1969) and Palmer (1969) worlcing with corn found that the translocation of the assiallates by the leaves below the ear sharply decrezses, the lower the leai positions.

Defoliation of two leaves in combingtions
The top three leaves were defoliated two at a time in three combinations, via, penultimate leaf and flag lear. penultimate leaf and the third leaf and flag leaf and the third loaf and the relative effects stradied.

The removal of penultimate leaf and the thira leaf together deoreased leaf ares by 51.06 per cent in Jyothi, and 50.61 per cent in Ptb. 10 and 39.91 per cent in Jaya. This was followed by the combination of flag leaf with thisd leaf and flag leaf with penultimate leaf reapectively.

The highest reductions in field, filled grain number and 1000 grain woight were caused by the removal of penultimate leaf and the third leaf together in all the varieties ond this reduction was related to leaf area lost. The relative importance of the second and third leaves to grain filling was pointed out by Tanaka (1959 b). Yoshida (1972) found that the photosynthetic activity of the seoond and third leaves in rice was higher than that of the flag leaf at early stages of ripening.

The adverse effect on yield and yield components on the defoliation of flag leaf and penultimate leaf was slightiy legs though there were significant differenoes in leaf area. The amaller area of the flag leaf was to a large extent cospensated by its higher photosyathetio effioiency and nearness to panicle when oompared with the third leaf. Results obtained in the present otudy showed that the contribution of the top two leaves in the three varieties rongea from 20.49 to 21.15 per cent. Similar results were obtained by Slikder and Das Gupte (1976). They Pound by desoltation of the top two leaves in rice, that their contribution was 20.9 per oont as en everage of two varieties.

Resoval of the flas leas with the third leaf regaltea in the least xeactions in yiela when comparea with the other two combinstions, This indicates that the third leaf was comparatively less important than the other two leaves in grain flilling. The low contribution of the thira leaf is the result of its age, relative position, lower chlorophyll content, highor leaf angle and shading.

Depoliation of single Leaves

Defollation of the third lear
The third leaf had completed its growth at or belore panicle eaergence and henoe ito area did not record any change after panicle ezergenoe. The top tiree leaves are important for grain filling in rice (Tanatsa, 195s). Yoshida (1972) observed that the photosynthotic activity of the second and third leaves in rice was highor than that of the flag leaf at early otages of ripening. The pregent gtadiea indicated that the contribution of the third leaf in field and yiold components was loss than that of either slag leaf or ponultimate' leas though'its area was larger than that of flag leaf or penultimate leaf. This comparetively low contribution olght be due to low ehlorophyll content, decrease in photosynthetic efficiency due to ageing, a wider leaf angle and shading, and greater alstance from the paniole when compared with the other two leaves.

Defolistion of penultimate leaf
The area of the penultimate leaf was less than that of the third leaf but more than that of the flag leaf. The reiuctions in yiela ana filleá grain number resulting from penultimate leaf recoval were found to be higher than those ceused by the defollation of the third leaf in all the varieties. The iniluence of elipping the penultimate leaf was also roflected in minor differences in 1000 grain weight.

The penultitato leaf continuea to grow even after pandele emergence as show by the higher leaf area at anthesis. This implied that its photosynthetic effleiency was high. Saeki (1959) obgerved that each leai showed a naximum rate of photosyntheais before it was fully expanded followad by a progreosive decline in ghaseolus vipidisatmus and tegohymum egculentixm. The Lactore wich coniributed to the photosynthetio efficiency of the penaltimate leaf ware, higher leaf area, high ohlorophyll content, smaller Leaf angle and less sheding, its nearness to the panicle and ats age in relation to the third leaf.

Flag lear deroliatlón
Tho flag leaf area of duar varieties at anthesis was less than that of the penultmate lear, Jaya having 30.13 sq.en and Jyothi 25.9 sq.em. The flag leaf gize of
most improved fice varietien is relatively mall compared with the second or third leaves. possibly this reeults from oompetition between developing flag leaf and panicle for assiailates. The mechaniam involved in the partitioning of assimilation products between the flag leaf and panicle was not understood (Yoshida et al. 1972 b). Similarly, in wheat the ear alze may be negatively comrelated with flag leaf area (Rewson, 1970).

The flag leaf aroa and penultimate leaf area was almilar at anthesis in the tall variety. Though differences existed in the area of the flag leaf and ponultimate leaf in the dwarf varieties, the contribution of these leaves to grain filling appeared to be of the came magnitude. The flag leaf contribution to grain yield ranged from 10.56 per cent to 16.79 per cent. Reports of a similar nature have been recorded by others also. Boonstra (1937) reported that in wheat 60 per oent of the ary matter in the grain wes derived from the flag leaf lamina, sheath and poduncle, 17 per oent from the parts of shoot below the base of the flag leaf. Rawson and Hoistra (1969) found that in wheat the rates of Co_{2} fixation by the wiole flag leaf wore higher than the basal leaves. The romoval of halp the flag leaf at panicle emergence reduced the greain yield in rice by 14 per cent and grain
number by 15 per cent whereas complete removal of flag leaf reduced grain yield by 19 per cent (Tripathi and purohit. 1971). Nama Das and Raghavondra (1974) observed that in millets the photochemical activities of flag leaf were consistent with the high photosynthate contribution to the grain filling process. In four orop piants (ongea, penissetum, Sorgham, zoa) the rate of carbon fixation was higher for the flag leaf, decreasing gradually in the lower leaves (Rama Das and Rajenderudu, 1977).

