MORPHOLOGICAL VARIATIONS OF ROOT KNOT NEMATODE IN VEGETABLES AND BANANA

by

CHINCHU P. BABU

(2015-11-082)

THESIS

Submitted in partial fulfilment of the requirements for the degree of

MASTER OF SCIENCE IN AGRICULTURE

Faculty of Agriculture
Kerala Agricultural University

DEPARTMENT OF AGRICULTURAL ENTOMOLOGY COLLEGE OF AGRICULTURE VELLAYANI, THIRUVANANTHAPURAM-695522

KERALA, INDIA

DECLARATION

I, hereby declare that this thesis entitled "MORPHOLOGICAL VARIATIONS OF ROOT KNOT NEMATODE IN VEGETABLES AND BANANA" is a bonafide record of research work done by me during the course of research and the thesis has not previously formed the basis for the award to me of any degree, diploma, associateship, fellowship or other similar title, of any other University or Society.

Vellayani,
Date: 02 log 17

Chinchu P. Babu
(2015-11-082)

CERTIFICATE

Abstract

Certified that this thesis entitled "MORPHOLOGICAL VARIATIONS OF ROOT KNOT NEMATODE IN VEGETABLES AND BANANA" is a record of research work done independently by Ms. Chinch P. Babu under my guidance and supervision and that it has not previously formed the basis for the award of any degree, diploma, fellowship or associateship to her.

Vellayani, Date: 02 log ll

Dr. R. Natayana
(Major Advisor, Advisory Committee)
Assistant Professor
Department of Nematology
College of Agriculture, Vellayani

CERTIFICATE

We, the undersigned members of the advisory committee of Ms. Chinch P. Babu a candidate for the degree of Master of Science in Agriculture with major in Agricultural Entomology, agree that the thesis entitled "MORPHOLOGICAL VARIATIONS OF ROOT KNOT NEMATODE IN VEGETABLES AND BANANA" may be submitted by Ms. Chinch P. Babu, in partial fulfilment of the requirement for the degree.

Dr. R. Narayana

(Chairman, Advisory Committee)
Assistant Professor
Department of Nematology
College of Agriculture, Vellayani

Dr. N. Anitha

(Member, Advisory committee)
Professor and Head
Department of Agricultural Entomology
College of Agriculture, Vellayani

Dry Gavas Ragesh
(Member, Advisory committee)
Assistant Professor (Agricultural
Entomology)
Banana Research Station, Kannara
Thrissur

Dr. Bijou Joseph
(Member, Advisory committee)
Assistant Professor (SS\&AC)
Instructional farm
College of Agriculture, Vellayani

Rahandva.N.

External Examiner

Pressor Sineme Head
AlP (Nematodes) UAS, GKVK, ISangalare 65

Acknowledgement

First of all I am bound to bow my head before The God for he has uplifted me and led me to this endeavour.

With immense pleasure, I would like to express my sincere gratitude to Dr. R Mahayana. Assistant Professor, Department of Agricultural Entomology, esteemed chairman of the advisory committee, for the constructive guidance, constant inspiration, critical scrutiny of the manuscript and valuable suggestions which rendered me to accomplish the research work successfully.

I convey my heartfelt thanks to $\mathcal{D r}$. \mathcal{N}. Anitia, Professor \& \mathcal{H} fad, Department of Agricultural Entomology for the unceasing encouragement, valuable advices and whole hearted approach during the course of study.

I extend my sincere gratefulness to Dr. Gavas Ragesfin, Assistant Professor (Agricultural Entomology), Banana Research Station, Kannara for the valuable suggestions, technical advice and incessant motivation throughout the research work.

I would like to express my gratitude to Dr. Büu Joseph, Asst. Professor, Soil Science and Agricultural Chemistry for the unstinting support, suggestions and passionate approach rendered during the period of research work

I wish to register here my deepest and utmost gratitude to Achan, Alma, Chichi and Dinkan for standing beside me throughout all the tumultuous times I have been through and for all the immense emotional strength they gave to me to face all my fears and chase my dreams. I am truly debted to them for all that I am today.

I wish to place on record of my deep sense of gratitude to my beloved teachers for their support and advice at all stages of research work,

Thanks to $\mathcal{N a d i}$ for being such a good companion throughout these years.
I was fortunate to have the best 6atchmates who supported me with their caring manner. Thanks to Nimisfia, Ann, Mitrechi, Archana, Tarsia, Gayatri, Liz and Mari I also extend my sincere thanks to Dhanesh, Vishnu and Ayiun for their invaluable support.

It's my pleasure to express my special thanks to Sunil chetan, Mridul chietan, Anju checfii Amrithechij Sangamesh chetan, Sunu Checkij Renjini checkij Sindhu chechij, Vipin chetam, Sarath and also to my juniors Jyothis, Binseena, Raiza, Priyatifa, Remya, Sfioba, Fassef, Kishore, Hampi and $\mathcal{N i}$ iranjan for their help and support throughout the study period.

Words are inadequate to express my thanks to my befoved friends $\mathcal{N a d i} \mathcal{N}$ imisfia, Limu, Asok Basf, Thumbi, Ann, Packiu and Setfiu for their constant support, Love, care and for the happiest moments we cherished together.

Chinctiu \mathcal{P}. Babu

CONTENTS

Si. No.	CHAPTER	Page No.
1	INTRODUCTION	$1-2$
2	REVIEW OF LITERATURE	$3-11$
3	MATERIAL AND METHODS	$12-15$
4	RESULTS	$110-115$
5	DISCUSSION	$116-119$
6	SUMMARY	$120-129$
7	REFERENCES	130
8	APPENDIX	
9	ABSTRACT	
109		

LIST OF TABLES

Table	Title	Page No.
1.	Morphometric characters of mature females, perineal pattern and second stage juveniles of brinjal population of M. incognita from Dhanuvachapuram	17
2.	Morphometric characters of mature females, perineal pattern and second stage juveniles of okra population of M. incognita from Dhanuvachapuram	19
3.	Morphometric characters of mature females, perineal pattern and second stage juveniles of tomato population of M. incognita from Dhanuvachapuram	21
4.	Morphometric characters of mature females, perineal pattern and second stage juveniles of banana population of M. incognita from Dhanuvachapuram	22
5.	Morphometric characters of mature females, perineal pattern and second stage juveniles of brinjal population of M. incognita from Kattakada	24
6.	Morphometric characters of mature females, perineal pattern and second stage juveniles of okra population of M. chitwoodi from Kattakada	25
7.	Morphometric characters of mature females, perineal pattern and second stage juveniles of tomato population of M. incognita from Kattakada	27
8.	Morphometric characters of mature females, perineal pattern and second stage juveniles of banana population of M. incognita from Kattakada	28
9.	Morphometric characters of mature females, perineal pattern and second stage juveniles of brinjal population of M. incognita from Vellayani	30
10.	Morphometric characters of mature females, perineal pattern and second stage juveniles of okra population of M. incognita from Vellayani	31

11.	Morphometric characters of mature females, perineal pattern and second stage juveniles of tomato population of M. incognita from Vellayani	33
12.	Morphometric characters of mature females, perineal pattern and second stage juveniles of banana population of M. incognita from Vellayani	35
13.	Morphometric characters of mature females, perineal pattern and second stage juveniles of brinjal population of M. javanica from Balagram	36
14.	Morphometric characters of mature females, perineal pattern and second stage juveniles of okra population of M. incognita from Balagram	38
15.	Morphometric characters of mature females, perineal pattern and second stage juveniles of tomato population of M. incognita from Balagram	39
16.	Morphometric characters of mature females, perineal pattern and second stage juveniles of banana population of M. javanica from Balagram	41
17.	Morphometric characters of mature females, perineal pattern and second stage juveniles of brinjal population of $M . j a v a n i c a ~ f r o m ~ P a m p a d u m p a r a ~$	42
18.	Morphometric characters of mature females, perineal pattern and second stage juveniles of okra population of M. javanica from Pampadumpara pattern and second stage juveniles of brinjal	50
19.	Morphometric characters of mature females, perineal pattern and second stage juveniles of tomato population of M. javanica from Pampadumpara	45
20.	Morphometric characters of mature females, perineal pattern and second stage juveniles of tomato population of $M . j a v a n i c a ~ f r o m ~ P a m p a d u m p a r a ~$	
Morphometric characters of mature females, perineal second stage juveniles of banana		

	population of M. arenaria from Thalikulam	
34	Morphometric characters of mature females, perineal pattern and second stage juveniles of brinjal population of M. incognita from Thanniyam	68
35	Morphometric characters of mature females, perineal pattern and second stage juveniles of okra population of M. arenaria from Thanniyam	70
36	Morphometric characters of mature females, perineal pattern and second stage juveniles of tomato population of M. incognita from Thanniyam	71
37	Morphometric characters of mature females, perineal pattern and second stage juveniles of banana population of M. incognita from Thanniyam	73
38	Morphometric characters of mature females of M. incognita in Thiruvananthapuram district	77
39	Morphometric characters of perineal pattern of M. incognita in Thiruvananthapuram district	78
40	Morphometric characters of second stage juveniles of M. incognita in Thiruvananthapuram district	79
41	Morphometric characters of mature females of M. javanica in Idukki district	83
42	Morphometric characters of perineal pattern of M. javanica in Idukki district	84
43	Morphometric characters of second stage juveniles of M. javanica in Idukki district	85
44	Morphometric characters of mature females of M. arenaria in Thrissur district	88
45	Morphometric characters of perineal pattern of M. arenaria in Thrissur district	89
46	Morphometric characters of second stage juveniles of M. arenaria in Thrissur district	90

LIST OF FIGURES

Fig. No.	Title	Pages Between
1.	Occurrence of different Meloidogyne spp. in four crops in Kerala	$112-113$
2.	Occurrence of different Meloidogyne spp. from three districts of Kerala	$112-113$

LIST OF PLATES

$\left.\begin{array}{|r|l|l|}\hline & \text { M. incognita in okra from Vellayani } & \\ \hline 11 . & \begin{array}{l}\text { Females, anterior end of female, perineal pattern, } \\ \text { anterior and posterior end of second stage juvenile of } \\ \text { M. incognita in tomato from Vellayani }\end{array} & 32-33 \\ \hline 12 . & \begin{array}{l}\text { Females, anterior end of female, perineal pattern, } \\ \text { anterior and posterior end of second stage juvenile of } \\ \text { M. incognita in banana from Vellayani }\end{array} & 34-35 \\ \hline 13 . & \begin{array}{l}\text { Females, anterior end of female, perineal pattern, } \\ \text { anterior and posterior end of second stage juvenile of } \\ \text { M. javanica in brinjal from Balagram }\end{array} & 35-36 \\ \hline 14 . & \begin{array}{l}\text { Females, anterior end of female, perineal pattern, } \\ \text { anterior and posterior end of second stage juvenile of } \\ \text { M. incognita in okra from Balagram }\end{array} & 37-38 \\ \hline 15 . & \begin{array}{l}\text { Females, anterior end of female, perineal pattern, } \\ \text { anterior and posterior end of second stage juvenile of } \\ \text { M. incognita in tomato from Balagram }\end{array} & 38-39 \\ \hline 16 . & \begin{array}{l}\text { Females, anterior end of female, perineal pattern, } \\ \text { anterior and posterior end of second stage juvenile of } \\ M . j a v a n i c a ~ i n ~ b a n a n a ~ f r o m ~ B a l a g r a m ~\end{array} & 40-41 \\ \hline 17 . & \begin{array}{l}\text { Females, anterior end of female, perineal pattern, } \\ \text { anterior and posterior end of second stage juvenile of } \\ \text { M. javanica in brinjal from Pampadumpara }\end{array} & 41-42 \\ \hline 18 . & \begin{array}{l}\text { Females, anterior end of female, perineal pattern, } \\ \text { anterior and posterior end of second stage juvenile of } \\ \text { head region with stylet of M. javanica in tomato from } \\ \text { Pampadumpara }\end{array} & 45-46 \\ \hline \text { Mavanica in okra from Pampadumpara } \\ \text { anterior end of male, male, posterior end of male and } \\ \text { anales, anterior end of female, perineal pattern, }\end{array}\right\}$

21.	Females, anterior end of female, perineal pattern, anterior and posterior end of second stage juvenile of M. javanica in banana from Pampadumpara	47-48
22.	Females, anterior end of female, perineal pattern, anterior and posterior end of second stage juvenile of M. incognita in brinjal from Thovalappady	49-50
23	Females, anterior end of female, perineal pattern, anterior and posterior end of second stage juvenile of M. incognita in okra from Thovalappady	50-51
24	Females, anterior end of female, perineal pattern, anterior and posterior end of second stage juvenile of M. javanica in tomato from Thovalappady	52-53
25	Females, anterior end of female, perineal pattern, anterior and posterior end of second stage juvenile of M. javanica in banana from Thovalappady	53-54
26	Females, anterior end of female, perineal pattern, anterior and posterior end of second stage juvenile of M. arenaria in brinjal from Chazhoor	$55-56$
27	Females, anterior end of female, perineal pattern, anterior and posterior end of second stage juvenile of M. arenaria in okra from Chazhoor	56-57
28	Females, anterior end of female, perineal pattern, anterior and posterior end of second stage juvenile of M. arenaria in tomato from Chazhoor	58-59
29	Females, anterior end of female, perineal pattern, anterior and posterior end of second stage juvenile of M. arenaria in banana from Chazhoor	60-61
30	Females, anterior end of female, perineal pattern, anterior and posterior end of second stage juvenile of M. javanica in brinjal from Thalikulam	61-62
31	Females, anterior end of female, perineal pattern, anterior and posterior end of second stage juvenile of	63-64

	M. arenaria in okra from Thalikulam	
32	Females, anterior end of female, perineal pattern, anterior and posterior end of second stage juvenile of M. arenaria in tomato from Thalikulam	$64-65$
33	Females, anterior end of female, perineal pattern, anterior and posterior end of second stage juvenile of M. arenaria in banana from Thalikulam	$66-67$
34	Females, anterior end of female, perineal pattern, anterior and posterior end of second stage juvenile of M. incognita in brinjal from Thanniyam	$67-68$
35	Females, anterior end of female, perineal pattern, anterior and posterior end of second stage juvenile of M. arenaria in okra from Thanniyam	$69-70$
36	Females, anterior end of female, perineal pattern, anterior and posterior end of second stage juvenile of M. incognita in tomato from Thanniyam	$70-71$
37	Females, anterior end of female, perineal pattern, anterior and posterior end of second stage juvenile of M. incognita in banana from Thanniyam	$72-73$

LIST OF APPENDIX

| Cl. No. | Title | Appendix
 No. |
| :---: | :--- | :---: | :---: |
| 1 | Stain composition | I |

LIST OF ABBREVIATIONS AND SYMBOLS USED

$\%$	Per cent
$\mu \mathrm{m}$	Micro metre
et al.	And others
KAU	Kerala Agricultural University
No.	Number
Sb.	Serial
sp. or spp.	Species (Singular and Plural)
viz	Namely
i.e.	That is
ml	Milli metre
CV	Coefficient of variability
${ }^{0} \mathrm{C}$	Degree Celsius
$>$	Greater than
$<$	Less than

Introduction

1. INTRODUCTION

Crop plants are of great importance for a country, and when these plants suffer from diseases they cause serious losses and adversely affect the agricultural economy of a country. Root knot nematodes (Meloidogyne spp.) are considered to be the most wide spread and destructive plant parasites which cause a yield loss of 25 to 50 per cent over large areas of cultivated land (Taylor and Sasser, 1978).

Root knot nematodes are found within the roots where they feed and reproduce on modified living plant cells, inducing small to large galls or root knots. The infective stages of these nematodes are second stage juveniles which upon hatching from the egg penetrate the healthy root and initiate gall formation. The nematode infested roots are often attacked by secondary pathogens resulting in extensive damage to the root system. The above ground symptoms are not readily apparent and may be similar to those produced on any plants having a damaged or malfunctioning root system. The symptoms include yellowing, various degrees of stunting, lack of vigour and wilting under moisture stress resulting from the interference of these nematodes on water and nutrient uptake.

These nematodes are polyphagous and more than 2000 species of plants have been reported as host plants (Sohrabi et al., 2015). In India, vegetables and banana are adversely affected by these nematodes and cause a yield loss of 16.675 per cent, 14.10 per cent, 27.21 per cent and 12.3per cent in brinjal, okra, tomato and banana respectively (Jain et al., 2017).

There are more than 100 species of root knot nematodes in the world and 15 species in India (Khan et al., 2014), among which 4 species are predominant namely, M. incognita (Kofoid \& White, 1919) Chitwood, 1949, M. javanica (Treub, 1885) Chitwood, 1949, M. arenaria (Neal, 1889) Chitwood, 1949 and M. hapla Chitwood, 1949 which has been the subject of a considerable amount of research.

The lack of awareness about the existence of these nematodes and the characteristic symptom they cause, make these nematodes often neglected by the
farmers. The knowledge about the species often involves identification of the species and better species descriptions to tackle the problem of lack of awareness.

Morphological analyses including perineal patterns are considered important for differentiating Meloidogyne species. Morphological and morphometric studies are useful in identification of root knot nematodes from different crops and locations which in turn help in species specific management. Moreover, it will also help in documenting the root knot nematode diversity. Varietal resistance is reported in some crops and identification of nematode species in an area will help in selection of plant varieties resistant to that species for cultivation and thus, effective management practices can be developed by precise identification of nematode species and variation within a single nematode species (Eisenback, 1982).

In this context, the present study entitled "Morphological variations of root knot nematode in vegetables and banana" was undertaken with the aim to study the morphological and morphometric variations of root knot nematode in brinjal, okra, tomato and banana in Kerala.

Review of Literature

2. REVIEW OF LITERATURE

Root knot nematodes are diverse group of plant parasitic nematodes belonging to the genus Meloidogyne. They are economically important plant parasites with worldwide distribution and damage every species of higher plants (Perry et al., 2009). Sohrabi et al. (2015) reported that the root knot nematodes occur on a wide host range of more than 2,000 species. Other than cultivated crops, over 226 species of weed plants also act as hosts of these nematodes (Rich et al., 2008). The rapid rate of reproduction of these nematodes on its host in several generations leads to severe damage to the crops.

2.1 ROOT KNOT NEMATODES IN VEGETABLES

Sasser (1987) reported that the root knot nematodes reduce the yield of world's 40 major cash crops by an average of 12.3 per cent. Vegetables, cereals, pulses, oil seed crops, fiber yielding crops, ornamentals, fruit trees and plantation crops are affected by these nematodes, among which vegetables are the most preferred host (Khan and Khan, 1990). Meloidogyne species were the major nematodes infecting vegetables like tomato, bhindi, brinjal, chilly and cucurbits (Anwar et al., 1991). Sharma (1997) reported that the estimated yield loss caused by root knot nematodes in brinjal, bhindi and tomato are 27-70 per cent, 28-90 per cent and 27-70 per cent respectively.

2.2 SPECIES OF ROOT KNOT NEMATODE IN INDIA AND KERALA

Khan et al. (2014) reported that there are more than 100 species of root knot nematode in the world and 15 species in India. M. incognita (Kofoid \& White, 1919) Chitwood, 1949, M. javanica (Treub, 1885) Chitwood, 1949, M. arenaria (Neal, 1889) Chitwood, 1949 and M. hapla Chitwood, 1949 were the major species and among these species the most important species worldwide was M. incognita (Sasser, 1980).
M. incognita, M. javanica and M. arenaria were distributed in tropical, subtropical and temperate climates, whereas M. hapla occurs in the cooler regions (Taylor et al., 1982).
M. incognita and M. javanica infest a wide range of plant families including Fabaceae, Compositae, Solanaceae, Cruciferae, Bromeliaceae, Graminae, Musaceae, Vitaceae, Convolvulaceae, Caryophyllaceae, Euphorbiaceae, Chenopodiaceae and Rosaceae (Whitehead, 1968). Cofcewigz et al. (2005) reported that M. arenaria and M. incognita were the major species of root knot nematode infecting Mus spp.

In India, Chattopadhay and Sengupta (1955) reported M. incognita for the first time from jute in West Bengal and Sen (1959) reported M. javanica from vegetables. M. arenaria was identified from tomato in Bihar (Lall and Ansari, 1960) and M. hapla from tea in Assam (Mukherjee, 1960).

Other species identified from India are M. africana Whitehead, 1968, M. brevicauda Loos, 1953, M. thames Goodey, 1963, M. exigua Goeldi, 1887, M. graminicola Golden and Birchfield, 1965, M. indic Whitehead, 1968, M. lucknowica Singh, 1969, M. graminis (Sledge and Golden, 1964) Whitehead, 1968, M. triticoryzae Gaur, Saha and Khan, 1993, M. piper Sahoo, Ganguly and Eapen, 2000 and M. enterolobii Yang \& Eisenback, 1983.

In Kerala, M. incognita was reported from vegetables, banana, coleus, ginger, cardamom, turmeric, carrot and cabbage (Nair et al., 1969; Mammen, 1973; Jacob and Kurien, 1979; Raja and Gill, 1982; Ali and Koshy, 1982; Sukumaran et al., 1989; Nehru et al., 1991; Sheela et al., 1995; Nisha et al., 2012; Narayana et al., 2012). M. javanica was reported from banana, coleus and sugarcane (Nair et al.,1969; Mammen, 1974). From pepper, M. piper has been reported (Shoo et al., 2000). Sheela et al. (2005) reported M. graminicola from rice.

2.3 MORPHOLOGICAL AND MORPHOMETRICAL VARIABILITY OF MAJOR MELOIDOGYNE SPECIES

The morphology of perineal pattern, head and stylet were quite stable characters used for differentiating species of Meloidogyne (Eisenback et al., 1981; Rammah, 1989; Sahoo and Ganguly, 2000).

Nadakal (1963) reported that the size of the Meloidogyne spp. varied with the species of the host plant. The morphometric characters of females, perineal pattern and second stage juveniles of Indian populations M. incognita varied with respect to host plant and locality (Kaur and Attri, 2013a). Sahoo and Ganguly (2000) reported that the morphometric characters of M. javanica from different districts of Punjab showed significant variations.

2.3.1 Females

External morphological studies of female head of M. arenaria, M. incognita, M. javanica and M. hapla when compared using light and scanning electron microscopy revealed that the head morphology differed in all the species (Eisenback and Hirschmann, 1979).

Kofoid and White (1919) described M. incognita and found that the females were pear shaped and there was no posterior terminal protuberance. The stylet knobs were drawn out laterally (Whitehead, 1968), rounded in shape and not sharply set off from shaft (Chitwood, 1949; Eisenback, 1982).

Whitehead (1968) reported that the females of M. javanica were pyroid in shape and the posterior end of the body was smoothly rounded. In Indian populations, the shape varied from pyriform to saccate with short to long necks (Sahoo and Ganguly, 2000). Chitwood (1949) reported that the stylet knobs of females of M. javnica were prominent and rounded whereas Rammah and Hirschmann (1990) reported that the sylet knobs of M. javanica were ovoid.

Whitehead (1968) reported that the females of M. arenaria were pyroid in shape and stylet knobs were rounded and slightly sloping towards the anterior
margins. Garcia and Sanchez-Puerta (2012) reported that the females of M. arenaria were pyriform and the excretory pore is located close to the stylet base.

Whitehead (1968) reported that the females of M. hapla were pear shaped with short neck and the stylet knobs were weakly rounded (Chitwood, 1949). Handoo et al. (2005) reported the absence of posterior terminal protuberance in M. hapla females.

Golden and Birchfield (1965) described M. graminicola and reported that the females were globular to pear shaped and head region was not set off. The stylet knobs were rounded and sloping towards anterior margin. Kaur and Attri (2013b) reported that M. graminicola females with longer neck possessed bigger median bulb and valve.

Golden et al. (1980) described M. chitwoodi and reported that the females were pear shaped with slight posterior terminal protuberance and vesicle like structures were present in median bulb. The stylet was small with rounded stylet knobs.

The body length of females of M. incognita, M javanica, M. arenaria and M. hapla ranged from 510 to $690 \mu \mathrm{~m}, 545$ to $800 \mu \mathrm{~m}, 500$ to $1000 \mu \mathrm{~m}$ and 500 to $790 \mu \mathrm{~m}$ respectively (Chitwood, 1949). The body length of M. graminicola was 445 to $573 \mu \mathrm{~m}$ (Golden and Birchfield, 1965) and for M. chitwoodi the body length was 430 to $740 \mu \mathrm{~m}$ (Golden et al., 1980).

Kaur and Attri (2013a) reported that the body length of females of Indian populations of M. incognita varied from 530 to $812 \mu \mathrm{~m}$ and in M. javanica, the body length varied from 333 to $877 \mu \mathrm{~m}$ (Sahoo and Ganguly, 2000).

In Indian populations of M. incognita, the characters like body length, width, neck length and ratio a of females were found as stable characters (Kaur and Attri, 2013a). In M. javanica, body length and neck length were least variable
characters whereas the characters like width, stylet length and ratio a were moderately variable (Sahoo and Ganguly, 2000).

2.3.2 Perineal pattern

The perineal pattern of M. incognita was characterized by high squared dorsal arch with smooth to wavy cuticular striae (Jepson, 1987; Whitehead, 1968) and distinct cuticular whorl which was not interrupted laterally (Chitwood, 1949). Kaur and Attri (2013a) reported that the perineal pattern of Indian populations varied from oval to round with low to high dorsal arch.

The perineal pattern of M. javanica was characterized by the presence of lateral field which cut through the striae (Chitwood, 1949; Eisenback et al., 1981; Jepson, 1987). Whitehead (1968) reported that the perineal pattern of M. javanica were pyroid in shape with lateral field fairly marked by incisures.

Carneiro et al. (1998) reported that the perineal patterns of M. javanica in Brazil were rounded with low dorsal arch and characteristic lateral field. Indian populations of M. javanica showed variations in the perineal pattern by having continous to discontinuous striae in both the arches of perineal pattern (Sahoo and Ganguly, 2000).

In M. arenaria, the perineal pattern was marked by lateral wings or shoulders (Chitwood, 1949) and the lateral lines were poorly marked by broken striae (Whitehead, 1968).

Garcia and Sanchez-puerta (2012) studied the morphological variations of M. arenaria population in Argentina and observed that the perineal pattern varied from round to oval (4\%) in body shape and low to high (38\%) dorsal arch. Skantar et al. (2008) reported that the laterally elongated regions were absent in Pennsylvania populations of M. arenaria.

Chitwood (1949) reported that the perineal pattern of M. hapla was hexagonal in shape, the striae were smooth and sometimes slight shoulders were present. Whitehead (1968) observed that the dorsal arch was rounded and fringing
striae was present at the posterior end of lateral line. The characteristic feature of the perineal pattern was the presence of punctuations between anus and tail terminus (Eisenback et al., 1981; Jepson,1987). Handoo et al. (2005) reported that twenty populations of M. hapla in Maui, Hawaii showed lines perpendicular to annulation in vulval-anal area.

Golden and Birchfield (1965) reported that the perineal pattern of M. graminicola was egg shaped with fairly wide striae. Choi-pheng and Birchfield (1978) reported that the perineal patterns have smooth vulvar lips without invaginations.

In West Bengal populations of M. graminicola, the shape of perineal pattern varied from round to oval with smooth to wavy striae (Talukder et al, 2017). The perineal pattern of M. chitwoodi was oval to rounded with striae near anal area being broken or twisted sometimes (Golden et al., 1980; Devran et al., 2009). Oliveira et al. (2005) reported that M. exigua populations in Brazil showed intraspecific variations with respect to shape and height of dorsal arch.

The mean length of LVS (length of vulval slit) and IPD (interphasmidial distance) of M. incognita, M javanica, M. arenaria and M. hapla ranged from 510 to $690 \mu \mathrm{~m}, 545$ to $800 \mu \mathrm{~m}, 500$ to $1000 \mu \mathrm{~m}$ and 500 to $790 \mu \mathrm{~m}$ respectively (Chitwood, 1949) and for M. chitwoodi, the LVS was 19 to $32 \mu \mathrm{~m}$ (Golden et al.,1980).

The LVS, AVS and IPD of M. enterolobii ranged from 25.3 to $32.4 \mu \mathrm{~m}$, 19.7 to $26.6 \mu \mathrm{~m}$ and 22.2 to $42.0 \mu \mathrm{~m}$ respectively (Yang and Eisenback,1983). Kaur and Attri (2013a) reported that the mean length of vulval slit of females of Indian populations of M. incognita ranged from 16 to $26 \mu \mathrm{~m}$ and the interphasmidial distance was 17 to $26 \mu \mathrm{~m}$.

In Indian populations of M. javanica, LVS and ATT were least variable characters whereas AVS and IPD were moderately variable (Sahoo and Ganguly,
2000). In M. incognita, anus to tail terminus (ATT) and interphasmidial distance (IPP) of perineal pattern were found as stable characters (Kaur and Attri, 2013a).

2.3.3 Males

Chitwood (1949) observed that the stylet knobs of males of M. incognita and M. javanica were rounded and the stylet knobs were not prominent in M. incognita. Eisenback and Hirschmann (1981) reported that M. incognita and M. javanica possessed high head cap and in M. incognita, the stylet tip was anteriorly blunt and cone is blade like and in case of M. javanica anterior two third of cone gradually increases in size and in M. hapla head cap is narrower than head region.

Rammah and Hirschmann (1990) reported that the head morphology of males of three host races of M. javanica was consistent with slight variations in head region with respect to annulations. Cliff and Hirschmann (1985) reported that the body length of males of M. arenaria varied from slender, tapering to bluntly rounded ends with twisted posterior region.

Chitwood (1949) reported that the head of M. arenaria males were low, rounded and truncate in shape. Garcia and Sanchez-Puerta (2012) reported that the males of M. arenaria possessed concave head and moderately elevated labial disc.

The males of M. hapla possessed weakly rounded stylet knobs and shaft which was tapering (Chitwood, 1949). Whitehead (1968) reported that the head region of Marla males were not set-off and were truncate cone to hemispherical in shape.

Golden and Birchfield (1965) reported that in M. graminicola males, the head region was not set off, the stylet was robust and knobs were rounded. Golden et al. (1980) reported that the body of males of M. chitwoodi was tapering at both extremities and the head cap was large with slightly set off head. Yang and Eisenback (1983) reported that the head cap of males of M. enterolobii was
high and rounded and tail was tapering at both ends with tail end twisted through $90^{\circ} \mathrm{C}$ in heat killed specimens.

The body length of males of M. incognita, M. javanica, M. arenaria and M. hapla ranged from 1200 to $2000 \mu \mathrm{~m}, 940$ to $1440 \mu \mathrm{~m}, 1270$ to $2000 \mu \mathrm{~m}$ and 1000 to $1330 \mu \mathrm{~m}$ respectively (Chitwood, 1949). Whitehead (1968) reported that the length of males of M. incognita ranged from 500 to $723 \mu \mathrm{~m}$ and in M. javanica the length varied from 757 to $1297 \mu \mathrm{~m}$. The body length of males of M. chitwoodi ranged from 887 to $1268 \mu \mathrm{~m}$ (Golden et al., 1980)

2.3.4 Second stage juveniles

Chitwood (1949) reported that the stylet knobs of second stage juveniles of M. incognita were deeply rounded and in M. javanica the stylet knobs were not prominent (Whitehead, 1968).

In M. incognita, the labial disc was small and rounded. In M. arenaria population the labial disc was slightly elevated and lateral lips were in same contour with head region whereas in M. javanica the lateral lips were lower. In M. hapla, median lips and lateral lips were in same contour (Eisenback and Hirschmann, 1979).

In M. incognita, the tail tip was simple and the rectum was dilated (Chitwood, 1949. Sahoo and Ganguly (2000) reported that Indian populations of second stage juveniles of M. javanica showed variations in tail characters with respect to tail terminus and rectum dilation.

Whitehead (1968) reported that in second stage juveniles of M. arenaria, the head was not set off, stylet knobs were fairly prominent and the rectum was dilated. Esser et al. (1976) also reported the rectum dilation in M. arenaria.

In second stage juveniles of M. hapla, the head cap was small, truncate cone shaped and not set off (Whitehead, 1968). Handoo et al. (2005) reported
that the second stage juveniles of M. hapla populations in Hawaii were relatively smaller compared to initial species descriptions.

In M. graminicola, the stylet knobs of second stage juveniles were rounded with backward sloping anterior margins (Golden and Birchfield, 1965). Golden et al. (1980) reported that the second stage juveniles of M. chitwoodi possessed head which was not set off, dilated rectum and rounded tail terminus.

The mean length of second stage juveniles of M. incognita, M javanica, M. arenaria and M. hapla ranged from 360 to $393 \mu \mathrm{~m}, 340$ to $400 \mu \mathrm{~m}, 450$ to $490 \mu \mathrm{~m}$ and 395 to $466 \mu \mathrm{~m}$ respectively (Chitwood, 1949). In M. chitwoodi, the body length ranged from 336 to $417 \mu \mathrm{~m}$ (Golden et al., 1980).

Golden and Birchfield (1965) reported that in M. graminicola, the body length ranged from 415 to $484 \mu \mathrm{~m}$. The populations of M. graminicola in Vietam showed significant variations in body length and stylet length for second stage juveniles. The body length ranged from 367 to $501 \mu \mathrm{~m}$ and stylet length ranged from 11.7 to $17.3 \mu \mathrm{~m}$ (Bellafiore et al., 2015).

In Indian populations of M. incognita, body length, stylet length , head to median bulb (H-MB), median bulb to excretory pore distance (MB-EP), tail length, anal body width (ABW), ratio c and c ' of second stage juveniles were highly variable characters (Kaur and Attri, 2013a). In M. javanica, tail length was least variable character and $\mathrm{H}-\mathrm{MB}$, anal body width (ABW) and ratio c , c ' were moderately variable characters (Sahoo and Ganguly, 2000).

Material and Methods

3. MATERIAL AND METHODS

The experiment on the "Morphological variations of root knot nematode in vegetables and banana" was carried out at Department of Agricultural Entomology, College of Agriculture, Vellayani during 2015-2017.

The details of material and methods followed during the course of work are mentioned below.

3.1 SAMPLE COLLECTION

Root knot infested root and soil samples were collected from brinjal, okra, tomato and banana in Dhanuvachapuram, Kattakada and Vellayani of Thiruvananthapuram district; Balagram, Pampadumpara and Thovalappady of Idukki district; Chazhoor, Thalikulam and Thaniyam of Thrissur district in Kerala. About 250 g of soil sample from rhizosphere area along with galled roots were collected in polythene covers and labeled carefully. The populations were maintained in the net house by inoculating the collected samples to healthy plants that were planted earlier in sterilized soil.

3.2 EXTRACTION OF NEMATODES

3.2.1 Extraction of Nematodes from Root

3.2.1.1 Extraction of Mature Females from Root

The roots were washed thoroughly, cut into small pieces and stained in lactophenol-acid fucshin (Daykin and Hussey, 1985) and left overnight immersed in clear lactophenol for destaining. The mature females were teased out from galls and kept in lactophenol.

3.2.1.2 Extraction of Males and Second Stage Juveniles from Root

Nematodes were extracted from roots using modified Baermann's funnel technique (Christie and Perry, 1951). The roots were washed in tap water, chopped into small pieces and placed on a double layered tissue paper lined on a wire gauze. The wire gauze was placed on a Peri dish filled with water up to the
level that it just touched the bottom of gauze and roots. Second stage juveniles and males moved through the filter paper and get collected in the water in the Petri dish.

Second stage juveniles were also extracted by picking the egg masses from roots into a Petri dish containing water. The hatched out juveniles were then killed and fixed.

3.2.2 Extraction of Nematodes from Soil

Nematodes were extracted from soil using Cobb's decanting and sieving method followed by Baermann's funnel technique.

3.3 PREPARATION OF FEMALES FOR MORPHOLOGICAL AND MORPHOMETRICAL IDENTIFICATION

The females teased out from the galls were placed on a glass slide and observed under a 40X microscope with calibrated ocular micrometer.

The measurements of length, width, neck length, stylet length, length of median bulb (LMB), width of median bulb (WMB) and ratio a (length/width) were taken. The arithmetic mean, standard error of mean (SEM), standard deviation (SD) and coefficient of variance (CV) for each measurement were computed. Based on CV values, the characters were rated as least variable, moderately variable and highly variable using scale $<12 \%$, 12 to 20% and $>20 \%$ respectively (Sahoo and Ganguly, 2000).

3.4 PREPARATION OF PERINEAL PATTERN FOR MORPHOLOGICAL AND MORPHOMETRICAL IDENTIFICATION

The adult females were teased out from stained roots and each specimen was placed in a drop of lactophenol on a glass slide. The posterior portion of the female was cut with a sharp blade and the inner tissue was carefully removed using a fine bristle (Hartman and Sasser, 1985). The perineal pattern was
transferred to a drop of glycerol on a glass slide and covered with cover slip and sealed using a suitable sealant. Ten specimens from a population were examined.

The measurements of length of vulval slit (LVS), distance from anus to vulval slit (AVS), distance from anus to tail terminus (ATT) and interphasmidial distance (IPD) were made under a 40X microscope with calibrated ocular micrometer. The arithmetic mean, standard error of mean (SEM), standard deviation (SD) and coefficient of variance (CV) for each measurement were computed. Based on CV values, the characters were rated as least variable, moderately variable and highly variable using scale $<12 \%$, 12 to 20% and $>20 \%$ respectively (Sahoo and Ganguly, 2000).

3.3 PREPARATION OF MALES AND SECOND STAGE JUVENILES FOR MORPHOLOGICAL AND MORPHOMETRICAL IDENTIFICATION

3.3.1 Killing and Fixing of Nematodes

The extracted nematodes were killed and fixed in one operation (Seinhorst, 1966). The males and second stage juveniles were killed using the following fixative:

1) FA $4: 10$

Formalin (40% formaldehyde) -10 ml
Glacial acetic acid $\quad-10 \mathrm{ml}$
Distilled water $\quad-80 \mathrm{ml}$
2) $T A F$

Formalin (40\% formaldehyde) -7 ml
Triethanolamine $\quad-2 \mathrm{ml}$

Distilled water $\quad-91 \mathrm{ml}$

The fixative was heated $\left(60^{\circ} \mathrm{C}\right)$ and the hot fixative was poured into the nematode suspension to kill the nematodes.

3.3.2 Processing of Nematodes

The fixed $\mathrm{J}_{2 \mathrm{~s}}$ and males were picked and transferred to a cavity block containing 0.5 ml Seinhorst solution 1 and kept in a dessicator containing excess of 96% ethanol which was then kept in an oven at $40^{\circ} \mathrm{C}$. After 12 hours, the cavity block was filled with Seinhorst solution 2 and kept partly closed in the dessicator containing calcium chloride for about 3 hours in the oven $\left(40^{\circ} \mathrm{C}\right)$, until the ethanol get evaporated.

3.3.3 Preparation of Permanent Mount

The processed nematodes were picked from the cavity block and placed in a drop of glycerol on a glass slide. Small blocks of paraffin wax were kept on three slides of glycerol and cover slip was applied carefully. The wax blocks were melted by keeping the slide over a hot plate for few seconds, allowed it to cool and sealed using sealant. Ten specimens from a population were examined.

The measurements of length, stylet length, distance from head to median bulb (H-MB), anal body width (ABW), tail length, ratio c (length/tail length) and c' (tail length/ABW) were made under a 40X microscope with calibrated ocular micrometer. The arithmetic mean, standard error of mean (SEM), standard deviation (SD) and coefficient of variance (CV) for each measurement were computed. Based on CV values, the characters were rated as least variable, moderately variable and highly variable using scale $<8 \%, 8$ to 12% and $>12 \%$ respectively (Sahoo and Ganguly, 2000).

Results

4. RESULTS

The diagnostic characters of females, perineal pattern and second stage juveniles were observed and measured to identify the species. Standard error of means and means of morphometric characters were compared with the previous works to delineate the species. The results are presented in this chapter under the following headings.

4.1 IDENTIFICATION

Based on morphological and morphometrical methods of identification, thirty six populations of Meloidogyne species infecting brinjal, okra, tomato and banana from Dhanuvachapuram, Kattakada and Vellayani of Thiruvananthapuram district; Balagram, Pampadumpara and Thovalappady of Idukki district; Chazhoor, Thalikulam and Thaniyam of Thrissur district in Kerala were identified. Eighteen populations were identified to be M. incognita, nine of M. javanica, and eight of M. arenaria. Among the sampled populations, M. hapla was not identified from vegetables and banana from Kerala. Surprisingly, one of the population showed morphological and morphometrical characters similar to M. chitwoodi Golden, O'Bannon, Santo and Finley, 1980 and hence, it needs molecular identification for further confirmation. Out of thirty six populations, only a single population of males were observed in tomato from Pampadumpara.

4.1.1 Identification of Meloidogyne spp. from Thiruvananthapuram District

4.1.1.1 Identification of Meloidogyne sp in Brinjal from Dhanuvachapuram

The species of root knot nematode infecting brinjal from Dhanuvachapuram was identified as M. incognita (Plate 1), based on the morphological and morphometrical data of mature females, perineal pattern and second stage juveniles. The morphometric characters of the population are given in Table 1.

Description: Based on 10 females and 10 juveniles $\left(\mathrm{J}_{2}\right)$.

Plate 1. (A) females, (B) anterior end of female, (C) perineal pattern, (DE) anterior and posterior end of second stage juvenile of M. incognita in brinjal from Dhanuvachapuram

Table 1. Morphometric characters of mature females, perineal pattern and second stage juveniles of brinjal population of M. incognita from
Dhanuvachapuram

LMB-Length of median bulb, WMB- width of median bulb, a-length/width ratio, H-MB-head to median bulb, ABW-anal body width, c- length/tail length ratio, c^{\prime} - tail length/anal body width ratio

Measurements: Female: Length $=634.51-755.98 \mu \mathrm{~m}$; width $=378.02-504.60 \mu \mathrm{~m}$; $\mathrm{a}=1.29-1.83 \mu \mathrm{~m}$; stylet length $=14.25-16.32 \mu \mathrm{~m}$; neck length $=145.49-259.98 \mu \mathrm{~m}$; $\mathrm{LMB}=30.24-41.25 \mu \mathrm{~m} ; \mathrm{WMB}=30.45-41.65 \mu \mathrm{~m}$.

Perineal pattern: LVS $=19.30-28.18 \mu \mathrm{~m} ; \quad$ AVS $=15.78-24.17 \mu \mathrm{~m} ; \quad$ ATT $=14.38$ $20.78 \mu \mathrm{~m} ;$ IPD $=27.10-37.88 \mu \mathrm{~m}$.

Second stage juveniles $\left(\mathrm{J}_{2}\right)$: Length $=360.15-436.18 \mu \mathrm{~m}$; stylet length $=13.98$ $15.01 \mu \mathrm{~m} ; \quad \mathrm{H}-\mathrm{MB}=47.53-52.11 \mu \mathrm{~m} ; \quad \mathrm{ABW}=8.70-12.11 \mu \mathrm{~m}$; tail length=32.01$58.11 \mu \mathrm{~m} ; \mathrm{c}=6.90-11.11 \mu \mathrm{~m} ; \mathrm{c}^{\prime}=3.47-6.20 \mu \mathrm{~m}$.

