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IH1H0DUCTI0H

Long ter® experiments are those which are continued 
on the sasio set of plots for a long period with a pre plan­
ned sequence of treatments, She objective of conducting 
such experiments is to study the long term effects of the 
given treatments on soil fertility and on economic returns. 
SreatBonts ssoy be applied every year or periodically in a 
regular schedule. She ease crop may be repeated season 
after season like that in rieo, or once planted remain for 
several years as in perennial trees.

She subject#) of long tore ©xporlffaat is complex end 
utmost care is needed In the statistical analysis of data 
from such trials. Although a few eotheds have been sugges­
ted from time to tisao for the analysis of date of long term 
trials none of them appears to bo full proof and self suf­
ficient. Hence it would be worthwhile to make an empirical- 
comparison of various available methods of data analysis 
relating to such experiments and to develop alternate pro-

, i

oedures if any, indicating their superiority over the 
existing methods.
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The prim© objective of any agricultural experiment 
io to provide data for the comparison of the efficiency of 
treatments* The experiment la usually planned^dopting a 
suitable design and tb© data are then analysed using tho 
well known procedure of analysis of variance. Howaver, 
aispio comparisons among treatments are not always suffi­
cient as it may aorcetides b© important to ensure that the 
superiority of a particular treatment persists from year 
after year or from place to place or both. Moreover, while 
examining the data collected from experiments it is of in- - 
terest to see how fur the Individual treatments are stoble 
under varying environments* The results of a single experi­
ment conducted in any particular year cannot be totally relied 
upon as they are subjected to th© environmental conditions 
of tho experimontal field which fluctuate from year after 
year or season after season. Hone© In order to draw valid 
conclusions on© huo to repeat the experiment on the same or 
different field for a number of years or seasons with the 
same set of treatments adopting the same cultural and other 
agronomic practices. The treatment effects are then averaged 
over the entire range of seasons so as to provide acre 
stable information*

This study ia restricted to th® caao of long term ex­
perimentation with a fixed set of treatments under a system
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of continuous cropping# ^he data from ouch experiments 
can be studied at the end of each year and the results 
have to be combined after a few years. But several statis­
tical problems may creep up in the process of assessing 
the overall merit of treatments from such-trials due to 
possible violations from the basic assumptions. Additivity, 
normality, Independence end homoaedasticity are tho major 
assumptions Implied in the. analysis of data using a linear 
model. 1’he departure fro© the assumptions affects both the 
level of significance and power of statistical teat, fhe 
true type 1 error may be looser than the specified one and 
as a result too many.significant differences between treat­
ments may bo reported, fhe power is affected in that a more 
powerful teat could be obtained if a correct statistical 
model were adopted#

She assumption of independence of error is generally 
critical. Proper randomisation of the experiment introduces 
independence in the assessment of treatments to experimental 
units and the resulting c&pericental errors raoy bo regarded 
as independent. But in many long term experiments randomi­
sation rasains unchanged year L,fter year and that the obser­
vations in succeaoive years or seasons are highly correlated. 
This type of euto correlation among the error terms of
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successive yoars will definitely affect# the precision of 
overall treatment comparisons• fhe Fisherian technique of 
fitting a fifth degree polynomial to such data and adjusting 
the effects of treatments on the basis of the expected res­
ponse does not appear to bo sound. She usual method of 
treating the data on long term trials ea special cases of 
groups of experiments ia faulty and unrealistic bo cause this 
typo of analysis also makes use of tho assumption of inde­
pendence of error terms* /inolysia of data from groups of 
experiments introduces added difficulties in the sense that 
no general test for ©veroll treatment comparisons appear to 
be available in cases where orror variances are heterogeneous 
and interaction effect is absent. It has been pointed out by 
Rao (1575^ that about 3° per cent of the field trials with 
heterogeneous error variances belong to this category, fhe 
conclusions drawn on individual treatment means from such 
experiments using chi-square and ft* teats do not appear to 
be adoqucto and wholly reliable. In ouch cases; a possible 
tranaformation of data into a suitable scale may be attempted. 
However, this does not offer complete and satisfactory 
solution to the problem as it is very difficult to find out 
the right type of transformation for a given sot of data.
It ia theroforo necessary to find an alternative to the 
method of groups of exporlmcnts so as to draw fairly accurate 
inferences regarding treatments•
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Another possibility suggested by many workers In 
dealing with such experiments io to consider them aa spe­
cial cases of a split plot arrangement with y©ar3 or sea­
sons as subplotst within each treatment taainplot. But 
split plot design requires the random arrangement of set 
of subplot treatments within each main plot and that can­
not be expected in the case of trials repeated over several 
seasons * In such experiments one has to confront with a 
systematic arrangement of seasons in chronological order 
under each main plot* Here also tho assumption of indepen­
dence of error terms dose not seen to bo wholly valid. £ven 
if wo assume that the set of experimental years constitute 
a randoa sample of years fro® & population of years* the 
systematic occurrence of seasons makes the estimates biased.

Another approach to tho same problem is in the dire­
ction of activities to reduce the risk due to doubt about 
the correctness of the basic assumptions, fhie Involves the 
use of methods which do not depend on the exact nature or form 
of the basic distributions. Only broad assumptions like the 
distributions are continuous are needed in some cases. fiies® 
methods are known eg non parametric ast hoda * and they mainly 
depend on ranks and order of tho observations rathor than 
their exact values, therefore» certain amount of lack of
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precision creeps in* But, if the assumptions are not 
correct or not known to be correct* one is compelled to 
seek such methods eo as to draw valid inferences fron the 
date oven at the coat of sacrificing certain amount of 
precision* In this connection the method proposed by Kei 
and Itao (1980) requires special mention* Shis method has
been developed as on alternative to the analysis of data

. ■ s ■ v.
on groups of experiments end has certain distinct advan­
tages. over the other method. Kon parametric methods do 
not require any stringent assumptions on the nature of the 
underlying universe* The only assumption required for the 
method proposed by fial end Hao is that the sampling distri­
bution of the moans of ranks of the date, is approximately 
normal* But, the method is applicable only for caaea whore 
tho number of repliestions per experiment is four or more* 
.Further, the ©mount of information lost will be more when 
there arc only a fow treatments.

It is proposed to develop a new non-par&metrio method 
for the analysis of data from long term trials* Tho work 
by Friedman (19^7) on the two way analysis of ranked data 
is an important milestone in this direction. An attempt 
has been asdo in this study to suitably extend the Friedman's 
analysis of variance technique to the case of a three way 
classification with years as tho additional fector* The
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suggested method utilises none of the usual assumptions 
required for tho analysis of variance.

A viable alternative to the game- problem Is through 
the use of stability analysis. Stability in performance

Iig one of the desirable properties of any treatment repea­
ted over several seasons or years. A number of statistical 
methods ©rs now Known for estimation of phenotypic stability. 
Among them the method suggested by Eberhart and Russell 
(1966^ appears to bo the most popular* This method involves 
the us© of regression coefficient of yield on environmental 
index as a measure of overall phenotypic stability of the
treatments and judging their performance on tho basis of
the stability paramotors.

Stability of treatments in changing environment oan 
also bo measured through aon-parametrio methods. They are' 
easy to us©, distribution froo and arc not expected to be 
©b sensitive to errors of measurements as that of their 
counterparts. Furthermore, addition or deletion of one or 
a few observation© Is not as likely to cause groat varia­
tion in the estimates es could b© the caso for parametric 
Stability measuros. The stability of each treatment can bo 
assessed on the basis of such measures and the long torm 
offsets of treatments can be assessed on lho basis of such
parametero. - ,
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Frcs fehe point of view of the former, the treatment 
which gives him better satisfaction than others la pr©c_- 
fcrrcd often, Farmers differ in their resource position, 
profit orientation, risk bearing ability and decision 
making ability. Henco in fertilizer trials the uoual pra­
ctice of making blanket recommendations for all typos of 
farmers have been widely criticised. A conservative farmer 
may require a recommendation which will not incur him a 
loaa in years of stress. At the other extreme, the business 
minded farmer may require a done of nutrient that will assure 
him the maximum possible return in a given time interval.
Thus specific recommendations have to bo formulated for 
different typos of farmers with varying decision environ­
ments. Ih© principle of game theory io very useful in the 
choice of an optimum strategy under ouch risky environments.

Prom the very nature of long term experiments, multi­
variate techniques afford the&ooivoa as efficient tools for 
th© analysis and interpretation of date. Among the different 
multivariate techniques, the principal component analysis 
is considered to be the scat versatile and popular. It 
consists of.transforming a set of correlated variables into 
a few uncorrelatod linear components. Ihe advantages of 
principal component analysis are that it does not require
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un underlying statistical model to explain the error 
structure and no assumption is mad© about the probability 
distribution of the original variables. Principal component 
analysis la concerned with reducing the dimensionality of 
the data. The first principal component servea as a weighted 
index of yearly responses and la expected to explain maxi­
mum amount of variability in the date• The percentage 
variation explained by the treatment totals in the aggre­
gate data will be definitely leas than that accounted by 
the first principal component. Further, the problem of lack 
of independence of error terms in the linear model can also 
be solved through the use of principal components as the 
dependent structure of error terms in successive years is 
lost by replacing a single index value for the entire time 
aeries data from each of the different plots. Thus principal 
component analysis can definitely be recommended for the 
analysis of data free groups of experiments. But the use of

V

principal component analysis to interpret the results of a 
long ters trial has not been reported so far. 3o this study 
is also aimed at applying tho technique of principal compo­
nent analysis for the analysis of data on long term manurial 
trials.

As several methods have been suggested for the analysis 
of data of long ters trials it is desirable to have an
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empirical comparison of all the proposed methods on tho 
basis of actual field data to know their relative efficien­
cies and the decree of mutual concordance. The results of

/ •

such analysis will definitely indicate the appropriate tech­
nique to be adopted for tho analysis end interpretation of 
data on long term manurial trials.

Another problem with regard to tho analysis and inter­
pretation of data from long fcero fertilizer trials is to 
select an appropriate mathematical function to represent ' 
yield fertilizer relationships* Th© fitted response function 
is thoo studied to get the optimum and economic doses of 
nutrients and tho expected returns.

Among the different mathematical functions which are 
used to describe the response pattern of fertiliser on crop 
yioldt the quadratic polynomial ia tha most popular. Fitting
N. 1

a quadratic response surface ia aimpl© as only linear esti­
mation ia Involved end the usual technique of analysis of 
variance and tests of significance can bo immediately applied 
with this ourfaee. This function also takes account of decli­
ning yieldo in port of the range of dosoa tried. Tho stand-

- 4  - W * -ard errors of estimated/optimum doses baaed on quadratic 
surface are ieca than thcuo of other (̂ surfacesT^BulT a> 
disadvantage of uaing th© second order response function is
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Shat they are symmetrical in shape about its stationary 
value* There are many instances in fertiliser research 
where response curve is not symmetrical about the stationary 
value. The quadratic function is not efficient to represent 
the response pattern in such experiments. In certain other 
cases the curve ceases to decline beyond the optimum value 
and one ia confronted with an assymptotle nature of response 
within the range of nutrients. There are also instances 
whore the curve will have more than one stationary value. In 
gucfa cases polynonial of higher degree then two con be used 
to represent response pattern. In the case of fertiliser 
responses of assymptotic nature Holliday function, Welder's 
polynoaisl etc. may bo recommended* . Vfhen the ordinary poly- 
noaialeCS'Cfail to fit the data, some trana format Iona such ae 
square root transformation, logarithemic transformation etc. 
can be used to got more reliable results, Oince a variety 
of functions could be used to describe the response pattern, 
choice of a suitable mathematical model for describing the 
dose-yield relationship is an important aspect of fertiliser 
UQ6 research. It ia also necessary to develop alternate 
models to represent the response pattern in particular situ­
ations where the ordinary models fall to describe tho pro­
posed relationship.
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As different functions may be fitted to the data 
Of different seasons or years in repeated experliaonto, the 
function which gives a satisfactory fit in moot of the 
seasons or years can b© considered to be a bettor choice 
than others*

As nitrogen and phosphorous are the two nutrients 
which havo been generally tried and which have shown res­
ponse in rice, this investigation is confined to these two 
nutrients clone. All the experiments considered in th© study 
pertain to rice crop since suitable experiments on other 
crops are extremely few.

In view of the facta described in the previous para­
graphs, the present study is aimed at the following 
objectives,

1 • To empirically evaluate the relative efficiencies of
various statistical techniques involved in the analysis 
of data from long term fertiliser experiments and 
suggest suitable methods for apoolfie situation based 
on various criteria.

2m To develop more reliable and subtle methods of data, 
analysis in th© case of long berm experiments and to 
compare the utility of such methods‘with tho existing 
methods.
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5* compere the relative efficiencies of different
mothemetical models in describing the yield-fertllizer 
response relationship in paddy and to determine the 
optimum levels of inputs in a realistic manner taking 
into account such factors, as cost of input, cost of 
output etc*

4« io develop alternate models for describing the rela­
tionship between yield and fertiliser response in
paddy and explore their superiority over the existing

/

models*
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iiEVUStf OF hmEAfUdii

Although comprehensive studies on the various problems 
of data analysis in Qfch© field of long term amrturlal trials 
an paddy or other crops are very few in India or abroad,
aany reports on the fitting of response surface moctela to
fertiliser trial data are uvailablo. A abort review of the 
available literature on the subject ia furnished below under 
two sub-headings vis* (Aj Analysis of dots of long term 
axperlBionts and (B) fitting response models.

k* Analysis of data of long term experiments

In an attempt to obtain information on the various treet- 
nont effects under g system of continuous cropping Fisher 
(1924) applied tho method of orthogonal polynomials to an 
Experiment on wheat involving varioue fertiliser treatments, 
a© fitted a fifth degree polynomial to represent the rela­
tion between yield and annual rainfall. However, since th© 
aquation is of limited utility in predicting the limiting 
response and since the biological explanation of a mechanism 
which will generate a polynomial does not appear to b© reu­
se tv'pible, some other functions of time should be used to 
sxplaln the yield from the plot in th© year. Further,
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his method did not provide a t©Bt of significance to sake 
an objective comparison among treatment means*

Yatao and Cochran (1958> made an attempt to analyse
data fro© seta of experiments involving the same or similar
treatments carried out at a number of places, or in a number
of years, fhoy pointed out that the ordinary analysis of
variance procedure suitable for dealing with the results of

>
a single experissnt may require modification* owing to lack 
of quality in the errors of different experiments and non- 
homogenolty of the components of the interaction of the 
treatments with places and tlrsos.

Patterson (1939; considered the problem of field experi­
mentation with perennial crops and auggoafced that certain 
modifleetions have to bo offooted in the statistical analysis 
of long tor© data on perennial crops. He recommended the 
Use of split ploc design for the analysis of long term ex­
periments with years assigned to aub-plota and treatments 
assigned to main plots.

Xhs problems arising in the analysis of data from long
term experiments containing different crop rotations were in-

\

vestigated by lotos (1954). fhe method was illustrated by 
application to rico posture experiment containing rotations 
of different lengths end with different proportions of rice 
to pasture. When the design of the experiment was such that



eaoh blook contained plots which sometimes carried a given 
crop but did not all carry the crop in the same set of 
years the yoar-'bloci: totals were not found to ho orthogonal 
to the plot-totaia. He recommended the method of fitting

i• constants to obtain separate estimates of plot error and 
plot x year error which were free of year & block interactions.

Hanford gt, ai.(1960) made the analysis of repeated 
measurement experiments end found that ^asymptotically the 
univariate and multivariate tests were identical,

Finlay and Wilkinson (1963) studied the adaptability 
of crop varieties to different seasons or places. The linear 
regression of on could be written as

‘ ? ± » b <Jj - s >

whore y^j is the neon yield of the 1 variety in the J
place Xj i© the mean of the yields of all varieties at the
■fcH ^ itu

3 place* y^ is the mean yield of the i variety in the 
experiments* x is the grand moan of tho yields of all varie­
ties in all tho experiments and b is the regrossion coeffi­
cient. A variety had average, better than average or leas 
than average adaptability according as b is one, leas than 
one or greater than one•
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' iSberh&rt and Kudos 11 (1966; developed stability para­
meters for comparing varieties. The model y ^  » 
defined, stability parameters that might be used to describe 
the performance of a variety over a series of environment a.

+UyA . ia the mean of the i variety at the £ environment.
this the. moan of the i variety over all environments, 

is the regression coefficient that measures the response of
the v>i variety to varying e nvirontaento» cf, ̂ is the devla- 
tion from regression of the 1 variety at the 4 environ­
ment, and is the environmental index.

Hothoda of multivariate analyses were used to analyse 
data from experiments with repeated measurements by Cole 
and Orizsle (1966). They found that multivariate techniques 
had the same power, scope and flexibility as their univariate 
counterparts.

. Kgarwal and iieady (1969) developed a theory for statis­
tical decision making under uncertainty. They made a com­
parative study of the four {^ysxiatlng theories of decision 
malting vis. tfald's max lain criterion, La place * a principle 
of insufficient reason, Hurwics ' optlmiflE-pesaimisia, crite­
rion, Savage's regret criterion and suggested the new theory 
of choice - the criterion of benefit which blended the pro*> 
pertiee of these four models.



An alternate approach for interpretation of data col­
lected from groups of experiments toaa developed by Bawl© 
and Das (t978i* The method consisted in obtaining a treat­
ment index eg an average of the treatment yield and an 
environmental index as an overage of the environment. An 
inverse of the regression coefficient of treatment index on 
environment index was taken as a measure of stability of 
the treatment with changing environment.

Attempts were made by Khosla al. (1979) to study 
the behavior of experimental errors and presence of treat­
ment x year interaction in the case of ,groupa of experiments.

Friedman (1957) developed a non parametric two way ' 
analysis of variance technique based on ranked data. Later,
© non parametric method for the analysis of data of long torn 
trials was devised by Kai and Bao (19SG). They developed a 
teat criterion for which the sampling distribution approached 
a chiaquare distribution* The method was applicable to m wide 
class of problems to which the' analysis of variance could not 
be validly applied.

Krishnan fit al, (1982) made a comparison of two methods 
of analysis of data relating to permanent msnurial trials on

4

paddy. The data on Jays variety of rice were analysed both by 
the method of stability coefficients and by the method of
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analysis of groups of experiments* The results obtained 
by the two methods revealed that they were equivalent*

Application of principle of game theory to a fertilizer 
experiment on ooorge tuandaritL waa discussed by Bamachander 
£t al. (1982)* The pay-off in the fora of yield and net- 
returns was considered* It was assumed that resoureea were 
not a limiting factor in choosing the strategies* The treat­
ments applied were considered as strategies end the yield of 
different years were considered as the nature's strategies*

isaasar and Kuhn (1987) proposed tests of significance 
for non parametric measures of phonofcypic stability. Th© 
statistical properties and testa of significance for two non 
parametric measures of phenotypic stability ie, moan of tlio 
absolute rank differences of a genotype ovor the environmenta

N

and variance among the ranks over the environments, were also 
investigated*

Prabhakaraa at gl* (1938) applied the principle of gome 
theory for interpretation of data of long term fertiliser 
trial on WOT coconut in red loam soils of KoraId. They made 
specific rocommendations for farmers with varying decision 
environments using different criterion Buch as Wald's maximin 
criterion, Laplace's principle of insufficient reason, Eurvics 
’optimlam-pooaiaiaia' criterion, savage's regret criterion and 
Agarwal's excess benefit criterion.



28

B. Pitting of response models

Justus Von Liebig*3 law of the minimum was tho first 
attempt to define a fundamental relationship between ferti­
liser or nutrient inputs and crop yields. Liebig {1855J stated

i

that crop yields were proportional to the amount of nutri­
ents supplied to them and when all nutrients were prosent 
in sufficient quantity the addition of one or more would not 
increase crop yield. Von Liebig did not suggest an alge­
braical modal to represent the relationship.

ftltecherlich ( 1909/* defined an algebraic form of fer­
tiliser yield relationship* He proposed a non linear function 
to represent tho relationship between nutrient intake and 
crop yield. With the aid of Baule, a mathematician, he 
proposed the (^equation

log A a log (ft-Y) a CS 
to explain fertiliser response allowing marginal productivity. 
In this A is the total yield when the nutrient Y is not 
deficient and C is the proportionality constant which indi­
cates the rate at which marginal yields decline.

Spillman (1924J proposed an exponential yield equation 
similar to that of Hitscherlich which ia given by Y ̂  M-ARX 
where ft is the maximum yield attainable by increasing the 
nutrient input x. A is a constant defining the maximum
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roaponse attainable from use of a and fi ia the coefficient 
defining the ratio by which marginal productivity of x 
increases•

Briggs (1925) suggested the uae of hyperbola of the form

I  a where J3 ia the maximum yield* b is the quantity
of x in the ooil and h io the optimal supply of input*

A modified statement of tho equation proposed by ’ 
Balmukund (1926; based on Maskals resistance formula ia ex­
pressed ao

Y"1 b a(b+x)~* + c

where a# b, c are oonstants and in the case of fertilizers 
b i a the' nutrients in the soil and x is the amount of nutri­
ents added*

Boreoch (1923> modified biebig's law and developed an 
algebraical model X ® a * bx where Y is the total yield,a is 
the yield in absence of application of x, the nutrients 
supplied*

Crowther and fates (1941/ emphasised that final conclu­
sions on fertiliser response must be baaed on a series of 
experiments conducted in different years on different crops 
under varying soli and farm situations. They used the 
modified Hltacherllch’a formula which is given by

I « Y0 + d (1-lO*k*)
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where Y0 ia the yield without fertiliser» d ia tho limiting 
res ponae, x is tho quantity of nutrient added and fcC? ia a 
constant•

Sukhatm© (1941; used a quadratic equation to fit r©8- 
pose data for rice and Panao at al* (1951) used it for cotton.

Johnson (1953) emphaaised that in' tho case of single 
input, quadratic and square root polynomials were better than 
other forma with some preference to.tho square root quadratic 
attributed to its non symmetrical and flatter shape by xy plane.

Somes (1953) used the MitschGrlioh*s regression equation 
in the analysis of experiments with fertilieers which is 
given by y a A where A measures a maximum
yield which could not be exceeded by the use of th© fertili­
zer in consideration# C measures the efficiency of the ferti- ' 
lizer and b measures the soil content of the fertiliser in 
the control plots in a form assimilable by the plant.

Halter el#(1957) proposed the function y *= cxae^2 

which was a hybrid combination of power function and exponen­
tial function# a, b, o are constants end x is the nutrient 
added#

Blesdolo and Holder (1960) proposed an equation 
Y at y constants a, b, c and d# It was usually



23

s
satisfactory to take c=1 • by taking d=j? , d > 1 the aaaym- 
ptotio and parabolio responses were obtained.

Holliday (i960) found that dry matter yield had an
,

©asymptotic relationship with plant populations. He attempted 
to' describe the asfjhymptotio type of relationship by a fun­
ction of the form

Ax
*a “ TTEST wtere

fa is the yield per unit area, x is the number of plants per 
unit ©rea and A is the apparent maximum yield attainable by 
an individual plant in the particular environment.

Abraham and Rao (1966; studied tho functional relation­
ship between doses of fertilisers and the yield of paddy crop. 
Ihey- compared the efficiencies of different mathematical 
models in describing the response surface for paddy crop 
based on empirical data. 2ho five response functions 

, Witacherlich, Resistance formula^ Cobb^-Douglas, quadratic and 
square root formula were considered* It was found that in 
the general absence of interaction for most of th© cases the 
quadratic surface, could be fitted* Resistance formula gave 
uniformly better fit when interaction was ̂ present* Estimates 
of th© nutrients ovaliable in th© soil were mad© using 
fiitachorlich, Resistance and Cobb-JBouglasf,i functions*
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Kald.Gr (1966} discussed about inverse polynomial res­
ponse functions* If Xj# x,,, ......   x^ represent the levels

' of k experimental factors and y ia the dean response, then 
the inverse polynomial response function is defined by

t

a1 " *2 »«***• * polynomial In (s- * Xp, • •*.**XiJ* Sfco
y  ,

goodness of fit of ordinary and inverse polynomials was 
compered and tho inverse kind shown to have some advantages*

Church (1966) presented a method of reducing a curvi­
linear response to a set of numbers which described a curve*
Ho made an analysis of such numbers including reconstruction 
of tho curvea*

Inverse polynomial response surfaces applied to data 
from plant nutrition experiments was proposed by Clarke (1966)* 
Inverse polynomial surfaces of linear end quadratic type were 
compared, the latter often succeeding avon In cases where a 
maximum was not reached*

Inverse polynomial response surfaces applied to data from 
plant nutrition experiments were further discussed by Clarke 
and Esan (1971). Curves of tho form y~* a az**V b and 
y  ̂«s ax ^+b+cx in which y is th© crop yield and x is the 
level of fertilizer applied, gave tvjo useful shapes of rela­
tion between y and x* When several fertilizers, x1, *2 •••••



were used in an exparimont, those curves might b© genera­
lised into surfaces* where various combinations of tho two 
typos of relations could be included.

Sue© (1972) made a study on tho analysis of response 
curve data, and developed a better model which combined the 
univariate analysis of variance and principal component 
analysis.

A family of linear, plateau mod©la involving intersecting 
straight lines and concomitant experimental designs uooful 
in evaluating response to fertilizer nutrients wao proposed 
by Anderson and Rolson (1975J. £hey found that for multi- 
nutrient experiments a complete factorial experiment with a 
number of levels of each nutrient wao tho beat design for 
evaluating tho model and thon estimating the optimal 
nutrient levels*

A mixture model with inverse terms wua proposed by 
Draper end John (1975)* fhey suggested a type of model which 
combined Sohoffe polynomials and inverse torms.

Perrin (1976) established that tho linear response 
plateau models proposed by Anderson and Relson wore inferior 
to quadratic models.

