STUDIES ON THE EFFECT OF PLANT POPULATION DENSITY AND AGE at thansplanting on the growth, freouency of harvest and total vegetative yield in amaranthus (Amaranthus gangeticus Linn.)

By
SULEKHA.G. R.

THESIS
SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENT FOR THE DEGREE

MASTER OF SCIENCE IN HORTICULTURE
FACULTY OF AGRICULTURE
KERALA AGRICULTURAL UNIVERSITY

11

DECLARATION

I hereby declare that this thesis entitled "Studies on the effect of plant popriation density and age at treanplantins on the growth, frequency of harvest and total vegetative yield in emaranthus (Amaranthus gencotious Linn.)" is a bonailide record of research wort done by me during the course of research end that the thesis has not previously formed the basis for the award to me of any degree, diploma, agsociateghipy fellowship or other similar title, of any other University or Society.

Veilayani.

$2 s^{\prime}-3-1980$.

GERTEICASE

Certified that this thesis, entitled "Studies on the effect of plant population density and age at transplanting on the growth; frequency of harvest and total vegetative yield in amaranthus (Ameranthus gengeticus Limn.)" in a bonafide record of research wort done independently by Sat. SULEwifA, G.R. under my guidance and supervision and that it has not proviously formed the basic for the ansi of any degree, fellowship, or associateship to her.

(Dr. N. MOHANAKUHARAN)
Chairmen, Advisory Committee. Professor and Head, Department of Plantation

Crops College of Horticulture*
Vellanilkasa.

Vellayani.
$28-5-1980$.

iv

APRROVED BY:

Chaiman

Members

Brinornilant

1. Shei. P. SETHOMADAVAN
2. (Shmi. Hocrass C. BABU) C. A. Jo scp
3. Shri. E.J. THOMAS

AOKNOHTEDGEATNT

The author wishes to express her deep debt of gratitude to Dr. N. Mohanakumaran; Chaizman of the Advisory Comititee, Professor and Head of Plentation Crops, College of Horticulture, Kerala Agricultural University, for suggesting the problem and for hie valuable guldance, keen interest, ingpiration, constructive oriticimand tireless help throughout the conduct of this strudy as well as in the preparation of this thesis.

Grateful and humble thanks are due to Shri. K. Srinivasan, Profegsor of Horticulture, College of Agriculture, Vellayani for his alncere help, ingpiring suggestions, encouragement and providing the required fecilities throughout the coures of thite stualy.

The author is also indebted to Shri. P. Sethumedhevan, Professor of Horiticulture (Frocessing Technology), College of Horticulture, Vellanikicare and Shri. Iuckins C. Babu, Assistant Professor in Agrioulturel Boteny, College of Horticulture, Vellanikkara for their guidance and construative critscism rendered during the study as Members of the Advisory Conmittee.

Grateful thanks and indebtedness are due to Shril. Eut. Thomas, Professor of Agricultural Statistics, College of Agriculture, Vellayani for his aincere help and auggestions rendered during the course of the study, analysis of the data and preparation of this thesis.

The autior wiahes to ackno:wledge with gratitude; The Central tuber Crops Research Institute. Sreekaryam, for proviaing laboratory facilitien for the quality analyais of the crop.

The help and co-operation rendered by the Senior, Junior and Fellow colleagues and the Staff of the Department of Horticialture is gratefully acknowledgea.

Vi

The author also withes to acknowledge with gratitude the award of Fellowship by the Kerala Agricultural Uriveralty, during the course of the atuaty

On a personal note, the author is greatly indebted to her percents and sisters for their constant encouragement and help during the course of the study.

SULEKALA: GOB.

GONTBPSS

			Page
IMTRODUEIIOM	\cdots	...	1
REVET Of Literatur	-•	-••	3
MATERIALS AND METHODS	-..	\cdots	20
Risutis	\cdots	-••	29
DISCUSSION	\cdots	-••	72
sturary	-•*	-••	83
REPERETCSS	\cdots	-•*	1-x
APPMWICES	-•	-••	I - XVII

vili

ITSI OF TABLES

Table 1a:	Height of'plante treneplanted at different spacingg (Mean over the replication and age groups).
Table 1b.	Hoight of plants belonglag to different age, groups (Mean over the zeplication and spacinge).
Table 10.	Helght of plents belonging to three age groups planted at three porniation densities - nean increment irom 10 to 15 days after transplanting 15 to 20 days - 10 to 20 days - at harrest.
Table 2a.	Giroh of plents trensplented at different spacinga (Mean over the replioation and age groups).
Table 2b	Glith of plands belonging to different age groups (Mean over the replication and epecinga).
Table 20.	Girth of plents belonging to three ege groups planted at inree popalation densities - mean Increment from 10 to 15 days after transplanting 15 to 20 days - 10 to 20 days - at harvest.
Table 3a.	Number of branches of plente trensplented at different spacings (Mean over the replication and age groups).
Table 3b.	Number of bxanches of plants belonging to different age groups (Heen over the roplication and spacinge).
Table 3c.	Number of branchers of plents belonging to three age groups plented at three population densities Hean increment from 10 to 15 days after transplanting - 15 to 20 days - 10 to 20 days at insst harvest.
Table 4 a	Fumber of leaves of plants ixansplented at different spacinge (hean over the replication and age groups).

Table 4	Number of leaves of plants belonging to different age groups (Mean over the replication and spacings).
Table 40.	Mrubor of leaves of plants belonging to throe age groups planted at three popriailon dexsities mean inoremont from 10 to 15 days afieer trans planting - 15 to 20 days - 10 to 20 days - at harvegt.
Table 5a,	Spread of plants transplanted at difeerent apacinge (Mean over the replication and age (2roups).
Table 5b.	Spread of plants belonging to dirferent age groups (Mean over the replication and spacings).
Table 50.	Spreed of plente belonging to tiree age groups phanted at three population densitiea - mean increment from 10 to 15 days after transplenting 15 to 20 days - 10 to 20 days - at firgt hamest.
Tebie 6.	Individual leaf area oi plents belonging to three age groups planted et three population densities (at first gut).
Table 7.	Frequenoy of harvest of plemts belonging to three age groups planted et three popaiation densities - mean for firat out - acoond cut thisd cut - Eourth cut - fifth cut.
Table 8.	Tield/plant of plants belonging to three ace groups planted at three popiletion densities mean of first - second cut - thind out - fourth out - Pifth cut.
Table 9.	Field/m ${ }^{2}$ of plents belonging to three age groups planted at three population densities - mean of ilrst cut - second cut - thind cut - fourtin cut - fifth cut.
Table 10.	Average weight or leaves/plant oi pleats belonging to three age groups plented et three popralation denaitios - mean of firgt cut - secona crut - thin cut - Sourth cut - fifth cut.

Table 11. Average wolght of atem/plant of plants belonging to three age groupa planted at three popalation densitics - mean of firat out - gecond cut thind out - fourth out - fifth cut.

Table 12. Ieaf/etem ratio of plants belonging to three age eroups planted at three popalation densities mean of pirst cut - gecona out - thind cut total of three cuts - from all poesible cuts.

Table 13. Percentage day matter in leave日 and atem of planta belonging to three age eroupe planted at three popalation densitiea - mean of firat cut seoond out - third out - fourth cut - iifth out.

Teble 14. Percentage molsture in leaves and atem of plants belonging to three ege groupe planted at tiree pomiation dengities - neen of firat cut - gecond cut - thin cut - fownth cut in fisth out.

Table 15. Iron content in leaves and stem of plants belonging to three age eroups planted at three population dansities - mean of first cut - aecond cut - thitu out - founth out - fifth out.

Table 16. Protein content in leaves and stem of plants belonging to three age groups planted at three population densities - mean of flrgt cut - becond cut - thisad cat - fourth cut - fifth out.

Table 17. Vitemin A content in leares of plente belonging to tirree age groups planted at three population dengities - mean of firet out - gecond out thind cut - fourtin cut - Pifitin cut. .
x

ISST OR IEIUSTRATENS

Fis.	befect of apnoing and age at tranaplanting on height of plant.
F1g.2.	Effect of spacing and ase et tranoplanting on gixth of man stem at coller zegion.
Fig.3.	Effect of gpacing and age at tronsplanting on number of branches.
FIS.4	Fifect of spacing and age at transplanting on number of leaves.
W2g.5.	Berect of apacing and age et transplanting on sgread of plante.
B1.8.	Effect of spacing and age at transplanting on indvidual leaf area at first harvest.
Fig.7.	Effect of apaoing and age at transplariting on Erequency of harvest recorded at firdt, gecond. thirid, fourth mal fifth hervesta.
148.8.	Effect of spacing and age at transplanting on yleld/plant at flret, second, thix, Sourth and fifth harvegte.
F1E.9.	Eifect of spacing and age et trensplanting on yicid/m2 at first, becond, third. fourth and fifth harvegts.
Pig* 10	Effect of epaotng and age at tranoplanting on avoxiage weignt or leaves/plent during firet. second: third, fourth ond sixth harveate,
31g.11.	gefect of apacing and age at transplanting on average weight oin gtem/plant during first. second. thing fourth and fifth hatrests.
F4.8.12.	Erect of gpecing and age at tranoplonting on lear/stem ratio during firgt out, seoond out, thiru cut, total of three cuts, total from all possible cuts.

21

Fig.13a. Bfiect of gpacing and age at transplanting on iron content ox leaves at first, seoond, thind, fourth and tifth harvests.

Mig.13b. Befect of spacing and age at tronsplanting on from content of gtem et firet, second, thind, fowrith and eifth harverts.

Fig. 14a. Erfect of apacing and age at trensplanting on protein content of leaves at fifist, second, thind, fouxth and İfth haxrestig.

Fig.14b, Briect of spacing end age at trangplanting on protein content of gtem at first, second, thind. fourth and fiftin harvesto.

Pig.15. mfeot of spacing and age at trensplanting on Vitomin A content of leaves at first second. thind fourth and fifth homeate.

INTRODUCTION

INLRODUCTION

Amaranth; believed to be a native of India, is one of the moat popular and cheap leafy vegetables. All partes of this plent ame used for culinary preparations. In countries like U.S.A. . amaranth has been reoogrised as a "grain crop". Ampranth hag reocived increased scientific attention in recent years and has been recognised as a "bypassed" crop having scope for belng eromed as a commercial crop particulariy for ite erain. Two international seminars on amaranth, the first In 1977 and the seoond in 1979 have been organised in J.S.A. to review the available knowledge and to apur research efforts in the crop. Hovever in India, amarenth is atill mainiy grown for the vegetetive portions. Desirable vegetable types have been selected by the progressive cultivators and these dominate the aree under amoranth in Indie. Amaranth is a C_{4} plant. one of a mall group of plents that most officiently capture and use avallable sunlight and atrospheric carion (Cunard, 1977). The plant produces a great amount of vegetative material. Initially, the plant genorates large quantities of gacculent green matter. Howevor, as the season progresses the Large stem and overgrown leavea become fibrous, pithy and unpalatable. Besides, appearance of inflorescence impeds further herveat. Final halt to harvest is always brought about by flowering. Thus for haryesting delicate tendor vegetative portiong, we have only a relatively chort bpen of bime.

Sevesal attempte have been made to obtain increased total vegetative yield, better leaf/sten ratio, more number of harveste, better nutpitional quality etc. Mohideen and Rajagopal (1975) found transplanting to delay flowering and to increase the total duration of the vegetative phase, thus making it possible to have nore harveste and ultimately higher vegetative yielde. However, information on the effect of age of geedinge (at transplanting) on the total yield, number of harvesto, leaf/stem ratio eto, are leaking. It has been demonstrated that by adjusting the height of cach outting also, total yiela and number of harvegts can be increasod. Control of population donsity has been ghown to increase the yield in other related vegetable cropa, besides permitting more number of harvests, increaging the proportion of mavizetable produce etc. (Halsey ot 으. 1967, WLeve and Thriend, 1970; Bradey ot a1., 1971: Esoh, 1975; Kays, 1975 and Helling et al., 1977). Research efforts on these lines are also lincking in amaranth. Worising out acceptakle population densities that produco maximum yielo as well as allow better nerngement is of utmost importance in amaranth.

Such gtudies ahould be afmed at enoouraging rapid Initial growth faster recouperation after each harvest, production of moro tender alde branches after each harvest. overall continuous production, lateness in flowering. cocumalation of quality constituents etc.

REVIEW OF LITERATURE

REVIEN OF LITERAIURE

The many opecies of the family Amaranthacaeae Porm an extremely diverse group of plants with world wide distribution. Soveral specios, with a history of thousands of years of oultivation, have been used as vegetables or as grain producing plants. Grain amprantin reached a peak of poprilamity as a staple crop dusing the hayan and Aztec periode in Central America. The amaranth grain has high nutritional value, containing 12-15\% protoin with a hifgh lyoine level. The young leaves of types selected for vegetable purpose are similar to spinech and other crops nozrally used as cooked greens. These typea ere widely grom in Asia. The yleld potential for botin grain and vegetable typee appeara aimiler to that of cumentiy used vegetable and cereal crops. Amaranth io more widely used as potheri. Cultivated for vegetable use throughout the tropics and eastern Asia, it is conaldered one of the best tropical greens: Its mild elerrour, good yielda, ability to grow in hot weather end high nutritive value have made it a popular vegetable.

For getting inorgased harrest of vegetative poxtion per unit area per unit time, there are a number of ways. The Important of them are judicious fertilization, Erowing selected varieties, rogulating popriation density and transplanting at the oosrect age.

Stuales dooumentilig the history of grain amaranth shed Iittle Ifgent on the crop|coltural practices used. Direct seeding is done in the thopics with the onset of tine calny season. Oversecding fiflowed by thinning as well as planting to a premecided atand are both found in treditional anturees. Amarrantic sced is mail (0.5 to 0.9 mg each) and must be pleced shallow to agsure gernination. Slnce the seed is pleced close to the gurface, rain or impation water can wash them out. Trensplanting has been attenpted to elintnate this' problem and also to assure a given denslty of ationg deedings.

Mohideen and Rajagogal (1975) Investigated the effects of tranoplanting versus direct seeding on yielas of Amapenthus Iexcocorpus. Fleld of transplanted crop was olgaificantly lower then that of a direct seeded crop. Transplanting in a convenient and accurate method for soientizis research: but it is not a method feasible for comercial grain production. Overseeding and thioning may be used; but it 19 a leas dealrable alternative.

In a transplanted crop, the spacing as well as the age of the eeeding detomine the penformance of the individual plants. A varietal-popriation trial reported from Pennsylvania (USA) cave the following results: For the densest population of 16,000 plants/acre A. cmentus yielded 825 Ib of seed/acre and A. hypochondrigure yielded 1000 ib of secd/acre. (Cunazd, 1977). The yield increases to those levels were linear for both varicries. In hig 'reader researoh trials' with A. bypochondriecus
(the onily specied grown), the highest yielaing population of 32,000 plents/acre produced 2.3 tons of seed/acre. Anothor density trial indicated that 20,000 plante/ha was the accoptable density for yield as well as atand management of A. hyoochonatiacus plant types (Feine at al. 1979).

- The studies regorted above were with grain amaranth. Population studies as well as studies on the effect of age at transplanting on the growth and yield of vagetable typoe of omaranth are few. Hence the following review traces the worls on these and related agpecte in other leafy and flower vegetables.

In brussels aproute, Verheij (1970) eatablitined that plents grown at higner densities were taller and more slender then low density plents. His spacing experimente also revealed thet yields of dry matter per square metre zoso ohemply with increasing plant denoity upto about four plents per aquare metre, above which there was little further increase. The average welcht per plant, however ahowed the reverse trend and deolined with closer spaoing, Hiebe and Uhrlend (1970) confirmed that closer spacing with earily plenting brought about higher yielde in brussels sproute. They stressed the point tinat the closer the apacing, the higher was the proportion of emsil sprouts. Hood (1970) found that olose apacing delayed maturity and the sprouts on pients at wider spsoing were overnature at the Late harvests. As against the above findings; Jonea (1972) recorded that with brusgels aprouts cultivar 'Jade Cross', total diry mettor production/unit axea was unaffected by density.

He obsozved that increasing plant density did not affect dry matter distribution; but increased the number of ameller gprouts. Macieod et al. (1978) raported that flavour strength increased when bruscele sproute were grown closer together.

Impwovenent in the percentage of marretable heeds was a sesult of low population density in cabbage. Halsey et gl. (1967) strualed the influence of apacing on yields of cebbage and observed a generral trend that increase in apacing resulted In increases in the percentage of marketable heads and the average weicich par head. Shumalser (1969) also reported that wider spacing increased the average weight of head and the percentage of marisetable yiela. However, in on eariler etudy. Jaghay and Sreenives (1968) hed foum aigniflcant yield increment at closer spacing in the same crop and this they ascribed solely to the higher plant denalty. It is not reported by these workers whether the observed yield increnent at cloger spacing was a result of increased average veight of heads per be or due to Increased population density. Almatanakul at al. (1977) reported that wider spaoing of cabbage plants increaged the weight of botin axilleary heade and main heads in an openpollinated cultivar and an inbred line: welght of axillary heads Increased more then that of the main head. They also found that transplanting ereatly decreesed the development of axillary heads compared with direct seeding.

Population aturises have been reporied in lettuce also. Ririe (1972) observed thet at the lowest spacing, stand losses
wore greatest. yield tended to deoline and head size was adveraely x ffected. Similous rosults have baen reported by Esoh (1975) wa come to the conclupion that in autumn lettuce, yiela/n' was hitgeat at the ologest opacing: but head aize wes Greatest at the widest spacing. This view also received support from the findings of Hendrix (1976) that head size was inversely related to plant number/m with all the lettuce oultivars tiliea.
similer studies have been reported in spinooh, enother leafy vegetable. Brealey et al. (1971) reported that when two cultivare of spinach were planted under different apacinge, yielde ware much higner in the closer rows. According to Choudhury et al. (1974) yleld aigalilicantly inoreased with close spacing in spinach. Wilholn (1976) reported that close apacing ahortened the growth period of leas vegetablas (e.ts. Spinach)

Spacing triai in another leafy vegetable. New Zealand spinach (retragonia expanae Murr.) by Kaye (1975) royealed that the closegt of the three spacings (fow speoing 20, 40 and $60 \mathrm{~cm})$ ylelded the hlgheot average rate of production/unit area, as in other orops.

Pozulation density trials have been reported in asparagus. In an esparegia apacing trial Hiebe (1966) observed highly algniItconte yleld differences due to spacing. Kauftmonn (1968) roportod that the total and manicetable ylelde of asparagus were highest With the closest apecing and fell with decreasing plant density. However, his findinge sevealed that plente from the olosest
spacing were of poor quality. Bennerot et a1. (1969) and Blasatnoky (1969) also made aimilar observations. Regarding age of seedingg, Helling ot al. (1977) recommended one-year old transplants to two year old plants because ylelds of green asparagus from both types were similar. Piniceu tet el ; (1978) revoaled that closer apacing (49300 plants/ha) compared with (24700 plants/he) between rows in asperagus, reduced the yield/plant: but incressed the macketable yiela/he.

Because of cultural similarities between leafy and Ilower vegetables, wort done on these lines in flower vegetables are also reviewed here.

The size of cauliflower transpleate in relation to field performance was examined by Whitwell and Grofts (1972) who indicated that large transplenta matured earliex than sumil transplants. It was suggested that trenspients with a fresh weight of no more than 8.0 g are most likely to give satiafactory crops. In.their atuales on age at transplentine of cauliflower seedlings, Georgieve and Gentov (1973) observed that at the eame transplanting date the youngest seedilings gave the higheot yiclds. Though Salter et e3. (1975) found that spacing hed no effect on variability in time of curd initiation within arops of two cauliflower varieties, skapski (1975) stressed that larger spacings aignticantly enhamed earlinesa in caniflower. Thompson and Taylos (1975) grew cauliflower cultivars 'Firney's 110' and "Kangersoo' at Pive population denalties (between two and porty-three planto/m each) in a square amrangenent
end also at three densities within this range in fows 71 on apart. 'Finney's 110' gave greater yields then 'Eangaroo' for all comparable treatmento apart from the lowest population density of each spatial amrangernent. Yields of Finney's 110 increased considewably with increased density, whereas those of Kangaroo changed little or declined. Curd diemeter tas reduced as dengity increased and aiffored for the two cultivarts only at the higher denalties, Finney's 110 then having the greater digmeter. For both cultivers, quality was adversely affected by increesing the population and wide rons yielded Iess than the square amrangement. Homa and Bert (1977) conducted a trial with cantifinwer oultivas 'Snow Dions' grown at geverel different densities. They observed that the differences in total yield/eore were olight. Averege curd aiso and weight, however were greatest with the widest specings (18" x $36^{\prime \prime}$ and $16^{\prime \prime} \times 30 "$) and declined marliedy at closer spacinge. At the clocest specing ($12^{\prime \prime} \times 12^{\prime \prime}$), however, naturity was ajvanced and by 28 Angust, 82.0 per cent of the total crop could be harveeted, compared with 71.6 per cent for the wideat speaing. Garner (1978) compared planting densities of winter hardy caullflower cultivams 'Azmado', 'Taxdo' and 'June Glory' ranging from 21277 to 68966 plants/he. Increasing density upto 47647 planta/ha increased yields. It has been auggesjed that the optixum proftt margin can be obtained from densities around 35000 plents/ha. At higher densities, curd size was reducod and quality defeets occurred.