It is aeon from the table V o that the reduction in grain number coused by the excision of the flag laaf and penaltimate leaf are not difforent. Howevor varieties differed with respect to the extent of reduction in grain number. The highest reauction of 14.04 per cent was met whith in Peb.10. Tripathi and Durohit (1971) reported gimilar results. They obtained a 13 per cent reduction in filled grain nuaber in paddy by defoliation of flag leaf.

Significant reductions in 1000 grein weight followed defoliation of the plag lear in all the varieties. Differences were also noted between varioties. In the improved varieties, the contribution of the plag leaf to 1000 grein waight was more than that of the penultimate lear whereas in the local variety, the penultiaate leaf appeared to contribute nowe than the flag leaf. In defoliation experiments with oats,
the presence of flag leaf and penaltiagte leaf increased Indivilual grain weight (Frey; 1962). Fucas and Agans (1963) reported that the removal of the plag leaf and penultimate leaf reanced both grain number and grain weight In wheat. The leaf area of the flag lear was found to be lese than that of the penultimato leaf. But the contribution of both these leaves to yiela and yiela componente appeared to be similar. The small ales of the flag leaf Was compensated by better photosynthetio efficienoy due to its ereot nature, absonce of shade from other leaves, hicher chlorophyll content, oloseness to the panicle and young age when compared with the penultmate leaf.

If a part of green tismue la removed or shaded the photosynthetic rate of the remaining green tissue increases Yoshida (1972). Austin and Jones (1974) reported that compencation mechantans exist in cereals. Table IV it sumarises the interaction of defoliation of leaves on yield. Interaotion of flag leafe poniltimate leaf and the thire lear on yiela

It was found that the defoliation of flag leaf. penultimate leaf and the third leaf together rosultod in
positive interactions in all varieties and stages except in Ptb. 10 at antheass. The removal of these three leaves affected the light environsent of the remaining plant parts viz., leaf sheath, stem and the paniele. The photosynthesis by these structures partially compensated for the loss of leaf area. Lucas and Asana (1963) In wheat and Rangasayi and Yenkateswariu (1972) in finger millet had reported that the yield decrease due to leaf clipping was littie as the mobilization of stem sugars and flag leaf photosynthesis conpensated for the gield losses. Venkatesmarlu (1976) observed that the yield loss depends not only on the type of orop but on the dagree of leaf clipping effected. The eatimated contribution of ear photosynthesis to the grain ranges from 3 to 23 per cont for rice Duyi (1962), and 10 to 49 per cont for whaat Boonstre (1929) and criedemann (1966), indicating that panicle oontribution to yield is greater in wheat than in rice.

The greatest efficiency of leaf in maize was attained at ear formation where there was a rapid movement of assimilates from the leaves (Yerailov, 1962). Demand for absimilates can also influence the rate, velocity, and pattern of translocation in wheat, Wardlaw (1965) and Rewson and Brans (1970) and presumbaly in other plants. Evans (1972) pointed out that demand for aseimilates influence
photogynthetic rate and such feedback effects on photobyntheals any occur in rice as they do in wheat at about anthesis. The defoliation of the top three leaves led to a greater demand for assimilates whioh stimulated the photosynthetic rate in the remaining green parts. Interaction of penultimate leaf and the third leaf

The removal of penultimate leaf and the third leaf togethor resulted in negative interaction. Bonnenain (1965) pointed out that in tomato the lower leaves act as the main source of assimilates for roote, whereas the upper leaves perfora this function for the shoot apes, and leaves in an intermediate pooition may sxpply assimilates in either or both directions. Iupton (1966) Sound that the translocation of aesialates from the jag leaf in wheat was entirely touards the grain whercas the translooation from the second or the third leaves wes partly tovards the erain and partly downards. Jvans (1972) observoil that when the lower leaves in wheat are ehaded the flag leaf has to support the rest of the piant. Such partitionting of assimilates between grains and the lower portions of the plant appeared to be an important reason for negative interaction. The defollation of the gecond and therd leaves led to the partitioning of aseimilates of the flag leaf between the greins and the lower portions of the
plant in response to their demand for aseimilates,

Interaction of flog leaf and the third leaf

Here also pobitive interaction was observed, exoept in the case of ptb. 10 at antheais. positive interaction might be due to the improvement in the light environment of the remaining plant parts, the mobilization of gtorage sugers and the onhanced photoaynthesia caused by the higher demand for assimilates.

Interaction of thag leaf and penultimate $10 a t$

Positive interaction bab ovident on the removal of Ilag leaf and ponultimate leaf togother. The basis of axoh compenation may be found in the explanatione already given, vin., better illunination of the remaining plant parta, mobilization of storage sugars and highes photosynthetic rates in response to the demand for asciallates.
iKinok and Sia (1976) working with spring oat cultivara Glintiand 60, and Garry found that the compenaation meobanism was insufficient to meet grain fillingaequirements. Neverthleas, they found some evidence of compensation effects partioulariy in the oultivar olintland 60. Whey indicated that differences may exist among varietios in their ability to compencate for loat parts. The lack of compensetion effectic shown by Ptb. 10 oould be a variotal ohasacter.
 ATMTESIS IX GRACH EILLTM

The flag leaf and the penultimate leaf continued to grow even after panicle exergence. Ae a rebult the lear area lost on defoliation at anthesis was more than that at panicle ersergence, seal renoval at panicle emergenoe, howover, resulted in greater refuction, in yleld and filled grain number when compared with that at anthesis. Reduction on yield on defoliation at paniole evaergence was one and a half times that at anthesis, whereas reduction in iniled grain number was nearly 3 times.