4.1.1.2 Identification of Meloidogyne sp in okra from Dhanuvachapuram

The species of root knot nematode infecting okra from Dhanuvachapuram was identified as M. incognita (Plate 2), based on the morphological and morphometrical data of mature females, perineal pattern and second stage juveniles. The morphometric characters of the population are given in Table 2.

Description: Based on 10 females and 10 juveniles $\left(\mathrm{J}_{2}\right)$.

Measurements: Female: Length $=605.37-732.10 \mu \mathrm{~m}$; width $=356.14-498.37 \mu \mathrm{~m}$; $\mathrm{a}=1.24-1.87 \mu \mathrm{~m}$; stylet length $=14.37-17.21 \mu \mathrm{~m}$; neck length $=163.78-264.83 \mu \mathrm{~m}$; $\mathrm{LMB}=30.11-43.61 \mu \mathrm{~m} ; \mathrm{WMB}=30.43-43.10 \mu \mathrm{~m}$.

Perineal pattern: LVS $=19.80-27.32 \mu \mathrm{~m} ; \quad$ AVS $=15.78-25.11 \mu \mathrm{~m} ; \quad$ ATT $=14.39$ $22.83 \mu \mathrm{~m} ;$ IPD $=25.30-35.07 \mu \mathrm{~m}$.

Second stage juveniles $\left(\mathrm{J}_{2}\right)$: Length $=354.23-428.11 \mu \mathrm{~m}$; stylet length=12.01$14.37 \mu \mathrm{~m} ; \quad \mathrm{H}-\mathrm{MB}=46.11-52.10 \mu \mathrm{~m} ; \quad \mathrm{ABW}=8.06-12.15 \mu \mathrm{~m} ;$ tail length=31.81$56.70 \mu \mathrm{~m} ; \mathrm{c}=6.04-7.98 \mu \mathrm{~m} ; \mathrm{c}^{\prime}=2.17-8.02 \mu \mathrm{~m}$.

4.1.1.3 Identification of Meloidogyne sp in Tomato from Dhanuvachapuram

The species of root knot nematode infecting tomato from Dhanuvachapuram was identified as M. incognita (Plate 3), based on the morphological and morphometrical data of mature females, perineal pattern and

Plate 2. (A) females, (B) anterior end of female, (C) perineal pattern, (DE) anterior and posterior end of second stage juvenile of M. incognita in okra from Dhanuvachapuram

Table 2. Morphometric characters of mature females, perineal pattern and second stage juveniles of okra population of M. incognita from Dhanuvachapuram

Character ($\mu \mathrm{m}$)	Okra population
Females	
Length	$\begin{gathered} 646.70 \pm 42.11 \pm 10.01 \\ (605.37-732.10) 6.00 \% \end{gathered}$
Width	$\begin{gathered} 430.21 \pm 42.80 \pm 13.81 \\ (356.14-498.37) 10.07 \% \end{gathered}$
Neck length	$201.24 \pm 35.78 \pm 10.30$ $(163.78-264.83) 17.37 \%$
Stylet length	$\begin{gathered} 15.70 \pm 0.68 \pm 0.18 \\ (14.37-17.21) 4.21 \% \\ \hline \end{gathered}$
LMB	$\begin{gathered} 38.30 \pm 5.21 \pm 1.73 \\ (30.11-43.61) 11.27 \% \end{gathered}$
WMB	$\begin{gathered} 38.00 \pm 4.38 \pm 1.27 \\ (30.43-43.10) 12.80 \% \end{gathered}$
a	$\begin{gathered} 1.50 \pm 0.21 \pm 0.01 \\ (1.24-1.87) 10.78 \% \end{gathered}$
Perineal pattern	
LVS	$\begin{gathered} 24.32 \pm 2.78 \pm 0.91 \\ (19.80-27.32) 11.98 \% \\ \hline \end{gathered}$
AVS	$\begin{gathered} 20.37 \pm 2.93 \pm 0.81 \\ (15.78-25.11) 15.01 \% \\ \hline \end{gathered}$
ATT	$\begin{gathered} 18.01 \pm 2.41 \pm 0.74 \\ (14.39-22.83) 14.81 \% \end{gathered}$
IPD	$\begin{gathered} 26.37 \pm 3.43 \pm 1.28 \\ (25.30-35.07) 12.43 \% \end{gathered}$
Second stage juveniles	
Length	$\begin{gathered} 404.32 \pm 12.87 \pm 5.11 \\ (354.23-428.11) 4.18 \% \end{gathered}$
Stylet length	$\begin{gathered} 13.80 \pm 0.51 \pm 0.11 \\ (12.01-14.37) 2.04 \% \end{gathered}$
H-MB	$\begin{gathered} 48.01 \pm 2.71 \pm 0.81 \\ (46.11-52.10) 4.38 \% \\ \hline \end{gathered}$
ABW	$\begin{gathered} 11.21 \pm 1.37 \pm 0.45 \\ (8.06-12.15) 4.26 \% \\ \hline \end{gathered}$
Tail length	$\begin{gathered} 47.60 \pm 6.87 \pm 2.37 \\ (31.81-56.70) 15.38 \% \\ \hline \end{gathered}$
c	$\begin{gathered} 8.49 \pm 1.80 \pm 0.51 \\ (6.04-7.98) 18.32 \% \\ \hline \end{gathered}$
c'	$\begin{gathered} 5.60 \pm 0.41 \pm 0.12 \\ (2.17-8.02) 8.13 \% \\ \hline \end{gathered}$

LMB-Length of median bulb, WMB- width of median bulb, a-length/width ratio,
H-MB-head to median bulb, ABW-anal body width, c- length/tail length ratio, c'- tail length/anal body width ratio
second stage juveniles. The morphometric characters of the population are given in Table 3.

Description: Based on 10 females and 10 juveniles $\left(\mathrm{J}_{2}\right)$.

Measurements: Female: Length $=645.88-806.53 \mu \mathrm{~m}$; width $=409.93-491.92 \mu \mathrm{~m}$; $\mathrm{a}=1.46-1.66 \mu \mathrm{~m}$; stylet length $=15.21-16.78 \mu \mathrm{~m}$; neck length $=155.03-284.10$ $\mu \mathrm{m} ; \mathrm{LMB}=30.25-45.21 \mu \mathrm{~m} ; \mathrm{WMB}=30.86-44.21 \mu \mathrm{~m}$.

Perineal pattern: LVS $=23.44-29.52 \mu \mathrm{~m} ; \quad$ AVS $=14.88-22.68 \mu \mathrm{~m} ; \quad$ ATT $=13.24-$ $19.94 \mu \mathrm{~m} ; \mathrm{IPD}=20.02-30.62 \mu \mathrm{~m}$.

Second stage juveniles $\left(\mathrm{J}_{2}\right)$: Length $=399.61-439.17 \mu \mathrm{~m}$; stylet length $=14.02$ $15.35 \mu \mathrm{~m} ; \mathrm{H}-\mathrm{MB}=47.49-53.80 \mu \mathrm{~m} ; \mathrm{ABW}=8.63-12.24 \mu \mathrm{~m}$; tail length $=31.02-$ $57.40 \mu \mathrm{~m} ; \mathrm{c}=7.34-13.83 \mu \mathrm{~m} ; \mathrm{c}^{\prime}=3.59-4.98 \mu \mathrm{~m}$.

4.1.1.4 Identification of Meloidogyne sp in Banana from Dhanuvachapuram

The species of root knot nematode infecting banana from Dhanuvachapuram was identified as M. incognita (Plate 4), based on the morphological and morphometrical data of mature females, perineal pattern and second stage juveniles. The morphometric characters of the population are given in Table 4.

Description: Based on 10 females and 10 juveniles $\left(\mathrm{J}_{2}\right)$.
Measurements: Female: Length $=653.17-846.17 \mu \mathrm{~m}$; width $=400.34-482.34 \mu \mathrm{~m}$; $\mathrm{a}=1.47-1.61 \mu \mathrm{~m}$; stylet length $=15.20-16.34 \mu \mathrm{~m}$; neck length $=156.62-271.24 \mu \mathrm{~m}$; $\mathrm{LMB}=29.17-43.14 \mu \mathrm{~m} ; \mathrm{WMB}=30.81-43.18 \mu \mathrm{~m}$.

Perineal pattern: LVS $=22.17-29.10 \mu \mathrm{~m} ; \quad$ AVS $=15.21-23.40 \mu \mathrm{~m} ; \quad$ ATT =13.2$19.34 \mu \mathrm{~m} ;$ PD $=22.15-30.07 \mu \mathrm{~m}$.

Second stage juveniles $\left(\mathrm{J}_{2}\right)$: Length $=382.72-430.17 \mu \mathrm{~m}$; stylet length $=14.02-$ $16.73 \mu \mathrm{~m} ; \mathrm{H}-\mathrm{MB}=46.38-50.14 \mu \mathrm{~m} ; \mathrm{ABW}=8.92-13.14 \mu \mathrm{~m}$; tail length $=30.17-$ $58.18 \mu \mathrm{~m} ; \mathrm{c}=7.14-14.11 \mu \mathrm{~m} ; \mathrm{c}^{\prime}=3.47-6.72 \mu \mathrm{~m}$

C

Plate 3. (A) females, (B) anterior end of female, (C) perineal pattern, (DE) anterior and posterior end of second stage juvenile of M. incognita in tomato from Dhanuvachapuram

Table 3. Morphometric characters of mature females, perineal pattern and second stage juveniles of tomato population of M. incognita from Dhanuvachapuram

Character ($\mu \mathrm{m}$)	Tomato population
Females	
Length	$\begin{gathered} 702.19 \pm 55.23 \pm 17.46 \\ (645.88-806.53) 7.86 \% \end{gathered}$
Width	$\begin{gathered} 453.24 \pm 29.58 \pm 9.35 \\ (409.93-491.92) 6.52 \% \end{gathered}$
Neck length	$\begin{gathered} 195.43 \pm 36.46 \pm 11.53 \\ (155.03-284.10) 18.66 \% \end{gathered}$
Stylet length	$\begin{gathered} 15.86 \pm 0.62 \pm 0.19 \\ (15.21-16.78) 3.96 \% \\ \hline \end{gathered}$
LMB	$\begin{gathered} 38.53 \pm 4.78 \pm 1.51 \\ (30.25-45.21) 12.41 \% \\ \hline \end{gathered}$
WMB	$\begin{gathered} 38.09 \pm 4.39 \pm 1.38 \\ (30.86-44.21) 11.53 \% \\ \hline \end{gathered}$
a	$\begin{gathered} 1.54 \pm 0.06 \pm 0.02 \\ (1.46-1.66) 4.30 \% \\ \hline \end{gathered}$
Perineal pattern	
LVS	$\begin{gathered} 26.50 \pm 2.10 \pm 0.66 \\ (23.44-29.52) 7.93 \% \end{gathered}$
AVS	$\begin{gathered} 19.28 \pm 2.61 \pm 0.82 \\ (14.88-22.68) 13.58 \% \\ \hline \end{gathered}$
ATT	$\begin{gathered} 16.49 \pm 2.32 \pm 0.73 \\ (13.24-19.94) 14.09 \% \end{gathered}$
IPD	$\begin{gathered} 26.24 \pm 3.10 \pm 0.98 \\ (20.02-30.62) 11.84 \% \\ \hline \end{gathered}$
Second stage juveniles	
Length	$\begin{gathered} 421.72 \pm 12.87 \pm 4.07 \\ (399.61-439.1) 3.0 \% \\ \hline \end{gathered}$
Stylet length	$\begin{gathered} 14.77 \pm 0.45 \pm 0.14 \\ (14.02-15.35) 3.05 \% \end{gathered}$
H-MB	$\begin{gathered} 50.98 \pm 2.24 \pm 0.70 \\ (47.49-53.80) 4.39 \% \\ \hline \end{gathered}$
ABW	$\begin{gathered} 11.25 \pm 1.16 \pm 0.36 \\ (8.63-12.24) 10.30 \% \end{gathered}$
Tail length	$\begin{gathered} 47.59 \pm 6.87 \pm 2.17 \\ (31.02-57.40) 14.45 \% \end{gathered}$
c	$\begin{gathered} 9.08 \pm 1.80 \pm 0.57 \\ (7.34-13.83) 19.85 \% \\ \hline \end{gathered}$
c'	$\begin{gathered} 4.21 \pm 0.41 \pm 0.13 \\ (3.59-4.98) 9.94 \% \\ \hline \end{gathered}$

LMB-Length of median bulb, WMB- width of median bulb, a-length/width ratio, H-MB-head to median bulb, ABW-anal body width, c- length/tail length ratio, c'- tail length/anal body width ratio

Plate 4. (A) females, (B) anterior end of female, (C) perineal pattern, (DE) anterior and posterior end of second stage juvenile of M.incognita in banana from Dhanuvachapuram

Table 4. Morphometric characters of mature females, perineal pattern and second stage juveniles of banana population of M. incognita from
Dhanuvachapuram

Character ($\mu \mathrm{m}$)	Banana population
Females	
Length	$\begin{gathered} 714.18 \pm 50.18 \pm 19.34 \\ (653.17-846.17) 10.11 \% \\ \hline \end{gathered}$
Width	$\begin{gathered} 446.54 \pm 30.17 \pm 9.83 \\ (400.34-482.34) 7.64 \% \\ \hline \end{gathered}$
Neck length	$\begin{gathered} 190.43 \pm 37.14 \pm 12.17 \\ (156.62-271.24) 20.71 \% \end{gathered}$
Stylet length	$\begin{gathered} 15.98 \pm 0.77 \pm 0.18 \\ (15.20-16.34) 3.81 \% \end{gathered}$
LMB	$\begin{gathered} 38.90 \pm 4.81 \pm 1.67 \\ (29.17-43.14) 11.71 \% \\ \hline \end{gathered}$
WMB	$\begin{gathered} 38.017 \pm 4.132 \pm 1.271 \\ (30.81-43.18) 10.67 \% \\ \hline \end{gathered}$
a	$\begin{gathered} 1.56 \pm 0.01 \pm 0.02 \\ (1.47-1.61) 3.21 \% \end{gathered}$
Perineal pattern	
LVS	$\begin{gathered} 26.70 \pm 3.17 \pm 0.19 \\ (22.17-29.10) 7.91 \% \\ \hline \end{gathered}$
AVS	$\begin{gathered} 19.29 \pm 2.11 \pm 0.81 \\ (15.21-23.40) 14.29 \% \end{gathered}$
ATT	$\begin{gathered} 17.01 \pm 2.18 \pm 0.51 \\ (13.21-19.34) 15.00 \% \end{gathered}$
IPD	$\begin{gathered} 28.17 \pm 3.17 \pm 1.17 \\ (22.15-30.07) 11.21 \% \\ \hline \end{gathered}$
Second stage juveniles	
Length	$\begin{gathered} 414.31 \pm 12.17 \pm 5.07 \\ (382.72-430.17) 3.05 \% \\ \hline \end{gathered}$
Stylet length	$\begin{gathered} 14.38 \pm 0.56 \pm 0.13 \\ (14.02-16.73) 3.01 \% \end{gathered}$
H-MB	$\begin{gathered} 48.17 \pm 2.54 \pm 0.81 \\ (46.38-50.14) \\ 4.38 \% \end{gathered}$
ABW	$\begin{gathered} 11.74 \pm 1.70 \pm 0.42 \\ (8.92-13.14) 10.17 \% \end{gathered}$
Tail length	$\begin{gathered} 48.18 \pm 6.78 \pm 2.16 \\ (30.17-58.18) 14.51 \% \\ \hline \end{gathered}$
c	$\begin{gathered} 10.00 \pm 1.74 \pm 0.68 \\ (7.14-14.11) 18.00 \% \\ \hline \end{gathered}$
c'	$\begin{gathered} 4.38 \pm 0.52 \pm 0.28 \\ (3.47-6.72) 8.91 \% \\ \hline \end{gathered}$

LMB-Length of median bulb, WMB- width of median bulb, a-length/width ratio,
H-MB-head to median bulb, ABW-anal body width, c- length/tail length ratio, c'- tail length/anal body width ratio

4.1.1.5 Identification of Meloidogyne sp in Brinjal from Kattakada

The species of root knot nematode infecting brinjal from Kattakada was identified as M. incognita (Plate 5), based on the morphological and morphometrical data of mature females, perineal pattern and second stage juveniles. The morphometric characters of the population are given in Table 5.

Description: Based on 10 females and 10 juveniles $\left(\mathrm{J}_{2}\right)$.

Measurements: Female: Length $=498.37-776.46 \mu \mathrm{~m}$; width $=305.73-590.06 \mu \mathrm{~m} ; \mathrm{a}=$ $1.05-1.71 \mu \mathrm{~m}$; stylet length $=16.10-19.25 \mu \mathrm{~m}$; neck length $=140.45-299.04 \mu \mathrm{~m}$; $\mathrm{LMB}=28.43-42.18 \mu \mathrm{~m} ; \mathrm{WMB}=30.00-40.30 \mu \mathrm{~m}$.

Perineal pattern: $\mathrm{LVS}=25.98-31.62 \mu \mathrm{~m} ; \mathrm{AVS}=17.38-23.51 \mu \mathrm{~m} ;$ ATT $=15.02-$ $22.36 \mu \mathrm{~m} ;$ IPD $=20.15-28.24 \mu \mathrm{~m}$.

Second stage juveniles $\left(\mathrm{J}_{2}\right)$: Length $=380.07-422.15 \mu \mathrm{~m}$; stylet length $=13.80-$ $14.91 \mu \mathrm{~m} ; \mathrm{H}-\mathrm{MB}=47.66-52.91 \mu \mathrm{~m} ; \mathrm{ABW}=10.32-11.58 \mu \mathrm{~m}$; tail length $=46.63-$ $55.76 \mu \mathrm{~m} ; \mathrm{c}=7.36-8.91 \mu \mathrm{~m} ; \mathrm{c}^{\prime}=4.11-5.19 \mu \mathrm{~m}$.

4.1.1.6 Identification of Meloidogyne sp in okra from Kattakada

The species of root knot nematode infecting okra from Kattakada was identified as M. chitwoodi (Plate 6), based on the morphological and morphometrical data of mature females, perineal pattern and second stage juveniles. The morphometric characters of the population are given in Table 6.

Description: Based on 10 females and 10 juveniles $\left(\mathrm{J}_{2}\right)$.
Measurements: Female: Length $=432.75-756.75 \mu \mathrm{~m}$; width $=356.99-524.54 \mu \mathrm{~m}$; $\mathrm{a}=$ $1.28-1.74 \mu \mathrm{~m}$; stylet length $=13.32-14.84 \mu \mathrm{~m}$; neck length $=180.77-259.27 \mu \mathrm{~m}$; $\mathrm{LMB}=30.14-50.13 \mu \mathrm{~m} ; \mathrm{WMB}=30.10-42.51 \mu \mathrm{~m}$.

Perineal pattern: $\mathrm{LVS}=19.34-30.17 \mu \mathrm{~m} ; \mathrm{AVS}=14.30-24.02 \mu \mathrm{~m} ;$ ATT $=14.59-$ $22.22 \mu \mathrm{~m} ;$ IPD $=25.02-44.34 \mu \mathrm{~m}$.

Plate 5. (A) females, (B) anterior end of female, (C) perineal pattern, (DE) anterior and posterior end of second stage juvenile of M. incognita in brinjal from Kattakada

Table5. Morphometric characters of mature females, perineal pattern and second stage juveniles of brinjal population of M. incognita from Kattakada

Character ($\mu \mathrm{m}$)	Brinjal population
Females	
Length	$\begin{gathered} 626.65 \pm 82.89 \pm 26.21 \\ (498.37-776.46) 13.22 \% \\ \hline \end{gathered}$
Width	$\begin{gathered} 453.73 \pm 87.58 \pm 27.69 \\ (305.73-590.06) 19.30 \% \\ \hline \end{gathered}$
Neck length	$\begin{gathered} 182.07 \pm 51.00 \pm 16.12 \\ (140.45-299.04) 28.01 \% \\ \hline \end{gathered}$
Stylet length	$\begin{gathered} 17.90 \pm 1.06 \pm 0.33 \\ (16.10-19.25) 5.96 \% \end{gathered}$
LMB	$\begin{gathered} 35.45 \pm 5.12 \pm 1.62 \\ (28.43-42.18) 14.46 \% \\ \hline \end{gathered}$
WMB	$\begin{gathered} 34.07 \pm 4.09 \pm 1.29 \\ (30.00-40.30) 12.02 \% \\ \hline \end{gathered}$
${ }^{\text {a }}$	$\begin{gathered} 1.46 \pm 0.21 \pm 0.06 \\ (1.05-1.71) 14.41 \% \\ \hline \end{gathered}$
Perineal pattern	
LVS	$\begin{gathered} 27.90 \pm 1.95 \pm 0.61 \\ (25.98-31.62) 6.99 \% \\ \hline \end{gathered}$
AVS	$\begin{gathered} 20.12 \pm 2.15 \pm 0.68 \\ (17.38-23.51) 10.70 \% \\ \hline \end{gathered}$
ATT	$\begin{gathered} 17.71 \pm 2.38 \pm 0.75 \\ (15.02-22.36) 13.45 \% \end{gathered}$
IPD	$\begin{gathered} 23.72 \pm 2.46 \pm 0.77 \\ (20.15-28.24) 10.39 \% \end{gathered}$
Second stage juveniles	
Length	$\begin{gathered} 401.74 \pm 12.38 \pm 3.91 \\ (380.07-422.15) 3.08 \% \\ \hline \end{gathered}$
Stylet length	$14.489 \pm 0.381 \pm 0.120$ $(13.804-14.911) 2.626 \%$
H-MB	$\begin{gathered} 50.241 \pm 1.925 \pm 0.60 \\ (47.66-52.91) 3.83 \% \\ \hline \end{gathered}$
ABW	$\begin{gathered} 11.03 \pm 0.36 \pm 0.11 \\ (10.32-11.58) 3.34 \% \end{gathered}$
Tail length	$\begin{gathered} 51.23 \pm 3.04 \pm 0.96 \\ (46.63-55.76) 5.94 \% \\ \hline \end{gathered}$
c	$\begin{gathered} \hline 7.86 \pm 0.51 \pm 0.61 \\ (7.36-8.91) 6.52 \% \\ \hline \end{gathered}$
c'	$4.644 \pm 0.280 \pm 0.089$

LMB-Length of median bulb, WMB- width of median bulb, a-length/width ratio, H-MB-head to median bulb, ABW-anal body width, c- length/tail length ratio, c'- tail length/anal body width ratio

Plate 6. (A) female, (B) anterior end of female, (C) perineal pattern, (DE) anterior and posterior end of second stage juvenile of M.chitwoodi in okra from Kattakada

Table 6. Morphometric characters of mature females, perineal pattern and second stage juveniles of okra population of M. chitwoodi from Kattakada

LMB-Length of median bulb, WMB- width of median bulb, a-length/width ratio, H-MB-head to median bulb, ABW-anal body width, c- length/tail length ratio, c'- tail length/anal body width ratio

Second stage juveniles $\left(\mathrm{J}_{2}\right)$: Length $=330.23-410.23 \mu \mathrm{~m}$; stylet length $=10.24$ $12.19 \mu \mathrm{~m} ; \mathrm{H}-\mathrm{MB}=40.81-50.28 \mu \mathrm{~m} ; \mathrm{ABW}=10.81-12.10 \mu \mathrm{~m}$; tail length $=40.30-$ $49.01 \mu \mathrm{~m} ; \mathrm{c}=7.96-9.81 \mu \mathrm{~m} ; \mathrm{c}^{\prime}=4.25-5.90 \mu \mathrm{~m}$

4.1.1.7 Identification of Meloidogyne sp in Tomato from Kattakada

The species of root knot nematode infecting tomato from Kattakada was identified as M. incognita (Plate 7), based on the morphological and morphometrical data of mature females, perineal pattern and second stage juveniles. The morphometric characters of the population are given in Table 7.

Description: Based on 10 females and 10 juveniles $\left(\mathrm{J}_{2}\right)$.
Measurements: Female: Length $=558.98-686.01 \mu \mathrm{~m}$; width $=363.90-479.17 \mu \mathrm{~m} ; \mathrm{a}=$ $1.28-1.66 \mu \mathrm{~m}$; stylet length $=14.20-17.79 \mu \mathrm{~m}$; neck length $=149.89-225.44 \mu \mathrm{~m}$; $\mathrm{LMB}=35.11-50.52 \mu \mathrm{~m} ; \mathrm{WMB}=35.03-50.08 \mu \mathrm{~m}$.

Perineal pattern: LVS $=20.58-25.33 \mu \mathrm{~m} ; \mathrm{AVS}=16.35-20.25 \mu \mathrm{~m} ; \mathrm{ATT}=11.94-$ $19.12 \mu \mathrm{~m} ; \mathrm{IPD}=18.25-30.45 \mu \mathrm{~m}$.

Second stage juveniles $\left(\mathrm{J}_{2}\right)$: Length $=345.63-389.17 \mu \mathrm{~m}$; stylet length $=12.73-$ $14.58 \mu \mathrm{~m} ; \mathrm{H}-\mathrm{MB}=47.66-53.56 \mu \mathrm{~m} ; \mathrm{ABW}=10.02-11.99 \mu \mathrm{~m}$; tail length $=47.42-$ $66.92 \mu \mathrm{~m} ; \mathrm{c}=5.20-7.89 \mu \mathrm{~m} ; \mathrm{c}^{\prime}=4.03-5.71 \mu \mathrm{~m}$.

4.1.1.8 Identification of Meloidogyne sp in Banana from Kattakada

The species of root knot nematode infecting banana from Kattakada was identified as M. incognita (Plate 8), based on the morphological and morphometrical data of mature females, perineal pattern and second stage juveniles. The morphometric characters of the population are given in Table 8.

Description: Based on 10 females and 10 juveniles $\left(\mathrm{J}_{2}\right)$.
Measurements: Female: Length $=435.75-786.75 \mu \mathrm{~m}$; width $=408.99-589.54 \mu \mathrm{~m}$; $\mathrm{a}=1.28-1.74 \mu \mathrm{~m}$; stylet length $=16.32-17.84 \mu \mathrm{~m}$; neck length $=156.27-298.15 \mu \mathrm{~m}$; $\mathrm{LMB}=30.14-45.15 \mu \mathrm{~m} ; \mathrm{WMB}=29.18-43.61 \mu \mathrm{~m}$.

Plate 7. (A) female, (B) anterior end of female, (C) perineal pattern, (DE) anterior and posterior end of second stage juvenile of M. incognita in tomato from Kattakada

Table7. Morphometric characters of mature females, perineal pattern and second stage juveniles of tomato population of M. incognita from Kattakada

Character ($\mu \mathrm{m}$)	Tomato population
Females	
Length	$\begin{gathered} 618.28 \pm 39.96 \pm 12.63 \\ (558.98-686.01) 6.46 \% \\ \hline \end{gathered}$
Width	$\begin{gathered} 422.36 \pm 37.90 \pm 11.98 \\ (363.90-479.17) 8.97 \% \end{gathered}$
Neck length	$\begin{gathered} 173.47 \pm 26.09 \pm 8.25 \\ (149.89-225.4) 15.04 \% \end{gathered}$
Stylet length	$\begin{gathered} 16.560 \pm 1.02 \pm 0.32 \\ (14.20-17.79) 6.19 \% \\ \hline \end{gathered}$
LMB	$\begin{gathered} 42.28 \pm 5.59 \pm 1.77 \\ (35.11-50.52) 13.23 \% \\ \hline \end{gathered}$
WMB	$\begin{gathered} 42.02 \pm 4.54 \pm 1.43 \\ (35.03-50.08) 9.88 \% \end{gathered}$
a	$\begin{gathered} 1.46 \pm 0.13 \pm 0.04 \\ (1.28-1.66) 8.95 \% \\ \hline \end{gathered}$
Perineal pattern	
LVS	$\begin{gathered} 23.01 \pm 1.54 \pm 0.48 \\ (20.58-25.33) 6.71 \% \end{gathered}$
AVS	$\begin{gathered} 17.98 \pm 1.23 \pm 0.39 \\ (16.35-20.25) 6.87 \% \\ \hline \end{gathered}$
ATT	$\begin{gathered} 14.98 \pm 1.95 \pm 0.61 \\ (11.94-19.12) 13.05 \% \\ \hline \end{gathered}$
IPD	$\begin{gathered} 25.32 \pm 3.82 \pm 1.20 \\ (18.257-30.455) \quad 15.10 \% \end{gathered}$
Second stage juveniles	
Length	$\begin{gathered} 368.53 \pm 17.79 \pm 5.62 \\ (345.63-389.17) 4.82 \% \end{gathered}$
Stylet length	$\begin{gathered} 13.63 \pm 0.67 \pm 0.21 \\ (12.73-14.58) 4.98 \% \end{gathered}$
H-MB	$\begin{gathered} 50.20 \pm 2.13 \pm 0.67 \\ (47.66-53.56) 4.26 \% \\ \hline \end{gathered}$
ABW	$\begin{gathered} 10.97 \pm 0.74 \pm 0.23 \\ (10.02-11.99) 6.78 \% \\ \hline \end{gathered}$
Tail length	$\begin{gathered} 52.14 \pm 5.67 \pm 1.79 \\ (47.423-66.923) 10.87 \% \\ \hline \end{gathered}$
c	$\begin{gathered} 7.13 \pm 0.74 \pm 0.23 \\ (5.20-7.89) 10.39 \% \\ \hline \end{gathered}$
c'	$\begin{gathered} 4.75 \pm 0.46 \pm 0.14 \\ (4.03-5.71) 9.84 \% \end{gathered}$

LMB-Length of median bulb, WMB- width of median bulb, a-length/width ratio, H-MB-head to median bulb, ABW-anal body width, c- length/tail length ratio, c'- tail length/anal body width ratio

Plate 8. (A) female, (B) anterior end of female, (C) perineal pattern, (DE) anterior and posterior end of second stage juvenile of M.incognita in banana from Kattakada

Table8. Morphometric characters of mature females, perineal pattern and second stage juveniles of banana population of M. incognita from Kattakada

Character ($\mu \mathrm{m}$)	Banana population
Females	
Length	$\begin{gathered} 683.29 \pm 53.15 \pm 16.80 \\ (435.75-786.75) 6.47 \% \end{gathered}$
Width	$\begin{gathered} 515.82 \pm 53.65 \pm 16.96 \\ (408.99-589.54) 10.40 \% \\ \hline \end{gathered}$
Neck length	$\begin{gathered} 201.34 \pm 28.14 \pm 10.00 \\ (156.27-298.15) 14.13 \% \end{gathered}$
Stylet length	$\begin{gathered} 17.23 \pm 0.16 \pm 0.82 \\ (16.32-17.84) 2.67 \% \\ \hline \end{gathered}$
LMB	$\begin{gathered} 42.37 \pm 6.73 \pm 1.81 \\ (30.14-45.15) 15.00 \% \\ \hline \end{gathered}$
WMB	$\begin{gathered} 40.81 \pm 5.07 \pm 1.70 \\ (30.14-45.15) 15.00 \% \\ \hline \end{gathered}$
a	$\begin{gathered} 1.35 \pm 0.32 \pm 0.12 \\ (1.28-1.74) 9.37 \% \\ \hline \end{gathered}$
Perineal pattern	
LVS	$\begin{gathered} 26.98 \pm 5.77 \pm 1.24 \\ (24.34-30.17) 15.13 \% \end{gathered}$
AVS	$\begin{gathered} 20.50 \pm 3.82 \pm 0.86 \\ (18.30-25.02) 16.40 \% \end{gathered}$
ATT	$17.40 \pm 2.01 \pm 0.53$ $(13.09-20.17) 13.20 \%$
IPD	$\begin{gathered} 26.38 \pm 2.34 \pm 0.58 \\ (22.60-38.09) 17.64 \% \\ \hline \end{gathered}$
Second stage juveniles	
Length	$\begin{gathered} 378.76 \pm 20.15 \pm 7.34 \\ (301.23-401.23) 6.32 \% \end{gathered}$
Stylet length	$\begin{gathered} 13.54 \pm 2.57 \pm 0.70 \\ (11.24-15.19) 2.81 \% \end{gathered}$
H-MB	$\begin{gathered} 46.38 \pm 2.80 \pm 0.81 \\ (40.81-50.28) 5.82 \% \\ \hline \end{gathered}$
ABW	$\begin{gathered} 11.81 \pm 0.38 \pm 0.91 \\ (10.81-12.10) 4.06 \% \end{gathered}$
Tail length	$\begin{gathered} 50.08 \pm 6.72 \pm 0.08 \\ (45.30-58.01) 6.21 \% \\ \hline \end{gathered}$
c	$\begin{gathered} 7.80 \pm 0.52 \pm 0.73 \\ (7.06-9.21) 7.82 \% \end{gathered}$
c'	$\begin{gathered} 4.98 \pm 0.38 \pm 1.12 \\ (4.25-5.90) 7.32 \% \end{gathered}$

LMB-Length of median bulb, WMB- width of median bulb, a-length/width ratio, H-MB-head to median bulb, ABW-anal body width, c- length/tail length ratio, c'- tail length/anal body width ratio

Perineal pattern: $\mathrm{LVS}=24.34-30.17 \mu \mathrm{~m} ; \mathrm{AVS}=18.30-25.02 \mu \mathrm{~m} ;$ ATT $=13.09-$ $20.17 \mu \mathrm{~m} ; \mathrm{IPD}=22.60-38.09 \mu \mathrm{~m}$.

Second stage juveniles $\left(\mathrm{J}_{2}\right)$: Length $=301.23-401.23 \mu \mathrm{~m}$; stylet length $=11.24$ $15.19 \mu \mathrm{~m} ; \mathrm{H}-\mathrm{MB}=40.81-50.28 \mu \mathrm{~m} ; \mathrm{ABW}=10.81-12.10 \mu \mathrm{~m}$; tail length $=45.30-$ $58.01 \mu \mathrm{~m} ; \mathrm{c}=7.06-9.21 \mu \mathrm{~m} ; \mathrm{c}^{\prime}=4.25-5.90 \mu \mathrm{~m}$.

4.1.1.9 Identification of Meloidogyne sp in Brinjal from Vellayani

The species of root knot nematode infecting brinjal from Vellayani was identified as M. incognita (Plate 9), based on the morphological and morphometrical data of mature females, perineal pattern and second stage juveniles. The morphometric characters of the population are given in Table 9.

Description: Based on 10 females and 10 juveniles $\left(\mathrm{J}_{2}\right)$.
Measurements: Female: Length $=505.33-671.80 \mu \mathrm{~m}$; width $=386.60-565.99 \mu \mathrm{~m} ; \mathrm{a}=$ $0.93-1.72 \mu \mathrm{~m}$; stylet length $=16.20-18.93 \mu \mathrm{~m}$; neck length $=127.34-264.99 \mu \mathrm{~m}$; $\mathrm{LMB}=32.04-35.46 \mu \mathrm{~m} ; \mathrm{WMB}=30.10-32.90 \mu \mathrm{~m}$.

Perineal pattern: $\mathrm{LVS}=18.56-27.83 \mu \mathrm{~m} ; \mathrm{AVS}=16.33-25.07 \mu \mathrm{~m} ;$ ATT $=15.44-$ $24.86 \mu \mathrm{~m} ;$ IPD $=20.59-38.18 \mu \mathrm{~m}$.

Second stage juveniles $\left(\mathrm{J}_{2}\right)$: Length $=350.96-400.31 \mu \mathrm{~m}$; stylet length $=13.16$ $14.43 \mu \mathrm{~m} ; \mathrm{H}-\mathrm{MB}=46.32-53.63 \mu \mathrm{~m} ; \mathrm{ABW}=8.06-11.79 \mu \mathrm{~m}$; tail length= 37.19$56.15 \mu \mathrm{~m} ; \mathrm{c}=6.75-10.58 \mu \mathrm{~m} ; \mathrm{c}^{\prime}=3.93-6.25 \mu \mathrm{~m}$.

4.1.1.10 Identification of Meloidogyne sp in okra from Vellayani

The species of root knot nematode infecting okra from Vellayani was identified as M. incognita (Plate 10), based on the morphological and morphometrical data of mature females, perineal pattern and second stage juveniles. The morphometric characters of the population are given in Table 10.

Description: Based on 10 females and 10 juveniles $\left(\mathrm{J}_{2}\right)$.

Plate 9. (A) female, (B) anterior end of female, (C) perineal pattern, (DE) anterior and posterior end of second stage juvenile of M.incognita in brinjal from Vellayani

Table 9. Morphometric characters of mature females, perineal pattern and second stage juveniles of tomato population of M. incognita from Vellayani

LMB-Length of median bulb, WMB- width of median bulb, a-length/width ratio, H-MB-head to median bulb, ABW-anal body width, c- length/tail length ratio, c'- tail length/anal body width ratio

Plate 10. (A) female, (B) anterior end of female, (C) perineal pattern, (DE) anterior and posterior end of second stage juvenile of M. incognita in okra from Vellayani

Table 10. Morphometric characters of mature females, perineal pattern and second stage juveniles of okra population of M. incognita from Vellayani

LMB-Length of median bulb, WMB- width of median bulb, a-length/width ratio, H-MB-head to median bulb, ABW-anal body width, c- length/tail length ratio, c'- tail length/anal body width ratio

Measurements: Female: Length $=489.39-585.61 \mu \mathrm{~m}$; width $=288.03-502.14 \mu \mathrm{~m} ; \mathrm{a}=$ $1.13-1.69 \mu \mathrm{~m}$; stylet length $=11.21-15.90 \mu \mathrm{~m}$; neck length $=107.03-198.48 \mu \mathrm{~m}$; $\mathrm{LMB}=28.04-35.23 \mu \mathrm{~m} ; \mathrm{WMB}=20.08-32.84 \mu \mathrm{~m}$.

Perineal pattern: $\mathrm{LVS}=20.50-29.49 \mu \mathrm{~m} ; \mathrm{AVS}=16.18-24.30 \mu \mathrm{~m} ; \quad \mathrm{ATT}=15.74-$ $23.29 \mu \mathrm{~m} ;$ IPD $=24.27-39.61 \mu \mathrm{~m}$.

Second stage juveniles $\left(\mathrm{J}_{2}\right)$: Length $=361.82-468.34 \mu \mathrm{~m}$; stylet length $=13.11-$ $15.16 \mu \mathrm{~m} ; \mathrm{H}-\mathrm{MB}=47.60-54.22 \mu \mathrm{~m} ; \mathrm{ABW}=9.19-11.64 \mu \mathrm{~m}$; tail length $=47.78-$ $70.19 \mu \mathrm{~m} ; \mathrm{c}=6.67-9.38 \mu \mathrm{~m} ; \mathrm{c}^{\prime}=4.72-6.02 \mu \mathrm{~m}$.

4.1.1.11 Identification of Meloidogyne sp in Tomato from Vellayani

The species of root knot nematode infecting tomato from Vellayani was identified as M. incognita (Plate 11), based on the morphological and morphometrical data of mature females, perineal pattern and second stage juveniles. The morphometric characters of the population are given in Table 11.

Description: Based on 10 females and 10 juveniles $\left(\mathrm{J}_{2}\right)$.

Measurements: Female: Length $=462.89-612.95 \mu \mathrm{~m}$; width $=288.61-474.55 \mu \mathrm{~m}$; $\mathrm{a}=$ $1.15-1.60 \mu \mathrm{~m}$; stylet length $=16.04-17.80 \mu \mathrm{~m}$; neck length $=128.90-233.66 \mu \mathrm{~m}$; $L M B=30.18-35.26 \mu \mathrm{~m} ; W M B=20.16-36.20 \mu \mathrm{~m}$.

Perineal pattern: $\mathrm{LVS}=23.43-30.06 \mu \mathrm{~m} ; \mathrm{AVS}=15.52-27.09 \mu \mathrm{~m} ; A T \mathrm{~T}=16.39-$ $25.92 \mu \mathrm{~m} ;$ IPD $=21.33-36.70 \mu \mathrm{~m}$.

Second stage juveniles $\left(\mathrm{J}_{2}\right)$: Length $=369.03-439.27 \mu \mathrm{~m}$; stylet length $=14.10-$ $16.79 \mu \mathrm{~m} ; \mathrm{H}-\mathrm{MB}=51.94-60.94 \mu \mathrm{~m} ; \mathrm{ABW}=10.61-14.98 \mu \mathrm{~m}$; tail length $=49.58-$ $58.68 \mu \mathrm{~m} ; \mathrm{c}=6.82-8.25 \mu \mathrm{~m} ; \mathrm{c}^{\prime}=3.79-5.09 \mu \mathrm{~m}$.

4.1.1.12 Identification of Meloidogyne sp in Banana from Vellayani

The species of root knot nematode infecting banana in Vellayani was identified as M. incognita (Plate 12), based on the morphological and

Plate 11. (A) female, (B) anterior end of female, (C) perineal pattern, (DE) anterior and posterior end of second stage juvenile of M. incognita in tomato from Vellayani

Table 11. Morphometric characters of mature females, perineal pattern and second stage juveniles of tomato population of M. incognita from Vellayani

Females	
Length	$\begin{gathered} 550.29 \pm 45.36 \pm 14.34 \\ (462.89-612.95) 8.24 \% \end{gathered}$
Width	$\begin{gathered} 401.49 \pm 55.36 \pm 17.50 \\ (288.61-474.55) 13.78 \% \\ \hline \end{gathered}$
Neck length	$\begin{gathered} 171.21 \pm 34.12 \pm 10.79 \\ (128.90-233.66) 19.93 \% \end{gathered}$
Stylet length	$\begin{gathered} 16.53 \pm 0.54 \pm 0.17 \\ (16.04-17.80) 3.32 \% \end{gathered}$
LMB	$\begin{gathered} 31.62 \pm 2.07 \pm 0.65 \\ (30.18-35.26) 6.55 \% \end{gathered}$
WMB	$\begin{gathered} 30.04 \pm 5.56 \pm 1.75 \\ (20.16-36.20) 18.51 \% \\ \hline \end{gathered}$
${ }^{\text {a }}$	$\begin{gathered} 1.38 \pm 0.15 \pm 0.04 \\ (1.15-1.60) 11.07 \% \\ \hline \end{gathered}$
Perineal pattern	
LVS	$\begin{gathered} 27.49 \pm 2.23 \pm 0.07 \\ (23.43-30.06) 8.14 \% \end{gathered}$
AVS	$\begin{gathered} 20.61 \pm 3.42 \pm 1.08 \\ (15.52-27.09) 16.60 \% \end{gathered}$
ATT	$\begin{gathered} 21.19 \pm 2.66 \pm 0.84 \\ (16.39-25.92) 12.56 \% \end{gathered}$
IPD	$\begin{gathered} 25.85 \pm 4.61 \pm 1.46 \\ (21.33-36.70) 17.85 \% \\ \hline \end{gathered}$
Second stage juveniles	
Length	$\begin{gathered} 408.45 \pm 20.68 \pm 6.53 \\ (369.03-439.27) 5.06 \% \end{gathered}$
Stylet length	$\begin{gathered} 15.05 \pm 0.79 \pm 0.25 \\ (14.10-16.79) 5.25 \% \end{gathered}$
H-MB	$\begin{gathered} 56.70 \pm 3.23 \pm 1.02 \\ (51.94-60.94) 5.70 \% \\ \hline \end{gathered}$
ABW	$\begin{gathered} 12.67 \pm 1.39 \pm 0.44 \\ (10.61-14.98) 11.04 \% \end{gathered}$
Tail length	$\begin{gathered} 53.94 \pm 2.43 \pm 0.77 \\ (49.58-58.68) 4.51 \\ \hline \end{gathered}$
c	$\begin{gathered} 7.58 \pm 0.47 \pm 0.15 \\ (6.82-8.25) 6.25 \% \\ \hline \end{gathered}$
c'	$\begin{gathered} 4.29 \pm 0.46 \pm 0.14 \\ (3.79-5.09) 10.86 \% \end{gathered}$

LMB-Length of median bulb, WMB- width of median bulb, a-length/width ratio, H-MB-head to median bulb, ABW-anal body width, c- length/tail length ratio, c'- tail length/anal body width ratio
morphometrical data of mature females, perineal pattern and second stage juveniles. The morphometric characters of the population are given in Table 12.