Population density trials with broccoli gave findinge nore or less gimilar to those in cauliflower. Tereshlrovich (1969) reported that 'Primo F_{1} hybrid' broccoli plants at oloser apacinge produced lighter and smaller heads than the plante at wider spacing. WLacr apacing increased the average head welgent and the powcentage of narketable yield. Iate tronsplenting caused premature heading and totel loss in broccoli. The percentage of premature heeds was also increased by the use of lesige tramsplent sizes (Baggett and Mack, 1970). Palevitoin (1970) repored that higher total and marketable yields were obtained by increasing the plent pomilation denaity to as high as ten to elevan plants/m ${ }^{2}$, especielily in nearily equidistant spacing in broccoll. Accoring to Outcliffe (1971). orop raturity in broccolit was reterded as plant popalations Increased. In 1975 he observed that the yields increased and speas welght decreased as the distance between broccoli plants decreased from $50.8 \times 50.8 \mathrm{~cm}$ to $20.3 \times 20.3 \mathrm{~cm}$.

In a related crop, marrow-stem leale (Brasgica oleracea I.), Thonston (1971) observed that the effects of plant density were significant for all the characters studied, except for atem and leaf yields. Wilheln (1979) plonted kale plents at three densities ($40 \times 40 \mathrm{~cm}, 20 \times 20 \mathrm{~cm} 0 \times 20 \times 5 \mathrm{~cm}$) in mid liay, at the end of June, at the beginning of July or at the beginning of Auguet. The fellest plants with most green leaves/plant wore Prom the widest spaced plants and the earliest planting date. Plants at the closer apacing had nore yellow leaves
(which were produced carlier) at the base than plants at lower densities. The degree of leaf curilng increased until mid summer and was maintained thereafter. The flrmess of leaves increased umtil autumn and then decreased. The dxy matter and the carbohydrate contente were lower in eummer thon in winter. In autum, the dearease in yleld/area was compensated for by on increase in dry matter content.

In Chinese Kale (Brassica alboglabra), Wong and Lee (1974) observed that transplanting at two weeks after sowing resulted in more vigorous plant growth and higher manictable fresh weight yield with ercater mineral content than direct seeding. Thoy reported that deareasing plant spacing within the row from 30 om to 20 cm and 10 cm resulted in a progreasive increase in freah weicht ylela/he and this was due mainly to a greater number of planto/ha.

In khol-rabi, a vegetable where the aten is the edible portion, Burg (1971) observed that dense plantinge were the most profitable despite lower price fetched by the 'bulbs'. Persumaly, the lover price per bulb wea compensated by thell laseer number. Seltz and Iubltz (1973) were also of the opinfon that the nacrower apealige not only geve higher ylelds but elso higher seturns. Although the elosest planting produced the hifhest yields and retums/unit aron, it adversely affected camilness in lronl-rabi (Reimhess and Batz, 1971). Further closer apacings increased the proportion of low quality produce, retarded herveating and raised expendture (Reimherr anil Batz; 1974).

Population denalty trials and trials on age at transplenting have been conducted in other vegetable crope which yleld bulba, zoots and iruite. These works are reviewod hereunder, particularly to exarilue the twende of changes in yield and quallty $\overline{\text { Vis }}$ a pia population dansity and age at tranoplanting. Bleasdale (1966) arrived at the conolusion that the total yield of ripe onion bulbs increased with inoreaning number of pienta/sq. it until an optimum was reached and thereafter the yleld deolined. Yu and Taeng (1966) Prom their stuaile uging 25 to 60 day-old onion seedilings as planting material concluded that after transplanting the quilirest growth, earliest maturlty and lorgeat bulbs were obteined with scedinge aged upto 30 days at planting. The lowest peroentage of bulb division ocourred in scedinge planted when 45 days old. Virs (1970) reported that with increasing plant dansity, maturity was advanced. yields were increased and bulb size was reduced. Storage quality was improved with increasing plant density. Verma et al. (1971) also studied the poriormance of bulb crop of onion as influenoed by sowing detes and age of transpiante. Seeds were sown on 1st, Bth, 15th or 2and Ootober and scedings were transplanted when four, sir. eight or ten weeks old. " They observed that the earliest sowing date was the beat in terns of yield and growth, eight week-old seedings giving the highert yield. Irappel (1973) reported that at all densities there was a zange of bulb size produced and as the donsity increased there was a progressive shift of the nodel aize grade
to analler gredee. Singin and Singh (1974) obsexped the when the seeds of onion oultiver 'Pusa Hed' were sown on 16 th October, 13th November, 11th Deomber or 8th Januery ana seedinge transplanted at the age of four. Sive; oliz or geven veeks. early sowing favoured leaf. root and bulb growth and gave the highest yield. Thoy were of opinion that aseding age did not affeot bulb yield; but seedings aged five or aix weeks performed better then the others and the bulibe they produced hed a lower dry welght rercentage. Rendhawe and Singin (1974) reported that the closer apacing of $15 \times 10 \mathrm{~cm}$ produced the maximum number of buibs and higher builb yield thou wider spacing.

In a closely related crop gariic (oultivar 'Amarante'). there wes an inverse comelation between spacing and yisla as well as a direct correlation between spacing and average bulb weight (Menezee at al.; 1974). On and Srivastave (1977) were. also of the same opinion. They reported that masimam net retum of groplic was obtalned when planted at closer apacing.

A few studiea on population denaity as influencing the performance of the resulting crop heve been reporbed in cexrot aleo, whito 10 a direct sown crop. AbNel-Al (1974) observed that increasing populations enhenced the totel yiolde and decreasing popalation increased individual zoot voight. Similar results have been obtained by Ifpari (1975). He observed that there was a slgulficant correlation between yleld of marisetable roote and plant denslty. But when yleld. was increased by a hifger density of plonts in the row the number of unarketable, deformed or immature roote inoreaged and average weight of
naricetable roots fell. No significant differences were found for distance between rows. Root length, eacording to Bussel (1976), decreased as the plant popilation Increased. Paviak (1977) found a positive cozrelation between the number of plants and yleld/ha. Slmilarly Dragland (1978) Lound that the total and the marketable ylolde rose with inoreasing plant denaity. The root size fell with increasing plent density: but the number of split or branchad roots wes not eigniflicantly affected by the plant spaoing.

In the case of fruit vegetables (1ike tomato, chilliee, peas and beons, etc.) also popration denolty trials oowell as tranoplenting atuaies have been carried out.

Ioughton (1967) came to the conclusion that number of frust per plant and frruit oize in tomatoes decreased with increasinc denalty. Seth and Choudhuxy (1970) reported that fruit and seed yields were not significantly affected by apacing In tomato cultiver, 'Pusa Ituby'. In gless house tomatoes, Amsen and Bredmose (1971) reported that yiela/unit area rose With the incraase in plant numbers/m ${ }^{2}$. However, plant denotty did not affect earliness as a percentage of total yleld; but did affect quellty in that an increase in plant denatity reduced the average fruitt size. Femy and Janicir (1971) were also of the opinion that total fruit and total top yielde increased asymptotically witi increasing pogulations at all harveats in tomato. Sinilar observations vare made by Postiglions (1972) that an the popriation inoreased individual frust weight and
total yield/plant fell. As fer as Zohara and timm (1973) were concerned, the leaf area/tomato plant reduced with increase in density. Dirferences in plant density had no aignificent effect on nutritent content of the plants. According to Rodriguez and Lamboth (1975) wide gpacing with supplenentary lighting Incroased the number of ilowors, porcentage froit set, invit aize and total impita/plant and contributed to greater eariy and total yielde in tomato. The increasea were related to increased apparent photosyntheric rate and efficlenoy. The melation between spacing and quality was studied by Metjndert (1975). Fie reported that tomato fruit quality wes better at wider apeoing eapecielly with early planting. Fawasi (1977) from hite density triels revealed thet wide apeoing delayed 50% flowering: As reported by the eamier workers, Gupta and Shricia (1977) also confinmed that closer spacing decreased the 'yleld/plent; but incroased the yiela/ha in tomato. Iorovenko (1977) also reported that wider speaing resulted in significent yield decrease in two cultivars of tomato.

Chillies which closely resemble tomatoes in its culturel requirements also behaved nore or less in the seme way. Boominethan ot 21. (1971) observed that chilliea planted at $30 \times 30 \mathrm{~cm}$ out-ylejacd those plented at the conventionel spacinc of 45×45 cm by ebout 21 per cent. Accoraing to Silve et al. (1971). reaucing the eppoing increased the total number of fruites but reauced the number of fruita/plant and the average Eruit weight. Verheid at el. (1973) reported that
density planting pattorn and row oxientation iniluenced light interception by plante of Capgicum frutegoeng cultivast, 'Caroussel'; but only density affected the dmy matter yield. The biologioal yiela (dxy matterer/mi) was stable over a vide range of hifger denaitieg; but the proportion of dxy mattes recovered in the fruit, the individual fruit weight ond the proportion of red fruith dealined with rising density. Itn and Wong (1975) atudied the influence of seeding age at troncplanting on the performance of chillies (Capsicum annum). The seedlinge trancplanted three to four weeks after seoding were more vigorous in vegetetive growth particularly top growth, and flowered and Prutted earlier than those transplanted at five, six and seven weeks after geeding. Total yield of fruits of the younger transplante wese also higher than that of older trangplants. The highor yield was assooiated with higher total fruit number, shorter fruit length and greater Pruit dary matter. Sinha (1975) observed that the highest Vitanin C content and lowest yields resulted from the widest spacing in chillies.

In atill another golanaceous vegetable brinjel.
 both the totel and the exportable yield; but there uas an inorease in the inoidence of leaf disease and a reduction in the fruit gize with increasing plant density. Close gpacing was considered edvantageous for production of brinjal for the export market.

In beans and peas also, density trials heve been reported to gite more or legs afmilar resulte as in the case of other vegetablea nomitioned earlier.

Appadurat et al. (1967) obsexved that oloser spacine resulted in ingheat lear area index at inowering in kianey bean (Pheseolug valgaris). From their ilnainge thoy elso revealed that at oloser spacing the reduction in pod number end weif eht per plant was more then offect by the higher yielas/he. Another trial was carmied out by Ramos and Camacho (1969) in the same crop and they came to the conclusion that with hleher populatione, plants grev taller but yielaed less per plant and per pod. Similon resulits ware reported by Edje et el. (1971) in canning beane. They reported that yield rose with deoreasing row width and plant spacinc. They also arrived at the conolusion that plant hefght decreased and namber of pode/plent and seeds/pod inoreased with increased row width and plant spscing. Brandes ot aI. (1972) wore of the opinion that the number of leaxer and pode/plant became less with increase in denaity whereas the number of leaves and pode/unit area were enhanced in Pheseolus valgarig. They further reported that the retio or ary matter of ench plant part to the number of leares or poda showed almost constant values across planting densities and deasons. The relative contribution of the various plant parts. to dry mattos weight was approxinately the same for all denoities and both seasons. In snap beans, Tomplins et al. (1972) reported that plant helght and date of flowering were
little affected by densities; but colour intensity and uniformity were poorer and fibre content was usually greater with narros rowe. In 1973, Bradee et ou. reported that the leaf area/plant varied inveraely uith the plont population in Phascolus vulgarig. Eafe et el. (1974) reported that the net economic return from the densest stond was only marginally greator than that from the medium denalty stand in beans. In 1974. White and Anderson reported that as the plant popalation inoreased, vine length, full pods/plant and peos/pod were all reduoed. At lover popriations maturity was delayed by three days and there were more flat pods and imature peas.

In okra, a malvaceous vogetable, denaity atudies have been reported by many. Comenting on the effect of plenting density on okra yield. Kanalenethan et el. (1970) observed that an tnorease from one to two or three plants/mill rechuced individual plant yield and vigourb but increased the overall yields: Two plents/hill spooed 60 z 20 cm were recomender for raximum economic retums. Grewal at al. (1974) observed that mature diy 'pod' numbers and weights and total frouit numberg/plant were highest with early sowing and uide opecing. Staiks dianeter decreased uith increasing density and plent stunting occurred at the ingheat denaity (Albregts at ai., 1976) of olree.

Apart from vegetablea, density gtudies on fodder bect. orchard erass, otc., (in whilh the vegetative poxtions are used) are also reviewed here:

In two cultivars of Sodder beet, Vavilov et el. (1977) reported that the denser apacings produced amallor roots with hischer sugar and dry nattor contente. Dry matter ylelds with three plant densities (120,$000 ; 80,000$ and 50,000 piants/he) wore 6.67, 7.04 and 6.16 the in the first cultivar and 7.57, 7.95 and $6.69 t /$ ha in the second oultivar. In orohard grass sward (Deotylis flomerate), Lerral (1977) observed that dary mattor yields/unit area were greater at higa than low density plots in early growih' atages. At later atages, dry matter yields decreased uitil inoreased density. It was concluded from hile exporiment that tine yield and sowing density relation ship depended on plant helght at cutting and date and frequency of cutting:

MATERIALS AND METHODS

The investigations were carried out at the Diviaion of Horticulture, College of Agriculture, Vellayani during 1978-79.

The seeds of Amazanthus gengetious, (a local rea type) were obtained from the Instructionel Farm, 0011 ege of Agriculture, Tellayani and sown in a ataggered manner to obtaln soedlings of the requited age levela for transplanting on the same day. Erperimental dotaila

The trifal wes laid out as a 3^{2} factorial expentment in Randomised Blook Design with three repifcationo.

Treatnonts

Three levels of spocing

$$
\begin{aligned}
& S_{1}=10 \times 10 \mathrm{~cm} \text { or } 100 \mathrm{~cm}^{2} \\
& \mathrm{~S}_{2}=15 \times 10 \text { on or } 150 \mathrm{~cm}^{2} \\
& \mathrm{~S}_{3}=20 \times 10 \mathrm{~cm} \text { or } 200 \mathrm{~cm}^{2}
\end{aligned}
$$

The apacings tried gave poprlation densities of 480, 320 and 240 plants/plot or $100,66.6$, and $50 \mathrm{plants} / \mathrm{m}^{2}$, reapectively.

Three levels of age at transplenting
$A_{1}=15$ days aster sowing
$A_{2} \quad=20$ days after sowing
$A_{3} \quad-25$ days after sowing
Replications - Three
Totel number of plote - 27

Plot alze $\quad-2.4 \mathrm{~m} \times 2.0 \mathrm{~m} \quad$ Plot area $-4.8 \mathrm{~m}^{2}$

Net plot alize
$s_{1}=2.30 \mathrm{~m} 1.90 \mathrm{~m}$
$\mathrm{s}_{2}=2.25 \mathrm{~m} \pm 1.90 \mathrm{~m}$
$s_{3}=2.20 \mathrm{~m} \times 1.90 \mathrm{~m}$

Not plot area
$4.370 \mathrm{~m}^{2}$
$4.275 \mathrm{~m}^{2}$
$4.180 \mathrm{~m}^{2}$

Culelvetion.

Hunsozy preparation

After digging the coll to a deptil of 30 cm and incorporating ferm yard manure at the rate of $10 \mathrm{~kg} / \mathrm{m}^{2}$, ralsed nursexy bode ($3 \mathrm{~m} \times 1 \mathrm{~m}$) were formed. The sceds were broodcast in the prepared beac at the rate of 2.5 kg per hectare, after ulxing with slne earth for obtaining uniform dietribution. A thin layer (3 mm) of ary sand was spread over the seeds. Watering was done smediatoly using a rose cen. Byc 10% dust was spread 0.11 around the nuzaery bed to gramd against attack by anto and temitites. The beds were watered regularly. The seeds stasted gerginating in four days and gempnation was completed by about six days. The souing of seede was done in a otaggered nanner on the 15th. 20 tin ead 25th Jomuary 1979 to produce sealings of the three different age groups, namely 15. 20 and 25 deye old at the tine of transpleating. The seedlinge were trenaplanted to the mafn field on the 9th rebruary 1979. preparation of main fiela

The land was prepered by ploughing tivice whon a fine tilith was obtained. Plots of size $2.4 \mathrm{~m} \times 2.0 \mathrm{~m}$ vese fommed with 30 cm spacing between plots.

Dried, powdered rerin yard manure at the rate of 20 tonnas/ha was incorporated into the boil in each plot. Apoording to Eremputh (1976). Fortilisers were applied at the rate of 27 kg nitrogen, 27 kg phoophomas and 54 les potesh/ha as basal arepeing and 25 kg nitrogen after cach outing, as top areasing:

On 9th Febmamy 1979; healiny minform seedlinge of three different age groups were carefully uprooted and traneplanted to the matn fleld, by forming a gall hole whth a dibble, ingerting the beeding into it and pressing the soll. around the bese or each seeding. 士mediately after plenting, enade was provided by planting twige of glypicidia and the plants were waterea, Shede wes retained till the seedlinge got eatebliched, 1.e. for about three to four daye. The plants were regularly watered and frequent weeding was also carried out.

Incidence of Zeaf feeding caterpillacs uas noticed ten days after transplanting and it was offectively controlled by apraying Malathion 0.19 .

Samping teomiques

Out of the throe varying population densities, namely, 480, 320 and 240 plants per plote 20, 15 and 10 plente, respectively wore selected at random for recoriling the varlous blomérsic obecrvationg:

Fors cheatcal anolybia, Iesives and tonder aten portions ware washed with diestilled water, air drica and the oven dried at $65^{\circ} \mathrm{C}$, The dried leaves and atem vere then separately
powdered and used for the ohemical analysis. Qbservationg.

The following observationd were recomded at five dayIntervals atorting from ten days after iransplanting end also at the time of first cutting.

1. Heicat of the plent

The height of plant was measured from the ground level to the top most lear bud of all observational plante, averaged and expressed in centimeters.
2. Cirtll of the main stem

The ginth of the main aten was neasured uaing a nonelastic twine at the collar region o 0 each plant, mean woriced out and expressed in centimeters.
3. Number of branches

Total number of brenches of each observetional plent was counted and the average obtained for eaoh plot. 4. ilumber of leaves

For each plot, the total number of leavea in the observational plants was counted and the average number recorded. 5. Spread of plent

Spread was obtained by toking the product of the distance between the terminel parts of the largest branches on boti plenes, averaged and expressed in square centimeters. 6. Individucil leaf arca

The area of the Sourth, eighth end thirteenth leaves of each observational plant was measured grapisically, the average for each plant calculated and recorded at the tine of
sirst cutting.
The following charactere were recorded at the first harvest and subsequently at each cutting.

7. Frequency of harrest (cutting)

The presence of about 10 ger aent flower primorile in the harvasted portion was considered as the acceptable level for comerelel pruposea. Accoraticily, the first outting and subsequent cuttings were teken when about 10 per cent leaf ardis chowed presence of flower primordia. when more then 10 per cent flower prinordia was seen intilated on the new sprouts as they grew, it wes oonsidered as non-acceptable for commeroial purpose and hence further cutting was avolded.