Comparaile results have been reportea by Klinck and Sim (1976). They found that the yield reduction in oats resulting from derolietion at panicle orsergenee was twice that at anthesis.

1000 grain weight was also reduced by defoliation: The reduction in 1000 grain weight due to defoliation at anthesis was neariy one and a half times that resulting Exoa dofoliation at paniole eacreance.

The results of the present investigation revealed that the period betweon panicle emergence and anthesis is important in grain filling in rice. Danage to the leaves by inseots or other agents on severe leaf disease infection at the early heading atage could have drastic effeats on grain yield in rice.

SUMARY

Defoliation was effected at panicle earergence and anthesis for assesaing the contribution of leaves and the inportance of the period betweon panicle energence and anthesis to grain filling. A split plot experiment was lald out in leandonibed blooic Design with three replications.

Jaya, the medius duration dwari variety was superion to the short duration varieties in yield, grain number and 1000 grain weight. The plant characters waich contributed to higher yield in Jaya were, ereot culm, and orect leaveo permitting bettor illumination of the leaves, larger leaf area due to a greater namber of funotional leaves, absonce of shading by higher chiorophyil content and the positioning of the panicle below the flag leaf. The ehort furation varietios, Jyothi, a dwerf variety and ptb. 10 a tall variety differed in yield. The superior yield of Jyothi was due to highor 1000 grain weight as the grain number in these varieties were found to be similar. ptb. 10 had decided by nore leaf area than Jyothi. The higher yield recorded by Jyotil inspits of its gaaller leaf urea micht be due to its erect oulm and leaves allowing better light environment, and the bending of the ears well bolow the slag leaf. she low
yield in Pto. 10 was the result of plant characters like lodging cula, drooping and autually shading leaves, and the oreot panicle which shaded the leaves.

Reductions in yicld and yield components following defoliation at panicle emergence and anthesis gave a general pleture of the relative contribution of different leaves to grain filling at these stages, The reductions in yield and yield oomponents generally followed aimilar pattorns in all varieties, defoliation of all leaves $>$ dofoliation of three leaves $>$ defoliation of two leavea> defoliation of one 2ear.

The results of conplete defoliation indicated that apart from the leaves other sources also contributed to grain filling. These could be stored carbohydrate and photosynthesis by plant parts other than leaf lawina.

It was found that only the top three leaves are important in grain filling in rioe. The contribution of the third lear is smaller than any of the other two leaves. The 2lag lear and penultimate leaf contributed almost equally to grain silling.

Defollation stimulated the photosynthetic activity of the reraining green parts. positive interaction resulted on the defoliation of the top three leaves, flag leaf and
penultimate leaf, 1 lag leaf and third leaf. positive Intaractions arc the result of ingrovenent in light environment of remaining plant partig, enhanced photosynthetic ratea in response to demand for asstmilatee and the mobilization of stem sugars. Negative interaction observod on the dofoliation of penaltimate leas and third leaf appeared to be caused by the partitioning of carbohydrates betweon crains and the reat of the plant and 20 of carbohydrates on raintenance respiration.

Defollation at panicle emergence and anthesie depressed gield and gield components, Reduation in jield on defoliation at panicte emorgence was one and a hals times that at anthesin, wherens reduction in filled grain number was nearly three times that at anthesis. 1000 grain weight reduction on defoliation at antheste was one and a half times that at panicle emorgence. These results indicated that darage to the leaves by insests, diseases or other agents at the early heading stage could have drastio effects on grain yield in rice.

REFERENCES

Anake Topark-igarm, Carlson, I.T., and Pearce, R.S.(1977). Direet and correlated responses to aeleotion for specific 1eaf weight in Read Canary grass. Gron Soienoe. 17(5): 765.

Archboli, H.K. (1942). Physiological studies in plant nutrition. XIII. Rxporimenta with barley on defoliation and ghading of the ear in relation to sugar metabolisia, Ann. Bot. $\mathrm{N} . \mathrm{S}$. 6: 437.
 (citea by Yoshida, 1972).
*Arnon, D.I. (1959). Oopper ensymes in isolated chloroplaste. polyphenoloxidase in Bete valgaris. plant physiol. 24: 1-15. (Gited by Yoshida, S., Dourlas, F., Forno, James, Ho, Coelc and Kwanchai, A.; Gomea, 1972 b).
*Agana, R.D., and Joseph, C.M. (1963). Indian J. Plant Ehysiol. 7: 86-101. (Oited by Yoshida, 1972).
Austin, R.B., and Jones, H.G. (1974). The physiology of wheat. Plant Broeding Ingtitute, Ann. Ked. (1974). Dart III, .

Begge, A.K., and Asane, R.D. (1972). Role of the fifth, and aixth leaver of wheat (qritionm Reativum). Indian J. Agric. Sol. 42: 571-574.
*Barne11, H.R. (1936). New phytol. 35: 229-66 (Citea by Yosh1da, 1972).