Description: Based on 10 females and 10 juveniles $\left(\mathrm{J}_{2}\right)$.
Measurements: Female: Length $=528.27-693.14 \mu \mathrm{~m}$; width $=373.40-570.14 \mu \mathrm{~m} ; \mathrm{a}=$ $0.98-1.81 \mu \mathrm{~m}$; stylet length $=15.34-18.14 \mu \mathrm{~m}$; neck length $=137.14-282.76 \mu \mathrm{~m}$; $\mathrm{LMB}=32.17-42.14 \mu \mathrm{~m} ; W M B=30.00-42.28 \mu \mathrm{~m}$.

Perineal pattern: LVS $=22.17-32.60 \mu \mathrm{~m} ; \mathrm{AVS}=14.37-27.18 \mu \mathrm{~m} ;$ ATT $=17.18-$ $26.24 \mu \mathrm{~m} ;$ IPD $=22.14-41.24 \mu \mathrm{~m}$.

Second stage juveniles $\left(\mathrm{J}_{2}\right)$: Length $=362.17-451.20 \mu \mathrm{~m}$; stylet length $=14.10$ $16.27 \mu \mathrm{~m} ; \mathrm{H}-\mathrm{MB}=45.37-56.02 \mu \mathrm{~m} ; \mathrm{ABW}=10.17-15.01 \mu \mathrm{~m}$; tail length $=48.01-$ $58.64 \mu \mathrm{~m} ; \mathrm{c}=6.81-9.27 \mu \mathrm{~m} ; \mathrm{c}^{\prime}=3.98-5.98 \mu \mathrm{~m}$.

4.1.2 Identification of Meloidogyne spp. from Idukki District

4.1.2.1 Identification of Meloidogyne sp in Brinjal from Balagram

The species of root knot nematode infecting brinjal from Balagram was identified as M. javanica (Plate 13), based on the morphological and morphometrical data of mature females, perineal pattern and second stage juveniles. The morphometric characters of the population are given in Table 13.

Description: Based on 10 females and 10 juveniles $\left(\mathrm{J}_{2}\right)$.
Measurements: Female: Length $=494.88-807.52 \mu \mathrm{~m}$; width $=363.85-603.10 \mu \mathrm{~m} ; \mathrm{a}=$ $1.27-2.17 \mu \mathrm{~m}$; stylet length $=13.45-15.68 \mu \mathrm{~m}$; neck length $=152.30-302.46 \mu \mathrm{~m}$; $\mathrm{LMB}=38.14-46.37 \mu \mathrm{~m} ; \mathrm{WMB}=38.98-46.37 \mu \mathrm{~m}$.

Perineal pattern: $\mathrm{LVS}=18.13-24.66 \mu \mathrm{~m} ; \mathrm{AVS}=10.77-19.63 \mu \mathrm{~m} ; \quad$ ATT $=17.60-$ $25.94 \mu \mathrm{~m} ;$ IPD $=14.62-29.29 \mu \mathrm{~m}$.

Second stage juveniles $\left(\mathrm{J}_{2}\right)$: Length $=360.75-436.71 \mu \mathrm{~m}$; stylet length $=13.26$ $14.98 \mu \mathrm{~m} ; \mathrm{H}-\mathrm{MB}=47.37-58.11 \mu \mathrm{~m} ; \mathrm{ABW}=9.11-11.87 \mu \mathrm{~m}$; tail length $=48.54-$ $55.39 \mu \mathrm{~m} ; \mathrm{c}=6.28-10.31 \mu \mathrm{~m} ; \mathrm{c}^{\prime}=3.38-7.20 \mu \mathrm{~m}$.

Plate 12. (A) female, (B) anterior end of female, (C) perineal pattern, (DE) anterior and posterior end of second stage juvenile of M incognita in banana from Vellayani

Table 12. Morphometric characters of mature females, perineal pattern and second stage juveniles of banana population of M. incognita from Vellayani

Character ($\mu \mathrm{m}$)	Banana population
Females	
Length	$\begin{gathered} 620.14 \pm 64.72 \pm 17.14 \\ (528.27-693.14) 11.10 \% \end{gathered}$
Width	$\begin{gathered} 479.24 \pm 82.30 \pm 23.17 \\ (373.40-570.14) 15.07 \% \end{gathered}$
Neck length	$\begin{gathered} 183.24 \pm 50.00 \pm 16.78 \\ (137.14-282.76) 29.18 \% \\ \hline \end{gathered}$
Stylet length	$\begin{gathered} 17.18 \pm 0.17 \pm 0.38 \\ (15.34-18.14) 6.07 \% \end{gathered}$
LMB	$\begin{gathered} 40.16 \pm 1.89 \pm 0.17 \\ (32.17-42.14) 4.61 \% \end{gathered}$
WMB	$\begin{gathered} 40.00 \pm 1.67 \pm 0.43 \\ (30.00-42.28) 3.81 \% \\ \hline \end{gathered}$
a	$\begin{gathered} 1.29 \pm 0.18 \pm 0.03 \\ (0.98-1.81) 16.54 \% \end{gathered}$
Perineal pattern	
LVS	$\begin{gathered} 27.34 \pm 3.48 \pm 1.10 \\ (22.17-32.60) 8.21 \% \\ \hline \end{gathered}$
AVS	$\begin{gathered} 20.81 \pm 3.82 \pm 1.81 \\ (14.37-27.18) 16.17 \% \end{gathered}$
ATT	$\begin{gathered} 21.32 \pm 2.17 \pm 0.91 \\ (17.18-26.24) 13.60 \% \\ \hline \end{gathered}$
IPD	$\begin{gathered} 27.81 \pm 4.10 \pm 1.61 \\ (22.14-41.24) 19.21 \% \end{gathered}$
Second stage juveniles	
Length	$\begin{gathered} 423.19 \pm 28.17 \pm 7.81 \\ (362.173-451.207) 7.173 \% \\ \hline \end{gathered}$
Stylet length	$15.67 \pm 0.83 \pm 0.36$ $(14.10-16.27) 5.67 \%$
H-MB	$\begin{aligned} & 54.372 \pm 4.317 \pm 2.108 \\ & (45.37-56.02) 5.37 \% \end{aligned}$
ABW	$\begin{gathered} 12.17 \pm 1.47 \pm 0.51 \\ (10.173-15.017) 12.173 \% \end{gathered}$
Tail length	$\begin{gathered} 52.98 \pm 2.45 \pm 0.81 \\ (48.01-58.64) \\ 4.52 \% \end{gathered}$
c	$\begin{gathered} 7.83 \pm 0.81 \pm 0.25 \\ (6.81-9.27) 6.30 \% \\ \hline \end{gathered}$
c'	$\begin{gathered} 5.37 \pm 0.53 \pm 0.13 \\ (3.98-5.98) 11.31 \% \end{gathered}$

LMB-Length of median bulb, WMB- width of median bulb, a-length/width ratio, H-MB-head to median bulb, ABW -anal body width, c- length/tail length ratio, c'- tail length/anal body width ratio

Plate 13. (A) female, (B) anterior end of female, (C) perineal pattern, (DE) anterior and posterior end of second stage juvenile $(20 \mu \mathrm{~m})$ of M. javanica in brinjal from Balagram

Table 13. Morphometric characters of mature females, perineal pattern and second stage juveniles of brinjal population of M. javanica from Balagram

Character ($\mu \mathrm{m}$)	Brinjal population
Females	
Length	$\begin{gathered} 701.50 \pm 107.66 \pm 34.04 \\ (494.88-807.52) 15.34 \% \end{gathered}$
Width	$\begin{gathered} 416.66 \pm 71.14 \pm 22.49 \\ (363.85-603.10) 17.07 \% \end{gathered}$
Neck length	$\begin{gathered} 223.77 \pm 48.33 \pm 15.28 \\ (152.30-302.46) 21.59 \% \end{gathered}$
Stylet length	$\begin{gathered} 14.49 \pm 0.84 \pm 0.26 \\ (13.45-15.68) 5.88 \% \end{gathered}$
LMB	$\begin{gathered} 42.11 \pm 3.14 \pm 0.99 \\ (38.14-46.37) 7.46 \% \end{gathered}$
WMB	$\begin{gathered} 41.89 \pm 2.89 \pm 0.91 \\ (38.98-46.37) 6.91 \% \end{gathered}$
a	$\begin{gathered} 1.72 \pm 0.31 \pm 0.09 \\ (1.27-2.17) 18.10 \% \end{gathered}$
Perineal pattern	
LVS	$\begin{gathered} 22.25 \pm 2.26 \pm 0.71 \\ (18.13-24.66) 10.15 \end{gathered}$
AVS	$\begin{gathered} 16.82 \pm 2.52 \pm 0.79 \\ (10.77-19.63) 14.99 \% \\ \hline \end{gathered}$
ATT	$\begin{gathered} 21.21 \pm 2.99 \pm 1.05 \\ (17.60-25.94) 14.12 \% \\ \hline \end{gathered}$
IPD	$\begin{gathered} 20.94 \pm 5.03 \pm 1.71 \\ (14.62-29.29) 24.02 \% \end{gathered}$
Second stage juveniles	
Length	$\begin{gathered} 410.71 \pm 21.76 \pm 8.41 \\ (360.75-436.71) 6.01 \% \end{gathered}$
Stylet length	$\begin{gathered} 13.91 \pm 0.51 \pm 0.24 \\ (13.26-14.98) 3.11 \% \\ \hline \end{gathered}$
H-MB	$\begin{gathered} 53.04 \pm 3.41 \pm 1.08 \\ (47.37-58.11) 6.51 \% \\ \hline \end{gathered}$
ABW	$\begin{gathered} 10.56 \pm 0.51 \pm 0.16 \\ (9.11-11.87) 4.73 \% \end{gathered}$
Tail length	$\begin{gathered} 52.11 \pm 2.41 \pm 0.87 \\ (48.54-55.39) 4.21 \% \\ \hline \end{gathered}$
c	$\begin{gathered} 7.88 \pm 1.70 \pm 0.51 \\ (6.28-10.31) 18.21 \% \end{gathered}$
c'	$\begin{gathered} 4.93 \pm 1.11 \pm 0.54 \\ (3.38-7.20) 18.01 \% \\ \hline \end{gathered}$

LMB-Length of median bulb, WMB- width of median bulb, a-length/width ratio, H-MB-head to median bulb, ABW-anal body width, c- length/tail length ratio, c'- tail length/anal body width ratio

4.1.2.2 Identification of Meloidogyne sp in okra from Balagram

The species of root knot nematode infecting okra from Balagram was identified as M. incognita (Plate 14), based on the morphological and morphometrical data of mature females, perineal pattern and second stage juveniles. The morphometric characters of the population are given in Table 14.

Description: Based on 10 females and 10 juveniles $\left(\mathrm{J}_{2}\right)$.

Measurements: Female: Length $=554.03-715.42 \mu \mathrm{~m}$; width $=390.40-524.42 \mu \mathrm{~m} ; \mathrm{a}=$ $1.12-1.76 \mu \mathrm{~m}$; stylet length $=13.10-15.32 \mu \mathrm{~m}$; neck length $=102.95-175.60 \mu \mathrm{~m}$; $L M B=38.13-42.04 \mu \mathrm{~m} ; W M B=37.17-41.37 \mu \mathrm{~m}$.

Perineal pattern: $\mathrm{LVS}=18.14-27.88 \mu \mathrm{~m} ; \mathrm{AVS}=15.58-24.51 \mu \mathrm{~m} ; \quad$ ATT $=16.15-$ $25.38 \mu \mathrm{~m} ;$ IPD $=23.10-30.36 \mu \mathrm{~m}$.

Second stage juveniles $\left(\mathrm{J}_{2}\right)$: Length $=349.07-408.90 \mu \mathrm{~m}$; stylet length $=13.05$ $14.56 \mu \mathrm{~m} ; \mathrm{H}-\mathrm{MB}=46.23-51.41 \mu \mathrm{~m} ; \mathrm{ABW}=9.00-11.10 \mu \mathrm{~m}$; tail length $=42.79-$ $54.59 \mu \mathrm{~m} ; \mathrm{c}=7.26-8.15 \mu \mathrm{~m} ; \mathrm{c}^{\prime}=4.27-5.52 \mu \mathrm{~m}$.

4.1.2.3 Identification of Meloidogyne sp in Tomato from Balagram

The species of root knot nematode infecting tomato from Balagram was identified as M. incognita (Plate 15), based on the morphological and morphometrical data of mature females, perineal pattern and second stage juveniles. The morphometric characters of the population are given in Table 15.

Description: Based on 10 females and 10 juveniles $\left(\mathrm{J}_{2}\right)$.
Measurements: Female: Length $=495.41-779.60 \mu \mathrm{~m}$; width $=304.16-526.16 \mu \mathrm{~m} ; \mathrm{a}=$ $1.30-1.95 \mu \mathrm{~m}$; stylet length $=12.89-15.28 \mu \mathrm{~m}$; neck length $=111.49-192.18 \mu \mathrm{~m}$; $L M B=40.11-45.56 \mu \mathrm{~m} ; \mathrm{WMB}=39.18-45.10 \mu \mathrm{~m}$.

Perineal pattern: $\mathrm{LVS}=16.30-23.75 \mu \mathrm{~m} ; \mathrm{AVS}=16.43-22.47 \mu \mathrm{~m} ; \quad \mathrm{ATT}=17.11-$ $25.79 \mu \mathrm{~m} ;$ IPD $=16.29-37.80 \mu \mathrm{~m}$.

Plate 14. (A) female, (B) anterior end of female, (C) perineal pattern, (DE) anterior and posterior end of second stage juvenile of M. incognita in okra from Balagram

Table 14. Morphometric characters of mature females, perineal pattern and second stage juveniles of okra population of M. incognita from Balagram

Character ($\mu \mathrm{m}$)	Okra population
Females	
Length	$\begin{gathered} 648.00 \pm 58.38 \pm 18.46 \\ (554.03-715.42) 9.01 \% \end{gathered}$
Width	$\begin{gathered} 462.47 \pm 40.44 \pm 12.78 \\ (390.40-524.42) 8.74 \% \end{gathered}$
Neck length	$\begin{gathered} 151.47 \pm 23.42 \pm 7.40 \\ (102.95-175.60) 15.46 \% \\ \hline \end{gathered}$
Stylet length	$\begin{gathered} 14.37 \pm 0.67 \pm 0.21 \\ (13.10-15.32) 4.71 \% \\ \hline \end{gathered}$
LMB	$\begin{gathered} 39.97 \pm 1.03 \pm 0.32 \\ (38.13-42.04) 2.59 \% \\ \hline \end{gathered}$
WMB	$\begin{gathered} 39.52 \pm 1.17 \pm 0.37 \\ (37.17-41.37) 2.96 \% \\ \hline \end{gathered}$
a	$\begin{gathered} 1.42 \pm 0.17 \pm 0.05 \\ (1.12-1.76) 12.27 \% \\ \hline \end{gathered}$
Perineal pattern	
LVS	$\begin{gathered} 22.93 \pm 3.33 \pm 1.05 \\ (18.14-27.88) 14.52 \% \\ \hline \end{gathered}$
AVS	$\begin{gathered} 19.67 \pm 26.56 \pm 0.84 \\ (15.58-24.51) 13.50 \% \\ \hline \end{gathered}$
ATT	$\begin{gathered} 19.03 \pm 2.80 \pm 0.88 \\ (16.15-25.38) 14.74 \% \\ \hline \end{gathered}$
IPD	$\begin{gathered} 27.05 \pm 2.78 \pm 0.88 \\ (23.10-30.36) 10.29 \% \\ \hline \end{gathered}$
Second stage juveniles	
Length	$\begin{gathered} 390.86 \pm 17.30 \pm 5.47 \\ (349.07-408.90) 4.42 \% \\ \hline \end{gathered}$
Stylet length	$\begin{gathered} 13.66 \pm 0.47 \pm 0.15 \\ (13.05-14.56) 3.47 \% \\ \hline \end{gathered}$
H-MB	$\begin{gathered} 48.40 \pm 1.77 \pm 0.56 \\ (46.23-51.41) 3.67 \% \\ \hline \end{gathered}$
ABW	$\begin{gathered} 10.05 \pm 0.69 \pm 0.21 \\ (9.00-11.10) 6.86 \% \\ \hline \end{gathered}$
Tail length	$\begin{gathered} 50.41 \pm 3.36 \pm 1.06 \\ (42.79-54.59) 6.66 \% \\ \hline \end{gathered}$
c	$\begin{gathered} 7.76 \pm 0.30 \pm 0.09 \\ (7.26-8.15) 3.91 \% \end{gathered}$
c'	$\begin{gathered} 5.02 \pm 0.39 \pm 0.12 \\ (4.278-5.527) 7.890 \% \end{gathered}$

LMB-Length of median bulb, WMB- width of median bulb, a-length/width ratio, H-MB-head to median bulb, ABW-anal body width, c- length/tail length ratio, c'- tail length/anal body width ratio

Plate 15. (A) female, (B) anterior end of female, (C) perineal pattern, (DE) anterior and posterior end of second stage juvenile of M. incognita in tomato from Balagram

Table 15. Morphometric characters of mature females, perineal pattern and second stage juveniles of tomato population of M. incognita from Balagram

Character ($\mu \mathrm{m}$)	Tomato population
Females	
Length	$\begin{gathered} 589.84 \pm 98.69 \pm 31.20 \\ (495.41-779.60) 16.73 \% \\ \hline \end{gathered}$
Width	$\begin{gathered} 388.96 \pm 61.12 \pm 19.32 \\ (304.16-526.16) 15.71 \% \end{gathered}$
Neck length	$\begin{gathered} 161.50 \pm 25.07 \pm 7.92 \\ (111.49-192.18) 15.52 \% \\ \hline \end{gathered}$
Stylet length	$\begin{gathered} 14.01 \pm 0.91 \pm 0.28 \\ (12.89-15.28) 6.50 \% \end{gathered}$
LMB	$\begin{gathered} 41.66 \pm 1.70 \pm 0.53 \\ (40.11-45.56) 4.09 \% \end{gathered}$
WMB	$\begin{gathered} 41.00 \pm 1.69 \pm 0.53 \\ (39.18-45.10) 4.13 \% \\ \hline \end{gathered}$
a	$\begin{gathered} 1.52 \pm 0.21 \pm 0.06 \\ (1.30-1.95) 14.31 \% \end{gathered}$
Perineal pattern	
LVS	$\begin{gathered} 20.68 \pm 2.26 \pm 0.71 \\ (16.30-23.75) 10.92 \% \\ \hline \end{gathered}$
AVS	$\begin{gathered} 19.89 \pm 1.91 \pm 0.60 \\ (16.43-22.47) 9.63 \% \end{gathered}$
ATT	$\begin{gathered} 20.52 \pm 2.91 \pm 0.92 \\ (17.11-25.79) 14.21 \% \end{gathered}$
IPD	$\begin{gathered} 26.58 \pm 5.99 \pm 1.89 \\ (16.29-37.80) 22.53 \% \end{gathered}$
Second stage juveniles	
Length	$\begin{gathered} 392.67 \pm 18.76 \pm 5.93 \\ (344.51-409.67) 4.77 \% \\ \hline \end{gathered}$
Stylet length	$\begin{gathered} 13.73 \pm 0.81 \pm 0.25 \\ (12.06-14.97) 5.91 \% \end{gathered}$
H-MB	$\begin{gathered} 50.36 \pm 4.41 \pm 1.39 \\ (42.31-59.70) 8.77 \% \end{gathered}$
ABW	$\begin{gathered} 9.88 \pm 1.07 \pm 0.33 \\ (8.28-11.84) 10.94 \% \\ \hline \end{gathered}$
Tail length	$\begin{gathered} 53.57 \pm 7.92 \pm 2.50 \\ (40.17-68.87) 14.79 \% \\ \hline \end{gathered}$
c	$\begin{gathered} 7.43 \pm 0.87 \pm 0.27 \\ (5.65-8.575) 11.77 \% \\ \hline \end{gathered}$
c'	$\begin{gathered} 5.04 \pm 0.51 \pm 0.16 \\ (4.65-6.08) 9.48 \% \\ \hline \end{gathered}$

LMB-Length of median bulb, WMB- width of median bulb, a-length/width ratio, H-MB-head to median bulb, ABW-anal body width, c- length/tail length ratio, c'- tail length/anal body width ratio

Second stage juveniles $\left(\mathrm{J}_{2}\right)$: Length $=344.51-409.67 \mu \mathrm{~m}$; stylet length $=12.06$ $14.97 \mu \mathrm{~m} ; \mathrm{H}-\mathrm{MB}=42.31-59.70 \mu \mathrm{~m} ; A B W=8.28-11.84 \mu \mathrm{~m}$; tail length $=40.17-$ $68.87 \mu \mathrm{~m} ; \mathrm{c}=5.65-8.57 \mu \mathrm{~m} ; \mathrm{c}^{\prime}=4.65-6.08 \mu \mathrm{~m}$.

4.1.2.4 Identification of Meloidogyne sp in Banana from Balagram

The species of root knot nematode infecting banana from Balagram was identified as M. javanica (Plate 16), based on the morphological and morphometrical data of mature females, perineal pattern and second stage juveniles. The morphometric characters of the population are given in Table 16.

Description: Based on 10 females and 10 juveniles $\left(\mathrm{J}_{2}\right)$.

Measurements: Female: Length $=560.26-790.25 \mu \mathrm{~m}$; width $=394.25-560.24 \mu \mathrm{~m} ; \mathrm{a}=$ $1.12-1.87 \mu \mathrm{~m}$; stylet length $=13.20-16.17 \mu \mathrm{~m}$; neck length $=125.60-182.15 \mu \mathrm{~m}$; $\mathrm{LMB}=38.01-45.52 \mu \mathrm{~m} ; \mathrm{WMB}=37.14-42.01 \mu \mathrm{~m}$.

Perineal pattern: $\mathrm{LVS}=19.48-26.15 \mu \mathrm{~m} ; \mathrm{AVS}=18.24-25.11 \mu \mathrm{~m} ; \mathrm{ATT}=16.29-$ $25.15 \mu \mathrm{~m}$; $\mathrm{IPD}=26.21-30.25 \mu \mathrm{~m}$.

Second stage juveniles $\left(\mathrm{J}_{2}\right)$: Length $=350.12-412.14 \mu \mathrm{~m}$; stylet length $=13.21-$ $14.25 \mu \mathrm{~m} ; \mathrm{H}-\mathrm{MB}=46.21-53.17 \mu \mathrm{~m} ; \mathrm{ABW}=9.817-11.21 \mu \mathrm{~m}$; tail length $=42.17-$ $54.92 \mu \mathrm{~m} ; \mathrm{c}=7.01-8.25 \mu \mathrm{~m} ; \mathrm{c}^{\prime}=4.27-7.20 \mu \mathrm{~m}$.

4.1.2.5 Identification of Meloidogyne sp in Brinjal from Pampadumpara

The species of root knot nematode infecting brinjal from Pampadumpara was identified as M. javanica (Plate 17), based on the morphological and morphometrical data of mature females, perineal pattern and second stage juveniles. The morphometric characters of the population are given in Table 17.

Description: Based on 10 females and 10 juveniles $\left(\mathrm{J}_{2}\right)$.
Measurements: Female: Length $=536.85-817.64 \mu \mathrm{~m}$; width $=375.86-493.68 \mu \mathrm{~m} ; \mathrm{a}=$ $1.30-1.72 \mu \mathrm{~m}$; stylet length $=16.10-17.21 \mu \mathrm{~m}$; neck length $=126.38-249.68 \mu \mathrm{~m}$; $L M B=38.19-50.21 \mu \mathrm{~m} ; \mathrm{WMB}=37.15-50.11 \mu \mathrm{~m}$.

Plate 16. (A) female, (B) anterior end of female, (C) perineal pattern, (DE) anterior and posterior end of second stage juvenile of M. javanica in banana from Balagram

Table 16. Morphometric characters of mature females, perineal pattern and second stage juveniles of banana population of M. incognita from Balagram

Character ($\mu \mathrm{m}$)	Banana population
Females	
Length	$\begin{gathered} 653.23 \pm 69.95 \pm 22.12 \\ (560.26-790.25) 10.70 \% \end{gathered}$
Width	$\begin{gathered} 466.23 \pm 51.02 \pm 16.13 \\ (394.25-560.24) 10.94 \% \end{gathered}$
Neck length	$\begin{gathered} 165.23 \pm 20.16 \pm 6.21 \\ (125.60-182.15) 16.20 \% \end{gathered}$
Stylet length	$\begin{gathered} 15.23 \pm 0.71 \pm 0.20 \\ (13.20-16.17) 5.72 \% \end{gathered}$
LMB	$\begin{gathered} 40.20 \pm 1.28 \pm 0.32 \\ (38.01-45.52) 3.98 \% \\ \hline \end{gathered}$
WMB	$\begin{gathered} 39.02 \pm 1.78 \pm 0.41 \\ (37.14-42.01) 2.8 \% \\ \hline \end{gathered}$
a	$\begin{gathered} 1.42 \pm 0.18 \pm 0.61 \\ (1.12-1.87) 13.26 \% \end{gathered}$
Perineal pattern	
LVS	$\begin{gathered} 23.29 \pm 2.62 \pm 0.83 \\ (19.48-26.15) 11.27 \% \end{gathered}$
AVS	$\begin{gathered} 20.21 \pm 2.01 \pm 0.63 \\ (18.24-25.11) 9.97 \% \end{gathered}$
ATT	$\begin{gathered} 19.63 \pm 2.37 \pm 0.75 \\ (16.29-25.15) 12.10 \% \\ \hline \end{gathered}$
IPD	$\begin{gathered} 28.70 \pm 1.43 \pm 0.45 \\ (26.21-30.25) 4.99 \% \end{gathered}$
Second stage juveniles	
Length	$\begin{gathered} 397.60 \pm 17.62 \pm 5.57 \\ (350.12-412.14) 4.43 \% \\ \hline \end{gathered}$
Stylet length	$\begin{gathered} 13.63 \pm 0.51 \pm 0.16 \\ (13.21-14.25) 3.75 \% \end{gathered}$
H-MB	$\begin{gathered} 50.2 \pm 2.07 \pm 0.67 \\ (46.21-53.17) 4.92 \% \\ \hline \end{gathered}$
ABW	$\begin{gathered} 10.98 \pm 0.72 \pm 0.34 \\ (9.81-11.21) 7.81 \% \\ \hline \end{gathered}$
Tail length	$\begin{gathered} 50.98 \pm 3.45 \pm 1.78 \\ (42.17-54.92) 6.76 \% \\ \hline \end{gathered}$
c	$\begin{gathered} 7.79 \pm 0.41 \pm 0.12 \\ (7.01-8.25) 3.98 \% \\ \hline \end{gathered}$
c'	$\begin{gathered} 6.54 \pm 0.47 \pm 0.12 \\ (4.27-7.20) 8.19 \% \\ \hline \end{gathered}$

LMB-Length of median bulb, WMB- width of median bulb, a-length/width ratio, H-MB-head to median bulb, ABW-anal body width, c- length/tail length ratio, c'- tail length/anal body width ratio

Plate 17. (A) female, (B) anterior end of female, (C) perineal pattern, (DE) anterior and posterior end of second stage juvenile of M. javanica in brinjal from Pampadumpara

Table 17. Morphometric characters of mature females, perineal pattern and second stage juveniles of brinjal population of M. javanica from Pampadumpara

Character ($\mu \mathrm{m}$)	Brinjal population
Females	
Length	$\begin{gathered} 646.28 \pm 92.17 \pm 29.14 \\ (536.85-817.64) 14.26 \% \end{gathered}$
Width	$\begin{gathered} 431.84 \pm 44.68 \pm 14.12 \\ (375.86-493.68) 10.34 \% \end{gathered}$
Neck length	$\begin{gathered} 169.89 \pm 38.66 \pm 12.22 \\ (126.38-249.68) 22.76 \% \end{gathered}$
Stylet length	$\begin{gathered} 16.74 \pm 0.42 \pm 0.13 \\ (16.10-17.21) 2.53 \% \end{gathered}$
LMB	$\begin{gathered} 42.77 \pm 4.45 \pm 1.40 \\ (38.19-50.21) 10.42 \% \\ \hline \end{gathered}$
WMB	$\begin{gathered} 41.93 \pm 4.00 \pm 1.26 \\ \text { (37.15-50.11) } 9.60 \% \\ \hline \end{gathered}$
a	$\begin{gathered} 1.49 \pm 0.15 \pm 0.04 \\ (1.30-1.72) 10.09 \% \\ \hline \end{gathered}$
Perineal pattern	
LVS	$\begin{gathered} 25.56 \pm 2.32 \pm 0.73 \\ (21.61-28.55) 9.07 \% \\ \hline \end{gathered}$
AVS	$\begin{gathered} 19.41 \pm 5.15 \pm 1.63 \\ (14.24-28.99) 26.56 \% \\ \hline \end{gathered}$
ATT	$\begin{gathered} 16.38 \pm 1.42 \pm 0.44 \\ (14.24-18.91) 8.67 \% \\ \hline \end{gathered}$
IPD	$\begin{gathered} 24.17 \pm 4.28 \pm 1.35 \\ (19.55-32.28) 17.71 \% \\ \hline \end{gathered}$
Second stage juveniles	
Length	$\begin{gathered} 406.55 \pm 16.77 \pm 5.30 \\ (384.04-442.18) 4.12 \% \\ \hline \end{gathered}$
Stylet length	$\begin{gathered} 14.57 \pm 0.36 \pm 0.11 \\ (13.94-15.03) 2.51 \% \end{gathered}$
H-MB	$\begin{gathered} 46.22 \pm 2.01 \pm 0.63 \\ (43.69-49.28) 4.35 \% \end{gathered}$
ABW	$\begin{gathered} 10.37 \pm 0.60 \pm 0.19 \\ (9.28-11.46) 5.81 \% \end{gathered}$
Tail length	$\begin{gathered} 51.45 \pm 2.33 \pm 0.73 \\ (48.82-55.41) \\ 4.54 \% \\ \hline \end{gathered}$
c	$\begin{gathered} 7.90 \pm 0.32 \pm 0.10 \\ (7.35-8.36) 4.05 \% \end{gathered}$
c'	$\begin{gathered} 4.91 \pm 0.38 \pm 0.12 \\ (4.17-5.52) 7.76 \% \\ \hline \end{gathered}$

LMB-Length of median bulb, WMB- width of median bulb, a-length/width ratio, H-MB-head to median bulb, ABW-anal body width, c- length/tail length ratio, c'- tail length/anal body width ratio

Perineal pattern: LVS $=21.61-28.55 \mu \mathrm{~m} ;$ AVS $=14.24-28.99 \mu \mathrm{~m} ; \quad$ ATT $=14.24-$ $18.91 \mu \mathrm{~m} ;$ IPD $=19.55-32.28 \mu \mathrm{~m}$.

Second stage juveniles $\left(\mathrm{J}_{2}\right)$: Length $=384.04-442.18 \mu \mathrm{~m}$; stylet length $=13.94$ $15.03 \mu \mathrm{~m} ; \mathrm{H}-\mathrm{MB}=43.69-49.28 \mu \mathrm{~m} ; \mathrm{ABW}=9.28-11.46 \mu \mathrm{~m}$; tail length $=48.82-$ $55.41 \mu \mathrm{~m} ; \mathrm{c}=7.35-8.36 \mu \mathrm{~m} ; \mathrm{c}^{\prime}=4.17-5.52 \mu \mathrm{~m}$.

4.1.2.6 Identification of Meloidogyne sp in okra from Pampadumpara

The species of root knot nematode infecting okra from Pampadumpara was identified as M. javanica (Plate 18), based on the morphological and morphometrical data of mature females, perineal pattern and second stage juveniles. The morphometric characters of the population are given in Table 18.

Description: Based on 10 females and 10 juveniles $\left(\mathrm{J}_{2}\right)$.
Measurements: Female: Length $=562.81-901.22 \mu \mathrm{~m}$; width $=361.57-482.98 \mu \mathrm{~m} ; \mathrm{a}=$ $1.40-2.73 \mu \mathrm{~m}$; stylet length $=15.16-17.28 \mu \mathrm{~m}$; neck length $=148.24-369.07 \mu \mathrm{~m}$; LMB $=30.19-45.10 \mu \mathrm{~m} ; \mathrm{WMB}=28.48-39.26 \mu \mathrm{~m}$.

Perineal pattern: LVS $=19.467-26.564 \mu \mathrm{~m} ; \mathrm{AVS}=14.17-18.19 \mu \mathrm{~m} ;$ ATT $=9.19-$ $19.90 \mu \mathrm{~m} ;$ IPD $=18.19-27.09 \mu \mathrm{~m}$.

Second stage juveniles $\left(\mathrm{J}_{2}\right)$: Length $=384.04-442.18 \mu \mathrm{~m}$; stylet length $=13.94$ $15.03 \mu \mathrm{~m} ; \mathrm{H}-\mathrm{MB}=43.69-49.28 \mu \mathrm{~m} ; A B W=9.28-11.46 \mu \mathrm{~m}$; tail length $=48.82-$ $55.41 \mu \mathrm{~m} ; \mathrm{c}=7.35-8.36 \mu \mathrm{~m} ; \mathrm{c}^{\prime}=4.17-5.52 \mu \mathrm{~m}$.

4.1.2.7 Identification of Meloidogyne sp in Tomato from Pampadumpara

The species of root knot nematode infecting tomato from Pampadumpara was identified as M. javanica (Plate 19, 20), based on the morphological and morphometrical data of mature females, perineal pattern and second stage juveniles. The morphometric characters of the population are given in Tables 19 and 20.

Description: Based on 10 females and 10 juveniles $\left(\mathrm{J}_{2}\right)$.

Plate 18. (A) female, (B) anterior end of female, (C) perineal pattern, (DE) anterior and posterior end of second stage juvenile of M. javanica in okra from Pampadumpara

Table 18. Morphometric characters of mature females, perineal pattern and second stage juveniles of okra population of M. javanica from Pampadumpara

Character ($\mu \mathrm{m}$)	Okra population
Females	
Length	$\begin{gathered} 735.32 \pm 105.63 \pm 32.16 \\ (562.81-901.22) 14.38 \% \end{gathered}$
Width	$\begin{gathered} 410.71 \pm 33.50 \pm 10.38 \\ (361.57-482.98) 8.12 \% \end{gathered}$
Neck length	$\begin{gathered} 221.76 \pm 71.53 \pm 21.50 \\ (148.24-369.07) 31.70 \% \\ \hline \end{gathered}$
Stylet length	$\begin{gathered} 16.55 \pm 0.77 \pm 0.24 \\ (15.16-17.28) 4.12 \% \end{gathered}$
LMB	$\begin{gathered} 35.58 \pm 4.30 \pm 1.72 \\ (30.19-45.10) 13.79 \% \\ \hline \end{gathered}$
WMB	$\begin{gathered} 34.93 \pm 4.47 \pm 1.41 \\ (28.48-39.26) 13.97 \% \\ \hline \end{gathered}$
a	$\begin{gathered} 1.49 \pm 0.15 \pm 0.08 \\ (1.40-2.73) 15.55 \% \\ \hline \end{gathered}$
Perineal pattern	
LVS	$\begin{gathered} 24.24 \pm 2.44 \pm 0.76 \\ (19.46-26.56) 9.83 \% \\ \hline \end{gathered}$
AVS	$\begin{gathered} 16.05 \pm 1.75 \pm 0.55 \\ (14.17-18.19) 10.33 \% \\ \hline \end{gathered}$
ATT	$\begin{gathered} 14.38 \pm 3.06 \pm 0.97 \\ (9.19-19.90) 21.28 \% \\ \hline \end{gathered}$
IPD	$\begin{gathered} 22.45 \pm 2.29 \pm 0.35 \\ (18.19-27.09) 11.84 \% \\ \hline \end{gathered}$
Second stage juveniles	
Length	$\begin{gathered} 396.60 \pm 26.54 \pm 8.23 \\ (359.43-420.34) 6.07 \% \\ \hline \end{gathered}$
Stylet length	$\begin{gathered} 13.56 \pm 0.63 \pm 0.20 \\ (12.60-14.58) 4.65 \% \\ \hline \end{gathered}$
H-MB	$\begin{gathered} 52.32 \pm 3.49 \pm 1.61 \\ (47.64-57.24) 6.71 \% \\ \hline \end{gathered}$
ABW	$\begin{gathered} 9.84 \pm 1.01 \pm 0.32 \\ (8.00-10.86) 10.31 \% \end{gathered}$
Tail length	$\begin{gathered} 45.46 \pm 15.08 \pm 4.77 \\ (34.47-60.14) 33.06 \% \\ \hline \end{gathered}$
c	$\begin{gathered} 8.54 \pm 1.81 \pm 0.57 \\ (6.05-11.19) 21.27 \% \end{gathered}$
c'	$\begin{gathered} 4.95 \pm 1.10 \pm 0.34 \\ (3.38-7.02) 21.27 \% \end{gathered}$

LMB-Length of median bulb, WMB- width of median bulb, a-length/width ratio, H-MB-head to median bulb, ABW-anal body width, c- length/tail length ratio, c'- tail length/anal body width ratio

Plate 19. (A) female, (B) anterior end of female, (C) perineal pattern, (DE) anterior and posterior end of second stage juvenile of M. javanica in tomato from Pampadumpara

Table 19. Morphometric characters of mature females, perineal pattern and second stage juveniles of tomato population of M. javanica from Pampadumpara

Character ($\mu \mathrm{m}$)	Pampadumpara population (Tomato)
Females	
Length	$\begin{gathered} 740.18 \pm 107.31 \pm 33.93 \\ (565.18-906.18) 14.49 \% \\ \hline \end{gathered}$
Width	$\begin{gathered} 415.38 \pm 32.85 \pm 10.39 \\ (362.32-482.85) 7.91 \% \end{gathered}$
Neck length	$\begin{gathered} 233.20 \pm 74.33 \pm 23.50 \\ (147.29-379.72) 31.87 \% \end{gathered}$
Stylet length	$\begin{gathered} 16.55 \pm 0.59 \pm 0.81 \\ (15.79-17.60) 3.58 \% \end{gathered}$
LMB	$\begin{gathered} 41.32 \pm 4.15 \pm 1.31 \\ (34.63-49.80) 10.04 \% \\ \hline \end{gathered}$
WMB	$\begin{gathered} 40.29 \pm 3.08 \pm 0.97 \\ (34.87-47.00) 8.74 \% \\ \hline \end{gathered}$
a	$\begin{gathered} 1.79 \pm 0.29 \pm 0.09 \\ (1.38-2.30) 16.62 \% \end{gathered}$
Perineal pattern	
LVS	$\begin{gathered} 25.06 \pm 3.20 \pm 1.01 \\ (19.06-29.81) 12.77 \% \\ \hline \end{gathered}$
AVS	$\begin{gathered} 16.83 \pm 1.68 \pm 0.53 \\ (14.28-18.60) 9.98 \% \end{gathered}$
ATT	$\begin{gathered} 14.82 \pm 2.78 \pm 0.87 \\ (10.64-19.18) 18.76 \% \\ \hline \end{gathered}$
IPD	$\begin{gathered} 23.58 \pm 2.11 \pm 0.67 \\ (20.34-27.34) 8.98 \% \end{gathered}$
Second stage juveniles	
Length	$\begin{gathered} 395.94 \pm 26.47 \pm 8.37 \\ (358.23-422.57) 6.68 \% \end{gathered}$
Stylet length	$\begin{gathered} 13.64 \pm 0.65 \pm 0.20 \\ (12.57-14.84) 4.77 \% \end{gathered}$
H-MB	$\begin{gathered} 52.06 \pm 3.49 \pm 1.10 \\ (47.27-57.67) 6.70 \% \\ \hline \end{gathered}$
ABW	$\begin{gathered} 10.00 \pm 0.81 \pm 0.25 \\ (8.54-10.91) 8.18 \% \end{gathered}$
Tail length	$\begin{gathered} 48.86 \pm 9.21 \pm 2.91 \\ (32.19-60.70) 18.85 \% \\ \hline \end{gathered}$
c	$\begin{gathered} 8.39 \pm 1.75 \pm 0.55 \\ (6.05-11.12) 20.91 \% \\ \hline \end{gathered}$
c'	$\begin{gathered} 4.91 \pm 1.06 \pm 0.33 \\ (3.37-6.58) 21.69 \% \end{gathered}$

LMB-Length of median bulb, WMB- width of median bulb, a-length/width ratio, H-MB-head to median bulb, ABW-anal body width, c- length/tail length ratio, c'- tail length/anal body width ratio

Plate 20. (A) anterior end of male, (B) male, (C) posterior end of male, (D) head region with stylet of M. javanica in tomato from Pampadumpara

Table 20. Morphometric characters of males of tomato population of M. javanica from Pampadumpara

Character $(\mu \mathrm{m})$	Tomato population
Females	
Length	$1558.98 \pm 118.47 \pm 52.98$
	$(1396.76-1687.94) 7.59 \%$
Width	$40.14 \pm 2.95 \pm 1.32$
	$(35.11-42.81) 7.35 \%$
Stylet length	$21.25 \pm 0.41 \pm 0.18$
	$(20.69-21.63) 1.93 \%$
Stylet cone length	$10.82 \pm 0.33 \pm 0.14$
	$(10.27-11.10) 3.06 \%$
DGO from stylet base	$3.44 \pm 0.38 \pm 0.17$
	$(2.90-3.98) 11.12 \%$
Tail length	$13.08 \pm 1.00 \pm 0.44$
	$(11.80-14.20) 7.68 \%$
Tail width at anus	$18.41 \pm 1.08 \pm 0.48$
Spicule length	$(16.71-19.28) 5.86 \%$
$27.98 \pm 0.78 \pm 0.34$	
	$(27.15-29.17) 2.79 \%$

DGO- distance from dorsal oesophagal gland orifice to stylet base

Measurements: Female: Length $=565.18-906.18 \mu \mathrm{~m}$; width $=362.32-482.85 \mu \mathrm{~m} ; \mathrm{a}=$ $1.38-2.30 \mu \mathrm{~m}$; stylet length $=15.79-17.60 \mu \mathrm{~m}$; neck length $=147.29-379.72 \mu \mathrm{~m}$; $L M B=34.63-49.80 \mu \mathrm{~m} ; W M B=34.87-47.00 \mu \mathrm{~m}$.

Perineal pattern: $\operatorname{LVS}=19.06-29.81 \mu \mathrm{~m} ;$ AVS $=14.28-18.60 \mu \mathrm{~m} ;$ ATT $=10.64-$ $19.18 \mu \mathrm{~m} ;$ IPD $=20.34-27.34 \mu \mathrm{~m}$.