Barnes et al. (1976J obtained a dynamic model for th© 
effects of potassium and nitrogen fertilisers on th© growth
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and nutrient uptake of crops. £ho model had the ability to 
forecast the of feet of different weather conditions* on crop 
response and the interaction between the effects of nitrogen 
and potassium fertilisers on the growth and chemical com­
position of plants*

fho response function approach to the effect of ferti- 
lisere on crop yield was discussed by Shornby 11970)* lbs 
problem was first considered in general terse and expressions 
were derived for the maximum yield and the economic yield*
Sfhe theory was then applied to the inverse polynomial fun­
ction, which was usod to describe the response to various 
Isvo1b o? nitrogen, phosphorous^and potassium fertilizers*

Sonk and Singh (1982} obtained a method for analysis 
of response curve data. 2he procedure combined the analysis 
of variance model and the modified principal component ana­
lysis* fhe method consisted In developing contain statistics

/  (

wbieh described the level and shape of the curves*fhese sta­
tistics were then usod to determine the effects of tho 
treatments on the curve.

Gupta and Higaa (1982) discussed about models useful 
for approximating fertiliser response relationships. ' fhoy 
found that if the oboervationa had a long tail to the right, 
then tho performance of second degree inverse polynomial was 
bettor than the ordinary second degree polynomial, For
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symmetric situations the two polynomials behaved equally 
well# For negatively skewed observations* the performance 
of tho ordinary polynomial was better than tho performance 
of the inverse polynomial.



Atd.ietia.l5 and Aietkod.5
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HASBRlAlS AKD METHODS

This chapter hag been written as two sect Iona under 
the subheadings (A) Analysis of data of Ion# terra experi­
ments and (B) Fitting of response models.

A. Analysis of data of long term experiments

She data relating to the permanent manurial trials 
with Jaya variety of rice during the period 1973 to 1987 

for the kharif and rabi seasons wore collected from tho 
.Regional Agricultural Research Station# Patfenmbi. The in­
formations on rnbl crop in the years 1982, 1984 and 1986 

were not available duo to the incidence of drought* So these 
years were not considered in the study. Bata on rabi and 
kharif crop were pooled for each year to get a time aeries 
of yearly production of paddy for a period of 12 years. The 
experiment was laid out in a 4 replicate randomised block 
design with 8 treatments. A uniform spacing of 15 our 15 cm 
was adopted* Tho gross plot aisc was 7.8 a 5*25 sq.m. and «
tho net plot sis© was -7.6 x 4.95 ŝ .ia. The treatments arc
given below.

1 * Cattle manure at 18000 kg/ha to supply 90 kg N/ha
2 . dreon leaf at 18000 kg/ha to supply 90 kg N/ba
3. Cattle manure at 9000 kg/ha + draeii leaf at 9000 kg/ha 

to supply 98 kg R/ha



Ammonium sulphate to eupply 90 kg h/ha
5. Cattle manure at 9000 teg/ha + Ammonium sulphate to 

supply 45 kg H/ha +.45 kg + 45 kg KgO as
H*0#p. (Kuriato of Potash/.

s.

6. Green leaf at 9000 kg/ha + Ammonium sulphate to 
supply 45 kg H/he + Super phosphate to supply 45 kg 
P205/ha + 45 kg % 0  as 8*0.P.

7. Cattle manure 4500 kg/ha + Green leaf 4500 kg/ha +
45 kg H as Aoaaoniua sulphate * 45 kg P^G^/ha +
45 kg SgQ/ha

8* Ammonium sulphate to ̂ supply 45 kg S/ha + super
phosphate .to eupply 45 kg ^ ^ 0 ^ / h o ,  + M#C#P. to supply 
45 kg IL,Q/ha

(Ammonium sulphate to be applied half as basal and 
the rest as top dressing at panicle initiation)

The same experiment was repeated ovor ooaaon to season 
in different years# The responses to these treatments may 
remain steady or may depend upon the season# In this study 
several methods have beon attempted for tho analysis of data 
from long term experiments# 2hoy are discussed below*

1 # Analysis of data as in groups of experiments

She data for each of the 12 years are analysed sopara­
te ly in the usual way as in a randomised block design# She 
nothod of analysis has boon derived from the following model.

/
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y±3 « + olj

where Is the observation of tho i treatment
( 1 a 1 , 2, .....t) in the block (j a 1 , 2 .....r),

*

ia the effect due to 1th treatment, ^ ia the effoot
filldue to 3 block and oij ia tho random error component

which is assumed to bo independently and normally diotri-
2bufced with aero mean and constant variance s~ . The stru­

cture of the analysis of variance of randomised block design 
with t treatments and r replications ia given below.

AUOVA

Source ' d . f. ft .3.
2Explications r-1 3r
2Treatments t-1 3̂.

Error (r-1 j( t-1 ) 32

Total rt-1

Homogeneity of error mean squares is then tested using 
Bartlet’s toot. If the error mean squares are homogeneous, 
pooled analysis is done. In this method pooled error moan 
square is to b© used to find *F* ratio for treatments and 
blocks in case the year x treatment interaction effect ia 
non significant. If on the othor hand tho interaction effect
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i© aigniflcant the treatments are -boated against interaction 
mean square. When errors ere heterogeneous the method of 
weighted analysis is applied to teat tho significance of 
the effect of interaction. This is done by assigning a 
weight to each experiment and the weights are calculated

v 2as ® ^ jvp" where is the corresponding error mean 
square. Using those weights for each year the quantities 
wiPl where p^*s are the year totals and for each treatment
and quantities ^w^t^ where t^'e Qr© means for each treatment

/at each year are calculated. If G he the sum of 
ovor all tho treatmentst s^ be the crude sum of squares ob­
tained for each year then the various items in tho analysis 
of variance are calculated as below.

'  AH07A

Source 

Treatments

Jeara

Interaction

d.f.

t-1 - 0

p-1  

(p-1 )(t-1 )

c

Total pt- 1 1  wi ai ~ c

where p ia the-cumber of years and 0 - the correction
* £ wifactor.
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Iho sum of squares for interaction, I is calculated 
by subtracting from the total sum of square©, tb© isuca of 
squares for the years and treatments* In order to test the 
significance of interaction, the sum of oquareg of intera­
ction is transformed into a chi-square variate using the 
formula, 3Ĉ  « ‘"̂ n^nis-^7 '̂̂  * 2his follows a ohi-oquare
distribution with (t>-1 )(t-1 )(n-̂ 4) degrees of freedom where

n+t-3
n ia the uniform error degree of freedom,

}
In jOese the interaction is significant the raeens of 

the treatment© for the different years may b© set out in a 
two-way table and the simple analysis of variance is carried 
out.

AS OVA

aouroe d.f,
treatment© t-1

Years p-1
Interaction (t-1) (p-1)’
fooled error p(r-lj (t-1 )

Ihe treatment mean squaro is then compared with the 
interaction moan square to teat the significance of treat­
ment differences,

2• Analysis of split plot design

Iho analysis is performed by considering the treatments 
a® main plots and years as sub plots, The method of
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of analysis baa been derived from th© following model.
i

+ 0G i + 1 id+ Pk + l'tp ^

< > l i kfU
where la tIlQ observation In tho i block receiving

main plot treatment and k ^  aubplot treatment, ^ is the/ 
general mean, ^  1 , ^3 and £k are the fixed effects of

4* h 4jleblock, 3 oainplot treatment and k subplot treatment
respectively. (T,flt }i3 is th© interaction effect of the itl1

block and 3̂  main plot treatment which is termed as the
i»hmain plot error ♦(T'p is th© interaction effect of 3

' t i lmain plot treatment and k subplot treatment. ( 
and ( are two error components associated with sub­
plot, together known as subplot error, fhe error components
In tho model ore assumed to be independently and normally

2distributed with sere mean and constant variance cr *

Let there be r replications, p main plots and g. sub 
plots under each main plot. Shan i » 1 , 2, ....•••r,
3 * 1 * 2 ........  k a 1 , 2, ........q. If and
are the total of all observations in the i**1 replication^, 
3 treatment and k year respectively thon analysis of 
variance of the design is given below.



AEQVA

Source d_=f. 3.^.
K 2

Replications r-1   CF 3y2
2

c  J 2Treatments p-1 *- ---- - CF s
J rq

Error (a) (r-1 )(p-1 ) T.x.B.3. (1 ) a 2

3  2
Year© q-1 f: ^ - CF s 2* -Mvk ^rp

2Treatment x year (p-lKvI“W  T.I.3 .J. (2.) sT
interaction

Error (b) p(r-1 )(q-1 ) ab

ms a 

2

Total rpq-1 | J ^ Yi;jk2 - CF

2.1.3.30(1) 1b obtained by considering the replica­
tions and treatments as a two way table. If a. .. is thei  J

observation in the ij cell, 2 .T.3 .3.(1 ) ~ f f- a. . -
£  i f i i  -  £  ! - i  +  c f .  1
1 W  j rq

2 .1.3*3 .(2 ; is V.,obtained by considering the treat­
ments and years as a two way table.

5t h
„ 2 ’ 3,12

2«T«3.3.(2/

If b,^ Is tho observation in the Jk cell,
'  b i k  2 h 2 s’;2 L if  - £ .1 - £. K + CF

j k r j rq k . rp
C.F. “  ̂i ^ k » the correction factor. 3ura of
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squares for error (b)- ia obtained by subtracting all the 
other q u o  of squares from the total sue of squares.

Standard error for tho difference between two treat-
i 2 3ament means * J 1 'ffi—  ■ %

a*. - where t<*_ Jmr-'f1Critical difference, CD is givon by
' "  r

ia tho tabled value of students *t* with whole plot error 
degrees of freedom Sor-^jC jt par cent level of significance.

fhon the treatment means are compared with CD to teot
/

tho significance of treatment differences.

3. Principal component analysis

Consider the random variables x1, x2, ..... xp which 
have a multivariate distribution with mean vector p- and 
correlation matrix 2. • Assume that tho elements of ^ and 
aro finite, fhe ranfe of lia p and there will be p chara­
cteristics roots. Let tho characteristics roots tjifcs
Aj, A^, ••...•• Ap such that  >Ap and

they are all distinct.

Lot thej'O be K treatments repeated over p years. The 
observations con be written ea the 3 x p data matrix.* f

a 11 x 12  x 1p

.HI xfi2 * * * • x|ip
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Each could bo tranoforced into a standard score ŝ j as

aAj ° - O)
aj

where sj is the moan and ia tho standard deviation of

The covariance matrix calculated from S * { j) will 
b© the correlation matrix of the original data matrix and 
will bo of order p i p

The first principal component of the observations z is 
that linear compound

” an Bi '*■ a21 a2 * * • • • ep1. cp ~ a1 s
tso that e 1 and variance of ŷ  must be max imam. She

coefficients of this linear compound must satisfy the p 
simultaneous linear equations ( - A^I) a^ * 0. She value
of Aj must be so chosen as to make | 2_- A^l | s o> A| io 
thus a characteristic root of tho correlation matrix and 
b.j is its associated characteristic vector.

The second principal component is thst linear compound

y2 o a12Si + a22 «2 + ........ap2 zp “ a2 ®

whoa© coefficients hagO been chooon subject to the constraints 
1 *

&2 a2 “ * a1 a2 * ® 00 ’■Sŷ ;hâ  tte variance of y2 is a maximum.
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The second voctor must satiafy I 1  a2 ” °* ^ 2  ‘*'0
thus the second characteristic root and ia its asso­
ciated characteristic vector. Similarly all other chara­
cteristic roots and characteristic veotora can bo found out 
00 that ••••••• « trace 21 » p.

The first principal component serves as that linear 
combination of years which explains maximum variation among 
the treatments. This ia { simply-";,̂ weighted indox of

4 "  1 1 ■ “  —- - - r

seaeonal components, the weights being the coefficients in 
the asaooiated eigon vector. The process provides a unique 
value for each treatment in the set of treatments and this 
ia obtained by multiplying the transformed matrix z with 
the elgin veotor • This value of the derived composite 
variable known as the index value acts ao an index of per­
formance of th© specific treatment in relation to the other 
treatments and thus helps in the descrialnatlon between treat­
ments. The treatments are then ranked on the basis of the 
derived indices and the best treatment ia recommended for 
adoption.

t

t

But tho method described above fails to provide a 
statistical test of significance among treatment effects.
A rnoro general approach ia to derive the first principal 
component from the original Hr x p matrix of observations
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where r is the number of replications for each treatment « 
Standardised values are then obtained by applying the rele­
vant transformation described in (1J-P eigen values and 
corresponding ©igen vectors are gonerated and the eigin 
vector corresponding to the largest oigsn value ia designa­
ted as the first principal component. It is given by

P
y1 " -jfj

Then by multiplying the Sr x p matrix of standardised 
values with the largest eigen vector (principal oomponent) 
of order p an index value matrix of order Kr x 1 is obtained
which can be arranged into a two way table of fl treatments
and r replications. Data of the two way layout can be analysed
as in a randomised block design. Sh© analysis of variance of ,
the resulting data io given below.

AHGPA
Source d.f. 3.3. H.3.

' 2 
He plications r- 1 ^ %  - OP aT2

2
Treatments E-1 f- .1 - CP s.j —  t

Error (r-1 )(H-1 ) a .2'e
Total rE-1 i  f  V  -  0F
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and are the total of all observations in the
if Vi  ̂tmi replication and 3 treatment respectively.

OF* ( 1 -1 yi3J the correction factor. 
rH

If the treatments are found to ho significant, critical
2difference CD^ » t^ eG can he calculated. Then the

J' V T
■ treatment moans are compared with GD* to test the signifi­
cance of the treatment differences.

4* The non-psraaotrie method proposed by Eai & Eao (19Q0)
•. i  —

The method ia applicable to problems in which analysis 
of variance cannot validly bo applied. It can also be uoed 
for the triala when the error variances are heterogeneous. 
She procedure involvea firat ranking of the observations in 
each replication of the individual experiment* If t treat­
ments are compared in a replication the individuol observa­
tions are ranked by giving rank 1 to tho highest value, 2 to 
the next lower and so on. Tho smallest value of the observa­
tions will be given rank t. Eanking is done afresh for each
replication and it will have variate value 1 , 2 ..........t.
On the hypothesis that there is no significant difference 
between the treatments, the difference in the valuoa In each 
replication for different treatments will arise solely from 
sampling fluctuations*
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Ike get of ranka for each treatment represents a
t

random sample from the discontinuous rectangular distribu­
tion* Suppose each treatment ia replicated r times in a 
particular trial and fch© trial ia repeated over p years. If 
the character under study I3 indopendent of the replication 
the set of rank® being the rank of treatment in
the I**1 replication of k *̂1 experiment will represent a . 
random sample of rp items from a discontinuous rectangular 
universe. Moan and variance of this universe ar© obtained 
a® follows. '

=  £ = i  
12

Kean * t (t*1) m t-»1 
T T t  2 -

Variance » | j»it±UJ2t±i' - £ l | ± U ^

thThe mean rank of j treatment ia given by
1 r  P

\ J  & ) = ~ x v  j f t  r i J t

It is known that the sampling distribution of the moans
of the ranks will be approximately normal. The sampling
distribution of the moan ranks 7L will have the mean value

2E which is equal to t+1 and the variance *— which is
’J2equal to t -1 • The hypothesis that th© means of the 

12 rp
ranks of various treatments case from a single homogeneous 
normal population con bo tested by the statistic
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1j ^

OL -  aric _ ^k °  d=1 cr-2
By putting the values of "I and <r~ and taking a pp
where K= is the aura of ranks of the treatment, we get J
the value of k in another form

1 | CB, - 1 J2
- - ^  Ja1 J

- - * ?  *

V  f e V  -  ' ^ 32=r C

. V *  I - h m £  "* -1 L r2p2 4
- <2 y  R,2 - 3rptct+1>

rp(tz- i ) 3 T t - r r

This statistic is distributed as chi-square with d.f.
If k ia significantly greater than th© expected value, the 
mean ranks averaged over years differ significantly and 
there lg significant difference in the treatment ©fleets• The 
chi-square value representing the treatment x year interaction 
may bo obtained as

i li  r P t r 2 1 t p 2
1 n - S- ( «- ijR) - -2- 2- Rjk = r(t2-1) -k=s1 ^=1 icsl P

which is distributed as a chi-square variate with (t-1 )(p-1 > d 
The signifioanc© of this statistic indicates the presence of 
Interaction of treatments with years.



The rank means of treatments can then bo compared in 
tbs usual manner with the help of oritical difference cal­
culated by

0 D ( . 0 5 )  “ v *  « • *

5* Extended Friedman'0 Analysis of variance by ranks

Consider a set of t treatments assigned randomly to 
the units In each of the r blocks of a randomised block 
layout, let denote tho observation in block i of treat­
ment J (id 1 2 g • * * *r} f jol| 2 f ••••• *tJ• Since tho obser­
vations In different blocks ore independent tho collection of 
entries in the various rows of the two way classification 
are independent* In order to determine whether the treatment 
(column) effects are all the same or not the analysis of vari­
ance technique is appropriate if the assumption© of normality, 

additivity and homogeneity of error variances are satisfied*
If on any ground one is In doubt on the validity of these 
assumptions he m y  proceed to apply a non parametric test of 
equal treatment effects proposed by Friedman (1937)* In this 
approach tho observations in each row (block; ore replaced by 
their rank order within that row. If R . . denote the rank

{ill thorder of the 1 treatment in the i block and EU, tho rank
thtotal of the 5 column (treatment}



Further by design assumptions9 observations in different 
rows are independent.

2he sun of squares of deviation of the observed column 
totals around ite expected value r(t*1 ) will be a measure
of the difference in treatment effects* therefore wo shall 
consider the sampling distribution of the random variable 3

under the null hypothesis of no difference between treatments* 
fhe probability distribution of 3 Is given by

where Os is the number of arrangements of ranks in a block 
which yields 3 as the sum of squares of column total devia­
tions* fables of the distribution of 3 for small values of t 
have been prepared by Kendall (1962)* Outside tho range of 
the existing tables an approximation is generally used Ibr 
tests of significance* fho expectation and variance of a ere 
given by

2

t 2
where a * * r
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^(£3 ; a

Ver (aJ = a  u s u a ^ u m *

Friedman (193U) has shown that a linear function of 3 which 
is denoted a a ^ ia distributed approximately as a 
chi-square variate with (t-1 J degree 0 of freedom.

2  _  12  a-'
% r 53 rt(t fl J

t  2

“ _ -  3r (t+w 
rtft+1;

2The first two moments of jC are (t-t./lj and 2(t-^1)
X

which are the first two moments of a ' ĉhi-square distribution
2with (t-1; degrees of freedom. The higher moments of jc y 

also closely approximated by corresponding higher moments of
ptho ehi-squar©., Thus for all practical purposes % can he 

considered to he a chi-3quare variable with (t-1) degrees 
of freedom. Humorieal comparison have shown this to bo a 
good approximation as long 03 t > 7.

The region for a toot of equal treatment effects with 
level of significance» <*■ is

F £ H for f> *2n-i(«,

where 11 ia th© critical region and f the calculated value 
2

°* X  r*
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She above approach is related to the classical analysis 
of variance using ranked data.

If 3<g denot© tho total sue of squares of deviations of
all the rt ranks around its average value then 

r t 2
a a S. - t£L)Sf “ i»1 3=1 ^  2

rt (t,2-l) 
12

o r V2 a
32

The total sum of squares of the ranked data can he 
partitioned into two components as follows.

a _ <l_ %fij j * + fij " E)%  " 1=1 i«1 id j 4

id y

r t
£. £
£ ' i- 1

£- e.
1 3

%  ♦
a
r

where Sfi ia the residual sum of squares.

All these can be presented in the analysis of variance 
table as follows.
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AJJOVA

Source d_*JL«. H.3*

Between columns ' t-1 
(Treatments;

a/r H.3.T.

Between rows (blocksj r-1 0 0

Eaoidual (t-1 )(r-1) 3j, - f

fetal . _ tr-1 , S2

The additive property of chi-aquare enables us to 
extend this result to the cage of three way tables with 
years as the additional factor. Let us assume that the sot 
of experimental years represent o rand ©a sample from an

/
infinite population of ye ora. Then it is possible to calcu-

2late the Friedman1® 3c. r statistic to the data of each of 
tho p years separately. On the assumption of independence 
these chi-square values can be pooled to get a total chi-square 
with P(t-1) degrees of freedom* Shis chi-square can be split 
into two components *

/ r *  “ x V  + / rH
2where jc rL is the deviation chi-square calculated from the 

column totals, of the pooled data* It can be used to provide 
a general teat of equality of treatment effects over all the
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p years• y i rH the heterogeneity chi-aiuare is a component 
of interaction between seasons snd treatments. A signi-

Oficant % H indicates the presence of treatment x year 
interaction. 2he relevant procedure is outlined below.

Years 3.3. Chi-nguaro

1

2

3i

3=
*■ rl
2
x r2

t-1

b-1

P

£otal
P
P3m 13 £. £>j

x i=l 1

rp
2 pdT„2 « £ *2
r i«1 ri

t-1  

plt-1 )

Deviation 3'D
2 kn — 1r2— ,* rD a w tl.t+ 1 )

t-1

heterogeneity 3y = %;"3j) ^rH ° x r£ “ ip-1 At - 1 )

iho results can also be presented in the form of an 
analysis of variance table as follows.



4S

AtRWA

S o u rce _{Ls£* c5 ^J iS ^ i X d

T re a tm e n ts t —1 b
2

X  £

R e p l i c a t i o n s r - 1 0

Y e a rs P-1 0

T re a tm e n t z  y e a r  i n t e r a c t i o n
( t - l j ( p - t ) % X 2* B

Rea i d u a l ( r - 1  ) ( t p - 1  j %

T o ta l r t p - 1 a .

w h e r e  3^  =  ^ r -p

b  “  i f f c  * * • * *  “

t 2 - 1« rtp ̂
2  2

q 21 £  B 1V C il 1%  « \ v - f  -a-tia *> K r j rp

and 3S » aG " 3d " 3h

£ar (1982) g£Lvaî  a non parametric multiple comparison 
procedure to be adopted in two way analysis with ranks when 
the usual assumption of normality and homoaedasfcicity are 
not fe:7Z"v3avlo£led« According to him ranh sums are to be
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arranged In descending order- Critical range© of different 
lengths have to be calculated by multiplying the ©tandard 
error of treatment totals by the tabulated value of afcuden- 
tlsed range with number of means k and error degrees of 
freedom n. Then the Bowman and Kcul's procedure say be 
used for malcing multiple comparison* Tho i3*J5. la calculated 
by the expression,

12

jftmong tho different nultiple comparison procedures 
Duncan's Eultiple rang© teat is considered to be most precisei
and powerful and has been widely used* Thus it would be 
better to incorporate a non paramotrio multiple comparison 
procedure involving Duncan's multiple range toot* For the 
overall comparison of treatment total©, based on pooled data 
for P years, 3E (ft̂ ) as critical rangee can
be calculated from the expression, Wj = D^n ^  3E(Rj J.

If treatment means are to.bo compared tho expression 
become©,

_  » i ( t (t-fi~T
" £(n,f} 3B wher© 3E(iy; J 12 rp
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here ^  is the table value obtained from tho Duncan's 
table with number of means n and error degrees of freedom f.
A range of j treatment means can be compared by j*

6* Stability analysis proposed by Bberhart and Bussell (1966)

hat there be *t' treatments whose performance has been
thtested in 'o' years* Considering y.. as the mean of the i

t htreatment in the 3 year, Eborhart and Iszasell (1966) used 
the following model to study the stability of treatments 
under different environments*

h i “ ^  + bi Jj +cfij 1  “ 1* 2* ......*
j  n  1 ,  2 ,  ............... ..

t  hwhere is the mean of i treatment over ell the years* 
b^ is the regression coefficient that measures the response 
of i*'*1 treatment to varying environments. Ij in the environ­
mental index, obtained as deviation of tho mean of all treat- 
menta at the 3 year from th® grand mean and cTy la the 
deviation from regression of the treatment in tho 
year.

I., which are the independent variables on which y.
J 0  * 1 3  8

are regressed were obtained ao

i t  -  &  2 | i  -  h i

s
so that /-* Ij a 0J33' J
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She two parameters of stability under this model are 
a

I
’ i  “  . f a i y i J  j

s  p
£ .  i ,  

j =1  3

2 I  cf, ,2 2
r l i  “  .  —L I -  „  0 0
aX i»1 s-2 ~

whore S - f1 * 2 . ^  - bi yi3 Id
J n l

2 *  .. 2  „  2 

j
^ v i  ”  ~  £ i

S 3  p
8 , t £  yn  V£  ;r > .  I .  =  1 :1=1 •* ■*

bi j.1 ^  i o----;—
£  1 ,
3«1  3

a n d  r  ia t h e  n u m b er o f  r e p l i c a t i o n s .

She analysis of variance under Eberh&rt and EuaselX 
model ia given below.



52

AHQVA

Source d.f. ■3S_ f-j «3

Total at-1
t
i^1

O Y 2
S  X±3
a-i

- OF

Treatments t*"1 i
a

t 0
*  y±..
i=1

- CF M31

Tear +
(Treatments x 

years)
t(s-1 )

t<?
i»1

s v 2 £ yi3 
j=1

t
£.

±<=1
yl.2
a

Tear (linear; 1 x
a

C^iyi3 1 /
3 2 £  I 2

Treatment * year t-1 f .  ( / / i d  ^  - 3.3. due m  ~
U ^ * 8* '  is 1  t o  y e a r  2

(linear)

Pooled deviation t(s~2) ^ £; 2 ^ 3
1=1 j=1 3

Pro at sent 1 3 - 2  cfj^
i- 1

Treatment t a-2 <L t̂j*"
3»1

Pooled error a(t-1j(r-1) ae
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Hare, the ©us of squares due to yoar and treatment x 
year;? interaction is partitioned into sum of squares due 
to years (linear; traetmentg a years (linear) and devia­
tion from tho regression nodel with degrees of freedom 
one, (t-1) and t(o-2) respectively*

She following T  tests are mad© uso of
H3p

(1) F »  f to test the equality of regression
3coefficients

a 2
(2) F * 2L ^  j to toot the individual deviation

 -

V
fro» rojroesion

k treatment with unit regression coefficient (bi»1)
g 2and 3 ^  not significantly different from aero <Qdl a 0) 

could he considered as stable*

lo toot whether tho regression coefficient of indivi­
dual treatments differed significantly from unityP the fol­
lowing *t' test can be applied*

* ' *1'* b*-r
Y"2.

where .t q ^ l o d .dov^tion j
si X1 

3
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'/• stability analysis using non parametric measures

Hon parametric measures of stability are based on the
ranks of treatments in each year* Consider a two-way table
with k treatments and H year3. Within each year
$ (j o 1 v 2 , •......H) the k observations X ^  (la 1 , 2 , ..,k)
are ranked by giving the lowest value a rank of 1 and the
highest value a rank of k, Let bo the rank of treatment

thi in the j year* A treatment is said to be stable over 
year© if its ranks are similar over years.