Bingham, J. (1966). Paternal effect of grain sife in wheat. Matuce, Lond. 209: 940-1.
*Doonstra, A. E.H.R. (1929). Meded Jandbouwhogesch. Hageningen. 33: 3-21. (cited by Yoshida, 1972).

* (1937). Dor ELnfluss der versohiedenen abaimillerenaen Teile aufden Samanertrag Vonweizen. Zeltochr. Zucht. A. Pflanzeng. 21: 115-47. (Cited by Paul Kriedewann 1966).
*Bonnemain, M.J. (1965). Sur 18 trans port alurne des produits d' assimilation lors ade la iloraison ohez la Tomate. Goapt. Rend. Acad Soi. (Rasis) 260: 2054-2057. (cited by Wardlaw, 1.F.. 1963).

11

Brougham, R.iV. (1960). The relationship between the oritical leaf area, total chlorophyll content and maximan erowth rate of aome pasture and crop plants. Ann. Bot., N.S. 24: 463-74.

Buttrose, ris. sand ray, Luif. (1965). Seasonal variation in ostimates of cereal ear photogyntheais. Ann. Bot. N.E. 29 : 79-32.
*Cook, J. M., and Yoshiãa, S. (1972). Proc. Gron Soi. Sog. Japan (aited by Yoohida, 1972).
(1973): Changing sink and
 carbonaloxide enriohment in the flela. Soll Saience plant

Davidson, J.L. (1965): Some offect of leaf area control on the yield of wheat. Aust. J. Agrig. Reg. 16: 721-31.
\#De Latta, S.K.p and Zarate: P. F. (1970). Environmental conditions affecting the growth characteristios, nitrogen responce and grain yield of tropical rice. Bioheterol. 4i 71-39. (Supp1. to VoI. 14, 1970, Int. J. 3ilometerol). (cited by Lobhida, S., Cock; J.ito, and parao, Fif., 1972).
\#Donald, CoM. (1963), Euphytica. 17: 385-403 (Cited by Yoshida, 1972).
*Duncan, W.Go, Hatflela, A. La, and Ragland, J.I. (1965). Agron. J. 57: 221-23. (cltea by Yoenida, 1972).
*

- Loomis, R.S., willame, W.A., and Hanan, R.A. (1967). Todel for simulating photosynthesis in plant commities. Milgeraia 33(4). (Cited by pendleton, J. W., Famona, J.J. (1969). Shith, G.E., Hinter, S.R., Johnaton, T.J. (1968) : Agrone I: 60: 422-24.
*Eastin, J.A, (1969). Proo. 24th Ann. Gorn Sorghum Reg. Gonf. 81-39. (Cited by Yoshida, 1972).
*Edic. K.g, and Hanyay; J.J. (1965). Apron. J. 58: 16 (18. (Cited by Yoahiala, 1972).

Enyi, B.A.c. (1962). The contribution of different organs to grain weight in upland and strap rice. Ann. Bot. I.E. 26: 529-31. -

Evans, I.T. (1972). Stonage capacity as a linitation on grain yiola. In rice breeding, I.R.R.I., Philippines: 455-465.
*Frey, K.J. (1962). Influenoe of Leaf-blade removal on seed weight of oata. Iowa state I. gei. 46: 405-15. (Oited by Kincts. IN, Ro, and SIm, S.J. 1976).
Hrey-Wvogling, A., and Buttroge, M.S.(1959). Nature. 194: 2031. (Gited by Yoshida, 1972).
*Hopkinson, J. ${ }^{\text {H. (1964). Studies on the expangion of the leaf }}$ briface. J. exp Bot. 15: 125-37. (Oitod by Jewiss, O.iR., and woledge, ${ }^{5} \cdot 967$):
Iunt, H,A., and Cooper, J.P. (1967). Productivity and canopy giructure in geven temperate forage grasseg. I. Appl. Ecol.生: 437-453.
Jenninge, V.fe. and Shiules (1963). Genotypic differences in photosynthetic contribution of plant parts to grain yield in oats. Crop. SoL. 3: 173-5.
Jewiss, 0 .R. and woledge, J. (1967). The effect of age on the rete of apparent photosynthesis in leaves of tall fescur (Fegtuag arundinaceasaiveb) Ann. Dot.: N.S. 31: 661-71.

Kompthorne (1952) The Design and analysis of expertments. John iniey and sons, Ind. New Jork. 0.

K2indit, H.li., and Sir, S. Fe (1976). The influence of source of photosinthate and sink size on grain yiela in oats (Avena setsve I.) Anme Bot. M.S. 40: 785-793.
Mgriedemann; P. (1966). Ann, Zot. IV. S. 30: 349-63. (Clted by Lochida, 1972).
Lucas, D., anh Asana, R.D. (1963). Erfect of defoliation on the growth and yield of wheat physiologia pl. 21 : 1217-23.
Lagton, F.G.H. (1966). Translocation of photosynthetic assimilates in wheat. Am. Appl. Biol. 57: 355-64.
H陔tsushime, $S_{0}(1957)$. Buin. Nat. Inst. Age. Soi. Jep. Ser. A. 5: 1-271. (oftea by rosnida, 1972).