Second stage juveniles $\left(\mathrm{J}_{2}\right)$: Length $=358.23-422.57 \mu \mathrm{~m}$; stylet length $=12.57$ $14.84 \mu \mathrm{~m} ; \mathrm{H}-\mathrm{MB}=47.27-57.67 \mu \mathrm{~m} ; \mathrm{ABW}=8.54-10.91 \mu \mathrm{~m}$; tail length=32.19$60.70 \mu \mathrm{~m} ; \mathrm{c}=6.05-11.12 \mu \mathrm{~m} ; \mathrm{c}^{\prime}=3.37-6.58 \mu \mathrm{~m}$.

Males: Length $=1396.76-1687.94 \mu \mathrm{~m}$; width $=35.11-42.81 \mu \mathrm{~m}$; stylet length $=$ 20.69-21.63 $\mu \mathrm{m}$; stylet cone length $=10.27-11.10 \mu \mathrm{~m}$; DGO from stylet base $=$ 2.90-3.98 $\mu \mathrm{m}$; tail length $=11.80-14.20 \mu \mathrm{~m}$; tail width at anus $=16.71-19.28 \mu \mathrm{~m}$; spicule length $=27.15-29.17 \mu \mathrm{~m}$.

4.1.2.8 Identification of Meloidogyne sp in Banana from Pampadumpara

The species of root knot nematode infecting banana from Pampadumpara was identified as M. javanica (Plate 21), based on the morphological and morphometrical data of mature females, perineal pattern and second stage juveniles. The morphometric characters of the population are given in Table 21.

Description: Based on 10 females and 10 juveniles $\left(\mathrm{J}_{2}\right)$.
Measurements: Female: Length $=573.31-918.42 \mu \mathrm{~m}$; width $=373.24-501.39 \mu \mathrm{~m} ; \mathrm{a}=$ $1.32-1.97 \mu \mathrm{~m}$; stylet length $=15.88-17.93 \mu \mathrm{~m}$; neck length $=156.20-364.93 \mu \mathrm{~m}$; $\mathrm{LMB}=35.79-49.02 \mu \mathrm{~m} ; \mathrm{WMB}=30.02-45.00 \mu \mathrm{~m}$.

Perineal pattern: LVS $=20.25-29.25 \mu \mathrm{~m} ;$ AVS $=14.25-18.25 \mu \mathrm{~m} ;$ ATT $=11.25-$ $19.24 \mu \mathrm{~m} ;$ IPD $=20.25-28.25 \mu \mathrm{~m}$.

Second stage juveniles $\left(\mathrm{J}_{2}\right)$: Length $=365.23-435.26 \mu \mathrm{~m}$; stylet length $=13.25$ $14.25 \mu \mathrm{~m} ; \mathrm{H}-\mathrm{MB}=47.24-58.24 \mu \mathrm{~m} ; \mathrm{ABW}=9.25-11.25 \mu \mathrm{~m}$; tail length $=48.39$ $55.51 \mu \mathrm{~m} ; \mathrm{c}=6.42-12.17 \mu \mathrm{~m} ; \mathrm{c}^{\prime}=3.38-7.10 \mu \mathrm{~m}$.

Plate 21. (A) female, (B) anterior end of female, (C) perineal pattern, (DE) anterior and posterior end of second stage juvenile of M. javanica in banana from Pampadumpara

Table 21. Morphometric characters of mature females, perineal pattern and second stage juveniles of banana population of M. javanica from Pampadumpara

LMB-Length of median bulb, WMB- width of median bulb, a-length/width ratio, H-MB-head to median bulb, ABW-anal body width, c- length/tail length ratio, c'- tail length/anal body width ratio

4.1.2.9 Identification of Meloidogyne sp in Brinjal from Thovalappady

The species of root knot nematode infecting brinjal from Thoavlappady was identified as M. incognita (Plate 22), based on the morphological and morphometrical data of mature females, perineal pattern and second stage juveniles. The morphometric characters of the population are given in Table 22.

Description: Based on 10 females and 10 juveniles (J_{2}).
Measurements: Female: Length $=618.05-888.89 \mu \mathrm{~m}$; width $=364.09-594.68 \mu \mathrm{~m} ; \mathrm{a}=$ $1.22-1.91 \mu \mathrm{~m}$; stylet length $=15.27-16.70 \mu \mathrm{~m}$; neck length $=164.82-267.02 \mu \mathrm{~m}$; LIB $=25.03-40.45 \mu \mathrm{~m} ; \mathrm{WMB}=25.12-39.27 \mu \mathrm{~m}$.

Perineal pattern: LVS $=20.32-29.76 \mu \mathrm{~m} ; \mathrm{AVS}=12.62-21.19 \mu \mathrm{~m} ;$ ATT $=14.28-$ $19.97 \mu \mathrm{~m} ;$ PD $=20.18-31.46 \mu \mathrm{~m}$.

Second stage juveniles $\left(\mathrm{J}_{2}\right)$: Length $=400.55-448.54 \mu \mathrm{~m}$; stylet length $=13.87-$ $15.26 \mu \mathrm{~m} ; \mathrm{H}-\mathrm{MB}=50.00-57.55 \mu \mathrm{~m} ; \mathrm{ABW}=9.60-12.79 \mu \mathrm{~m}$; tail length $=48.16-$ $67.52 \mu \mathrm{~m} ; \mathrm{c}=6.21-8.74 \mu \mathrm{~m} ; \mathrm{c}^{\prime}=4.06-5.54 \mu \mathrm{~m}$.

4.1.2.10 Identification of Meloidogyne sp in okra from Thovalappady

The species of root knot nematode infecting okra from Thoavlappady was identified as M. incognita (Plate 23), based on the morphological and morphometrical data of mature females, perineal pattern and second stage juveniles. The morphometric characters of the population are given in Table 23.

Description: Based on 10 females and 10 juveniles (J_{2}).
Measurements: Female: Length $=672.81-899.88 \mu \mathrm{~m}$; width $=522.33-637.62 \mu \mathrm{~m}$; $\mathrm{a}=$ $1.05-1.59 \mu \mathrm{~m}$; stylet length $=16.08-18.29 \mu \mathrm{~m}$; neck length $=111.08-232.67 \mu \mathrm{~m}$; $L M B=25.84-36.85 \mu \mathrm{~m} ; \mathrm{WMB}=25.17-36.34 \mu \mathrm{~m}$.

Perineal pattern: LVS $=18.22-27.60 \mu \mathrm{~m} ; \mathrm{AVS}=13.71-20.11 \mu \mathrm{~m} ;$ ATT $=12.13-$ $20.28 \mu \mathrm{~m} ;$ PD $=20.98-41.16 \mu \mathrm{~m}$.

Plate 22. (A) female, (B) anterior end of female, (C) perineal pattern, (DE) anterior and posterior end of second stage juvenile of M. incognita in brinjal from Thovalappady

Table 22. Morphometric characters of mature females, perineal pattern and second stage juveniles of brinjal population of M. incognita from Thovalappady

LMB-Length of median bulb, WMB- width of median bulb, a-length/width ratio, H-MB-head to median bulb, ABW-anal body width, c- length/tail length ratio, c'- tail length/anal body width ratio

Plate 23. (A) female, (B) anterior end of female, (C) perineal pattern, (DE) anterior and posterior end of second stage juvenile of M. incognita in okra from Thovalappady

Table 23. Morphometric characters of mature females, perineal pattern and second stage juveniles of okra population of M. javanica from Thovalappady

Character ($\mu \mathrm{m}$)	Okra population
Females	
Length	$\begin{gathered} 789.27 \pm 69.77 \pm 22.06 \\ (672.81-899.88) 8.84 \% \\ \hline \end{gathered}$
Width	$\begin{gathered} 570.41 \pm 41.98 \pm 13.27 \\ (522.33-637.62) 7.36 \% \end{gathered}$
Neck length	$\begin{gathered} 182.52 \pm 37.48 \pm 11.85 \% \\ (111.08-232.67) 20.53 \% \end{gathered}$
Stylet length	$\begin{gathered} 16.88 \pm 0.83 \pm 0.26 \\ (16.08-18.29) 4.92 \% \end{gathered}$
LMB	$\begin{gathered} 31.47 \pm 3.05 \pm 0.96 \\ (25.84-36.85) 9.69 \% \end{gathered}$
WMB	$\begin{gathered} 30.48 \pm 3.59 \pm 1.13 \\ (25.17-36.34) 11.78 \% \\ \hline \end{gathered}$
a	$\begin{gathered} 1.39 \pm 0.18 \pm 0.05 \\ (1.05-1.59) 13.14 \% \\ \hline \end{gathered}$
Perineal pattern	
LVS	$\begin{gathered} 24.56 \pm 3.01 \pm 0.95 \\ (18.22-27.60) 12.25 \% \\ \hline \end{gathered}$
AVS	$\begin{gathered} 17.82 \pm 1.99 \pm 0.63 \\ (13.71-20.11) 11.19 \% \end{gathered}$
ATT	$\begin{gathered} 15.55 \pm 3.08 \pm 0.97 \\ (12.13-20.28) 19.83 \% \\ \hline \end{gathered}$
IPD	$\begin{gathered} 27.34 \pm 6.32 \pm 2.00 \\ (20.98-41.16) 23.14 \% \\ \hline \end{gathered}$
Second stage juveniles	
Length	$\begin{gathered} 408.32 \pm 13.95 \pm 4.41 \\ (379.94-424.74) 3.41 \% \end{gathered}$
Stylet length	$\begin{gathered} 13.93 \pm 0.30 \pm 0.09 \\ (13.23-14.36) 2.20 \% \end{gathered}$
H-MB	$\begin{gathered} 49.93 \pm 2.38 \pm 0.75 \\ (45.80-53.39) 4.78 \% \\ \hline \end{gathered}$
ABW	$\begin{gathered} 10.75 \pm 1.02 \pm 0.32 \\ (9.17-12.50) 9.50 \% \end{gathered}$
Tail length	$\begin{gathered} 51.85 \pm 8.21 \pm 2.59 \\ (40.96-72.39) 15.83 \% \\ \hline \end{gathered}$
c	$\begin{gathered} 8.03 \pm 1.188 \pm 0.37 \\ (5.46-10.08) 14.69 \% \\ \hline \end{gathered}$
c'	$\begin{gathered} 4.82 \pm 0.49 \pm 0.15 \\ (4.24-5.79) 10.15 \% \end{gathered}$

LMB-Length of median bulb, WMB- width of median bulb, a-length/width ratio, H-MB-head to median bulb, ABW-anal body width, c- length/tail length ratio, c'- tail length/anal body width ratio

Second stage juveniles $\left(\mathrm{J}_{2}\right)$: Length $=379.94-424.74 \mu \mathrm{~m}$; stylet length $=13.23$ $14.36 \mu \mathrm{~m} ; \mathrm{H}-\mathrm{MB}=45.80-53.39 \mu \mathrm{~m} ; A B W=9.17-12.50 \mu \mathrm{~m}$; tail length $=40.96-$ $72.39 \mu \mathrm{~m} ; \mathrm{c}=5.46-10.08 \mu \mathrm{~m} ; \mathrm{c}^{\prime}=4.24-5.79 \mu \mathrm{~m}$.

4.1.2.11 Identification of Meloidogyne sp in Tomato from Thovalappady

The species of root knot nematode infecting tomato in Thoavlappady was identified as M. javanica (Plate 24), based on the morphological and morphometrical data of mature females, perineal pattern and second stage juveniles. The morphometric characters of the population are given in Table 24.

Description: Based on 10 females and 10 juveniles $\left(\mathrm{J}_{2}\right)$.

Measurements: Female: Length $=631.10-758.58 \mu \mathrm{~m}$; width $=441.91-555.83 \mu \mathrm{~m} ; \mathrm{a}=$ $1.17-1.50 \mu \mathrm{~m}$; stylet length $=10.43-16.58 \mu \mathrm{~m}$; neck length $=137.40-223.99 \mu \mathrm{~m}$; $\mathrm{LMB}=32.11-41.81 \mu \mathrm{~m} ; \mathrm{WMB}=25.84-40.35 \mu \mathrm{~m}$.

Perineal pattern: $\mathrm{LVS}=25.06-32.06 \mu \mathrm{~m} ; \mathrm{AVS}=16.15-24.43 \mu \mathrm{~m} ; \mathrm{ATT}=10.73-$ $19.18 \mu \mathrm{~m} ;$ PD $=17.09-34.91 \mu \mathrm{~m}$.

Second stage juveniles $\left(\mathrm{J}_{2}\right)$: Length $=360.96-418.60 \mu \mathrm{~m}$; stylet length $=13.47-$ $14.97 \mu \mathrm{~m} ; \mathrm{H}-\mathrm{MB}=50.41-57.57 \mu \mathrm{~m} ; \mathrm{ABW}=9.06-12.23 \mu \mathrm{~m}$; tail length $=33.98-$ $77.92 \mu \mathrm{~m} ; \mathrm{c}=5.11-10.62 \mu \mathrm{~m} ; \mathrm{c}^{\prime}=3.19-6.36 \mu \mathrm{~m}$.

4.1.2.12 Identification of Meloidogyne sp in Banana from Thovalappady

The species of root knot nematode infecting banana from Thoavlappady was identified as M. javanica (Plate 25), based on the morphological and morphometrical data of mature females, perineal pattern and second stage juveniles. The morphometric characters of the population are given in Table 25.

Description: Based on 10 females and 10 juveniles $\left(\mathrm{J}_{2}\right)$.
Measurements: Female: Length $=680.35-901.54 \mu \mathrm{~m}$; width $=530.29-629.45 \mu \mathrm{~m} ; \mathrm{a}=$ $1.17-1.68 \mu \mathrm{~m}$; stylet length $=15.25-18.01 \mu \mathrm{~m}$; neck length $=120.09-241.32 \mu \mathrm{~m}$; $\mathrm{LMB}=25.08-38.11 \mu \mathrm{~m} ; \mathrm{WMB}=25.01-38.00 \mu \mathrm{~m}$.

Plate 24. (A) female, (B) anterior end of female, (C) perineal pattern, (DE) anterior and posterior end of second stage juvenile of M. javanica in tomato from Thovalappady

Table 24. Morphometric characters of mature females, perineal pattern and second stage juveniles of tomato population of M. javanica from Thovalappady

Character ($\mu \mathrm{m}$)	Tomato population
Females	
Length	$683.99450 .92 \pm 16.10$ $(631.10-758.58) 7.44 \%$
Width	$\begin{gathered} 491.61 \pm 37.35 \pm 11.81 \\ (441.91-555.83) 7.59 \% \\ \hline \end{gathered}$
Neck length	$\begin{gathered} 179.33 \pm 26.14 \pm 8.26 \\ (137.40-223.99) 14.58 \% \\ \hline \end{gathered}$
Stylet length	$\begin{gathered} 12.89 \pm 1.86 \pm 0.59 \\ (10.43-16.58) 14.49 \% \end{gathered}$
LMB	$\begin{gathered} 37.42 \pm 3.18 \pm 1.00 \\ (32.11-41.81) 8 . .50 \% \\ \hline \end{gathered}$
WMB	$\begin{gathered} 33.98 \pm 4.75 \pm 1.50 \\ (25.84-40.35) 1.50 \% \end{gathered}$
a	$\begin{gathered} 1.38 \pm 0.08 \pm 0.02 \\ (1.17-1.50) 6.35 \% \end{gathered}$
Perineal pattern	
LVS	$\begin{gathered} 27.80 \pm 2.45 \pm 0.77 \\ (25.06-32.06) 8.82 \% \end{gathered}$
AVS	$\begin{gathered} 19.32 \pm 2.31 \pm 0.67 \\ (16.15-24.43) 11.06 \% \end{gathered}$
ATT	$\begin{gathered} 13.19 \pm 2.66 \pm 0.84 \\ (10.73-19.18) 20.20 \% \\ \hline \end{gathered}$
IPD	$\begin{gathered} 25.21 \pm 5.39 \pm 1.70 \\ (17.09-34.91) 21.38 \% \end{gathered}$
Second stage juveniles	
Length	$\begin{gathered} 400.30 \pm 17.28 \pm 5.466 \\ (360.96-418.60) 4.31 \% \\ \hline \end{gathered}$
Stylet length	$\begin{gathered} 14.33 \pm 0.50 \pm 0.15 \\ (13.47-14.97) 3.51 \% \end{gathered}$
H-MB	$\begin{gathered} 54.72 \pm 2.43 \pm 0.77 \\ (50.41-57.57) 4.45 \% \end{gathered}$
ABW	$\begin{gathered} 10.24 \pm 1.03 \pm 0.32 \\ (9.06-12.23) 10.09 \% \end{gathered}$
Tail length	$\begin{gathered} 54.43 \pm 12.63 \pm 3.99 \\ (33.98-77.92) 23.20 \% \end{gathered}$
c	$\begin{gathered} 7.71 \pm 1.75 \pm 0.55 \\ (5.11-10.62) 22.75 \% \\ \hline \end{gathered}$
c'	$\begin{gathered} 5.29 \pm 0.96 \pm 0.30 \\ (3.19-6.36) 18.13 \% \end{gathered}$

LMB-Length of median bulb, WMB- width of median bulb, a-length/width ratio, H-MB-head to median bulb, ABW-anal body width, c- length/tail length ratio, c'- tail length/anal body width ratio

A

B

Plate 25. (A) female, (B) anterior end of female, (C) perineal pattern, (DE) anterior and posterior end of second stage juvenile of M.javanica in banana from Thovalappady

Table 25. Morphometric characters of mature females, perineal pattern and second stage juveniles of banana population of M. javanica from Thovalappady

Character ($\mu \mathrm{m}$)	Banana population
Females	
Length	$\begin{gathered} 792.85 \pm 72.00 \pm 23.78 \\ (680.35-901.54) 9.46 \% \\ \hline \end{gathered}$
Width	$\begin{gathered} 564.39 \pm 53.98 \pm 16.20 \\ (530.29-629.45) 7.29 \% \end{gathered}$
Neck length	$\begin{gathered} 198.20 \pm 41.38 \pm 12.00 \\ (120.09-241.32) 20.39 \% \end{gathered}$
Stylet length	$\begin{gathered} 16.97 \pm 0.79 \pm 0.25 \\ (15.25-18.01) 4.82 \% \end{gathered}$
LMB	$\begin{gathered} 35.04 \pm 2.89 \pm 0.90 \\ (25.08-38.11) 10.01 \% \\ \hline \end{gathered}$
WMB	$\begin{gathered} 34.99 \pm 2.97 \pm 1.12 \\ (25.01-38.00) 12.72 \% \end{gathered}$
a	$\begin{gathered} 1.48 \pm 0.21 \pm 0.06 \\ (1.17-1.68) 12.81 \% \end{gathered}$
Perineal pattern	
LVS	$\begin{gathered} 27.18 \pm 2.81 \pm 0.71 \\ (25.17-31.21) 8.24 \% \\ \hline \end{gathered}$
AVS	$\begin{gathered} 19.86 \pm 2.41 \pm 0.54 \\ (16.13-26.17) 12.01 \% \end{gathered}$
ATT	$\begin{gathered} 14.01 \pm 2.61 \pm 0.79 \\ (11.29-18.10) 19.15 \% \\ \hline \end{gathered}$
IPD	$\begin{gathered} 26.15 \pm 5.21 \pm 2.81 \\ (22.17-38.10) 17.20 \% \end{gathered}$
Second stage juveniles	
Length	$\begin{gathered} 410.17 \pm 14.01 \pm 5.73 \\ (351.42-431.71) 3.40 \% \\ \hline \end{gathered}$
Stylet length	$\begin{gathered} 14.91 \pm 0.40 \pm 0.91 \\ (13.20-15.10) 2.30 \% \\ \hline \end{gathered}$
H-MB	$\begin{gathered} 52.00 \pm 2.41 \pm 0.61 \\ (46.37-56.43) 5.21 \% \end{gathered}$
ABW	$\begin{gathered} 10.81 \pm 1.37 \pm 0.41 \\ (9.17-13.01) 11.83 \% \\ \hline \end{gathered}$
Tail length	$\begin{gathered} 54.01 \pm 12.17 \pm 4.01 \\ (36.17-72.15) 24.01 \% \\ \hline \end{gathered}$
c	$\begin{gathered} 7.18 \pm 1.72 \pm 0.56 \\ (5.17-11.08) 21.32 \% \\ \hline \end{gathered}$
c'	$\begin{gathered} 5.72 \pm 0.81 \pm 0.41 \\ (3.25-6.37) 19.17 \% \\ \hline \end{gathered}$

LMB-Length of median bulb, WMB- width of median bulb, a-length/width ratio, H-MB-head to median bulb, ABW-anal body width, c- length/tail length ratio, c'- tail length/anal body width ratio

Perineal pattern: $\mathrm{LVS}=25.17-31.21 \mu \mathrm{~m} ; \mathrm{AVS}=16.13-26.17 \mu \mathrm{~m} ; A T \mathrm{~T}=11.29-$ $18.10 \mu \mathrm{~m} ;$ IPD $=22.17-38.10 \mu \mathrm{~m}$.

Second stage juveniles $\left(\mathrm{J}_{2}\right)$: Length $=351.42-431.71 \mu \mathrm{~m}$; stylet length $=13.20$ $15.10 \mu \mathrm{~m} ; \mathrm{H}-\mathrm{MB}=46.37-56.43 \mu \mathrm{~m} ; \mathrm{ABW}=9.17-13.01 \mu \mathrm{~m}$; tail length= 36.17$72.15 \mu \mathrm{~m} ; \mathrm{c}=5.17-11.08 \mu \mathrm{~m} ; \mathrm{c}^{\prime}=3.25-6.37 \mu \mathrm{~m}$.

4.1.3 Identification of Meloidogyne spp. from Thrissur District

4.1.3.1 Identification of Meloidogyne sp in Brinjal from Chazhoor

The species of root knot nematode infecting brinjal from Chazhoor was identified as M. arenaria (Plate 26), based on the morphological and morphometrical data of mature females, perineal pattern and second stage juveniles. The morphometric characters of the population are given in Table 26.

Description: Based on 10 females and 10 juveniles $\left(\mathrm{J}_{2}\right)$.
Measurements: Female: Length $=639.15-1019.46 \mu \mathrm{~m}$; width $=359.66-600.06 \mu \mathrm{~m}$; $\mathrm{a}=1.13-2.13 \mu \mathrm{~m}$; stylet length $=16.28-18.57 \mu \mathrm{~m}$; neck length $=104.70-302.42 \mu \mathrm{~m}$; $\mathrm{LMB}=35.73-45.97 \mu \mathrm{~m} ; \mathrm{WMB}=30.19-40.69 \mu \mathrm{~m}$.

Perineal pattern: $\mathrm{LVS}=23.34-30.27 \mu \mathrm{~m} ; \mathrm{AVS}=16.06-22.42 \mu \mathrm{~m} ;$ ATT $=17.61-$ $22.70 \mu \mathrm{~m} ; \mathrm{IPD}=30.20-39.09 \mu \mathrm{~m}$.

Second stage juveniles $\left(\mathrm{J}_{2}\right)$: Length $=400.41-440.29 \mu \mathrm{~m}$; stylet length $=12.76-$ $14.78 \mu \mathrm{~m} ; \mathrm{H}-\mathrm{MB}=45.25-53.11 \mu \mathrm{~m} ; \mathrm{ABW}=8.37-11.31 \mu \mathrm{~m}$; tail length $=40.11-$ $57.00 \mu \mathrm{~m} ; \mathrm{c}=7.66-9.98 \mu \mathrm{~m} ; \mathrm{c}^{\prime}=3.81-5.20 \mu \mathrm{~m}$.

4.1.3.2 Identification of Meloidogyne sp in okra from Chazhoor

The species of root knot nematode infecting okra from Chazhoor was identified as M. arenaria (Plate 27), based on the morphological and morphometrical data of mature females, perineal pattern and second stage juveniles. The morphometric characters of the population are given in Table 27.

Description: Based on 10 females and 10 juveniles $\left(\mathrm{J}_{2}\right)$.

Plate 26. (A) female, (B) anterior end of female, (C) perineal pattern,(DE)anterior and posterior end of second stage juvenile of M. arenaria in brinjal from Chazhoor

Table 26. Morphometric characters of mature females, perineal pattern and second stage juveniles of brinjal population of M. arenaria from Chazhoor

Character ($\mu \mathrm{m}$)	Brinjal population
Females	
Length	$\begin{gathered} 785.41 \pm 141.68 \pm 44.80 \\ (639.15-1019.46) 18.04 \% \end{gathered}$
Width	$\begin{gathered} 483.88 \pm 76.06 \pm 24.05 \\ (359.66-600.06) 15.05 \% \end{gathered}$
Neck length	$\begin{gathered} 203.63 \pm 61.30 \pm 19.38 \\ (104.70-302.42) 30.10 \% \\ \hline \end{gathered}$
Stylet length	$\begin{gathered} 17.18 \pm 0.83 \pm 0.26 \\ (16.28-18.57) 4.86 \% \\ \hline \end{gathered}$
LMB	$\begin{gathered} 41.57 \pm 2.86 \pm 0.90 \\ (35.73-45.97) 6.89 \% \\ \hline \end{gathered}$
WMB	$\begin{gathered} 34.66 \pm 4.07 \pm 1.28 \\ (30.19-40.69) 11.74 \% \\ \hline \end{gathered}$
a	$\begin{gathered} 1.67 \pm 0.34 \pm 0.10 \\ (1.13-2.13) 20.49 \% \end{gathered}$
Perineal pattern	
LVS	$\begin{gathered} 27.75 \pm 2.37 \pm 0.68 \\ (23.34-30.27) 8.55 \% \\ \hline \end{gathered}$
AVS	$\begin{gathered} 19.06 \pm 2.02 \pm 0.58 \\ (16.06-22.42) 10.63 \% \\ \hline \end{gathered}$
ATT	$\begin{gathered} 19.48 \pm 1.38 \pm 0.39 \\ (17.61-22.70) 7.10 \% \\ \hline \end{gathered}$
IPD	$\begin{gathered} 33.55 \pm 2.75 \pm 0.79 \\ (30.20-39.09) 8.21 \% \\ \hline \end{gathered}$
Second stage juveniles	
Length	$\begin{gathered} 420.37 \pm 12.81 \pm 4.30 \\ (400.41-440.29) 3.28 \% \\ \hline \end{gathered}$
Stylet length	$\begin{gathered} 13.81 \pm 0.61 \pm 0.27 \\ (12.76-14.78) 3.28 \% \end{gathered}$
H-MB	$\begin{gathered} 48.93 \pm 2.78 \pm 1.32 \\ (45.25-53.11) 7.21 \% \\ \hline \end{gathered}$
ABW	$\begin{gathered} 10.21 \pm 2.11 \pm 0.53 \\ (8.37-11.31) 10.11 \% \\ \hline \end{gathered}$
Tail length	$\begin{gathered} 49.08 \pm 6.72 \pm 1.21 \\ (40.11-57.00) 10.98 \% \end{gathered}$
c	$8.56 \pm 0.60 \pm 0.31$ $(7.66-9.98) 12.35 \%$
c'	$\begin{gathered} 4.80 \pm 0.50 \pm 0.27 \\ (3.81-5.20) 10.98 \% \\ \hline \end{gathered}$

LMB-Length of median bulb, WMB- width of median bulb, a-length/width ratio, H-MB-head to median bulb, ABW-anal body width, c- length/tail length ratio, c'- tail length/anal body width ratio

Plate 27. (A) female, (B) anterior end of female, (C) perineal pattern, (DE)anterior and posterior end of second stage juvenile of M. arenaria in okra from Chazhoor

Table 27. Morphometric characters of mature females, perineal pattern and second stage juveniles of okra population of M. arenaria from Chazhoor

Character ($\mu \mathrm{m}$)	Okra population
Females	
Length	$\begin{gathered} 898.37 \pm 120.67 \pm 36.18 \\ (798.32-1139.98) 12.78 \% \\ \hline \end{gathered}$
Width	$\begin{gathered} 485.91 \pm 58.07 \pm 19.21 \\ (418.37-605.34) 10.17 \% \\ \hline \end{gathered}$
Neck length	$\begin{gathered} 280.01 \pm 80.19 \pm 26.08 \\ (259.19-398.17) 27.18 \% \end{gathered}$
Stylet length	$\begin{gathered} 16.98 \pm 0.81 \pm 0.23 \\ (16.23-18.45) 4.80 \% \end{gathered}$
LMB	$\begin{gathered} 41.54 \pm 2.07 \pm 0.65 \\ (38.15-45.26) 4.99 \% \end{gathered}$
WMB	$\begin{gathered} 40.80 \pm 3.33 \pm 1.05 \\ (34.02-44.02) 8.59 \% \\ \hline \end{gathered}$
a	$\begin{gathered} 1.68 \pm 0.38 \pm 0.19 \\ (1.30-2.24) 18.13 \% \\ \hline \end{gathered}$
Perineal pattern	
LVS	$\begin{gathered} 26.38 \pm 1.99 \pm 0.62 \\ (23.69-30.00) 7.54 \% \end{gathered}$
AVS	$\begin{gathered} 18.01 \pm 1.26 \pm 0.40 \\ (16.25-20.36) 7.02 \% \end{gathered}$
ATT	$\begin{gathered} 19.16 \pm 1.42 \pm 0.45 \\ (17.12-22.26) 7.44 \% \end{gathered}$
IPD	$\begin{gathered} 30.60 \pm 1.98 \pm 0.78 \\ (26.24-32.18) 7.91 \% \\ \hline \end{gathered}$
Second stage juveniles	
Length	$\begin{gathered} 421.36 \pm 14.40 \pm 4.55 \\ (401.28-440.86) 3.41 \% \end{gathered}$
Stylet length	$\begin{gathered} 13.76 \pm 0.80 \pm 0.43 \\ (12.27-14.98) 7.04 \% \end{gathered}$
H-MB	$\begin{gathered} 49.97 \pm 6.11 \pm 1.53 \\ (40.20-55.76) 10.00 \% \end{gathered}$
ABW	$\begin{gathered} 10.80 \pm 3.81 \pm 0.48 \\ (9.06-11.98) 10.11 \% \\ \hline \end{gathered}$
Tail length	$\begin{gathered} 48.01 \pm 4.23 \pm 0.80 \\ (40.01-56.00) 10.38 \% \\ \hline \end{gathered}$
c	$\begin{gathered} 8.77 \pm 1.38 \pm 0.53 \\ (7.60-10.87) 11.31 \% \\ \hline \end{gathered}$
c'	$\begin{gathered} 4.44 \pm 0.63 \pm 0.31 \\ (2.98-5.76) 10.25 \% \end{gathered}$

LMB-Length of median bulb, WMB- width of median bulb, a-length/width ratio, H-MB-head to median bulb, ABW-anal body width, c- length/tail length ratio, c'- tail length/anal body width ratio

Measurements: Female: Length $=798.32-1139.98 \mu \mathrm{~m}$; width $=418.37-605.34 \mu \mathrm{~m}$; $\mathrm{a}=1.30-2.24 \mu \mathrm{~m}$; stylet length $=16.23-18.45 \mu \mathrm{~m}$; neck length $=259.19-398.17 \mu \mathrm{~m}$; $\mathrm{LMB}=38.15-45.26 \mu \mathrm{~m} ; \mathrm{WMB}=34.02-44.02 \mu \mathrm{~m}$.

Perineal pattern: LVS $=23.69-30.00 \mu \mathrm{~m} ;$ AVS $=16.25-20.36 \mu \mathrm{~m} ;$ ATT $=17.12-$ $22.26 \mu \mathrm{~m} ;$ IPD $=26.24-32.18 \mu \mathrm{~m}$.

Second stage juveniles $\left(\mathrm{J}_{2}\right)$: Length $=401.28-440.86 \mu \mathrm{~m}$; stylet length $=12.27$ $14.98 \mu \mathrm{~m} ; \mathrm{H}-\mathrm{MB}=40.20-55.76 \mu \mathrm{~m} ; \mathrm{ABW}=9.06-11.98 \mu \mathrm{~m}$; tail length $=40.01-$ $56.00 \mu \mathrm{~m} ; \mathrm{c}=7.60-10.87 \mu \mathrm{~m} ; \mathrm{c}^{\prime}=2.98-5.76 \mu \mathrm{~m}$.

4.1.3.3 Identification of Meloidogyne sp in Tomato from Chazhoor

The species of root knot nematode infecting tomato from Chazhoor was identified as M. arenaria (Plate 28), based on the morphological and morphometrical data of mature females, perineal pattern and second stage juveniles. The morphometric characters of the population are given in Table 28.

Description: Based on 10 females and 10 juveniles $\left(\mathrm{J}_{2}\right)$.
Measurements: Female: Length $=810.97-1030.25 \mu \mathrm{~m}$; width $=496.66-707.73 \mu \mathrm{~m}$; $a=1.02-2.24 \mu \mathrm{~m}$; stylet length $=16.16-18.24 \mu \mathrm{~m}$; neck length $=211.07-354.27 \mu \mathrm{~m}$; $\mathrm{LMB}=37.25-44.38 \mu \mathrm{~m} ; \mathrm{WMB}=34.08-45.02 \mu \mathrm{~m}$.

Perineal pattern: LVS $=30.24-34.45 \mu \mathrm{~m} ;$ AVS $=19.16-24.01 \mu \mathrm{~m} ;$ ATT $=13.26-$ $17.54 \mu \mathrm{~m} ; I P D=25.28-39.50 \mu \mathrm{~m}$.

Second stage juveniles $\left(\mathrm{J}_{2}\right)$: Length $=404.14-445.82 \mu \mathrm{~m}$; stylet length $=12.13$ $15.01 \mu \mathrm{~m} ; \mathrm{H}-\mathrm{MB}=42.74-59.81 \mu \mathrm{~m} ; \mathrm{ABW}=9.31-12.97 \mu \mathrm{~m}$; tail length= 40.41$56.01 \mu \mathrm{~m} ; \mathrm{c}=7.67-10.01 \mu \mathrm{~m} ; \mathrm{c}^{\prime}=3.98-6.10 \mu \mathrm{~m}$.

4.1.3.4 Identification of Meloidogyne sp in Banana from Chazhoor

The species of root knot nematode infecting banana from Chazhoor was identified as M. arenaria (Plate 29), based on the morphological and

Plate 28. (A) female, (B) anterior end of female, (C) perineal pattern, (DE)anterior and posterior end of second stage juvenile of M. arenaria in tomato from Chazhoor

Table 28. Morphometric characters of mature females, perineal pattern and second stage juveniles of tomato population of M. arenaria from Chazhoor

Character ($\mu \mathrm{m}$)	Tomato population
Females	
Length	$\begin{gathered} 916.88 \pm 68.26 \pm 21.58 \\ (810.97-1030.25) 7.44 \% \end{gathered}$
Width	$\begin{gathered} 588.32 \pm 72.89 \pm 23.04 \\ (496.66-707.73) 12.38 \% \end{gathered}$
Neck length	$\begin{gathered} 265.44 \pm 45.86 \pm 14.50 \\ (211.07-354.27) 17.17 \% \end{gathered}$
Stylet length	$\begin{gathered} 16.84 \pm 0.71 \pm 0.23 \\ (16.16-18.24) 4.12 \% \\ \hline \end{gathered}$
LMB	$\begin{gathered} 40.25 \pm 2.00 \pm 0.58 \\ (37.25-44.38) 4.81 \% \\ \hline \end{gathered}$
WMB	$\begin{gathered} 40.08 \pm 2.00 \pm 0.58 \\ (34.08-45.02) 7.81 \% \\ \hline \end{gathered}$
a	$\begin{gathered} 1.59 \pm 0.21 \pm 0.12 \\ (1.02-2.24) 17.39 \% \\ \hline \end{gathered}$
Perineal pattern	
LVS	$\begin{gathered} 32.15 \pm 1.53 \pm 0.48 \\ (30.24-34.45) 4.76 \% \end{gathered}$
AVS	$\begin{gathered} 21.16 \pm 1.61 \pm 0.50 \\ (19.16-24.01) 7.45 \% \end{gathered}$
ATT	$\begin{gathered} 15.83 \pm 1.65 \pm 0.52 \\ (13.26-17.54) \quad 10.46 \% \end{gathered}$
IPD	$\begin{gathered} 33.16 \pm 4.57 \pm 1.44 \\ (25.28-39.50) 13.80 \% \\ \hline \end{gathered}$
Second stage juveniles	
Length	$\begin{gathered} 423.54 \pm 15.09 \pm 4.77 \\ (404.14-445.82) 3.56 \% \end{gathered}$
Stylet length	$\begin{gathered} 13.83 \pm 0.71 \pm 0.31 \\ (12.13-15.01) 6.81 \% \end{gathered}$
H-MB	$\begin{gathered} 50.31 \pm 5.61 \pm 1.44 \\ (42.74-59.81) 9.21 \% \end{gathered}$
ABW	$\begin{gathered} 10.99 \pm 2.00 \pm 0.43 \\ (9.31-12.97) 10.98 \% \end{gathered}$
Tail length	$\begin{gathered} 48.91 \pm 5.62 \pm 1.91 \\ (40.41-56.01) 11.21 \% \end{gathered}$
c	$\begin{gathered} 8.65 \pm 1.42 \pm 0.47 \\ (7.67-10.01) 10.25 \% \end{gathered}$
c'	$5.98 \pm 0.51 \pm 0.25$ $(3.98-6.10) 10.00 \%$

LMB-Length of median bulb, WMB- width of median bulb, a-length/width ratio, H-MB-head to median bulb, ABW-anal body width, c- length/tail length ratio, c'- tail length/anal body width ratio
morphometrical data of mature females, perineal pattern and second stage juveniles. The morphometric characters of the population are given in Table 29.

Description: Based on 10 females and 10 juveniles $\left(\mathrm{J}_{2}\right)$.

Measurements: Female: Length $=749.95-1162.16 \mu \mathrm{~m}$; width $=438.69-617.01 \mu \mathrm{~m}$; $\mathrm{a}=1.32-2.43 \mu \mathrm{~m}$; stylet length $=16.52-18.47 \mu \mathrm{~m}$; neck length $=155.30-442.81 \mu \mathrm{~m}$; $\mathrm{LMB}=35.68-45.08 \mu \mathrm{~m} ; \mathrm{WMB}=34.88-42.83 \mu \mathrm{~m}$.

Perineal pattern: LVS $=20.91-30.39 \mu \mathrm{~m} ; \mathrm{AVS}=15.20-28.88 \mu \mathrm{~m} ; A T \mathrm{~T}=10.47-$ $31.03 \mu \mathrm{~m} ;$ IPD $=20.07-33.22 \mu \mathrm{~m}$.

Second stage juveniles $\left(\mathrm{J}_{2}\right)$: Length $=405.30-446.82 \mu \mathrm{~m}$; stylet length $=12.90$ $14.80 \mu \mathrm{~m} ; \mathrm{H}-\mathrm{MB}=46.35-55.96 \mu \mathrm{~m} ; \mathrm{ABW}=10.02-13.86 \mu \mathrm{~m}$; tail length $=40.40-$ $56.24 \mu \mathrm{~m} ; \mathrm{c}=7.67-10.73 \mu \mathrm{~m} ; \mathrm{c}^{\prime}=3.71-5.18 \mu \mathrm{~m}$.

4.1.3.5 Identification of Meloidogyne sp in Brinjal from Thalikulam

The species of root knot nematode infecting brinjal from Thalikulam was identified as M. javanica (Plate 30), based on the morphological and morphometrical data of mature females, perineal pattern and second stage juveniles. The morphometric characters of the population are given in Table 30.

Description: Based on 10 females and 10 juveniles $\left(\mathrm{J}_{2}\right)$.
Measurements: Female: Length $=552.83-826.28 \mu \mathrm{~m}$; width $=389.17-547.26 \mu \mathrm{~m} ; \mathrm{a}=$ $1.37-1.65 \mu \mathrm{~m}$; stylet length $=15.07-17.26 \mu \mathrm{~m}$; neck length $=104.38-206.65 \mu \mathrm{~m}$; $\mathrm{LMB}=30.12-45.69 \mu \mathrm{~m} ; \mathrm{WMB}=30.02-44.89 \mu \mathrm{~m}$.

Perineal pattern: LVS $=22.35-28.88 \mu \mathrm{~m} ; \mathrm{AVS}=16.39-23.26 \mu \mathrm{~m} ;$ ATT $=11.32-$ $18.10 \mu \mathrm{~m} ;$ IPD $=17.68-31.55 \mu \mathrm{~m}$.

Second stage juveniles $\left(\mathrm{J}_{2}\right)$: Length $=338.64-419.88 \mu \mathrm{~m}$; stylet length $=13.14-$ $14.22 \mu \mathrm{~m} ; \mathrm{H}-\mathrm{MB}=48.19-52.09 \mu \mathrm{~m} ; \mathrm{ABW}=9.11-11.00 \mu \mathrm{~m}$; tail length= 48.19$58.31 \mu \mathrm{~m} ; \mathrm{c}=6.52-7.85 \mu \mathrm{~m} ; \mathrm{c}^{\prime}=4.75-5.89 \mu \mathrm{~m}$.