According to Haaoar and Hahn (1907} two non parametric 
measures of stability are

o) B: '  *  |ru
31 ■ 2 5=1 *.j.l *

which is th© maan of the absolute rank differences of a 
treatment over the $ years and

(2) 5 U  - r  )2 - 5 r* 2- v 1-1 i* where r, * £. rii
X  3 =a1 a  -  1 j a l  f l

which gives the variance among the ranks over the H years.
(1 ) (2 iFor a treatment with maximum stability, 3^ and SA must 

be equal to zero,

She analysis io done with the null hypothesis that all 
treatments are equally stable• This would ariae under the 
assumption of no differences among treatments and no treat- 
ment-year interaction.
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fill fillThe observation of i treatment and j year
©an be ox pressed as

x 13 " H * i3! + a ii

where V- is the overall population mean, ia the effect
of year J and la the random error with mean aero and 

2variance t r  • Since treatments are ranked separately within 
each year,' environmental effects have no influence on sta­
bility and therefore the model may also be expressed ao

*ij ■ *ij

Differences among treatmenta would have an effect on theCD C2>
9^ and 3^ stability measures and may lead to dlfferon 
oea in stability among treatments even if there ia no treat 
ment-yaar interaction. To avoid this values er© 
corrected

“ * «  ■ (5li. _5l’*)
—  -fehwhere x^# ia the marginal mean of i treatment and 

is the overall mean in the K z N table. The stability 
measures and may be computed using tho ranks
based on the corrected values.

£*or a given treatment i, tho ranks r ^  (j«1 , 2 , 
represent a random sample from a desoreto uniform distri­
bution over tho range 1 to k. Under the hull /hypothesis,
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tbt means and variances for each of tho statist lea 3 ^ ^
(2)and 3^ may he computed as follows*

e ** k2*i
3K

is (_a/a )̂ * ^-T1 ' H I T

Var ta  (3>)  .  a i - j f c a - .  & ’ C s ^ J J  2i U H(B-T) X

whar© m4 *■ E(y-K)^ ® E(y4) - 4 H- E(y^) + 6 ̂2E(y2) - J ̂

with K » E(y; and y » 3i ^
E(y4)fl»

e(j3, . .*

£(y2) .ts.a;.g.(2gti> 

h *

Ihe variance of tbo statistic 3^ ^  for different combina­
tions of B and & have been generated numerically by Hasaar 
and Huhn (1987) and are given in tables.

If the distribution of the statistics 3 ^  ̂ and 3^*^ 
may bo approximated by a normal distribution, the statistics

h In) _ - B Ca1< 1 0 2  t D . 1f 2 .
Var Cs^a 0
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would have an approximate chi-square distribution with 1 

degree of freedom*
t__________________ __

Similarly, the SfJ^Btatistic
A m )  <E. 2  <o )  a  s  1 ,  2
3 * i*1 1

may be approximated by a ohi-square distribution with K.
degrees of freedom* If this chi-square test ia significant
the null hypothesis of equal stability among genotypes is
rejected and one may proceed to make multiple comparisons
among the 3^®^ values*

8* Analysis based on principle of game theory

Any long term experiment can be regarded as a, game bet­
ween the experimenter end nature. Ihe treatments are the 
strategies at tho command of tho experimenter where ao 
varying ^weather conditions are the strategies of nature* 
Problems for the experimenter is to choose tho optimum 
strategies ao as to win over nature.

A decision asking problem under uncertainty has tho fol­
lowing four basic components relating to th© decision maker.

(a) an objective function (b) a sot of strategies 
(c) pay offs associated with given strategies of 
the deoision maker for each state of nature and (d) 
uncertainty about the state of nature likely to 
prevail in tho period for whioh tho decision i3 made.
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Let a » (sj t '*2 * ••••sQy bo the strategy set
of the docieion maker, T =» (t j, • ••• t^ .... tn) bo the
efcateo of nature and P « fp ^ jJ bo tho pay off matrix of the 
dooioion maker*

There are several approaches for the choice of the 
optimal strategics. Among them Wald'a aaxlmin criterion,. 
Laplace's principle of inauffioient reason, Savage's regret 
criterion, Hurwics optimism-peaaimism criterion sad Agarwal's 
excess benefit criterion are the major criteria which are 
usually employed in arriving at optimal decisions under 
risk. A H  these criteria are expected to suggest the strategy
set 3 that would maximise the expected utility of the deci­
sion maker under varying environments.

a) Wald*a raazirain criterion
i

This oritorion consist in choosing tho maximum value
j

among tho minimum returns. That is, the decision maker 
attacheo a probability of one to the worst consequence for
a given strategy and zaro to the other outcomes in that row#
Let be the expected utility of his 1 ^  strategy (3 )̂
to the decision maker under Wald's criterion, then JB(u#) »3*
a^n max &(u^) m tbo i*^11 strategy ia

i
optimal to the decision maker. This strategy la for the 
extreme pessimist who wants to avoid a possible loss in 
unfavourable conditions.
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b) .Laplace's principle of insufficient reason

This theory assumes complete ignorance on tho part
of the decision naker abcut the state of nature that will
prevail. Hence it is assumed that each state of nature ia
equally probable. let E(u^) bo the expected utility of the
i strategy to tho decision maker under the Laplace's
principle. Then « n"1 • If max

1x I.
the deolaion maker ■will choase the I* strategy. \“'In effect 
the estimate obtained through this method protects the farmer 
from long rang© risk.

c) Eurwlos5,'optimism-pessimism* criterion

Thia criterion is for tho farmer who looks at tho best 
and worst of his outcomes and assigns oome weight to both. 
That is, for the pessimist who is also cohticus about a 
likely rise sooner or lator. According to thia criterion, 
tho decision maker assigns a probability Jof ‘a’, a 
to the best outcome for a given strategy and a probability 
of.'l-a1 to the worst outcome in that row. lot £(ul) be

XU
the expected utility of the i strategy to the decision 
maker under Hurwicz model* Thon

E (Uij a a (max + (1-aJ tain P. .j. 14 ^  14
If max E(ui) sb E(Ui*J, the decision makor will choose the
I*̂ *1 strategy.
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d) Ravage's regret orltorton

fho behavioural assumption under thia criterion ia 
that the decision maker tries to rainimiae his 'regret'
where regret ia defined as tho difference between tiio actual

th -pay off for the i strategy and tho maximum pay off?) that
h© would have obtained if he had an edvance knowledge of
the true state of nature that actually prevailed. Let R
be the regret matrix with elements Ihen for a given
state of nature t^Qf ri;j0 = J?Aj0 “ maz clear1^i
rij'̂  ~ ^ui) utility of the,0 i ^
strategy to the decision maker under regret criterion. Then. 
E(ui) a min * If max £(u±j a £(ui*i. 8̂ * is optimal

3 I
to th© decision maker under regret criterion.

Shis criterion focusses on wealthy farmer who are wil­
ling to tske a ri3k. It ia for the farmer who wants to 
maximise hie long range profit even at the expense of some 
small losses or sot backs at stray periods. 1

t
e) .̂garwal's excess benefit criterion

Shis critorion is concerned with the maximisation of 
additional benefit or surplus. 2his ia suited for those 
farmers who desire to choose a treatment that will give them 
an additional benefit in years of unfavourable weather.
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Let B bo the benefit matrix with elements b ^  • For
a given state of nature t^0» bi.j0 “ ?ijo*i
Clearly ^ 0, If B(C±J is tho expected utility to the 
decision maker of his i*'*1, strategy under the benefit cri­
terion, then t!(Ui; a min b, j • If max k(Ci) a ii(Ul#J then

3 i
31* ±3 the optimal strategy under the benefit theory.»

9. Calculation of coefficient of concordance for overall 
comparison among tho different methods.

I
Let there be k seta of rankings of n treatments and

th^lj (*®no*'e rank of the j treatment in the i method. 
In order to test the hypothesis that the k seta of ranks 
are independent, a statistic known as kendall's coefficient 
of concordance (w; could be calculated from the formula

12 o“ 7 2 7  2 ,7 k n (n -1 )
2 k

where o a ^  [R̂  - Ms±l)J end ^

*w* ranges between 0 and 1 , with 1 designating perfect 
concordance and 0 no agreement between the different methods.

Tho statistic k(n-1 }w is expected to follow an appro­
ximate ohl-oquare distribution vi*th n-t degrees of freedom
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as k become© large* Eenee Qhi-aquare teat can be used to 
teat the statistical significance of 'w1* A significant 
*w* indicates that there ia a strong degree of concordance 
among the rank order© of treatments by the different methods.

£. Fitting of responae models

In experiment© when one or more quantitative inputs*
like fertilizer© are tested at two or more levels it i© ofter 
desirable to summarise the available information on crop 
response pattern by fitting a suitable response surface* She 
response y may be represented by a suitable funotion of th© 
levels X1u, iL,u........  Xjm of the K factors as yu «
f(X1u, X2 u »  ....^  where u a 1 , 2, *...H

threpresent the K observations* lovel of the i
t hfactor in the u observation (1.= 1, 2 , ....... K) and J3

i© tho set of parameters* The' residual measures tho
j ,  |_

experimental error of the u observation* The function 'f 
ia called th© response surface. If there ia only one in­
dependent variable then.relation (1 ; ia called a response 
curve* Heoponso ourfaces enable us to prediet rosponaea at 
varying value© of and help© in determining the yield 
maximising the profit maximising level© of inputs. Several 
mathematical functions have boon used to represent yield 
fertiliser relationship©. In the single variable category 
the more widely used function© are quadratic, square root
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polynomial, fielder's polynomial, Inverse polynomial, Gupta's 
function, Holliday function etc. Apart from these the mixed 
model which has not been frequently used for fitting response 
data and two alternative models are also proposed in this 
study. Th© bivariate models considered are quadratic, square 
root polynomial, resistance or Balaaulsuod functions and 
trahaendcntal function. Kultlvariate models involving three ' 
or more inputs have not been considered in this study.

In the univariate case an empirical comparison of 
different models was mad© on the basis of tho secondary data 
gathered from tho final reports of completed manuriel trials 
on paddy given in the varioua issues of the Research Reports 
of K.A.U. for the past ten years and tho various post graduate 
research theses of tho faculty of Agriculture of K.A.U. A 
total number of 71 seta of data were available. In the two 
variate case, very few reports were available in the various 
issues of the Research Reports of K.A.U. or post graduate 
dessertations. lienee the results of a long term manurlal 
trial on Jaya variety of rice conducted at Rice Research 
Station, ■ Koramana during the 18 seasons from 1977-78 to 
1980-87 were utilised for the study. There wore a total 
number of 36 sets of data for fitting tho two variate res­
ponse models.
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Different mathematical techniques have been used for 
the estimation of parameters of tho fitted models* The pre­
dictability, of the fitted models could bo determined, on the

2basis of the value of coefficient of determination, ft and
✓

also by the amount of average absolute error* For the
linear model* y » bQ + S-b^^ + where y is the response*
x^'s ore the inputs is the random error and are the
partial regression coefficients, the coefficient of deter- 

2minaticn, K is calculated as

d2 Sum of squares due to regression 
' 53 Total sum of squares

sum of squares due to regression = •£. 

where ^ £ y

Total sum of squares as £. y^2 -
n

The non linear functions can bo converted Into linear 
functions by employing suitable transformations and tho same 
procedure can be adopted for finding the coefficient of deter-

pmlnation* In the case of non linear functions R can alsoi
be found out directly as

^2 _ Total aura of squares - Error aura of qquere.a
“ , Total sum of squares

a a 2Error sum of squares » SL (yi - v )
isl
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where y ia the expected valuo of y and n is the number 
of levels* Average absolute error can bo estimated by tho 
for aula £ -.MCgl

The turning points of the functions could be derived and
the physical and economic optimum doses of nutrients are
estimated by employing tho method of calculus. In tho case
of unlvariato models, tho physical optimum dcao ia obtained2
by equating to aero when 0 and the economic dos©

dx 2 
is obtained by equating 4^ to the price ratio q/p. when ^ 0

a* dx
Where p is the price per unit quantity of output and q ia 
the price per unit quantity of input* In the two variate 
category, physical optimum doses are obtained by equating 
tho partial derivatives of the functions with respect to the

i
inputs to zsro and solving the resulting equations. iSoonooio 
optimum doses are obtained by equating the partial deriva­
tives to the respective price ratios, le. by solving Tjr* * ̂ax ̂ p

df q2 -hnd » —— where q1 and q2 are the price per unit quantity
of nutrient inputs and p is the price per unit quantity of 
output•

In the case of models which do cot permit direct oati-
t 4 i

matlon of an economic optimum, profit maximising levels of 
Inputs are estimated from the data on net . returns per hooter©i



For a univariate model, If % is the not profit,

1  s py - <$« where y « f(x;

dTTEconomic optimum dose ia obtained by equating to aero
a 2Iwhen ^ 0* Similarly in the case of two variate models,
dx^

the net profit 1i is given by 7f ® py-q^^ - q2Xg

Economic optimum doses are obtained by equating tho partial 
derivatives of this function with respect to the inputs to 
aero and solving the resulting equations.

In case, a dose of zero has boon included as a level 
among the sot of levels of the nutrient, considerable diffi­
culties have to be encountered in the estimation of parameters 
from certain models involving reaiprcaai and logarithemic 
terms. In order to circumvent such a situation, it is desi­
rable to raise every dosage by one unit and then transform 
the estimates back to tho original dosage when the process of 
estimation baa been over.

A relation between the polynomial and its flrat derivative 
can be derived as below which will be very useful for the 
estimation of optimum doses for certain complicated models* 
lot —^ PnCx) whore y is the response ond Pn(Jt.) la a 
polynomial of degree n in x, the doae of the nutrient

ie* £ *= ?nU J
~‘~K~
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Differentiating with reapect to x

_=L Si „ " V * 1/  a* — a- ? --- » -

U  » h  O n U; ‘ aI,n’U ^ax x

If ° 0 ^  fnll) “ m  0

This relation can be easily applied for finding tho physi­
cal opt inrun in certain type of univariate models*

Details of the various response models considered In 
tho study axe given one by one below*

Univariate models

1* Quadratic model
2y « a + bx + ax

^  «s b + 2cx re 0 ax
Physical optimum dose, x ■

^  a b + 2oX a iL. dS p

Economic optimum dose, z a CaZbz&)<i (ji

The constants, a, b and c are estimated using the technique 
of least squares*
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2 • Square root polynomial

y n a + I) |i 4* GX
Put Jx a x', then this model became similar to the quadratic 
model*

to „ + c „ 0
2ji

“*h 2physical optimum dose, x » (r~)

dy b , „ q-J. B 4- C a -a.
dx 2jx P

2
Economic optimum dose, x * [ 2 { q-pc; 1

3* Holder's jjol^nomial 

1— * a + bx «y

~ « y' then y 1 = a + bxv
Ihia ia the linear regression model and can be fitted by 
the principle of least squares.

7 - -Sf = *• 

w  " 'y2b = tSaIF" “ 0

This model hag no physical optimum dose.

rfc   „ a
(a+bx) P
b^qx^ + 2abqx + a2q + Pb « 0
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Sconoiaic optiffiud doae#

2. a **abg ± - b^q Câ o > Pb i
b q

4• Inverse polynomial 

ag
y “ x &

1 s-*-b
y ~ ex

1  ̂/■\.< b \ 1 “ a + *

= P* + P] (j) whoys p.= i and Pj * a

1 1Put j = y* ©nd — ax'

Then yf « s’

Thla is the linear regression model and can he fitted by
tho principle of least squares

dy < a t-b ) a - ax
a* ( W

.. =s 0
(x+b)

Thio model has no physical optimum dogê  
ab !2 - QLfpu-i-b r
2 2 qa + 2bqii 1- qb - Pah » 0



Economic optimura does,

-bq ± jb2q2 - q U b 2-Pab) 
$

5* Hl&od model

y * a + b log x * o Jx

Put log X m Xj , JsT BS 
fhen y ■ a * bx.j + cx^

SChis is tho regression model and can be fitted by the 
prinolple of least squares*.

|at' a &  + 0 1 - « 0

2b <*- c J~x 0 0 

Physical optimum dose, x a

2b ■» oJx a 
2x SL

P

2 qx - Po JT - 2 ;yd?b. * 0

Economic optimum doao

x

6* Gupta's function
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Thee y a j it-j* + P2a2

Thia la the regression model and can be fitted by the 
principle of leaat squares.

5* “ * h . "T = 0

h
Pi

( h _  
h

' j ss

Physical optimum dose, % a

P, - —  <• q/p
P P 2Economic optimum dose, a as J ‘" ^ ’mp

7. Holliday function

t ,  -  a a . ________y  „

1 + tox * cs
2£, „  i * b x  + cx 

y a

ea1/a^*(— JjS'i* (“*) 2 2

is pt.j- p^s +

where f o i />, = | &nd fa

Put j ay*, the y* a p0 + pjX + P2S2

Thia ia similar to the quadratic model.

O|0}
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— SJ Pq a

Pn(x} - X Pn ' (i) a 0

ie. */Jq + A,x + P2x2 » x  ( ^  + 2  p 2x ) » 0

? o -  ? z * Z = 0
[ J 0Physical optimum dose, x o /-t. 1  .
J ^2

Bata on net profit per unit area ean be used to 
find the economic Optimum doao.

8. Hew model -1 c

y = z3 o + ft J *  + p zt  z n

Put ji" s X*^ a Xg

Shen y » /3Q + + P2%2

This is the regression model and can bo fitted by the 
principle of least squares.

^  “  ? x  '^ a j f  "  P 2  ^  x  ’ 5 / 2  =  0

P, - x 1 „ 0
PpPhysical optimum doso „ x e —

Bata on net profit per unit area can be used to find 
the econoaio optimum doae.

r-o
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9* Hew model -2

ax
b + CvfiT + x

x bfaJaT + x=3y a

= + (f> JV + (i) X

52 Po + 1̂ ^  * ^2X

where P0 = “ j> P, » § aj1-d P2 “ a 

Put Jx ss x̂  then (%* )̂ = |3q + P^a* *
y

Put (^jj2 * y* then y' c= + P<x* + ppbc')^y
This is similar to the quadratic model*

^ ** Po * ?\ + 3 PnU)y
Bn(z) - XPa'(xj a 0

^  * P 0 + + (3̂ .X *■ X ( Aj ~'_l -fr /?2) es 0

Po.+ j r  * o

Physical optimum d ooe, x a ^~*^0 1
P t

Data on nst profit por unit area oan bo used to find the 
economic optimum doee.



Two variate models

10. Quadratic model

2 2 y b IJq +■ +■ b3X1 ^

Thia can be fitted by least squares.

rj*ĵ « b j + 2b H r  b^Xg 33 Q

|f2 . b2 '+ 2b4*2 + b5i1 = 0

Solving those two equations, physical optimum doaes are 
obtained ie •

1 ^ 2b1b4 ” b2b5i, as .. , ,., _,. -
b^ ** 4b -to 4

and x2 = 2b2b5 ~ b1b5
*5 '  4b5b4

* b. * 2brrX« ■!* tsdx\ - b1 * 2V l  + b5*2 * P

| | = b2 + 2b4*2 ♦ b5», = 2a
2 p

Solving these two equations, economic optimum doses are 
obtained

ie. x1 a 2Fp1b4 ~ 2^1b4 * q2b5 " Ib2b6 
Pb52 - 4 Pb3b4

and x2 t= q1b5 " ~ 2%gb3 + 2R>gb3
Pb^2 - 4Fb3b4
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11. Square root polynomial

y a b0 * b1̂ 1 4 b2x2 + b^J^j 4 b4-1*2 + b$J*i*2 

Put andJx^ « z2

2  2y a b0 j- + b2z2 4 b ^  4 b^z2 4 b ^ s 2

2 2a b0 4 b̂ jSij 4 b^Zg 4 b| 4 b2^> ^

This la aitnilar to the quadratic model.

= b, + b, —   + br JZ, — 3—  = 0
4*1 1 3 2^  5 *

t? » bp + b* —3" 1 ■ + be Jx7 ■ —3 '■■■ a 02 2 4 2jF2 5 -J 1

Solving these two equations, physical optimum doses arc 
obtained.

2b5bw - b/bK 2
i S. X. m (— V -- ^  )

‘ b ^  - 4b,b2

asa x2 = I 2b1b4 ~ b5b5) 2
b5 ” 4b1b2

dv _ 2b1 * b-j *  bs ^ q(
to1 “ v,p. 2JT, “ “

aj. _ 2bg JT, + b4 + bg JT, « q,

SX2 2 Jx; 2
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Solving those two equations, economic optimum doseo are
obtained • *> p

2p bpto'H “ 2Pq2^,5 " P
p2b52 - 4p2bib2+4pq2b1+4pq1b2.- 4qtq2

2,
and 13 ' 2, 2 . 2

, 2P b1b4 " 2pq^ 4 - p b-3b5 2
' 2 2 2  ̂p -4p bib2+4pq2b 1+4pq1b2-4q!q2

1 2. tranaendental function

y EE 1 e

log y j=t log a 4* b

Put log y ® y'» log

then y* - log a 4"

This can be fitted

x p  a *1
y dx1 X1

i
r

dy
dx2

Ji2
x2

C1X1 , b2 _ °2a2 
& 2  Q

■h 3 0

2 + c-

Physical optimum dose, x̂  *= °“̂ 1
C1

and Xp » ^2
c2

Bata on net profit per unit area can be used to find the 
economic optimum doses.
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13* Resistance or Baloukund function

-1 —1 *1 —1 —1y m ax^ + bXg + ex^ Xg + d

*1*2 m ax2 + bx^ + c + dx(Xg 

- c + bx| + ai2 + ^ X g

B i t  V j  ,  y ,
y

Then y* a c+bx^ +■ axg + dx^x^

This can be fitted by the prinoipl© of least squares. 

i . o +  bx^ + ax2 + dx^Xg
y *1*2

- 1  d y  B x ^ x 2  ( b ' t d X 2 ) - ( c + b x 1 +Q X2+dx12 2 ) x 2  
„2 dx.
y 1 (x,x2 )2

a x2^°"a3t2 ) a 0
U i *2 >2 

“#-"**2 « 0 
-1 fly ^ x^x2 (at-dx^; - (c+bZj+axg+dXjXg)*^

—2 dX.-> —  ...  1 r , -, . .g ...
y (^Xg)2

a Xj (-O-bij )

^*1*2 ̂
0

",c-bx1 ■ 0
Physical optimum dooeo, Xj * "c/b an  ̂9̂  » ■•c/a.
Data on net profit per unit area can bo used to find the 
economic optimum doses.
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The results obtained are presented in this chapter 
under two nub headings (A) Analysis of data of long tars 
experiments and (B) Fitting of response models, and dis­
cussed thereafter.

A. Analysis of data of long term experiments 

1* Method of groups of experiments
s.

She data for eaoh your were analysed separately as in 
a randomised block design. Homogeneity of error aoan squares 
was tested using Dart1st*a test. As the error mean squares 
were found to be heterogeneous weighted analysis was per­
formed end the resulting analysis of variance Is given in 
Table 1• She significance of Interaction effect was tested 
using chi-square test and the effect was found to be signi­
ficant. The treatment means for th© different years were 
arranged in a two-way table and the analysis of variance 
technique was applied to test the significance of various 
effects. The analysis of variance tablo of the unweighted 
data is given in Table 2. The treatment mean squares was 
then tested against the interaction mean square. The overall 
effect of treatments was found to be significant. The neans
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of treatments were tbon arranged in descending order of 
magnitude and the significance of treatment differences 
was teotod using the oritiocl difference. She result 
obtained is given beIon

£1 g> 23 27 26 26 22 24

2 • Analysis of data as in a split plot design

The data were alao analysed as in a split plot de&gn 
with treatments in main plots end years in sub plots and 
the resulting analysis of varianoo ia given in Sable 3. The 
treatment effect was found to be highly significant. Treat­
ment e were then ranked according to thoir moan performance 
and the significance of pairwise differences among the 
means was tested using the calculated value of the critical 
difference. The results obtained are summarised below.

21 25 23 27 26 26 22 24

3* Principal component analysis

The original data matrix vag transformed into a matrix 
of standardised values. Tho transformed matrix Z a (Z,.)ij



is given in Tabl© 4• From Z, the correlation matrix 
ia obtained end ia given in Table 5* The eigen values, 
eigen vectors and tho percentage variation explained by 
each component vectors are given in Table 6. Since the 
first principal component explained more than 75 percent 
of total variation in the data other components were not 
considered for tho analysis. The transformed matrix Z was 
then multiplied with the oigen vector corresponding to 
the highest eigen value, and the index value or first 
principal component score for each treatment was obtained.i
These are expected to serve as the index of overall per­
formance of the specific treatments in relation to the 
other treatments In the tested environment. The treat­
ments and their respective index values are as given below.

Treatments T1 T2 23 24 5̂ T6 T7 28
Index 3.5269 -2.1098 2.4228 -4.1254 3.2945 -2.1344 1.5468 
values -2 .41«

The treatments were then ranked on the basis of the 
principal component score (index) and their relative standing 
is as given below.