* *) manalia, T. and Hosinino, T. (1964). pros. Cron Sol Soc. Jap. $33: 44-49$. (Gited by Yoenida, 1972).

Whiller, E.O., Gries, G.A., Jungiocis W. A., and Eraeier, J.0. (1943). Teah. Bull. 62 Kangas State Coll. Acrice: (1943). (Citeã by binghan, "1966).
*M1 thorpe; F.I. Davidson, J. I. (1966). Proe. 12th Batior Sohool Agric. Sel. Jntv. Nottingham (MA.) Milthorpe, F. Io, and Irins; J.D., Gutterworths, London pp.228wit (ids.).

Plokronosov, A. .T., and Bubenshonikova, N.K. (1961) Translocation of agsirailstes in the potato plant. Fizioi. Rest. 8: 560-568 (Olted by Wardlew, I., 1963).
Monteith, J. I. (1965). Tight aistributinn and photosynthesis in Pield crops: Ann. Bot. N.S. 29: 17-33.
-inureta; (1964). On the influence of solar radiation and air temperature upon the local differences in the produetivity of paddy piee in Japan (In Japanese, English Sumary). proc. Oxop Sei. Soc. dep. 33: 59-63. (citea by Yoshida, S*, Dook, f. F., and Parao, Fot. 1972).
\#Murayama, No, Oshima; Ife, Taukaharag, S_{*}, and Rawaraeaki, T. (1955) Bul1. Rat. Inst. AgT. Sot. Jai. B4: 123-66. (01ted by yoshida, 1972).
*Gbabo, Jo, and Iwta, Fo (1969). Sympe Maize Prod. Southeast Asia. Agr. Foreat Fish Res. Counc. Jap. 131-33. (Cited by Yoghida, 1972).
 (cited by Komhide 1972).
 (1969). Exp. Agre 5: 101-9. (cited by Yoshida, 1972).
galit, P., Kundu, A., Handal HoKo, and Sircar, Sirto (1976). Indian d. p1. Ehrolol. 19(1): 32-39.

* Palner, A. F. F. (1969). Iranslocation pattern of 14C-labellea photooynthate in the corn plent (2ea meys, Ire) during the ear filling stage. Ph.D. thesis. Cornell Unive. Ithaca, NI. (Cited by Yoshida, 1972).
Panl trieienann (1966). The photosynthetio activity of the wheat. Anne Bot. N.s. 30: 349~63.
pendleton, J.F*, 列ithe J.E., Winter, S.R., and Johnson, J.J. (1963). Agron. I. 60: 422-24.

Quinlan, J.D., and Sagar, G. ${ }^{2}$ (1962). An autoradiographic study of the moverent of 140 -labelied assimilates in the developing wheat plant. Heed Research. 2: 264-273.
name Des, V.S., and raghevonara, A.S. (1974). Photochemical efficiency of ohzoroplasts from flag leaves during grain production in millet orops. groceedings of the gympogium on blological aproach to problem in nedicine inaustiny
 pages 96-109. (cited by rama Das, V.S., and majenderidu, G. (1977). gynthetic efficionay of flag leaf in relation to otructural features in some orop plants. Indian J. PI. Physiol. 20(2): 123-128.
*Rangasayi, I., and Vencateswarlu, B. (1972). Some especta of plant type in finger millet, glusing goracana, G. In press. Special issue of Indian J. Gen. and Plant Broeaing untor

*laweon, H. 7 . (1970), Aust. I. 31.01. So1. 23: 1-16. (C1tea by Yoshida, 1972).
:O and Dvans, 工.T. (1970). The pattern of grain growth within the ear of wheat. Axgt. J. Biol. Sei. 23: 753-764.
Rawson, H, $\mathrm{H}_{\text {, }}$, and Hotptra, G. (1969). Translocation and remobilisation or 14 -assimilatea at aifferent stages by each leaf of the wheat plant. Aust. I. Biol. Soi. 22: $321-31$ 。
Reday, G.G.p and pyare lal (1976). Physiological analyais of field vaxiation in triticale and wheat varieties under unincigated conaition. Indian J. P1. physiol. 19(2): 154-163.
\#Saeki, T. (1969). Variation of photosynthetic activity with ageing of leaves and totel photosynthesis in a plent oommitty Bot. Mag., Tokyo 72: 404-3. (cited by Jewiss, O.R.p and woleage J., (1967):

Sallebury, Be, and Cleon Ross (1969). Plant Phyaiology. Vadsworth Publishing Co.. Inc., Belmont, Gailiornia, 2nd du. pp.296.

SlkGer, H.P., and Das Gupta, D.K. (1976). Phy elology of geain filing in rice. III. Bffects of defoliation and removal of opisolets. Indian Arrio. 20(2): 133-141.
-Soga, Ye and Nozaki, M. (1957). Proc. Grpp Sei- Soo. Jap. 26: 105-3 (citea by Yoghta, 1972).
 (1965). R10e J. 68: 34-35 (cited by Yoshida, 1972).