Plate 29. (A) female, (B) anterior end of female, (C) perineal pattern, (DE)anterior and posterior end of second stage juvenile of M. arenaria in banana from Chazhoor

Table 29. Morphometric characters of mature females, perineal pattern and second stage juveniles of banana population of M. arenaria from Chazhoor

Character ($\mu \mathrm{m}$)	Banana population
Females	
Length	$\begin{gathered} 927.46 \pm 133.36 \pm 42.17 \\ (749.95-1162.16) 14.37 \% \\ \hline \end{gathered}$
Width	$516.99 \pm 61.01 \pm 19.29$ $(438.69-617.01) 11.80 \%$
Neck length	$\begin{gathered} 296.91 \pm 88.69 \pm 28.04 \\ (155.30-442.81) 29.87 \% \\ \hline \end{gathered}$
Stylet length	$\begin{gathered} 17.88 \pm 0.92 \pm 0.26 \\ (16.52-18.47) 4.71 \% \end{gathered}$
LMB	$\begin{gathered} 42.67 \pm 2.98 \pm 0.92 \\ (35.68-45.08) 6.87 \% \end{gathered}$
WMB	$\begin{gathered} 41.78 \pm 4.21 \pm 1.31 \\ (34.88-42.83) 12.43 \% \end{gathered}$
a	$\begin{gathered} 1.79 \pm 0.42 \pm 0.20 \\ (1.32-2.43) 19.38 \% \end{gathered}$
Perineal pattern	
LVS	$\begin{gathered} 24.96 \pm 2.70 \pm 0.81 \\ (20.91-30.39) 10.85 \% \\ \hline \end{gathered}$
AVS	$\begin{gathered} 19.56 \pm 3.69 \pm 1.11 \\ (15.20-28.88) 18.88 \% \end{gathered}$
ATT	$\begin{gathered} 18.90 \pm 5.64 \pm 1.70 \\ (10.47-31.03) 29.87 \% \end{gathered}$
IPD	$\begin{gathered} 26.44 \pm 4.56 \pm 1.37 \\ (20.07-33.22) 17.26 \% \end{gathered}$
Second stage juveniles	
Length	$\begin{gathered} 428.39 \pm 13.95 \pm 4.41 \\ (405.30-446.82) 3.25 \% \\ \hline \end{gathered}$
Stylet length	$\begin{gathered} 13.92 \pm 0.53 \pm 0.16 \\ (12.90-14.80) 3.85 \% \end{gathered}$
H-MB	$\begin{gathered} 50.95 \pm 3.36 \pm 1.06 \\ (46.35-55.96) 6.61 \% \end{gathered}$
ABW	$\begin{gathered} 11.81 \pm 1.32 \pm 0.41 \\ (10.02-13.86) 11.21 \% \end{gathered}$
Tail length	$\begin{gathered} 49.88 \pm 5.87 \pm 1.85 \\ (40.40-56.24) 11.78 \% \end{gathered}$
c	$\begin{gathered} 8.69 \pm 1.04 \pm 0.32 \\ (7.67-10.73) 11.96 \% \\ \hline \end{gathered}$
c'	$\begin{gathered} 4.23 \pm 0.45 \pm 0.14 \\ (3.71-5.18) 10.83 \% \end{gathered}$

LMB-Length of median bulb, WMB- width of median bulb, a-length/width ratio, H-MB-head to median bulb, ABW-anal body width, c- length/tail length ratio, c'- tail length/anal body width ratio

Plate 30. (A) female, (B) anterior end of female, (C) perineal pattern, (DE)anterior and posterior end of second stage juvenile of M. javanica in brinjal from Thalikulam

Table 30. Morphometric characters of mature females, perineal pattern and second stage juveniles of brinjal population of M. arenaria from Thalikulam

Character ($\mu \mathrm{m}$)	Brinjal population
Females	
Length	$\begin{gathered} 708.57 \pm 68.47 \pm 21.65 \\ (552.83-826.28) 9.66 \% \\ \hline \end{gathered}$
Width	$\begin{gathered} 470.40 \pm 51.57 \pm 16.31 \\ (389.17-547.26) 10.96 \% \\ \hline \end{gathered}$
Neck length	$\begin{gathered} 168.28 \pm 30.40 \pm 9.61 \\ (104.38-206.65) 18.06 \% \\ \hline \end{gathered}$
Stylet length	$\begin{gathered} 16.08 \pm 0.79 \pm 0.25 \\ (15.07-17.26) 4.93 \% \end{gathered}$
LMB	$\begin{gathered} 39.85 \pm 4.53 \pm 1.43 \\ (30.12-45.69) 11.37 \% \end{gathered}$
WMB	$\begin{gathered} 39.32 \pm 4.29 \pm 1.35 \\ (30.02-44.89) 10.92 \% \\ \hline \end{gathered}$
a	$\begin{gathered} 1.50 \pm 0.09 \pm 0.02 \\ (1.37-1.65) 5.97 \% \end{gathered}$
Perineal pattern	
LVS	$\begin{gathered} 25.17 \pm 1.75 \pm 0.558 \\ (22.35-28.88) 6.82 \% \\ \hline \end{gathered}$
AVS	$\begin{gathered} 19.85 \pm 2.02 \pm 0.64 \\ (16.39-23.26) 10.22 \% \\ \hline \end{gathered}$
ATT	$\begin{gathered} 14.19 \pm 1.94 \pm 0.61 \\ (11.32-18.10) 13.69 \% \end{gathered}$
IPD	$\begin{gathered} 26.25 \pm 4.66 \pm 1.47 \\ (17.68-31.55) 17.78 \% \end{gathered}$
Second stage juveniles	
Length	$\begin{gathered} 380.43 \pm 28.98 \pm 9.16 \\ (338.64-419.88) 7.61 \% \\ \hline \end{gathered}$
Stylet length	$\begin{gathered} 13.54 \pm 0.33 \pm 0.10 \\ (13.14-14.22) 2.45 \% \\ \hline \end{gathered}$
H-MB	$\begin{gathered} 49.87 \pm 1.51 \pm 0.47 \\ (48.19-52.09) 3.03 \% \end{gathered}$
ABW	$\begin{gathered} 10.07 \pm 0.62 \pm 0.91 \\ (9.11-11.00) 6.20 \% \end{gathered}$
Tail length	$\begin{gathered} 53.11 \pm 3.33 \pm 1.05 \\ (48.19-58.31) 6.28 \% \end{gathered}$
c	$\begin{gathered} 7.16 \pm 0.38 \pm 0.12 \\ (6.52-7.85) 5.39 \% \\ \hline \end{gathered}$
c'	$5.30 \pm 0.39 \pm 0.12$ $(4.75-5.89) 7.45 \%$

LMB-Length of median bulb, WMB- width of median bulb, a-length/width ratio, H-MB-head to median bulb, ABW-anal body width, c- length/tail length ratio, c'- tail length/anal body width ratio

4.1.3.6 Identification of Meloidogyne sp in okra from Thalikulam

The species of root knot nematode infecting okra from Thalikulam was identified as M. arenaria (Plate 31), based on the morphological and morphometrical data of mature females, perineal pattern and second stage juveniles. The morphometric characters of the population are given in Table 31.

Description: Based on 10 females and 10 juveniles $\left(\mathrm{J}_{2}\right)$.

Measurements: Female: Length $=541.21-999.01 \mu \mathrm{~m}$; width $=376.09-547.58 \mu \mathrm{~m} ; \mathrm{a}=$ $1.168-1.931 \mu \mathrm{~m}$; stylet length $=15.47-16.59 \mu \mathrm{~m}$; neck length $=138.10-297.65 \mu \mathrm{~m}$; $\mathrm{LMB}=40.15-45.48 \mu \mathrm{~m} ; \mathrm{WMB}=39.16-45.00 \mu \mathrm{~m}$.

Perineal pattern: $\mathrm{LVS}=26.10-31.13 \mu \mathrm{~m} ; \mathrm{AVS}=17.46-22.82 \mu \mathrm{~m} ; \mathrm{ATT}=16.94-$ $29.47 \mu \mathrm{~m} ;$ IPD $=24.58-35.70 \mu \mathrm{~m}$.

Second stage juveniles $\left(\mathrm{J}_{2}\right)$: Length $=360.12-461.28 \mu \mathrm{~m}$; stylet length $=12.80$ $14.79 \mu \mathrm{~m} ; \mathrm{H}-\mathrm{MB}=45.73-53.92 \mu \mathrm{~m} ; \mathrm{ABW}=9.18-12.04 \mu \mathrm{~m}$; tail length= 39.30$55.95 \mu \mathrm{~m} ; \mathrm{c}=6.66-10.06 \mu \mathrm{~m} ; \mathrm{c}^{\prime}=4.16-5.67 \mu \mathrm{~m}$.

4.1.3.7 Identification of Meloidogyne sp in Tomato from Thalikulam

The species of root knot nematode infecting tomato from Thalikulam was identified as M. arenaria (Plate 32), based on the morphological and morphometrical data of mature females, perineal pattern and second stage juveniles. The morphometric characters of the population are given in Table 32.

Description: Based on 10 females and 10 juveniles $\left(\mathrm{J}_{2}\right)$.
Measurements: Female: Length $=645.56-933.81 \mu \mathrm{~m}$; width $=356.18-608.91 \mu \mathrm{~m} ; \mathrm{a}=$ $1.24-1.98 \mu \mathrm{~m}$; stylet length $=15.23-16.98 \mu \mathrm{~m}$; neck length $=112.69-303.58 \mu \mathrm{~m}$; $\mathrm{LMB}=35.12-41.54 \mu \mathrm{~m} ; \mathrm{WMB}=30.21-40.12 \mu \mathrm{~m}$.

Perineal pattern: $\mathrm{LVS}=21.51-29.19 \mu \mathrm{~m} ; \mathrm{AVS}=14.36-19.79 \mu \mathrm{~m} ;$ ATT $=12.32-$ $23.09 \mu \mathrm{~m} ; \mathrm{IPD}=26.14-36.40 \mu \mathrm{~m}$.

Plate 31. (A) female, (B) anterior end of female, (C) perineal pattern, (DE)anterior and posterior end of second stage juvenile of M. arenaria in okra from Thalikulam

Table 31. Morphometric characters of mature females, perineal pattern and second stage juveniles of okra population of M. arenaria from Thalikulam

Character ($\mu \mathrm{m}$)	Okra population
Females	
Length	$\begin{gathered} 665.93 \pm 83.91 \pm 26.53 \\ (541.21-799.01) 12.60 \% \end{gathered}$
Width	$459.93 \pm 53.63 \pm 16.96$ $(376.093-547.583) 11.662 \%$
Neck length	$191.49 \pm 51.49 \pm 16.28$ $(138.10-297.65) 26.88 \%$
Stylet length	$\begin{gathered} 15.95 \pm 0.46 \pm 0.14 \\ (15.47-16.59) 2.93 \% \end{gathered}$
LMB	$\begin{gathered} 42.40 \pm 2.36 \pm 0.74 \\ (40.15-45.48) 5.57 \% \end{gathered}$
WMB	$\begin{gathered} 41.86 \pm 2.16 \pm 0.68 \\ (39.16-45.00) 5.18 \% \end{gathered}$
a	$\begin{gathered} 1.45 \pm 0.20 \pm 0.06 \\ (1.16-1.93) 14.22 \% \end{gathered}$
Perineal pattern	
LVS	$\begin{gathered} 28.07 \pm 1.49 \pm 0.47 \\ (26.10-31.13) 5.33 \% \\ \hline \end{gathered}$
AVS	$\begin{gathered} 19.90 \pm 1.85 \pm 0.58 \\ (17.46-22.82) 9.31 \% \end{gathered}$
ATT	$\begin{gathered} 20.19 \pm 3.48 \pm 1.10 \\ (16.94-29.47) 17.25 \% \end{gathered}$
IPD	$\begin{gathered} 30.10 \pm 4.12 \pm 1.30 \\ (24.58-35.70) 13.69 \% \end{gathered}$
Second stage juveniles	
Length	$\begin{gathered} 395.49 \pm 27.08 \pm 8.56 \\ (360.12-461.28) 6.84 \% \\ \hline \end{gathered}$
Stylet length	$\begin{gathered} 14.10 \pm 0.55 \pm 3.94 \\ (12.80-14.79) 3.94 \% \end{gathered}$
H-MB	$\begin{gathered} 51.30 \pm 3.01 \pm 0.95 \\ (45.73-53.92) 5.88 \% \end{gathered}$
ABW	$\begin{gathered} 10.85 \pm 0.97 \pm 0.30 \\ (9.18-12.04) 8.96 \% \end{gathered}$
Tail length	$\begin{gathered} 51.59 \pm 4.67 \pm 1.47 \\ (39.30-55.95) 9.06 \% \end{gathered}$
c	$\begin{gathered} 7.73 \pm 1.01 \pm 0.32 \\ (6.66-10.06) 13.12 \% \\ \hline \end{gathered}$
c'	$\begin{gathered} 4.76 \pm 0.45 \pm 0.14 \\ (4.16-5.67) 9.46 \% \end{gathered}$

LMB-Length of median bulb, WMB- width of median bulb, a-length/width ratio, H-MB-head to median bulb, ABW-anal body width, c- length/tail length ratio, c'- tail length/anal body width ratio

Plate 32. (A) female, (B) anterior end of female, (C) perineal pattern, (DE)anterior and posterior end of second stage juvenile of M. arenaria in tomato from Thalikulam

Table 32. Morphometric characters of mature females, perineal pattern and second stage juveniles of tomato population of M. arenaria from Thalikulam

LMB-Length of median bulb, WMB- width of median bulb, a-length/width ratio, H-MB-head to median bulb, ABW-anal body width, c- length/tail length ratio, c'- tail length/anal body width ratio

Second stage juveniles $\left(\mathrm{J}_{2}\right)$: Length $=339.46-452.43 \mu \mathrm{~m}$; stylet length $=13.10$ $14.52 \mu \mathrm{~m} ; \mathrm{H}-\mathrm{MB}=41.50-52.03 \mu \mathrm{~m} ; \mathrm{ABW}=8.25-12.76 \mu \mathrm{~m}$; tail length $=36.92-$ $58.64 \mu \mathrm{~m} ; \mathrm{c}=6.33-11.23 \mu \mathrm{~m} ; \mathrm{c}^{\prime}=3.81-5.12 \mu \mathrm{~m}$.

4.1.3.8 Identification of Meloidogyne sp in Banana from Thalikulam

The species of root knot nematode infecting banana in Thalikulam was identified as M. arenaria (Plate 33), based on the morphological and morphometrical data of mature females, perineal pattern and second stage juveniles. The morphometric characters of the population are given in Table 33.

Description: Based on 10 females and 10 juveniles $\left(\mathrm{J}_{2}\right)$.

Measurements: Female: Length $=671.60-936.11 \mu \mathrm{~m}$; width $=361.27-619.01 \mu \mathrm{~m}$; $\mathrm{a}=$ $1.24-1.98 \mu \mathrm{~m}$; stylet length $=15.20-17.38 \mu \mathrm{~m}$; neck length $=208.21-321.27 \mu \mathrm{~m}$; $\mathrm{LMB}=35.62-43.98 \mu \mathrm{~m} ; \mathrm{WMB}=30.18-42.21 \mu \mathrm{~m}$.

Perineal pattern: $\mathrm{LVS}=25.14-29.25 \mu \mathrm{~m} ; \mathrm{AVS}=17.15-20.25 \mu \mathrm{~m} ; \quad \mathrm{ATT}=13.25-$ $22.25 \mu \mathrm{~m} ;$ IPD $=26.21-36.25 \mu \mathrm{~m}$.

Second stage juveniles $\left(\mathrm{J}_{2}\right)$: Length $=340.57-458.29 \mu \mathrm{~m}$; stylet length $=13.25-$ $14.65 \mu \mathrm{~m} ; \mathrm{H}-\mathrm{MB}=42.01-53.41 \mu \mathrm{~m} ; \mathrm{ABW}=8.31-12.81 \mu \mathrm{~m}$; tail length $=38.21-$ $59.24 \mu \mathrm{~m} ; \mathrm{c}=6.31-11.24 \mu \mathrm{~m} ; \mathrm{c}^{\prime}=3.18-6.34 \mu \mathrm{~m}$.

4.1.3.9 Identification of Meloidogyne sp in Brinjal from Thanniyam

The species of root knot nematode infecting brinjal from Thanniyam was identified as M. incognita (Plate 34), based on the morphological and morphometrical data of mature females, perineal pattern and second stage juveniles. The morphometric characters of the population are given in Table 34.

Description: Based on 10 females and 10 juveniles $\left(\mathrm{J}_{2}\right)$.

Measurements: Female: Length $=668.22-863.19 \mu \mathrm{~m}$; width $=472.07-616.89 \mu \mathrm{~m} ; \mathrm{a}=$ $1.16-1.54 \mu \mathrm{~m}$; stylet length $=14.25-16.45 \mu \mathrm{~m}$; neck length $=160.99-234.13 \mu \mathrm{~m}$; $\mathrm{LMB}=32.48-42.15 \mu \mathrm{~m} ; W M B=32.05-42.15 \mu \mathrm{~m}$.

Plate 33. (A) female, (B) anterior end of female, (C) perineal pattern, (DE)anterior and posterior end of second stage juvenile of M. arenaria in banana from Thalikulam

Table 33. Morphometric characters of mature females, perineal pattern and second stage juveniles of banana population of M. arenaria from Thalikulam

Character ($\mu \mathrm{m}$)	Banana population
Females	
Length	$\begin{gathered} 781.36 \pm 81.20 \pm 28.10 \\ (671.60-936.11) 12.38 \% \\ \hline \end{gathered}$
Width	$\begin{gathered} 490.02 \pm 64.21 \pm 26.01 \\ (361.27-619.01) 16.31 \% \end{gathered}$
Neck length	$\begin{gathered} 217.11 \pm 57.02 \pm 19.21 \\ (208.21-321.27) 28.57 \% \\ \hline \end{gathered}$
Stylet length	$\begin{gathered} 16.98 \pm 0.23 \pm 0.17 \\ (15.20-17.38) 5.02 \% \end{gathered}$
LMB	$\begin{gathered} 39.23 \pm 3.42 \pm 0.98 \\ (35.62-43.98) 6.25 \% \end{gathered}$
WMB	$\begin{gathered} 39.02 \pm 4.21 \pm 1.21 \\ (30.18-42.21) 12.71 \% \\ \hline \end{gathered}$
a	$\begin{gathered} 1.60 \pm 0.25 \pm 0.10 \\ (1.24-1.98) 16.21 \% \end{gathered}$
Perineal pattern	
LVS	$\begin{gathered} 26.10 \pm 1.30 \pm 0.41 \\ (25.14-29.25) 5.00 \% \end{gathered}$
AVS	$\begin{gathered} 18.77 \pm 1.10 \pm 0.35 \\ (17.15-20.25) 5.90 \% \end{gathered}$
ATT	$\begin{gathered} 17.56 \pm 2.74 \pm 0.86 \\ (13.25-22.25) 15.64 \% \\ \hline \end{gathered}$
IPD	$\begin{gathered} 29.93 \pm 3.06 \pm 0.96 \\ (26.21-36.25) 10.23 \% \\ \hline \end{gathered}$
Second stage juveniles	
Length	$\begin{gathered} 401.14 \pm 51.28 \pm 12.26 \\ (340.57-458.29) 10.01 \% \end{gathered}$
Stylet length	$\begin{gathered} 13.94 \pm 0.51 \pm 0.16 \\ (13.25-14.65) 3.65 \% \end{gathered}$
H-MB	$\begin{gathered} 48.73 \pm 3.21 \pm 1.11 \\ (42.01-53.41) 0.71 \% \end{gathered}$
ABW	$\begin{gathered} 10.74 \pm 1.56 \pm 0.81 \\ (8.31-12.81) 12.11 \% \\ \hline \end{gathered}$
Tail length	$\begin{gathered} 47.21 \pm 7.11 \pm 1.81 \\ (38.21-59.24) 14.21 \% \\ \hline \end{gathered}$
c	$\begin{gathered} 8.49 \pm 1.74 \pm 0.61 \\ (6.31-11.24) 18.21 \% \\ \hline \end{gathered}$
c'	$5.55 \pm 0.51 \pm 0.21$ $(3.18-6.34) 10.22 \%$

LMB-Length of median bulb, WMB- width of median bulb, a-length/width ratio, H-MB-head to median bulb, ABW-anal body width, c- length/tail length ratio, c'- tail length/anal body width ratio

Table 34. Morphometric characters of mature females, perineal pattern and second stage juveniles of brinjal population of M. incognita from Thanniyam

Character ($\mu \mathrm{m}$)	Brinjal population
Females	
Length	$\begin{gathered} 724.04 \pm 56.11 \pm 17.74 \\ (668.22-863.19) 7.74 \% \end{gathered}$
Width	$\begin{gathered} 525.77 \pm 47.55 \pm 15.03 \\ (472.07-616.89) 9.04 \% \end{gathered}$
Neck length	$\begin{gathered} 190.35 \pm 26.99 \pm 8.53 \\ (160.99-234.13) 14.81 \% \end{gathered}$
Stylet length	$\begin{gathered} 15.47 \pm 0.71 \pm 0.22 \\ (14.25-16.45) 4.62 \% \end{gathered}$
LMB	$\begin{gathered} 38.62 \pm 3.53 \pm 1.11 \\ (32.48-42.15) 9.15 \% \\ \hline \end{gathered}$
WMB	$\begin{gathered} 38.13 \pm 3.57 \pm 1.13 \\ (32.05-42.15) 9.38 \% \end{gathered}$
a	$\begin{gathered} 1.38 \pm 0.10 \pm 0.03 \\ (1.16-1.54) 7.88 \% \end{gathered}$
Perineal pattern	
LVS	$\begin{gathered} 23.30 \pm 1.97 \pm 0.62 \\ (19.63-25.80) 8.47 \% \\ \hline \end{gathered}$
AVS	$\begin{gathered} 18.82 \pm 2.20 \pm 0.63 \\ (14.18-21.34) 11.69 \% \end{gathered}$
ATT	$\begin{gathered} 20.74 \pm 2.17 \pm 0.62 \\ (17.46-24.75) 10.46 \% \end{gathered}$
IPD	$\begin{gathered} 25.76 \pm 6.90 \pm 1.99 \\ (18.09-38.62) 26.79 \% \end{gathered}$
Second stage juveniles	
Length	$\begin{gathered} 401.59 \pm 16.86 \pm 5.33 \\ (368.69-428.67) 4.20 \% \end{gathered}$
Stylet length	$\begin{gathered} 13.87 \pm 0.31 \pm 0.10 \\ (13.48-14.43) 2.28 \% \end{gathered}$
H-MB	$\begin{gathered} 47.93 \pm 1.54 \pm 0.48 \\ (46.32-51.27) 3.21 \% \end{gathered}$
ABW	$\begin{gathered} 11.08 \pm 0.57 \pm 0.81 \\ (10.12-11.83) 5.14 \% \\ \hline \end{gathered}$
Tail length	$\begin{gathered} 50.51 \pm 4.44 \pm 1.40 \\ (41.83-55.60) 8.78 \% \\ \hline \end{gathered}$
c	$\begin{gathered} 7.99 \pm 0.61 \pm 0.19 \\ (7.32-9.06) 7.66 \% \end{gathered}$
c'	$\begin{gathered} 4.57 \pm 0.45 \pm 0.14 \\ (3.84-5.45) 10.01 \% \end{gathered}$

LMB-Length of median bulb, WMB- width of median bulb, a-length/width ratio,
H-MB-head to median bulb, ABW-anal body width, c- length/tail length ratio, c^{\prime} - tail length/anal body width ratio

Perineal pattern: $\mathrm{LVS}=19.63-25.80 \mu \mathrm{~m} ; \mathrm{AVS}=14.18-21.34 \mu \mathrm{~m} ;$ ATT $=17.46-$ $24.75 \mu \mathrm{~m} ;$ IPD $=18.09-38.62 \mu \mathrm{~m}$.

Second stage juveniles $\left(\mathrm{J}_{2}\right)$: Length $=368.69-428.67 \mu \mathrm{~m}$; stylet length $=13.48$ $14.43 \mu \mathrm{~m} ; \mathrm{H}-\mathrm{MB}=46.32-51.27 \mu \mathrm{~m} ; \mathrm{ABW}=10.12-11.83 \mu \mathrm{~m}$; tail length $=41.83-$ $55.60 \mu \mathrm{~m} ; \mathrm{c}=7.32-9.06 \mu \mathrm{~m} ; \mathrm{c}^{\prime}=3.84-5.45 \mu \mathrm{~m}$.

4.1.3.10 Identification of Meloidogyne sp in okra from Thanniyam

The species of root knot nematode infecting okra from Thanniyam was identified as M. arenaria (Plate 35), based on the morphological and morphometrical data of mature females, perineal pattern and second stage juveniles. The morphometric characters of the population are given in Table 35.

Description: Based on 10 females and 10 juveniles $\left(\mathrm{J}_{2}\right)$.

Measurements: Female: Length $=750.02-1139.82 \mu \mathrm{~m}$; width $=439.52-630.75 \mu \mathrm{~m}$; $\mathrm{a}=1.27-1.99 \mu \mathrm{~m}$; stylet length $=14.25-16.48 \mu \mathrm{~m}$; neck length $=185.58-317.98 \mu \mathrm{~m}$; $L M B=35.14-49.83 \mu \mathrm{~m} ; \mathrm{WMB}=31.79-47.46 \mu \mathrm{~m}$.

Perineal pattern: $\mathrm{LVS}=22.43-35.52 \mu \mathrm{~m} ; \mathrm{AVS}=16.95-32.50 \mu \mathrm{~m} ; A T \mathrm{~T}=13.61-$ $25.70 \mu \mathrm{~m} ;$ IPD $=23.20-40.78 \mu \mathrm{~m}$.

Second stage juveniles $\left(\mathrm{J}_{2}\right)$: Length $=366.90-436.35 \mu \mathrm{~m}$; stylet length $=13.18$ $14.80 \mu \mathrm{~m} ; \mathrm{H}-\mathrm{MB}=39.69-51.52 \mu \mathrm{~m} ; \mathrm{ABW}=10.90-12.50 \mu \mathrm{~m}$; tail length $=41.84-$ $57.41 \mu \mathrm{~m} ; \mathrm{c}=7.60-9.20 \mu \mathrm{~m} ; \mathrm{c}^{\prime}=4.62-7.55 \mu \mathrm{~m}$.

4.1.3.11 Identification of Meloidogyne sp in Tomato from Thanniyam

The species of root knot nematode infecting tomato from Thanniyam was identified as M. incognita (Plate 36), based on the morphological and morphometrical data of mature females, perineal pattern and second stage juveniles. The morphometric characters of the population are given in Table 36.

Description: Based on 10 females and 10 juveniles $\left(\mathrm{J}_{2}\right)$.

Plate 35. (A) female, (B) anterior end of female, (C) perineal pattern, (DE)anterior and posterior end of second stage juvenile of M. arenaria in okra from Thanniyam

Table 35. Morphometric characters of mature females, perineal pattern and second stage juveniles of okra population of M. arenaria from Thanniyam

Character ($\mu \mathrm{m}$)	Okra population
Females	
Length	$\begin{gathered} 877.79 \pm 121.44 \pm 38.40 \\ (750.02-1139.82) 13.83 \% \end{gathered}$
Width	$\begin{gathered} 552.73 \pm 61.87 \pm 19.56 \\ (439.52-630.75) 11.19 \% \\ \hline \end{gathered}$
Neck length	$\begin{gathered} 236.61 \pm 46.49 \pm 14.70 \\ (185.58-317.98) 19.64 \% \end{gathered}$
Stylet length	$\begin{gathered} 15.53 \pm 0.81 \pm 0.25 \\ (14.25-16.48) 5.26 \% \end{gathered}$
LMB	$\begin{gathered} 41.85 \pm 5.31 \pm 1.67 \\ (35.14-49.83) 12.69 \% \end{gathered}$
WMB	$\begin{gathered} 40.42 \pm 4.44 \pm 1.40 \\ (31.79-47.46) 10.99 \% \\ \hline \end{gathered}$
a	$\begin{gathered} 1.60 \pm 0.26 \pm 0.08 \\ (1.27-1.99) 16.31 \% \end{gathered}$
Perineal pattern	
LVS	$\begin{gathered} 26.29 \pm 3.51 \pm 1.11 \\ (22.43-35.52) 13.36 \% \end{gathered}$
AVS	$\begin{gathered} 21.56 \pm 4.26 \pm 1.34 \\ (16.95-32.50) 19.79 \% \end{gathered}$
ATT	$\begin{gathered} 19.93 \pm 3.86 \pm 1.22 \\ (13.61-25.70) 19.38 \% \end{gathered}$
IPD	$\begin{gathered} 31.37 \pm 6.47 \pm 2.04 \\ (23.20-40.78) 20.62 \% \\ \hline \end{gathered}$
Second stage juveniles	
Length	$\begin{gathered} 409.39 \pm 22.90 \pm 7.24 \\ (366.90-436.35) 5.59 \% \end{gathered}$
Stylet length	$\begin{gathered} 14.23 \pm 0.47 \pm 0.14 \\ (13.18-14.80) 3.31 \% \end{gathered}$
H-MB	$\begin{gathered} 45.32 \pm 3.64 \pm 1.15 \\ (39.69-51.52) 8.04 \% \end{gathered}$
ABW	$\begin{gathered} 11.48 \pm 0.51 \pm 0.61 \\ (10.90-12.50) 4.49 \% \\ \hline \end{gathered}$
Tail length	$\begin{gathered} 48.95 \pm 4.96 \pm 1.57 \\ (41.84-57.41) 10.14 \% \\ \hline \end{gathered}$
c	$\begin{gathered} 8.40 \pm 0.61 \pm 0.91 \\ (7.60-9.20) 7.35 \% \end{gathered}$
c'	$\begin{gathered} 5.81 \pm 0.98 \pm 0.31 \\ (4.62-7.55) 16.81 \% \end{gathered}$

LMB-Length of median bulb, WMB- width of median bulb, a-length/width ratio, H-MB-head to median bulb, ABW-anal body width, c- length/tail length ratio, c'- tail length/anal body width ratio

Plate 36. (A) female, (B) anterior end of female, (C) perineal pattern, (DE)anterior and posterior end of second stage juvenile of M. incognita in tomato from Thanniyam

Table 36. Morphometric characters of mature females, perineal pattern and second stage juveniles of tomato population of M. incognita from Thanniyam

LMB-Length of median bulb, WMB- width of median bulb, a-length/width ratio, H-MB-head to median bulb, ABW-anal body width, c- length/tail length ratio, c'- tail length/anal body width ratio

Measurements: Female: Length $=549.53-757.59 \mu \mathrm{~m}$; width $=403.59-481.37 \mu \mathrm{~m} ; \mathrm{a}=$ $1.30-1.67 \mu \mathrm{~m}$; stylet length $=13.11-16.81 \mu \mathrm{~m}$; neck length $=130.67-225.80 \mu \mathrm{~m}$; LMB $=35.12-41.14 \mu \mathrm{~m} ; \mathrm{WMB}=35.26-41.25 \mu \mathrm{~m}$.

Perineal pattern: $\mathrm{LVS}=14.61-24.11 \mu \mathrm{~m} ; \mathrm{AVS}=16.52-24.03 \mu \mathrm{~m} ; A T \mathrm{~T}=12.94-$ $24.26 \mu \mathrm{~m} ; \mathrm{IPD}=22.06-35.76 \mu \mathrm{~m}$.

Second stage juveniles $\left(\mathrm{J}_{2}\right)$: Length $=357.88-385.70 \mu \mathrm{~m}$; stylet length $=12.40$ $13.89 \mu \mathrm{~m} ; \mathrm{H}-\mathrm{MB}=42.75-49.09 \mu \mathrm{~m} ; \mathrm{ABW}=9.84-11.18 \mu \mathrm{~m}$; tail length= 43.92$72.16 \mu \mathrm{~m} ; \mathrm{c}=5.09-8.14 \mu \mathrm{~m} ; \mathrm{c}^{\prime}=4.43-6.44 \mu \mathrm{~m}$.

4.1.3.12 Identification of Meloidogyne sp in Banana from Thanniyam

The species of root knot nematode infecting banana from Thanniyam was identified as M. incognita (Plate 37), based on the morphological and morphometrical data of mature females, perineal pattern and second stage juveniles. The morphometric characters of the population are given in Table 37.

Description: Based on 10 females and 10 juveniles $\left(\mathrm{J}_{2}\right)$.

Measurements: Female: Length $=550.96-768.98 \mu \mathrm{~m}$; width $=414.35-505.11 \mu \mathrm{~m} ; \mathrm{a}=$ $1.38-1.64 \mu \mathrm{~m}$; stylet length $=14.31-16.81 \mu \mathrm{~m}$; neck length $=172.17-327.11 \mu \mathrm{~m}$; $L M B=35.45-49.38 \mu \mathrm{~m} ; \mathrm{WMB}=36.38-47.51 \mu \mathrm{~m}$.

Perineal pattern: $\mathrm{LVS}=18.31-25.72 \mu \mathrm{~m} ;$ AVS $=17.09-27.11 \mu \mathrm{~m} ;$ ATT $=13.91-$ $26.30 \mu \mathrm{~m} ; \mathrm{IPD}=25.21-38.98 \mu \mathrm{~m}$.

Second stage juveniles $\left(\mathrm{J}_{2}\right)$: Length $=372.01-420.31 \mu \mathrm{~m}$; stylet length $=13.28$ $14.98 \mu \mathrm{~m} ; \mathrm{H}-\mathrm{MB}=39.72-52.77 \mu \mathrm{~m} ; \mathrm{ABW}=10.98-12.61 \mu \mathrm{~m}$; tail length $=41.27-$ $58.23 \mu \mathrm{~m} ; \mathrm{c}=7.52-9.01 \mu \mathrm{~m} ; \mathrm{c}^{\prime}=3.72-561 \mu \mathrm{~m}$.

Plate 37. (A) female, (B) anterior end of female, (C) perineal pattern, (DE)anterior and posterior end of second stage juvenile of M. incognita in banana from Thanniyam

Table 37. Morphometric characters of mature females, perineal pattern and second stage juveniles of banana population of M. incognita from Thanniyam

Character ($\mu \mathrm{m}$)	Banana population
Females	
Length	$\begin{gathered} 640.76 \pm 60.17 \pm 18.04 \\ (550.96-768.98) 10.91 \% \end{gathered}$
Width	$\begin{gathered} 439.38 \pm 56.04 \pm 20.18 \\ (414.35-505.11) 12.96 \% \end{gathered}$
Neck length	$\begin{gathered} 201.01 \pm 38.31 \pm 15.74 \\ (172.17-327.11) 18.21 \% \end{gathered}$
Stylet length	$\begin{gathered} 15.97 \pm 0.71 \pm 0.31 \\ (14.31-16.81) 4.32 \% \end{gathered}$
LMB	$\begin{gathered} 42.96 \pm 6.21 \pm 1.72 \\ (35.45-49.38) 7.67 \% \end{gathered}$
WMB	$\begin{gathered} 41.71 \pm 4.56 \pm 1.51 \\ (36.38-47.51) 11.81 \% \\ \hline \end{gathered}$
a	$\begin{gathered} 1.45 \pm 0.26 \pm 0.08 \\ (1.38-1.64) 7.41 \% \\ \hline \end{gathered}$
Perineal pattern	
LVS	$\begin{gathered} 22.01 \pm 4.26 \pm 1.21 \\ (18.31-25.72) 14.41 \% \\ \hline \end{gathered}$
AVS	$\begin{gathered} 19.62 \pm 4.36 \pm 1.41 \\ (17.09-27.11) 12.18 \% \\ \hline \end{gathered}$
ATT	$\begin{gathered} 19.98 \pm 3.91 \pm 1.28 \\ (13.91-26.30) 18.22 \% \\ \hline \end{gathered}$
IPD	$\begin{gathered} 27.01 \pm 7.18 \pm 2.41 \\ (25.21-38.98) 21.01 \% \\ \hline \end{gathered}$
Second stage juveniles	
Length	$\begin{gathered} 409.39 \pm 23.07 \pm 7.61 \\ (372.01-420.31) 6.91 \% \end{gathered}$
Stylet length	$\begin{gathered} 13.91 \pm 0.51 \pm 0.24 \\ (13.28-14.98) 4.27 \% \\ \hline \end{gathered}$
H-MB	$\begin{gathered} 47.96 \pm 3.78 \pm 1.25 \\ (39.72-52.77) 9.41 \% \\ \hline \end{gathered}$
ABW	$\begin{gathered} 11.53 \pm 0.61 \pm 0.21 \\ (10.98-12.61) 4.59 \% \\ \hline \end{gathered}$
Tail length	$\begin{gathered} 50.62 \pm 5.21 \pm 1.81 \\ (41.27-58.23) 11.41 \% \\ \hline \end{gathered}$
c	$\begin{gathered} 8.08 \pm 0.71 \pm 0.18 \\ (7.52-9.01) 7.35 \% \\ \hline \end{gathered}$
c'	$\begin{gathered} 4.38 \pm 0.11 \pm 0.43 \\ (3.72-561) 15.80 \% \end{gathered}$

LMB-Length of median bulb, WMB- width of median bulb, a-length/width ratio, H-MB-head to median bulb, ABW-anal body width, c- length/tail length ratio, c'- tail length/anal body width ratio
4.2 MORPHOLOGY AND MORPHOMETRICS OF MATURE FEMALES, PERINEAL PATTERN, SECOND STAGE JUVENILES AND MALES

4.2.1 Morphology and Morphometrics of Mature Females, Perineal Pattern and Second Stage Juveniles of M. incognita from Thiruvananthapuram District

The following were the morphological characters of populations of M. incognita from Thiruvananthapuram district.
A. Mature females:

The females were pear shaped to saccate shaped with no posterior terminal protuberance. The neck was straight to curved to sickle shaped, directed ventrally or at an angle (brinjal from Kattakda and Vellayani) to the body of nematode. The shape and size of females were variable within and between the populations. The stylet cone was curved to straight at dorsal region and the knobs were set off from the shaft.

B. Perineal pattern:

The perineal pattern was characterized by high, squared dorsal arch. There was distinct whorl of striae near the tail terminal area and was prominent in tomato from Vellayani. The striae was wavy in majority of population, whereas it was smooth in populations from brinjal and tomato in Dhanuvachapuram and tomato in Vellayani. Weak lateral lines were present in populations in tomato and banana from Kattakada, banana from Dhanuvachapuram and tomato from Vellayani.
C. Second stage juveniles $\left(\mathrm{J}_{2}\right)$:

In J_{2}, the character length was least variable. The labial region was not set off. The basal knobs of stylet were rounded and set off. The shape and size of rectal sac was variable between the populations and the rectal sac was prominent
in populations in banana from Dhanuvachapuram, brinjal and tomato from Kattakada and brinjal, tomato and banana from Vellayani.

The morphemetric characters of mature females, perineal pattern and second stage juveniles of populations of M. incognita from Thiruvananthapuram district are given in tables 38,39 and 40 .

A. Mature females:

The range of mean values for body length and width in the populations were 550.29 to $714.18 \mu \mathrm{~m}$ and 396.54 to $515.82 \mu \mathrm{~m}$ respectively. The maximum mean value for body length was observed for the species identified in banana from Dhanuvachapuram $(714.18 \mu \mathrm{~m})$. These characters were observed as moderately variable with maximum variation in population in brinjal from Dhanuvachapuram which was up to 13.22 per cent for length and 19.30 per cent for width.

The character neck length was highly variable between the populations (CV 5.04\% to 29.18\%). Population in banana from Kattakada had the maximum mean value for neck length ($201.34 \mu \mathrm{~m}$) and the minimum for population in okra from Vellayani. The character stylet length was the least variable character (CV 3.33% to 11.64%) between the populations with the mean values ranging from 13.64 to $17.90 \mu \mathrm{~m}$. The range of mean values for LMB and WMB were 30.55 to $42.37 \mu \mathrm{~m}$ and 26.46 to $42.02 \mu \mathrm{~m}$ respectively. These characters were seen to be moderately variable between the populations. The character ratio a was also moderately variable (CV 3.21% to 17.41%) with mean values ranging from 1.28 to $1.56 \mu \mathrm{~m}$.

B. Perineal pattern:

The character LVS was observed to be the least variable (CV 6.71\% to 11.98%) with maximum mean value in the population identified in brinjal from Dhanuvachapuram and the minimum in population in tomato from Kattakada. The characters AVS, ATT and IPD were moderately variable (CV 6.87\% to
$16.60 \% ; 11.94 \%$ to $15.66 \% ; 10.39 \%$ to 19.21% respectively). The range of mean values for IPD was 27.81 to $30.79 \mu \mathrm{~m}$ with maximum mean value in the population in brinjal from Dhanuvachapuram and minimum in the population in brinjal from Kattakada.

$$
\text { C. Second stage juveniles }\left(\mathrm{J}_{2}\right) \text { : }
$$

The coefficient of variability for the seven characters of second stage juveniles varied from population to population. The characters body length, stylet length and H-MB were least variable (CV 3.05\% to $10.31 \% ; 2.04 \%$ to 5.67% and 3.83% to 5.70% respectively) and the characters ABW , tail length, ratio c and c' were highly variable (CV 3.34% to $12.17 \% ; 4.51 \%$ to $15.38 \% ; 6.25 \%$ to 19.852% and 6.03% to 12.45% respectively). The mean values for body length, stylet length and H-MB ranges from 370.03 to $423.19 \mu \mathrm{~m}, 13.54$ to $15.67 \mu \mathrm{~m}$ and 46.38 to $56.70 \mu \mathrm{~m}$ respectively. The maximum body length and stylet length was observed in population in banana from Vellayani with mean values $423.19 \mu \mathrm{~m}$ and $15.671 \mu \mathrm{~m}$ respectively. In general, tail length was smaller in population in tomato from Dhanuvachapuram than the other populations. The longest tail length was observed in population in okra from Vellayani. The ratio c and c' were highest in population in banana from Dhanuvachapuram and population in brinjal from Dhanuvachapuram respectively.