Following the above orlteria, cuttinge were regulated and the frequency of harvest as well as the total number of cuttinge possible were recorded.
8. Yield/plent
(a) Average yield/plant for each cutting:

This was armived at by dividing the total yield of a plot by the number of plants. for each catiting. (b) Total yleld/plant upto three outtinges:

Yield/plant from the three cuttinge were pooled and anelysed.
(c) Total yield/plant from all posaible cuttinga (nore than three cuttinge wherevor available):

The average yield per plant from all the pospible number of outtinge in each treatment was totalled and recorded.
9. Tiela/unit area
(a) Average yield/square metre:

Average yield/me was obtained by dividing the plot yiela by the net plot area.
(b) Total yield/m ${ }^{2}$ upto three auttings:

Xiela/m was pooled for three cutting and anolysed.
(a) Total yiela/m ${ }^{2}$ fron all posaible cuttingat

Grand totel yiela/n for all the possible cuttings obtained from each treatment was recorded.
10. Welght of leaves/plont
(a) Average weight of leaves/plant for each cuttings

For each cutting, the averrage weight of leaves per plant was obtained as the wolght of leavee per plot divided by the number of plants.
(b) Total welght of leaves/plent upto three cuttinges

The average welght of leaves per plant for each cutting was pooled inclualve of the thind cut and the total recorded. (c) Total woight of leaves/plant inom all pogeible outtings:

The average weight of leaves obtained iscon all the outtings for each treatment was pooled and the grand total waight zecozted.
11. Weight of stem/piant
(a) Averege welght of stem/plont for each cuttingt

For all Individual outs, the weigint of aten/plant was reoorded separately for each treatment by diviaing the weignt of steri by the number of plants.
(b) Total welght of atem/plant upto three outtings:

The total yield of aten/plant from the three outtinge (comon to all treatments) were talien together and recorded for analysis.
(o). Total weight of sten/plant from all possible cuttinget

The total yield from all the posalble number of cuttinga in each treatment was pooler and recorded.
12. Leaf/stera retio
(a) Leaf/gtem ratio for each cutting:

The ravio of lear to gtem was obtained by dividing the weight of leaves by the weiget of stem and pecoxied fory each harvedi.
(b) Leal/atem matio upto three outtinge:

For each treatment, the leaf/ater ratio was obtained by taking into considerabion the weight of leaves and atoms in the three harvests.
(c) Ieaf/atem ratio from ell posetiole cuttinge:

The leaf atem ratio from all the cuttinge uas obtalned by tacing into concidenation the weight of leavas and stoms from all the posieible outilinge wherever applicable. 13. Dry weight of leaves and stem

The leaves and stem of known weight from the observational plents in esoch plot wels dried separately for five hours at $65^{\circ} \mathrm{C}$ till two consecutive weightis coincided. The flnal woight was expressed as porcentage to the initial green waight.
14. Moisture content of leaves and aten

From the srean weight and dry woight recorded, the percentage molature contient of leaves and sten was fouma out. 15. Iron content of leaves and atem

The tron content of the oven arled samples of leaf and stem from individual plot wes estamated colorimetzically efter digesting with concentrated aniphumic acid. nitric acid and perchloric acid (Jackson. 1958) and expressed as me/100 g of anicd leaves and stem. Iron content vas estimated for three cuttinge (common sor all treatments).
16. Eroteln content of leaves and atom

The total nitrogen of the oven axied amples of leaves and stem from esch plot for the three cuttinge was eatirazted colowimetricelizy aftor digesting with concertrated auzphuric acid by following the method of Le-Poidevin and Robinson (1965). The nitrogen values were maitiplied by the factor 6.25 to obtaln the protein content of the leaves and atem (A.O.A.C., 1975). The values were expresged as percentage of the dry volght or leevers and atem.
17. Witamin A content of leaves

Carotene content of fresh leaves from each plot for the tiree cuttinge was eatimated colominetrically by following the method of Reo et el. (1968). The carotene values expressed in Intermationat fret $\mu \mathrm{g} / 10 \mathrm{~g}$.
content of leares (A.O.A.C., 1975). The values were then expressed as percontage of fresh veight of leaves.

Statigtical apalysis

Data relating to each charracter vere analysed statistically by applying the technique of analyois of variance for 3^{2} factorial experiment in randonised block deaign and the alguificance was teated by 'F' test (Panse and Sukhatme: 1957).

RESULTS

HESULTS

The results of anolygis of data from pield experinontation and laboratory estination are presented below:

1. Hedeht of the plont

Observations on height of the plant at the three spacinge mede at the 10th, 15th and 20th dey after transplanting as well as at harvert ame presented in Table 1a. Then averaged over the three age groups, the medium apaced (S_{2}) plonts were taller then the widely spaced $\left(S_{3}\right)$ or closely spaced $\left(S_{1}\right)$ plents at all stages of obegervetion, except at 15th day after tranoplanting when S_{1} plants were taller. At first hervest, though the S_{2} plants were taller, the differences uore not statistically giecificant (Table 10, Fig. I, Appendix I).

Analyeis of the height increnent for five daya from 10 to 15 days after transplanting revealed that at the cloneat spacing (S_{1}), plente grev teller and were superior to S_{2} and S_{3} planta which were on par. The analyaia of the height increment between 10 and 20 days after trangplanting also nhowed the sane trend, though the differences between S_{1} and S_{2} and S_{2} and S_{3} planta were not statidtically aignificant. The increment in height for the five days from 15 to 20 days after plenting. when ansiysed ghowed no etatistical aifrerence between the spacings. However the medium spaced (S_{2}) plants exaibited a hitger growth increment. This obviously accounted for the lebeening of the atisference in helght of plante at the first eut (Table 10, Ple.1, Appendix I).

Table 1a: Helght of plants (cm) transplanted at different spacings (Mean over the replication and age groups)

	Days after transplanting			
Spacing	10	15	20	Harvegt
S_{1}	16.29	26.45	38.34	46.98
$\mathrm{~S}_{2}$	17.51	26.00	38.87	46.32
$\mathrm{~S}_{3}$	17.07	24.23	35.73	46.86

$\mathrm{S}_{1}-10 \times 10 \mathrm{~cm}$
$\mathrm{~S}_{2}-15 \times 10 \mathrm{~cm}$
$\mathrm{~S}_{3}-20 \times 10 \mathrm{~cm}$

Table 1b. Height or plants (cal) belonging to different age groups (Meen over the replication and apecings)

	Days after trangplanting			
	Age Group	10	15	20
A_{1}	15.19	22.10	34.10	44.47
A_{2}	15.40	23.90	37.01	47.17
Λ_{3}	20.28	30.68	41.83	50.52

$A_{1}-15$ day old
$A_{2}-20$ day old
$A_{3}-25$ day old

Table 1c. Helght of planto belonging to three age groups planted at taree population densities.

Treatments	Mean inctement from 10 to 15 DAP (cii)	Mean increment from 15 to 20 DAP (cm)	Mean increment from 10 to 20 DAP (cm)	Heen height at the time of pirat cut (am)
$S_{1} A_{1}$	8.23	11.06	19.29	41.97
$S_{1} A_{2}$	10.46	14.11	24.56	48.73
$\mathrm{S}_{1} \mathrm{~A}_{3}$	11.80	10.51	22.31	50.23
$\mathrm{S}_{2} \mathrm{~A}_{1}$	7.17	13.03	20.00	46.40
$\mathrm{S}_{2} \mathrm{~A}_{2}$	7.85	13.74	21.60	46.67
$\mathrm{S}_{2} \mathrm{~A}_{3}$	10.64	11.83	22.47	51.90
$\mathrm{S}_{3} \mathrm{~A}_{1}$	5.55	11.90	17.45	45.03
$\mathrm{S}_{3} \mathrm{~A}_{2}$	7.21	11.48	18.69	46.10
$\mathrm{S}_{3} \mathrm{~A}_{3}$	8.74	11.11	19.85	49.43
S_{1}	10.16	11.89	22.05	46.98
S_{2}	8.56	12.87	21.36	48.32
S_{3}	7.17	11.50	18.65	46.86
${ }^{\text {A }}$	6.98	11.99	18.91	44.47
A_{2}	8.51	13.11	21.62	47.17
A_{3}	10.39	11.15	21.54	50.52
C.D. (P=0.05)				
5 and A means	1.513	2.428	3.340	4.600
$S \times A$ means	2.620	4.206	5.790	7.970
DAP - Days Aftier Iransplanting				
$\mathrm{S}_{1}-10 \times 10 \mathrm{~cm} \quad \because \quad A_{1}-15$ day 010				
$\mathrm{s}_{2}-10 \times 15 \mathrm{~cm}$			$A_{2}-20$	ay 01d
$\mathrm{s}_{3}-10 \times 20 \mathrm{~cm}$			3 - 25 day old	

The helght of plonts belonging to the three age croups averaged over the three spacings indleated that older plonts were taller (Table 1b). At harvest, the dirference in height was signticant between the youngest $\left(A_{1}\right)$ and oldeat $\left(A_{3}\right)$ plants. Analysis of the helght inorement from 10 to 15 days aftex planting and 15 to 20 days after planting alowed thet though the increment vas more in the A_{3} plants, in the flimet five-day period, the madile aged (A_{2}) plante exibited higher Grouth increment during the accond five-day period (Table le, Fig.1, Appendix I). The ovorall incroment was also hicher for the A_{2} plents. But the aifferences vere not aignificent for the three age groups:

The helght varied significently at different levela of population dencities and for the different age groups (at trangplonting). However, there was no signinicant difference among the treatment combinations, revealing absence of interaction betwean apocing and age. The two fectors thus eoted independentiz.

2. Giroth of main atol at collar regton

Anelysis as done in the height of plants was also done with the stem glath, the figuree reveeled that the mediun spaced $\left(S_{2}\right)$ planta recorded the higliest geem girth durins the Pisiat three observational otagea nomely 10 days, 15 days and 20 days afters tranoplanting (Table 2a). At herveat, however, the widely spaced (S_{3}) planta exalbited higher aten girth as compared to the younges' plants (S_{2} and S_{1} in that oxder), whicis

Teble 2e. Girth of plante (cm) trensplanted at different apacinge (Mean ovex the replioation and age exoups)

	Daya after transplanting			
	10	15	20	Harvegt
S_{1}	1.54	2.62	3.55	3.95
$\mathrm{~S}_{2}$	1.56	2.84	3.80	4.40
$\mathrm{~S}_{3}$	1.53	2.67	3.72	4.59

Table 2b. Gixth of plants (an) belonging to diffexent age groups (Hean over the replicetion and spacing)

	Deve after transolantine			
Age group	10	15	20	Hervest
A_{1}	1.44	2.43	3.49	4.08
A_{2}	1.42	2.57	3.65	4.33
A_{3}	1.79	3.13	3.93	4.54

were on par (Table 20, Fig.2; Appendix II).
The increment in the girth of the main gtem with reference to the three apaoings revealed bhat the S_{2} and S_{3} plante exhibited highor inowemental rateg during the first five deys and second five days respectively. Duming the first Iivem day period (10 to 15 daye after transplanting) the ineremonted. rate between S_{2} and S_{3} planta was not gignificantly different (Table 2c, Fig. 2, Appendix II). In the second Eive day period, the three spacings were on par uith regard to the stem girth.

Seealinge belonging to the three age groups, averaged over the three epaninga exhibited a general trend of higher thtconese of stem with increase in age (Table 2b). The increment vas more in olam plant $\left(A_{3}\right)$ followed oy that in midale aged $\left(A_{2}\right)$ and younger plants (A_{1}) (Table 2o, Ples. Appendix II). The diffarence vae statiatically blenificant. During the second observation period, namely betwean 15 and 20 days after transplanting, there was a glowing down of the girth inorement in older plants. During this atage the nidale aged plants exhibited maximum girth incement, though not aigalificantiy diaferent from that exhintted by younger plante, Overall increment batween 10 to 20 days after planting ahowed no aigaificant alference between the three erougs of plant.

Wth regard to the otem cirth also there was no statistioaliy algnificant difference botween the treatment comblations. The two Lactors seemed to have acted inclepandently.

Table 20. Stem girth of plante belonging to three age groups planted at three popalation dencities.

Treatmenta	Mean increment from 10 to 15 DAP (cm)	Mean incsement from 15 to 20 DAP (cm)	Mean increinent from 10 to 20 DAP (ont	Mean ginth at insat cut (cm)
$\mathrm{S}_{1} \mathrm{~A}_{1}$	0.98	0.97	1.96	3.80
$\mathrm{S}_{1} \mathrm{~A}_{2}$	1.04	1.18	2.22	3.93
$\mathrm{SH}_{1} \mathrm{~A}_{3}$	1.21	0.63	1.84	4.13
$S_{2} A_{1}$	1.14	1.06	2.20	4.12
$\mathrm{S}_{2} \mathrm{~A}_{2}$	1.24	0.97	2.21	4.37
$\mathrm{S}_{2} \mathrm{~A}_{3}$	1.46	0.83	2.29	4.73
$S_{3} A_{1}$	0.86	1.14	2.00	4.32
$S_{3}{ }^{\text {a }}$	1.17	1.07	2.24	4.69
$\mathrm{S}_{3} \mathrm{~A}_{3}$	1.39	0.92	2.31	4.76
s_{1}	1.08	0.93	2.00	3.95
S_{2}	1.28	0.95	2.23	4.40
S_{3}	1.14	1.05	2.18	4.59
A_{1}	0.99	1,06	2.05	4,03
A_{2}	1.15	1.07	2.22	4.53
${ }^{A_{3}}$	1.36	0.79	2.15	4.54
C.D. (Pe0.05)				
5 and A means	0.153	0. 219	0.262	0.481
S x A meand	0.264	0.379	0.454	0.833

DAP - Days After meanglanting

$$
\begin{array}{ll}
S_{1}-10 \times 10 \mathrm{om} & A_{1}-15 \text { day old } \\
S_{2}-10 \times 15 \mathrm{~cm} & A_{2}-20 \text { day old } \\
S_{3}-10 \times 20 \mathrm{om} & A_{3}-25 \text { day old }
\end{array}
$$

3. Number of branches

As done in the gireth of main stem at coller mogion. analygis was also done with the number of branohes. Drowing the Pirst three observational atagesp namely 10, 15 and 20 days after transplanting, the data indicated that the nedium spaced $\left(S_{2}\right)$ planta produced the lasgest munber of branohes (Table $3 a$). At hervest, houever, the mediun apaced (S_{2}) plente exhibited the Iargest number of branoher as compared to the closely spaced $\left(S_{1}\right)$ plants and the differences wepe atailstically gignificant. But the differenoe between the medium apeced and widely spaced (S_{2}) plants wes not statigticelly aignistoant (Table 30, Fig.3, Appendix III).

Analyels of the inorement in the number of branchee for Ilve days from 10 to 15 days after tronoplanting sevealed that the S_{2} plents exhbited the ne cher increnental rate than the s_{1} plants, the aifference belng gtetiatically gignificant. But the differences between $S_{2} \& S_{3}$ plants and $S_{3} \& S_{1}$ plants vere not statiaticelly algatifoant. On the other hand the observations during the second ilve-day period revealea that the increment was more in the videly spaced $\left(S_{3}\right)$ plontes, the difference baing atatisticelly aignificant over the other two apecingo wht ch were on par (Table 3c, Fig. 3 i . Appendix III): The overall inorencat sron 10 to 20 days after plonting revealed that the bwo wider spacinge (S_{3} and S_{2} in that order) eshibfted highest incroment in the number of branches than the closely spaced (S_{q}) plante, the differences belng statisticelly significent.

Table 3a. Tumber of bronches of plants transplanted at different spacinge (Mean over the replication and age groups)

	Days after transplanting			
Spacing	10	15	20	Hesvest
S_{1}	1.00	6.02	7.34	8.36
$\mathrm{~S}_{2}$	1.87	6.66	8.28	10.16
$\mathrm{~S}_{3}$	1.68	6.03	8.26	9.64

$$
\begin{aligned}
& S_{1}-10 \times 10 \mathrm{~cm} \\
& S_{2}-15 \times 10 \mathrm{~cm} \\
& S_{3}-20 \times 10 \mathrm{~cm}
\end{aligned}
$$

Table 3b. Number of branches of plents belonging to different age groups (Mean over the replicabion and spacinge)

	Deys efter trangolanting			
Age group	10	15	20	Herrest
	1.36	5.19	7.24	8.61
A_{1}	1.44	5.89	7.72	9.21
A_{2}	2.54	7.43	8.91	10.83
A_{3}				

$A_{1}-15$ dey old
$A_{2}-20$ dey old
$A_{3}-25$ dey old

Table 3c. Wumber of bronohes in plants belongine to three age groups planted at three pogriation densitieg.

Treatments	Mean increment in number from 10 to 15 DAP	hean Increment in number from 15 to 20 DAP	Kean increnent in number from 10 to 20 DAP	Mean number at the time of firgt
$S_{1} A_{1}$	3.53	1.57	5.10	7.60
$S_{1} A_{2}$	4.10	1.30	5.40	$\therefore 8.60$
$\mathrm{S}_{1} \mathrm{~A}_{3}$	4.43	1.40	5.83	10.37
$\mathrm{S}_{2} \mathrm{~A}_{1}$	4.50	1.99	6.50	9.57
$\mathrm{S}_{2} \mathrm{~A}_{2}$	4.87	1.63	6.50	10.03
$\mathrm{S}_{2} \mathrm{~A}_{3}$	5.00	1.23	6.23	10.87
$\mathrm{S}_{3} \mathrm{~A}_{1}$	3.47	2.60	6.07	- 8.67
$\mathrm{S}_{3} \mathrm{~A}_{2}$	4.37	2.57	6.93	9.00
$\mathrm{S}_{3} \mathrm{~A}_{3}$	5.23	1.80	7.03	11.27
s_{1}	4.02	1.42	5.44	8.86
s_{2}	4.79	1.62	6.41	. 10.16
S_{3}	4.36	2.32	6.68	9.64
A_{1}	3.83	2.05	5.89	- 8.61
A_{2}	4.44	1.83	6.28	9.21
A_{3}	4.89	1.48	6.37	10.83
C.D. ($1=0,05$)				
S \& A means	0.524	0.540	0.580	0.766
$5 \times \mathrm{A}$ meang	0.908	0.936	1.000	1.330

DAP - Deys After Transplanting

$$
\begin{array}{ll}
\mathrm{S}_{1}-10 \times 10 \mathrm{~cm} & \mathrm{~A}_{1}-15 \text { der old } \\
\mathrm{S}_{2}-10 \times 15 \mathrm{~cm} & A_{2}-20 \text { day old } \\
\mathrm{S}_{3}-10 \times 20 \mathrm{cmI} & A_{3}-25 \text { day old }
\end{array}
$$

Regrading tho aeedinge belonging to the three age-groups avoraged over the three spacinga, a general trend of increased number of branches with increage in age was obsezved (Table 3b). The increment in numbor of brenchee for the firet five daye from 10 to 15 days after transplanting showed that the two older age groups (A_{3} and A_{2} plantor) showed the hifheat inorement from the younger seedinge $\left(A_{1}\right)$, the difference being statisticaily aignificont: But A_{3} and A_{2} plants were on par. The second five-day increment and the overall increnentinthe number of branches for ton days, both ahowed no statiotical difference betweon the treatment neand (Table $3 c, \mathrm{Fl}_{\mathrm{g} .} \mathrm{B}$. Appendix III).

Ho statistically gignificent difference could be obtained between the difiorent treatment combinations vith regard to the number of branohes, The two fectors thus acted indeperdentiy. 4. Wumber of leave日

Drring the three observational atages namely 10 days, 15 days and 20 days arter tranoplanting the figumos for the number of leeves revealed that the medium apaced plants produced more leaves then the plants in the other two apecinge (Table 4a). At harvert, the medium spaced (S_{2}) plants and widely spaced (S_{3}) plente produced stgnificently largon nuber of leaves than the olosely apaced (S_{1}) plants. But the difference between the former two gpacinge were stetistically non-significant (Table 4c, Fig.4; Appendix IV).

Table 4a. Momber of leaver of plants transplanted at dirfarent spacings (Mean over the replication and age groups)

	Days after tranglanting			
Spacing	10	15	20	Harvest
S_{1}	13.27	20.89	35.30	39.44
S_{2}	13.49	33.97	42.29	49.26
S_{3}	12.60	30.02	41.46	46.52

Table 4b. Wumber of leaves of plants belonging to dipferent age groups (hean over the replication and spachige)

For the fissut five days, S_{2} plants exniblted a higiner inoremental rate than S_{3} end S_{1} plente whion ware on por. on the other hend, for the second fivenday poxiod, S_{3} plonts exhibited a highor incrementol rate than the S_{2} and S_{1} plonts which were on por. But the overall increment for the ten-ay period from 10 to 20 days after tranoplenting ghowed that the S_{3} and S_{2} plante were on pare, whith in turm veris atatisticaliy superiom to the S_{1} planto (rable 4c, Fig*4, Appendix. IV).