T1 T5 T3 27 12 T6 T8 T4

' In the general case, the original 32 x 12 matrix of 
observations was transformed into a matrix of standardised
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values* Xlio matrix of standardised scores is given in 
Sable 7* Higen values and corresponding olgem vectors were 
generated from this matrix, Shen, by multiplying the 32x12 

matrix of standardised values with the largest eigen vector 
o f order 12 an index score matrix of order 32x 1 is obtained 
which was rearranged on the form of a two-way table of 
treatments end replication, She relevant two way table of 
-index scores is given in fable 8. She data wore further 
analysed as in a randomised block' design and the results of 
analysis ia given in fable 9* 5he treatment effect was again 
found to be significant. Comparisons were also made between 
pairs of means using the calculated critical difference, The 
result obtained is as given below,

55 SI S3 27 56 S8 f2 S4

4* JSon parametric method proposed by Eai and Rao(j<}soJ

She observations on different treatments in each
block (replication) were ranked and tho eutno of ranks (B.->

J
along with the values of the statistic & are presented in 
fable 10* She statistic £ is expected to be distributed 
as chl-aquare w i t h 7 degrees of freedom, She K values for 
each of the different years were found to be significant 
indicating that in each year the treatment effects were
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statistically oignif leant. The statistic K. calculated for 
the aggregate data also showed statistical significance•
But tho K statistic developed for tho tost of the treatment x 
year interaction component was found to he non significant* 
Hence it may bo inferred that the treatment differences were 
apparently consistent with yearn* The relative performance 
of different treatments were judged with the help of mean 
ranks and the calculated value of least significant difference* 
The results obtained arc as given below*

25 Tt T3 27 To ?2 18 T4

Multiple comparisons among means wore also made using
/Bunc&n's multiple range teat and the result obtained is 

as given, below.

T5 Tl £3 27 T6 T2 T@ T4

5* Throe-way analysis of variance by ranks „

The observations in each block were ranked for dif­
ferent treatments and th© sums of ranks are given in Table 11.

. 2The random variable 8 end the value of x rr  for different 
years were calculated and ©re presented in Table 12* Tho

1

deviation chi-s^uar© (175*20J for the overall data is
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distributed aa ehi-siuare with 7 degrees of freedom. Since 
this was statistically significant it could be concluded 
that there were significant differences among tho treatments 
in their effects. 2hs heterogeneity chi-square for treat­
ment x year interaction was not found to bo statistically 
significant, therefore, the hypothesis that treatment 
effects were invariant under varying seasons (or environ­
ments) was not rejected. -An analysis of variance of the 
whole procedures mentioned above is presented in 2abl© 13 . 
She difference in mean ranks of treatments were compared 
using the relevant critical difference and tho result ob­
tained is given below.

15 21 23 27 26 22 28 24 N

2he relative -performance of different treatments 
wore also judged using Duncan's multiple range test and 
the V result obtained is as given below.

25 21 23 27 26 22 28 24

6* Stability analysis proposed by Bterh&rt and Ruei*ell£f<te&J

2he analysis of variance under £borhart and Bussell 
model ia given in fable 14* 2he linear component of treat­
ment x year interaction was found to be non significant.
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Although there had not been any interaction between treat­
ments and years» an attempt was made to estimate the sta­
bility parameters for illustrative purpose* Pooled deviation

t
from regression also turned out to be non significant*
But deviation from regression for treatment 1 was found to 
b* significant • b- :M y =r-

She environmental indices* Ij are given in Table 15*
Estimates of stability parameters of the various treatments
and tho relevant 't* and *P* values are given in Table 16*
Hone of the regression coefficients differod signifleantly
from unity indicating that all the treatments wore having
more or leas average stability. Brom tho ’P1 values for
testing the residual© the effect due to treatment 1 was found

2to be significant* The residual variance 3 ̂  for treatment 1 
was found to be comparatively higher than those of other 
treatments indicating that it is relatively leas stable than 
others* All other treatments exhibited average stability 
with regard to both of the stability parameters*

In order to have a more meaningful comparison among 
treatment®* their relative performance in productivity shall 
also be taken into account* The treatments 5 and 3 showed 
.average stability with moderately high yield. Treat cent 7 
had regression coefficient O.95I6 together with a sufficiently



high yield. 2hic indicat00 that the treatment Is stable 
and at the oaa© tira© it has givon high yield. Treatment 1 
had yielded a smaller value for regression coefficient 
(significant) along with very high yield. Banco it can be 
recommended only under assured better environment and 
management conditions, Tho other treatments showed signs 
of stability with comparatively lower yields. T h e re fo re , 

treatments 5 , 3  and 7 arc ideal for adoption ifone ia 
uncertain about tho environment and other management con­
ditions.

7. Stability analysis using non paramotrie measures

Tho corrected values* ouch of tho different
observations are presented in Table 17* Tho treatments were 
then ranked on the basis of the corrected values of obser­
vations in each year and the ranked data are presented in 
Table 18. The values of th© mean rank r^ two non para­
metric stability parameters  ̂Qhd ai ^  Bn<* statistic 

and 2 for each treatment are given in Table 19.
It could bo aeen that ^  Zi ^  * 18.18 and J? Z ^ 2  ̂*

i«»1 iae!
23*38. Since tho value of these statistic# exceeded th* 
critical values of chi-equeroo f it could be concluded that 
the treatments differed significantly among theasolvea with 
regard to thco© phenotypic stability. On comparing each



8S

of 2,^^ and values with th© tabled value ofx x
chi-aquare with 1 degrees of freedo® at 1 percent level, 
the effect duo to treatment 1 was found to be significant•
All the other treatments showed almost equal stability*

An examination of the values of 3 ^ ^  and 3^*^ 
revealed that treatments 5 and 7 showed relatively higher 
stability* fhes© treatments also have recorded relatively 
higher yield when compared to other treatments. 2hc treat­
ments 8 and 6 were found to bo more stable than the remain­
ing treatments. But these treatments showed low productivity. 
Among all tho treatments, treatment 1 gave tho maximum yield.

f
But it was found to bo loso stable -then other treatments

(1)because of tho significance of 2̂ ' * statistic • Hence 
this treatment cannot b© recommended for general adoption.
It can be recommended only on assured bettor conditions of 
environment, freatraonts 5 and 7 is expected to produce a 
good response oven when tho environments er© not favourable.

8. Analysis based on the principles of game theory

2he cost© of the different trcotacnt© were calculated 
and using theao values and corresponding yield in tor® of . 
money value, the pay off matrix was formed. Sho.pay off 
matrix of th© experiment P «s given in fable 20,
2he results obtained through the application of different 
decision criteria are given below.
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a) tfald*s maii&in criterion
i

In this oritorion Ii(Ui> * sain £,.» where is the
expected utility of the i*' strategy* The minimum pay off 
value for eaoh strategy was obtained from the pay off matrix 
and th© maximum of tho minimum pay off values determined 
for each treatment, She minimum pay off values obtained arc 
tabulated below,

'Category/Treatment

11
22
23 ‘
24
25
26 
27 
18

Max E(aiJ * 14708 
i

MIMA

1C254
-4722
5655
12633
13292
3848
9458
14708

Shuo the 8th treatment was optimal to the decision 
maker, Th© strategies were then ranked on fcho basis of 
minimum pay off values and the rank order is given below.

28 25 24 T1 27 23 ,26 22
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to) Laploco*s principle of insufficient reason
s

In this oritorion, £(Ui) *» n  ̂ 2h© average
d*i

pay off value for th© different strategies are tabulated
below.

atrate jtv/  treatment

21
22

13
24
25
26
27
28

Max is(lfi) => 17371 
i

BtUi)

15397.25
927
9156.5
16310.5
16804 i 25

6476
13251.75
17371

2hus the 8th treatment was optical to the decision 
maker. 2hs treatments were then ranked in the following 
order.

2 3 , Oi;AP , 241 SI. 27* 23, 26 22 ~

o) Hurwicz * optialaa-pessiinissi * criterion

According to this criterion, tho deeiaion maker assigns 
a probability of 'a* (o -s. a £ 1} to the best outcome for a 
given strategy and e probability of (1-a) to the worst cutcozs
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ia that row. liere 'a' ia taken to be 0*8/i5(0iJ * a (as2,

(1-a) sin P. 4. The aaxisuei pay oft value, minlraua pay offj Xj
value and expected utility for each strategy are given below.

Treatise* nfes mas P, 4
,J . 1 3

tain P. fiWl>

21 2026 10254 10231.6

22 3999 -4722 /2254.S
23 12177 5655 10072.6
24 . 18855 12633 17610.6
25 19151 13292 11979.2
26 10760 3840 9377.6
27 15419 9456 14226.8
28 19475 14700 18521.6

Hax £(Ui) ts 18521.6
i

2h!sia it could be seen that the Oth treatment was 
optimal to the decision maker. She treatments were then

v
ranked as given below.

28, 21, 3% 24, 27, 25# 26, 22



90

a )  savage's regret oritorion

2he regret matrix R was calculated and la given in 
Sable 21. In this criterion B(Ui; w cin t .U<

treatment 8(Ul)

21 -6399
22 -19430
13 -10998
T4 -3947
15 -2362
26 -10697
27 -6073
28 -2 0 2 0

max E(Ui) * -2020 
i

She maximum value of £(01) hag been recorded againet 
the 8th treatment and hence it could be regarded ao optimal 
to the decision maker. She strategies were ranked on the 
beds of expected utility and the rank order la

23, 25# 24, 27, SI, 26 , 23 , 22

o ) Agarval^o excess benefit criterion

She benefit matrix B wag calculated and ia given in 
fable 22, In this criterion S(0i) a ain b.,,-6'xpectod utility

4
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corresponding to each treatment is &s given below* 

Treatment L M 1

fl 11055
•12 ' 0 
23 645^
n  12234

$5 11 f * * " '

T6 4493
$7 10508
28 13598

5202 3(01) a 13598
1

Thuo the 6th treat sent was found to be optimal to the 
decision maker. Tbs strategics were then ranked and the 
rank order ia

28, 24, 25, 21, 27, 23, 26, 22

9 * Overall comparison of th© different nothoda

Analysis baaed on groups of experiments , split plot 
design and method of principal component make use of F teat 
for testing th© significance of treatment effects and hence 
tho relative efficiencies of those three methods can bo em­
pirically compared on tho basis of the relative magnitude of 
the resulting F ratios. The P values for testing the overall



treatment effects as obtained in the throe methods are 
given below*

Group of experiments 
Spilt plot analysis 
Principal component analysis

24.49**
27.03**
27*89**

Principal component analysis has recorded the maximum 
p value for detecting real treatment effect than the other 
two methods. Jhus it could be inferred that principal com­
ponent analysis would be more efficient end sensitive in 
detecting the real treatment differences when compared to 
tho other mcthodo. Principal component analysis have certain 
other distinct advantages over tho other methods. She usual 
assumption of independence of error terms does not seem to 
bo valid in the case of repeated trials on the same site* 
Principal component analysis takes care of this difficulty 
fcy way.of generating a new composite variable from the yearly 
responses and thus the resulting analysis of tho data is 
expected to be In bettor conformity to the underlying assum­
ptions of independence of error terms* It Is well known 
that the first principal component is that linear compound 
which explains tho maximum amount of variation in the experi­
mental data than any other linear component not excluding
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simple aggregate values of treatment responses over the 
whole period. Duo to this fact the sensitivity of the F 
teat in detecting true treatment differences is expected 
to he more in principal component analysis than the other 
methods, this can be very well evident from the amount of 
percentage variation explained by the treatments in the three . 
methods, the percentage variation explained by overall 
treatment differences in the three methods were found to be 
20i63 percent in analysis of groups of experiments» 21.94 
percent in split plot analysis and 9^.29 percent In principal 
compound analysis. Thus principal component analysis provides 
greater predictability for overall treatment comparlcons 
than the other methods. This may be the case with similar 
sets of data generated from other experiments of long term
nature. In fact, principal component analysis does not/
require an underlying statistical model to explain the error 
structure. Thus it may bo concluded that principal component 
analysis should be preferred to ordinary methoda for the 
analysis of data from long term manuriol trials. But in 
oQse tho first principal component fuila to explain an ade-

i
quately high percentage variation (say more than 60 percent) 
two or sore components may have to be used for the resulting 
analysis. The treatments may be grouped into several homo­
geneous groups on the basis of the plotted points of component



scores of the two generated variables on a two dimensional 
2chart. D analysis based on the values of each of the gene­

rated variables may also be attempted and clusters formed 
using canonical analysis or other methods ao as to got a 
clear configuration of tho set of treatments into a few 
homogeneous clusters.

The split plot analysis seems to be more sensitive than 
the method of groups of experiments because in that wo are 
uoing two different types of error, for reducing the risk 
of drawing invalid inferences. But the method suffers from 
a number of drawbacks when viewed from a logical stand point 
end cannot be rec©amended for general adoption. Split plot 
design requires the random arrangement of act of cub plot 
treatments within each naln plot and that cannot be expected 
in the case of trlola repeated over several seasons. In 
this analysis the assumptions of independence of error terms 
does nob seen to bo wholly valid.

Analysis of groups of experimenta makes use of the 
assumption of independence of error terms. Therefore, the 
results obtaining from it may be faulty and unrealistic to 
some extend, further, In such type a of data analysis no 
general teat appears to be available for overall treatment 
comparisons whon error variances are heterogoneoue and
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interaction effect ie absent- Hence principal component 
analysis can be considered as a better alternative 
analysis of groups of experiments and split plot analysis.

It ia also interesting to make an empirical comparison 
between the two non parametric methods of data analysis with, 
an objective of choosing a better method for general adoption 
This can be ochioved by comparing tho chi-square values for 
teasing tho effects of treatments and interaction in both 
methods* Although the chl-aquare values for tho method pro­
posed by P.ai and lino (1980} aro higher than that for tho 
new extended Friedman's analysis of variance by ranks the 
difference is negligibly 3roall. Th© chi-square values for 
tooting the effects of treatments and intersction are 200,97 
and 71*36 in tho method proposed by Rai and Rao (1980) and 
175*20 and 63.71 in the extended Friedman's analysis,

Tho newly developed procedure ao an exsonsion of 
Friedman's two way analysis of variance shows certain distinct 

, advantages over the method proposed by liai and Rao (198C),
It is entirely distribution free, in the real sense of the 
•tens. But the method propcaed by .Rai and Rao (1980) make 
use of the assumption that the sampling distribution of the 
means of ranks la approximately normal. Tho method ia ap­
plicable only for cases when tho number of replications per



experiment Is four or more• Tho amount of information lost 
in the process will be aoreO when thoro are only a few 
treatments. Therefore, the newly developed method is a 
better non parametric .alternative to the analysis of data 
of long term manurial trials over tho existing methods*

Analysis based on principle of gam© theory suggest spe­
cific recommendations for fanners with varying decision en­
vironments. Hanking of treatments obtained by applying 
various criteria are given below:

tfeld's maximin criterion 18 25 24 21 27 23 TS 22
Laplace'a principle of 
insufficient reaeon 28 25 24 21 27 23 26 22
iiurwicz 'optiimi'ssm- 
pesslmism* criterion 28 it 25 24 27 23 26 22
Savage *s regret criterion 28 25 24 27 21 26 23 22
Agerwal's excess benefit 
criterion 18 24 25 21 27 23 ' 26 22

It could bo seen that treatment 8 (Ammonium sulphate 
to supply 45 kg H/ha + super phosphate to supply 45 kg 
ha ' + Hop to supply 45 kg J^O/ha) was the best strategy 
under all tho different decision criteria. This recommen­
dation could definitely fit in to the requirements of o 
broad spectrum of farmers* It is suitable not only fora 
wealthy farmer aiming at huge profit but also for a subsiatenci
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farmer who wants to avoid a possible loss* It could be 
expected that such a strategy would ensure in the long run 
maximum net revenue and at the same time maximum protection 
from likely losses in years of disaster.

One drawback of game theory approach is that one can­
not predict likely responses of the crop at intermediate 
levels not tried in the experiment and hence the realised 
optimum is only an estimate in the descrete sense of the 
term. Estimation of the optimal point on a continuous 
regime can be attempted by fitting response surface models. 
.Further there is no known method of testing the significance 
of the difference between tho performance of tho strategies 
under various criteria. Coapariaons are based entirely on 
the moan values which arc subjected to change at different 
environmente. Thus the reliability of the result could not 
be assessed statistically. However they gave a bettor 
understanding of the problem and help in giving specific . 
recommendations to different types of farmers with varying 
requirements.

Kendall*s coefficient of concordance (w) was calculated 
to measure the degree of overall agreement among the dif­
ferent methods in detecting th© true rank order among the 
set of treatments. A significant *w* indicato3 that there



ia a at reng degree of concordance among the rank orders 
of treatments by the different approaches and in that 
situation a composite ranking on the basis of the rank sums

V

appeared to be feasible*

Th© extend of mutual concordance among the rank orders 
of treatments in the analysis of data aa groups of experi­
ments/split plot analysis, tho principal component analysis 
and the non parametric method was examined* Since the rank 
orders of treatments in the analysis of data as groups of 
experiments and those of split plot analysis wore same, the 
common rank order of treatments alone was takon into con- 

' alderation* The same was the cose with the ordering of 
treatments in tho two non parametric methods discussed in 
this study. Tho two way lay out necessary for calculating 
'w' ia presented in table,23* The corresponding chi-square 
value was also calculated.

The Coefficient of concordance 'w*- was calculated to 
be equal to G.9629 and the corresponding ehi-Bquere value 
(20.22j was found to be significant at one percent level.
The result Indicated that there waa almost perfect agreement 
or concordance among the different methods of analysis of 
data vie. method of groups of experiments/split plot analysis, 
principal component analysis end th© non parametric methods 
with regard to the rank ordera of treatmenta.i ■



In all tho above five methods the ranking of treat­
ments was done baaed on their yield performances'. Since 
stability analysis was done with a different objective no 
attempt was made to make an empirical comparison between 
the ordering of treatments according to phenotypic stability 
and those aaoordlng.fco the other procedures referred above. 
Analysis baaed on principle of game theory is also performed 
to meet with a different objective and hence thet method also 
was not considered in calculating the value of *w*.

Banford et al.(I960) used split plot analysis and mul­
tivariate analyses such as likelihood criterion and 

2Hotellings T for a given data to test the significance of 
treatment effects and found that the univariate and multi­
variate procedures gave the same result. The results obtained 
in the present study aro also in agreement with the findings 
of Banford et, al.

The results obtained in this study by the application 
of method of groups of experiments and that -by the principal 
component analysis were same. This la also in agreement with 
tho findings of Cole and Grizzle (1956J. They used method 
of groups of experiments and likelihood criterion to teat 
the significance of treatment e ffecta and found that the
* iunivariate and multivariate procedures have tho same scope, 
power and flexibility.
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Erdshnan et al. (1962; have reported that stability 
analysis can be considered a3 en alternative to tho method 
of groups of experiments. Tho results obtained in thia 
study are not in agreement with their findings. In thia 
study treatment 1 was found to be the least stable treatment 
but at the same time the most productive among the lot*
Thus the selection of treatments solely In accordance with 
their interaction with environment alone need not indicate 
a subtle treatment* As reported by Hawlo and Daa (1978) 
it could be always bettor to select the more stable and 
high yielding treatments. Therefore, conclusion drawn from 
stability analysis Is not sufficient to draw valid inference.

T,i Fitting of response models

A number of univariate and two variato models were 
fitted using the data givon in appendices I and II and their 
relative efficiencies evaluated on the basis of tho observed 
values of tho coefficient of determination and average 
absolute error. 13 a preliminary atop in detecting th© 
nature of the response model suited to any particular data 
the observed values, in the univariate ease, were plotted 
graphically and based on tho shete of the graph the data 
wore broadly classified ao belonging to on© or the other 
of four mutually exclusive categories (1; parabolic type
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(2) Assymptotic (extremely stGoyoatric parabolic) type 
(3j Diotortod parabolic (bimoddlj type (4) Multimodal or 
Irregular typo. Specimen graphs representing the above 
four categories of data are given in Figure 1. Of the 71 
sets of data considered in this study, the number of data 
sets that fell into each of the above four categories were 
39, 4, 25 and 3 reapootivoly. The values of ooefficient of 
determination and average absolute error corresponding to 
e&oh of the fitted models were calculated and are presented
in Tables 24, 25, 26 and 27 respectively as per the parti-

2cular class of response curve. The mean and range of fi 
values and those of average absolute error for each of the 
different models under the four categories of response were 
also determined end are presented In th© tables. The sets
o,f data for which a model failed to locate either a physical

/
or an economic optima on computational grounds were not 
considered in this study for fitting the specific model.
The position corresponding to such entries in the table has 
been left as blank.

Among the tested models majority of the models showed 
high degree of predictability in representing the parabolic 
response pattern. The square root polynomial ranked first 
with a multiple correlation coefficient of O.Q977. It was
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ocl03©Xy followed by the quadratic model (R =* 0.8916).
Thus a parabolic response pattern could be wall represented 
by either a quadratic or square root polynomial response 
function with slight advantage for square root function over 
th© usual quadratic function. The percentage variation ox- 
plained by othor models, especially newly proposed model, 
model-1 (S2 » 0.8746), Oupta^ function (R2 « 0.8661) and 
mixed model (R2 » 0.8470) were also relatively high. The 
values of average absolute error as obtained from these 
models are also not very high. Thus these three models can 
also be recommended along with the quadratic and square root 
polynomial for representing the parabolic response. However, 
the quadratic model had certain distinct advantages-over 
others. Fitting quadratic function is simple ca only linear 
estimation is involved and the usual technique of analysis 
of variance and tests of significance can bo easily applied 
with this function. The standard errors of estimated optimum 
is expected to bo smaller in the case of quadratic function 
a3 compared to that in other functions. It was further ob­
served from the empirical data that the quadratic function 
gave more realistic estimates of optimum requirements of 
nutrients and expeoted optimum value of the response than 
other models.
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A oritical examination of the shopes of the different 
curveo drawn to each set of data revealed another interes­
ting observation. For almost all tho curves with atleast 
alight amount of aasymotry about the anticipated optimum 
the square root model was found to be a bettor fit than the 
ordinary quadratic. It goes ^without saying that tho square 
root polynomial also shared all the distinct advantages of 
the quadratic polynomial as it is obtained just by fitting 
a quadratic polynomial to the transformed data obtained by 
taking square roots of tho original observations.

2faus in fertilizer trials where the yield fertilizer 
relationship is expected to be represented by an aooyometric 
parabola the square root polynomial is boat suited in pro- 
dieting the optimum response and optimum level of nutrients* 
Since most of the fertilizer trials belong to this category, 
as a general recommendation the square root polynomial is 
to be preferred over quadratic polynomial in fitting the 
response pattern unless data exhibit specialised patterns 
or wide distortions from tho normal modalities.

Johnson (1953> emphasised that in the case of single 
input, quadratic and square rodt polynomials were better 
than other forms with some preference to the square root 
quadratic attributed to its non symmetrical and flatter
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shape in xy piano. The findings obtained in thia study also 
agroe with the above results»

In the aecond category of curves with aasymptotlo 
tendency the newly propoaod model (model—2 ) was found to be 
the most efficient. Shis model possessed an extremely high 
R2 value (0.9991) and least average absolute error (6*39)* 
Square root polynomial model and mixed model were also found 
to bo as efficient as now model 2. Quadratic polynomial also 
gave relatively good fit to the data. But the estimates of 
optimum doses observed from these three models in the most 
cases, fell beyond the range of the inputs tried in the ex­
periment and hence were not useful for making general recom­
mendation. The new model gave more roolistic estimates 
with such highly assymptotic data. Thus the newly developed 
model combined the qualities of an asymptotic growth curve 
like the flitacherlich'a and those of an ordinary polynomial 
and hence is better suited for general adoption in response 
curve te chnique *

In the case of curves showing binodal tendency the 
cublo polynomial is considered to be ideal. Rut if bimodal 
tendency ia not very much pronounced, other models could 
also be used satisfactorily to reprosent the reoponse 
pattern, duch models possess the added advantage that they
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require lessor number of parameters to be estimated and 
hence may provide estimates with lesser standard error*
Among the different models* square root polynomial tipped 
all others in predictability. But the model explained only 
60.75 percent of th© total variability in the response of the 
curve to nutrient input. New model-1, mixed model and Gupta'3 

function also gave relatively good fit to the data. In 
this case also, the quadratic function was found to bo. 
inferior to the square root function in representing th© 
response pattern. Thus It oan be inferred that the square 
root function is hotter suited in representing tho .yield- 
fertiliaer relationship in response curve studios than the

i
ordinary quadratic as it is more stable and is not affected 
by minor die tortions in the data. This Is also in agreement 
with the findings of Johnson (1953,1.

In the fourth category, the newly proposed model, 
model—1 gave the maximum predictability than all other models. 
The average variation explained by this model was found to 
be 37.22 percent which was the highest among that of the 
tested models. Gupta'n  function and mixed model gave rela­
tively high average predictability and relatively lesser 
average absolute error when compared to the other models.
Thus these models are ret inefficient in representing the 
type of data under this Qcategory.



107

The percents ;̂e number of cases included within specified
ranges of coefficient of determination under each model are
presented in Table 28. quadratic funotion, square root
polynomials Welder's polynomial and new model-2 have been
fitted to all seta of data. The other models foiled to *
locate either a physical optimum or an economio optimum for
certain sots of data and no attempt was made to represent
such data seta by the relevant model. The percentage of
data which wore actually utilised for fitting each of the
different models are also given in Table 28. ftixed model
and inverse polynomial could fit to more sets of data than
new model-1f Holliday function and Gupta's function* The
percentage number of cases included in the range 0.98-1 of
H were found to.be more for mixed model (26.76 percent),
square root polynomial (25*35 percent) and quadratic model
(25.94 percent). Thus in genoral these three models gave
better fit to the data than other models. Holliday function,
Holder's polynomial and new model-2 lagged behind the other
models in general adaptability as more than 50 percent, of the 
2R values attributed to these models were below 0.5.

Kean values of coofficiont of determination and overage
absolute error for the entire seta of data under each of the
fitted models are given in Table 29. An overall comparison
among tho models can bo made using these values* Among the
different models square root polynomial topped all others

2with an average II value of 0*7736 and minimum average



absolute error of 82.12* fiew modol-1 ̂ mixed model^quadratio 
model and Gupta*g function also gavo better performances. 
Ihorefore, thoo© models can be used for general adoption 
in fertiliser trials.