4.2.2 Morphology of Mature Females, Perineal Pattern and Second Stage Juveniles of M. chitwoodi from Thiruvananthapuram District

The following were the morphological characters of M. chitwoodi from Kattakada:
A. Mature females:

The females were pear shaped with a slight posterior terminal protuberance. The neck was directed ventrally and the neck length was variable within the population.
Table 38. Morphometric characters of mature females of M. incognita in Thiruvananthapuram district, $[\mathrm{Mean},(\mathrm{CV} \%)], \mathrm{n}=10$

Character ($\mu \mathrm{m}$)	Populations											CR*
	Dhanuvachapuram				Kattakada			Vellayani				
	Okra	Brinjal	Tomato	Banana	Brinjal	Tomato	Banana	Okra	Brinjal	Tomato	Banana	
Length	$\begin{gathered} \hline 646.70 \\ (6.00 \%) \\ \hline \end{gathered}$	$\begin{gathered} 684.90 \\ (5.05 \%) \\ \hline \end{gathered}$	$\begin{gathered} 702.19 \\ (7.86 \%) \\ \hline \end{gathered}$	$\begin{gathered} 714.18 \\ (10.11 \%) \\ \hline \end{gathered}$	$\begin{gathered} 626.65 \\ (13.22 \%) \\ \hline \end{gathered}$	$\begin{gathered} 618.28 \\ (6.46 \%) \\ \hline \end{gathered}$	$\begin{gathered} \hline 683.29 \\ (6.47 \%) \\ \hline \end{gathered}$	$\begin{gathered} 546.42 \\ (6.08 \%) \end{gathered}$	$\begin{gathered} 606.71 \\ (9.09 \%) \end{gathered}$	$\begin{gathered} 550.29 \\ (8.24 \%) \\ \hline \end{gathered}$	$\begin{gathered} 620.14 \\ (11.10 \%) \end{gathered}$	MV
Width	$\begin{gathered} 430.21 \\ (10.07 \%) \end{gathered}$	$\begin{gathered} 447.93 \\ (9.79 \%) \end{gathered}$	$\begin{gathered} 453.24 \\ (6.522 \%) \\ \hline \end{gathered}$	$\begin{gathered} 446.54 \\ (7.64 \%) \end{gathered}$	$\begin{gathered} 453.73 \\ (19.30 \%) \end{gathered}$	$\begin{gathered} 422.36 \\ (8.97 \%) \end{gathered}$	$\begin{gathered} 515.82 \\ (10.40 \%) \end{gathered}$	$\begin{gathered} 396.54 \\ (13.80 \%) \end{gathered}$	$\begin{gathered} 481.27 \\ (15.86 \%) \end{gathered}$	$\begin{gathered} 401.49 \\ (13.78 \%) \end{gathered}$	$\begin{gathered} 479.24 \\ (15.07 \%) \end{gathered}$	MV
Neck length	$\begin{gathered} 201.24 \\ (17.37 \%) \\ \hline \end{gathered}$	$\begin{gathered} 186.77 \\ (17.28 \%) \end{gathered}$	$\begin{gathered} 195.43 \\ (18.66 \%) \\ \hline \end{gathered}$	$\begin{gathered} 190.43 \\ (20.71 \%) \\ \hline \end{gathered}$	$\begin{gathered} 182.07 \\ (28.01 \%) \end{gathered}$	$\begin{gathered} 173.47 \\ (5.04 \%) \\ \hline \end{gathered}$	$\begin{gathered} 201.34 \\ (14.13 \%) \end{gathered}$	$\begin{gathered} 164.34 \\ (19.68 \%) \end{gathered}$	$\begin{gathered} 167.89 \\ (25.96 \%) \end{gathered}$	$\begin{gathered} 171.21 \\ (19.93 \%) \end{gathered}$	$\begin{gathered} 183.24 \\ (29.18 \%) \end{gathered}$	HV
Stylet length	$\begin{gathered} 15.70 \\ (4.21 \%) \end{gathered}$	$\begin{gathered} 15.44 \\ (3.81 \%) \end{gathered}$	$\begin{gathered} 15.86 \\ (3.96 \%) \end{gathered}$	$\begin{gathered} 15.98 \\ (3.81 \%) \end{gathered}$	$\begin{gathered} 17.90 \\ (5.96 \%) \end{gathered}$	$\begin{gathered} 16.56 \\ (6.19 \%) \end{gathered}$	$\begin{gathered} 17.23 \\ (2.67 \%) \end{gathered}$	$\begin{gathered} 13.64 \\ (11.64 \%) \end{gathered}$	$\begin{gathered} 17.33 \\ (5.09 \%) \end{gathered}$	$\begin{gathered} 16.53 \\ (3.32 \%) \end{gathered}$	$\begin{gathered} 17.18 \\ (6.07 \%) \\ \hline \end{gathered}$	LV
LMB	$\begin{gathered} 38.30 \\ (11.27 \%) \\ \hline \end{gathered}$	$\begin{gathered} 36.21 \\ (11.95 \%) \end{gathered}$	$\begin{gathered} 38.53 \\ (12.41 \%) \\ \hline \end{gathered}$	$\begin{gathered} 38.90 \\ (11.71 \%) \end{gathered}$	$\begin{gathered} 35.45 \\ (14.46 \%) \\ \hline \end{gathered}$	$\begin{gathered} 42.28 \\ (13.23 \%) \end{gathered}$	$\begin{gathered} 42.37 \\ (15.00 \%) \end{gathered}$	$\begin{gathered} 30.55 \\ (8.45 \%) \end{gathered}$	$\begin{gathered} 34.02 \\ (3.80 \%) \\ \hline \end{gathered}$	$\begin{gathered} 31.62 \\ (6.55 \%) \\ \hline \end{gathered}$	$\begin{gathered} 40.16 \\ (4.61 \%) \\ \hline \end{gathered}$	MV
WMB	$\begin{gathered} 38.00 \\ (12.80 \%) \end{gathered}$	$\begin{gathered} 36.01 \\ (11.81 \%) \end{gathered}$	$\begin{gathered} 38.0 \\ (11.5 \%) \end{gathered}$	$\begin{gathered} 38.01 \\ (10.67 \%) \end{gathered}$	$\begin{gathered} 34.07 \\ (12.02 \%) \end{gathered}$	$\begin{gathered} 42.02 \\ (9.88 \%) \end{gathered}$	$\begin{gathered} 40.81 \\ (15.00 \%) \end{gathered}$	$\begin{gathered} 26.46 \\ (13.94 \%) \end{gathered}$	$\begin{gathered} 31.44 \\ (3.70 \%) \end{gathered}$	$\begin{gathered} 30.04 \\ (18.51 \%) \end{gathered}$	$\begin{gathered} 40.00 \\ (3.81 \%) \end{gathered}$	MV
a	$\begin{gathered} 1.50 \\ (10.78 \%) \\ \hline \end{gathered}$	$\begin{gathered} 1.54 \\ (10.68 \%) \\ \hline \end{gathered}$	$\begin{gathered} 1.54 \\ (4.30 \%) \end{gathered}$	$\begin{gathered} 1.56 \\ (3.21 \%) \\ \hline \end{gathered}$	$\begin{gathered} 1.46 \\ (14.41 \%) \\ \hline \end{gathered}$	$\begin{gathered} 1.46 \\ (8.95 \%) \\ \hline \end{gathered}$	$\begin{gathered} 1.35 \\ (9.37 \%) \end{gathered}$	$\begin{gathered} 1.39 \\ (12.07 \%) \\ \hline \end{gathered}$	$\begin{gathered} 1.28 \\ (17.41 \%) \end{gathered}$	$\begin{gathered} 1.38 \\ (11.07 \%) \end{gathered}$	$\begin{gathered} 1.29 \\ (16.54 \%) \end{gathered}$	MV

[^0]Table 39. Morphometric characters of perineal pattern of M. incognita in Thiruvananthapuram district, [Mean,(CV\%)], $n=10$

Character ($\mu \mathrm{m}$)	Populations											CR*
	Dhanuvachapuram				Kattakada			Vellayani				
	Okra	Brinjal	Tomato	Banana	Brinjal	Tomato	Banana	Okra	Brinjal	Tomato	Banana	
LVS	$\begin{gathered} 24.32 \\ (11.98 \%) \end{gathered}$	$\begin{gathered} 25.25 \\ (11.37 \%) \end{gathered}$	$\begin{gathered} 26.50 \\ (7.93 \%) \end{gathered}$	$\begin{gathered} 26.70 \\ (7.91 \%) \end{gathered}$	$\begin{gathered} 27.90 \\ (6.99 \%) \end{gathered}$	$\begin{gathered} 23.01 \\ (6.71 \%) \end{gathered}$	$\begin{gathered} 26.98 \\ (15.13 \%) \end{gathered}$	$\begin{gathered} 26.34 \\ (9.42 \%) \\ \hline \end{gathered}$	$\begin{gathered} 25.40 \\ (10.19 \%) \end{gathered}$	$\begin{gathered} 27.49 \\ (8.14 \%) \\ \hline \end{gathered}$	$\begin{gathered} 27.34 \\ (8.21 \%) \end{gathered}$	LV
AVS	$\begin{gathered} 20.37 \\ (15.01 \%) \end{gathered}$	$\begin{gathered} 20.36 \\ (14.69 \%) \end{gathered}$	$\begin{gathered} 19.28 \\ (13.58 \%) \end{gathered}$	$\begin{gathered} 19.29 \\ (14.29 \%) \end{gathered}$	$\begin{gathered} 20.12 \\ (10.70 \%) \end{gathered}$	$\begin{gathered} 17.98 \\ (6.87 \%) \\ \hline \end{gathered}$	$\begin{gathered} 20.50 \\ (16.40 \%) \end{gathered}$	$\begin{gathered} 19.70 \\ (12.17 \%) \\ \hline \end{gathered}$	$\begin{gathered} 20.48 \\ (13.62 \%) \end{gathered}$	$\begin{gathered} 20.61 \\ (16.60 \%) \end{gathered}$	$\begin{gathered} 20.81 \\ (16.17 \%) \end{gathered}$	MV
ATT	$\begin{gathered} 18.01 \\ (14.81 \%) \end{gathered}$	$\begin{gathered} 17.05 \\ (13.79 \%) \end{gathered}$	$\begin{gathered} 16.49 \\ (14.09 \%) \end{gathered}$	$\begin{gathered} 17.01 \\ (15.00 \%) \end{gathered}$	$\begin{gathered} 17.71 \\ (13.45 \%) \end{gathered}$	$\begin{gathered} 14.98 \\ (13.05 \%) \end{gathered}$	$\begin{gathered} 17.40 \\ (13.20 \%) \end{gathered}$	$\begin{gathered} 18.55 \\ (11.94 \%) \end{gathered}$	$\begin{gathered} 21.85 \\ (15.66 \%) \end{gathered}$	$\begin{gathered} 21.19 \\ (12.56 \%) \end{gathered}$	$\begin{gathered} 21.32 \\ (13.60 \%) \end{gathered}$	MV
IPD	$\begin{gathered} 26.37 \\ (12.43 \%) \end{gathered}$	$\begin{gathered} 30.79 \\ (12.14 \%) \end{gathered}$	$\begin{gathered} 26.24 \\ (11.84 \%) \end{gathered}$	$\begin{gathered} 28.17 \\ (11.21 \%) \end{gathered}$	23.70 $(10.398$ $\%)$	$\begin{gathered} 25.32 \\ (15.10 \%) \end{gathered}$	$\begin{gathered} 26.38 \\ (17.64 \%) \end{gathered}$	$\begin{gathered} 30.21 \\ (15.40 \%) \end{gathered}$	$\begin{gathered} 28.13 \\ (17.93 \%) \end{gathered}$	$\begin{gathered} 25.85 \\ (17.85 \%) \end{gathered}$	$\begin{gathered} 27.81 \\ (19.21 \%) \end{gathered}$	MV

*LV- least variable ($<12 \%$):MV-moderately variable ($12 \%-20 \%$); HV-highly variable ($>20 \%$), CR= Character ranking.
LVS-length of vulval slit, AVS- Anus to vulval slit, ATT- Anus to tail terminus, IPD-Interphasmidial distance LVS-length of vulval slit, AVS- Anus to vulval slit, ATT- Anus to tail terminus, IPD-Interphasmidial distance
Table 40. Morphometric characters of second stage juveniles of M. incognita in Thiruvananthapuram district, $[\mathrm{Mean},(\mathrm{CV} \%)]$, $\mathrm{n}=10$

Charact er ($\mu \mathrm{m}$)	Populations											CR*
	Dhanuvachapuram				Kattakada			Vellayani				
	Okra	Brinjal	Tomato	Banana	Brinjal	Tomato	Banana	Okra	Brinjal	Tomato	Banana	
Length	$\begin{gathered} 404.32 \\ (4.18 \%) \\ \hline \end{gathered}$	$\begin{gathered} 418.37 \\ (4.11 \%) \\ \hline \end{gathered}$	$\begin{gathered} \hline 421.72 \\ (3.05 \%) \\ \hline \end{gathered}$	$\begin{gathered} 414.31 \\ (3.05 \%) \end{gathered}$	$\begin{gathered} 401.74 \\ (3.08 \%) \end{gathered}$	$\begin{gathered} 368.53 \\ (4.82 \%) \\ \hline \end{gathered}$	$\begin{gathered} 378.76 \\ (6.321 \%) \\ \hline \end{gathered}$	$\begin{gathered} 417.60 \\ (10.31 \%) \end{gathered}$	$\begin{gathered} 370.03 \\ (4.34 \%) \\ \hline \end{gathered}$	$\begin{gathered} \hline 408.45 \\ (5.06 \%) \\ \hline \end{gathered}$	$\begin{gathered} 423.19 \\ (7.17 \%) \\ \hline \end{gathered}$	LV
Stylet length	$\begin{gathered} 13.80 \\ (2.04 \%) \\ \hline \end{gathered}$	$\begin{gathered} 14.01 \\ (3.11 \%) \end{gathered}$	$\begin{gathered} 14.77 \\ (3.05 \%) \end{gathered}$	$\begin{gathered} 14.38 \\ (3.015 \%) \end{gathered}$	$\begin{gathered} 14.48 \\ (2.626 \%) \end{gathered}$	$\begin{gathered} 13.63 \\ (4.98 \%) \end{gathered}$	$\begin{gathered} 13.54 \\ (2.81 \%) \\ \hline \end{gathered}$	$\begin{gathered} 14.10 \\ (4.62 \%) \\ \hline \end{gathered}$	$\begin{gathered} 13.72 \\ (3.34 \%) \\ \hline \end{gathered}$	$\begin{gathered} 15.05 \\ (5.25 \%) \\ \hline \end{gathered}$	$\begin{gathered} 15.67 \\ (5.67 \%) \\ \hline \end{gathered}$	LV
H-MB	$\begin{gathered} 48.01 \\ (4.38 \%) \end{gathered}$	$\begin{gathered} 50.26 \\ (4.38 \%) \end{gathered}$	$\begin{gathered} 50.98 \\ (4.39 \%) \end{gathered}$	$\begin{gathered} 48.17 \\ (4.38 \%) \end{gathered}$	$\begin{gathered} 50.24 \\ (3.83 \%) \\ \hline \end{gathered}$	$\begin{gathered} 50.20 \\ (4.26 \%) \\ \hline \end{gathered}$	$\begin{gathered} 46.38 \\ (5.82 \%) \\ \hline \end{gathered}$	$\begin{gathered} 50.22 \\ (3.91 \%) \end{gathered}$	$\begin{gathered} 50.03 \\ (5.22 \%) \end{gathered}$	$\begin{gathered} 56.70 \\ (5.70 \%) \\ \hline \end{gathered}$	$\begin{gathered} 54.37 \\ (5.37 \%) \\ \hline \end{gathered}$	LV
ABW	$\begin{gathered} 11.21 \\ (4.26 \%) \end{gathered}$	$\begin{gathered} 11.32 \\ (10.43 \%) \end{gathered}$	$\begin{gathered} 11.25 \\ (10.30 \%) \end{gathered}$	$\begin{gathered} 11.74 \\ (10.17 \%) \\ \hline \end{gathered}$	$\begin{gathered} 11.03 \\ (3.34 \%) \\ \hline \end{gathered}$	$\begin{gathered} 10.97 \\ (6.78 \%) \end{gathered}$	$\begin{gathered} 11.81 \\ (4.06 \%) \\ \hline \end{gathered}$	$\begin{gathered} 10.34 \\ (7.333 \%) \end{gathered}$	$\begin{gathered} 10.38 \\ (11.96 \%) \end{gathered}$	$\begin{gathered} 12.67 \\ (11.04 \%) \end{gathered}$	$\begin{gathered} 12.17 \\ (12.17 \%) \end{gathered}$	HV
Tail length	$\begin{gathered} 47.60 \\ (15.38 \%) \end{gathered}$	$\begin{gathered} 48.38 \\ (15.21 \%) \end{gathered}$	$\begin{gathered} 47.59 \\ (14.45 \%) \end{gathered}$	$\begin{gathered} 48.18 \\ (14.51 \%) \end{gathered}$	$\begin{gathered} 51.23 \\ (5.94 \%) \end{gathered}$	$\begin{gathered} 52.14 \\ (10.87 \%) \end{gathered}$	$\begin{gathered} 50.08 \\ (6.21 \%) \\ \hline \end{gathered}$	$\begin{gathered} 54.55 \\ (13.587 \%) \end{gathered}$	$\begin{gathered} 48.96 \\ (11.44 \%) \end{gathered}$	$\begin{gathered} 53.94 \\ (4.511 \%) \end{gathered}$	$\begin{gathered} 52.98 \\ (4.52 \%) \end{gathered}$	HV
c	$\begin{gathered} 8.49 \\ (18.32 \%) \end{gathered}$	$\begin{gathered} 8.64 \\ (7.21 \%) \\ \hline \end{gathered}$	$\begin{gathered} 9.08 \\ (19.85 \%) \end{gathered}$	$\begin{gathered} 10.00 \\ (18.00 \%) \end{gathered}$	$\begin{gathered} 7.86 \\ (6.52 \%) \\ \hline \end{gathered}$	$\begin{gathered} 7.13 \\ (10.39 \%) \end{gathered}$	$\begin{gathered} 7.80 \\ (7.82 \%) \\ \hline \end{gathered}$	$\begin{gathered} 7.72 \\ (12.12 \%) \\ \hline \end{gathered}$	$\begin{gathered} 7.66 \\ (14.54 \%) \end{gathered}$	$\begin{gathered} 7.58 \\ (6.25 \%) \\ \hline \end{gathered}$	$\begin{gathered} 7.83 \\ (6.30 \%) \\ \hline \end{gathered}$	HV
c'	$\begin{gathered} 5.60 \\ (8.13 \%) \end{gathered}$	$\begin{gathered} 5.71 \\ (9.48 \%) \end{gathered}$	$\begin{gathered} 4.21 \\ (9.94 \%) \\ \hline \end{gathered}$	$\begin{gathered} 4.38 \\ (8.91 \%) \\ \hline \end{gathered}$	$\begin{gathered} 4.64 \\ (6.03 \%) \\ \hline \end{gathered}$	$\begin{gathered} 4.75 \\ (9.84 \%) \\ \hline \end{gathered}$	$\begin{gathered} 4.98 \\ (7.32 \%) \\ \hline \end{gathered}$	$\begin{gathered} 5.26 \\ (8.11 \%) \\ \hline \end{gathered}$	$\begin{gathered} 4.74 \\ (12.45 \%) \\ \hline \end{gathered}$	$\begin{gathered} 4.29 \\ (10.86 \%) \\ \hline \end{gathered}$	$\begin{gathered} 5.37 \\ (11.31 \%) \\ \hline \end{gathered}$	HV

*LV- least variable ($<8 \%$); MV-moderately variable ($8 \%-12 \%$); HV-highly variable ($>12 \%$), CR=Character ranking.
H-MB-head to median bulb; ABW-anal body width ;c- length/tail length; c' - tail length/anal body width

B. Perineal pattern:

The perineal pattern was rounded to oval. The dorsal arch was low and rounded. Near the perineal area, the striae were broken and twisted. Weak lateral lines were visible which cut through the striae.
C. Second stage juveniles $\left(\mathrm{J}_{2}\right)$:

The Second stage juveniles were 330.71 to $414.66 \mu \mathrm{~m}$ in length. The stylet knobs were small and set off. The labial region was not set off. The head possessed an elevated labial disc. The rectal sac was prominent in the population.

4.2.3 Morphology and Morphometrics of Mature Females, Perineal Pattern, Second Stage Juveniles and Male of M. javanica from Idukki District

The following were the morphological characters of populations of M. javanica from Idukki district.

A. Mature females:

The shape of females varied from pear shaped to rounded to kidney shaped with short (brinjal from Pampadumpara) to long (banana from Pampadumpara) neck directed ventrally or at right angles (tomato and banana from Thovalappady and banana from Balagram) to the body of nematode. The body shape and size were variable within and between the populations. The head region was slightly set off. The stylet knobs were small and sloping posteriorly and the cone was slightly curved at the dorsal region.
B. Perineal pattern:

The perineal pattern was oval to rounded with low dorsal arch. The striae was smooth to wavy. The pattern possessed distinct lateral field which was marked by two well defined incisure which cut through the striae. The lateral line was sloping laterally or at right angles to the striae (banana from Pampadumpara and Thovalappady).
C. Second stage juveniles $\left(\mathrm{J}_{2}\right)$:

In J_{2}, tail length was highly variable in the populations with long hyaline region. The tail terminus was either blunt or pointed. Rectum dilation was very prominent in populations in okra and brinjal from Pamadumpara and banana from Thovalappady.

D. Males:

Males were vermiform. The head region was not set off with non elevated labial disc. The length of cone was higher than that of shaft. The stylet knobs were small and sloping posteriorly. Tail region was rounded with hyaline region.

The morphometric characters of mature females, perineal pattern and second stage juveniles of populations of M. javanica from Idukki district are given in tables 41, 42 and 43.

A. Mature females:

The range of mean values for body length and width in the populations were 646.28 to $792.852 \mu \mathrm{~m}$ and 410.71 to $564.39 \mu \mathrm{~m}$ respectively. The maximum mean value for body length and width was observed in the species identified in banana from Thovalappady (792.85 and $564.39 \mu \mathrm{~m}$ respectively). These characters were observed as moderately variable with maximum variation in population in brinjal from Balagram which was up to 15.34 per cent for length and 17.07 per cent for width.

The character neck length was highly variable between the populations (CV 14.58\% to 32.10%). Population from tomato in Pampadumpara had the maximum mean value for neck length $(233.20 \mu \mathrm{~m})$ and the minimum value was observed in the population from banana in Balagram. The character stylet length was moderately variable character (CV 2.53% to 14.49%) between the populations with the mean values ranging from 12.89 to $16.97 \mu \mathrm{~m}$. The range of mean values for LMB and WMB were 35.04 to $42.77 \mu \mathrm{~m}$ and 33.98 to $41.93 \mu \mathrm{~m}$ respectively. These characters were seen to be least variable and moderately
variable respectively. The character ratio 'a' was also moderately variable (CV 6.35% to 18.10%) with mean values ranging from 1.38 to $1.79 \mu \mathrm{~m}$.

B. Perineal pattern:

The character LVS was observed to be moderately variable (CV 8.243\% to 12.773%) with maximum mean value in the population identified in tomato from Thoavalappady and the minimum in the population in brinjal from Balagram. The mean value for LVS ranges from 22.25 to $27.80 \mu \mathrm{~m}$. The characters AVS, ATT and IPD were highly variable (CV 8.35% to $26.56 \% ; 8.67 \%$ to 21.28% and 4.99% to 24.02% respectively). The range of mean values for IPD was 23.58 to $28.70 \mu \mathrm{~m}$ with maximum mean value in population in banana from Balagram and minimum in population in tomato from Pampadumpara.

C. Second stage juveniles $\left(\mathrm{J}_{2}\right)$:

The coefficient of variability for the seven characters of second stage juveniles varied from population to population. The characters body length, stylet length and H-MB were least variable (CV 3.25\% to 6.68\%; 2.30\% to 4.77% and 4.35% to 6.71% respectively) and the characters ABW was moderately variable (CV 4.72% to 11.83%) and tail length, ratio c and c ' were highly variable (CV 4.21% to $24.01 \% ; 3.98 \%$ to 22.75% and 7.76% to 21.69% respectively). The mean values for body length, stylet length and H-MB ranges from 395.94 to $428.39 \mu \mathrm{~m}, 13.56$ to $14.91 \mu \mathrm{~m}$ and 46.22 to $54.72 \mu \mathrm{~m}$ respectively. The highest body length was observed in population in brinjal from Balagram ($428.39 \mu \mathrm{~m}$) and minimum value in population in tomato from Pampadumpara (395.94 $\mu \mathrm{m}$). In general, tail length was smaller in population infecting okra from Balagram than the other populations. The longest tail length was observed in population in tomato from Thoavlappady $(54.43 \mu \mathrm{~m})$. The range of mean values for c and c ' varies from 7.18 to $8.69 \mu \mathrm{~m}$ and 4.23 to $5.72 \mu \mathrm{~m}$ respectively. The ratio c and c' were maximum in population in brinjal from Balagram and banana from Thovalappady respectively.
Table 41. Morphometric characters of mature females of M. javanica in Idukki district, [Mean,(CV\%)], $\mathrm{n}=10$

*LV- least variable ($<12 \%$) :MV-moderately variable ($12 \%-20 \%$); HV-highly variable ($>20 \%$), CR $=$ Character ranking.
LMB-Length of median bulb, WMB-Width of median bulb, a-Length/width ratio
Table 42. Morphometric characters of perineal pattern of M. javanica in Idukki district, [Mean,(CV\%)], $\mathrm{n}=10$

*LV- least variable ($<12 \%$):MV-moderately variable ($12 \%-20 \%$); HV-highly variable ($>20 \%$), CR= Character ranking. LVS-length of vulval slit, AVS- Anus to vulval slit, ATT- Anus to tail terminus, IPD-Interphasmidial distance
Table 43. Morphometric characters of second stage juveniles of M. javanica in Idukki district, [Mean,(CV\%)], $\mathrm{n}=10$

*LV- least variable ($<8 \%$):MV-moderately variable ($8 \%-12 \%$); HV-highly variable ($>12 \%$), $\mathrm{CR}=$ Character ranking.
H-MB-head to median bulb; ABW-anal body width ; c- length/tail length; c'- tail length/anal body width

4.2.4 Morphology and Morphometrics of Mature females, Perineal Pattern and Second Stage Juveniles of M. arenaria from Thrissur District

The following were the morphological characters of populations of M. arenaria from Thrissur district.

A. Mature females:

Females were larger in size with elongated to rounded body with no posterior terminal protuberance. The body shape and size were variable within and between populations. The neck was directed ventrally from the body of nematode. Basal knobs of stylet were rounded and set off from the shaft.

B. Perineal pattern:

Perineal pattern was rounded to oval in shape with coarse to smooth striae which was either continuous or broken. The dorsal and ventral striae met at an angle forming shoulders or wings on the lateral portion of the pattern. In populations in tomato from Chazhoor and okra from Thanniyam, the wings were prominent in one side of the perineal pattern.
C. Second stage juveniles $\left(\mathrm{J}_{2}\right)$:

The tail tip was blunt to pointed. The size and shape of rectal sac and position of anus were variable within and between the populations. Rectum dilation was prominent in populations in banana from Chazhoor, tomato from Thalikulam and okra from Thanniyam. The hyaline region was prominent in population in brinjal from Chazhoor.

The morphometric characters of populations of mature females, perineal pattern and second stage juveniles of M. arenaria from Thrissur district are given in tables 44,45 and 46.

A. Mature females:

The range of mean values for body length and width in eight populations were 665.93 to $927.46 \mu \mathrm{~m}$ and 459.93 to $588.32 \mu \mathrm{~m}$ respectively. The maximum mean value for body length and width was observed for the species identified in banana and tomato from Chazhoor respectively. These characters were observed as moderately variable with maximum variation in population in brinjal from Chazhoor which was up to 18.04 per cent for body length and 16.31 per cent for width.

The character neck length was highly variable between the populations (CV 19.64\% to 30.10\%). Population in banana from Chazhoor had the maximum mean value for neck length $(296.91 \mu \mathrm{~m})$ and the minimum for population in okra from Thalikulam $(191.49 \mu \mathrm{~m})$. The character stylet length was least variable character (CV 2.93\% to 5.26%) between the populations with the mean values ranging from 15.53 to $17.88 \mu \mathrm{~m}$. The range of mean values for LMB and WMB were 38.06 to $42.67 \mu \mathrm{~m}$ and 34.66 to $41.86 \mu \mathrm{~m}$ respectively. These characters were seen to be moderately variable. The character ratio 'a' was highly variable (CV 14.22\% to 20.49\%) with mean values ranging from 1.45 to $1.68 \mu \mathrm{~m}$.

B. Perineal pattern:

The characters LVS and AVS were observed to be moderately variable (CV 4.76% to 13.36% and 5.90% to 19.79% respectively). The maximum mean value for LVS was observed in population in tomato from Chazhoor and the minimum in population in tomato from Thalikulam. The mean value for LVS ranges from 25.47 to $32.15 \mu \mathrm{~m}$. The characters ATT and IPD were highly variable (CV 7.10% to 29.87% and 7.91% to 20.62% respectively). The range of mean values for IPD was 26.44 to $33.55 \mu \mathrm{~m}$ with maximum mean value in population in banana from Chazhoor and minimum in population in tomato from Chazhoor.
Table 44. Morphometric characters of mature females of M. arenaria in Thrissur district, [Mean,(CV\%)], $\mathrm{n}=10$

*LV- least variable ($<12 \%$) :MV-moderately variable ($12 \%-20 \%$); HV-highly variable ($>20 \%$), CR= Character ranking. LMB-Length of median bulb, WMB-Width of median bulb, a-Length/width ratio
Table 45. Morphometric characters of perineal pattern of M. arenaria in Thrissur district , [Mean,(CV\%)], $\mathrm{n}=10$

*LV- least variable ($<12 \%$):MV-moderately variable ($12 \%-20 \%$); HV-highly variable ($>20 \%$), CR= Character ranking. H-MB-head to median bulb; ABW-anal body width ; c- length/tail length; c'- tail length/anal body width
Table 46. Morphometric characters of second stage juveniles of M. arenaria in Thrissur district, [Mean,(CV\%)], $\mathrm{n}=10$

Character ($\mu \mathrm{m}$)	Populations								CR*
	Chazhoor				Thalikulam			Thanniaym	
	Okra	Brinjal	Tomato	Banana	Okra	Tomato	Banana	Okra	
Females									
Length	$\begin{gathered} \hline 421.36 \\ (3.41 \%) \\ \hline \end{gathered}$	$\begin{gathered} \hline 420.37 \\ (3.28 \%) \\ \hline \end{gathered}$	$\begin{gathered} \hline 423.54 \\ (3.56 \%) \\ \hline \end{gathered}$	$\begin{gathered} \hline 428.39 \\ (3.25 \%) \end{gathered}$	$\begin{gathered} \hline 395.49 \\ (6.84 \%) \\ \hline \end{gathered}$	$\begin{gathered} 380.14 \\ (9.50 \%) \\ \hline \end{gathered}$	$\begin{gathered} 401.14 \\ (10.01 \%) \\ \hline \end{gathered}$	$\begin{gathered} \hline 409.39 \\ (5.59 \%) \\ \hline \end{gathered}$	MV
Stylet length	$\begin{gathered} 13.76 \\ (7.04 \%) \\ \hline \end{gathered}$	$\begin{gathered} 13.81 \\ (3.28 \%) \\ \hline \end{gathered}$	$\begin{gathered} 13.83 \\ (6.81 \%) \\ \hline \end{gathered}$	$\begin{gathered} 13.92 \\ (3.85 \%) \\ \hline \end{gathered}$	$\begin{gathered} 14.10 \\ (3.94 \%) \\ \hline \end{gathered}$	$\begin{gathered} 13.74 \\ (4.07 \%) \end{gathered}$	$\begin{gathered} 13.94 \\ (3.65 \%) \\ \hline \end{gathered}$	$\begin{gathered} 14.23 \\ (3.31 \%) \end{gathered}$	LV
H-MB	$\begin{gathered} 49.97 \\ (10.00 \%) \end{gathered}$	$\begin{gathered} 48.93 \\ (7.21 \%) \end{gathered}$	$\begin{gathered} 50.31 \\ (9.21 \%) \end{gathered}$	$\begin{gathered} 50.95 \\ (6.61 \%) \end{gathered}$	$\begin{gathered} 51.30 \\ (5.88 \%) \\ \hline \end{gathered}$	$\begin{gathered} 46.96 \\ (6.62 \%) \\ \hline \end{gathered}$	$\begin{gathered} 48.73 \\ (0.71 \%) \\ \hline \end{gathered}$	$\begin{gathered} 45.32 \\ (8.04 \%) \end{gathered}$	MV
ABW	$\begin{gathered} 10.80 \\ (10.11 \%) \end{gathered}$	$\begin{gathered} 10.21 \\ (10.11 \%) \end{gathered}$	$\begin{gathered} 10.99 \\ (10.98 \%) \end{gathered}$	$\begin{gathered} 11.81 \\ (11.21 \%) \end{gathered}$	$\begin{gathered} 10.85 \\ (8.96 \%) \\ \hline \end{gathered}$	$\begin{gathered} 10.43 \\ (13.82 \%) \end{gathered}$	$\begin{gathered} 10.74 \\ (12.11 \%) \end{gathered}$	$\begin{gathered} 11.48 \\ (4.49 \%) \end{gathered}$	HV
Tail length	$\begin{gathered} 48.01 \\ (10.38 \%) \\ \hline \end{gathered}$	$\begin{gathered} 49.08 \\ (10.98 \%) \\ \hline \end{gathered}$	$\begin{gathered} 48.91 \\ (11.21 \%) \\ \hline \end{gathered}$	$\begin{gathered} 49.88 \\ (11.78 \%) \\ \hline \end{gathered}$	$\begin{gathered} 51.59 \\ (9.06 \%) \\ \hline \end{gathered}$	$\begin{gathered} 46.36 \\ (13.63 \%) \\ \hline \end{gathered}$	$\begin{gathered} 47.21 \\ (14.21 \%) \\ \hline \end{gathered}$	$\begin{gathered} 48.95 \\ (10.14 \%) \\ \hline \end{gathered}$	HV
c	$\begin{gathered} 8.77 \\ (11.31 \%) \\ \hline \end{gathered}$	$\begin{gathered} 8.56 \\ (12.35 \%) \\ \hline \end{gathered}$	$\begin{gathered} 8.65 \\ (10.25 \%) \\ \hline \end{gathered}$	$\begin{gathered} 8.69 \\ (11.96 \%) \end{gathered}$	$\begin{gathered} 7.73 \\ (13.12 \%) \end{gathered}$	$\begin{gathered} 8.37 \\ (19.62 \%) \end{gathered}$	$\begin{gathered} 8.49 \\ (18.21 \%) \end{gathered}$	$\begin{gathered} 8.40 \\ (7.35 \%) \end{gathered}$	HV
c'	$\begin{gathered} 4.44 \\ (10.25 \%) \end{gathered}$	$\begin{gathered} 4.80 \\ (10.98 \%) \end{gathered}$	$\begin{gathered} 5.98 \\ (10.00 \%) \end{gathered}$	$\begin{gathered} 4.23 \\ (10.83 \%) \end{gathered}$	$\begin{gathered} 4.76 \\ (9.46 \%) \\ \hline \end{gathered}$	$\begin{gathered} 4.45 \\ (9.26 \%) \\ \hline \end{gathered}$	$\begin{gathered} 5.55 \\ (10.22 \%) \\ \hline \end{gathered}$	$\begin{gathered} 5.81 \\ (16.81 \%) \end{gathered}$	HV

[^1]
C. Second stage juveniles $\left(\mathrm{J}_{2}\right)$:

The coefficient of variability for the seven characters of second stage juveniles varied from population to population. The characters body length and H-MB were moderately variable (CV 3.28% to 10.01% and 0.71% to 10.00% respectively) and the character stylet length was least variable (CV 3.28\% to 4.07\%). The characters ABW , tail length, ratio c and c ' were highly variable (CV 4.49% to $13.82 \% ; 9.06 \%$ to $13.63 \% ; 7.35 \%$ to 19.62% and 9.26% to 16.81% respectively). The mean values for body length, stylet length and H-MB ranges from 380.14 to $423.54 \mu \mathrm{~m}, 13.74$ to $14.23 \mu \mathrm{~m}$ and 45.32 to $51.30 \mu \mathrm{~m}$ respectively. The maximum length was observed in population in tomato from Chazhoor ($423.54 \mu \mathrm{~m}$) and minimum value for population in tomato from Thalikulam $(380.14 \mu \mathrm{~m})$. In general, tail length was smaller in population in tomato from Thalikulam than the other populations. The longest tail length was observed in population in okra from Thalikulam $(51.59 \mu \mathrm{~m})$. The range of mean values for c and c' varies from 7.73 to $8.77 \mu \mathrm{~m}$ and 4.233 to $5.98 \mu \mathrm{~m}$ respectively. The ratio c and c' were maximum in population in okra and banana from Chazhoor respectively.

4.2.4 Morphometrics of Mature Females, Perineal Pattern and Second Stage Juveniles of M. incognita from Three Districts of Kerala

The morphometric characters of mature females, perineal pattern and second stage juveniles of M. incognita from three districts of Kerala are given in tables 47 and 48.
A. Mature females:

The range for mean values of body length and width in the three populations were 546.42 to $821.29 \mu \mathrm{~m}$ and 388.96 to $570.41 \mu \mathrm{~m}$, respectively, with the maximum length and width being in Idukki population. The characters body length and width showed maximum variation within the population in

Idukki which was up to 12.96 per cent for body length and 15.67 percent for width.

The character of neck length was moderately variable with maximum variation in Idukki population (CV 13.94\%). The maximum mean value for neck length was observed in Thiruvananthapuram population $(187.67 \mu \mathrm{~m})$ and the least in Idukki population $(175.55 \mu \mathrm{~m})$. Stylet length showed least variation among the populations in their mean values and the maximum mean value was observed in Thiruvananthapuram population $(16.30 \mu \mathrm{~m})$.

The size of the median bulb varied from 36.55 to $40.22 \mu \mathrm{~m}$ and 35.91 to $39.51 \mu \mathrm{~m}$ in length (LMB) and width (WMB) respectively, with maximum length and width in Thrissur population. The ratio a was least variable character with the maximum mean value for Idukki population $(1.473 \mu \mathrm{~m})$ and least for Thrissur population $(1.432 \mu \mathrm{~m})$.

B. Perineal pattern:

The characters LVS, AVS and IPD were highest in Thiruvananthapuram population ($26.02 \mu \mathrm{~m}, 19.95 \mu \mathrm{~m}$ and $27.18 \mu \mathrm{~m}$ respectively). These characters were rated as least variable with maximum variation in Idukki population for LVS and AVS and for IPD the maximum variation was observed in Thiruvananthapuram population. The coefficient of variability for the four characters of perineal patterns varied from population to population. The character ATT was rated as moderately variable (2.43% to 12.30%). The length of vulval slit (LVS) was almost similar in all the three populations with mean values ranging from 20.68 to $27.90 \mu \mathrm{~m}$.
C. Second stage juveniles $\left(\mathrm{J}_{2}\right)$:

The average body length of second stage juveniles was 394.08 to $402.46 \mu \mathrm{~m}$, with maximum body length recorded in Thiruvananthapuram population. The body length, stylet length, $\mathrm{H}-\mathrm{MB}, \mathrm{ABW}$ and tail length were the
Table 47. Morphometric characters of mature females, perineal pattern and second stage juveniles of M. incognita from three districts in Kerala, [Mean $\pm \mathrm{SD} \pm \mathrm{SE}$;(range); $\mathrm{CV} \%$], $\mathrm{n}=10$

$\begin{gathered} \hline \text { Character } \\ (\mu \mathrm{m}) \end{gathered}$		Populations		CR*
	Thiruvananthapuram	Idukki	Thrissur	
Females				
Length	$648.88 \pm 78.98 \pm 23.81$ $(546.42-821.29) 12.17 \%$	$691.79 \pm 89.70 \pm 44.85$ $(589.84-789.27) 12.96 \%$	$665.56 \pm 50.84 \pm 29.35$ $(631.87-724.04) 7.63 \%$	MV
Width	$\begin{gathered} 448.03 \pm 35.39 \pm 10.67 \\ (396.54-515.82) 7.90 \% \\ \hline \end{gathered}$	$\begin{gathered} 476.05 \pm 74.63 \pm 37.31 \\ (388.96-570.41) 15.67 \% \end{gathered}$	$\begin{gathered} 466.75 \pm 51.16 \pm 29.53 \\ (435.10-525.77) 10.96 \% \\ \hline \end{gathered}$	MV
Neck length	$\begin{gathered} 187.67 \pm 23.22 \pm 7.00 \\ (164.34-248.34) 12.37 \% \end{gathered}$	$\begin{gathered} 175.55 \pm 24.47 \pm 12.23 \\ (151.47-206.72) \quad 13.94 \% \end{gathered}$	$\begin{gathered} 186.42 \pm 16.90 \pm 9.75 \\ (167.90-201.01) 9.06 \% \\ \hline \end{gathered}$	MV
Stylet length	$16.30 \pm 1.17 \pm 0.35$ $(13.64-17.90) 7.21 \%$	$\begin{gathered} 15.33 \pm 1.36 \pm 0.68 \\ (14.01-16.88) 8.90 \% \\ \hline \end{gathered}$	$\begin{gathered} 15.63 \pm 0.29 \pm 0.16 \\ (15.46-15.97) 1.85 \% \end{gathered}$	LV
LMB	$\begin{gathered} 37.13 \pm 3.95 \pm 1.19 \\ (30.55-42.37) 10.66 \% \\ \hline \end{gathered}$	$\begin{gathered} 36.55 \pm 5.01 \pm 2.50 \\ (31.47-41.66) 13.71 \% \\ \hline \end{gathered}$	$\begin{gathered} 40.22 \pm 2.38 \pm 1.37 \\ (38.62-42.96) 5.92 \% \\ \hline \end{gathered}$	MV
WMB	$\begin{gathered} 35.91 \pm 4.88 \pm 1.47 \\ (26.46-42.02) 11.47 \% \end{gathered}$	$\begin{gathered} 35.94 \pm 5.11 \pm 2.55 \\ (30.48-41.00) 14.22 \% \\ \hline \end{gathered}$	$\begin{gathered} 39.51 \pm 1.92 \pm 1.11 \\ (38.13-41.71) 4.86 \% \end{gathered}$	MV
a	$\begin{gathered} 1.46 \pm 0.10 \pm 0.03 \\ (1.28-1.59) 7.27 \% \end{gathered}$	$\begin{gathered} 1.47 \pm 0.07 \pm 0.03 \\ (1.39-1.54) 5.12 \% \end{gathered}$	$\begin{gathered} 1.43 \pm 0.04 \pm 0.02 \\ (1.38-1.45) 3.02 \% \end{gathered}$	LV
Perineal pattern				
LVS	$\begin{gathered} 26.02 \pm 1.45 \pm 0.43 \\ (23.01-27.90) 5.58 \% \\ \hline \end{gathered}$	$\begin{gathered} 23.01 \pm 1.69 \pm 0.84 \\ (20.68-24.56) 7.35 \% \end{gathered}$	$\begin{gathered} 22.05 \pm 1.23 \pm 0.71 \\ (20.84-23.30) 5.58 \% \\ \hline \end{gathered}$	LV
AVS	$\begin{gathered} 19.95 \pm 0.83 \pm 0.25 \\ (17.98-20.81) 4.17 \% \\ \hline \end{gathered}$	$\begin{gathered} 18.97 \pm 0.97 \pm 0.48 \\ (17.82-19.89) 5.15 \% \\ \hline \end{gathered}$	$\begin{gathered} 19.19 \pm 0.40 \pm 0.23 \\ (18.82-19.62) 2.09 \% \\ \hline \end{gathered}$	LV
ATT	$\begin{gathered} 18.32 \pm 2.21 \pm 0.66 \\ (14.98-21.85) 12.06 \% \end{gathered}$	$\begin{gathered} 17.99 \pm 2.21 \pm 1.10 \\ (15.55-20.52) 12.30 \% \\ \hline \end{gathered}$	$\begin{gathered} 26.47 \pm 0.64 \pm 0.37 \\ (25.76-27.01) 2.43 \% \\ \hline \end{gathered}$	MV
IPD	$\begin{gathered} 27.18 \pm 2.09 \pm 0.63 \\ (23.70-30.79) 7.71 \% \\ \hline \end{gathered}$	$\begin{gathered} 26.49 \pm 1.05 \pm 0.52 \\ (24.98-27.34) 3.97 \% \end{gathered}$	$\begin{gathered} 20.00 \pm 0.73 \pm 0.42 \\ (19.27-20.74) 3.68 \% \\ \hline \end{gathered}$	LV

*LV- least variable ($<12 \%$):MV-moderately variable (12-20\%); HV-highly variable ($>20 \%$), $\mathrm{CR}=$ Character ranking. LMB- length of median bulb, WMB- width of median bulb, a- length/width ratio, LVS-length of vulval slit, AVS-anus to vulval slit, ATT-anus to tail terminus, IPDinterphasmidial distance.
Table 48. Morphometric characters of second stage juveniles of M. incognita from three districts in Kerala, [Mean \pm SD \pm SE;(range);CV\%], $\mathrm{n}=10$

$\begin{aligned} & \text { Character } \\ & (\mu \mathrm{m}) \end{aligned}$	Populations			CR*
	Thiruvananthapuram	Idukki	Thrissur	
Females				
Length	$\begin{gathered} 402.46 \pm 20.56 \pm 6.20 \\ (368.53-423.19) 5.10 \% \end{gathered}$	$\begin{gathered} 401.89 \pm 12.09 \pm 6.04 \\ (390.86-415.70) 3.00 \% \end{gathered}$	$\begin{gathered} 394.08 \pm 20.15 \pm 11.63 \\ (371.25-409.39) 5.11 \% \end{gathered}$	LV
Stylet length	$\begin{gathered} 14.29 \pm 0.66 \pm 0.20 \\ (13.54-15.67) 4.65 \% \end{gathered}$	$\begin{gathered} 13.96 \pm 0.39 \pm 0.19 \\ (13.66-14.53) 2.84 \% \end{gathered}$	$\begin{gathered} 13.68 \pm 0.36 \pm 0.21 \\ (13.25-13.91) 2.68 \% \end{gathered}$	LV
H-MB	$\begin{gathered} 50.50 \pm 2.87 \pm 0.86 \\ (46.38-56.70) 5.69 \% \end{gathered}$	$\begin{gathered} 50.59 \pm 2.22 \pm 1.11 \\ (48.40-53.69) 4.40 \% \end{gathered}$	$\begin{gathered} 47.24 \pm 1.21 \pm 0.70 \\ (45.84-47.96) 2.56 \% \end{gathered}$	LV
ABW	$\begin{gathered} 11.35 \pm 0.70 \pm 0.21 \\ (10.34-12.67) 6.23 \% \end{gathered}$	$\begin{gathered} 10.40 \pm 0.51 \pm 0.25 \\ (9.88-10.91) 4.91 \% \end{gathered}$	$\begin{gathered} 11.01 \pm 0.55 \pm 0.31 \\ (10.43-11.53) 5.01 \% \end{gathered}$	LV
Tail length	$\begin{gathered} 50.51 \pm 2.58 \pm 0.78 \\ (47.59-54.55) 5.12 \% \end{gathered}$	$\begin{gathered} 52.34 \pm 1.15 \pm 0.75 \\ (50.41-53.57) 2.88 \% \end{gathered}$	$\begin{gathered} 52.15 \pm 2.73 \pm 1.57 \\ (50.51-55.30) 5.24 \% \end{gathered}$	LV
c	$\begin{gathered} 8.16 \pm 0.82 \pm 0.24 \\ (7.13-10.00) 10.06 \% \end{gathered}$	$\begin{gathered} 7.76 \pm 0.24 \pm 0.12 \\ (7.43-8.03) 3.20 \% \end{gathered}$	$\begin{gathered} 7.64 \pm 0.86 \pm 0.39 \\ (6.856-8.086) 8.961 \% \end{gathered}$	MV
c^{\prime}	$\begin{gathered} 4.90 \pm 0.52 \pm 0.15 \\ (4.21-5.71) 10.64 \% \end{gathered}$	$\begin{gathered} 4.95 \pm 0.09 \pm 0.04 \\ (4.82-5.04) 1.98 \% \end{gathered}$	$\begin{gathered} 4.75 \pm 0.48 \pm 0.27 \\ (4.38-5.29) 10.15 \% \\ \hline \end{gathered}$	MV

*LV- least variable ($<8 \%$):MV-moderately variable ($8 \%-12 \%$); HV-highly variable ($>12 \%$), CR= Character ranking. H-MB-head to median bulb; ABW-anal body width ;c- length/tail length; c'- tail length/anal body width
least variable characters and the maximum values being $402.46 \mu \mathrm{~m}, 14 . .29 \mu \mathrm{~m}$, $50.59 \mu \mathrm{~m}, 11.35 \mu \mathrm{~m}$ and $52.34 \mu \mathrm{~m}$ respectively. The maximum stylet length was observed in Thiruvanthapuram population whereas minimum value was recorded in Thrissur population $(13.68 \mu \mathrm{~m})$.