Seedinnge belonging to the thwee ege groupg, averaged over the three apeainge exhibited a general trend of higher number of leaves with increese in ege (Teble 40). The increment in mober of leaves was more with the older secalinge (A_{3}) Quring the flrst five days inom 10 to 15 days after planting. The difference was atatieticelly significent over the midale eged seedlinge (A_{2}) and tize younger seedinge (A_{1}) which were on par. But during the aecond sive day pariod (15 to 20 deys after planting), the inorement in the maber of leaven ohowed no etatietical aiguiffeance between the difierent age groups (Table 4e, Flg.4. Appendix IV). The overall inorement for ten days revealed that A_{3} plants were atatisticaliy superion to A_{2} and A_{1} planto whioh wore on pars.

Between the different treatment combinations no atatiatical aifference wes obtained for the number of leaves: Thus it secmed that the two factore were ecting independently and there was no interaction between them.

Table 40. Mumber of leaves in plants belonging to three age groups planted at three pomalation densities.

Treatnonts	Mean increment in number from 10 to 15 DAP	Mean incremeno in number from 15 to 20 DA ?	Mean incxement in number from 10 to 20 DAP	heen number of leaves at Pitrot out
$S_{1} A_{1}$	12.47	6.77	19.23	32.10
$\mathrm{S}_{1} \mathrm{~A}_{2}$	14.20	7.77	21.97	33.93
$S_{1} A_{3}$	20.20	4.70	24.90	47.90
$S_{2} A_{7}$	18.79	6.72	25.50	45.33
$\mathrm{S}_{2} \mathrm{~A}_{2}$	17.03	9.90	20.93	44.90
$\mathrm{S}_{2} \mathrm{~S}_{3}$	25.65	8.33	53.97	57.53
$\mathrm{S}_{3} \mathrm{~A}_{1}$	12.03	12.60	24.63	33.07
$\mathrm{S}_{3} \mathrm{~A}_{2}$	15.53	11.73	27.27	47.20
$\mathrm{S}_{3} \mathrm{~A}_{3}$	24.70	9.97	54.67	54.30
S_{1}	15.62	6.41	22.03	39.44
S_{2}	20.48	8.32	28.80	49.26
S_{3}	17.42	11.43	28.86	46.52
A_{1},	14.43	8.69	23.12	30.50
A_{2}	15.59	9.80	25.39	45.68
A_{3}	23.51	7.67	51.18	53.04
C.D. $\left.\mathrm{P}^{(P=0.05}\right)$				
S and A means	3.04	3.34	4.02	7.69
S x A means	5.26	5.79	6.97	13.33
DAP - Days After Transplanting				
S_{1}	: 10 om	A_{1}	- 15 day	
s_{2}	$10 \geq 15 \mathrm{~cm}$	A_{2}	- 20 day	
	×20 cm		- 25 day	

INEREMENT FROM 10 TO 15 D \square INCREMENT FROM 10 TO 20 DAF	
IMCREMENT FROM 15 TO 20 DAP	At the time of first cut
DAP - DAYS	Anting

5. Spreed of plant

The spread of the plant wea also analysed at various otages. The figures during the inirst two observatiorial stages (10 and 15 days efter planting) revealed that the medium spaced plante (S_{2}) gave the langeat spread. At the 20th day after planting, the widely apaced plante (S_{3}) recorded the largest spread (Table 5a). At the time of barvest, S_{5} and S_{2} piante reaorded gignticently lerger spreed than the closely apaced $\left(S_{1}\right)$ plants. However the diffexence betweon S_{2} and S_{2} plante wore not gigntifeant (Table 50, Tig.5. Appandix V).

The increment for the first and second ive-day periods, oxaibited no atatiatical differences between the three aifferent apacinge avoraged over the three age groupg. But the analyais of the overall increment from 10 to 20 dayn after planting revealed thet S_{3} and S_{2} plente recorded the hignest inoremental rate than the S_{1} plants (Table 5c, Fig. 5. Appendix V).

As a generel trend, for the aliferent age eroups (avemaged over the three spacinga) the spread of plants inoreaged with increase in age or seedinge duxing the first three obsarvational atages (Table 5b). But at harvest, though there was no statistically significant difference botween the three different age emoupg, the midale sged (A_{2}) plente exhibived alightiy larger apreed than the oldeat (A_{3}) plants (Table 50, Fig.5, Appendix V), For the Ifrat Ifve days from 10 to 45 days after planting, the incrament in spread wes the

Table 5a. Spread of planta (cm^{2}) transplanted at different apacings (Mean ovor the replicetion and age groupa)

Spocing	Deys eften imansplanting			Harreat
	10	15	20	
S_{1}	335.78	920.26	1201.50	1230.12
S_{2}	342.30	1012.22	1373.14	1545.71
S_{3}	299.45	951.53	1374.97	1715.29

Table 5b. Spread of plants (om ${ }^{2}$) belonging to different age groups (Hean overs the replication and spacinge)

Daye oftor tranaplanting						
Age group	10	15	20	Fiaryest		
A_{1}	260.63	825.66	1203.78	1449.94		- 15 day ola
A_{2}	287.98	900.81	1329.73	1526.76		- 20 day old
A_{3}	429.43	1167.54	1416.11	1514.42		- 25 day ola

Table 5c. Spreed of plants belonging to three age groupa planted at three population denaities.

Treatments	Hean increment from 10 to 15 DAP $\left(\mathrm{cm}^{2}\right)$	Mean Increment from 15 to 20 DAP $\left(\mathrm{cm}^{2}\right)$	Mean increment from 10 to 20 DAP $\left(\mathrm{cm}^{2}\right)$	Mean at the time of firset cut $\left(\mathrm{cm}^{2}\right)$
$S_{1} A_{1}$	507.47	270.74	778.21	1141.93
$\mathrm{S}_{1} A_{2}$	581.08	448.53	1029.61	1355.63
$\mathrm{S}_{1} \mathrm{~A}_{3}$	664.69	124.45	789.34	1192.80
$\mathrm{S}_{2} \mathrm{~A}_{1}$. 636.26	351.62	987.88	1487.73
$\mathrm{S}_{2} \mathrm{~A}_{2}$	646.17	398.01	1044.18	1534.70
$\mathrm{S}_{2} \mathrm{~A}_{3}$	725.83	333.14	1058.97	1614.70
$\mathrm{S}_{3} \mathrm{~A}_{3}$	551.38	512.00	1065.41	1720.17
$\mathrm{S}_{3} \mathrm{~A}_{2}$	611.25	440.21	1051.46	1639.93
$\mathrm{S}_{3} \mathrm{~A}_{3}$	823.63	280, 10	1111.73	1735.77
S_{1}	584.48	281.24	865.72	1230.12
3_{2}	669.42	360.92	1030.34	1545.71
S_{3}	662.00	413.44	1075.53	1745.29
A_{1}	565.04	378.12	943.17	1449.94
A_{2}	612.83	428.92	1041.75	1526.76
A_{3}	738.11	248.57	986.68	1514.42
C.D. (D=0.05)				
S and A meang	120.105	129.798	161.810	227.690
S x A means	208.028	224.816	280.260	394.360
DAP - Days Apter Transpleating				
$S_{1}-10 \mathrm{l}$ - an $\quad \mathrm{A}_{1}-15$ day old				
$S_{2}-10 \times 15 \mathrm{~cm}$. $\mathrm{A}_{2}-20 \mathrm{day} \mathrm{old}$				
$S_{3}-10 \times 20 \mathrm{~cm} . \quad \mathrm{A}_{3}-25 \mathrm{day}$ 01a				

Lorgeat fox the oldest seedinga $\left(A_{3}\right)$ than the midale aged $\left(A_{2}\right)$ and youger (A_{1}) seedings. The diferences between A_{3}; A_{2} and A_{1} plants were stetisticelly slgniflcent. But duming the seoond plve-ay period (15 to 20 dave arter plenting), the incremental rate was the least for the A_{3} planta. A_{2} ena A_{1} plante were on pom (Taiole 5c). Bat the overonl increment $\mathbf{S 0 2}$ ten amy from to to 20 days after planting anowed no atatieticelity sigalekcont alefermee.

For the treatrent cominations bobween apacing end age of sealinge at tranaplanting no otatistical gignificance could be obtaithed, revealing thet theze was no interaction betwen these bwo Pactoris and that they were acting indepadently. 6. Indivianal Ieaf area

The individual lear area vas found to very sienticantly for tho difiorent anecings averaged over all the three ageGroups. Plants spaced at $10 \times 20 \mathrm{~cm},\left(S_{3}\right)$ when compared to the other two gpactngen recorded the naximun lear area ($123.03 \mathrm{om}^{2}$) accounting for 28.36 per cent increase over $10 \approx 10$ om (S_{q}) and 13,89 per cent over 10 K 15 an (S_{2}) spaçing but S_{2} and S_{1} were on par (Table 6, Fig.6, Appendix VI).

Hegarding age of seedinge at trensplanting, the 25 dey old (A_{3}) seedinga averaged over the three aproings reconded a significent increase in leaf orea compared to those of the othes two agemgoupe. the youngest, 15 day old $\left(A_{1}\right)$ aeedings recosded the least, the marginal meons being $104.96 \mathrm{~cm}^{2}$, $109.07 \mathrm{~cm}^{2}$ and $125.16 \mathrm{~cm}^{2}$ for 15,20 and 25 day old seedings.

Table 6. Individual leas apoa of plants belonging to three age groupe planted at three popratation denalties

Txeatments	Wean Individual Iqaf area (at first cut) om
$S_{1} A_{1}$	90.18
$\mathrm{S}_{1} \mathrm{~A}_{2}$	95.73
$\mathrm{S}_{1} \mathrm{~A}_{3}$	113.30
$\mathrm{S}_{2} \mathrm{~A}_{1}$	102.77
$\mathrm{S}_{2} \mathrm{~A}_{2}$	101.55
$\mathrm{S}_{2} \mathrm{~A}_{3}$	132.91
$\mathrm{S}_{3} \mathrm{~A}_{1}$	121.93
$\mathrm{S}_{3} \mathrm{~A}_{2}$	129.93
$\mathrm{S}_{3} \mathrm{~A}_{3}$	132.24
s_{1}	99.74
S_{2}	112.41
S_{3}	128:03
A_{1}	104.96
A_{2}	109.07
A_{3}	126.15

$$
\text { C.D. }(P=0.05)
$$

S and A means 14.98
$S \times \mathrm{A}$ means
25.95

| $S_{1}-10 \times 10 \mathrm{~cm}$ | $A_{1}-15$ day old |
| :--- | :--- | :--- |
| $S_{2}-10 \times 15 \mathrm{on}$ | $A_{2}-20 \mathrm{doy} \mathrm{oia}$ |
| $S_{3}-10 \times 20 \mathrm{~cm}$ | $A_{3}-25 \mathrm{dQvold}$ |

respeotively (Table 6, Fig.6, Appenatix VI).
7. Freauenoy of harveat

Harresting was done when the crop exinibited more thon 10 per cent illoral initiation. The number of days talcen by each treatment for attaining the harveatable atage have bean recorded in Table 7 (Flg.7. Appenalix VII). Plants at the clobest spooing $\left(S_{1}\right)$ showed earlier inftiation of flower primordia then those at the widest apacing (S_{3}), the medium spacing (S_{2}) coming in between. Plants at S_{1}, S_{2} and S_{3} spacings were harverted on the average at $21.67,22.67$ and 27.44 days after transplanting; reapactively. Thus the plants at closer spacing attained haxreateble gtage eaxller than those at the other two spacinge. The same trend was reflected for the Eubsequent oute also. The interval batween the first and the sccond out was 7.35, $9.00,11.67$ days for $S_{1}: S_{2}$ and S_{3} plents respectively, The corresponding figures for the thind out was 6.00, 7.00 and 9.33 days respeotivaly. In certain treatmente pore than three harveste ware posaible. Those treatmenta wifch produced more than three cute algo extibited the same trand in the initiation of 10 per cent flower primordia which was fixed ad the oxiterion for harvest. The treatment combinations $S_{2} A_{1}, S_{2} A_{2}, S_{3} A_{1}$ and $S_{3} A_{2}$ gave foum cuts and $S_{3} A_{1}$ and $S_{3} A_{2}$ gave five cuta each. It was evident that the plants at the lower populetion donsities (wide end medium spacing) gave more number of cutbinge when compared to those at the highest pomaration denatity (close apeoing).

Table 7. Frequency of harrest of plants belonging to three age eroups plated at thee population densities.

Treatmenta	$\begin{aligned} & \text { Firgt aut } \\ & \text { Fheauency } \\ & \text { of harrest } \\ & \text { (daya) } \end{aligned}$	$\begin{aligned} & \text { Second cut } \\ & \text { Frequenoy } \\ & \text { of horrost } \\ & \text { (days) } \end{aligned}$	$\begin{aligned} & \text { Thina cut } \\ & \text { Frequency } \\ & \text { of harvest } \\ & \text { (days) } \end{aligned}$	$\begin{aligned} & \text { Fourth cut } \\ & \text { Frequenoy } \\ & \text { of harreat } \\ & \text { (days) } \end{aligned}$	$\begin{aligned} & \text { F1fth cut } \\ & \text { Irequeney } \\ & \text { of naervest } \\ & \text { (days) } \end{aligned}$
$\mathrm{S}_{1} \mathrm{~A}_{1}$	23	7	7	-	-
$\mathrm{S}_{1} \mathrm{~A}_{2}$	22	8	5	-	-
$\mathrm{S}_{1} \mathrm{~A}_{3}$	20	7	6	-	-
$\mathrm{S}_{2} \mathrm{~A}_{1}$	25	10	8	6	-
$3_{2}{ }^{\text {a }}$	23	8	7	5	-
$\mathrm{S}_{2} \mathrm{~A}_{3}$	20	9	6	-	-
$\mathrm{S}_{3} \mathrm{~A}_{1}$	30	13	11	9	6
$\mathrm{S}_{5} \mathrm{~A}_{2}$	27	12	9	9	5
$\mathrm{S}_{3} \mathrm{~A}_{3}$	25	10	8	-	-
S_{1}	21.67	7.33	6.00	\bullet	-
S_{2}	22.67	9.00	7.00	3.67	-
S_{3}	27.33	11.67	9.33	6.00	3.67
A_{1}	26.00	10.00	8.67	5.00	2.00
A_{2}	24.00	9.53	7.00	4.00	1.67
A_{3}	21.67	8.67	6.67	-	-

C.D. $(P=0.05)$

S and A means	0.53	0.45	0.60	-	-
S x A means	1.02	0.92	1.54	-	-

| $S_{1}-10 \times 10 \mathrm{~cm}$ | $A_{1}-15$ day ola |
| :--- | :--- | :--- |
| $S_{2}-10 \times 15 \mathrm{~cm}$ | $A_{2}-20$ day old |
| $S_{3}-10 \times 20 \mathrm{cma}$ | $A_{3}-25$ day oad |

FREQUENCY OF HARVEST

Highly significent difference was observed in the froquency of harvest between the three different age groups (Table 7, Tig.7, Appendix VII). The 25 doy old (A_{3}) geedinge planted at the three densities showed earlier initiation or flower primordia. The plants belonging to A_{3}, A_{2} and A_{1} groups took 21.67, 24.00 and 26.00 days, respectively to produce 10 per cent flower primordia for effecting the first harvest. The plents belonging to the game three age groups took 8.67. 9.33 and 10.00 deys after the firat out for giving the second harvest. For the third out, they took 6.67, 7.00 and 8.67 days, respectively, after the aecond cut. Those treatments that cave more then three cuts also ahowed the same trend; i.e. the younger the seedings at transplenting, the more was the number of cuttinge possible. Evidently, $A_{1} S_{2} A_{1} S_{3}$ and $A_{2} S_{2}$ and $A_{2} S_{3}$ geve fours cuts and $A_{1} S_{3}$ and $A_{2} S_{3}$ geve five cuts each. B. Yleld/plent.

Droing the first out, plants at different apacings averaged over all the three age-groups showed that the widest spacing (S_{3}) gave the maximum yield/plant and wad ouperior to the closest spacing $\left(S_{1}\right)$. However, the S_{3} plants were on par with those of S_{2} and S_{2} plants were not sigrolficantly different from S_{1} plonts with respect to yield/plent (Table 8 , Tig.8, Appendix VIII). The wideat spacing gave 48.02 per cent more yield than the closest spacing at the time of first harrest. But the differences were not aifmificant during the
gecond and third harvegts. Yield per plant obtained from all the three cutb when pooled and analysed revealed thet S_{5} plente gave maximum yield followed by S_{2} and S_{1} plants, recording an increase of 31.79 per cont over S_{1} plants. Though S_{j} planteg were superior to S_{1} plants, they were on per with those of S_{2} plante. In certain treadments, more than three outs were possible, whon the yield total from all the possible number of cuttinge was anaiysed, S_{3}, S_{2} and S_{1} plants gave yields of $99.40,76.77$ and $62.82 \mathrm{~g} / \mathrm{plant}, \mathrm{S}_{3}$ planta being statistically superior to S_{2} and S_{1} plants which were on par.

Analysis of yield of plante belonging to the three different age groups averaged over the three apacinge did not give significant difference in the first and second hervests (Table 8, Fig.8, Appendix VIII). But for the thind cut, the youngeat seedings (A_{1}) recorded the highest yield/plent and the difference between the A_{1} plante and A_{3} plante was statistioally aignificant. However, thene wes no aignificant differenoe between the youngest $\left(A_{1}\right)$ and middle aged (A_{2}) planto and middle ared and oldest (A_{3}) plants. Yield total from all the three cuts when pooled and analysed, showed no statiatical sienificance. However, the yiela totel from all the possible cuttinge revealed thet the middle aged (A_{2}) plantus gave aignificently the hifher yield/plant over the other two age-groups which wore on par. The mean yield per plant during the entire growth poriod of A_{1}, A_{2} and A_{3} plante wore 85.06, 85.26 and 70.67 g respectively.

Table 8. Yjela/plant of those belonging to threc age groups planted at three population densitiea.

mreatmenta	Mean weight of finst cating g	Mean weight of aecond cut in g	Moan waight thyrd cut in E	Mean of three cuts in 5	Nean of fourth cut in 6	Neen whight or fifth cut in g	Mean uelght of all cuts in C
$\mathrm{S}_{1} \mathrm{~A}_{1}$	36.15	15.03	11.12	62.28	-	-	62.28
$\mathrm{S}_{1} \mathrm{~A}_{2}$	38.03	17.60	12.87	68.51	-	-	68.51
$S_{1} A_{3}$	33.40	15.45	8.83	57.67	-	-	57.67
$S_{2} A_{1}$	39.63	16.35	12.69	68.67	10.58	-	79.26
$\mathrm{S}_{2} \mathrm{~A}_{2}$	43.11	12.58	10.17	65.87	10.83	-	76.70
$\mathrm{S}_{2} \mathrm{~A}_{3}$	51.50	13.13	9.73	74.36	-	-	74.36
$\mathrm{S}_{5} \mathrm{~A}_{1}$	46.49	21.60	13.52	81.59	13.50	12.57	107.65
$\mathrm{S}_{3} \mathrm{~A}_{2}$	59.23	16.30	11.29	86.82	12.33	11.42	110.57
$\mathrm{S}_{3} \mathrm{~A}_{3}$	53.53	15.66	10.78	79.98	-	-	79.96
S_{1}	35.86	16.03	10.94	62.82	-	-	62.82
S_{2}	44.75	14.02	10.86	69.63	7.14	-	76.77^{*}
S_{3}	53.06	17.85	11.86	82.79	8.61	7.99	99.40
A_{1}	40.75	17.66	12.44	70.85	8.03	4.19	83.06
A_{2}	46.79	15.50	11.44	73.73	7.72	3.81	85.26
A_{3}	46.14	14.75	9.78	70.67	-	-	70.67
C.D. ($\mathrm{P}=0.05$)							
S and A means	10.48	4.77	1.75	13.80	-	-	14.17
S x A meong	18.15	8.25	3.03	23.90	-	-	24.54
$\begin{aligned} & S_{1}-10 \times 10 \mathrm{~cm} \\ & A_{1}-15 \mathrm{day} \text { ola } \end{aligned}$		$S_{2}-15 \pi 10 \mathrm{~cm}$ $S_{\mathrm{B}}-20 \mathrm{x} 10 \mathrm{~cm}$ $A_{2}-20$ day old $A_{3}-25$ day old					

There was no statistical difference between the different treatment combinations. Thus it was concluded that there was no interaction between spacing and age of seedings with reference to thin character also.