Holder (1966; compared, tho goodneoo of fit of ordinary 
and inverse polynomial models end found that inverse poly­
nomial models were better than others. But In this study 
the performance of inverse polynomial was found to bo in­
ferior to that of ordinary polynomials.

Clarice (1968; compared inverse polynomial surfaces of 
linoar and quadratic type and found that tho latter often 
sue coeds oven in cases where a maximum was not reached.
But in this study invoraG polynomial surfaces of quadratic 
type were found to be inferior to the others by considering 
Holliday function and now mode1-2 as quadratic typo inverse 
polynomials*

The percentage caaeo of estimates on physical and 
economic optima which fell into tho opaoific ranges of 
nutrients tried in tho trial under aach model are given in 
Table 30. In thd case of now mode1-2, mixed model, quadratic 
model and square root polynomial model more than 75 percent 
estimates on physical and ooonomic optima foil in tho 
specific ranges of nutrients. Thus these models produced
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estimates on physical and economic optima with greater 
practical value than the other models. So estimate on 
physical optimum could be estimated from Solder's polyno­
mial or inverse polynomial. This has been indicated in the
1 i
table by using a blank entry. The economic optimum values 
obtained for Holder's polynomial were far above the doses 
tried. The estimated optimum values as estimated from 
quadratic and square root polynomial were found to be ap­
preciably closer. Gupta's function failed to give optimum 

' values in 36.12 percent cases, Holliday function in 33.80 
percent cases, fiew model-1 in 30.99 percent cases, inverse 
polynomial in 12.60 percent cases and mixed model .in 1.41 
percent cages,

/all the models ̂ xcp:pt Helder'a polynomial and inverse 
polynomial have two independent constants. Holder's poly­
nomial and inverse polynomial have only one indopendant 
constant• Even then these two polynomials have explained 
ao much variation as tho other functions for most of th© 
data.

In fitting bivariate response models no effort was made 
to classify the pattern of response aa poreeivod by the 
ahape of tho observed surface. This is largely due to the
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complexity of the problem and the lack of sufficient data 
to ^represent the varying categories of response*

The value of coefficient of determination and average 
absolute error corresponding to each of tho fitted, models 
were calculated and are presented in Table 31 • £he moan and 
range of R values and those of >____avorage absolute error 
foreechof the different models were elso determined and are 
preeented in the same table*

The four response functions were fitted to each of the 
available data set and their relative efficiencies compared. 
It was found that all the functions are useful in represen­
ting response surface. .Among the tested mode la * tho resis­
tance function was found to be the moat efficient. This 
function* on the average oxplained a3 much as 99*35 percent 
variation in yield differences. The percentage variation 
explained by tho square root polynomial (83.80 percent) 
and quadratic response model (83*66 percent) wore also re­
latively high. The average absolute error was found to be 
smaller with these functions. Thus in the two variable 
case also the square root polynomial model yao found to be

4
slightly better than tho quadratic function in representing 
the response surface. Transendental function was found to be 
less efficient in describing the response pattern when com­
pared to the other response function.



The percentage number of oases included within speci­
fied ranges of coefficient of determination under eaoh 
model are presented in Table 32* The percentage of dfita 
whleh were actually utilised for fitting each of the dif­
ferent models are alao given in the same table. In the two 
variate case* all the 36 acts of data could be utilised for 
fitting eaoh of the different models* The minimum value 
of coefficient of determination for the resistance function
was found to be as large ao 0*95• Thus for this model,

2none of the cases fell outside the highest range of ft 
(0*95 to 1 i whereas the percentage number of cases fell 
within that range under the quadratic and square root poly­
nomial 'modela was found to be equal to 16*67* Tranaendental

2function gave relatively lower ft values.

The estimates of physical and economic optima under 
each model along with their means and standard deviation 
are presented In Table 33* Certain models flailed to locate 
a positive physical or economic optimum value for some data 
sets. The position corresponding to such entries in the 
table has been left c-3 blank* The percentage number of 
cases of estimates on physical and economic optima under 
each model which lie in the apeoifio ranges of nutrients 
tried in the experiment are given in Tabl© 34* Among the
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different: models, quadratic function square root polynomial 
and tranaendental function had about half of their estimates 
on optimum within the stipulated interval. In the case of 
resistance function about one half of the estimates of 
physical optimum doses wore within tho specific ranges 
while all of the estimates of economic optimum were distri­
buted within the rajgelu.

The standard deviation of the optimum doses were very 
high, for the square root polynomial model, Quadratic model 
also have relatively high standard deviation for the optimum 
doses when compared to tranaendental function. With regard 
to resistance function, the standard deviation of the 
physical optimum doses were comparatively high whereas that 
of economic optimum doses were very small, Thus resistance 
function gave relatively more stable estimates than the other 
functions.

The quadratic surface and square root polynomial model 
removed more then 80 percent of the yield variation in 
about 72 percent of the experiments whereas tranaendental 
function removed the same variation in about 50 percent of 
tho experiments* hut in the case of resistance function 
all the experiments removed more than 95 percent of the 
yield variation. Thus resistance function gave uniformly 
better fit than other models*
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Among the bivarlate models, quadratic polynomial model 
end square root polynomial model are based on five indepen­
dent constants. At the same time the tranaendental function 
was four and the resistance, function has only three indepen­
dent constant* It is a foot that the percentage variation 
explained by a model is positively related to the number of 
independent constants. Itn this study it has been observed
that the resistance function has yielded comparatively higher 

2values of E evon with lesser number of parameters. The 
estimated standard error Of the estimates from this model 
were also relatively lessor then those obtained from the 
other models. Thus the estimates on optimum response obtained 
for different sots of data under this model were more realis­
tic and stable. Therefore tho resistance function can well 
be recommended for representing the response pattern and 
estimating the optimum level of nutrients In multifactor 
experiments.

The above result is in agreement with the findings of ' 
Abraham and Eao (1966). They have pointed out that resistance 
function would give uniformly better fit to sets of data 
when nutrient interaction was present. In most of the expe­
riments wo can expect a significant interaction between the 
constituent factors. cording to them quadratic models
are better suited for general adoption in fitting the
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response surface of fertiliser trials, The resulted’of tho 
present study are not in quite jo agreement with these f.j 
findings. Here the square root polynomial function was 
found to give slightly bettor results than the ordinary 
quadratic polynomial, although both are equally efficient 
In describing tho response surface. More than 50 porcont 
of the estimates on optimum doses were included in the s t i ­
pulated range for this function whereas the quadratic fun­
ction yielded only 33*90 percent of estimates in the specified 
range* Although the tranaendental function was in general 
less efficient in describing the response pattern than 
other models* it was found to be highly efficient in loca­
ting the physical and economic optimum. She estimates 
obtained through this function were more realistic and 
exhibited comparatively lessor standard errors* The stand­
ard deviation of estimates on physical optimum was least for 
the tranaendental function* Also the square root polynomial, 
model can be adjudged to be superior to ordinary quadratic 
polynomial model in representing the response pattern and 
estimating the optimum level of nutrients. Thus it is 
essential to have a proper rethinking of the existing practice 
of estimating optimum doses from response aurfac© models by 
employing the ordinary quadratic polynomial model.





Table 1* Analysis of variance of the data in the caee 
of weighted analysis} in groups of experiments

Source d.f. b.3*

Treatments ' 7 663.7578

laara 11 2244-3595

Interaction
(Treatment x year) 77 307.6703

Total 95 3215.1875
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fable 2. Analysis of variance of the data In the onae
of unwei ghted an&lyaia in groups of experiments

Source d£ 3*3. 8.3. F

7 344.6172 49.2310 24.4857**

11 623.0001 74.8182 37.2118**

■s
17 154.8164 2.0106

252 2.7671

froatraent '

If ear

Interaction 
(freatsent a 

year)

Fooled error

** Significant at tj5 level
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Table 3. Analysis of variance of the data as in the
case of split plot design

Source df 23 MS

Beplications 3 21.1621 7.0540 0.9993

Bain plot
( Treatments) 7 1375.1194 196.4456 27.8292**

Error (a) 21 148.2385 7.0590

Sub plot (years') 11 3289.6315 299.0574 97.2808**

Interaction 77 622.6273 8,0861 2.6303**

Error (b) 264 811.5799 3.0742

Total 383 6268*3587

** significant
i

at 1^ level
1



fable 4* Matrix of standardised values

-1.029 0.4&4 -0.036

-1.304 -1.051 0.222

-0.180 0.74© 0.144

-0.060 -1.028 -2.020

1.209 1.429 1.335

-0.137 -0.786 C.114

1.647 0.937 0.824

-G.I29 -0.711 -0.607

1.131 0 1.184

-1.044 -0.234 -0.395

0.779 1.030 0.535

-0.847 -1.570 -1.357

1.489 1.336 1.227

-0.476 0.401 -0.773

-0.117 0.780 0.535

-0.921 -0.930 -0.962

for tho original 8 x 12 fsatrix

1 .448 1.768 1.404 1.720 1.189 ‘1.502

-1.374 -1.026 0.3S7 -0.418 -0.331 -1.012

0.842 0.707 0.931 0.667 0.958 0.702

-0.948 -G.951 -1.054 -1.241 -1 .660 -1.297

0.739 0.769 —0.128 0.804 0.794 0.781

-0.874 -0.691 -1.126 -rO.916 -0.612 -0.441

0.267 0.011 0.623 0.008 0.432 0.464

-0.132 -0.589 -1 .071 -0.631 -0.781 -0.718

M
CjO



Table 5. Correlation matrix from tho matrix of ataniai’diaed values

1.0007 0.6100 0.4110 G.27H 0.4693 0.2681 0.2443 0.0810 -0.1247 -0.0112 0.1416 0.2291
0.999B 0.7079 0.0179 O'. 8336 0.9042 0.0364 0.7874 0.5941 0.7674 0.0460 O.Q666

0.9992 0.5630 C.8703 0.7518 0.4118 0.4351 0.4522 0.5438 0.7422 0.6087

0.9939 0.7530 0.9051 0.8765 0.9203 0.5887 0.8808 0.8550 0.9H3
6.S734 0.8505 G.6150 O.9O93 0.6112 0.6705 0.8586 0.7394

1.0000 0.8367 0.8882 0.7928 0.9355 0.9619 €.9367
1.0003 0.9600 0.6519 0.0976 0.84 36 0.9399

0.9980 0.7313 O.9635 C.8851 0.9653
0.9998 0.8333 0.&172 0.7506

l.0003 0.9397 0.9390
0.9997 0.9431

1 .0 0 0 0

CO



Sable 6. fiigen values and corresponding eigen vectors •
Eigen vectors (Principal component;

I XI III IV V VI VII VIII IX X XI XII

0.0957 -0.7015 -0.3475 -0.3650 0.1374 0.2225 -0.GS55 -0.0939 0.1629 0.0375 -0.1434 0.3344
0.30G0 -0.26C1 -0.1533 -0.1635 —o. 1940 -0.C-339 0.2430 0.4469 -0.1487 -0.4506 0.1768 -0.4 830
0.2363 -0.3508 0.5399 0.3736 0.4224 0.1118 0.0539 -0.1636 -C.1549 -0.2324 0.2024 0.1079
0.3081 0,0099 -0.2378 O.4OI5 -0.5768 0.1295 -0.2122 -0.3150 0.2478 -0.1825 0.2761 0.1501
0.2827 -0.2928 0.3024 -0.0049 -0.4128 -0.5059 -0.0037 0,1269 -0.2363 0.4507 -0.1050 0.1742
0.3272 -0.0077 0.1081 0.0220 -0.0681 0.5307 0.1617 -0.2609 -0.0462 0..4264 -0.2864 -0.4854
0.2999 0.1186 -O.4OO3 -0.0586 0.3245 -0.4475 0.3S57 -0.4298 -0.0185 0.1543 0.2537 -0.0743
0.3073 0.2269 -0.2665 0.1146 O.OS56 0.1817 -0.1578 0.0079 -0.6546 -0.2349 -0.4140 0.2722
0.2592 0.3001 O.3423 -0.7169. -0.1156 0.1246 -0.1347 -0.2149 -0.0909 —0.1426 0.2639 0.1572
0.3126 0.2518 -G.0043 0.0825 0.0661 0.2530 0*4618 0.4849 • 0.2775 0.1667 0.0697 0.4549
0.3239 0.0730 0.1997 -O.CC59 0.1193 l 0 . 8 —0.08C6 -0.0632 0.5356 -0.3276 -0.5126 -0.0Q88

_____Q.3227, 0.0826 -0.1325 0.0366 0.3330 ^ 0 3 1 6 -O.669S -S&23&. ,0.1072..0.2983 . 0.2494, -0.1690
Eigen
Values 9.0592 1.5754 0.8021 0.2956 0.1319 0.0719 O.O369 .000077 »000019 -.000009 -000057' -0.000088

^variation 
explained by 
eigen
vector 75.49 13.13 6.68 2.46 1.10 0.60 C.3I 0.0006 C.0002 0.00008 0.0005 0.0007
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T able 7 .  M a trix  o f  s ta n d a r d is e d  v a lu e s  f o r  th e  o r ig in a l  32 x 12  m a tr ix

-1 .601 -1 .187 - 0 .242 1 .158 -0 .4 4 6 0 .337

0.496 0 .5 2 7 - 0 .10 1 1.336 -0 .0 7 5 1.857

-1 .3 3 9 0 .675 0 .774 0 .849 -0 .241 1 .490

- 1.036 0.915 - 0.366 0 .344 0 .914 0.431

-1 .1 7 5 - 1.0 0 2 -1 .0 8 3 -0 .5 2 9 - 0.248 -0 .6 2 5

-1 .6 2 9 -0 .5 1 4 - 1.2 19 - 1.8 9 0 -0 .7 6 6 -0 .4 4 3
-1 .3 0 6 -1 .5 2 4 - 1.0 10 -0 .9 3 4 -0 .1 1 9 -0 .6 3 9

0 .069 - 0 .4 0 0 , -0 .0 6 7 0.095 0 .293 0 .5 5 4
0 .0 8 8 0.482 0.389 1 .067 0.198 0.625

-0 .5 6 7 0 .9 8 3 0 .644 0 .3 1 7 1.256 0 .342

-0 .2 8 4 0 .7 7 7 0.025 -0 .9 7 6 1.434 0 .536

0 .259 0 .203 0 .157 1 .342 0.632 0 .3 6 9

-0 .5 5 5 -1 .3 7 3 -1 .714 -1 .441 -1 .6 3 5 -1 .1 0 6

0 .289 -1 .1 6 5 -1 .1 1 3 - 0.362 -0 .7 1 3 -1 .0 0 4

0 .482 - 0 .1 4 3 -1 .4 0 2 0.042 -1 .7 1 2 -1 .4 4 6

-0 .531 - 1.058 -2 .1 1 6 -0 .7 5 3 -1 .3 9 9 - 1 .2 3 1

0 .652 0 .9 4 6 1.283 0 .793 1.635 1.684

0 .319 1 .178 1.017 0 .8 2 6 0 .8 8 3 0 .6 7 9

1.10 2 0.982 1 -559 1 *952 "'"T.'OZIT -  0 . 903-

1 .649 1 .518 1.054 1 .043 1.196 1.16 9

0 .813 0.668 0 .967 0.520 0 .743 - 0,048

-0 .2 7 2 -0 .5 7 9 0 .272 -0 .6 4 5 - 1 .032 -1 .0 6 1

0.673 -1 .3 1 9 -0 .2 6 0 -0 .5 5 2 -0 .2 8 2 -1 .0 0 6

-1 .4 1 5 - 0 .78 2 0.306 - 0 .7 5 3 -1 .0 0 4 -0 .6 1 5

1.134 0 .482 0 .284 -0 .6 2 0 0 .496 0.481

1.816 0 .8 5 3 1 .390 - 0 .13 6 1.309 0 .3 4 2

1.135 0 .8 7 9 0 .810 0 .1 7 0 0 .576 0 .352

0.922 0.751 0.979 0 .344 0 .406 0 .862

0.611 0 .946 0 .126 -0 .9 3 9 -0 .7 4 3 - 1 .3 4 7

-0 .4 6 0 - 1.296 - 0.900 0 .5 4 3 -0 .8 7 3 -0 .7 2 4

-0 .4 8 2 - 0.348 - 0 .5 10 -0 .5 5 2 -0 .691 -0 .1 9 8

0 .069 -1 .167 0 .082 -1 .6 5 2 - 1 .0 6 0 -1 .5 3 8

1.172 1.519 -0 .3 9 5 1.173 0 .9 0 6 1 .6 5 ’
-1 .6 5 8 1.896 , 1 .580 1.989 1 .159 1.54*

1 .602 1.272 0 .9 6 3 0 .505 1.361 1.55*
0 .962 1 .873 1.174 1.377 1 .076 1.291

-1 .0 7 7 -1 .3 9 7 0 .747 -0 .8 2 3 -0 .5 7 9 -1 .034

-1 .3 0 5 -0 .3 1 4 0 .0 8 8 -0 .391 -0 .2 7 9 -0 .764

- f .0 8 9 -1 .1 2 5 0 .3 2 4 -0 .3 1 3 -0 .3 6 4 -1 .1 1 1

-1 .1 5 5 -0 .9 0 6 0 .19 0 -0 .0 1 2 0 -0-95£
1 .040 0 .6 2 7 1.900 0 .1 0 0 0 .9 4 7 - 0 .2 7 t
0 .8 5 2 O.B59 0 .3 2 5 -0 .2 8 3 1.308 0 .9 H

0 .3 9 3 0 .6 8 4 -0 .3 9 6 1 .264 0 .260 0.305

1.219 0 .4 2 4 ' 1 .598 1 .342 1.172 0.889
-1 .1 8 8 -1 .234 -1 .4 1 1 -1 .5 9 4 -1 .0 9 6 -1 .3 4 4

0 .463 -0 .5 1 5 -1 .0 9 9 -0 .561 -1 .4 1 5 -1 .2 3 4

-1 .5 3 3 - 1 .1 3 3 - 0 .5 6 0 -0 .8 6 2 - 1 .4 5 5 -1 .3 1 4

0 .353 -0 .5 7 5 -0 .2 4 6 - 1 .3 2 1 ' - 1 .5 0 8 - 1 .09C

1 .119 0 .5 5 9 0 .3 4 7 0 .586 0 .9 6 9 0 .982

0 .605 0 .5 0 5 -0 .4 7 2 0.731 0 .7 7 0 0 .573

" 0 . 7 1 4 ' ‘ 0 ^ 6 3 ' "  U 3 6 0 ’ ~  1-309 1.002 0 .658

0 .513 0 .9 3 0 -0 .6 3 4 0 .309 0 .232 1 .00?

-0 .8 1 7 0 .215 0 .3 7 4 0.024 -0 .2 8 2 -0 .181

-0 .2 4 4 -1 .0 0 2 -0 .4 9 7 -1 .0 4 6 -0 .6 0 0 -0 .6 2 9

-0 .39B -0 .8 2 9 - 1.901 -1 .1 2 6 -1 .1 3 9 -0 .5 2 6

-1 .3 4 7 -1 .0 1 2 -1 .0 9 5 -0 .8 6 8 -0 .2 6 2 -0 .2 4 9

-0 .2 3 3 0 .314 -0 .3 2 1 0 .446 0 .375 0 .473

1 .063 -0 .8 2 9 1.201 0 .397 0 ,0 1 8 0 .454

0 .0 4 7 0 .8 0 2 0 .1 7 4 -1 .1 0 3 0 .655 0 .822

0 .802 -0 .3 1 0 0 .165 0.015 0 .5 9 8 0.226

-0 .021 -0 .6 0 6 - 0 .5 6 8 -0 .4 8 6 -0 .4 3 6 -0 .2 9 2

0 .216 - 0 .6 0 3 -1 .1 2 6 -0 .8 4 2 -0 .9 5 5 -0 .861

0 .269 -0 .5 7 3 0 .040 0 .335 -0 .3 1 6 -0 .3 8 2

-O .64I -0 .4 1 6 -1 .1 6 0 -0 .8 4 2 - 1 .3 1 0 -1 .1 3 8



Table 8. Two way table of data generated through principal 
component analysis

Treatments
R1 H2

Replications
B3 ' B4

Total

21 ~ 1.8505 3.1743 3.1647 2.9675 11.1570

22 -2.4517 -2.4705 -2.5261 -0.7269 -8.1750

23 2.0856 2.2002 1.3013 2.8334 8.4203

24 -4.7964 -2.5719 -3.3912 -3.5168 -14.2763

25 3.1458 2.2371 3.7412 2.6884 11.8125

26 0.6423 -2.1477 -2.7397 -2.4570 -6.7021

27 0.7876 1.8573 1.3394 1.5106 5.4949

28 -1.2876 -2.2350 —0.8989 -3.3200 -7.7423

Total -0.0239 0.0440 -0.0093 -0.0216 -0.0108



Table 9* inalysio of variance of the data generated through 
principal component analysis

Source d.f. 6*0. M.S. F

Application 3 0.0003789 0,0001263

Treatcent 7 183.1543 26.4506 27.69**

Error 21 19*9177 0.9405

Total 31 205.0724

** Significant at I5S level
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Table 10, Sums of ranks and values of K obtained in Hal and 
Ego'a method
Same of ranka (K̂ )

Year
T1 22 i 

I 
f 

I 
1 *
3 

1
1 Vj
i 

I
I 

I

*
! 

* 
i 

i

Treataentg
25 T6 £7 £8 S.

1973 25 26 20 20 9 18 5 21 18.0372*
1974 17 24 14 27 4 22 12 24 19.0460**
1975 21 28 14 31 5 14 9 22 27.3668**
1976 8 25 15 25 8 24 19 20 16.5140*
1977 17 20 10 29 7 22 11 26 22.6068**
1978 10 20 13 29 6 26 14 27 25.0820**
1979 12 28 9 25 11 26 14 22 18.7988**
1980 4 26 11 26 10 27 18 22 25.3676**
1981 11 12 11 27 17 24 14 . 28 17.4660*0
1983 6 22 12 2B B 28 17 23 24.7964**
-1985 • 8 23 8 32 10 24 14 25 27.8426**
1987 4 26 14 31 10 2Q 13 26 28.6044**

----------- -------------- ------------ ---------------

Total 143 2B0 151 330 105
\ 275 159 285 200.9726

SL Statistic for treatment at year interaction
» 272•3200-200.9728 =-71.356 with 77 d.f.

* Significant at 5$ level 
** Significant at 1$ level
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Table 11* Rank gums of treatraonta in different years'
Sasa of rsnka (R̂ )

Year Tl T2 n T4
Treata®nta 

T5 T6 T7 T8 lotf

1973 25 26 20 20 9 18 5 21 144
1974 17 24 14 27 4 22 12 24 144
1975 21 28 14 31 5 14 9 22 144
1976 8 25 15 29 8 24 19 20 144
1977 17 20 10 29 7 22 11 28 144
1978 10 20 13 29 6 26 13 27 144
1979 12 28 9 25 11 26 14 ig 144
1980 4 26 11 26 10 27 19 22 144
1981 11 12 11 27 17 24 14 28 144
1983 6. 22 12 28 8 28 17 23 144
1985 B 23 6 32 10 24 14 25 144
1987 4 26 14 31 10 20 13 26 144

Total 143 £80 151 330 105 275 159 285 1728



Table 12* Values of randota variable 'a* and y r for 
different years

2

I t i t i i I » t I i t I

Xeara 8 2 
X r d

1973 380 15.8333 7
1974 418 17,4167 7
1975 576 24 7
1976 348 14.5 7
1977 476 19.8333 7
1978 528 22 7
1979 396 16.5 7
1980 534 22.25 7
1961 368 15.3333 7
1983 5 22 21.75 7
1985 586 24.4167 7
1987 602 25.0833 7

Total i 238.9166 84
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Table 13. Analysis of variance and chi-square values in 
the cage of extended Priedcan *s analysis.