Ratio c and c' were moderately variable with maximum mean values being $8.16 \mu \mathrm{~m}$ and $4.95 \mu \mathrm{~m}$ respectively. The tail was longer in Idukki population $(52.34 \mu \mathrm{~m})$ and smaller in Thiruvananthapuram population $(47.591 \mu \mathrm{~m})$.

4.2.5 Morphometrics of Mature Females, Perineal Pattern and Second Stage Juveniles of M. incognita in Four Crops in Kerala

The morphometric characters of mature females, perineal pattern and second stage juveniles of M. incognita in four crops in Kerala are given in tables 49 and 50.
A. Mature females:

The range for mean values of body length and width in the four populations were 618.49 to $676.47 \mu \mathrm{~m}$ and 420.23 to $478.21 \mu \mathrm{~m}$, respectively, with the maximum length and width being in banana population. The character body length and width showed maximum variation within the population in okra which was up to 15.18 per cent for body length and 16.19 per cent for width.

The character of neck length was moderately variable with maximum variation in okra population (CV 12.404\%). The maximum mean value for neck length was observed in banana population $(194.00 \mu \mathrm{~m})$ and the least in tomato population $(173.90 \mu \mathrm{~m})$. Stylet length showed least variation among the populations in their mean values and the maximum mean value was observed in banana population $(16.59 \mu \mathrm{~m})$.

The size of the median bulb varied from 35.07 to $41.10 \mu \mathrm{~m}$ and 33.62 to $40.13 \mu \mathrm{~m}$ in length (LMB) and width (WMB) respectively, with maximum length and width in banana population. The ratio a was least variable character with the maximum mean value for tomato population $(1.47 \mu \mathrm{~m})$ and least for brinjal population $(1.41 \mu \mathrm{~m})$.
Table 49.Morphometric characters of mature females and perineal pattern of M. incognita in four crops in Kerala,[Mean $\pm \mathrm{SD} \pm \mathrm{SE} ;(\mathrm{range}) ; \mathrm{CV} \%$,

$\begin{aligned} & \text { Character } \\ & (\mu \mathrm{m}) \end{aligned}$	Populations				CR*
	Brinjal	Okra	Tomato	Banana	
Females					
Length	$\begin{gathered} 664.59 \pm 42.23 \pm 21.11 \\ (620.14-714.18) 6.35 \% \end{gathered}$	$\begin{gathered} 657.60 \pm 99.84 \pm 49.92 \\ (546.42-789.27) 15.18 \% \end{gathered}$	$\begin{gathered} 618.49 \pm 56.25 \pm 25.15 \\ (550.29-702.19) 9.09 \% \end{gathered}$	$\begin{gathered} 676.47 \pm 58.57 \pm 26.19 \\ (606.71-740.06) 8.65 \% \end{gathered}$	MV
Width	$\begin{gathered} 470.24 \pm 34.98 \pm 17.49 \\ (439.38-515.82) 7.44 \% \\ \hline \end{gathered}$	$\begin{gathered} 464.91 \pm 75.31 \pm 37.65 \\ (396.54-570.41) 16.19 \% \end{gathered}$	$\begin{gathered} 420.23 \pm 25.70 \pm 11.49 \\ (388.96-453.24) 6.11 \% \\ \hline \end{gathered}$	$\begin{gathered} 478.21 \pm 30.84 \pm 13.79 \\ (447.93-525.77) 6.44 \% \\ \hline \end{gathered}$	MV
Neck length	$\begin{gathered} 186.76 \pm 14.04 \pm 6.28 \\ (167.89-206.72) 7.52 \% \end{gathered}$	$\begin{gathered} 174.89 \pm 21.69 \pm 10.84 \\ (151.47-201.24) 12.40 \% \end{gathered}$	$\begin{gathered} 173.90 \pm 12.85 \pm 5.74 \\ (161.50-195.43) 7.39 \% \end{gathered}$	$\begin{gathered} 194.00 \pm 8.78 \pm 4.39 \\ (183.24-201.34) 4.52 \% \\ \hline \end{gathered}$	MV
Stylet length	$\begin{gathered} 16.44 \pm 1.11 \pm 0.50 \\ (15.44-17.90) 6.80 \% \end{gathered}$	$\begin{gathered} 15.15 \pm 1.43 \pm 0.71 \\ (13.64-16.88) 9.47 \% \end{gathered}$	$\begin{gathered} 15.68 \pm 1.04 \pm 0.46 \\ (14.01-16.56) 6.66 \% \end{gathered}$	$\begin{gathered} 16.59 \pm 0.71 \pm 0.35 \\ (15.97-17.23) 4.28 \% \end{gathered}$	LV
LMB	$\begin{gathered} 35.48 \pm 2.13 \pm 0.95 \\ (33.116-38.62) 6.00 \% \end{gathered}$	$\begin{gathered} 35.07 \pm 4.75 \pm 2.37 \\ (30.55-39.97) 13.55 \% \end{gathered}$	$\begin{gathered} 38.76 \pm 4.26 \pm 1.90 \\ (31.62-42.28) 11.00 \% \\ \hline \end{gathered}$	$\begin{gathered} 41.10 \pm 1.89 \pm 0.94 \\ (38.90-42.96) 4.61 \% \end{gathered}$	MV
WMB	$\begin{gathered} 34.48 \pm 2.65 \pm 1.18 \\ (31.44-38.13) 7.68 \% \\ \hline \end{gathered}$	$\begin{gathered} 33.62 \pm 6.19 \pm 3.09 \\ (26.46-39.52) 18.41 \% \\ \hline \end{gathered}$	$\begin{gathered} 37.97 \pm 4.71 \pm 2.10 \\ (30.04-42.02) 12.41 \% \\ \hline \end{gathered}$	$\begin{gathered} 40.13 \pm 1.57 \pm 0.78 \\ (38.01-41.71) 3.92 \% \end{gathered}$	MV
a	$\begin{gathered} 1.41 \pm 0.12 \pm 0.06 \\ (1.29-1.56) 8.47 \% \end{gathered}$	$\begin{gathered} 1.43 \pm 0.05 \pm 0.02 \\ (1.39-1.50) 3.67 \% \end{gathered}$	$\begin{gathered} 1.47 \pm 0.06 \pm 0.02 \\ (1.38-1.54) 4.31 \% \end{gathered}$	$\begin{gathered} 1.44 \pm 0.11 \pm 0.05 \\ (1.28-1.54) 7.69 \% \end{gathered}$	LV
Perineal pattern					
LVS	$\begin{gathered} 25.15 \pm 1.78 \pm 0.79 \\ (23.30-27.90) 7.79 \% \\ \hline \end{gathered}$	$\begin{gathered} 24.54 \pm 1.40 \pm 0.70 \\ (22.93-26.34) 5.70 \% \\ \hline \end{gathered}$	$\begin{gathered} 23.70 \pm 3.16 \pm 1.41 \\ (20.68-27.49) 13.34 \% \\ \hline \end{gathered}$	$\begin{gathered} 25.76 \pm 2.50 \pm 1.25 \\ (22.01-27.34) 9.74 \% \\ \hline \end{gathered}$	MV
AVS	$\begin{gathered} 19.66 \pm 0.92 \pm 0.41 \\ (18.49-20.48) 4.71 \% \end{gathered}$	$\begin{gathered} 19.39 \pm 1.09 \pm 0.54 \\ (17.82-20.37) 5.63 \% \end{gathered}$	$\begin{gathered} 19.38 \pm 0.97 \pm 0.43 \\ (17.98-20.61) 5.02 \% \end{gathered}$	$\begin{gathered} 20.05 \pm 0.71 \pm 0.35 \\ (19.29-20.81) 3.57 \% \end{gathered}$	LV
ATT	$\begin{gathered} 18.84 \pm 2.29 \pm 1.02 \\ (16.86-21.85) 12.18 \% \\ \hline \end{gathered}$	$\begin{gathered} 17.792 \pm 1.546 \pm 0.773 \\ (15.557-19.032) 8.691 \% \end{gathered}$	$\begin{gathered} 18.49 \pm 2.66 \pm 1.19 \\ (14.98-21.19) 14.39 \% \end{gathered}$	$\begin{gathered} 18.93 \pm 2.06 \pm 1.03 \\ (17.01-21.32) 10.91 \% \\ \hline \end{gathered}$	MV
IPD	$\begin{gathered} 26.67 \pm 2.81 \pm 1.25 \\ (23.70-30.79) 10.54 \% \end{gathered}$	$\begin{gathered} 27.74 \pm 1.69 \pm 0.84 \\ (26.370-30.21) 6.11 \% \end{gathered}$	$\begin{gathered} 26.13 \pm 0.54 \pm 02 \\ (25.326-26.64) 2.10 \% \\ \hline \end{gathered}$	$\begin{gathered} 27.34 \pm 0.80 \pm 0.40 \\ (26.38-28.17) 2.93 \% \\ \hline \end{gathered}$	LV

[^2]Table 50. Morphometric characters of second stage juveniles of M. incognita in four crops in Kerala,[Mean $\pm \mathrm{SD} \pm \mathrm{SE}$;(range);CV\%],

Character ($\mu \mathrm{m}$)	Populations				CR*
	Brinjal	Okra	Tomato	Banana	
Length	$\begin{gathered} 401.49 \pm 19.21 \pm 8.59 \\ (370.03-418.37) 4.78 \% \\ \hline \end{gathered}$	$\begin{gathered} 405.28 \pm 11.10 \pm 5.55 \\ (390.86-417.60) 2.74 \% \\ \hline \end{gathered}$	$\begin{gathered} 392.52 \pm 23.10 \pm 10.33 \\ (368.53-421.72) 5.88 \% \\ \hline \end{gathered}$	$\begin{gathered} 406.41 \pm 19.30 \pm 9.65 \\ (378.76-423.19) 4.74 \% \end{gathered}$	LV
Stylet length	$\begin{gathered} 14.12 \pm 0.36 \pm 0.16 \\ (13.72-14.53) 2.60 \% \\ \hline \end{gathered}$	$\begin{gathered} 13.87 \pm 0.18 \pm 0.09 \\ (13.66-14.10) 1.36 \% \\ \hline \end{gathered}$	$\begin{gathered} 14.09 \pm 0.77 \pm 0.34 \\ (13.25-15.05) 5.52 \% \\ \hline \end{gathered}$	$\begin{gathered} 14.37 \pm 0.92 \pm 0.46 \\ (13.54-15.67) 6.45 \% \end{gathered}$	LV
H-MB	$\begin{gathered} 50.43 \pm 2.06 \pm 0.92 \\ (47.93-53.69) 4.09 \% \end{gathered}$	$\begin{gathered} 49.09 \pm 1.03 \pm 0.51 \\ (48.01-50.02) 2.10 \% \\ \hline \end{gathered}$	$\begin{gathered} 50.82 \pm 3.87 \pm 1.73 \\ (45.84-56.70) 7.62 \% \\ \hline \end{gathered}$	$\begin{gathered} 49.22 \pm 3.52 \pm 1.76 \\ (46.38-54.37) 7.16 \% \\ \hline \end{gathered}$	LV
ABW	$\begin{gathered} 10.94 \pm 0.34 \pm 0.15 \\ (10.38-11.32) 3.16 \% \end{gathered}$	$\begin{gathered} 10.59 \pm 0.50 \pm 0.25 \\ (10.05-11.21) 4.77 \% \end{gathered}$	$\begin{gathered} 11.04 \pm 1.05 \pm 0.47 \\ (9.88-12.67) 9.53 \% \\ \hline \end{gathered}$	$\begin{gathered} 11.81 \pm 0.26 \pm 0.13 \\ (11,53-12.17) 2.25 \% \end{gathered}$	MV
Tail length	$\begin{gathered} 50.52 \pm 2.01 \pm 0.90 \\ (48.38-53.51) 4.01 \% \end{gathered}$	$\begin{gathered} 51.10 \pm 2.89 \pm 1.44 \\ (47.60-54.55) 5.67 \% \end{gathered}$	$\begin{gathered} 52.51 \pm 2.97 \pm 1.32 \\ (47.59-55.30) 5.66 \% \end{gathered}$	$\begin{gathered} 50.46 \pm 1.97 \pm 0.98 \\ (48.18-52.98) 3.91 \% \\ \hline \end{gathered}$	LV
c	$\begin{gathered} 8.00 \pm 0.38 \pm 1.17 \\ (7.66-8.64) 4.75 \% \end{gathered}$	$\begin{gathered} 8.00 \pm 0.35 \pm 0.17 \\ (7.72-8.49) 4.43 \% \end{gathered}$	$\begin{gathered} 7.61 \pm 0.86 \pm 0.38 \\ (6.85-9.08) 11.38 \% \\ \hline \end{gathered}$	$\begin{gathered} 8.43 \pm 1.05 \pm 0.52 \\ (7.80-10.00) 12.51 \% \\ \hline \end{gathered}$	HV
c'	$\begin{gathered} 4.92 \pm 0.46 \pm 0.20 \\ (4.57-5.71) 9.40 \% \\ \hline \end{gathered}$	$\begin{gathered} 5.18 \pm 0.33 \pm 0.16 \\ (4.82-5.60) 6.43 \% \\ \hline \end{gathered}$	$\begin{gathered} 4.72 \pm 0.46 \pm 0.20 \\ (4.21-5.29) 9.90 \% \\ \hline \end{gathered}$	$\begin{gathered} 4.78 \pm 0.48 \pm 0.24 \\ (4.38-5.37) 10.15 \% \\ \hline \end{gathered}$	MV

*LV- least variable ($<8 \%$):MV-moderately variable ($8 \%-12 \%$); HV-highly variable ($>12 \%$), CR= Character ranking. H-MB-head to median bulb; ABW-anal body width ; c- length/tail length; c'- tail length/anal body width

B. Perineal pattern:

The characters LVS, AVS and ATT were highest in banana population ($25.76 \mu \mathrm{~m}, 20.05 \mu \mathrm{~m}$ and $18.93 \mu \mathrm{~m}$ respectively). The coefficient of variability for the four characters of perineal patterns varied from population to population. The characters LVS and ATT were rated as moderately variable with maximum variation in tomato population (CV 13.34% and 14.39% respectively). The character AVS and IPD were least variable with maximum variation in okra and brinjal population respectively. Okra population showed maximum mean value for IPD $(27.74 \mu \mathrm{~m})$.
C. Second stage juveniles $\left(\mathrm{J}_{2}\right)$:

The average body length of second stage juveniles was 392.52 to 406.41 $\mu \mathrm{m}$, with maximum body length recorded in banana population. The body length, stylet length, $\mathrm{H}-\mathrm{MB}$ and tail length were the least variable characters and the maximum mean values being $406.41 \mu \mathrm{~m}, 14.37 \mu \mathrm{~m}, 50.82 \mu \mathrm{~m}$ and $52.51 \mu \mathrm{~m}$ respectively. The maximum stylet length was observed in banana population whereas minimum value was observed in okra population $(13.87 \mu \mathrm{~m})$. The characters ABW and ratio c' were moderately variable with maximum variation in tomato and banana population respectively.

Ratio c was highly variable with maximum variation in banana population and maximum mean values being $8.43 \mu \mathrm{~m}$. The tail was longer in tomato population and smaller in banana population $(50.46 \mu \mathrm{~m})$.

4.2.6 Morphometrics of Mature Females, Perineal Pattern and Second Stage

 Juveniles of M. javanica from Two Districts of KeralaThe morphometric characters of mature females, perineal pattern and second stage juveniles of M. javanica from two districts of Kerala are given in tables 51 and 52.

A. Mature females:

The range for mean values of body length and width in the four populations were 708.57 to $712.44 \mu \mathrm{~m}$ and 454.15 to $470.40 \mu \mathrm{~m}$, respectively. The maximum body length was observed in Thrissur population and width in Idukki population. These characters were rated as least variable. The character body length showed maximum variation within the population in Thrissur which was up to 9.66 per cent and the character width showed maximum variation in Idukki population which was up to 11.56 per cent.

The character of neck length was moderately variable with maximum variation in Thrissur population (CV 18.06\%). The maximum mean value for neck length was observed in Idukki population (203.04 $\mu \mathrm{m})$ and the least in Thrissur population $(168.28 \mu \mathrm{~m})$. Stylet length showed least variation among the populations in their mean values and the maximum mean value was observed in Thrissur population $(16.08 \mu \mathrm{~m})$.

The size of the median bulb varied from 39.65 to $39.85 \mu \mathrm{~m}$ and 38.79 to $39.32 \mu \mathrm{~m}$ in length (LMB) and width (WMB) respectively, with the maximum length and width in Thrissur population. The character ratio a was least variable with maximum mean value for Idukki population $(1.56 \mu \mathrm{~m})$ and least for Thrissur population $(1.50 \mu \mathrm{~m})$.
B. Perineal pattern:

The characters LVS and ATT were maximum in Idukki population (25.46 $\mu \mathrm{m}$ and $16.17 \mu \mathrm{~m}$ respectively). The coefficient of variability for the four characters of perineal patterns varied from population to population. The characters LVS and AVS were rated as least variable with maximum variation in Thrissur population (CV 6.82% and 10.22% respectively). The character ATT and IPD were moderately variable with maximum variation in Idukki and Thrissur population respectively. Idukki population showed maximum mean value for IPD (24.42 $\mu \mathrm{m}$).
Table 51. Morphometric characters of mature females, perineal pattern and second stage juveniles of M. javanica from three districts in Kerala, [Mean $\pm \mathrm{SD} \pm$ SE;(range); $\mathrm{CV} \%$], $\mathrm{n}=10$

Character ($\mu \mathrm{m}$)	Populations		CR*
	Idukki	Thrissur	
Females			
Length	$\begin{gathered} 712.44 \pm 50.29 \pm 17.78 \\ (646.28-792.85) 7.06 \% \\ \hline \end{gathered}$	$\begin{gathered} 708.57 \pm 68.47 \pm 21.65 \\ (552.83-826.28) 9.66 \% \end{gathered}$	LV
Width	$454.15 \pm 52.52 \pm 18.56$ $(410.71-564.39) 11.56 \%$	$470.40 \pm 51.57 \pm 16.31$ $(389.17-547.26) \quad 10.96 \%$	LV
Neck length	$\begin{gathered} 203.04 \pm 28.53 \pm 10.08 \\ (165.23-233.20) 14.05 \% \end{gathered}$	$168.28 \pm 30.40 \pm 9.61$ $(104.38-206.65) 18.02 \%$	MV
Stylet length	$\begin{gathered} 15.79 \pm 1.46 \pm 0.51 \\ (12.89-16.97) 9.29 \% \end{gathered}$	$\begin{gathered} 16.08 \pm 0.79 \pm 0.25 \\ (15.07-17.26) 4.93 \% \end{gathered}$	LV
LMB	$\begin{gathered} 39.65 \pm 3.19 \pm 1.12 \\ (35.04-42.77) 8.05 \% \end{gathered}$	$\begin{gathered} 39.85 \pm 4.53 \pm 1.43 \\ (30.12-45.69) 11.37 \% \end{gathered}$	LV
WMB	$\begin{gathered} 38.79 \pm 3.27 \pm 1.09 \\ (33.98-41.93) 8.43 \% \end{gathered}$	$\begin{gathered} 39.32 \pm 4.29 \pm 1.351 \\ (30.02-44.89) 10.92 \% \end{gathered}$	LV
a	$\begin{gathered} 1.56 \pm 0.15 \pm 0.05 \\ (1.38-1.79) 9.81 \% \end{gathered}$	$\begin{gathered} 1.50 \pm 0.09 \pm 0.02 \\ (1.37-1.65) 5.97 \% \end{gathered}$	LV
Perineal pattern			
LVS	$\begin{gathered} 25.46 \pm 1.45 \pm 0.51 \\ (23.29-27.80) 5.72 \% \\ \hline \end{gathered}$	$\begin{gathered} 25.17 \pm 1.75 \pm 0.55 \\ (22.35-28.88) 6.82 \% \\ \hline \end{gathered}$	LV
AVS	$\begin{gathered} 18.20 \pm 1.65 \pm 0.58 \\ (16.05-20.21) 9.07 \% \end{gathered}$	$\begin{gathered} 19.85 \pm 2.02 \pm 0.64 \\ (16.39-23.26) \quad 10.22 \% \end{gathered}$	LV
ATT	$\begin{gathered} 16.17 \pm 8.01 \pm 1.00 \\ (13.19-21.21) 17.50 \% \end{gathered}$	$\begin{gathered} 14.19 \pm 1.94 \pm 0.61 \\ (11.32-18.10) 13.69 \% \end{gathered}$	MV
IPD	$\begin{gathered} 24.42 \pm 2.35 \pm 0.83 \\ (20.94-28.70) 9.63 \% \\ \hline \end{gathered}$	$\begin{gathered} 26.25 \pm 4.66 \pm 1.47 \\ (17.68-31.55) 17.78 \% \\ \hline \end{gathered}$	MV

*LV- least variable ($<12 \%$):MV-moderately variable (12-20\%); HV-highly variable ($>20 \%$), CR=Character ranking. LMB- length of median bulb, WMB- width of median bulb, a- length/width ratio, LVS-length of vulval slit, AVS-anus to vulval slit, ATT-anus to tail terminus, IPDinterphasmidial distance.
Table 52. Morphometric characters of second stage juveniles of M. javanica from three districts in Kerala, [Mean \pm SD \pm SE;(range);CV\%], $\mathrm{n}=10$

Character ($\mu \mathrm{m}$)	Populations		CR*
	Idukki	Thrissur	
Females			
Length	$\begin{gathered} 403.43 \pm 6.46+2.28 \\ (395.94-410.71) 1.60 \% \end{gathered}$	$\begin{gathered} 380.43 \pm 28.98 \pm 9.16 \\ (338.64-419.88) 7.61 \% \end{gathered}$	LV
Stylet length	$\begin{gathered} 14.05 \pm 0.49 \pm 0.17 \\ (13.56-14.91) 3.53 \% \end{gathered}$	$\begin{gathered} 13.54 \pm 0.33 \pm 0.10 \\ (13.14-14.22) 2.45 \% \end{gathered}$	LV
H-MB	$\begin{gathered} 51.70 \pm 2.55 \pm 0.90 \\ (46.22-54.72) 4.93 \% \\ \hline \end{gathered}$	$\begin{gathered} 49.87 \pm 1.51 \pm 0.47 \\ (48.19-52.09) 3.03 \% \\ \hline \end{gathered}$	LV
ABW	$\begin{gathered} 10.40 \pm 0.38 \pm 0.13 \\ (9.84-10.98) 3.67 \% \end{gathered}$	$\begin{gathered} 10.07 \pm 0.62 \pm 0.91 \\ (9.11-11.00) 6.20 \% \\ \hline \end{gathered}$	LV
Tail length	$\begin{gathered} 51.12 \pm 2.87 \pm 1.01 \\ (45.46-54.43) 5.62 \% \\ \hline \end{gathered}$	$\begin{gathered} 53.11 \pm 3.33 \pm 1.05 \\ (48.19-58.31) 6.28 \% \\ \hline \end{gathered}$	LV
c	$\begin{gathered} 7.98 \pm 0.46 \pm 0.16 \\ (7.18-8.54) 5.77 \% \end{gathered}$	$\begin{gathered} 7.16 \pm 0.38 \pm 0.12 \\ (6.52-7.85) 5.39 \% \end{gathered}$	LV
c^{\prime}	$\begin{gathered} 5.27 \pm 0.58 \pm 0.20 \\ (4.91-6.54) 11.11 \% \\ \hline \end{gathered}$	$\begin{gathered} 5.30 \pm 0.39 \pm 0.12 \\ (4.75-5.89) 7.45 \% \\ \hline \end{gathered}$	MV

*LV- least variable ($<8 \%$):MV-moderately variable ($8 \%-12 \%$); HV-highly variable ($>12 \%$), CR $=$ Character ranking.
H-MB-head to median bulb; ABW-anal body width ;c- length/tail length; c'- tail length/anal body width
C. Second stage juveniles $\left(\mathrm{J}_{2}\right)$:

The average body length of second stage juveniles was 308.43 to 403.43 $\mu \mathrm{m}$, with maximum body length recorded in Idukki population. The body length, stylet length, $\mathrm{H}-\mathrm{MB}, \mathrm{ABW}$, tail length and ratio c were the least variable characters and the maximum mean values being $403.43 \mu \mathrm{~m}, 14.05 \mu \mathrm{~m}, 51.70$ $\mu \mathrm{m}, 10.403 \mu \mathrm{~m}, 53.11 \mu \mathrm{~m}$ and $7.98 \mu \mathrm{~m}$ respectively. The maximum stylet length was observed in Idukki population whereas minimum value was observed in Thrissur population $(13.54 \mu \mathrm{~m})$. The characters ratio c' was moderately variable with maximum variation in Idukki population and maximum mean value being $5.307 \mu \mathrm{~m}$. The tail was longer in Thrissur population and smaller in Idukki population $(51.12 \mu \mathrm{~m})$.

4.2.7 Morphometrics of Mature Females, Perineal Pattern and Second Stage Juveniles of M. javanica in Four Crops in Kerala

The morphometric characters of mature females, perineal pattern and second stage juveniles of M. javanica in four crops in Kerala are given in tables 53 and 54.

A. Mature females:

The range for mean values of body length and width in the four populations were 685.45 to $735.32 \mu \mathrm{~m}$ and 410.71 to $453.50 \mu \mathrm{~m}$, respectively, with the maximum length in banana population and maximum width in tomato population. The character length showed maximum variation within the population in banana which was up to 14.38 per cent and the character width showed maximum variation in tomato which was up to 11.85 per cent.

The character of neck length was highly variable with maximum variation in banana population (CV 31.70\%). The maximum mean value for neck length was observed in banana population $(221.76 \mu \mathrm{~m})$ and the least in brinjal population $(187.31 \mu \mathrm{~m})$. Stylet length showed moderate variation among the populations in their mean values and the maximum mean value was observed in banana population $(16.55 \mu \mathrm{~m})$.

The size of the median bulb varied from 35.58 to $41.58 \mu \mathrm{~m}$ and 34.93 to $41.05 \mu \mathrm{~m}$ in length (LMB) and width (WMB) respectively, with maximum length and width in banana population. The ratio a was moderately variable with the maximum mean value for tomato population $(1.59 \mu \mathrm{~m})$ and least for banana population $(1.49 \mu \mathrm{~m})$.

B. Perineal pattern:

The characters LVS and AVS were maximum in tomato population (26.43 $\mu \mathrm{m})$ and brinjal population $(18.70 \mu \mathrm{~m})$ respectively. The coefficient of variability for the four characters of perineal patterns varied from population to population. The characters LVS and AVS were rated as least variable with maximum variation in tomato population (CV 9.83\%) and banana population (11.73\%) respectively. The character ATT was highly variable with maximum variation in okra (CV 21.28\%) and the character IPD was moderately variable with maximum variation in banana population (CV 12.25\%). Banana population showed maximum mean value for IPD $(27.74 \mu \mathrm{~m})$.
C. Second stage juveniles $\left(\mathrm{J}_{2}\right)$:

The average body length of second stage juveniles was 396.60 to 403.59 $\mu \mathrm{m}$, with maximum body length recorded in banana population. The body length, stylet length, H-MB were the least variable characters and the maximum mean values being $403.59 \mu \mathrm{~m}, 14.01 \mu \mathrm{~m}$ and $53.39 \mu \mathrm{~m}$ respectively. The maximum stylet length was observed in brinjal population whereas minimum value was observed in okra population $(13.56 \mu \mathrm{~m})$. The characters ABW was moderately variable with maximum variation in okra population and the maximum mean value being $9.84 \mu \mathrm{~m}$.

Tail length, ratio c and c' were highly variable with maximum variation in okra population and maximum mean values being $52.22 \mu \mathrm{~m}, 8.54 \mu \mathrm{~m}$ and 5.79 $\mu \mathrm{m}$ respectively.
Table 53.Morphometric characters of mature females and perineal pattern of M. javanica in four crops in Kerala, [Mean $\pm \mathrm{SD} \pm \mathrm{SE} ;(\mathrm{range}) ; \mathrm{CV} \%]$, $\mathrm{n}=10$

*LV- least variable ($<12 \%$):MV-moderately variable (12-20\%); HV-highly variable ($>20 \%$), CR= Character ranking. LMB- length of median bulb, WMBwidth of median bulb, a- length/width ratio, LVS-length of vulval slit, AVS-anus to vulval slit, ATT-anus to tail terminus, IPD-interphasmidial distance.
Table 54. Morphometric characters of second stage juveniles of M. javanica in four crops in Kerala, [Mean $\pm \mathrm{SD} \pm \mathrm{SE}$;(range);CV\%],
$\mathrm{n}=10$

Character ($\mu \mathrm{m}$)	Populations				CR*
	Brinjal	Okra	Tomato	Banana	
Length	$399.23 \pm 16.40 \pm 9.47$ $(380.43-410.71) 4.11 \%$	$396.60 \pm 26.54 \pm 8.23$ $(359.43-420.34) 6.07 \%$	$398.12 \pm 3.07 \pm 2.17$ $(395.94-400.30) 0.77 \%$	$403.59 \pm 8.47 \pm 5.99$ $(397.60-409.58) 2.10 \%$	LV
Stylet length	$\begin{gathered} 14.01 \pm 0.52 \pm 0.30 \\ (13.54-14.57) 3.72 \% \end{gathered}$	$\begin{gathered} 13.56 \pm 0.63 \pm 0.20 \\ (12.60-14.58) 4.65 \% \end{gathered}$	$\begin{gathered} 13.98 \pm 0.49 \pm 0.34 \\ (13.64-14.33) 3.50 \% \\ \hline \end{gathered}$	$\begin{gathered} 13.74 \pm 0.14 \pm 0.10 \\ (13.63-13.84) 1.08 \% \end{gathered}$	LV
H-MB	$\begin{gathered} 49.71 \pm 3.41 \pm 1.97 \\ (46.22-53.04) 6.86 \% \\ \hline \end{gathered}$	$\begin{gathered} 52.32 \pm 3.49 \pm 1.61 \\ (47.64-57.24) 6.71 \% \\ \hline \end{gathered}$	$\begin{gathered} 53.39 \pm 1.88 \pm 1.33 \\ (52.06-54.72) 3.52 \% \\ \hline \end{gathered}$	$\begin{gathered} 51.63 \pm 2.00 \pm 1.41 \\ (50.21-53.04) 3.87 \% \\ \hline \end{gathered}$	LV
ABW	$\begin{gathered} 10.34 \pm 0.24 \pm 0.14 \\ (10.07-10.56) 2.36 \% \\ \hline \end{gathered}$	$\begin{gathered} 9.84 \pm 1.01 \pm 0.32 \\ (8.00-10.86) 10.31 \% \\ \hline \end{gathered}$	$\begin{gathered} 10.12 \pm 0.16 \pm 0.11 \\ (10.00-10.24) 1.64 \% \end{gathered}$	$\begin{gathered} 10.68 \pm 0.42 \pm 0.30 \\ (10.38-10.98) 3.98 \% \\ \hline \end{gathered}$	MV
Tail length	$\begin{gathered} 52.22 \pm 0.83 \pm 0.48 \\ (51.45-53.11) 1.60 \% \end{gathered}$	$\begin{gathered} 45.46 \pm 15.08 \pm 4.77 \\ (34.47-60.14) 33.06 \% \end{gathered}$	$51.64 \pm 3.94 \pm 2.78$ $(48.86-54.43) 7.63 \%$	$\begin{gathered} 51.33 \pm 0.49 \pm 0.34 \\ (50.98-51.67) 0.96 \% \end{gathered}$	HV
c	$\begin{gathered} 7.65 \pm 0.42 \pm 0.24 \\ (7.16-7.09) 5.49 \% \end{gathered}$	$\begin{gathered} 8.54 \pm 1.81 \pm 0.57 \\ (6.05-11.19) 21.27 \% \\ \hline \end{gathered}$	$\begin{gathered} 8.32 \pm 0.86 \pm 0.61 \\ (7.71-8.93) 10.37 \% \\ \hline \end{gathered}$	$\begin{gathered} 8.13 \pm 0.47 \pm 0.33 \\ (7.79-8.47) 5.89 \% \\ \hline \end{gathered}$	HV
c'	$\begin{gathered} 5.05 \pm 0.22 \pm 0.12 \\ (4.91-5.30) 4.38 \% \\ \hline \end{gathered}$	$\begin{gathered} 4.95 \pm 1.10 \pm 0.34 \\ (3.38-7.02) 21.27 \% \\ \hline \end{gathered}$	$\begin{gathered} 5.10 \pm 0.26 \pm 0.19 \\ (4.91-5.29) 5.26 \% \\ \hline \end{gathered}$	$\begin{gathered} 5.79 \pm 1.14 \pm 0.81 \\ (4.91-6.54) 20.05 \% \end{gathered}$	HV

*LV- least variable ($<8 \%$):MV-moderately variable ($8 \%-12 \%$); HV-highly variable ($>12 \%$), CR $=$ Character ranking.
H-MB-head to median bulb; ABW-anal body width ;c- length/tail length; c'- tail length/anal body width

4.2.8 Morphometrics of Mature Females, Perineal Pattern and Second Stage Juveniles of M. arenaria in Four Crops in Kerala

The morphometric characters of mature females, perineal pattern and second stage juveniles of M. arenaria in four crops in Kerala are given in tables 55 and 56.
A. Mature females:

The range for mean values of body length and width in the four populations were 785.41 to $854.41 \mu \mathrm{~m}$ and 483.88 to $534.78 \mu \mathrm{~m}$, respectively, with the maximum body length and width being in banana and tomato population respectively. The character body length and width showed maximum variation within the population in brinjal which was up to 18.04 per cent for length and 15.05 per cent for width.

The character neck length was highly variable with maximum variation in brinjal population (CV 30.10\%). The maximum mean value for neck length was observed in banana population $(257.01 \mu \mathrm{~m})$ and the least in brinjal population $(203.63 \mu \mathrm{~m})$. Stylet length showed least variation among the populations in their mean values and the maximum mean value was observed in banana population (17.43 $\mu \mathrm{m}$).

The size of the median bulb varied from 39.16 to $41.57 \mu \mathrm{~m}$ and 34.66 to $41.03 \mu \mathrm{~m}$ in length (LMB) and width (WMB) respectively, with maximum length and width in okra population. The ratio 'a' was highly variable character with the maximum mean value for banana population $(1.69 \mu \mathrm{~m})$ and least for okra population $(1.58 \mu \mathrm{~m})$.

B. Perineal pattern:

The characters LVS and AVS were maximum in tomato population (28.81 $\mu \mathrm{m})$ and okra population $(19.82 \mu \mathrm{~m})$ respectively. The coefficient of variability for the four characters of perineal patterns varied from population to population. The characters LVS was rated as moderately variable with maximum variation in
Table 55. Morphometric characters of mature females and perineal pattern of M. arenaria in four crops in Kerala, [Mean \pm SD \pm SE;(range);CV\%], $\mathrm{n}=10$

Character$(\mu \mathrm{m})$	Populations				CR*
	Brinjal	Okra	Tomato	Banana	
Females					
Length	$785.41 \pm 141.68 \pm 44.80$ $(639.15-1019.46) 18.04 \%$	$\begin{gathered} 814.03 \pm 128.66 \pm 74.28 \\ (665.93-898.37) 15.80 \% \\ \hline \end{gathered}$	$\begin{gathered} 845.57 \pm 100.84 \pm 71.30 \\ (534.27-916.88) 11.92 \% \end{gathered}$	$854.41 \pm 103.31 \pm 73.05$ $(781.36-927.46) 12.09 \%$	MV
Width	$483.88 \pm 76.06 \pm 24.05$ $(359.66-600.06) 15.05 \%$	$499.52 \pm 47.87 \pm 27.64$ $(459.93-552.73) 9.58 \%$	$\begin{gathered} 534.78 \pm 75.71 \pm 53.53 \\ (481.24-588.32) 14.15 \% \end{gathered}$	$\begin{gathered} 503.51 \pm 19.07 \pm 13.48 \\ (490.02-516.99) 3.78 \% \end{gathered}$	MV
Neck length	$\begin{gathered} 203.63 \pm 61.30 \pm 19.38 \\ (104.70-302.42) 30.10 \% \end{gathered}$	$\begin{gathered} 236.03 \pm 44.26 \pm 25.55 \\ (191.49-280.01) 18.75 \% \\ \hline \end{gathered}$	$\begin{gathered} 236.90 \pm 40.36 \pm 28.54 \\ (208.35-265.44) 17.03 \% \\ \hline \end{gathered}$	$\begin{gathered} 257.01 \pm 56.42 \pm 39.90 \\ (217.11-296.91) 21.95 \% \\ \hline \end{gathered}$	HV
Stylet length	$\begin{gathered} 17.18 \pm 0.83 \pm 0.26 \\ (16.28-18.57) 4.86 \% \\ \hline \end{gathered}$	$\begin{gathered} 16.15 \pm 0.74 \pm 0.42 \\ (15.53-16.98) 4.59 \% \end{gathered}$	$\begin{gathered} 16.38 \pm 0.64 \pm 0.45 \\ (15.92-16.84) 3.95 \% \end{gathered}$	$\begin{gathered} 17.43 \pm 0.63 \pm 0.44 \\ (16.98-17.88) 3.64 \% \end{gathered}$	LV
LMB	$\begin{gathered} 41.57 \pm 2.86 \pm 0.90 \\ (35.73-45.97) 6.89 \% \end{gathered}$	$\begin{gathered} 41.93 \pm 0.43 \pm 0.25 \\ (41.54-42.40) 1.03 \% \end{gathered}$	$\begin{gathered} 39.16 \pm 1.55 \pm 1.09 \\ (38.06-40.25) 3.96 \% \end{gathered}$	$\begin{gathered} 40.95 \pm 2.43 \pm 1.72 \\ (39.23-42.67) 5.94 \% \end{gathered}$	LV
WMB	$\begin{gathered} 34.66 \pm 4.07 \pm 1.28 \\ (30.197-40.69) 11.74 \% \end{gathered}$	$\begin{gathered} 41.03 \pm 0.74 \pm 0.43 \\ (40.42-41.86) 1.81 \% \end{gathered}$	$\begin{gathered} 38.75 \pm 1.87 \pm 1.32 \\ (37.43-40.08) 4.83 \% \end{gathered}$	$\begin{gathered} 40.40 \pm 1.95 \pm 1.38 \\ (39.02-41.78) 4.83 \% \end{gathered}$	LV
a	$\begin{gathered} 1.67 \pm 0.34 \pm 0.10 \\ (1.13-2.13) 20.49 \% \end{gathered}$	$\begin{gathered} 1.58 \pm 0.11 \pm 0.06 \\ (1.45-1.68) 7.31 \% \end{gathered}$	$\begin{gathered} 1.62 \pm 0.03 \pm 0.02 \\ (1.59-1.64) 2.05 \% \end{gathered}$	$\begin{gathered} 1.69 \pm 0.13 \pm 0.09 \\ (1.60-1.79) 8.00 \% \end{gathered}$	HV
Perineal pattern					
LVS	$\begin{gathered} 27.75 \pm 2.37 \pm 0.68 \\ (23.34-30.27) 8.55 \% \\ \hline \end{gathered}$	$\begin{gathered} 26.91 \pm 0.99 \pm 0.57 \\ (26.29-28.07) 3.71 \% \end{gathered}$	$\begin{gathered} 28.88 \pm 4.72 \pm 3.34 \\ (25.47-32.15) 16.39 \% \\ \hline \end{gathered}$	$\begin{gathered} 25.53 \pm 0.80 \pm 0.57 \\ (24.96-26.10) 3.15 \% \end{gathered}$	MV
AVS	$\begin{gathered} 19.06 \pm 2.02 \pm 0.58 \\ (16.06-22.42) 10.63 \% \end{gathered}$	$19.82 \pm 1.77 \pm 1.02$ $(18.01-21.56) 8.95 \%$	$\begin{gathered} 19.55 \pm 2.26 \pm 1.60 \\ (17.95-21.16) 11.58 \% \end{gathered}$	$\begin{gathered} 19.16 \pm 0.55 \pm 0.39 \\ (18.77-19.56) 2.90 \% \end{gathered}$	LV
ATT	$\begin{gathered} 19.48 \pm 1.38 \pm 0.39 \\ (17.61-22.70) 7.10 \% \end{gathered}$	$19.76 \pm 0.53 \pm 0.30$ $(19.16-20.19) 2.70 \%$	$\begin{gathered} 16.01 \pm 0.24 \pm 0.17 \\ (15.83-16.18) 1.55 \% \end{gathered}$	$\begin{gathered} 18.23 \pm 0.94 \pm 0.66 \\ (17.56-18.90) 5.17 \% \end{gathered}$	LV
IPD	$\begin{gathered} 33.55 \pm 2.75 \pm 0.79 \\ (30.20-39.09) 8.21 \% \\ \hline \end{gathered}$	$\begin{gathered} 30.69 \pm 0.63 \pm 0.36 \\ (30.10-31.37) 2.08 \% \end{gathered}$	$\begin{gathered} 31.82 \pm 1.90 \pm 1.34 \\ (30.47-33.16) 5.98 \% \end{gathered}$	$\begin{gathered} 28.19 \pm 2.47 \pm 1.74 \\ (26.44-29.93) 8.76 \% \end{gathered}$	LV

*LV- least variable ($<12 \%$):MV-moderately variable (12-20\%); HV-highly variable ($>20 \%$), CR $=$ Character ranking. LMB- length of median bulb, WMB- width of median bulb, a- length/width ratio, LVS-length of vulval slit, AVS-anus to vulval slit, ATT-anus to tail terminus, IPDinterphasmidial distance.
Table 56.Morphometric characters of second stage juveniles of M. arenaria in three districts in Kerala, [Mean \pm SD \pm SE; (range); $\mathrm{CV} \%$], $\mathrm{n}=10$

Character $(\mu \mathrm{m})$	Brinjal	Okra	Populations	CR			
							Banana
	$420.37 \pm 12.81 \pm 4.30$	$408.75 \pm 12.95 \pm 7.47$	$401.84 \pm 30.68 \pm 21.70$	$414.77 \pm 19.27 \pm 13.62$	LV		
	$(400.41-440.29) 3.28 \%$	$(395.49-42.36) 3.16 \%$	$(380.14-423.54) 7.63 \%$	$(401.14-428.39) 4.64 \%$			
Stylet	$13.81 \pm 0.61 \pm 0.27$	$14.06 \pm 0.26 \pm 0.15$	$13.78 \pm 0.06 \pm 0.04$	$13.93 \pm 0.01 \pm 0.01$	LV		
length	$(12.76-14.78) 3.28 \%$	$(13.76-14.23) 1.87 \%$	$(13.74-13.83) 0.49 \%$	$(13.92-13.94) 0.10 \%$			
H-MB	$48.93 \pm 2.78 \pm 1.32$	$48.87 \pm 3.13 \pm 1.81$	$48.63 \pm 2.36 \pm 1.67$	$49.84 \pm 1.57 \pm 1.11$	LV		
	$(45.25-53.11) 7.21 \%$	$(45.32-51.30) 6.42 \%$	$(46.96-50.31) 4.86 \%$	$(48.73-50.95) 3.15 \%$			
ABW	$10.21 \pm 2.11 \pm 0.53$	$11.04 \pm 0.37 \pm 0.21$	$10.71 \pm 0.39 \pm 0.27$	$11.28 \pm 0.75 \pm 0.53$	MV		
	$(8.37-11.31) 10.11 \%$	$(10.80-11.48) 3.42 \%$	$(10.43-10.99) 3.65 \%$	$(10.74-11.81) 6.72 \%$			
Tail length	$49.08 \pm 6.72 \pm 1.21$	$49.55 \pm 1.85 \pm 1.07$	$47.63 \pm 1.80 \pm 1.27$	$48.54 \pm 1.88 \pm 1.33$	MV		
	$(40.11-57.00) 10.98 \%$	$(48.01-51.59) 3.75 \%$	$(46.36-48.91) 3.78 \%$	$(47.21-49.88) 3.88 \%$			
c	$8.56 \pm 0.60 \pm 0.31$	$8.03 \pm 0.52 \pm 0.30$	$8.515 \pm 0.203 \pm 0.144$	$8.59 \pm 0.14 \pm 0.10$	HV		
	$(7.66-9.98) 12.35 \%$	$(7.73-8.77) 6.31 \%$	$(8.371-8.658) 2.383 \%$	$(8.49-8.69) 1.65 \%$			
c'	$4.80 \pm 0.50 \pm 0.27$	$5.01 \pm 0.71 \pm 0.41$	$5.220 \pm 1.077 \pm 0.762$	$4.89 \pm 0.93 \pm 0.65$	HV		
	$(3.81-5.20) 10.98 \%$	$(4.44-5.81) 14.32 \%$	$(4.458-5.981) 20.633 \%$	$(4.23-5.55) 19.02 \%$			

*LV- least variable ($<8 \%$):MV-moderately variable ($8 \%-12 \%$); HV-highly variable ($>12 \%$), CR $=$ Character ranking.
H-MB-head to median bulb; ABW-anal body width ;c- length/tail length; c'- tail length/anal body width
tomato population (CV 16.39\%). The character AVS, ATT and IPD were least variable and the maximum mean values being $19.82 \mu \mathrm{~m}$ (okra), $19.76 \mu \mathrm{~m}$ (okra) and $33.55 \mu \mathrm{~m}$ (brinjal) respectively.
C. Second stage juveniles $\left(\mathrm{J}_{2}\right)$:

The average body length of second stage juveniles was 401.84 to 420.37 $\mu \mathrm{m}$, with maximum body length recorded in brinjal population. The body length, stylet length, H-MB were the least variable characters and the maximum mean values being $420.37 \mu \mathrm{~m}, 14.06 \mu \mathrm{~m}$ and $49.84 \mu \mathrm{~m}$ respectively. The maximum stylet length was observed in okra population whereas minimum value was observed in tomato population $(13.78 \mu \mathrm{~m})$. The characters ABW and tail length were moderately variable with maximum variation in brinjal population (CV 10.11 per cent and 10.98 per cent respectively).