9. Yield/square retre.

During the first and the second harveste, the closely spaced (S_{p}) plente reconded significantly higher yleld/m ${ }^{2}$ over the medium apaced (S_{2}) and videly apaced (S_{3}) plents, which were on par. However, for the third harvest, yield $/ \mathrm{m}^{2}$ rose with dearease in spocing. The differences between S_{1}, S_{2} and S_{3} plants were all statistically gignificant (Table 9, Fic.9, Appendix IX). The totel yield from all the three outs, as well as that from ail the possible cute showed the sanle trend as in the first and second harrests i.e. S_{1} plante being statistically superior to S_{2} and S_{3} plants which in turn were on par. The nean yleld $/ \mathrm{m}^{2}$ from all the poesible cuts recorded by S_{1}, S_{2} and S_{3} plants were $6.28,5.12$ end 4.97 kg respectively.

The performance of seedings belonging to the threc ago groups, averaced over the three spoainge showed no significent difforences during the first and second harreate. However, during the third cut, the younger (A_{1}) plante and midale aged (A_{2}) plante were otatiatically superior to the older (A_{3}) plants. The former two were statistically on par. Yield $/ \mathrm{m}^{2}$ from the three cuts taken together as well as that from all the possible outs showed no stauistically olgnificant difference between the different treatment means (rable 9 . Tig.9. Appoxaix IX).

Table 9. Yield/ar of plants belonging to thepe age groups plented at three popuiation densities.

Treatments	Mean oz finst cut in Ig	Mean of second out in $1 ;$	Mean of thind cut in 3 g	Hean of three cuts in kg	Hean of fourth cut (kg)	Mean of fisth cut (k_{g})	Mean weight of all cuta in m
$B_{1} A_{1}$	3.61	1.50	1.71	6.23	$*$	$-$	6.23
$\mathrm{S}_{1} \mathrm{~A}_{2}$	3.80	1.76	1.29	6.85	-	-	6.85
$\mathrm{Br}_{1} \mathrm{~A}_{3}$	3.34	1.54	0.88	5.77	-	-	5.77
$S_{2} A_{1}$	2.64	1.09	0.85	4.58	0.70	-	5.29
$\mathrm{B}_{2} \mathrm{~A}_{2}$	2.88	0.84	0.63	4.40	0.72	-	5.12
$\mathrm{S}_{2} \mathrm{~A}_{3}$	3.44	0.88	0.65	4.96	-	-	4.96
$\mathrm{S}_{3} \mathrm{~A}_{1}$	2.32	1.08	0.68	4.08	0.68	0.63	5.38
$\mathrm{B}_{3} \mathrm{~A}_{2}$	2.96	0.82	0.56	4.34	0.62	0.57	5.53
$\mathrm{S}_{3}{ }^{\text {n }}$	2.68	0.78	0.54	3.99	\cdots	-	4.00
S_{1}	3.59	1.60	1.09	6.28	-	\cdots	6.28
5_{2}	2.99	0.94	0.72	4.64	0.46	-	5.12
9_{3}	2.65	0.39	0.59	4.14	0.43	0.40	4.97
A_{1}	2.86	1.22	0.88	4.96	0.46	0.21	5.65
A_{2}	3.21	1.14	0.84	5.20	0.45	0.19	5.83
${ }^{4}$	3.15	1.07	0.69	4.91	-	-	4.91
C.D. ($P=0.05$)							
S and A means	0.815	0.393	0.123	1.140	-	-	1.140
5 I A means	1.490	0.680	0.212	1.970	-	-	1.970
$\begin{aligned} & S_{1}-10 \times 10 \mathrm{~cm} \\ & A_{1}-15 \text { aay old } \end{aligned}$		- $15 \times 10 \mathrm{~cm}$		$s_{3}-20 \times 10 \mathrm{~cm}$			

There existed no interaction between spacing and age at transplenting with regend to yield $/ \mathrm{m}^{2}$. The two factors thus acted independently.

10. Average weight of Ieaves/plant.

During the first out, the wiadely apaced $\left(S_{3}\right)$ plants recorded the hignest average woight of leaves/plant and they were atatiatically superiow to the medium apaced (S_{2}) plants as well as to the closely apaced (S_{1}) plants which wore on par (Table 10, Pig.10, Appendix X). But for the second and third harvests, no statistically significant differences could be obtained between the three different apacings. The average woitht of leaver/ plant from 0.11 the three oute. when pooled and analysed showed thet the S_{3} plonts were statisthcally superioz to S_{2} and S_{1} plents which were on paw. The total yield from all the possible cuttinga revealed highiy aignificant affferences between S_{3}, S_{2} and S_{1} with a mean weight of 61.01, 44.71 and $36.49 \mathrm{~g} / \mathrm{plent}$ respectively.

Planta belonctrig to the different age groups, averaged over the three spacinge showed no gtetistically signisicant differance for the Iirst and second harvesta. But during the thind harvest, there existed statistical difference between the younger $\left(A_{1}\right)$ and older $\left(A_{3}\right)$ plants. But the younger plants and middle afed (A_{2}) ones were on par and so also were A_{2} and A_{3} (Table 10, Fig.10, Appendix X). The yield from all the three cute when taken together and amelysed showed no stetisticelly sienificant difference. However, the total yield

Table 10. Average velght of leaves/plant of those belonging to three age groupa planted at three population densities.

Treatmenta	Mean of firgt cut (g)	Mean of second ant (g)	Hean of thind cut (G)	Mean of three cuts (g)	Hean of fourth cut (E)	Mean or fifth cut (E)	Mean or all cuts (g)
$S_{1} A_{1}$	16.93	11.43	8.55	36.91	-	-	36.91
$S_{1} \Lambda_{2}$	16.57	12.79	9.83	39.19	-	-	39.19
$S_{1} A_{5}$	75.73	-10.83	6.80	33.37	\cdots	- -	33.37
$\mathrm{S}_{2} \mathrm{~A}_{1}$	17.23	12.22	9.93	39.38	8.00	-	47.38
$\mathrm{S}_{2} \mathrm{~A}_{2}$	17.15	9.62	7.95	34.72	8.50	-	43.22
$\mathrm{S}_{2} \mathrm{~A}_{3}$	26.54	9.40	7.58	43.52	-	-	43.52
$\mathrm{S}_{3} \mathrm{~A}_{1}$	21.00	16.00	10.82	47.62	14.28	10.40	69.17
$S_{3}{ }^{\text {a }} 2$	27.60	12.13	8.36	48.09	9.50	9.17	66.76
$\mathrm{S}_{3} \mathrm{~A}_{3}$	28.67	10.03	8.41	47.10	-	-	47.10
S_{1}	16.41	11.68	8.39	36.49	-	-	36.49
S_{2}	20.31	10.41	8.49	39.21	5.50	\cdots	44.71
S_{3}	25.76	12.72	9.20	47.67	7.93	6.52	61.01
A_{1}	18.39	13.21	9.77	41.37	7.43	3.40	51.15
A_{2}	20.44	11.51	8.71	40.67	6,00	3.06	49.72
A_{3}	23.65	10.09	7.59	41.33	-	-	41.33
C.D. (Pm0.05)							
S and A moans	4.99	3.53	1.18	8.03	-	-	8.26
$S \times A$ meano	8.64	6.11	2.04	13.97	-	-	14.31
$S_{1}-10 \geq 10 \mathrm{~cm}$$A_{1}-15$ day old		$\begin{aligned} & \mathrm{S}_{2}-15 \times 10 \mathrm{~cm} \\ & \mathrm{~A}_{2}-20 \mathrm{day} \mathrm{old} \end{aligned}$		$\begin{array}{ll} S_{3} & -20 \times 10 \mathrm{~cm} \\ A_{3} & -25 \text { day old } \end{array}$			0

from all the posaible cuttinge revealed that A_{1} and A_{2} plants were atatiatically superior to Λ_{3} plants and the former two age groups were on par, the mean yields being $51.15,49.72$ and 41.33 g .

The treatrient combinations ghowed no interaction.
11. Average velght of gtem/plant.

During the first cut, the widely epaced (S_{5}) plantis producing 27.33 E and the medium spaced $\left(\mathrm{S}_{2}\right)$ plants producing 24.44 g recorded atatiatically gignificant differences over the closely spaced $\left(\mathrm{S}_{1}\right)$ plants producing 19.44 \& (Table 11. Tig.11. Appendix XI). The performanoe of S_{3} and S_{2} plants were atatiatically on par. But no atatistical aignificance could be obtained in the weight of stem/plant during the second and thind harve日te. The total yield from all the three outs when pooled and analysed showed that the S_{3} plants recorded the hifgest weight (38.39 g) when compered to S_{1} plante $(26.33 \mathrm{~g})$ and the difference was statistically significant. But the difference between $S_{3} \& S_{2}$ and $S_{2} \& S_{1}$ were statiatically non significant. The ame tread could be deen when the total yield from all the possible cuttinge was pooled and analysed.

Performance of the plents belonging to the three age groups averaged over the spacings ohowed no significant difference for the first, second and third harvegts as well as for the three cuts considered together. The total yield from all possible cuttings also showed no statistically

Table 11. Average weight of atern/plant from those belonging to three age groups planted at three popalation denaitiea.

Treatrents	Mean of firsat cut (G)	Mean of gecond cut (g)	Mean of thinill cut (g)	Mean of three cute (G)	hean of Tourth cut (g)	Mean of fifth cut (g)	Mean of all cuts (c)
$S_{1} A_{1}$	19.20	3.61	2.57	25.38	-	-	25.38
$\mathrm{S}_{1} \mathrm{~A}_{2}$	21.47	4.81	3.03	29.31	-	-	29.31
$S_{1} A_{3}$	17.67	4.61	2.03	24.30	-	-	24.30
$\mathrm{S}_{2} \mathrm{~A}_{1}$	22.40	4.13	2.76	29.29	2.58	-	31.87
$\mathrm{S}_{2}{ }^{\text {a }}$	25.97	2.97	2.22	31.15	2.33	-	33.48
$\mathrm{S}_{2}{ }_{3}$	24.96	3.73	2.14	30.84	-	-	30.84
$\mathrm{S}_{3} \mathrm{~A}_{1}$	25.49	5.60	2.70	33.79	2.55	2.16	38.50
$\mathrm{S}_{3} \mathrm{~A}_{2}$	31.63	4.17	2.93	38.73	2.83	2.25	43.81
$\mathrm{S}_{3} \mathrm{~A}_{3}$	24.87	5.64	2.37	32.87	-	-	32.87
S_{1}	19.44	4.34	2.54	26.33	-	-	26.33
S_{2}	24.44	3.61	2.37	30.43	1.64	-	32.06
S_{3}	27.33	5.14	2.66	35.13	7.79	1.47	38.39
A_{1}	22.36	4.45	2.68	29.48	1.71	0.72	31.92
A_{2}	26.36	3.98	2.73	33.06	1.72	0.75	35.53
A_{3}	22.50	4.66	2.18	29.34	-	-	29.34
C.D. (P=0.05)							
S and A means	5.97	1.40	0.78	6.66	-	-	6.85
$S \times$ A means	10.34	2.43	1.35	11.54	-	-	11.87
$\begin{aligned} & S_{1}-10 \times 10 \mathrm{~cm} \\ & A_{1}-15 \text { day } 01 a^{2} \end{aligned}$		$\mathrm{S}_{2}-15 \times 10 \mathrm{~cm}$		$\mathrm{s}_{3}-20 \times 10 \mathrm{~cm}$			
		$\mathrm{A}_{2}-20 \mathrm{day}$ ola		${ }^{A_{3}}$	25 day ola		

significant difference. Although the aifferences vere not gigniflicant, the middie aged (A_{2}) plents gave the highegt welght of sten/plant (35.53 g) when compared to the younger (A_{1}) plants (31.92 g) and the older (A_{3}) plants (29.34 g).

There was no interaction between spacing and age of seedinge with reference to weight of steri/plant.

12. Feats/stem ratio.

Seediligg planted at the differeat spacings, averaged over all the three age froups did not show any gigniricant difference during the first, second and third harveste for this character. The leaf/stem ratio was increasing from the firgt to the third harvest. The leaf/atem ratio from all the three cuts considered togetiner also ghowed no statistical difference betseen the treatment meano (Table 12, Fig. 12 , Appendix XII). Similar was the case when the ratio wa examined for all the possible cuts together. Though the difference was not algnificant, the low dengity plante (S_{3}) recorded the highest leaf/stem ratio of 1.59 when compared to the mediva density (S_{2}) and high density (S_{1}) plante.

However, the performance of seedlings belonging to the three ace groups during the first out shoved that the older $\left(A_{3}\right)$ plants geve the highest leaf/atem ratio than the younger $\left(A_{1}\right)$ plents and the midale aged (A_{2}) plante, the former being statistically superior to the latter two which were on par (Table 12, Fig.i2, Appendix XII). During the second out, younger ($A_{1} \dot{\hat{*}} A_{2}$) plants were statistically superior to the

Table 12. Leaf/stem ratio of plants belonging to three age groups planted at three population denbities.

Treatrients	Hean of fixst cut	Mean of seoond out	Mean of thimal cut	Mean of three outs	Hean of fouxth cut	Mean of fifth cut	Mean of all cuts
$\mathrm{S}_{1} \mathrm{~A}_{1}$	0.913	3.280	3.310	1.482	-	-	1.482
$\mathrm{S}_{1} \mathrm{~A}_{2}$	0.785	2.650	3.300	1.347	-	-	1.347
$\mathrm{S}_{1} \mathrm{~A}_{3}$	0.925	2.200	3.370	1.419	-	-	1.419
$S_{2}{ }^{A_{1}}$	0.778	3.060	3.590	1.357	3.220	-	1.497
$\mathrm{S}_{2} \mathrm{~A}_{2}$	0.667	3.370	3.580	1.120	3.730	-	1.294
$\mathrm{S}_{2}{ }_{3}$	1.087	2.520	3.640	1.440	-	-	1.440
$\mathrm{S}_{3} \mathrm{~A}_{1}$	0.824	2.850	4.120	1.413	4.400	4.835	1.796
$\mathrm{S}_{3} \mathrm{~A}_{2}$	0.868	2.980	3.360	1.231	3.600	4.524	1.528
$\mathrm{SH}_{3} \mathrm{~A}_{3}$	1.154	1.910	3.870	1.437	-	-	1.437
S_{1}	0.874	2.730	3.270	1.420	-	-	1.420
S_{2}	0.842	2.980	3.600	1.510	2.316	-	1.411
S_{3}	0.949	2.580	3.780	1.360	2.680	3.120	1.590
A_{1}	0.836	3.060	3.670	1.420	2.540	1.610	1.590
A_{2}	0.773	3.000	3.420	1.230	2.440	7.510	1.390
A_{3}	1.054	2.210	3.650	1.430	-	-	1.430
C.D. $(P=0.05)$							
S and A means	0.128	0.507	0.826	0.213	-	-	0.209
SxA means	0.221	0.078	1.430	0.370	-	--	0.364
$s_{1}-10 \times 10 \mathrm{~cm}$			$15 \times 10 \mathrm{cmal}$ 20 day old	S_{3} $\mathrm{~A}_{3}$	$\begin{aligned} & -\quad 20 \\ & -\quad 25 \end{aligned}$	$10 \mathrm{~cm}$	

oldor $\left(A_{3}\right)$ plants. However, during the third harvest no stetiotical difference could be obtained between the three age groups. The same was the cese when all the three oute wore taken together as well as when all the poseible cuttinge were considered together. Thougth the differences were not algnificent, the younger $\left(A_{1}\right)$ plonta gave the highest leaf/stem ratio when all the possible cuttinga were telcen together. Here also, as in the case of apacing; for the disferent age Groups, the leef/otem ratio chowed an increasing trend from the firet to the thind harvest, wifich wes conmon for all the treatmente.

There existed no interaction between spaoing and age of seealinge at transplenting ulth referenoe to leaf/atem ratio.

13. Dry matter content of leayes and stem.

Dry matter percentage of leaves and atem at the three spacings averaged over the three age groups ahowed no atatioticolly gignipicent atfearonces (lable 13. Appendix XIII). Hedium denatty $\left(\mathrm{S}_{2}\right)$ plente recorded the maximum accumanation of dry matter in the leaves at the time of P1rst, aecond and thind out. Per cent ary matter acoumilation in leaves increased with subsequent cuts. Thls trend was applicable only upto the uhird uorvest. For the subsequent cuts the dry natiter percentage showed ie decreasing tendenoy.

As far as the dry matter in the stem was concemed, Ohe S_{3} plente oxhiblited highest accumatation during the first cut. In the subsequent outs S_{2} plents recomided hifenest

Table 13. Percentage dry natter in leaves and stem of plants belonging to three age groups planted at three popriation densities.

dry mattor scoumalation. Heare slso, upto the thind harveat the per cent dry matter accumalation in stem inoreased with subsequent cuts and then decreased.

Buring the first and the third herveste, the 20 daymold $\left(A_{2}\right)$ and 15 day-ola (A_{1}) plents respectively recorded hignest diry mattor peroentage in leaves as well as in stem (Table 13, Appendix XIII). However, auming the second cut, the 25 dayola plants reconded maximum dry matter in the stom while 20 day-ola plante recoried narimuin dry natior in the leaves. The differenoes in all the cesen weac not atatistically aignificant.

There was no interaction between apeoing and age of seedings with regand to the dry mation acounulation in leaves ond gtem.
14. Molsture content of 1eaves and stom.

No statiotical algnificance could be obtained for the percentage moisture content in the leaves and atem during all the harvegts (Taile 14. Appendix XIV). For the first cut, the widely anaced (S_{5}) plantis recorded the highest moisture percentage in both leaves and stea. But during the second and thisd cut, the olosely apeced (S_{1}) plants showed the higheat moleture percentage in leaves and sten.

Conaldering the moisture levels with respect to age of secdlings at transplanting during the first harvest, the 25 day-old (A_{3}) plants hed more moisture in their leaver and ster as compared to those of the other two age groups.

Table 14. Percentage moisture in leaves and atea of plants belonging to three age groups planted at three population denaities.

Treatmenta	Finst cut Mean p moisture heares Stem		Secona cut		Third cut		Fourth cut		Fipth cut	
			Mean Leaves		Mean S Leaves		Meant	mioisture	Mean, \% Leaves	noisture
$S_{1} A_{1}$	89.50	93.49	88.25	94.11	86.64	92.13	-	-	-	-
$\mathrm{S}_{1} \mathrm{~A}_{2}$	87.96	93.35	87.84	94.85	87.25	91.67	-	-		
$\mathrm{S}_{1} \mathrm{~A}_{3}$	88.13	93.57	87.98	92.48	86.27	91.03	-	-	-	-
$\mathrm{S}_{2} \mathrm{~A}_{1}$	86.93	93.37	87.75	93.06	84.15	89.80	85.32	89,90		-
$\mathrm{S}_{2} \mathrm{~A}_{2}$	88.14	93.33	86.28	93.81	83.80	91.00	84.64	'91.85	-	
$\mathrm{S}_{2} \mathrm{~A}_{3}$	88.81	94.08	87.85	92.94	86.35	91.49	-	-	-	-
$\mathrm{S}_{3} \mathrm{~A}_{1}$	89.09	95.74	88.30	93.65	86.08	90.97	86.11	91.16	88.98	92.21
$\mathrm{S}_{3} \mathrm{~A}_{2}$	89.40	93.66	86.94	92.75	87.60	92.29	86.24	'90.16	88.16	91.03
$\mathrm{S}_{3} \mathrm{~A}_{3}$	88.98	92.96	87.80	93.26	85.69	92.20	-	-	-	-
S_{7}	88.53	93.47	88.02	93.81	86.72	91.91	-		-	
S_{2}	87.96	93.59	87.29	93.27	84.76	90.77	56.65	60.58	-	-
S_{3}	89.15	93.66	87.68	93.22	86.46	91.82	57.45	60.44	59.05	61.08
A_{1}	88.50	93.54	88.10	93.61	85.62	90.97	57.14	60.35	29.66	30.74
A_{2}	88.50	93.45	87.02	93.80	86.22	92.65	56.96	60.67	29.39	30.34
A_{3}	88.64	93.64	67.88	92.89	86.10	91.58	-	-	-	
C.D. ($\mathrm{P}=0.05$)										
S\&A means	1.23	0.73	1.34	0.84	2.08 3.60	1.55 2.68	-	-	-	
5×1 means	2.12	1.27	2.35	1.45	3.60	2.68				
		$10 \times 10 \mathrm{em}$ 15 day old			$\begin{aligned} & 15 \times 10 \mathrm{~cm} \\ & 20 \text { day old } \end{aligned}$		$\begin{aligned} & S_{3}-20 \times 10 \mathrm{~cm} \\ & A_{3} \quad-\quad 25 \text { day old } \end{aligned}$			

But during the gecond cat, though the ame trend was ghown by the leares, in the case of sterl, the 20 daymold $\left(\Lambda_{2}\right)$ plonts erhibited the hyghest percentage moleture. At the tine of
 percontage when compared to A_{3} and A_{1} plantis (Table 14 . Appendix (ITY).