Hanaka, A. (1953 a). J. Sat. Soll [Gaure Jap. 29: 327-33. (cited by Yoshida, T972).
*
(1953 b). Studies on the characteristics of the physiological function of leaf definite position on gtem of rice plant (gart II). Comparison of photosynthetic activity of leaves at various positions on main atem and tranglocetion of photosynthetio products within the plant (in Japanego). J. Sei. Soll Jhanure (Japi) 29; 327-355. (aited by Yognita, s. Gook, J.H. and Pareo. F.E. 1972).
*
: Kawan, O.Ke, and Yamaguchi, J. (1966). Photom synthesis, respiration, and plant type of the tropical tice plant. Int. RLoe Res. Inst. Iech. Bu2l. 7. 46 p.

* - Yanaguohi, J., and Fujita, K. (1969 a). J. Sol. SoLT Y nure Jag. 40: 493-503. (citca by Yoshida, 1972).
* _ - Yamaguchi, Jo, and Imai, Mo (1971). J. Soi. Soil Canure Jap. 42: 33-36.(C1ted by Yosh1da, 1972).

*Takeda, Te, and Pazuta, H. (1956). Proc. Crop Set. Soc. Jano 24: 181-34. (cited by Yosinida, 1972): .

Wanner, J.H., Garderner, O.J., Stoskopf, N. O. And Reinbergo, E. (1966). can. J. plant soi. 46: 690. (Citea by Yoshia, 1972).
, : and Daynard, T.Be (1967). The contribution of individual corn leaves to grain gield. Agronomy Abetracts. 59(40).

Thorne, and Gillian, He (1963). Varietal differences in photosjnthesis of ears, and leaves in daxley. Ann. Bot. N.S. 27: 155-74.
(1965). Photosynthesis of ears, and flag leaves of Wheat and barley. Ann. Bot. 1 H.S. 29 : 317-29.
$*$ (1974). Ehy miology of grain yield of wheat and barley. Rotharatea Expe Stne Ann. Rep. (1973), Part 2: 5-25. (oited by Kinok, HoRas anâ Stu, S.E., 1976):

Thrower, S.I. (1962). Pranslocation of labelled assimilateo In aoybean: II. The patterne of tremslocation in intaot and defoliated plantso Aust. J. 310l. Soi. 15: 629-49.
*Togari, Yo. Osamoto, Ye, and Kumara, A. (1954). Proce Crop Sel. Soc. Jam. 22: 95-97 (C1ted by Yoshiaa, 1972).

Mripathi, $R_{4} S_{4}$ and Puroht; D.C.(1971). Bfepet of flag leaf on the yiala of paday. Iha. Agrio. J. 58(7): 661-662.

Wrsunoda, S. (1959 a) Jtape Je Breed. 9: 161-73.

* (1959 b). Jape J. Breed. 9: 237-44.
* (1960). Jap. J. greed. 10: 107~11.
* (1962): Jana jo Breed. 10: 49-56.
*
- (1964). A devolopmental analysis of yielaing Qbility in varieties of field crop (in Japanese, Engriish Sumary) Hihon-cakuilinteu-Shinkokai Maruzen Publishing Do., Tokyo. 135 p. (otied by. Yosntan, S. Cock, ${ }^{\text {J. }}$. H . and Farao, B.T., 1972).

Vencategwarla, 3. (1976). Souroe - Sink relationshipa in lowhand zice. plant and Soil. 44; 575m536.

- and Maddulety, Toy. (1976). Source and sins relationships in rice (Covea sativa Lo) through different profiles unâer field conaitions. Ina. J. plant phyeiol. 19: (1 2 2): 194-201.

Supya Erakash Rao, J., and Rao, A. Y.(1977). kolutionghip between growth iuration and yield parameters. in irrigated rice. Indian Io Agric. Sci. 42: 571-574.

Vi.i.

wheds, G. (1969). Bull. Nat. Ingt. Agr. Sel. Ser. A. 16: 27-167. (aited by Yoshida, 1972).

Walpole, P.R.f and Morgan, D.G. (1974). The influence of leaf renoval upon the development of the grain of winter wheat. Anr. Bot. N.S. 38: 779-32.
Wardlaw. I.F. (1965). The velocity and pattern of ageinilate translocation in wheat plants during grain development. Aust. I. Biol. Sci. 13: 269-291.
(1963). The control and pattern of movement of carbonjarates in plants. Bot. Rev. 34: 79-105.

* $20: 309=18 \cdot$ and Porter, M.K. (1967) Augt. J. B102. Sci. 20: 309-18. (cited by Yoehide, 1972).

Watson, D.J. (1952). The physiological basis of variation in yiald. Avivan. Agron. 4: 101-44.

- and Witts, K.J. (1959). The net assimilation rates of wild and cuitivated beets. Ann. Bot. M. S. 23: 431.
* * Whome, GoN. and Frenoh, S.A. W. (1958). Anne Bot. I. IS. 22: 321-52. (Cited by Yoshida, 1972).
Welbank, P.J., Frenoh, S.A.Wo, and Witts, KoJ. (1966). Dependence of yields of wheat varieties on their leaf area durations. Ann. Botes N.S. 30: 291-99:

Willans, R.F.g and Rifren, A.H.G.C. (1965). The physiology of growth in the wheat plant. II. The aynmics of leas growth; Australian Jour. Biol. Sel. 18: 721-743.
Yomilov, G.B. (1962). Dependence of maize leaf efileiency on Internal processes in the plant. Pisiol. restenif. 9 : 393-3. (Cited by Wardiaw. I. F., 1963).

Yoshida, S. (1972). Physiological aspects of grain yield. A. Rev. p1. PhyBiol. 23: 437-64.