Ratio c and c' were highly variable with maximum variation in okra population and tomato population respectively. The maximum mean values for c and c' were $8.59 \mu \mathrm{~m}$ (banana) and $5.22 \mu \mathrm{~m}$ (tomato) respectively.

Discussion

5. DISCUSSION

Accurate identification of Meloidogyne species is essential for efficient and successful management of these nematodes. Morphological and morphometric studies are useful in identification of root-knot nematodes from different crops and locations which in turn help in species specific management. The study focused on the identification of Meloidogyne species primarily based on the morphology of perineal pattern and other morphological characters of females, second stage juveniles and males which infest different crops in different localities in three districts of Kerala. The study also focussed on the inter and intra specific morphological and morphometrical variations of different species in different hosts and districts. This gave an insight on the different species of root knot nematode in brinjal, okra, tomato and banana in Thiruvananthapuram, Idukki and Thrissur districts of Kerala.

Results from sampled areas indicated the presence of M. incognita, M. javanica and M. arenaria, which was not a surprise as they were indicated as the major Meloidigyne species in tropical regions (Taylor and Sasser, 1978; Perry and Moens, 2009) like Kerala where the annual temperature ranges between 18 to $35^{\circ} \mathrm{C}$.

The present study records the report of M. incognita from brinjal, okra, tomato and banana in Dhanuvachapuram, Kattakada and Vellayani of Thiruvananthapuram district, brinjal and tomato in Thanniyam of Thrissur district and tomato (Balagram), okra and tomato (Thovalappady) of Idukki district.
M. javanica was recorded from brinjal in Kannara of Thrissur district and brinjal and banana (Balagram), brinjal, okra, tomato and banana (Pampadumpadumpara), tomato and banana (Thovalappady) of Idukki district.
M. arenaria was recorded from brinjal, okra, tomato and banana (Chazhoor) and okra, tomato and banana (Thalikulam) and brinjal (Thanniyam) of Thrissur district. The study presents the first report of M. arenaria from
banana in Kerala. These results obtained provide an additional information on the host and locality status of Meloidogyne species in Kerala. Among the sampled populations, M. hapla was not identified which shows that M. hapla is not common in Kerala conditions.

Surprisingly, one of the population showed morphological and morphometrical characters similar to M. chitwoodi from okra in Thiruvananthapuram. As this species was not recorded and identified from India earlier, further confirmation through molecular analyses is required which provides additional information to the host status of M. chitwoodi which usually infests several monocots and dicots including potato, tomato and carrot (Santo et al., 1980).

Out of the 36 sampled populations, a single population of male was obtained from tomato in Pampadumpara, which suggests that the extent of parthenogenesis of root knot nematode was found to be very high (97.22\%) in Kerala population which further points the fact of parthenogentic (mitotic) reproduction in M. incognita, M. javanica and M. arenaria (Taylor and Sasser, 1978).
M. incognita dominated the samples presently studied and collected from different crops with 55.55 per cent in brinjal and tomato and 44.44 per cent in okra and banana followed by M. javanica (Figure 1). These results were in agreement with Eisenback et al. (1981) and Khan et al. (2014) where M. incognita was the most prevalent among all the Meloidogyne species. The above results also corroborates with the findings of Sahu et al., 2015, who reported M. incognita and M. javanica as the predominant nematode species associated with vegetables.

In Thrivananthapuram district, M. incognita was present while in Idukki, M. javanica and M. incognita were present. Among the Meloidogyne species recorded in crops of agricultural importance in tropical and subtropical regions, M. incognita and M. javanica were considered as widespread (Sasser, 1979). The present findings further confirm the contention. In Thrissur district, M. arenaria
and M. javanica were found to be the species infesting the crops. The above results further confirmed that the prevalence of different Meloidogyne species varied according to locality (Estahni, 2009), district and crop (Sao et al., 2008: Gautam et al., 2014; Sahu et al., 2015)

The study indicated M. incognita as the major species of root knot nematode in Thiruvananthapuram district (91.66\%) with highest percentage of occurrence in brinjal and tomato (27.77). In Idukki district, the major species of root knot nematode was M. javanica (66.66\%) with highest percentage of occurrence in brinjal and banana (33.33). In Thrissur district, M. arenaria was found to be the major species (66.66%) with highest percentage of occurrence in okra (37.5) (Figure 2). The three districts, Thiruvananthapuram, Idukki and Thrissur fall in different agroclimatic regions i.e., Southern low land, Southern high land and Central mid land respectively. The obtained results were in accordance with those reported by Khan et al. (2014) where in the species varied in different agroclimatic regions of India.

The study examined the morphological and morphometrical variations of M. incognita, M. javanica and M. arenaria from four crops in three districts in Kerala which provides additional information to the works by Sahoo and Ganguly (2000) and Kaur and Attri (2013a) who studied the morphological and morphometrical variations of M. javanica and M. incognita in India.

Intraspecific morphological variations were observed within the three species with respect to shape of females, length and position of neck, perineal pattern morphology, tail characters including rectum dilation. The variations in morphological characters among the individuals may be geographical, ecophenotypic or host induced as reported by Ahmed and Jairajpuri (1981).

On comparing the size of mature females among the vegetable crops, it was observed that the body size of females of M. incognita, M. javanica and M. arenaria was higher in tomato plants. Similar results were obtained by Davide (1979) where adult females were bigger and broader in tomato plants. These

Figure 1. Occurrence of different Meloidogyne spp. in four crops in Kerala

Figure 2. Occurrence of different Meloidogyne spp. from three districts of Kerala
results can be explained by the findings of Davide (1980), Pant et al. (1983), Powers et al. (1991) where the size of mature females varied with the degree of susceptibility of crops to Meloidogyne species. Davide (1980) reported that the nematodes in more susceptible crops were relatively bigger in size than the less susceptible crops. Hence, it can be concluded that among the vegetable crops (brinjal, okra and tomato), tomato is highly susceptible to root knot nematodes.

Intraspecific variations in morphometric characters of mature females and perineal pattern of M. incognita in three districts of Kerala showed that the characters length, width, neck length, LMB, WMB and ATT were found to be moderately variable and the other characters were least variable. Interpopulation comparison of morphometric characters of second stage juveniles indicated that Thrissur population to be the smallest of all populations. All other populations shared almost similar mean values for body length. The characters length, stylet length, $H-M B, A B W$ and tail length were found to be least variable whereas ratio c and c ' were moderately variable. Based on the CV values, the characters length, width, neck length, stylet length, LMB, WMB and ratio a of females, LVS, AVS, ATT and IPD of perineal pattern and length, stylet length, H-MB, ABW, tail length, ratio c and c' were recorded as stable characters and found useful in characterizing species.

Comparing the morphometric characters of three populations with type description of M. incognita by Kofoid and White (1919) showed that these populations shared most of the characters except for slightly larger size of females, stylet length and length of juveniles in Kerala populations. The populations studied where in conformity with the morphological characters of the type species. The differences were attributed as the intraspecific variations of M. incognita.

Comparing the characters of present populations with Indian populations of M. incognita (Kaur and Attri, 2013a) showed that the Kerala populations were similar in morphometrics with Indian populations with slight variations including
lower values for width, neck length and stylet length of females and higher values for length of juveniles which can be attributed to intraspecific variations.

Comapring the morphological characters of mature female and perineal pattern with four different host plants in Kerala, it was found that mean value for body length, width, neck length, stylet length, LMB, WMB, LVS, AVS and ATT were maximum in banana population. In the present study, the gross range of female stylet was between 13.64 to $17.90 \mu \mathrm{~m}$ with mean value of $16.30 \mu \mathrm{~m}$ which was exceptionally longer than earlier reported populations (Jepson, 1983; Chitwood, 1949; Hunt and Handoo, 2009). The variation can be attributed to reports by Jepson (1983) that the stylet structure is adapted to the feeding habit of nematode which usually varies with the host plant.

Interpopulation comparison of second stage juveniles of M. incognita with four different host plants showed that the maximum mean values for length, stylet length, ABW , tail length and ratio c were maximum for banana population. On comparing the CV values, it was found that the characters length, stylet length, H $\mathrm{MB}, \mathrm{ABW}$, tail length and ratio c ' were stable characters in the population and ratio c was not stable exhibiting high variability.

Interpopulation comparison of morphometric characters of mature females, perineal pattern and second stage juveniles of M. javanica in two districts in Kerala showed that all the characters of females, perineal pattern and second stage juveniles were stable characters. In second stage juveniles, Thrissur population was the smallest.

Comparing the morphometric characters of the present populations with the type description of M. javanica by Chitwood (1949) and redescription by Whitehead (1968), the morphometrics of the characters were almost similar but with slightly larger values for the characters body length and width of females and smaller values for stylet length of females and body length of juveniles. Comparing the morphometric characters with the morphometrics of Indian populations of M. javanica (Sahoo and Ganguly, 2000), these populations shared
most of the characters except for slightly larger body length of females and juveniles. The present populations were also in similarity with the morphological characters of the species outlined by Jepson (1987) and, Sahoo and Ganguly (2000).

After comparing the mature females and perineal pattern of M. arenaria from four host plants in Kerala, the characters such as length, width and LVS were found to be moderately variable and the other characters were least variable except neck length which was highly variable. Interpopulation comparison of morphometric characters of second stage juveniles indicated that tomato population to be the smallest of all populations. The characters length, stylet length and $\mathrm{H}-\mathrm{MB}$ were found to be least variable whereas ABW and tail length were moderately variable and ratio c and c ' were highly variable.

Based on the CV values, the characters viz., length, width, neck length, stylet length, LMB and WMB of females, LVS, AVS, ATT and IPD of perineal pattern and length, stylet length, $\mathrm{H}-\mathrm{MB}, \mathrm{ABW}$ and tail length were recorded as stable characters and found useful in characterizing species.

Comparing the morphometric characters of the present populations with the type description of M. arenaria by Chitwood (1949) and Cliff and Hirschmann (1985), the morphometrics of the characters studied were almost similar but with slightly larger values for the characters like body length and stylet length of females and smaller values for body length of juveniles. Comparing the morphometric characters with the morphometrics of populations of M. arenaria (Garcia and Sanchez-Puerta, 2012), these populations shared most of the characters except for slightly smaller body length of females and juveniles.

Morphological and morphometric variations of Meloidogyne species infecting brinjal, okra, tomato and banana from Thiruvananthapuram, Idukki and Thrissur districts has been documented, which in turn helps in use of resistant varieties and species specific management practices to control these nematodes.

Summary

6. SUMMARY

Root knot nematodes are economically important polyphagous group of highly adapted plant parasites which are distributed worldwide and can parasitize nearly every species of cultivated plants. The attacks by these nematodes also pay way to infection by secondary pathogens which further increase the severity of damage. The lack of awareness about the existence of these nematodes due to its microscopic nature and lack of characteristic symptom often make them as neglected one, but are of full potential to cause serious threat to crop production. Morphological and morphometric studies are useful in identification of root-knot nematodes from different crops and locations which in turn help in species specific management. Varietal resistance is reported in some crops and identification of nematode species in an area will help in selection of plant varieties resistant to that species for cultivation and thus, effective management practices can be developed by precise identification of nematode species and variation within single nematode species. In Kerala, vegetables and banana are the most important crops under cultivation and are also more prone to nematode infections. In this ground, the study entitled "Morphological variations of root knot nematode in vegetables and banana" was undertaken at Department of Agricultural Entomology, College of Agriculture, Vellayani during 2015-17.

The main objective of the present work was to study the morphological and morphometric variations of root-knot nematode in brinjal, okra, tomato and banana in Kerala.

The salient findings of the present study are as follows

Four species of root knot nematode, M. incognita (Kofoid \& White, 1919) Chitwood, 1949, M. javanica (Treub, 1885) Chitwood, 1949, M. arenaria (Neal, 1889) Chitwood, 1949 and M. chitwoodi Golden, O'Bannon, Santo and Finley, 1980 were identified from brinjal, okra, tomato and banana in Thiruvananthapuram, Idukki and Thrissur districts of Kerala.

The study presents the report of M. incognita from brinjal, okra, tomato and banana in Dhanuvachapuram, Kattakada and Vellayani of Thiruvananthapuram district, brinjal and tomato in Thanniyam of Thrissur district and tomato (Balagram), okra and tomato (Thovalappady) of Idukki district.
M. javanica was identified from brinjal in Kannara of Thrissur district and brinjal and banana (Balagram), brinjal, okra, tomato and banana (Pampadumpadumpara), tomato and banana (Thovalappady) of Idukki district.
M. arenaria was identified from brinjal, okra, tomato and banana (Chazhoor) and okra, tomato and banana (Thalikulam) and brinjal (Thanniyam) of Thrissur district. The study presents the first report of M. arenaria from banana in Kerala. These results obtained provide an additional information on the host and locality status of Meloidogyne species in Kerala. Among the sampled populations, M. hapla was not identified which shows that M. hapla is not common in Kerala conditions.

The study recorded the first report of species having morphological and morphometrical characters similar to M. chitwoodi from okra in Thiruvananthapuram which opens way to molecular studies in future.

Among the root knot nematodes, M. incognita, M. javanica and M. arenaria were the major species infesting vegetables and banana in Kerala among which M. incognita was found to be the major species in brinjal (55.55\%), okra (44.44%), tomato (55.55%) and banana (44.44%) in Thiruvananthapuram, Idukki and Thrissur districts.

The study indicated M. incognita as the major species of root knot nematode in Thiruvananthapuram district (91.66\%) with highest percentage of occurrence in brinjal and tomato (27.77). In Idukki district, the major species of root knot nematode was M. javanica (66.66\%) with highest percentage of occurrence from brinjal and banana (33.33). In Thrissur district, M. arenaria was
found to be the major species (66.66%) with highest percentage of occurrence in okra (37.5).

Intraspecific morphological variations were observed within the three species with respect to shape of females, length and position of neck, perineal pattern morphology, tail characters including rectum dilation. The shape of females varied from pear shaped to saccate shaped to kidney shaped with short to long neck directed ventrally or at an angle to the body of nematode. The perineal pattern varied with respect to presence or absence of weak lateral lines in M. incognita populations whereas in M. arenaria populations, the perineal pattern varied with respect to presence of lateral line in one side of the pattern. The tail length, position of anus and rectum dilation was highly variable within the populations, with majority of the populations showing dilated rectum.

Interpopulation comparison of mature females of M. incognita showed that length, width, neck length, LMB (length of median bulb) and WMB (width of median bulb) were moderately variable (CV 3.928\% to 18.419\%). In perineal pattern, LVS (length of vulval slit), AVS (anus to vulval slit) and IPD (interphasmidial distance) were least variable (CV 2.092\% to 7.359\%). In second stage juveniles, the character ratio c was highly variable (CV 4.423\% to 12.518%).

Interpopulation comparison of mature females and perineal pattern of M. javanica from surveyed districts showed that the characters neck length, ATT and IPD were moderately variable (CV 9.630\% to 18.062%). In second stage juveniles, all the characters were least variable (CV 1.602\% to 7.612\%) except ratio c' which was moderately variable. On comparing the interpopulation variations of M. javanica in the four crops, the character neck length of females and ATT of perineal pattern (CV 8.028\% to 31.701\%) and the characters tail length, ratio c and c' (CV 0.960\% to 21.279%) of second stage juveniles were highly variable.

Interpopulation comparison of mature females and perineal pattern of M. arenaria in four crops showed that the characters neck length and ratio a (length/width) were highly variable (CV 2.050% to 30.107%). Similarly in second stage juveniles, the characters c and c' were highly variable (CV 1.653% to 20.633%) in the population.

Intraspecific morphological and morphometric variations of M. incognita, M. javanica, M. arenaria were recorded from four host plants in three districts in Kerala. M. arenaria and M. javanica showed high variability between the populations compared to M. incognita in Kerala.

References

7. REFERENCES

Ahmed, N. and Jairajpuri, M. S. 1981. Statistical analysis of variability in a population of Parahadronchus shakili (Nematoda). Nematol. Medit. 9: 163-173.

Ali, S. S. and Koshy, P. K. 1982. Occurrence of root-knot nematodes in cardamom plantations of Kerala. Nematol. Medit. 10:107-110.

Anwar, S.A., Gorsi, S., Anwar-ul-Haq, M., and Tahir-ur-Rehman. 1991. Plant parasitic nematodes of some field, vegetable, fruit and ornamental crops. J. Agric. Res. 15(2): 35-39.

Bellafiore, S., Jougla, C., Chapuis, E., Besnard, G., Suong, M., Phong, N. V., DeoWaele, D., Gantet, P., and Xuyen, N. T. 2015. Intraspecific variability of the facultative meiotic parthenogenetic root-knot nematode (Meloidogyne graminicola) from rice fields in Vietnam. C. R. Biol. 338 (7): 471-483.

Carneiro,R. M. D. G., Castagnone-sereno, P., and Dickson, D.W. 1998. Variability among four populations of Meloidogyne javanica from Brazil. Fundamentals Appl. Nematol. 21 (4): 319-326.

Chattopadhyay, S. B. and Sengupta, S. K. 1955. Root knot diseases of jute in West Bengal. Curr. Sci. 24:276-277.

Chitwood, B. G. 1949. Root-knot nematodes I. A revision of the genus Meloidogyne Goeldi, 1887. Proc. Helminthol. Soc. Wash.16:90-104.

Choi-Pheng, Y. and Birchfield, W. 1978.Scanning electron microscopy of perineal patterns of three species of Meloidogyne. J. Nematol. 10(2): 118122.

Christie, J. R. and Perry, V. G. 1951. Removing nematodes from soil. Proc. of the Helminthol. Soc. Wash.19: 106-108.

Cliff, G. M. and Hirschmann, H. 1985. Evaluation of morphological variability in Meloidogyne arenaria . J. Nematol. 17(4):445-459.

Cofcewicz, E. T., Carneiro, R. M. D. G., Randig, O., Chabrier, C., and Que ne herve, P. 2005. Diversity of Meloidogyne spp. on Musa in Martinique, Guadeloupe, and French Guiana. J. Nematol. 37(3):313-322.

Davide, R. G. 1979. Reactions of different crops to infection by Meloidogyne arenaria isolated from fig and the influence of temperature on the development of the nematode. Plant Dis. Rep. 63:207-211.

Davide, R. G. 1980. Influence of different crops on the dimensions of Meloidogyne arenaria isolated from fig. Proc. Helminthol. Soc. Wash. 47(1):80-84.

Daykin, M. E. and Hussey, R. S. 1985. Staining and histopathological techniques in Nematology. In: Sasser, J.N. and Carter, C. C. (eds), An Advanced Treatise on Meloidogyne: Vol II- Methodology. North Carolina State University, Raleigh, USA, pp.39-48.

Devran, Z., Mutlu, N., Ozarslandan, A., and Elekcioglu, I. H. 2009. Identification and genetic diversity of Meloidogyne chitwoodi in potato production areas of turkey. Nematropica. 39(1): 75-83.

Eisenback, J. D. 1982. Morphological comparison of head shape and stylet morphology of second stage juveniles of Meloidogyne species. J. Nematol. 14(3): 339-343.

Eisenback, J. D. and Hirschmann, H. 1979. Morphological comparison of second stage juveniles of six populations of Meloidogyne hapla by SEM. J. Nematol. 11(1): 5-15.

Eisenback, J. D. and Hirschmann, H. 1981. Identification of Meloidogyne species on the basis of head shape and stylet morphology of the male. J. Nematol. 13(4): 513-521.

Eisenback, J. D., Hirschmann,, H.,. Sasser, J. N., and Triantaphyllou, A. C. 1981. A Guide to the Four Most Common Species of Root-knot Nematodes (Meloidogyne species) with A Pictorial Key. North Carolina State University, Raleigh, USA, 48 p.

Esfahani, M. N. 2009. Distribution and identification of root-knot nematode species in tomato fields. Mycopath. 7(1): 45-49.

Esser, R. P., Perry, V. G., and Taylor, A. L. 1976. A diagnostic compendium of the genus Meloidogyne (Nematoda: Heteroderidae). Proc. helminth. Soc. Wash. 43: 138-150.

Garcia, L. E. and Sanchez-Puerta, M. V. 2012. Characterization of a root-knot nematode population of Meloidogyne arenaria from Tupungato (Mendoza, Argentina). J. Nematol. 44(3): 291-301.

Gaur, H. S., Khan, E., and Sehgal, M. 1993. Occurrence of two species of rootknot nematodes infecting rice, wheat and monocot weeds in northern India. Ann. Plant Prot. Sc. 1:141-142.

Gautam, K. S., Sahu. G., Verma, K. B., and Poddar, N. A. 2014. Status of root knot nematode (Meloidogyne species) disease in vegetable crops of some districts of central plain region of Chattisgarh state, India. Afr. J. Microbiol. Res. :8 (16):1663-1671.

Goeldi, E.A. 1887. Report on the Discomfort of Coffee in the Province of Rio de Janeiro. National Press, Rio de Janeiro, 121 p.

Golden, A. M. and Birchfield, W. 1965. Meloidogyne graminicola (Heteroderidae) a new species of root knot nematode from grass. Proc. Helminthol. Soc. Wash. 32: 228-231.

Golden, A. M., O'Bannon, J. H., Santo, G. S., and Finley, A. M. 1980. Description and SEM observations of Meloidogyne chitwoodi n . sp. (Meloidogynidae), a root-knot nematode on potato in the pacific Northwest. J. Nematol. 12(4): 319-327.

Goodey, T. 1963. On the nomenclature of root-gall nematodes. J. Helminthol. 10:21-28.

Handoo, Z. A., Srantar, A. M., Carta, L. K., and Schmitt, D. P. 2005. Morphological and molecular evaluation of a Meloidogyne hapla population damaging coffee (Coffea arabica) in Maui, Hawaii. J. Nematol. 37(2): 136-145.

Hartman, K. M. and Sasser, J. N. 1985. Identification of Meloidogyne Species on the Basis of Differential Host Test and Perineal-Pattern Morphology. North Caroline State University Graphics. pp. 69-77.

Hunt, D. J., and Handoo, Z. A. 2009. Taxonomy, identification and principal species. In: Perry, R. N., Moens, M., and Starr, J. L. (eds), Root-knot Nematodes, Wallingford, UK: CAB International, pp. 55-88.

Jacob, A. and Kurien, J. 1979. Survey of nematodes associated with pepper in Kerala. Agric. Res. J. Kerala. 17:270-271.

Jain, R. V., Mathur, R. V., and Singh, R. V. 2017. Estimation of Losses Due to Plant Parasitic Nematodes on Different Crops in India. Indian J. Nematol. 37(2): 219-220.

Jepson, S. B. 1983. Identification of Meloidogyne species; a comparison of stylets of females. Nematologica. 29:132-143.

Jepson, S. B. 1987. Identification of Root-knot Nematodes Meloidogyne species. CABI Wallingford, UK, 265 p.

Kaur, H. and Attri, R. 2013a. Morphological and morphometrical characterization of Meloidogyne incognita from different host plants in four districts of Punjab, India. J. Nematol. 45(2): 122-127.

Kaur; H. and Attri, R. 2013b. Morphological and morphometrical characterization of Meloidogyne graminicola (Golden \& Brichfied) from rice host plant in the four districts of Punjab. Trends Biosci. 6(5): 608611.

Khan, A. A. and Khan, M. W. 1990. Infestation, distribution pattern and identification of root-knot nematodes associated with vegetables crops in the district of Meerut division in Uttar Pradesh. Indian J. Nematol. 20: 6775.

Khan, M. R., Jain, R. K., Ghule, T.M., and Pal, S. 2014. Root Knot Nematodes in India - A comprehensive monograph. Venus Printers and publishers, NewDelhi, 76p.

Kofoid, C. A. and White, W. A. 1919. A new nematode infection of man. J. Am. Med. Assoc. 72(8): 567-569.

Lall, B. S. and Ansari, M. N. A. 1960. Field studies on the root-knot nematodes (Meloidogyne spp.) Nematoda: Heteroderidae. Sci. Cult. 26:279-281.

Loos, C.A. 1953. Meloidogyne brevicauda n. sp., a cause of root-knot of mature tea in Ceylon. Proc. Helminthol. Soc. Wash. 20:83-91.

Mammen, K.V. 1973. Root gall nematodes as a serious pest of ginger in Kerala. Curr. Sci. 42: 549.

Mammen, K.V. 1974. Meloidogyne javanica (Treub, 1885) Chitwood, 1949 and Hoplolaimus indicus Sher, 1963 associated with sugarcane in Kerala. Agric. Res. J. Kerala. 12: 208.

Mukherjee, T.D. 1960. Chemical control of root knot nematodes parasitic on tea seedlings in North-East India. Trop. Agric. Trin. 43:335-340.

Nadakal, A. M. 1963. Studies on the plant parasitic nematodes of Kerala. I. Occurrence of root-knot nematodes, Meloidogyne spp. (Tylenchoidea: Heteroderidae) on certain plants of economic importance. J. Zool. Soc. 15 (2): 129-133.

Nair, M. R. G. K., Nair, K. K. R., and Visalakshy, A. 1969. Studies on the plant parasitic and soil nematodes of Kerala. In: Abstracts of All India Nematology Symposium; 21-21 August, 1969, IARI, New Delhi, India, pp. 4-5.

Narayana, R., Nisha, M. S., Sheela, M. S., and Umamaheswaran, K. 2012. Record of root-knot nematode Meloidogyne incognita infesting cabbage in Kerala. Indian J. Nematol. 42:197-198.

Neal, J.C. 1889. The root-knot disease of the peach, orange, and other plants in Florida due to the work of Anguillula. Agric. Div. Entomol. Bull. 20:4651.

Nehru, C. R., Thankamony, S., and Jayarathnam, K. 1991. Occurrence of rootknot nematode Meloidogyne incognita as a pest of rubber (Hevea brasiliensis) seedlings. Indian J. Nat. Rubber Res. 4:77-78.

Nisha, M. S., Narayana, R., and Sheela, M. S. 2012. Occurrence of root knot nematode, M. incognita on carrot in Kerala. Indian J. Nematol. 42(2): 194196.

Oliveira, D. S., Oliveira, R. D. L., Freitas, L. G., and Silva, R. V. 2005. Variability of Meloidogyne exigua on Coffee in the Zona da Mata of Minas Gerais State, Brazil. J. Nematol. 37(3):323-327.

Pant, V., Singh, S. P., Hakim, S., and Saxena, S. K. 1983. Development of root knot nematode and morphometrics of the females of the nematode Meloidogyne incognita, as influenced by different Cucurbits. Indian J. Nematol.13: 79-83.

Perry, R. N. and Moens, M. 2009. Plant Nematology. Wallingford, UK: CABI. 447p.

Perry, R., N., Moens, M., and Starr, J. 2009. Meloidogyne species -A diverse group of novel and important plant parasites. In: Perry, R., N. and Moens, M. (eds), Root Knot Nematodes. CAB international. pp. 1-17.

Powers, L. E., Dunn, R. A., and Mcsorley, R. 1991. Size differences among rootknot nematodes on resistant and susceptible Alyce clover genotypes. J. Nematol. 23:243-248.

Raja, A. and Gill, J. S. 1982. Studies on physiological specialisation in some populations of the root-knot nematode Meloidogyne incognita. Indian J. Nematol. 12:345-351.

Rammah, A. 1989. Morphological and taxonomic studies of certain populations of Root-knot nematodes, Meloidogyne arenaria and M. javanica. Dissertaion Abstracts International B Sciences and Engineering. 49(7) : 199-201.

Rammah, A. and Hirschmann, H. 1990. Morphological comparison of three host races of Meloidogyne javanica. J. Nematol. 22(1): 56-58.

Rich, J. R., Brito, J. A., Kaur, R., and Ferrell, J.A. 2008. Weed species as hosts of Meloidogyne. Nematropica. 39:157-185.

Sahoo, N. K. and Ganguly, S. 2000. Morphological characterisation of five Indian populations of root-knot nematode, Meloidogyne javanica (Treub, 1885) Chitwood, 1949. Indian J. Nematol. 30(1): 71-85.

Sahoo, N.K., Ganguly, S., and Eapen, S.J. 2000. Description of Meloidogyne piperi sp.n. (Nematoda: Meloidogynidae) isolated from the roots of Piper nigram in South India. Indian J. Nematol. 30:203-209.

Sahu, G., Gautam, S. K., and Poddar, A. N. 2015. Suitable hosts of root knot nematode attack: an assessment on the basis of morphological size variations and population density under field conditions. Int. J. Phytopathol. 04 (02): 87-92.

Santo, G. S., O'Bannon, J, H., Finley, A. M., and Golden, A. M. 1980. Occurrence of a new root- knot nematode (Meloidogyne sp.) in the Pacific Northwest. Plant Dis. 64:951-952.

Sao, R., Chandra, P., and Poddar, A. N. 2008. Prevalence of root knot nematode (Meloidogyne incognita) infection in vegetable crops in Chhattisgarh. Bio. Nature. 28 : 61-67.

Sasser, J.N. 1979. Economic importance of Meloidogyne in tropical countries. North Carolina State University., Raleigh, USA. pp. 359-374.

Sasser, J.N. 1980. Root-knot nematodes: A global menace to crop production. Plant Dis. 64:36-41.

Sasser, J. N. 1987. A perspective on nematode problems worldwide. In: Sasena, M. C., Sikora, R. A., and Srivastava, (eds), Proceedings of nematode parasitic to cereals and legumes in temperate semi arid regions. Syria, ICARDA, pp.1-12.

Seinhorst, J. W. 1996. Killing nematodes for taxonomic study with hot F.A 4:1. Nematol. 12:178.

Sen, A.C. 1959. Taxonomy of plant parasitic nematodes in global context vis-a vis India. Proceedings of the 46th Indian Science Congress III. p.506.

Sharma, S.B. 1997. Diagnosis of key nematode pests of chickpea and pigeon pea and their management. Proceedings of a Regional Training Course, 25-30 November 1996, ICRISAT, Patancheru, India, pp. 112-126.

Sheela, M. S., Bai, H., Jiji, T., Kuriyan, K. J. 1995. Nematodes associated with ginger rhizosphere and their management in Kerala. Pest Manag. Hortic. Ecosyst. 1:43-48.

Sheela, M. S., Jiji, T., Nisha, M. S., and Rajkumar, J. 2005. A new record of Meloidogyne graminicola on rice, Oryza sativa in Kerala. Indian J. Nematol. 35:218.

Singh, S.P. 1969. A new plant parasitic nematodes (Meloidogyne lucknowica n.sp.) from the root gall of Luffa cylinrica (sponge gourd) in India. Zool. Anz. 182:259-270.

Skantar, A. M., Carta, L. K., Handoo, Z. A. 2008. Molecular and Morphological Characterization of an Unusual Meloidogyne arenaria Population from Traveler's Tree, Ravenala madagascariensis. J. Nematol. 40(3):179-189.

Sledge, E. B. and Golden, A.M. 1964. Hypsoperine graminis (Nematoda: Heteroderidae), a new genus and species of plant parasitic nematode. Proc. Helminthol. Soc. Wash. 31:83-88.

Sohrabi, E., Maafi, Z. T., Panahi, P., and Barroti, S. 2015. First report of northern root-knot nematatode, M. hapla, parasitic on oaks, Quercus brantii and Q. infectoria in Iran. J. Nematol. 47(1): 86-86.

Sukumaran, S., Koshy, P. K., and Sundararaju, P. 1989. Effect of root-knot nematode, Meloidogyne incognita on the growth of turmeric. J. Plant. Crops. 16:293-295.

Talukder, B., Roy, K., Kumar, P. S., and Saha, S. 2017 Comparative Morphometric Variability of Meloidogyne graminicola Golden and

Birchfield Infesting Rice (Oryza sativa L.) in West Bengal, India . Int. J. Curr. Microbiol. App. Sci. 6(7): 2422-2431.

Taylor, A. L. and Sasser, J. N. 1978. Biology, Identification and Control of RootKnot Nematode (Meloidogyne species). North Caroline State University Graphics., North Carolina, 107p.

Taylor, A. L., Sasser, J. N., and Nelson, L. A. 1982. Relationship of Climate and Soil Characteristics to Geographical Distribution of Meloidogyne Species in Agricultural Soils. North Carolina State University Graphics, USA, 65p.

Treub, M. 1885. Research on Sereh-Diseased sugarcane Done at s'Lands Vegetable Garden in Buitenzorg. Batavia publication, Buitenzorg, 39 p.

Whitehead, A.G. 1968. Taxonomy of Meloidogyne (Nematoda: Heteroderidae) with descriptions of four new species. Trans. Zool. Soc. London. 31:263401.

Yang, B. and Eisenback, J. D. 1983. Meloidogyne enterolobii n.sp. (Meloidogynidae), a root knot nematode parasitizing pacara earpod tree in China. J. Nematol. 15(3): 381-391.

Appendix

APPENDIX-I
 COMPOSITION OF STAIN USED

1. Lactophenol-acid fucshin

5 ml of acid fucshin stock solution in 100 ml lactophenol
Preparation of lactophenol solution
Lactic acid -1 part
Phenol -1 part
Glycerine - 2 parts
Distilled water - 1 part
Preparation of acid fucshin stock solution
1 g of acid fucshin is dissolved in 100 ml distilled water

MORPHOLOGICAL VARIATIONS OF ROOT KNOT NEMATODE IN VEGETABLES AND BANANA

by

CHINCHU P. BABU

(2015-11-082)

Abstract of the thesis
 Submitted in partial fulfilment of the requirements for the degree of

MASTER OF SCIENCE IN AGRICULTURE

Faculty of Agriculture
Kerala Agricultural University

DEPARTMENT OF AGRICULTURAL ENTOMOLOGY COLLEGE OF AGRICULTURE
 VELLAYANI, THIRUVANANTHAPURAM-695522
 KERALA, INDIA

Abstract

The study entitled "Morphological variations of root knot nematode in vegetables and banana" was conducted at College of Agriculture, Vellayani during 2015-17 with the objective to study the morphological and morphometric variations of root knot nematode in brinjal, okra, tomato and banana in Kerala. Morphological and morphometrical studies of females, perineal pattern, second stage juveniles and males of root knot nematodes collected from Dhanuvachapuram, Kattakada and Vellayani of Thiruvananthapuram district; Balagram, Pampadumpara and Thovalappady of Idukki district; Chazhoor, Thalikulam and Thaniyam of Thrissur district infecting brinjal, okra, tomato and banana were done and the data was analysed to identify the species. M.incognita (Kofoid \& White, 1919) Chitwood, 1949, M. javanica (Treub, 1885) Chitwood, 1949, M. arenaria (Neal, 1889) Chitwood, 1949 and M. chitwoodi Golden, O'Bannon, Santo \& Finley 1980 were identified from brinjal, okra, tomato and banana in Thiruvananthapuram, Idukki and Thrissur districts of Kerala. The study indicated M. incognita as the major species of root knot nematode in Thiruvananthapuram district (91.66\%) with highest percentage of occurrence in brinjal and tomato (27.77). In Idukki district, the major species of root knot nematode was M. javanica (66.66\%) with highest percentage of occurrence from brinjal and banana (33.33). In Thrissur district, M. arenaria was found to be the major species (66.66%) with highest percentage of occurrence in okra (37.5). M. incognita was found to be the major species in brinjal (55.55\%), okra (44.44%), tomato (55.55%) and banana (44.44%) in Thiruvananthapuram, Idukki and Thrissur districts. The extent of parthenogenesis of root knot nematode was found to be very high (97.22%) in these populations.

Intraspecific morphological variations were observed within M. incognita, M. javanica and M. arenaria with respect to shape of females, length and position of neck, perineal pattern morphology, tail characters including rectum dilation.

Interpopulation comparison of mature females, perineal pattern and second stage juveniles of M. incognita showed that the characters length, width, neck length, stylet length, LMB, WMB and ratio a of females, LVS, AVS, ATT and IPD of perineal pattern and body length, stylet length, $H-M B, A B W$, tail length, ratio c and c' were recorded as stable characters. Interpopulation comparison of mature females, perineal pattern and second stage juveniles of M. javanica showed that all the characters of females, perineal pattern and second stage juveniles were stable characters and in M. arenaria, the characters like body length, width, neck length, stylet length, LMB and WMB of females, LVS, AVS, ATT and IPD of perineal pattern and length, stylet length, H-MB, ABW and tail length were recorded as stable characters and found useful in characterizing species.

Intraspecific morphological and morphometric variations of M. incognita, M. javanica, M. arenaria were recorded from four host plants in three districts in Kerala. M. arenaria and M. javanica showed high variability between the populations compared to M. incognita in Kerala. The study indicated that M. incognita, M. javanica and M. arenaria were the major species infesting vegetables and banana in Kerala. Among the sampled populations, M. hapla was not identified which shows that M. hapla is not common in Kerala conditions. The study recorded the first report of species having morphological and morphometrical characters similar to M. chitwoodi from okra in Thiruvananthapuram which opens way to molecular studies in future.

17メ114

[^0]: *LV- least variable ($<12 \%$):MV-moderately variable ($12 \%-20 \%$); HV-highly variable ($>20 \%$), CR= Character ranking
 LMB-Length of median bulb, WMB-Width of median bulb, a-Length/width ratio

[^1]: *LV- least variable ($<8 \%$):MV-moderately variable ($8 \%-12 \%$); HV-highly variable ($>12 \%$), CR= Character ranking
 H-MB-head to median bulb; ABW-anal body width ;c- length/tail length; c'- tail length/anal body width

[^2]: *LV- least variable ($<12 \%$):MV-moderately variable (12-20\%); HV-highly variable ($>20 \%$), CR= Character ranking. LMB- length of median
 bulb, WMB- width of median bulb, a- length/width ratio, LVS-length of vulval slit, AVS-anus to vulval slit, ATT-anus to tail terminus, IPDinterphasmidial distance.