With regand to the molsture percentage also, there was no atatistically gignificant difference betwean the treatment combinations. The two factore thus acted independentiy.

15. Iron content of Leaver and stem (ar/100 is).

The analysis of iron content in leaves fory the inalvidual cute were carined out and highly gicalificent difierences were obgerved for the three disferent spacings averaged over the three age groups during the first horvest. The low dansity (s_{3}) planth were saperior to the modiun density $\left(\mathrm{S}_{2}\right)$ and high density (S_{1}) plents nocountins Sor 19.14 por cent increase overs S_{1} and 7.90 per cent over S_{2} plonts (Tabla 15. Fig. 13a, Appenais XV). For the other two cuts, though the trend exhibited was the alme, the differences due to the meminal means of the three apocines were not gtetiaticelly aienificent. The widely spacea plente contained nose iron in their leaves then the densely spaced ones.

The imon content in stem showed the geme trend as that in leares. During all the three outs, tine widely spaced (S_{3}) plents contained more iron their atem then the medium spaced $\left(S_{2}\right)$ and clonely upaced (S_{1}) piento. S_{1} planter reconded the

Table 15. Iron content in leaver and stem of plants belonging to three age eroups planted at tinree population densities.

Trestments			Second cut Hean iman content in me/100 $\frac{8}{5}$ Ihearea Stem		Thind cut		Fourth cut		Fifth cut			
				$\begin{aligned} & \text { on } \\ & \text { g in }^{2} \\ & s_{\text {ter }} \end{aligned}$	Mean conten mg/100 seave	in Stera	Meam ir IE/ 100 Leerves	in Srom				
$S_{1} A_{1}$	48.82	32.22			62.22	31.11	76.89	37.78	-	-	-	
$S_{1} A_{2}$	48.89	34.44	61.11	35.56	86.67	41.11	-		-			
$\mathrm{S}_{1} \mathrm{~A}_{3}$	53.23	37.78	62.22 :	34.44	80.00	44.44	--	-	- .	-		
$\mathrm{S}_{2} \mathrm{~A}_{1}$	54.45	36.67	66.67	36.67	87.78	47.11	91.11	58.89	-			
$\mathrm{S}_{2} \mathrm{~A}_{2}$	56.67	38.89	80.00	37.78	95.56	41.11	102.96	56.67	-			
$\mathrm{S}_{2}{ }^{\text {a }}$	55.56	37.78	83.33	38.89	100.00	47.78	-	-	-	-		
$\mathrm{S}_{3} \mathrm{~A}_{1}$	57.78	43.33	81.11	45.55	101.31	50.00	104.44	58.89	10 ¢०. 17	70.00		
$\mathrm{S}_{3} \mathrm{~A}_{2}$	62.22	38.89	87.78	41.11	96.50	46.67	102.96	ธֹ. 22	104.44	67.41		
$\mathrm{S}_{3} \mathrm{~A}_{3}$	60.00	40.00	87.78	40.00	100.00	45.56	-	-	-			
S_{1}	50.35	34.81	61.85	33.70	81.65	41.11	-	-	-			
S_{2}	55.56	37.78	76.67	37.78	94.45	43.33	64.69	38.52	-			
S_{3}	59.99	40.74	85.55	42.22	99.20	47.41	69.12	40.37	70.20	45.80		
A_{1}	53.68	37.41	70.00	37.78	89.26	42.96	65.18	39.26	35.39	23.33		
A_{2}	55.93	37.41	76.30	38.15	92.91	42.96	68.54	39.63	34.81	22.47		
A_{3}	56.30	38.52	77.78	37.78	93.33	45.93	-	-	-	-		
C.D. $(P=0.05)$												
S \& A maens S x A meang	$\begin{array}{r} 6.154 \\ 10.650 \end{array}$	5.297 9.175	$\begin{array}{r} 20.090 \\ 34.790 \\ \hline \end{array}$	$\begin{aligned} & 11.050 \\ & 19.150 \end{aligned}$	$\begin{array}{r} 14.905 \\ 25.820 \\ \hline \end{array}$	$\begin{array}{r} 7.380 \\ 12.790 \end{array}$	-	-	-	=		
$\begin{aligned} & S_{1}-10 \\ & A_{1}-15 \end{aligned}$	15 dey old			20 day old			$\begin{array}{ll}\mathrm{S}_{3} & \\ \mathrm{~A}_{3} & =\end{array}$	- 25 day ola				

Ieost iron content in their stem. Eowever, in all these cases, the differencea between the treatnens means were not atatietically gigniricart (teble 15, Pic. 130 , Appendix XV).

Though there was differonce botween the plants belonging to three age groupa with regand to iron content in leavea and etam, statistically the difference due to the marginal means averaged over the throe spabings were not oferificent (Table 15, Fig. 13 a \& b, Appendix XV). The figures revealed a trend that the oldegt plents contained the higheot quality of iron, both in leaves and aten for all the cute.

In general, tho percentage iron content increased progressively as the number of cuts edvenced upto the thind hervest. For the subsequent cuts, the percentage decreased. But for the widely speced $\left(S_{3}\right)$ plants though the iron content decroased ot the the of fourtin cut, it inoreaged blightly during the firth out (Table 15, Fig. 13 a $\%$ b).

There wes no interaction between apacing and age of seedings at trensplanting uith regard to this chesacter. 16. Protoln content of Ieaver end gtan (nercentace).

Regaraing the proteln content of leavea and stom, the 20w density (S_{3}) plante were found to be atatistically auperior to tile medium density (S_{2}) and hich density (S_{1}) phents for the three cuts, except duming second harveat for sten, when S_{3} and S_{2} plente were on par (Table 16, Picc. 14a, Agpendix XVI). From the figures it was evident that protein content in leaves and stem increased as the density decreased.

Table 16. Frotein content in leaves and atem of plants belonging to three age groups planted at three population densities.

Further, the figures for the inaividual cuts revealed that protein content of both leaves and atem increased with subsequent cuts upto the thisd harvest and then decreased (Table 16, Fig. 14 a \& b).

The affect of age at tronsplanting, houever, was found to be not statistically significont and the differences due to the varying levels were not pronounced. But the overall effect showed that the youngest. $\left(A_{1}\right)$ plants contained the highest peroentoge protein in their leaves. But the protein content in stem during the first and third cut wes hifgest for the oldeot (A_{3}) plants (Rable 16, Fige 14 a \& D_{4} Appendix XVI).

The combinations between the different levels of spacinge and age et transplatting were found to be nonsignipicant, ghowing that there was no Interaction between the two factore with regard to protein content of leaves and gtom.
17. Vitamin A content of leaves (IU).

When avoraged over the age-groups, the plants at the three apacings ahoued that the Vitamin A content of leaves dia not exhibit statisticel siemificance for the three harvests, except the second. During the second cut, with regard to Vitamin A content of leaves, the low density plents (S_{3}) were atatiatically superior to the high denaity planta $\left(S_{1}\right)$. But the differences between S_{3} and S_{2} plants and S_{2} \& S_{1} plents were not aignificant (Table 17, Ilg.15, Appendix XVII).

Taple 17. Vitanin A content in leaves of plants at theee age groups planted at three populatzon dengities.

treatments	$\frac{\text { Tirst cut }}{\text { Vit.A(IU) }}$	$\frac{\text { Seconit cut }}{\text { Vit. } A(I I I)}$	$\frac{\operatorname{thn}^{1} x^{d} \text { out }}{\text { Vit. } A(I U)}$	$\frac{\text { Fourth out }}{\text { Vit } ; A(I U)}$	$\frac{\text { Mifth cut }}{\text { Vit. } A(I V)}$
$S_{1}{ }^{1} 1$	5223.88	4353.23	3731.35	-	-
$\mathrm{S}_{1} \mathrm{~A}_{2}$	5223.88	4726.37	2985.08	-	
$S_{1} A_{3}$	5970.15	4104.48	3855.72	-	-
$\mathrm{S}_{2} \mathrm{~A}_{1}$	6592.04	4601.99	5233.88	3648.42	
$\mathrm{S}_{2} \mathrm{~A}_{2}$	6467.66	5099.50	5099.50	4601.99	-
$\mathrm{S}_{2} \mathrm{~A}_{3}$	6345.28	5223.88	4223:86	-	-
$\mathrm{S}_{3} \mathrm{~A}_{1}$	6716.42	5970.15	5472.64	5058.04	5845.77
$\mathrm{S}_{3} \mathrm{~A}_{2}$	6965.17	7213.93	5845.77	4393.69	5638.47
$\mathrm{S}_{3} \mathrm{~A}_{3}$	6965.17	7462.69	5472.64	-	-
s_{1}	5472.64	4394.69	3524.05	-	-
s_{2}	6467.65	4975.12	4850.75	2750.14	- ${ }^{-}$
S_{3}	6832.26	6716.42	5597.02	3150.58	3828.08
A_{1}	6177.45	4975.12	4809.29	2902.15	1948.59
A_{2}	6218.91	5679.95	4643.45	2998.56	1879.49
A_{3}	6426.20	5597.02	4519.07	-	-
O.D. (P00.05)				-	
S and A means	1204.87	1603.11	1683.04	F	-
Sx A means	2086.90	2776.66	. 2915.11	-	-
$S_{1}=10 \times 10 \mathrm{~cm}$$A_{1}-15$ day ola		15×10 alm20 day old		- $20 \times 10 \mathrm{~cm}$	
		- 25			

VITAMIN A CONTENT OF LEAVES

The trend that increase in apaning resulted in increased quality of Witamin A content of leavea, could be geen reflected auring all the harvegte.

Vitemin A content in leaves Ehowed no atatiatical difference for the three age groups tried (Table 17, Fig. 15 , Appendix XVII). Eat the olde日t $\left(A_{3}\right)$ plants had high Vitamin A content in their leaves during the firgt cut. For the second and thifd harvesty. the madale aged (A_{2}) plents and youngeat $\left(A_{1}\right)$ plants recorded the highest quantities of Vitemin A in their leaves respectively.

Considering Vitamin A quantity wibe, it was found to be decreasing during the subsequent cuts with reapect to spacing as voll as age of seedinge at trensplanting.

The age-spacing combinations were atatistically nonsigntificent xevealing that there was no interaction between these two factors and that they wore acting independently.

DISCUSSION

DISCUSSION

Obtaining higher yielde of vegotakive portion, large number of inarvests, better quality of the produce etc. are problems facing the amarranth cultivation. The investigations reported in this theais were undertaken at the College of Agriculture, Vellayani with a view to understending the offect of population density and age at transplenting on the growth, yicld and quallity in wamanth. The studies were limited to six growth parameters (helght, girth, opreed, number of branohes, number of leaves and leaf asea), str oharacters contributing to total yiela (weight of leaves, welght or stem, leaf/sten ratio, yiela/plant. yield/m and frequency of harrest) and fire important quality factors (percentage dry matter, poroentage noisture, iron, protoin and vitanin A). The resuits obtained in the present investigations have been presented in the previous chaptor. A criticel discussion of the findinge follows:

Each of the growth peremeters wes atudied in relation to the population density as well as the age of the seedingeg at trensplanting. It tas observed that plants at medium density (15 x 10 cm) were taller than the 10 w density ($20 \times 10 \mathrm{~cm}$) or high density ($10 \times 10 \mathrm{~cm}$) plents. Normelly one would expect the high density plants to be teller due to the compotition for hight (Verheij, 1970 in brascela sprouts). In the present experinent, the plento at mediva
denslity had on initial adrantage and exhibited faster increments auring the first 20 dayg after trensplanting. Thus the mediun density plants uere clearly the tallest at harveat time: Bealdes being taller, the meajun density plants exhibited equal girch at collor as the low density plante. It has been observed that the stern girth of the plents at the loweat denalty, though more than that of mediun density plente at the harveat stages, the alfference was not otetistically algnificant. This result et the preaent instance was olmilar to that observed by Albregts et al. (1976) in okce. Regarding the aypeod of the plant, the initial gpread (at 10 and 15 days after trasplenting) was more in the oase of modum denstity plants. The low density plents exhibitec lerger apread towards the hairest, mainly through higher increments duxing the intervel between plenting and harvest. Production of more number of bronohes is a character that will eventually contribute to the total yield of vegetative portions. The medium densiby plants produced the largent number of branches as compared to the Iow denaity and hiter dentity plante. However, dus to the ingher incremental rate, the low denalty plonts equalied the mealum dengity plants at the hexrvest stage rith regexd to the nuber of branchee. In respect of the number of leavas/plent aleo, the medirm denaity plents exinibited a alight adventage ovor the low denaity and high density plantis, However at herve日t stege, the medium and low density plants yexe on par. Increased light at wider apacing
caused a greater tendency for branohing and production of mors number of leaves. The low density plants vere clearly auperion to the others with mespect to the lear area. This need not be an advantage in the accumiation of largey quantithes of dry matter the reason being that there could be higher rate of utilization elso. Popalation dencity trial revealed that fnorease in denolty decreased the leaf drea. This was because leaf size was big under the wider opacingThis result at the present instance was in confilmilty with the findinge of Zohera and Tim (1973) in tomato and Brandes et 트. (1973) in Phegeolug Valgeris. In general, a caitical examination of date on population density with regard to growth characters revealed that the low density plenta ferca slightly betters than the medium density plants.

The benefits dexived in vegetailive growth should also be zefleated in the ultumate yjeld at harvest, better leal/ stem ratio, none number of harvests ote. The present investigations revealed that the 100 density plenter ylejded more leares/plont. This could be expected because these plante had aignificantly larger leaf aroa. With regard to stem powtion also, the low density plents outylelded the others. However, the aifierences between the low density plents and medium donsity plante were not algnificent. Based on the welght of lecvee and welght of ster obtained at each harteat. the leaf/stem ratio was worked out. The resulta were arratio but considering all the hasrests together, the low density
plants gave e bettor leaf/stem chtio. This can be expected because of larger leaf yleld in the case of low denolit plante.

Total yield per plant uas compated for each harrest as well as for all the tiree harveste talcen togethor and from all the possible harvests. Low deasity plents gave the highest yiela/plant when the totel yield per plant from all poselble haspeste wad conaldered. In ell the other ocse日, there existod no atatisticaliy significont dinference betueen the lou density plonts and medium density plents. It is pertinent to recall here that in the cese of wetght of leaves/ plant and weight of stem/plant also, the lou density planis ond meation dengity plants ahowed no stetisticalily oignificant difference, Tho increased number of hasvests may also contribute to the highegt yteja/plent of the low donsity plants, then the total yield per plant from oll the posaible havesteras token tnto accout, The hignest yield/pzant at wider cpacins may be vicwed in terms of lis int oxposure. With ulde specing (10w density), there was leas overlapping and shading of leaves, bettea light penetration to the basal Ieaves, Iess competition for 1tent, water and nxizients and higher and nore efficient corbondioxide flumion and congeguently bettai yiolds. The increesed photosyntbetic efflelenoy with ulder speotug was due moinly to ancreased 11gat energy. The result at the presant investigetion is in agreement witi the findinge of Ealsey et ez. (1967) end Shumaker (1969). They observed a general trent that inorease
in apacing reavited in increases in the porcentage of maricotable heade and the average welght per head in cabbage. Tereshisovich (1969) in 'Primo F_{7} hybrid' broccoll also zeported similar: result. Fuxthor the result gets aupport from the Pinainge of Pinisen et el. (1978) who reported that closer specing reduced the yleld/plent in asporagus.

The yleld per unit area would norimolly be higher under dense plantings. In tine present study also, the yiela/me for eash harreates, as well as for the three cuts testen together was hftchest in the case of high density planting ($10 \times 10 \mathrm{~cm}$). The seme weas tirue when the yield from ell poselble inarpest wes considered. This is due to the latger number of plants/ mait area under this treatment. The work of many lends support to this sinding. Sreonives (1968) Pound aignificant yield increment at oloser spacinganfesch (1975) reporsed that yield $/ \mathrm{m}^{2}$ was highest at the closest spacing in lettuce. The result is also in confinmty with the sinding of Kaya (1975) in Neu Zealand apinooh, Bradloy at al. (1971) in opinook, Gupta and Shurla (1977) in tonato and so on. The high density plants gave an yield of $6.28 \mathrm{~kg} / \mathrm{m}^{2}$ (62,80 tonnes of vegetative yield/ has). This hig yield corld be expected due to the increased munber of plants/onit area (100 plante $/ \pi^{2}$). Vegetable amaranth yields have been reported to as high as 40 MI ha by Gmubben (1976).

The hign dengity plante showed earlier Enitieston of slower primordie. In other woyds, high density plants attained
hexvegtable stage carlior than meaium donsity and low density planto. The aifference between the three spacings was otatigtioaliy gigniflcont. The lou densiby plants, thus was alow to come to flowering and gave nore them three outtinge. The result at the present investigation in gupported by the strodies of Withein (1976). He reported that close apacing shortened the growth period of leafy vegetables. Honsid and Berw (1977) in caulifiower and Vik (1970) in onions, observed that at close spacing, matrmity was advencea. At the present Instance also, matrantity was advanced with increasing plant density. Considering the yield and yield attributes together: It can be stated that lov density planta topped the Hat, except when yield/ri was conslderod. Further, the low denelby plents were rlow in coming to clowaring, thus fectlitating more number of harriesta.

Accumulation of dyy matter and content of molsture 1ron.proteln and Vitamin A eeve an indication of the quallty ohanges He a Fig population density. In medium dencity plonts there was more occurialation of dry matter in leavea; but the low denstity plants acoumulated more dxy matter in the stem during the cliset out. However, the meaium density plants overtook the low density plants in subsequent cuts with reapeot to dxy matter acoumiation in atem. In the 13 ght of the earlier observation that the low dencity plants produced gigaiflcarbly lagere leas area/piant than medium dencity and high denalty plontoy thls could be explained as due to the over
utilization of the dry matter produced by the low density plente. Thus with regard to this charactorp, the medium density plents seened better, although the differences were not atatisticaliy significant as reporbed by Jones (1972) in brussela sprouts. In the case of moisture contenc also, though there was no atatistically significant difference, the low density plante recorded higher percentage noisture in leaven and atem during the sirst out. In the subsequent cuts, however, the high density plants registered higher valuee for this charpacter. This could be aue to the mutual chading effect of the pleats mader jugher densities end resultant low evagomiranapiration. With regand to the other three quelity characters the Low density piante soamed to be better than nedium donsiby and hith denolty plants. The reants are in agreement with the findings of Thompson and raylor (1975) in caullillowex, Kauffram (1968) and Bannerot et ai. (1969) in asparagus, Meijndort (1976) in tomato and Sinha (1975) in chillies, From their studies they ome to the conclusion that plants at the ciosest spacing were or poor quality, as evidenced in the present investigation. It is intereating to note that uth inarease in apacing, the levels of iron, protein and Vitenin A increased. The botter quelity at widor spacing might be due to avallability of moxe peeding area in tormo of nutsienta and light to plent urder wider spacing in comparison to plants under close apacing. Fuxther, the iron and proteln content increased and levels of Vitamin A deoreased as the
season progressed, as observed in the later harveats. Delay in cutting is reported to increase the iron content in amaranth (Mathai, 197B). In the case of 1ron and protein, the increase wes observed only upto the third harrest which was common for all treatmonts and then found to be deoreasing. This might be due to the ilmited number of treatments exfecting the aubsequent cuts. Out of the nine treatment combsnations tried, only four treatments gave four dute and two *ive oute each. So the effects when avaraged over the thrree the-groupg and spacinge, reduced the quantities of iron and protein. In general the low density plants seemed to be better with respect to the quality aspects.