2Source d.f. 3.3. y

Replication

Treatment 7 1051.2083 175.2017**

Year 11 0

Treatment x year
interaction 77 582.29 63.7149

Residual 265 582.SGI 7

Total 363 2016

#* Significant Rt 1^ level
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Table 14* ^nalyaia of variance under -Eberhart and Eusaell 
Hod el

Source d.Y. 3.3* M.S. F

Total 95 1522.469

Treatments 7 344*652 49.236 26.3519*"
Year *-
(Treatment x year) 88 977.816

Year (linear) 1 823.026
Treatment x year 
(linear)

i
7 5.323 0.760 0.4069

Pooled deviation 80 149*468 1.8664 .0.6752

Treatment 1 10 58.040 5.804 2.0975*
Treatment 2 1G 17.267 1.7267 0.6240
Treatment 3 10 13.661 1.3661 0.4957
Treatment 4 10 23*229 2,5229 0.9117
Treatsaont 5 10 8.540 0.8540 O.3O86
Treatment 6 10 11.590 1.159 0.4169
Treatment 7 10 5.696 0.5696 0.2058
Treatment 8 10 9 *44 6 0.9446 0.3414

Pooled error 252 697.308 2.767 _

** Significant £t 1^ level 
* Significant.at 5$ level



Tublo 15* Environmental in dice a (I-jJ under Eberhart and 
Rug8©11 model

Year

1973
1974
1975
1976
1977
1978
1979 
1900 
1981 

1983 
1965 
1987

-1.9445 
1.5943 
0.9443 
1.5630 
2.1536 
3.2099 

-4.3770 
2.5927 
0.6418 
-2.1876 
2.2877 
-6.4779
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Table 1 6 "stability parameters b^ and *1^2 end their corres­
ponding 't' and 'F* otatistica

Treatment *(1 ) F(i)

1 0,9310 3.0369 -0.5120 2.0975
2 1,1916 -1.0404 1.4221 0.6240

3 1,0130 -1.4010 0.0966 0.4937

4 0.9696 -0.2442 -0.2259 ■ 0.9117

5 1.0091 -1 .9131 0.0676 C.3OS6

6 1,0149 -1 .6031 0.1109 0.4108

7 0.9516 -2.1975 -0.3594 C.2G58

8 O.9193 -1.0255 —0.5986 O.34I4

* 31/cnlfioant at 5$ level



2kble 17* Corrected values for stability analysis using non parametric 
measures

"OGt—int 1 2 3 4 5
Tears

6 7 e 9 10 11 12

1 5069 6517 6241 6806 6497 7372 6 032 8393 6971 6523 7742 7238

2 6203 7196 6906 7082 7606 7808 4901 6809 7541 6271 7421 6601

3 5616 6892 6602 6932 7275 7329 5807. 7605 6984 5965 7790 6601

4 6698 7504 6878 7481 7262 7632 5558 7185 6944 6021 6371 5672

5 5946 7027 702? 7134 7316 7566 5613 7562 6176 6040 7522 6476

6 6498 7249 7457 7255 7451 7545 5241 7063 6522 3863 7060 6195

7 6367 7135 7082 6718 7331 7506 5519 7GS4 6935 5790 7431 6505

8 6535 7277 7169 7095 7229 7485 5896 7207 6592 6G8S 6924 5907



Table 18* Bonks of treatmenta in each year based on the
corrootod values

Treat- I w ®
Kent s 1 2  3 4 5 6 7 & 9 10 11 12

1 1 1 1 2 1 2 8 6 8 7 8

2 4 5 4 4 8 8 1 1 8 7 4 1

3 2 2 2 3 4 1 6 7 7 3 6 7

4 8 8 3 8 3 7 4 4 5 4 1 2

5 3 3 5 6 6 6 5 6 1 5 6 5
6 6 6 8 7 7 5 2 • 2 2 3w 3 4

7 5 4 6 1 6 4 3 3 4 1 5 6
8 7 7 7 5 2 3 7 5 3 6 2 3
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Table 19. The values of stability parameters  ̂a5ttt̂
and statistics 3̂ * ̂ and for each treatment

Treat- — a (U -7 (1i q (2) „ (2)tae a t  r i .  J i  " i  i  " i

1 4-417 3.682 6.980** 10*811 14.265**

2 4.5«3 3.136 1.634 7.356 2.046

3 .  4.333 2.909 0.504 6.242 0.454

4 4.750 2.864 0.356 6.023 0.275

5 4.667 1.636 6.109 2.424 3.684

6 5.400 2.667 0.011 5.102 0.002

7 4.000 2.030 2.210 3.091 2.151
8 4.750 2.379 0.379 4.205 0.504

a(m) _ 1  , W
ia*1

Ho ; £

Var (S± â ^

2.625

0,16

18.18*

5.25

2.168

23.38*

Significant at 5$ level 
** Significant au 1$ level
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Tablo 20. Pay off matrix for the analysis based on gaae theory

fl 10254 14598 13770 15465 14538 17163 13H3 20226 15960 14616 18273 16761

T2 -801 2163 1293 1821 3393 3999 -4722 1002 3I98 -612 2830 -2440

T3 5655 9403 8613 9603 1 0632 10794 6220 11622 9759 6702 12177 8610

M 16653 18471 16593 18402 17745 16855 12633 17514 16791 14022 15072 12975

15 14291 17534 17534 17855 18401 19151 13292 19139 14981 14573 19019 15881

26 7619 9872 10496 9890 10473 10760 3818 . 9329 7691 5714 9305 6710

17 12002 H306 H H 7 13055 14894 15419 .9458 14153 13706 10271 15194 12416

T8 16625 18851 10527 18305 18707 19475 H7Ce 18641 16796 15284 17792 14771

COWN



T ab le  2 1 ,  S e u r a t  * a t r i a  in  a c v o ^ e ^  r e g r e t  c r i t e r i o n

"-6399 -4253 -4757 -2937 -4169 -2312 -1565 0 -836 -668 -746 0

-17454 -16688 -17234 -16581 -15314 -15476 -19430 -19224 -I559O -15696 -16181 -19209

-10993 -9368 -99H -8799 -8075 -8681 -8430 -8604 -7G37 -8582 -6842 -8151

0 -380 -1934 0 -962 -520 -2075 -2712 -5 -1262 -3947 -3786

-2362 -1317 -993 -547 -306 -325 -1416 -1087 -1815 -711 0 -880

-9034 -8979 -8O3I -8512 -8229 -0715 -10860 -10897 -9105 -9570 -9714 -10051

-4651 -4545 -4380 -5347 -3813 -4056 -5250 -6073 -3090 -5013 -3825 -4345

-28 0 0 -97 . 0 0 0 -1585 0 0 -1227 -2020

►-<>
COOl



'■Tabla 22* Benefit issitrix in eaoeas benefit criterion

11055 12435 12477 13644

0 0 0 0

6456 7320 7320 7782

17454 16308 15 300 16581

15092 15371 16241 16043

8420 7709 .9303 sc 69

12803 12143 12854 11234

17426 16688 17234 16484

11H5 13164 17865 19224

<5 0 0 0

7239 67S3 1C93C 1C620

14352 1463 6 17355 16512

15008 15152 18014 18137

7085 6771 8570 8327

11501 11420 141 80 13151

15314 15476 19330 17639

12762 15228 15435 19209

0 0 0 0

6561 7314 9339 11058

15593 14634 12234 15423

11783 15185 161 SI 18329

4493 6326 6467 9158

10808 10883 12356' 14664

13598 15096 14954 17189

H-*
GO
CD
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ta»l* 24 Bv n l u >  of O H ffloloiit o f  6 * t « n l » t lo a  u*d *rtr*«* * t»o lu t»  orror fo r  a iffo roo t •oaolo eorr»*jonl1.iis to dlfforont 
' i i t f l  o f dete u d i r  oattgorjr I Blonf *ith  tbtlp  atamand rv if*  Tari&ttona*

Tafclo Oudyttlg nodal Sauara toot poly- la ld tr 'a  poly- Inraroa p o ly - Kijad »od»l Oupta'a fun- Holliday fun- 
■o. nomlal aoalal oca ta l . . . . . . . . . .  ■ °S1211-  -  etion

i . A . J . A.iol B2 1.1.1_________  fl!__4ii±__«:__i:LL-jL„4:y--
1 0.93 14.50 0 .998 6 .19 0.9459 33.20 0,0244 5 3 .6 8 0.9964 7.64 - - - - 0.8197 49.19

5 0.9031 160.40 0.6617 285.42 0.0846 545.13 0.0500 460.59 0.5579 319.10 0.5655 >11.28 0.0004 1006.P5 0.5105 328.85 0.0002 1033.17

4 0.9095 34.21 0.8507 123.12 0.1365 359.30 0.0403 >11.49 0.7670 150.43 0.7765 144.92 0.0011 627-97 0.7330 158.99 0.0026 614.77

5 0.3990 2.01 0.9073 41.11 0.1048 1 5 1 .( 8 0.6265 02 .55 0.0514 50.84 010443 51.25 0.0000 263.23 0.0273 54.15 0.0065 201.39

t 0.9772 42.67 0.9669 49-74 0.9325 93-69 0.0959 102.21 0.9(86 47.70 - - - - 0.9692 47.22 0.9097 84.71

0 1.0000 0.005 0.9967 21.26 0,0676 103.62 0.9815 6 5 .1 0 0.9960 23.34 - - - - - - 0.9908 3S.36

10 0.9977 10.88 0 .9990 6 .73 0.7919 125.06 0.9973 11 .99 0,9976 10.04 - - 0.9 136 50.65 0.9974 11.51 0.9875 25.07

12 1.0000 0 .80 0,9902 22.05 0.8336 100.39 0.9032 7 0 .6 0 0.9896 22.12 - - - - - - 0.9373 47.57

19 0.3084 33.61 0.9809 31.31 0.9090 32.71 - - 0.5293 133.07 - - - - - - 0.9603 64.77
22 1.0000 2.36 0.9605 14 .00 0.1367 116.69 - - 0,6270 50.21 0.9719 18.07 0.9574 22 .50  0.9791 16r26 0.8993 37.18

23 0.3815 12.62 1.0000 19.13 0.4614 73.59 - - 0.2550 70.01 0.9370 21.77 0.9014 26.88 0.9402 21.46 O.B404 30.99

20 0.5413 60.16 0.75 03 42.94 0.3944 67.31 - - 0.8401 34.34 0.0239 35.27 • - - 0.8670 30.80 0,1261 69.93
23 0.8252 67-52 0.5744 100.78 0.2000 143.23 0.5219 105.56 0.5076106.42 0.4030 106.77 0.0016 379.09 0.4013 107.07 0.0076 297.06
26 0.9704 U .09 0.9442 18.67 0.9267 20.90 0.4350 57.80 0.9170 22.25 0-9359 19.26 0.0008 146-00 0.9089 23.14 O.OO05 122.79
27 0.9791 13. B4 0.9922 8 .23 0.9405 21.47 O.BO07 40 .49 0.9092 9.32 - - 0,6064 35.27 - - 0.5163 52.67
20 0.8OJ7 W t .74 0.5374 150.24 0.1408 208.80 0.4969 156.90 0 .4628 150-96 0.4*14 150 . B2 0.0003 535-65 0.4337 161.16 o .oooj 436 . 94
30 0.8058 88.64 O.9123 57.22 0.6999 111.09 - - 0.955S 40.04 0.9436 44.22 - - 0.9679 33.60 0.9776 23.22
32 0.9582 78.90 0.8365 148.63 0.5612 >49.28 0.9131 156.94 0.0060 158.33 - - 0.00)4 365.40  0.7933 I6 I .34 0.4094 301.44
35 0.9997 8 .10 0.9767 65.70 0.6732 353.15 0.9762 8 4 .H 0.9665 76.93 - - 0 .169) 312.41 - - 0.7776 191.86
3* 0 9641 78.99 0.9768 90.89 0.9266 235.42 0.7957 >51.51 0.904* 72.64 - * - - 0.9862 67.60 0.9526 123.47
33 0.6547 226.15 0.9376 9 0 .36 0.0192 ' 357.51 0.3404 272-55 0.9847 40.79 0.9061 37.7> 0.9832 46,65 0.9926 27.83 0.0192 299.31
44 0.5503 111.04 0.4631 109.17 0.3202 120.01 0.4292 110.64 0.43T4 111.74 - - 0.0174 324.02 - - 0.0076 265.46
44 0.92*5 53.48 0.9722 27.46 0.4005 154.67 0.9423 43.85 0.9513 36.26 0.9357 39.76 0.0201 109.02 0-9304 39.93 0.0*32 157.61
47 0.9420 29.34 0.8294 59.76 0.260Q 134.76 0.7397 74.57 0.7595 71.37 0.7263 74.70 0.0047 355.13 0.7267 74.96 0.0261 292.74
40 0.9657 75.15 0.9015 117.46 0.7091 291.01 o.ea>9 139.30 0.8917 124.59 - - - - - - 0.1325 >00.57
49 0.9604 95.03 O’. 9817 53.41 0.2630 505.98 0.8030 180.51 0.9580 94 .00 0.9530 97-71 0.0056 341.15 0.9464 107.86 0.2579 >49.45
50 0.34 78 108.92 0.9893 43 .7 2  ' 0.9725 445.98 0.9021 70.93 0.9836 52.18 0.9799 55.75 0.7281 177.78 0.9795 56.83 0.8396 I58 .6J
32 1.0000 0.10 0.9581 10.76 0.5454 69.75 - - - - - - 0.0170 194.70 - - 0.0065 91.75
33 0.8677 44.50 0.9957 7 .62 0.0132 125.67 - - 0.9996 2.50 0.9990 3.52 0.9917 7.32 0.9963 6.85 0.5869 6 0 .9C
55 0.7745 43 .70 0.9638 16.66 0,0479 08.36 0.5097 51.31 0.9892 9.02 0.9909 0 .0 3  0.6127 >1-52 0.9953 5.75 0.9810 10.88
54 0.7074 112.90 0.8441 78.40 0.5002 131.08 0.0391 189.20 0.8977 62.44 0.8943 65.18 - - 0.9160 55.79 0.6577 104.40
57 0.5015 I5B.23 0.7671 103.09 0,1230 ' 190.76 0.0641 191.95 0.8549 79.35 0.8429 81.29 - - 0.8604 71.14 0.0009 195.6"
50 0.8059 109.70 0.9708 40.47 0.1035 2 29 .6) 0.7927 106.90 0.9906 22-30 0.9935 10.47 0.8101 77-24 0.9960 H .3 5 0.9925 16.61
59 0.0327 3 1.2 0 0.99B3 3.58 0.1104 9 5 . )0 0.7030 45.90 0.9903 3 .57 0.9971 4-69 0.8370 26.90 O.9942 6.62 0.7153 43-97
41 0.7506 49.40 0.8840 30.07 0.4548 64.29 0.0142 85.35 0.9334 23.00 0,9235 24.16 - - 0.9493 19.76 0.'8746 28.21
*2 0.9252 62.70 0.9999 2.15 0,1405 228.68 0.7600 105.71 0.9900 21.04 0.9885 22.21 0.C078 175-44 0.9827 27.29 0.0723 173.61
43 0.9681 26.40 0.7705 66.23 0,0003 162.50 0 . 2S52 114.00 0.6839 77.2J 0.6869 75.69 0.0037 444.33 0.6495 BO. >0 0.00*1 3)9.03
44 0.9932 3.70 0.9546 26.49 0.4C47 117.40 0.6999 38.23 0.9300 32.23 0.9184 34 . 3 0 0.0063 1*1 -62 0.9175 34.62 0.2640 101.62
43 0.9212 39.40 0.9995 2.91 0.0061 140.66 0.2206 100.90 0.9056 15.55 0.9060 15.23 0,1485 92-50 0.9746 20.65 0.0955 110.26

*41
■ ’’ “ — — — — -----—— ■ ~ ----- ----------------------- h—------------------ . . . . . . . . — ______ ___ _

C.8914 56.57 0.8977 56 .40 0.4432 ISC .16 0.6197 I i 6 .79 0.8*70 0*.12 0.8661 60.39 0.3275 237.20 0.87*6 62.48 o .* ;< c ITS.44
U #  0.4305 226,15 0.5369 283.27 0.9095 524 .2 ) 0.9033 456.60 0.7430 316.60 0.5576 307.76 0 .9 9 H 99B.73 0.5637 323.10 0.9923 1022.29



Table 23. ilanko of treatments as obtained In groups of 
experiments, principal component analysis and 
Bai and Bao'a method

Methods Treatments
1 2 3 4 5 6 7 8

1 1
1

7 3 a 2 6 4 2

2 2 3 Q 1 5 4 6

3 2 6

t i I 1 
CD 

I

1 5 4 7

lotsi (H^) 5 20 9 24 4 16 12 10
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l e * i *  5 4  s »  n l M i  e l  e e e f l l o i e n t  o l  4 » t « * i s » t l . o B  * a t  * T » r « p  » b e o l u t «  * r r o r  t e r  d i f f e r e n t  w d e l e  c o m *  p e n d i n g  t o  d i f f e r e n t  

i i t «  o f  d o t *  t t Q t f t r  c o t o g o r /  I  b ! o b £  r i t h  t h o i r  p e i n p t o d  r * n f f  o f  v o r i o t t o w *

u i u  » » 4 r . t t c  » o d e I ~  S q u a r e " r o o t  ' p ^ j -  U l u 7 ' 7 ~ V > 1 r -  ! « . « *  H l » d  » d . l  O u p t . f u n -  H o U l d . ,  f u n -  « »  * > d . l  I  * • »  - ° d . l  *JJ. _ nooUl_____ _D£“i*l_____«.a£B£®l - -- --_______ Ŝ1̂0- - - - - - - - - - - ----
V

i . i . I . i . i . I e 2 „ g * ______ 4 , _____„ b ? ______ * j L _ i b L ™ ± i i i S i — - . ? ! _______ 1 ^ 4 . 2 ____ X _____ i i 1 : 5 ---------------

1 0 . 9 9 1 4 . 5 0 0 . 9 9 9 6 . 1 9 0 , 9 4 5 9 3 3 . 2 0 0 . 8 2 4 4 5 3 . 6 8 0 . 9 9 6 4 7 . 6 4 - - - - 0 . 8 1 9 7 4 9 - 1 9

3 0 . 9 0 5 1 1 6 0 . 4 0 0 . 6 6 1 7 2 8 5 . 4 2 0 . 0 6 4 6 5 4 5 . 1 3 0 . 0 5 0 0  4 6 0 . 5 9 0 . 5 5 7 9  3 1 9 . 1 8  0 . 5 6 5 5  :3 1 1 - 2 B 0 . 0 0 0 4 1 0 0 6 . p 5  0 . 5 1 8 5  3 2 8 . 8 5 0 . 0 0 0 2 1 0 3 3 - 1 7

4 0 . 9 * 9 5 5 4 . 2 1 0 . 8 5 0 7 1 2 5 . 1 2 0 . 1 3 6 5 3 5 9 . 3 0 0 . 0 4 0 3  ;3 1 1 . 4 9 0 . 7 6 7 0  1 5 0 . 4 3  0 . 7 7 6 5 U 4 . 9 2 0 . 0 0 1 1 6 2 7 , 9 7 0 , 7 3 3 0 1 5 8 . 9 9 0 . 0 0 2 6 6 1 4 - 7 7

* 0 . 9 9 9 8 2 . 0 1 0 . 9 0 7 5 4 1 . 1 1 0 . 1 0 4 8 1 5 1 . 6 8 0 . 6 2 6 5 6 2 . 5 5 0 . 6 5  U 5 0 . 8 4  0 . 6 4 4 3 5 1 . 2 5 0 . 0 0 0 8 2 6 3 . 2 5  0 . 6 2 7 3 5 4 - 1 5 0 . 0 0 6 3 2 0 1 . 3 9

( 0 . 9 7 7 2 4 2 . 6 7 0 . 9 6 6 9 4 9 - 7 4 0 . 9 3 * 5 9 5 - 6 9 0 . 0 9 5 9 1 0 2 . 2 1 0 . 9 6 8 6 4 7 . 7 0 - - - - 0 . 9 6 9 * 4 7 - 2 2 0 . 9 0 9 7 6 4 . 7 1

0 1 . 0 0 0 0 0 . 0 0 5 0 . 9 9 6 7 2 1 . 2 6 0 . 8 6 7 6 1 8 3 - 6 2 0 . 9 8 1 5 6 5 . 1 0 0 . 9 9 6 0 2 3 - 3 4 - - - - - - 0 . 9 9 0 0 3 » . > 6

1 0 0 . 9 9 7 7 1 0 . 9 6 0 . 9 9 9 0 6 . 7 J 0 . 7 9 1 9 1 2 5 . 0 6 0 . 9 9 7 5 1 1 . 9 9 0 . 9 9 7 6 1 0 . 0 4 - - 0 . 9 1 3 6 5 0 . 6 5 0 . 9 9 7 4 1 1 , 3 1 0 . 9 8 7 5 2 5 - 0 7

i r 1 . 0 0 0 0 0 . 6 0 0 . 9 9 0 2 2 2 . 0 5 0 . 6 5 5 6 1 0 8 . 3 9 0 . 9 0 3 2 7 8 . 6 0 0 . 9 8 9 6 2 2 . 1 2 - - - - - - 0 . 9 3 7 3 4 7 . 5 7

« » 0 . 9 8 8 9 5 5 . 6 1 0 . 9 9 0 9 5 1 - 3 1 0 . 9 8 9 8 3 2 . 7 1 - - 0 . 5 2 9 3 1 3 3 . 8 7 - - - - - - 0 . 9 4 0 3 6 4 . 7 7

2 2 1 . 0 0 0 0 2 . 5 6 0 . 9 6 0 5 1 4 . 6 0 0 . 1 3 6 7 1 1 6 . 6 9 - - 0 . 6 2 7 0 5 0 . 2 1 0 . 9 7 1 9 1 6 . 0 7 0 . 9 5 7 4 2 2 . 5 0 0 . 9 7 9 1 1 6 , 2 6 0 . 8 9 9 3 3 7 - 1 8

2 5 0 . 9 6 1 5 1 2 . 6 2 1 . 0 0 0 0 1 9 . 1 5 0 . 4 6 1 4 7 3 - 5 9 - - 0 . 2 5 5 8 7 0 . 0 1 0 . 9 3 7 0 2 1 . 7 7  0 . 9 0 1 * 2 6 . 6 6 0 . 9 4 0 2 2 1 . 4 6 0 . 8 4 0 4 3 0 . 9 9

2 t 0 . 5 6 1 5 6 0 . 1 6 0 . 7 5 8 5 * 2 . 9 4 0 . 3 9 4 4 6 7 . 3 1 - - 0 . 8 4 0 1 5 4 . 3 4 0 . 6 2 3 9 3 5 . 2 7 ■ - - 0 . 8 6 7 0 3 0 . 8 0 0 , 1 2 6 1 6 9 . 9 3

» 0 . 8 2 5 2 6 7 . 5 2 0 . 5 7 4 4 1 0 0 . 7 6 0 . 2 0 0 8 1 4 3 . 2 3 0 . 5 2 1 9 1 0 5 . 5 6 0 . 5 0 7 6 1 0 6 . 4 2 0 . 4 0 3 8 1 0 6 . 7 7 0 . 0 0 1 6 3 7 9 . 0 9 0 . 4 8 1 3 1 0 7 . 0 7 0 . 0 0 7 6 2 9 7 . 8 6

2 * 0 . 9 7 0 9 1 4 . 0 9 0 . 9 4 4 2 1 6 . 6 7 0 . 9 2 6 7 2 0 . 9 0 0 . 4 3 5 0 5 7 . 6 0 0 . 9 1 7 8 2 2 . 2 5 0 . 9 3 5 9 1 9 , 2 6  0 . 0 0 0 6 1 4 6 . 8 8 Q . 9 0 8 9 2 3 . 1 4 0 . 0 0 6 5 1 2 2 . 7 9

2 7 0 . 9 7 9 1 1 5 . 9 4 0 . 9 9 2 2 6 . 2 5 0 . 9 4 0 5 2 1 . 4 7 0 . 6 0 0 7  4 0 . 4 9 0 . 9 8 9 2 9 . 3 2 - - 0 . 6 8 6 4 3 5 . 2 7 - - 0 . 5 1 6 3 5 2 . 6 7

2 B 0 . 6 0 5 7 1 0  1 . 7 4 0 . 5 5 7 4 1 5 0 . 2 4 0 . 1 4 0 8 2 0 6 . 6 0 0 . 4 9 6 9 1 5 6 . 9 0 0 . 4 6 2 8 1 5 8 . 9 6 0 . 4 4 1 4 1 5 6 . 8 2  0 . 0 0 0 5 5 3 5 . 6 5 0 . 4 3 3 7 1 6 1 . 1 6 0 . 0 0 0 5 4 ) 6 . 9 4

5 0 0 . 9 0 5 6 6 8 . 6 4 0 . 9 1 2 5 5 7 . 2 2 0 . 6 9 9 9 1 1 1  . 0 9 - - 0 . 9 5 5 8 4 0 . 0 4 0 . 9 4 3 6 4 4 . 2 2 - - 0 , 9 6 7 9 3 3 . 6 0 0 . 9 7 7 6 2 3 . 2 2

5 2 0 . 9 5 6 2 7 8 . 9 0 0 . 6 5 6 5 1 4 6 . 6 5 0 . 5 6 1 2 5 4 9 . 2 8 0 . 9 1 3 1 1 5 6 . 9 4 0 . 3 0 6 0 1 5 6 . 5 3 - - 0 . 0 0 3 4 3 6 5 . 4 8 0 . 7 9 3 3 1 6 1 - 3 4 0 . 4 0 9 4 3 0 1 . 4 4

5 5 0 . 9 9 9 7 S . 1 0 0 . 9 7 6 7 6 5 . 7 0 0 . 6 7 5 * 5 5 3 - 1 5 0 . 9 7 6 2 6 4 - 1 4 0 . 9 6 6 5 7 6 . 9 3 - - 0 . 1 6 9 3 3 1 2 - 4 ' - - 0 . 7 7 7 6 1 9 1 , 8 6

5 * 0  9 6 4 1 7 9 . 9 9 0 . 9 7 6 8 9 0 . 8 9 0 . 9 * 6 6 2 5 5 . 4 2 0 . 7 9 5 7  3 5 1 . 5 1 0 . 9 6 4 4 7 2 . 6 4 - - - - 0 . 9 0 6 2 6 7 . 6 0 0 . 9 5 2 6 1 2 3 . 4 7

5 0 0 . S 5 4 7 2 2 6 . 1 5 0 . 9 5 7 6 9 0 . 5 8 0 . 0 1 9 * '  3 5 7 . 5 1 0 . 3 4 0 4 2 7 2 . 5 5 0 . 9 6 4 7 4 0 . 7 9 0 . 9 0 6 1 3 7 . 7 5 0 . 9 8 3 2 4 8 . 6 5 0 . 9 9 2 6 2 7 . 8 3 0 . 0 1 9 2 2 9 9 . 3 1

4 4 0 . 5 5 0 5 1 1 1 . 0 4 0 . 4 6 5 1 1 0 9 . 1 7 0 . 3 * 0 2 1 2 6 . 0 1 0 . 4 2 9 2 1 1 0 . 6 4 0 . 4 3 7 * 1 1 1 . 7 * - - 0 . 0 1 7 4 3 2 4 . 0 2 - - 0 . 0 0 7 6 2 6 5 . 4 6

4 * 0 . 9 2 4 5 5 5 . 4 9 0 . 9 7 2 2 2 7 . 4 6 0 . 4 0 0 5 1 5 4 . 6 7 0 . 9 4 2 3 4 3 . 0 5 0 . 9 5 1 3 5 6 . 2 6 0 . 9 3 5 7 3 9 . 7 6 0 . 0 2 8 1 1 8 9 . 0 2 0 . 9 3 8 4 > 9 . 9 3 0 . 0 4 3 * 1 5 7 . 6 1

4 7 0 . 9 9 2 0 2 8 . 5 4 0 . 6 2 9 4 5 9 - 7 6 0 . 2 6 0 6 1 3 4 . 7 6 0 . 7 3 9 7 7 4 . 5 7 0 . 7 5 9 5 7 1 - 3 7 0 . 7 2 8 3 7 4 . 7 0  0 . 0 0 * 7 3 5 5 . 1 3 0 . 7 2 8 7 7 4 . 9 6 0 . 0 2 6 1 2 9 2 . 7 4