[^0] Concr Canberra. (aited by Yoshian, 1972).

$1 x$

*Yochida, S.. Cook, J.H., and Perao, P.P. (1971). Pregented at Mon Rice Breed. Int. Bice gesi Inst. (Nited by Yoshida, 1972).

- Cook, J.H., and Parao, F. (1972 a). Physiolom

Gical appects of high yields. In rioc breeding, I.R.R.I., philippines: 455-465.
——., Joxglas, H., Forno., James, Mo, Vook, and Kwanchai A. Gomez. (1972 b). Raboratory manual for physiological stuades of rice. JIIrd aition. po. 32.
 bifeots of gilica and nitrofen supply on powe leas oharacters of the fioc plant. Rlant and 001131. 49-56.

Gelitei. (1971). Rhotosynthosis photoregpiration and plant giodyotivity. Academic press, London. pp.275.

APPENDICES

APPENDIX I Analysis of vartance Iraf area removed				
Source	S.S.	di	1.S.	F
Totel.	303806.4960	161		
Block	0.0682	2	0.0340	Less than one
Major treatment	13250.7490	5	2650.1490	37326.042**
Stage (S)	761.6270	1	761.6270	10727.44**
Variety (V)	12461.3395	2	6230.6690	97755.901**
V $\times 5$	27.7336	2	13.3910	195.647**
E (1)	0.7110	10	0.0710	
Minor treatment	277092.9750	3	34636.6210	
F	32107.8610	4	32107.3610	$377739.541 * *$
P	39634.5230	1	33634.5230	454523.800\%*
F $\times P$	32.6420	1	32.6420	334.023**
P^{\prime}	45372.5500	1	45372.5500	533794.705\%
F $x^{\prime \prime}$	12.7090	1	12.7090	149.517**
P \times P'	18.0760	1	18.0760	212.653**
Pxpx Pl^{\prime}	19.1400	1	: 19.1400	225.176**
D (-)	160395.4740	1	160395.4740	1892337.929**
Major x Minor	13453.7790	40	336.344	3956.983**
E (2)	8.24	96	0.085	

* $\operatorname{signifleant}$ at 0.01 level probebility

> APPEEDIX V
> Analyele of variance
> 1000 grain weight

Source	S.S.	de	M.S.	F
Total	699.2124	161		
Blook	0.0564	2	0.0282	Less than ons
Major treatment	409.7773	5	81.9554	2295.6694**
Stage (S)	25.4510	1	25.4510	712.9131**
Variety (V)	371.5150	2	185.7575	5203.2913**
$\mathrm{V} \times \mathrm{S}$	12.8142	2	6.4071	179.4705**
E(1)	0.3574	10	0.0357	Lees than one
Minor treatment	227.4113	8	23.4267	94.5094**
F	50.6351	1	50.6351	168.1671**
P	64.2735	1	64.1735	213.1302**
Fxp	0.6175	1	0.6175	2.0503**
P'	30.1676	1	30.1676	100.1913***
$\mathrm{P} \times \mathrm{Pr}$	0.0004	1	0.0004	Lese than one
P \times P	3.6259	1	3.6259	12.0400**
Fx.Px P^{\prime}	0.1554	1	0.1554	Less than one
D (-)	77.7777	1	77.7777	253.3700**
Major x Minor	22.7000	40	0.5675	1.8800**
E (2)	23.9100	96	0.3011	

**Significant at 0.01 level probability

APPQNDIX III

Analysia of variance (after angular transformation)
Number of unililed grain

Source	S.3.	$d f$	M.S.	F
sotal	6136.2400	161		
Block	9.3700	2	4.9350	1.4950
Major treatment	1659.5809	5	331.9160	99.914**
Stage (S)	1218.3693	1	1218.3693	366.7467**
Variety (V)	369.2118	2	194.6059	61.5350 **
$\mathrm{V} \times \mathrm{S}$	71.9990	2	35.9995	10.8362**
E (1)	33.2210	10	3.3221	
Minor treatment	3634.3287	8	454.2910	470.4753**
F	766.3500	1	766.3500	793.6516**
P	1043.3200	1	1043.8200	1031.0066**
$\underline{1} \boldsymbol{P}$	85.1600	1	55.1600 .	83.1939***
P^{4}	498.6300	1	499.6300	506.0376**
$\mathrm{P} \times \mathrm{P}^{\prime}$	0.0700	1	0.0700	Lese than one
$\underline{x} P^{\prime}$	19.0500	1	19.0500	19.7286**
$p \times P \times{ }^{\prime}$	35.1600	1	85.1600	83.1933**
D (-)	1146.0900	1	1146.0900	1186.9096\%
Major x Minor	706.5390	40	17.6634	18.2823**
E (2)	92.7004	96	0.9656	