The growth choracters, yield and yield attributes as woll as the quality especta were stualed in rolation to age of geedings at the time of traneplanting. 15, 20 and 25 day-old seedinge wers used gor the strudy, In respect of all the growth oharecters, the 25 deymold seedinge performed better. The difference in periormance between 25 and 20 daymold sealinge was not statistically significant in the case of height of plante and number of branches. Fron the present investigations it beemed that 25 daywold geedingg ahould be trangilented for obtaining better Geowth. However, aince the studied did not include otill older seedinge definite conclusions oannot be made.

With reference to the yield and yield attributes, the trend of behaviour of plants resulting from 15, 20 and 25 dayold seedings was not uniform. The younger plants (15 day-old)
were better with respect to welght of leaves/plent, leaf/atem ratio and total number of cute and seoond begt for weight of
 (20 day-ola) were better. With regand to yield/plant also the older seadinge (20 day-ola) fared better. The oldest seedlinge (25 deywold) periformed rather pooriy giving lowest weight of leaves/piont, weight of btem/plant and yiela/me The reerult gets oupport from the findings of ceorgiove and Genkov (1973) and SL2va et 日l. (1973), thet older tramoplonts gave poor yields in caullsiower and chillies respectively. In the present Investigetion, furthor earliem flowering was also pronounosd when olden geedinge were transplanted thus 11mbing the numiber os posisible harresto. This viov is shared by Whatwell and Croits (1972) in cauliflower and they indicated that large tronsplanto matrured eariler than amall trensplants.

It is interesting to note that in certain age-spaoing combinations involvine 15 day-01d $\left(\Lambda_{1}\right)$ and 20-day-old (A_{2}) geedings $\left(A_{1} S_{2}, A_{1} S_{3}, A_{2} S_{2}\right.$ and $\left.A_{2} S_{3}\right)$, i.e. A_{1} and A_{2} seedinge transplonted at $15 \times 10 \mathrm{~cm}\left(\mathrm{~S}_{2}\right)$ and $20 \times 10 \mathrm{~cm}\left(\mathrm{~S}_{3}\right)$, nose then the genoral average of three cute were posaible. The combinations involving oldest seadinge (25 daymold) did not gitre nore than thiee outs in any instance. This interection is to be etuaied with greater preciaion.

Whth regend to the quality agpects, the behaviour of seedilngs bolonging to the three age groups was exratic.

Though the differences were not atatistically sifgilicant. the oldest seedilinge (25 daywold) hed high dry mater content In stem (seciond out), high moisture in leaves (inirst and. second out), high irom content in leaves and stem (all the cute): hifg protetn content in atem (first ond third eut) and high Vitamin A content in leaver (flrat out). However, because the Affremences were not stetistiosily significant and because geedinge older than 25 days ois age were not utilized in the stuaies, velid oonciubions conld not be drawn. Sumaing up, 25 day-ola seedinge when trensplanted gave better growth. With regand to the quallty aspects elso, the 25 daymold seedinge seemed to have a gllght edge over the others. However, these plants ghowed earily initiation of flowering, thus limiting the number of possible herveste. Further, when the yield and yield attibutes were conoidered. 15 and 20 deymold seedings perionned bettor. Considering all these appects together, transplenting of 15 to 20 day-ola secalinge can be recomenaed for obtaining higher weight of Leaves/plant, higher weight of grem/plant, better leaf/stem ratio, higher yiela/plont, higher yiela/m and more number of harvests.

In the population density trial, the low density plents (transplanted at $20 \times 10 \mathrm{~cm}$) exhioltod overall better growth and quality charactoristice. With segerd to all the oharractors contributing to yield/hervest and total yleld. except yield/untt aree, the low density plants exhibited their
olear superioxity over the medium denoity plants and high dencity plente. In addition, planting at wider spacing facilitated rowe number of haverots also. However, Eom obteining higher yielafunit area, tranonlanting at closer spacing ($10 \times 10 \mathrm{~cm}$) seened to have adventage over the others. Such olosely plantod anaranths came to flowesing fester then the wiely speoed ones.

In the Light of segulte obtained from the prenent investigetion that upto flve harreats couid be obtainea in cervain agompaolng combinationg, $\left(A_{1} S_{2}, A_{1} B_{3} \cdot A_{2} S_{2}\right.$ and $\left.A_{2} S_{3}\right)$ it is gaggested that the interaction between ege at tranaplanting and gnaning should be studied wth more precioion. In Sutue abudjes, still older geedinngs and aligity wider gpacinge shoula also be incluaded. Burther, investications on the rosponse of different amaronth genotypen to changes in popnlation deagity ano age at transplanting also ahoula be underfalien.

SUMMARY

SUTMARY

An experiment was laid out ot the College of Agcionltraxe, Vellayent during 1978-79 to assesp the effect of population denatty and age at transplanting on the grouth, yiold and quality in amaranth. The atuales were limsted to gix crowth perraneters (height, glith, spread, number of branohes, number of leaves and leaf orea). six yteld contributing charecters (weight of leaves, welght of stem, leaf/atem ratio. yiela/ plent. $\mathrm{yi}^{2} \mathrm{la} / \mathrm{m}^{2}$ and ixequency of harvest) and five important quall ty factors (percentage dry matter; percentoge nolsture, iron, protein and Viteruin A). The resulte obtained in the present inveatigation are summarised as follows:

Exch of the growth paraneters was studied in relation to the popatation denstity as well as the age of the seedings planted. It was observed that planta at meaium density ($15 \times 10 \mathrm{~cm}$) were taller than the low denat ty ($20 \times 10 \mathrm{~cm}$) os high density ($10 \times 10 \mathrm{~cm}$) plente. Furthom, the medium density plants exhlibited equal girth at coller aathe low density planta. It hes been observed that the stem girth of the pleate at the lowest deasity though more then that of medium censity plente at the hervest stage, the difference was not etatisticelly significent. Regarding the spread of plant, the inttiel spreed was more in the case of modum density (S_{2}) plents, The low dengity (S_{3}) plenta exhibited lowger...
opreed towarde the harrest. As far as the number of branches was considerod, the medium denolty plants produced the lavger number of bronches as compared to the low density and high dengity plants. In segpeot of the numer of leaveo/plant also, the meaium density pients exhibited a slight adventago over the low and hleg density planta. However at herveat stege, the medium and low denslity plents were on par. The low denalty plents were clearily superior to the others with respect to leaf anea. Plants gpaced ot $20 \times 10 \mathrm{~cm}\left(\mathrm{~S}_{3}\right)$ secorded the highest leaf area of $128.03 \mathrm{~cm}^{2}$ accounting for 28.36 per cent increase over $10 \times 10 \mathrm{~cm}\left(\mathrm{~S}_{1}\right)$ and 13.89 per cent ovar $15 \times 10 \mathrm{~cm}\left(\mathrm{~s}_{2}\right)$ apacing.

The growth characters tere stuatied in relation to the age of aeedinge at the time of transplanting. In reapect of all the growth characters studied, the 25 day-old seedinges performed botter. The difference in perfornance between 25 and 20 day- old seedings was not statisticelly significant in the cese of height of plente and number of branaheg.

The chsracters contributing to yield, ot the present investigation revealed that the low donoity plents yielad more leaves/plant. With regard to stem portion aleo, the low density plants outyielded the others. Howevor, the differenoea betwean the low density plants and medium density plants ware not giegificant. Though there wes no stomificant difference between the treatmente with regasd to leas/stem ratio, the low denelty plante gave a better leal/stem ratio. Frurther, the low
denslty plants gave the highest ylela/plent when the totel yiela per plent fron ell posaible harveats was congidered. The yield/plant of low, medium and high denatty planta in this case were $99.40,76,77$ and $62,82 \mathrm{~g}$ respectively. The yiela/plont for amoh harvest showed no statiatically algrificant afsference between the $10 w$ density and medium density plants. On the othor hand. the yiela/m $/ \mathrm{m}^{2}$ for eech harvest as wall as for all the posssble outs teken together, was hagheat in the case of high density plonting, the high density (S_{1}) plenting gave a totel yield of $6,28 \mathrm{itg} / \mathrm{m}^{2}$ (62.00 tomes of vegetative yiela/ha).

With ivelerence to the yleld and yleld attributes; the trend of behervious of plonts sesuiting from 15, 20 and 25 day old seedinge weg not ynifozm. The youngest piants (15 day ola) were betber with respect to weight of leaves/plant, Leaf/atem ratio and totel number of cuta and second best for weigen of ater/plant and yiela/m ${ }^{2}$. In the latter two the olaer planta (20 a ay 01a) wese better, Uith regari to yiela/ plant also the oldem seedinge sared better.

Taking into consideration the irequency of haveest, the high density plants showed carlies intitation of flowor primordic 1.e. Meg density plants attaine harvestable stage earilez than meatum denolty and Jow derisity plante. The disferanoe botwean the three apaninge was etatiatically afgnifleant. The low density plents were thus slow in coming to flowering and gave mowe than three harvaste. The treatment combinetions involving the two lower popsilation
donsities i.e. $S_{2} A_{1}, S_{2} A_{2}, S_{3} A_{1}$ and $S_{3} A_{2}$ gave four outs and $S_{3} A_{1} \& S_{3} A_{2}$ geve five cute each.

Regarding age of geedinge, earlier flowering was pronounced when older seedinga vere trensplanted, thus limting the number of poseible herveate. The oge-spacing combinations involving 15 and 20 day ola seedinge ($A_{1} S_{2}$. $A_{1} S_{3}, A_{2} S_{2}$ and $A_{2} S_{3}$) gave more than the general average of three cutg. The combinetions involving the oldest (25 day old) seedinge did not give more then three outo in any instance:

Considering the quality charecters, it was observed thatimthe mediurn density plents, there was more accumulation of ary matter in leaves, but the low denoity planta accumalated more dzy matter in the gtem during the firat cut, though the difference was not statistleally significant in ony instance. However, the medium density plents overtook the lou density plants in subsequent cuts. Thus the mediun density plente secmed to bo better with regard to this choracter. In the oase of moisture content, though the differenceg tere not sigaificent, the low density plente recorded higher percentage molature in leaves and atem during the first cut. In the subeequent cuta, however, the high denslty plenta registered higher values for this character. Whth regerd to the other three quality charaoters (iron, protein and Vitanin A), the low density plante seened to be better than the medium density and high density plants.

With regard to the quality aspecte, the beheriour of seedlings belonging to the three age groups was erratic. Though the differences were not statistically aignificent, the oldest (25 day-old) seedinges had high dry matter content in aten (second cut), ligh moisture content in leaves (first and second out), high iron content in leaves and atem (all cuts), high proteln content in atem (firat and thind cut) and higi Vitamin A content in leaves (Inrat cut). However, because the differences were not statistically gignificant, volld conclusions cannot be dram.

REFERENCES
*Abdel-AL, Z.E. (1974). The perfomance of yield and quality of camroti as affeoted by plant popalablon, planting method and midge aide direotion under hot tropical conditions. Proc. of the Fourth Vegetable Researoh Conference, Alexanaria. 73-87. Hoxt. Abst. 45. 284.

Alratanakal, W. Baggett, J. R. and Mack, II.J. (1977). Effect of plant apeoing, fertilizer and transplanting on axillary heading in cabbage (Brasaica oleracea $I_{\text {. }}$ capitata group). Hoxt. Sci. I2(1): 56-57.

Aloregts, E.E. end Howerd, C. 1. (1976). Regponse of four olme cultivaris on malched beda to plant denalty. Hoxt. Sci. 11(3): 242.

Alex Cunard (1977). Amaranth Agronomy 1975 and 1976. Arareanth Foundmap. Rodeale Press. Inc. Pennaylvania. 35-36.
*Amsen, M.G. ane Bredmose, H. (1971). The effect of plent spacing on yield and quality of ghass house tomatoes. Thasskeft for planteevl. 75 (4) 2 457-465. Hoxt. Abst.熊: 1431.
A.O.A.C. (1975). Official methods of analvais. Agaociation of official analytical chemiats Jashington. D.O. U.5.A. 12th Ean.
 Bfifeat of gpaoing and leaf area on pod yields os Eioney bean (Paaseolug valgaris I_{4}) . Indian J. Efric. S 5 . 27 22-6.

Baggett: J.R. and Macli, IN.J. (1970). Fremature heading of broccolf caltivars as affected by trensplant alee. I. Amex. Soc. 30nt. Sci. 95 : 403-7.
*Bannerot, H. Denieax, M. and Aenoux. J. (1969). Reanita of an asparagus spacing trial. Ann. Amer. Plantes. 19: 325-32. Hort. Abst. 41: 168.
*Hagtidas Renos, G. and Camacia, I.H. (1969). Plant competition and its eifect on Jield and other charecters of Phgseolus vuigexis. Acte Agronorica. 19(2): 69-88. Hort. Abst. 42: 1207.
*Blassinsky, j. (1969). Spaoing experimenta with asparagus. Gemige. ${ }^{2}$: 116-18. Hort. Abat. 39: 802.

Bleasdaic, J.K.A. (1966). The effecta of piant apacinc on the yield of buil ondono ($\frac{1 l i l i u m}{}$ cepa $\overline{1}$.) grown from seed. J. hozt. Soit. 소: 145-53.

Boominathan, H.: Mani, I.S., Pajamani, A. and Kriehnamoonthy, A. (1971). A note on the gacine trial of K. 1 chililes (Capgicum annutim Jinn.). Madrae armic. J. 58(6): 520-22.
*Bradley, G.A. Slstrinnt, H.A., Joudenslager, M.A. and Cash, J.N. (1971). Eifeot of olose spacing on gpinach yieldo. Aplanses Fam. Reseapch. Rg(4): 7. Hoxt. Abst. 42: 5825.
*Brandez, D., Maestri, M., Vierira, C. and Gomes, F.R. (1973). The effect of plant population and planting time on the Erowih of bean (Phaseolue valgaris) plants. II Growth Analysis. Exnerientiag. 15(1): 1-21. Hort. Abst. 44: 1564.
*Brandez, D., Vieira, C., Maestri, 1. The effect of plant population and planting tiae on the growth of bean (Fhaseolus vulgaris) plants. I. Morphological changes and dry natter produation. Experientige. 14(1): 1-49. Hort. Abst. 46: 3697.
*Bussell, V.T. (1976). Baby campots - time of sowing, spacing. Hey Zcoland Comerctal Grower. $31(8)$: 30. Hort. Abst. 4744668.
*Chovahury, A.R., Rashid, M.M. and Fussain, A. (1974). A gtudy on the effect of different gpeoinge and levels of nitrogen on the yleld of spinach. Bangladegh Hort. 2 (2) : 39-43. Hozt. Abat. 46: 9272.

Cutcliffo, J.A. (1971). Effecta of planta population, nitrogen and hazvegt date on yield and maturity of single harrested broccoli. Hort. Sci. G(5): 482-484.
*Dragland, 5. (1978). Theld and quality of axrote grown at differant plant densities. Foraknina og. Forsk 1 Land braket. 2 2 (2): 161-174. Hoxt. Abst. 49: 10660.

FBaje, D.T., Ayonoadu, U.N.U. and Mughogho, I. H. (1974). Responge of indeteminate beans to vasying plant populations. Tumbialba. 24(1): 100-103. Hort. Abst.敌: 7398.
*mje, D.T. Mughogho, I. K. and Ayonomdu, T.W.T. (1971). Efiect of row width and plant apacing on the yield of caming beens. Rosearoh Bulletin of Bunde Conl.

*Rsch, H.G.A. Van (1975). Planting distances in autupen letatuce. Groenten on Sruit. 31(9): 381. Hogt. Abst, 46: 4497.

Pravusi, M.0.A. (1977): Influence of plant density and tine of fertilizer application on Growth characteristics. nutrient uptake and ylald of tomato. Scientia Horticulturae. Z(4): 329-337. Ho工t. Abst- AE: 3566.

Fery, R.I. and Jenticit, J. (1971). Effect of time of harvest on the repponse of tomato to popriation pressure. J. Amer. Soc. Hoxt: Sat: 95(2): 172-176.

Erappel, B.D. (1973). Dlant gpacing of onions. I. hoxt. Sei. 4론: 19-28.
*Gamex. J.R. (1978). Planting density of winter hardy canisflower and its effect on yield and curd bize.

*Georgieva, M. and Genkov, G. (1973). InPluence of sowing and tranglanting dateg on cauliflower yiclds. Grandinargtyo. 15(4): 6-8. Hort. Abst. 45: 206.
*Goldwasser. I. and Rogenblum, J, (1970). Spacing of trangplente in auturn egt plants for export. Hassedeh.

Grewal, B.S., Mendipui, K.S. and Kumar, J.C. (1974). Reproductive capacity of otre as insluenced by the time of sowing row spacing and green pods ploking. Junjab Hort. I. 14(1/2): 61-66.

Grabben, G.J.H. (1976). The cultivation of Amaranth as a Tronical Leaf vegotable (Royal Tropical Inatitute), Amstemdem. Reprinted tron: Hew Agpicultumal Cyops. Prallahed by Hest View Preas, Boulder. 52 .

Cupter A. and Shricia, V. (1977). Responso of tomato (Eycopersicon escuzentam [izi2.) to plemit eppoing. nitrogen, phosphomes anc potarsivm iortilization. Indian I. Hort: 34(3): 270-76.

Halsey, I. H , and others (1967). Influence of pericty and spactug on yielda of abbbage from a atngle harvest.

Hars, O.N. and Srivestave, R.P. (1977). Influence of the planting nateriei and spacing on the growid end yield of ganil.c. Indian J. Hort. 3n(2): 152-156.
\#Felingy, A.; Erezelk, E., Mator, D. and Szpond, W. (1977). The effect of tanaplent age, mineral Rectilization ana soil conpactness on the yield of grean asparagus. Builetyn yaczymiczy. 20: 139-157. Host. Abst. 49: 480.
merárix, H.A.M. (1976). "planting distances and their economic gigniffcance in lettuce. Groenten en grudt. $32(3):$ 100-1. Hoxt Abot 47: 1420.
*IIonma, 'S. orid Beat, 3. (1977). Growing high dengity oauliflower. Anerican Vegetable Growar. $25(5): 40$. Hont. Abst. 4E: 397.

Jaclrson, M. Ine., Wev Jensey. 389-391.
"Jaghay, V.M. and Sreenivas, I. (1968). Influence of apacing cum-ixcligation on crowth, yield and quality of cabbage (Brasgica olerecee var. Capitete I.).
 39: 566.
\#Jhonaton, T.D. (1971). The exfects of plant denclity and fertilizem application on yield componente in three maryov-stem zele (Brassice oleracea J_{4}) varieties. J. Abel. Sci. U.K. T7(1): 8j-09. Hart. Abst. 42: 1069.

Jones, I.H. (1972). The effects of toming and plant population on day mater syntheais and distribution in bruesels sprouts. Ann. Epph Biㅇㄱ. 79(1): 77-87.

Kamalonsthon, S. and Thamburey. S. (1970). Plont population stiuiles in olrag (Abolmagchus esculentus). Medras gexic. J. 57 : 16.
Kouffiman, 7. (1968). Higher asparagus ylelds through closer phanting. Dtsche Gartent 15: 32-4. Hoxt Abst. 3管: 702.

Kays, Wis. (1975). Exoduction of New Zealand Spineoin (Tetragonia expange Maxy.) at high plant densities. J. Hoxt. Sot. 50(2). 135-141.

Jamile, B, Telne, Biohord B. Herdwood. O.S. Kauffman and Joserh, B. Senft. (1979). Amaranth-Gentle Giant of the Past and Future. Roprinted from New Agmioultural Grong. Fubliohed by Hegt Viev Frece. Colorado. 55.

Le Poldovin. N. and Robingon, I.A. (1965) s. Foliar analyaia prcecdure on the bootex group of sugar estateg in Britibh Guitna. Pait I. Sampling end analytical tecmiques. Fertilite. 21. $3-17$.
*In, HaEe and Wonge K.C. (1975). Infiluence of seeding age at tranoplanting on the perfommone of chililea
 37-44. Ho

FLipani V. (1975). Yeld, growth pattern and moxphologheal chamoterastion of carmot roots in the antum - finter epring cyele, in melation to planting densiby and manuring Revigta at Agronopia. g(2/3), Hozt. Absu. 46: 1742
*Lougaton, A (1967): Betect of plent donelty on ylelas of stela tometoes. Rep horg Res. Inst Ont. $35 \% 7$ Howt Abst 39 g 62.