« • 0 . 9 6 5 7 7 5 . 1 5 0 . 9 0 1 $ 1 1 7 - 4 6 0 . 7 0 9 1 2 9 1 . 6 1 0 . 6 6 3 9 1 3 9 . 3 0 0 . 6 9 1 7 1 2 4 - 5 9 - - - - - - 0 . 1 3 2 5 3 0 0 - 5 7

4 » 0 . 9 9 0 4 9 5 . 0 5 O ' .  9 6 1 7 5 5 - 4 1 0 . 2 6 5 8 5 0 5 . 9 0 0 1 8 8 3 8 < 8 0 . 5 1 0 . 9 5 0 0 9 4 . 0 0 0 . 9 5 3 0 9 7 . 7 1 0 . 0 0 5 6 3 4 1 . 1 5 0 . 9 * 6 * 1 0 7 . 6 6 0 . 2 5 7 9 5 4 9 . 4 5

5 0 0 . 9 4  7 6 1 0 6 . 9 2 0 . 9 8 9 5 4 5 - 7 2 0 . 9 7 2 5 4 4 5 . 9 8 0 . 9 8 2 1 7 0 . 9 3 0 . 9 6 3 6 5 2 - 1 8 0 . 9 7 9 9 5 5 . 7 5 0 . 7 2 8 1 1 7 7 . 7 8 0 . 9 7 9 5 5 6 . 8 3 0 . 8 3 9 6 I 5 B . 6 )

5 2 1 . 0 0 0 0 0 , 1 0 0 . 9 5 8 1 1 8 . 7 6 0 . 5 4 5 4 6 9 . 7 5 - * - - - - 0 . 0 1 7 8 ' 9 4 . 7 0 - - 0 . 0 0 6 5 9 1 . 7 5

5 5 0 . 6 6 7 7 4 4 . 5 0 0 . 9 9 5 7 7 . 6 2 0 . 0 1 3 2 1 2 5 . 6 7 - - 0 . 9 9 9 6 2 . 5 8 0 . 9 9 9 0 3 - 5 2 0 . 9 9 1 7 7 . 3 * 0 . 9 9 6 3 6 . 8 5 0 . 5 8 6 9 6 0 . 9 C

5 5 O . T 7 4 5 4 5 . 7 0 0 . 9 6 5 8 1 6 . 6 6 0 . 0 4 7 9 8 0 . 5 6 0 . 5 8 9 7 5 1 . 3 1 0 . 9 6 9 2 9 . 0 2 0 . 9 9 0 9 8 . 0 3 0 . 6 1 2 7 > 1 - 5 2 0 . 9 9 5 3 5 . 7 5 0 . 9 8 1 0 1 0 . 8 6

5 * 0 . 7 0 7 6 1 1 2 . 9 0 0 . 6 4 4 1 7 0 . 4 8 0 . 5 0 8 2 1 5 1 . 8 8 0 . 0 3 9 1 1 6 9 . 2 0 0 . 8 9 7 7 6 2 . 4 4 O . S 0 4 3 6 5 . 1 6 - - 0 . 9 1 6 0 5 5 . 7 9 0 , 6 5 7 7 1 0 4 . 4 0

5 7 0 . 5 0 1 5 1 5 9 . 2 5 0 . 7 6 7 1 1 0 5 . 0 9 0 . 1 2 5 8 ' 1 9 0 . 7 6 0 . 0 6 4 1 1 9 1 . 9 5 0 . 8 5 4 9 7 9 - 3 5 0 . 8 4 2 9 8 1  . 2 9 - - 0 . 8 8 0 * 7 1 . 1 * 0 . 0 0 0 9 1 9 5 . 6 7

5 9 0 . 9 0 5 9 1 0 9 . 7 0 0 . 9 7 0 6 4 0 . 4 7 0 . 1 6 5 5 2 2 9 . 6 3 0 . 7 9 2 7 1 0 6 . 9 0 0 . 9 9 0 8 2 2 . 3 6 0 . 9 9 3 5 1 8 . 4 7 0 . 8 1 0 1 7 7 . 2 * 0 . 9 9 6 0 1 4 . 3 5 0 . 9 9 2 5 1 8 . 6 1

5 9 0 . 6 9 2 7 5 1 . 2 0 0 . 9 9 8 5 5 . 5 8 0 . 1 1 0 4 9 5 . 3 0 0 . 7 0 3 6 4 5  . 9 0 0 . 9 9 8 3 3 - 5 7 0 . 9 9 7 1 4 . 6 9 0 . 6 3 7 0 2 6 . 9 0 0 . 9 9 4 * 6 . 6 2 0 . 7 1 5 3 4 3 - 9 7

4 1 0 . 7 5 0 9 4 9 . 4 0 0 . 6 6 4 0 5 0 . 6 7 0 . 4 5 4 8 6 4 . 2 9 0 . 0 1 4 2 8 5 . 3 5 0 . 9 3 3 4 2 3 - 0 0 0 . 9 2 3 5 2 4 . 1 6 - - 0 . 9 4 9 3 1 9 . 7 6 0 1 6 7 4 6 2 8 . 2 1

6 2 0 . 9 2 5 2 6 2 . 7 0 0 . 9 9 9 9 2 . 1 5 0 . 1 4 6 5 2 2 8 . 6 8 0 . 7 6 0 0 1 0 5 . 7 1 O . 9 9 O O 2 1 . 0 4 0 , 9 8 6 5 2 2 . 2 1 0 . 0 0 7 8 1 7 5 - 4 4 0 . 9 8 2 7 2 7 . 2 9 0 . 0 7 2 3 1 7 3 . 6 1

* 5 0 . 9 9 6 1 2 6 . 4 0 0 . 7 7 9 5 6 6 . 2 3 0 . 0 0 0 3 1 6 2 . 5 0 0 . 2 8 5 2 1 1 4 . 0 0 0 , ( 0 3 9 7 7 . 2 3 0 . 6 6 6 9 7 5 - 6 9 0 . 0 0 3 7 4 4 4 . 3 3 0 . 6 4 9 5 8 0 . 3 0 0 . 0 0 4 1 3 3 9 . 0 3

U 0 . 9 9 9 2 J . 7 0 0 . 9 5 4 6 2 6 . 4 9 0 . 4 0 4 7 1 1 7 . 4 0 0 . 8 9 9 9 3 8 . 2 3 0 . 9 3 0 0 3 * - 2 3 0 . 9 1 8 4 3 4 - 3 0  0 . 0 0 6 3 1 4 1 . 6 2 0 . 9 1 7 5 3 4 . 6 2 0 . 2 6 4  0 1 0 1 . 6 2

4 9 0 . 9 2 1 2 5 9 . 4 0 0 . 9 9 9 5 2 . 9 1 0 . 0 2 6 1 1 4 8 . 6 6 0 . 2 2 0 6 1 0 0 . 6 0 0 . 9 8 5 8 1 5 . 5 5 0 . 9 6 6 0 1 5 . 2 3 0 . 1 4 8 3 9 2 . 5 8 0 . 9 7 4 6 2 0 . 6 5 0 . 0 9 5 5 1 1 9 . 2 6
1 — —  - — ------------------------------------------------ ------------ --- ---------- ----------- ---------------- ---------------------------------------------------— _________ ----- T  r - m. m _______ __ ______________

0 . 6 9 1 9 5 6 . 5 7 0 . 8 9 7 7 5 6 0 . 4 4 3 2 1 8 0 . 1 6 0 , 6 1 9 7 1 2 6 . 7 9 0 . 8 4 7 0 6 4 - 3 2 0 . 8 6 6 1 6 0 . 3 9 0 . 3 2 7 5 2 3 7 . 2 0 0 . 6 7 4 6 6 2 . 4 8 0 . 4 5 4 0 1 7 8 . 4 4
I t u ^ 0 . 4 9 9 5 2 2 6 . 1 5 0 . 5 5 6 9 2 8 3 . 2 7 0 . 9 6 9 5 5 2 4 . 2 3 0 . 9 8 3 3  4 5 6 . 6 0 0 . 7 4 3 8  3 1 6 . 6 0  0 . 5 5 7 6  > 0 7 , 7 6 0 . 9 9 1 4 9 9 8 . 7 3  0 . 5 6 3 7  5 2 3 . 1 0 0 . 9 9 2 ) 1 0 2 2 . 2 9



Table 25.The values of coefficient of determination and average absolute error for different models corresponding to different sets
of data under category II along with their means and range of variations.

T ab le  Q u ad ra tic  model S quare r o o t  
No. P£l£nom ial

N e ld e r 's  p o ly ­
nom ia l

In v e r s e
nom ial

p o ly - M ixed model ’G u p ta 's  
c t l o n

fu n - H o ll id a y  fu n - New m odel 1 New m odel 2

a2 A.A.E a2 a . a . a a2 a . a . e a2 A.A.E a2 A.A.E H2 A.A.S H2 A.A.B R2 A.A.E a2 A * A *B

7 0.9994 7.93 0 .9 9 9 7 4 .2 7 0.9251 106.31 0 .9537 75.85 0 .9 9 9 8 3-84 __ _ — 0.9999 2 .05
9 0 .9964 21.996 t .0000 2 .3 7 0 .8772 157.55 0 .9822 54.56 1 .0000 0.491 - - - - 0 .9996 7 .6 4

11 0.9945 31.10 0 .9994 9 .8 7 0 .8403 202 .27 0 .9 2 9 6  126.43 0 .9 9 9 3 10.83 - - - - 0.9999 1 .62

29 0 .9 9 6 ? 15.45 0.9975 12.42 0 .8 3 0 4 126.85 0 .9166 79.39 0 .9 9 6 9 13.11 - - - - O.9968 14.24

Mean 0.9966 19 .12 0.9991 7 .23 0 .8 6 8 3 148.25 0 .9455 8 4 .0 6 O .999O 7 .0 6 - - -  _ . .  ^ 0.9991 6 .3 9
Range 0.0049 23.17 0 .0025 1C.05 0 .0947 9 5 .9 6 0 .0656 71 .87 0.0031 12.62 - - - - 0.0031 12 .62

COUD



Table 2 6. Tho values of coefficient of determination and average absolute error for different models corresponding to different seta
' of data under category III along with their means and range of variation

T able Q u ad ra tic  model Jq u a re  r o o t  ;
Ho. nom ia l -  -  "  ■ —  —  - —  _ ,

p o ly -  K e ld e r 'B  p o ly -  In v e r s e  p o ly  
n o m ia l nom ia l

-  H ired  m odel G u p ta 's  f u n -  H o ll id a y  fu n -  
__________ ~  c t i o n  o t io n

New Ho d e l  1 Hew m odel 2

R A.A.fi a 2 4* A .2 ___ &f___ 4x4*8.. . . . b ! „ .__ 4*A*i ____s!_ _ ._______________ _4.i4.iS__B____________ __B2___ ;i_.A_.K___E2____ jl_.Aj.E_

2 0 .7462 105.30 0.8475 7 7 .72 0 .6575 117.42 0 .8939 66 .82 0 .8629 7 2 .0 7 0.0002 654.51 - - 0 .0037 2 5 7 .5 0

13 0 .6343 9 0 .8 0 0 .7839 66.46 0.5192 100.12 0.8615 56.84 0.8145 6 0 .2 2  0.8331 56.21 0 .0 0 1 2  621.12 0 .8283 57.21 0 .0 1 6 8 2 0 1 .2 8

14 ' 0-8777 54 .8 0 0.9206 41 .93 0.8310 6 0 .0 9 0.8637 59-40 0 .9 2 0 3 4 1 .1 8  - 0 .0 0 6 7  393.93 ■- - - 0 .2061 161 .07

15 0 .1 5 0 7 139-60 0.2674 123.45 0 .1520 139 .10 0.3240 115 .87 0.3151 1 1 6 .7 8  0 .3 ? 4 0 113-26 0 - 6258.36 0 .3384 113-29 0 .0 0 0 2 596 .46

16 0 .3827 181.64 0.4046 188.27 0 .3865 182.43 0.3536 179.49 0 .2 6 9 0 165 .79  0 .3761 181 .96 0 .3572  187.41 0 .3 4 4 0 174-81 0.3674 188.84
17 0.5202 165.74 0.5295 156.82 0 .3 9 8 9 104 .97 0.2674 190.36 0 .3156 152 .39  0 .5 8 1 7 152.80 0 .5 3 1 7  167.12 0.5251 141 .07 0 .5774 155-26

18 0.7205 148.23 0.6614 139 .47 0 .7 0 0 0 148.41 - - 0 .3549 193-26 0 .7144 147.18 0 .7 7 2 0 155.75 0.6454 1 72 .67
20 0 .1403 136.45 0 .1863 132.57 0.0631 136.62 0 J 1093 128.24 0 .1206 1 4 2 .30  0 .2 4 0 0 126.43 0 .1 5 1 7  133-66 0 .2 1 8 3 132.46 0 .1949 137 .16
21 0.1368 146.33 0 .1 4 1 9 153-80 0 .1382 155.28 0 .1230 151.64 0 .0 0 2 7 147 .32  0 .1 3 3 7 155.52 0 .0606  146.74 0 .1686 159-61 0 .06P3 153-81

31 0.9095 89-43 0.9292 7 6 .0 6 0 .8732 9 5 .7 0 0 .8180 142-87 0 .9 2 0 8 79-00 0 .0004  523 .60 - - 0 .0056 3 1 4 .3 0

33 0.9033 84 .2 0 0 .9 3 3 8 4 9 .3 0 0 .7309 144 .13 0.9730 5 8 .7 0 0 .9 6 9 9 4 3 -7 8  - 0 .0017  204 .78 - - 0 .7413 12 1.0 9

34 0 .6020 140.50 0 .7822 9 8 .9 6 0.4691 164 .87 0.8874 8 4 .1 2 0.8221 8 7 .4 7  0 .8 3 8 3 82.05 0.0001 2676.61 0 .8385 8 2 .2 8 0 .0652 275-87

37 0.6923 9 5 .998 0 .7 3 1 7 90 .55 0.6861 92.91 0.6643 82 .25 0.7263 8 9 .9 0 0.0004  1667.34 - <3.0001 689.31

39 0.8392 77.14 0 .7758 91 .32 0.7034 108.28 0.1839 161.52 0.7321 95 .6 6  0 .7 5 4 6 90.92 0 10095.51 0 .7179 9 5 .7 9 0 .0003 1152.21

40 0.2539 588.15 0.2786 58 8 .06 0.2246 675-33 0.0004 736 .35 0 .3659  5 3 2 .1 7  0 .3371 538 .39  - 0 .4021 505-77 0.0011 1011 .8 0

41 0.082B 292.12 0.3985 242 .10 0 .0 0 3 3 260 .32 0.2139 208.04 0 .5 4 3 8  2 06 .89  0 .5 4 5 3  203.16 0 .0002  1511.67 0 .5 9 7 0 1 9 1 .5 7 0 . 2 6 57 .49
42 0.4571 204.03 0.4456 178.89 0 .4 7 1 0 188.67 0.1289 203 .44 0 .4955  162.41 0 .4 6 5 6  164.18 0 .0005 730 .60 0 ,5 1 1 0 1 5 7 .0 8 0.0041 468 .66

43 0.2934 177.60 0 .1790 197 .88 0.1717 195.13 0.1461 188.95 0 .1593  196.85 0.0001 1678.37 - - 0 48 6 9 2 .7 7

51 0.9315 121.98 0.9841 5 6 .8 6 0.6565 334.34 0 .9890 6 0 .0 8 0.9901 4 2 .4 5 - - - 0 .8869 118 .80

54 0 .6608 67.60 0 .8702 3 9 .8 2 0 .2179 92 .5 9 - - 0 .9095 32.61  0 .9205 30.04 - 0 .9 2 5 9 2 9 .1 3 0.3065 77 .8 8

60 0.6314 159.04 0 .6 5 0 8 147 .27 0.6295 158.84 0.6130 141.09 0 .6419  146.31 0.0003 1231.97 - - 0 .0056 489.69

66 0.4889 112.80 0 .7528 7 4 .7 0 0 .1677 135.88 0.6857 8 4 .9 9 0 .8136 6 3 .6 3  0 .8 2 5 7 60.45 - 0 .8 3 9 2 58.31 0 .1323 140.90

67 0.4315 162.998 0 .3848 161.45 0 .3627 166.04 0.3100 158 .37 0 .3 6 4 6  1 6 0 .97 0 .0002  3354.28 - - 0 .0016 626 .26

68 0.6456 81 .30 0.8614 48.41 0.2774 109.31 0.8373 5 4 .5 2 0 .9094 3 8 .1 9  0 .9 1 6 8 36 .06 0 .9 2 4 8 3 4 .3 8 0 .0 7 5 6 120.23

69 0 .2730 6 0 .7 0 0.4861 4 8 .5 8 0 .1814 6 0 .6 0 0.0024 63-31 0 .5 9 2 6 4 2 .2 0  0 .5706 42 .70 0 .6 2 7 5 3 9 .8 9 0.0413 175.13

tan 0.5362 147.38 0.6075 130.82 0.4269 167.50 0.4850 146.84 0 .5 9 8 ' 124 .47  0 .5 8 6 7  136.33 0 .0 6 1 8  1785-45 0 .5 9 8 6 1 3 3 .03 0 .1736 2367.34

mge 0.8487 533.35 0.8422 548 .24 0 .8699 615.24 O.9886 681 .83 0 .9 8 7 4  4 9 9 .5 6  0.7B 68 508.35 0 .5317  9961.05 0 .7 5 7 3 4 7 6 .6 4 0 .8869 48614.89



Table 27.They yaluea of coefficient of determination and average absolute error for different models corresponding to different aeta
o f d a ta  un d er c a te g o ry  IV a lo n g  w ith  t h e i r  moana and ran g e  o f

T ab le  Q u a d ra tic  model Square, r o o t  p o ly -  H o ld e r 's  p o ly -  I n v e r s e  p o ly -  
Ho. _ _ nom ia l _ _ _ _ _  noniie 1 _ ^ ^ _nom ial _ _ _

____ R_^___ÂA.13___R^____ ÂA_.E___R^___ î A.E__R_2____ A.A.B
45 0 .4149  105.45 0.4752 97 .49  0 .4 0 0 0  105 .92  0 .0413  137.20

70 0 .1369  95 .2 8  0.1706 92 .24  0 .0 9 7 6  1 0 2 .3 0  0.0185 102.10

71 0 .0329  137.96 0.0884 130.37 0 .0 0 8 3  139 .24  0 .1 5 8 9  112.18

Kean 0 .1949  112*90 0.2441 109-37 0 .1686  1 1 5 .e2  0 .0729  117 .16

Range 0 .3820  42 .6 8  0.3848 4 6 .1 3  0 .3 9 1 7  3 6 .9 4  0.1404 35-10

v a r i a t i o n s

Mixed m odel '  Q u p ta 'a  f u n -  H o ll id a y  fu n -  New Model 1 New m odel 2 
_ _ _ _ _ _ _ _  _ c t  ion_  _  c t  io n   __

_R 2  A.A.B §2 A .A.E R2 A.A.B _____ A_.A_.E____  A^A^E

0.5569  8 9 .5 9  0 .5275  8 8 .8 9  -  -  0 .5 8 8 8  8 5 .8 7  0 .0 0 0 4  2 36 .25

0.1965 9 0 .7 4  0 .2244  8 7 .2 8 0 .0 0 0 6 2 2 3 .4 6 0 .2 2 7 3  8 8 .0 4 0 .0 0 0 7 2 1 1 .6 9

0.2050  134.19 0 .2782  122.95 0 .00021167.02  O .3O05 125.11 0.0001 7 0 9 .8 9

0.3195 104.84 0 .3434  99.71 0 .0004  695-24 0 .3 7 2 2  99 .6 7  0 .0004  385-94 

0.3604  4 4 .6 0  0.3031 35-67  0 .0004  943-56 0 .3615  39 .24  0 .0006  4 9 8 .2 0



tEabl© 28. the percentage number of case 3 included, under each model within the a pec if led
ranges of c ©efficient of determination

Kang© of
a2 Quadra­

tic
model

- Square 
root 
poly­nomial

No Ider1 
poly­
nomial

Bifferent 
e Inverb© Kiatcd' poly- model 
nomial

modelsGupta's
fun­
ction

Holliday
function

law
model 1

Hew
model ;

0.98-1 25.94 25.35 1 .408 7.042 26.761 9.859 2.817 11.268 11.268

0.95-0-96 1 1 .2? 14.08 *• 4.225 8.451 4.225 1.40S 7.042 4.225

0.9-0.95 11.27 9.06 8.451 7.042 9.859 11.268 2.81? 12.676 2.817

0.8-0,9 11.27 11,27 9.059 16.90 14.085 9.859 2.817 8.451 8.451

0.7-0.8 7.04 11.27 7.042 7.042 5-634 5.634 1.4 08 7.042 4.225

0.6-0.7 9.66 4.225 8.451 5.634 4.225 1.408 2.617 2.01 ? 2.817

0.5-0.6 5-65 4.225 5.634 2.817 0.451 7.042 1 .408 7.042 4.225

Below 0.5 19.72 19.72 59*155 56.62 21.127 14.085 50.704 12.766 61.972

iotal 100.00 100.00 100.00 87.32 98.593 63-380 66.196 69.014 100.00

to



Table 29. Kean values of coefficient; of determination 
and average absolute error for the different 
modela

Models

w 1 1 1 1 t 1 I L 1 1 1 1 l

A.A.B

Quadratic model 0,7429 08.81

Square root polynomial 0.7736 02.12

holder's polynomial 0*4498 171.18

Inverse polynomial 0.5655 131.00

Mixed model 0.7442 04.26

Gupta's model 0.7319 90.01

Holliday function 0.2118 849.64

Kew model 1 0.7530 67.79
Mow model 2 0.3668 943.25



2able 30* ?orcont©tie number of case a of estimates on
physical and economic optima under each model 
which lie in tho specified ranges of nutrients

Physical Bconcsic
Models optimum opfciaum

dose dose

Quadratic model 80*28 84*51

Square root polynomial 76*06 77.46

fielder's polynomial - 8.45

Inverse polynomial - 83.10

Mixed model 83*92 91.55

Gupta's function 60.56 50*56

Holliday function 63*38 64.79
Hew1 model 1 63*38 66.20

Hew model 2 95.77 95.77



Table 31. The values of coefficient of determination and avorage absolute error for different bivarlate
models corresponding to different sets of data along with their means end range of variation.

Quadratlo model Square root.polynomialsTransendental function Resistance function
Ho. a2 A.A.B E2 A.A.B a2 a . a . a a2 A.A3

1. 0 .3830 2 34 .97 0 .8613 493 .64 0 .811 223.68 0.992 . 2579-83

2 . 0.9631 484 .44 0.9626 712.07 0 .969 118.68 0 .9 9 8 954.71 ■

3 . 0.9611 225 .30 0.9683 118.23 0 .9 5 0 149.32 0 .9 9 9  ■ 628.91

4 . 0.8196 574.11 0 .8110 377.95 0 .755 256.56 0 .993 ' 1049.68

5 . 0.6998 324.35  . 0 .7389 1142.06 0 .636 248.72 0 .9 9 8 908-58
6 . 0 .1199 180.31 0 .1229 227.74 0 .1 2 6 168.87 , 0 .999 527 .43
7 . 0 .4798 856-94 0.5479 • 971 .72 0 .3 8 9 1 9 1 .1 0 0 .995 8 40 .83
a . 0.9716 399 .39 0.9795 488.61 0 .9 5 2 60 .0 3 0 .999 533-03
9 . 0.8071 158.41 0.7980 384 .20 0 .7 7 7 175.99 0 .997 1093.63

10. 0.9039 308 .33 0.8730 311.85 0 .6 4 8 159.65 0 .999 685 .66
11. 0.8066 3 14 .50 0.8203 737.72 0 .7 9 3 146.33 0 .998 1342.32

12. 0 .8934 4 5 6 .2 6 0 .8640 152.95 0 .6 7 6 134.17 0 .999 694 .72

13. 0 .9158 699.11 0.9018 381.45 0 .4 1 4 282 .13 0 .9 9 7 2937.12

14. 0 .8692 5 1 2 .67 0.8451 456 .09 ‘ 0 .8 5 0 133.46 0 .996 1932.98

15. 0 .7786 373*39 0.7963 261 .93 0.731 145.75 0-992 667.15

16. 0.9351 551 .39 0 .9 3 1 3 ’ 1110.93 0 .9 1 5 140.37 0.999 364.74

17. 0 .9540 122.09 0.9476 162.22 0 .9 3 8 117.77 0.99S 8 6 2 .5 2

16. 0 .8455 721.89 0 .8327 768.86 0 ,8 1 4  .. 191.46 0.995 8778.44
19- 0.6936 546 .17 0.7145 287.01 0 .2 8 3 280.28 0 .996 737.49
2 0 . 0 .9279 289.44 0.9283 514.25 0 .935 96.35 0 .998 398.92
21 . 0 .8832 726 .28 0.9341 643-39 0.761 143-58 0 .999 630.85
22. 0 .6925 1365-50 0 .6240 836 .63 0 .3 6 8 321.29 0 .9 6 0 5952.25

23. 0 .5750 273 .12 0 .6140 ” 257.58 0 .5 6 2 286 .47 0 .952 1065.67

24. 0.9465 741 .67 0.9466 435 .49 0 .875 160.24 0 .969 1044.76

25. 0 .9173 188.19 0.9199 617 .28 0 .8 9 6 216 .92 0 .999 662.39

26. 0.9194 314 .33 0.9220 796.79 0 .927 166.96 0 .9 9 7 606 .93

27 . 0 .9650 1200.83 0 .9800 1439.72 0 .9 1 8 134.88 0.999 1166.68

28 . ‘ 0.9608 8 00 .00 0.9723 2106.00 0 .9 1 7 156.74 0 .997 1636.05

29. 0.9329 239 .56 0.9298 662 .27 0 .915 125-55 0 .9 9 7 397.09

30. 0 .7292 387.33 0.7114 1027.58 0 .7 3 0 2 1 8 .68 0 .984 1460.28

31. 0 .6987 226 .98 0.6623 891 .58 0.631 210.57 0 .976 1055.51

32 . 0 .9260 162.33 0 .9512 612.71 0 .836 199.03 0 .9 9 6 5 6 0 .6 8

33. ' 0 .9239 1036.00 0.9461 704.75 0.741 225,-03 0 .997 532 .78

34 . 0 .9307 969.45 0.9305 98 4 .08 0 .9 3 3 97738 0 .996 1976.39
35 . 0.9349 1122.72 . 0 .9484 724 .90 0 .7 0 8 234.36 0.996 427 .33

------ - iQ lx & l__ -Qi.2222 . ____ Gi22§„. _____ ___£ iaaa„_____
Mean 0.8366 516 .09 0.8380 665.45 0.751 177.86 0.9935 1413.98
Range 0.8651 1243.41 0.8571 1987.77 0 .8 4 3 261.26 0.047 8413 .70



Table 32* The percentage number of cases included under each model within the
specified ranges of coefficient of determination

Range of 
£ Quadratic

model
Different models 

dquare root Tranaendental 
polynomial function

Resistance
function

0.95-1 16.667 10.667 8.353 100

O.9-O.95 36.111 36.111 25.000 -
C.8-O.9 22.222 19.444 16.667 -
0.7-0.8 5.555 13.889 22.222 —
0.6-C.7 11.111 8.333 11.111 -

0.5-0.6 2.778 2.770 2.770 -
Below 0.5 2.555 2.77S 13-S89 -

Total 100.00 100.00 100.00 100.00
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M__
4.42

176.00 

415 .64 

45 .69  

85.56 

8 7 . ? l 

74 .96  

110.06 

108.42 

150.52 

85.30 

128.02 

50.12 

114.71 

81.05 

120.49 
82.51 
30.85

19. -  -  34 . 74 -  51 .34

I, *2 *i h *1 *2 1 2 Al 2 *1

67.02

67.86

47.84

7 .69

112 .97

4 0 .4 ?