**Significant at 0.01 Level probability

AgPEDIK IV

Analysis of variance
Number of fillea grain

Source	s.s.	dP	A.S.	F
Toted	32585.031	161°		
Block	223.031	2	111.515	10.98**
Major treatment	17513.438	5	3502.637	344.398
Stage (s)	10129.389	1	10129.389	997.379**
Variety (V)	6693.563	2	3341.754	329.045**
$\mathrm{V} \times \mathrm{s}$	700.191	2	350.240	34.436**
[(1)	101.562	10	10:156	
Munor treatment	11450.197	9	1431.375	1057.145**
F	2773.770	1	2773.770	2043.579**
P	3906.250	1	3906.250	2834.970**
$F \times$	177.777	1	177.777	131.297**
p1	1547:111	1	1547.111	1162.562**
P× P'	17.364	1	17.361	12.322**
$\mathrm{P} \times \mathrm{Pr}$. 9.000	1	9.000	6.646**
$\mathrm{F} \times \mathrm{P} \times \mathrm{P}$	0.027	1	0.027	Lese than one
D (-)	3018.392	1	3018.392	2229.610\%*
Major x ainon	3167.729	40	79.193	59.489**
E (2)	130.074	96	1.354	

**Significant at 0.01 level probability

APPENDIX IT

Analysis of variance
Totel yield

Source	S.S.	di	H.S.	E
Total	36.1332	161		
Block	0.1661	2	0.0330	16.60
vajor treatment	20.7964	5	4.1592	831.84**
Stage (S)	2.9232	1	2.9232	595.64**
Variety (V)	17.5329	2	8.7914	1758.28**
$\mathrm{V} \times \mathrm{S}$	0.2854	2	0.1427	29.54**
E(1)	0.0503	10	0.0050	
Henor treatment	13.9206	8	1.7400	1450.00**
V	3.3672	1	3.3672	2806.00**
P	4.4802	1	4*4302	3733.50\%*
$\mathrm{P} \times \mathrm{P}$	0.2146	1	0.2146	178.33**
P'	1.8769	1	1.8769	1564.03**
$F \times \mathrm{P}$	0.0336	1	0.0336	28.00**
Px P^{\prime}	0.0420	1	0.0420	35.00
$\mathrm{F} \times \mathrm{P} \times \mathrm{P}^{\prime}$	0.0003	1	0.0003	Less than one
$\mathrm{D}(-)$.	3.9053	1	3.9053	3254.41**
Majore x or	1.0792	40	0.0269	22.41**
E (2)	0.1206	96	0.0012	

**Significant at 0.01 level probability

PLATES

Plete I. Iext axem grouth aftox pantcle onergenoe
A. Flag leaf continued to grow after panicle emergence and the growth was aore smicking than that of penvatimate leaf (in all the throe varieties).
B. penultimate leaf ales oontinued to grow aftex paniold eqergenoo (in ell the three varietieg)
plate I a

plate Ib

Plate I. O. The leaf lower to the ponultanto leaf attainod maximun growith at panicle enorgence and there was no fipther grouth after panicle emergonee (in a.ll the three varieties).

Plato II. Plant ohavacters (Mon days after antheats)
A. Jyothi dwarf plant (witn erect amall leavea, non-lodging habit and panicle positioned bolow the R1ag leaf)

Plate Ic

Plate II A

plato II. B. Peb. 10 tall plant (with drooping lower Zeaves. lodging habit and slag leat poaltioned below the paniole)

O. Dwarf plant, with more oxeot lames non-lodging habst, and panicle positionad below the flaf 1eaí.
plate II b

plate II c

Plate III YLela ans Yiola qompnonte (Reprosentative sarmio of a oontrol p2ant)
A. Panicle length (rongth of the panicle wae moze in Fitb. 10 sollowed by Jaya and Jyothi woreas the grains wore soatiored in pto. 10, dansly pacieed in fyothi and most densly packed in jaya).
B. Sise and number of pilled graine (Representativo aampe of a control plant).
In both ptb. 10 and Jyothi, number of silled grains were elaont similar whereas the size af latter was bigges than the forier. Jaya pas heving no graing with the lavgest sizo).

EFFECT OF DEFOLIATION AT PANICLE EMERGENCE AND ANTHESIS ON GRAIN YIELD IN RICE

(Oryza sativa L.)

By.
SYED MOSHIN IBRAHIM

ABSTRACT OF THE THESIS
 SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENT FOR THE DEGREE MASTER OF SCIENCE IN AGRICULTURE
 (AGRICULTURAL BOTANY)
 FACULTY OF AGRICULTURE
 KERALA AGRICULTURAL UNIVERSITY

DEPARTMENT OF AGRICULTURAL BOTANY COLLEGE OF AGRICULTURE, VELLAYANI
 TRIVANDRUM

Abstract

The contributions of the different leaves and the importance of the period between panicle emergence and anthesis to grain filling in three varieties of rice were studied by employing the defoliation technique. Jaya, a meaium duration dwarf variety recorded the highest yield and yield components. Of the two short duration varieties the dwarf variety Jyothi performed better than the tall variety Ptb.10. Increasing the severity of defoliation resulted in further reductions in yield. It was found that only the top three leaves are important in grain filling in rice. The contribution of the third leaf is lower than any of the other two leaves. Flag leaf and penultimate leaf are of equal importance in grain filling in rice. Defoliation stimulated the photosynthetic activity of the remaining green parts which compensated partially for loss of leaves. A short period of eight days between panicle emergence and anthesis was found to be important in grain filling in rice. Damage to the leaves by insects, diseases or other agents at the early heading stage could have drastic effects on grain yield in rice.

[^0]: 153-61. (Gited by Yoshida, 1972).
 o and Cools, Jof. (1971). prosented at 12th Pac. Soi.