Macmeod. A.cT and Pitis, H. De (1970). A comporinon of the Chomten flayoum compotition of aome Bruseels gprout ountivari grom at diferent orop spacinge. Phytochomistiay: 17(6):1029-32.

Mathei. R.J. (1978) . Amarthtms - a negiected vegotable. Indan famine $28(1)=29-32$.
*Mei.jndert. B. (1976). Planting alatanoes in tomatoes: Better quallty and ixuit aize in early hot house culfure with wider gpacing. Groenten en Frudt. 32(16): 739. Hozt Abst. A7 4630.

MMenezes Sobrinho, J.A.D.E. Wovais, R.F.D.E. Santos, H.L.Dos and Sans, I. A.t. (1974). The effect of nitrogem fertilization, plont spacing ond mulching on the yield of garlic oultivar, Amarante. Reviata Ceres. 21(115): 205-212. सort. Abst. 45: 6470.

Mohdeen, M.K. and Rajagopal. A. (1975), Rffect of transplanting on growth, flowering and seed yield in Amaranthus (Amaranthus sp.). S. Indian Hoxt. 33(3/4): 87-90.
*OIden Burg, R_{0} (1971). The importance of stand density for the Yiela and Income from Kohl-rabi. Gomise. 59(11): 378-79. Host. Abst. 43 : 1980.

Palevitoh, D. (1970). Effect of plant population and pattern on yield of broccoli (Bragilea oleracea var, italica) in alngle harvest. Hoxt. Sol: $5^{!} 230-1$.

Panse, V.G. and Surhatme, P.V. (1957). Statiatical methods for merioultural worisera, I. C. A. if. Erbilication, IVew Delhi.
*Pavlek, P. (1977). Effect of plant denolty on carrot yields. Poliopriveredna Znanatrane Smotre. $42(52): 67-73$. Hort. Abst. 48: 3615 .
PInkau, H. Grutz, E.M. Osohlieg, A. and Whan, M. (1976). Resulte of sproing experiments with asparacus. Gartenbau. $25(5): 735-136$. Hoxt. Abst. A91 1913.
*Postiglione, J. (1972). Planting dengity and plant singling in growing tonatoes for mechanical harvesting. $\frac{\text { Anrali }}{45: 363} \frac{\text { della Fecolita di Soienze 6: 1-9. Hont. Abst. }}{}$ 45: 363.

Premath (1976), Vegretableg for the Tropical Region. I.C.A.A. Fublication, New Delhi , 78-80.

vis

Randinant, K. S. and Daljit Singh (1974) Influence of nitzogen, piosphomas, poteselum and plenting divtance on the paturity end yield of onion (A77sm cepa I_{*}). Indian J. Hoxt. $31=66-68$.

Hesmberw. P. and Batz \#. (1971) OLosex Kohl-jabi plenting. Equenorgertnea. $25(36): 1769-1770$. Eart. AbsE. A2 901.
*Roimezr, 五.R. and Boty, GoH. (1974). Spacing in eamy Kohlmabi. Exwerbacerther: 29(7): 239-40. Eozt. Abat. 54: 5613.

Eodriquea, B.D. and Irabeth, V.N. (1975). Artifscial 1ighting and epaaling as photosynthetic and yleld factong in dinter green-house bomatio chliture. J. Amer. Soe. Hozt. Soz. 102(6): 694-697.

Sattori P.J. and Jonet M. Janea (1975). The exeeot of plent dengity on the intitiation, geoth and maturity of curde of two equiflower variebice. J. hom. Sot. 50: 239-24B.

*Shumber; J.R. (1969). Reaponse oi direet needed abbage using different spacinge and planting and thiming methods. Trog. Mla gt hort. Soo. g2, 112-15. Hore Abst 41: 1650.
sgive, R.T.DA., Cento, F.A.DA. THEChelaet, E: SELva, J. T.DA. and olvvetra. I.M.DE. (1971). The effeots of apectis and fertilizor levels on Capescum ripe smult. prodnction. Revtate Cereg. $18(100): 448=464$. Fowt. Abst. 4287863.

Singh, D.P. and Stigh B.P. (1974). Stuales on the effeot of time of sowing and age of needilnge on growth and yield of onion (Allium oena I_{4}). Indien J. Homt. 21(1): 69-73.
*Sinha. M.M. (1975) , Bffect of closer apacing and higher nutritional dosee with and without gibberellifo acid on yield and quality in ohilliea (Capoloum annuan $L_{\text {. }}$). Prope Hort g(1): 60-62. Howt. Abst. 46 . 5795 .

Whapsici, H. (1975). The Influence of transplants apacing on the carilness of cauliflowers. Acte Hort 4 . 22 . $65-67$. Hozt. Abg t 457593.
 capotene content of some yellow endospern vanleties of soxghum. Incien J. gigic. Sci. $38(2): 368$ (372.
*remal. K. (1977). Juagement of erbipicial graeglena productiveness. Influence of plant density and cutting time on dry matter production of orcherd grass ewand (Daotylis glomerata I.). Reports of the Institute fox Agn. Res. Tokoln Univergity. 28: 9-27. Hort. Abst. 48" $25 \overline{82}$

Freweakovich. Ge (1969) the effect of specing and season on the yleid of Pximo Fi hybrid brocooli in Georgia. Reg. Rep. Wuiv. 23: 10. Elort. Abst. 49 904:
Thompson and Taylasi H. (1975): Some efeots on population denilty end row speoing on the yield end quality of two cemalelover oultivans. Hoxt Heg 14. 97-101.
 Snapbean yielas ard quality as influenoed by higher plant pomuations. Arikanses Fam Research $21(1): 4$. Homt. Abbt. A3 1207.

Navilove P.P. Phrgov, I. P. and Solov'ev. A.M. (1977). Befect of erop dengity on productivity of Poddar beet. Koma. 3: 33-34. Hexb. Abst. 48: 1142.
*Vorhoi3. E.W.M. (1970) * Spacing expemiments wh brussels
 Sci. 18: 69-104. Hast. Abst. $41: 132$.
 ception and yleld of peppere grown under giase in zalation to plant epactre. Acta Fozt. 22" 149-159. ERost. A09t. 44: 2506.

Verma. J. P. Rathome. S.V.S. end YadaV, B.S. (1971). Performance of bulb orop of onton ad affected by gowng dates and age of trensplants. Proges. Hoxt. $3(2): 29-33$.
*Wik. J. (1970). Fremes and plant deniblty tsiale in aowing onions. Gartneryzet. Gg. 350 64 . Hoxt. Abgt. 41: 445.
\#hitte, J.G.H. ana Avderson, J.A.D. (1974). Ytela or green peas. I. Reaponae to tariation in plant denslty and ghatial armangement. Hew Zealand J. Exp. Agric. 2(2): 159-164. H0工地 Abst A5: 4968.

Whitwel. J.D. and Orofta J. (1972). Studies on the oize of cauliflower trinsplanto in relation to rleld performance with parthoular reference to date of maturity and length of eutbing perlod. Exp. Hoxt. 234 34-42. Home Abst. 42: 3659.

Whebe. J. (1966). The eariy years of an asparagua apocing trial. Rep hoxt Reg Inst. Ont. $31-3$. Hoxt Abot 38:702.
 for birissels eprouts. Gemige. gi 231-3. Hoxt. Abst. Aㄹ. 472.

Whithelm. Ee (1976). Plant gpeging and develoment of vegetable oropi Gemioge. 12(9): 266-267. Horte Abst. 47: 9310.

Wilholm, E. (1979). Develoment of plant pomalathon vith eanly kalo. Influence of eoologionl and oultuxal factors. Falctonen Gaxtenbau WL sgenschaft. 44(2):

*Wongt K.O. and Fiee, E.F. (1974). Erfecto of needing method, apacing and fertilizer on Chinese Kale (Brasalae alboglaigra) Malaygian Agel. Res. $3(3)$ 2 214 -2ci: Foxt Abst. 4614508.

 Foxt. Abot. 41: 774.
\#Yakorenko, K.I. (1977). Studies on spacing of tomato plants. Naucli. Tekhn. Byulleten. I : 19-25. Host. AbsE. 4S: 734 .
*Yu, O.H. and Tsong, T.C. (1966). A stuady on seedine age in relation to bulbing or onions. J. agmic. Ags. Ghina. 56: 35-40. Howt. Abgt. 37: 5040.

Zahara. H. and rimi, H. (1973). Influence of plant dencity on grouth, mutrient composition, yield and quaitity of mechenicaily harvested tomatoes. I. Amer. Soc. Hoct. Sol. 28(5): 513-516.

APPENDICES

Appendix 1
Abstract of AFOVA
Helght

Source	$d f$	IS			
		Increnent from 10 to 15 DAP	Increment from 15 to 20 DAP	Incronent from $10 \text { to } 20 \mathrm{DAP}$	At the time of first cut
Replications	2	13.565	10.009	21.750	10.440
S	2	20.210**	4.506	28.850	5.960
A	2	26.280**	8.705	21.350	82.830*
3×1	4	0.633	2.919	4.360	10.010
Error	16	2.291	5.904	11.170	21.210

DAP - Days After Transplanting

* Significant at 0.05 level
* Significant at 0.01 level

Appendix II
Abstrect of AROVA
Gixth of main atem

Source	de	MS			
		Increment ixom 10 to 15 DAP	Increment Prom 15 to 20 DAP	Increment from 10 to 20 DAF	At the time of filxst out
Replications	2	0.1898	0.0138	0.2640	0.49 .10
S	2	$0.0980 *$	0.0349	0.1280	0.9740^{*}
A	2	0.2960**	0.2203*	0.0660	0.4800
S 7 A	4	0.0210	0.0440	0.0670	0.0270
Harrox	16	0.0230	0.0479	0.0690	0.2320
DAP - Dayc After Iransplanting			* Sigunicicant at 0.05 level		
			** Significant at 0.01 level		

Appendix III
Abstract of AMOVA
Number of branches

Source	de	MS			
		Increment from 10 to 15 DAP	Increment from 15 to 20 DAP	Increment Erom 10 to 20 DAP	At the time of sirgt cut
Replications	2	1.292	0.155	0.730	0.525
S	2	1.330*	$2.012^{* *}$	3.790**	3.860**
A	2	2.500**	0.762	0.580	11.890**
$5 \times A$	4	0.319	0.172	0.373	0.649
Error	16	0.275	0.292	0.337	0.588

[^0]*Signisicant at 0.05 level
** Sienificant at 0.01 level

Appenaix IV

Abstrect of ANOVA
Nuriber of leaves

> Appendix V
> Abstract of AHOVA
> Spread of plant

Scurce	${ }^{2} \mathrm{IS}$				
	dx	Increnent from 10 to 15 DAP	Increment froil 15 to 20 DAP	Increment from 10 to 20 DAP	At the time of first cut
Replications	2	75049.46	9016.22	42273.27	36307.63
s	2	19937.99	39874.87	109747.72*	545609.98*
A	2	71902.16*	77838.13*	21967.22	15314.34
SxA	4	7672.32	21671.19	22917.83	18031.76
Ferror	16	14443.12	16868.44	26213.51	51905.59
DAP - Days After Transplanting $\quad \begin{aligned} & \text { * Significant at } 0.05 \text { level } \\ & \\ & * * \text { Significant at } 0.01 \text { level }\end{aligned}$					

Appendix VI
Abetract of Ailova
Individual leaf area at first harvegt

Source	df	MS
Replications	2	268.35
S	2	1808.25^{*}
A	2	1136.37^{*}
S $\times \mathrm{A}$	4	167.56
Errox	16	224.74

*Significant at 0.05 Ievel
**Significant at 0.01 Level

Appendix VII
Abstract of AINOVA
Frequency of horvest in dayo

Source	$d x$	Flingt cut	Second cut	Thirat cut
Replications	2	21.23	17.26	5.45
S	2	54.89**	14.3 \% ${ }^{\text {\% }}$	8.78**
A	2	28.22**	7.33	3.44**
$\mathrm{S} \times \mathrm{A}$	4	1.78	1.17	0.44
Erroz	16	1.05	2.39	0.58

* Significant ab 0.05 level
a* Signilicant at 0,01 level

Appendix VIII
Abstract of ANOVA
Ysela per plant

Source	$d \pm$	MS				
		First cut	Second cut	Third cut	Total of three cuts	Total yleld from all the possible cuta
Replicetions	2	56.82	222.28	48.52	617.15	798.63
5	2	668.11*	33.08	2,78	927.83*	3066:99**
A.	2	99.05	20.59	16.30*	26.57	556.91
$S \times A$	4	75.57	14.70	5.04	78.34	202.49
Frnor	16	109.91	22.74	3.07	190.61	201:03

* Significant at 0.05 Level
** Signilicant at 0.01 level
\therefore
Appendix IX
Abstract of ANOWA
Yield per aquare metre

Source	df	MS				
		Pisot cut	Second cat	Thind cut	Fotal of three cuts	Total fiela. from all the posaible cute
Replications	2	0.235	1.250	0.245	3.320	4.032
S	2	5.006*	7.420**	0.606\%*	11.270	4.630*
A	2	0.319	0.056	0.089*	0.209	2.130
$S \times \mathrm{A}$	4	0.323	0.067	0.042	0.508	0.488
Enrox	16	0.749	0.155	0.015	1.297	1.300

* Significant at 0.05 level
* Sigmificant at 0.01 level

* Significant at 0.05 level
**Sjgaificant at 0.01 level

Appendix XI
Abetract of ANOVA
Average weight of atem per plant

Source	$d x$	MS				
		Firct cut	Second cut	Thimd cut	Total of three cuts	Total yield fron all the possible cuto
Replications	2	15.76	17.28	2.23	48.81	60.42
S	2	143.22*	5.24	0.19	174.48*	327.82**
A	2	46.27	1.09	0.82	40.02	87.16
$\mathrm{Sx} A$	4	8.41	1.66	0.26	6.76	14.36
Error	16	35.65	1.96	0.61	44.42	46.99

> "Significant at 0.05 Ievel
> \#Significant at 0.01 level

Appendiz YIT
Abotract of APOVA
Iear/sten zatio

Source	4i	MS				
		Fixgt eat	Second oud	Thitd cut	Total of three cuts	Total from ail the possible cuts
Replications	2	0.006	0.134	1.060	0.127	0.168
5	2	0.027	0.381	0.475	0.027	0.097
A	2	$0.194 * *$	2.036 *	0.169	0.112	0.102
SxA	4	0.029	0.214	0.143	0.012	0.025
Earor	16	0.016	0.257	0.684	0.046	0.045

* Significont at 0.05 level
** Significant ot 0.01 level

Appendix XIII
Abstract of ANOVA
Percentage dry natter of leaves and atem

Sousce	$d \mathfrak{l}$	MS					
		Finrat cut		Second cut		Thisa cut	
		Ieavea	Stem	Leaves	Stem	Leaved	Stem
Replications	2	3.380	1.650	7.980	2.029	9.520	7.370
5	2	3.200	0.060	1.200	0.970	9.890	2.810
A	2	0.057	0.020	2.920	2.053	0.820	1.270
S x A	4	2.490	0.554	0.468	1.820	4.280	1.770
冝ros	16	1.505	0.537	1.810	0.709	4.210	2.400

Appendix XIV

Abgtract of ANOVA
Porcentage moiature in leaver and atem

Source	$d \underline{d}$	US					
		First cut.		Second cut		rehirch cut	
		Heaves	Sten	Leaves	Sten	Iempes	Ster
Replications	2	3.380	1.670	7.980	2.030	9.490	7.370
S	2	3.200	0.052	1.200	0.970	10.150	2.810
A	2	0.060	0.020	2.920	2.053	0.900	4.270
$\mathrm{S} \times \mathrm{A}$	4	2.490	0.550	0.470	1.820	$4 \cdot 320$	1.770
Prror	16	1.510	0.536	1.810	0.702	4.320	2.400

Appendix XV
Abstrect of ANOVA
Iron content in leaves and stem

Source	$d \pm$	4S					
		First cut		Second cut		Thired cut	
		Leaves	$S_{\text {tem }}$	Ineaves	$S_{\text {tem }}$	Leaves	Stem
Replications	2	7.89	19.77	12.76	2.88	11.66	0.41
S	2	209.97*	79.03	1290.49	163.35	723.34	91.81
A	2	18.01	3.71	153.43	0.41	45.13	26.36
$S \times \mathrm{A}$	4	10.27	19.77	62.76	22.61	70.03	33.75
Erros	16	37.92	28.10	403.98	122.35	222.42	54.55
				.			

*Significant at 0.05 level

- Appendix XVI

Abstract of ANOTA
Protein content in leavea and atem

Source ar	af	MS					
		Leaves First cut		Leaves ${ }^{\text {Second cut }}$		Thincia cut Leaves Stem	
Replications	2	0.037	0.031	0.595	1.040	0.050	0.503
5	2	2.737**	1.970*	12.310**	3.910*	6.670**	4.545
A	2	0.196	0.193	0.350	0.308	0.000	0.312
S x A	4	0.112	0.129	0.960	0.046	0.530	1.380
Hmor	16	0.234	0.401	1.160	0.974	0.462	0.333

* Significant at 0.05 level
* Slgnificant at 0.01 level

Appendix XVII
 Abstract of ANOVA
 Vitamin A in fregh leaves

Source	di	145		
		Fingt cut	Second cut	Third out
Replications	2	252675.21	531134.25	5156.80
S	2	4723479.48	15243012.50*	9921350.63
A	2	159856.63	1335571.34	190795.60
SXA	4	252674.38	600745.79	747711.61
Brror	16	1453528.65	2573156.10	2836148.36

* Signipicant at 0.05 Ievel

Studies on the effect of plant population density and age at transplanting on the growth, freouency of haivest AND TOTAL VEGETATIVE YIELD \mathbb{N} AMARANTHUS (Amaranthus gangeticus Limn.)

By
SULEKHA.G. R.
ABSTRACT OF THE THESIS
SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENT FOR THE DEGREE MASTER OF SCIENCE IN HORTICULTURE
FACULTY OF AGRICULTURE KERALA AGRICULTURAL UNIVERSITY

ABSTRACL

Investigations were undertorea at the College of Agsiculture, Vellayani to atudy the efiect of plant population demoity and age at trensplenting on the growth, fraquency of harvest and total vegetative yield in amarenthus. Each of the three groups of amarantil seedlings, agea 15 deys $\left(a_{1}\right)$. 20 daya (A_{2}) and 25 days (A_{3}) vere transplanted at three spacings nemely $10 \times 10 \mathrm{~cm}\left(S_{1}\right), 15 \times 10 \mathrm{~cm}\left(S_{2}\right)$ and $20 \times 10 \mathrm{~cm}\left(\mathrm{~S}_{3}\right)$.

In the pomalation density triel; low density planta (trangplented at $20 \times 10 \mathrm{~cm}$) exhibited overall better growtis and quality characterietics. With regard to ajl the characters contributing to yiela/harvest, and total yield, except yield/unit area, the low dengity plants exhibited bioir olear superiority ovor the medium denatty and higin dencity plants. Increased muber of hervests was also obtained when planted at wider gpacing. Fowever, for obtaining higher yield/unit area, transplenting at 10 x 10 cm eeened to have advantage over the others. Such closely planted amaranthus came to slowering faster than the widely spaced ones.

The invertication cearsied out with a view to underGtanding the effect of age at transplanting on the growth, yleld and quality in amamanth, reveeled that the 25 day-old seedinge when transpianted geve better gewth. With regard to the quality aspects alao, the 25 day-old seedings geemed
to have a alight edge over the others. However, these plants ahowed eariy initiation of flowering, thus limiting the number of posaible harvestes. Frurther, when yield and yleld attributes were conoldered, the 15 and 20 day-old seedilngs performed better. Considering all the aspects together, tranoplanting of 15 to 20 doy-old seedlinge can be recomended for obtaining higher weight of leaves/plont, higher waight of atem/plant. better leaf/stem retio, higher yiela/plent, highor yield/m ${ }^{2}$ and more number of harvesto.

[^0]: DAP - Days After Transplenting