30. -  4 3 .64 , -  44 .98  19-62

31. -  35 .16  35-39 4 4 .9 9  14 .27

32 1 81 ,76 147.89 146.77 122.25 1 8 .9 2

33- 5 5 .4 4  90 .45  51.71 86 .31  2 0 8 ,3 7

34 . 5 4 .8 2  60 .67  6 1 .Si 56 .2 5  5 5 .8 ?

JS . 1 2 .6 t  9 8 .3 8  39 .90  9 3 .9 8  22 8 .8 7

4 8 ,47 55 ; 47 M -3 5 _ ^  5 1 .7 2

■ • u  129.57 87 .72  117.08 7 2 .3 5  2 1 0 .6 7

90  213.39 93 .16  186.38  4 7 .9 0  7 1 6 .4 9

2 . 132.82 2B .90 128.92 35-39

3 . 194.86 505 .86 140.81 183.25

4 . 3 0 .4 7 64 .40 30 .37 78.51

5 . e 9 .05 48 .22 86 .1 3 5 1 .4 0

6 . 9 1 .0 3 5 5 .2 1 107.20 8 1 .6 8

7 . 8 3 .7 2 36.05 7 6 .13 4 2 .1 0

a . 107.51 36 .86 103.38 46 .6 2

9 - 111 .81 1.52 103.76 9 .9 3

1 0 . 111-35 50.71 99-63- 5 2 .2 3

11. 89 .40 58.41 85 .77 5 1 .8 9

12. 177.55 - 137.96 -

13. 2 4 .7 0 - 41 .52 5 .4 0

14. 1C7.26 2 2 .64 104.56 3 3 .6 2

15. 7 6 .0 3 - 74 .1 0 -

16, 1 1 3 . 8 6 6 7 .35 107-56 6 2 .84

17. 1C7.25 215 .04 101.90 182 .17

18. 0.931 72.21 9.01 64 .55

2 0 . 240 .36 00.24 210 .23 7 0 .6 3

21 . 74 .94 62 .93 73-02 5 6 .6 6

22 . 6 8 .3 7 4 6 . BO 67.85 4 1 .8 2

2 3 . 3 7 .8 3 - - -

2 4 . 33 .64 108-93 3 3 -3 7 98 .84

2 5 . 108.99 100.29 105.35 9 1 .4 5

2 6 . 1280.33 251.84 1144.23 226 .39

2 7 . 106 .29 5 4 .6 2 9 9 .86 5 2 .5 2
28 . 23 .82 4 4 .6 3 35 .16 4 4 .2 7

2 9 . 138.99 83.01 128.65 7 5 .4 8

Xj - XltrofM la kg/hm

t z ^ ___ h *1 H *1 *2 x l *2
“ “ ■ — *■**<

0.995 5.11 0.629 - 10.40 - 8.95 108.73 a .ao

13.91 162.62 17.68 185-37 13-92 168.28 16.92 33.05 2.79

570.75 148.45 100.57 140.29 21.77 133-21 - 72.56 -

24.85 45.76 40.53 45 .41 11.36 47.01 16,82 49.22 4 .55

2 8 .98 81.87 33-73 85 .46 21.59 82.44 25.92 24.36 5.89

43.04 141.87 805.90 82.69 32.73 101.46 - 79-60 56 . 8?

n . M 68.16 23.01 79-99 16.18 68.31 18.62 177.18 767.90

16.19 103.22 26.11 112.63 18.70 103.34 26.84 544.91 -

6 .73 98.70 7 .6 5 ’ 104.28 6.05 93.74 7.22 216.04 347.75

34.61 108.14 35.70 156.85 9 .42 121.81 13.11 127.38 86,91

51.33 80.46 34 . eo’ 80.81 47.41 77.37 30.82 69.26 -

11.26 109.52 9.63 112.34 - 92.23 - 91 .88 51.86

2.38 54.09 5.81 100.42 - 88.06 123.40 54.77 9.44

10.64 106.89 16,80 119.04 14.35 109.08 19.95 53-30 8.73

3.05 74.30 5.C4 91.95 4 .7 2 81.72 5.9,4 - -

89.81 108.68 64.46 108.56 92.13 100.54 59.21 38.14 3-75
5.0> 79.29 e.B? 65.82 - 62.83 24.72 5-05

56.23 32.38 40.49 25.48 38.91 29-81 26.59 62.86 -

0.005 57.54 3.00 60.81 - 75.50 39.71 58.47 5-61

1488,19 3366.74 304.19 - ' - - 140.24 - -

74.15 67.82 46.40 72.B6 66.99 6 9 .B1 36.23 55.20 -
23.26 66.80 19-44 65.03 16.46 62.90 14.10 25.19 11 .28

0.242 42,07 0.980 39.70 3.99 37.68 7.16 23.05 -

1317.79 36.04 227.62 55.16 673-46 53.91 40.37 79.77 4.26
8453.56 194.04 2440.19 94.76 - 91-93 - - -

34.99 5.92 17.76 - - - - 304.87 -

43.65 102.49 37.79 119.98 53.41 106.76 41.52 75.88 -

28.28 46 . 0? 26.63 43.07 34.96 47.71 30.86 2473.88 1.90

288.53 16?.76 139.43 132.86 688.23 1 18.27 100.94 36.03 2 .98
31.26 29.68 40.42 17.96 63.95 31 -84 43.70 67.91 14.70
27.11 37.30 33-00 107.64 75.53 50.06 47.34 66.06 17.01
8.04 15.07 10.27 66.58 -  . 57.49 - 11.97 6.44

18.22 482.07 473-48 99.25 - 87.54 370,74 385.66 ' 15.60
64.14 60.02 46-91 55-25 61.81 59.24 41.74 6 3 . 0? 9.17
53.76 1072.39 2357.88 89.72 - 80.79 181,90 129.17 14.51
58.72 57.12 43.27 52.32 57.61 57.16 39.25 65.29 9.11

361.71 208.69 209.62 88.19 82.96 80.90 54.69 176.05 58.91
1405.91 563.30 552.89 36.26 174.28 30.04 72.57 420.78 <59.88

*2 " P j Oj  i n  k g / h m

1 "  "  ■ 1__*

8 1 . 92 38. 96

8 3 . 63 40 . 01

83 . 23 >9..84

83 . 36 38.,60

82 . 23 40 . 99

79 •35 40. 29

78. 16 40.,17

81 . 48 39..59

60 .96 41 .64

81 .54 4C .62

79 .62 41 ■93

81 .33 41 • 76

76 .82 40 .15

81 .77 40 .47

79 .29 42 .36

82 .85 44 • 96

81 .07 42 .16

81 .99 41,.76

77 .11 41 .45

82 .40 41 .72

60 .54 41 .45

79 .90 39 .32

79 .15 43 .36

76 .31 41 .24

B1 .68 43 .36

82..5 7 42 • 83

83 .26 45 .10

79..96 42,.86

81.,16 43,.10

00..75 43 .28

78. 69 44. 14

76- 96 43. 53

82, 61 43.■ 05

81. 41 42. 17
62. 50 43 . 12

81. 19 42- 22

BO, 85 41 . 77

1.86 38 1.6067
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Sable 34. Percentage number of cases of estimates on
physical and economic optima under each model 
which lie in the specified ranges of nutrients

Physical Economic 
opt ism is optimum
doso dooe

Quadratic model 30*89 38.89

Square root polynomial 52.78 58.33

Transendental function 44.44 50.00

Resistance function 36.11 100.00

Kodola
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Investigations were made to suggest suitable methods 
of analysis of data from long terra raanurial trials with 
fixed set of treatments utilising the secondary data on 
grain yield of the permanent mam rial experiment on paddy 
at the Regional Agricultural Eesearch Station, Patt&mbi.
The nature of the relationship between the doses of ferti­
lisers and crop yield was also examined empirically with 
a view to suggest suitable mathematical models to represent 
the proposed pattern of relationship.

The statistical techniques evaluated for the analysis 
of data from long term experiments Included the analysis 
of data as in groups of experiments, nnalysia of the split 
plot design, the principal oossponent analysis, stability 
analysis, non parametric procedures and analysis based on 
the principle of game theory. In addition to the Hcon­
ventional method of atabillty analysis proposed by Bborhart 
and Bussell, a non parametric variant of the method pro­
posed by Jiasear and fiuhn has been also discussed. A new 
non parametric method of analysis of data of long term 
trials was also developed. This now method consisted in 
extending the ordinary Friedman two way analysis of variance



for ranked data to the case of three way classification 
with years as the additional factor. Empirical comparisons 
was also made between the newly proposed method and the non 
paracetrio procedure for long term trials developed by
Bel and Kao.

Gne of the basic assumptions underlying the analysis 
of variance technique namely independence of error terms is 
not satisfied in experiments of repeatative nature end-hone* 
the classical method of treating them as special cases of 
'groups of experimenta' does not seem to be logically sound. 
Analysis of data from groups of experiments introduces added 
difficulties in the sense that no general teat for overall 
treatment comparison appear to be available in cases where 
error variances ore heterogeneous and interaction offoot is 
absent. Principal component analysis la expected to obviate 
these difficulties in the sense that it does not require any 
underlying statistical model to explain the error structure. 
The results of analysis of data pertaining to .this study 
revealed that principal component analysis would be atleast 
as efficient as the other two methods via. groups of experi­
ments and' split plot analysis in detecting the true treatment 
differences. Therefora the method of principal component 
analysis could be recommended as a better alternative for the 
analysis of data on long term trials with a fixed set of.
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An empirical comparison between two non parametric 
kg t hods of data analysis via. non paramo trie method proposed 
by Bg I and Kao and extended -Friedraan’o analysis (newly pro­
posed methodJ was also made. She method proposed by Pal and 
Hao is based on the assumption that the sampling distribu­
tion of the me a no of the panics is approximately normal. She 
method is applicable Only for cases when the number of re­
plication ^er experiment is four or more. Iho amount of in­
formation lost in the process will be more when there are 
only a few treatments. But the newly developed procedure ..is 
entirely distribution free and It utilises none of the usual 
assumptions required for the analysis of variance. Shne the 
newly developed extended two way analysis of variance by 
ranks can be considered asenother viable alternative for the 
analysis of data of long term trials.

The non parametric analysis of stability proposed by 
tf&ss&r and Huhn hoe certain distinct advantages over the 
method of analysis of stability proposed by Bberfaart and 
BussellO as it is entirely distribution free and can be fitted 
to any typ9 of data. But treatments cannot ordinarily be 
recommended on the basis of their stability of the performance 
alone as high yielding treatments need not be stable. In
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this study the most high yielding treatment (11 - cattle 
manure at 1GOO kg/ha to supply 90 kg H/ha) was found to be 
the least stable* Thus it is more logical to take into 
account the yield variation also in making recommendation of 
treatments on the basis of the results of stability analysis*

Analysis based on the principle of game theory is useful 
to suggest specific recommendations to different types of 
farmers with varying decision environments* Comparisons among 
the different decision making criteria viz* Wald's maximin 
criterion, Laplace's principle of insufficient reason, Hurwlcz 
'optimlsm-pessimism' criterion, Savage's regret criterion and 
Agarwal'a excess benefit criterion showed that there was almost 
perfect agreement in the results obtained through the various 
criteria*

Kendall's coefficient of concordance was calculated for 
judging the overall agreement among the selected methods of 
analyses in detecting tho true rank order of treatments. The 
analyses based on decision theory and stability were excluded 
from the process of finding concordance due to logical 
reasons* It was found that there was almost perfeot agreement 
among the different methods with rogard to tho rank orders 
of treatments*
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Different mathematical functions woro used to describe 
the response pattern of fertilisers on crop yield and their 
efficiencies compared on the basis of secondary data gathared 
from various fertiliser trials conducted in Kerala Agricul­
tural Oniversity. fh® univariate models selected for the 
study consisted of the ordinary quadratic polynomial* oquar© 
root polynomial* Holder’s polynomial, Inverse polynomial, 
mixed modal* Gupta'o function and Solllday function. £wo new 
models were also developed for describing the response pattern 
for certain types of trivial data.

In the single variable category, each of the observed 
data were plotted graphically and based on the shape of tho 
graph the data wore broadly classified as belonging to one 
or the other of four mutually exclusive categories.
(1) Parabolic typo (2) aoaymptotio typa (3) blmcdal type 
(4J multi model type. Different model® wore compared based 
on tho valuG3 of coefficient of dotermination (R^) and average 
absolute error. It was found that parabolic response pattern 
could well be represented by a quadratic or square root poly­
nomial response function with - alight preference to square 
root function over tho usual quadratic function. I’ho quadratic 
function is to bo preferred in cases where there would be 
symmetry on either side of the anticipated optimum. In the
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case of moderately aa^ynsmetric response curves the square 
root polynomial was found to be more efficient than tho or­
dinary quadratic• The newly proposed model (model-2) was 
found to bo the most offioient in describing the response 
pattern of an as^yaptotic nature* In tho cage of curves shov­
ing bimodal tendancy square root polynomial was found to be 
satisfactory in representing the response pattern* In the 
fourth category, the nowly proposed model (mods 1-1) gave the 
maximum predictability than all other models*

Among the different models, mixed modal, square root
2polynomial and quadratic model showed relatively high R 

values. An overall comparison among the different models wore 
made using the mean values of coefficient of determination and 
average absolute error.square root polynomial model, new model-1, 
mixed model, quadratic polynomial model and Gupta*e function 
gave O  better performances than ethers.

Bllsed model, quadratic model, and square root polynomial 
model had more than 75 percent estimates on physical and 
economic optima within the specific ranges of nutrients. Thus 
these models produced estimates on physical and economic 
optima with greater practical value than tho other mod els.
Gupta's function, Holliday function and Hew mode 1-1 failed to 
give optimum values for about one third of the data set*
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O’ In the blvariate case the different mods Is considered 
are quadratic function* square root polynomial* tr&nesndental 
function and resistance function. She four response functions 
ware fitted to each of tho available data set and their rela­
tive efficiencies were compared. Among the tested models,

2resistance function gave very high a values compared to 
other models.

All tho different models had about half of their estimates 
on optimum within the stipulated interval. In the case of re­
sistance function ell of tho estimates of economic optimum 
were distributed in tho range of nutrients covered in the ex­
periment •' insistence function has yielded comparatively higher 
values of fl? even vith looser number of parameters. The esti­
mated standard error of the estimates from this model were re­
latively lesser than those obtained from the other models. The 
estimates obtained for different seta of data under this 
modal were more realistic and stable. Therefore the resistance 
function can well bo recommended for representing the response 
pattern and estimating the optimum level of nutrients in wulti- 
feetor experiments. Although the trance oriental function was in 
general less ̂ efficient in describing tho response pattern 
than other functions* it was found to be highly efficient in 
locating the physical and economic optimum. Thug in experiments 
where the sol© objective is to find the optimum dose and tho 
resulting response transendental function can also bo used.
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Appendix I. drain yield of paddy corresponding to graded 
doses of fertiliser in different experimenta 
involving a single nutrient*

Serial number of sets of data (n)
Bos©
U i ___ 1 2 3 4 5

0 2950 2930 2930 2930 2930
29 5154 3447 3594 - 34-57 3271
98 5252 3301 3984 3467 3320
87 5569 3545 2496 2583 3057

6 7 8 _ 9 10
0

I **
5052 3052 3C52 3052 3052

58 5549 3735 3935 39 G6 3638
87 5857 3906 4126 3C23 3607
116 3857 4028 4150 4126 3662

1* B" i i _____ i!_____ _12 _ J L  3-. m.M ..
0 2689 2227 0 23?3 2373 2373

40 3443 2624 29 2783 2686 2734
80 3749 2842 58 2617 2666 2373
120 3918 2889 87 2703 2661 2686

__ , 16 ii m 1 1 m yum n *u % n _17_ _ 1 6 ____ 4§_____20___21_____ 22_.-22-
45 3136 2692 3303 3254 3264 2366 2445 1913
60 2968 2380 3323 2861 3668 1972 2633 1972
75 3658 3037 2642 2544 3293 2435 2603 1952
90 3382 3007 2841 2268 2500 2287 2327 1725

3AS-. ____24._____” — — - 2 r> - 26 27 28 .,2? ___22-. , 3 1 ,

0 2833 2200 2333 2200 2833 2200 2833 2200
27 2996 2400 2986 2350 3103 2650 3040 2700
54 2770 2700 2923 2400 3534 2850 2635 2700
87 2725 2350 3085 2500 2995 2g50 2428 3150



162

*Zs— _____2i___ ___ 22_____.-24— x/naw wlb a>iww __22-.____ ,3§—
0 1444 1444 1444 0 2036 1715
30 2148 2062 2066 50 2990 2323
60 2654 2049 1607 100 3342 3178
90 2173 2247 2012 150 3173 3490

.— 52___ 5§— -2 2 __ JJU.- 4 1 - — 4£___ 42 -12__1 5 --1 2 -
0 3500 4064 3500 4064 3500 4064 4500 4064 3607 3607 360?

29 3900 5246 3500 2757 4420 3942 3940 4173 3370 4086 3891
50 3700 4757 3700 5273 3760 4201 3380 4634 3860 4236 4120
87 3900 4513 3610 4718 3500 4824 3640 4281 3759 4113 3998
116 4100 4158 4160 4566 3850 4336 4020 4377 3819 4065 3849

*Zs- -11™ t1
°iif\J11 -51- *Zs_ - 5 2 - -55___ 51--55___ 51.

0 2930 2930 2930 2930 0 2514 2514 25H 3503 3504
58 3646 4265 4265 4199 2C 2299 2155 2155 3785 3249
87 3972 4460 4460 4134 40 2227 22 70 2299 3672 3743
116 4297 4199 4265 4265 60 2299 2414 2270 3601 3856

£ZS- __52— -*Zs. 58 — 52— ^60 ,— 11- _*Ze. 62 — 1 2 -
0 3503 0 3781 3313 3781 3313 0 3781 3313
40 4054 20 4540 3995 4282 3173 40 4433 3589
80 3503 40 4313 3531 4013 3387 80 4328 3672
120 3432 60 4173 3433 4563 3461 120 4078 3298

x/H- 64 65 66 67 x/o 68 — 6 9
x/n 70 71

0 2613 3037 2613
/

3037 0 2613 3037 0 3888 3445
20 2931 3390 3107 3392 40 3037 3178 7.5 5142 3980
40 3001 3243 £825 3037 80 2860 2966 15 4874 3566
60 2860 3008 2995 3002 120 2895 3P08 30

45
90

4847
5061
4834

3659
3459
3632



Appendix II* Grain yield of paddy corresponding to graded doses of nitrogen end 
phosphorcus in the long tern fertiliser experiment conducted at 
CHS# Karaaana

Dose of Dose of Serial number of. gets of data {nj
(XI) (X2) % 2 3 4 5 6 7 8 9 10 11 12

40 0 6044 5350 4322 4594 4767 5267 4022 3750 5672 6028 3294 3517

80 0 6461 6222 5467 4489 6672 5694 4211 4256 6422 6394 4056 4117
120 0 6883 7117 5517 5833 5917 5156 3550 4267 6300 7078 3294 4133
40 40 5811 5244 3933 4694 4928 5444 3422 3356 6128 6206 3611 3994
80 40 6806 6389 5439 4461 5561 4900 3433 4111 6139 6656 4183 4106

20 40 6772 6S0S 5989 5694 5250 5439 4039 4250 6783 6700 4350 4428
40 80 5350 5350 4206 4006 5422 5428 3933 3644 6578 6628 3778 4322
80 80 5806 6772 5217 5467 5461 5139 4194 4217 7211 6994 4211 4422
120 80 7156 7222 5900 6006 5733 5272 4000 4367 6756 6683 4044 4211

Contd



Dose of 
N

(XI)
rood

TJ

U 2 ;
of . 

13 14

40 0 4967 4456
80 0 4778 5283

120 0 4389 5128

40 40 5 006 4478
80 40 5033 5083
120 40 5378 4994
40 80 4478 4539
80 80 5628 5017
120 00 5761 5683

_______ aerial number^of go
15 16 I? IB 19

2656 2170 4906 5022 3211
3017 3133 5989 5822 3572
2583 2811 5394 6C50 2539
2783 3344 5572 5406 2983
2806 3583 6111 6044 3506
3350 3911 6089 6878 3617
3094 3239 5694 5933 3117
3650 3772 6644 5700 3289
3450 4117 6572 6450 3878

20
--— a s .
21

e-~.rn.~~ i
22 23 24

2906 6017 6344 2711 2928
3161 6844 6356 2944 2933
36CO 6506 6794 2694 2494
3456 6978 6828 3917 3722
3639 7200 7022 3144 3356
4128 6633 6494 2206 2561
33.09 6961 66 83 3594 3772
4139 7111 7267 .3328 3817
4128 6778 5417 3439 2333

Cojrtd



Doge Of 
E

U D
Dose
P

U 2 )
of _____

25 26

40 0 3944 3861
80 0 5361 4639

120 0 4517 4778
40 40 4444 4711
80 40 5711 4889

120 40 5944 6156

40 80 4 94 4 4778
00 80 5778 5683

120 80 6306 6033

Serial,number
27 28 29 30 31

2278 2844 3739 3650 2806
3044 2617 4444 4089 3194
3128 2756 4144 3939 2594
3435 3603 4383 4522 3539
3922 372C 5044 4917 3717
4139 4544 5239 4600 3476
3683 3194 4622 4589 3583
3833 3839 4906 4217 3161

3878 4161 5594 5350 4183

fleta of dats in )

32 33 34 35 36

3206 3606 4061 3472 3933
2650 4222 4072 4083 4061
2583 4711 3639 4533 4406
3378 4900 4844 4750 4689
3694 491 7 5039 4772 4861
3661 4872 51 CO 4711 4961
3794 5006 4828 4922 4656

4189 5400 4756 5256 4572
4106 4894 5461 4617 5311
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ABSTRACT

The suitability of different statistical techniques for 
the analysis of data of long term fertiliser trials was examined 
with the help of secondary data gathered from the permanent manu- 
rial experiment in paddy at Regional Agricultural Research station* 
Patfcarabi and certain new methods with distinct advantages over the 
existing methods were suggested for the same. The relative effi­
ciencies of various mathematical functions in representing the 
yield-fertilisor relationship and in estimating the optimum level 
of the applied nutrient were also evaluated on the basis of secon­
dary data gathered from the various fertiliser experiments on 
paddy conducted at the various rice research stations under the
KAU during the last ton years* Two new mathematical.functions were ✓

/
also developed to represent toe response pattern for certain types 
of trivial data*

Tho methods evaluated for tho analysis of data of long term 
trials include method of groups of experiments* split plot analysis* 
principal component analysis* non parametric method proposed by 
&ai and Rao* stability analysis proposed by Eberhart and Russell*
Iran parametric stability analysis proposed by Kassar and Kuhn and 
analysis based on principle of game theory. A new non parossetric 
method as an extension of Friedman* o two way analysis of variance 
fcty ranks was also developed for the analysis of such data. This 
method was found to bo almost as powerful as the method proposed 
by Rai and Rao and hence can be regarded as on improvement over 
the existing methods as it is fra© from any stringent assumptions 
on toe nature of the underlying universe. Principal component



analysis was also found to bo empirically atleast as efficient as 
tho method of groups of experiments/split plot analysis and can 
be adjudged to bo a bettor alternative to the solution of the same 
problem on the grounds of theoretical and statistical validity.

Tho univariate models used to describe the response pattern 
of fertilisers on crop yield include quadratic polynomial, square 
root polynomial, Welder’s polynomial, inverse polynomial, mixed 
model, Gupta*a function and MollIday function. Tho square root 
polynomial was found to be better than tho ordinary quadratic poly­
nomial in representing the response pattern of a parabolic nature.
The newly developed model y *= ■■■■■ where y is the response,

b+c
x is tho input and a, b, c are constants r was found to be the 
most efficient in describing the response pattern o£ an ansymptotic 
nature, in representing the multimodal response, the new model

y <=> |30 + Jss + where pQ# ^  and p2 are constants, gave
the maximum predictability than all other models.

The bivariate models selected for the study consisted of 
quadratic function, square root polynomial, transendenfcal fun­
ction and resistance function. The resistance function was found 
to be the most efficient in representing the response surface in 
multifactor experiments. The estimates of optimum levels obtained 
through the use of this function was found to be realistic and 
relatively more stable.


