INFLUENCE OF WEATHER PARAMETERS ON THE YIELD OF BLACK PEPPER

By

DESSY MABEL

THESIS

Submitted in partial fulfilment of the requirement for the degree

Master of Science (Agricultural Statistics)

Faculty of Agriculture Kerala Agricultural University

Department of Agricultural <u>Statistics</u> COLLEGE OF HORTICULTURE Vellanikkara, Trichur

To my husband

.

.

.

DECLARATION

I hereby declare that this thesis entitled "INFLUENCE OF WEATHER PARAMETERS ON THE YIELD OF BLACK PEPPER" is a bonafide record of research work done by me during the course of research and that the thesis has not been previously formed the basis for the award to me of any degree, diploma, associateship, fellowship or other similar title of any other University or Society.

Vellanikkara, 3-1-1990.

DESSY MABEL

CERTIFICATE

Certified that this thesis, entitled "INFLUENCE OF WEATHER PARAMETERS ON THE YIELD OF BLACK PEPPER" is a record of research work done independently by Smt. DESSY MABEL, under my guidance and supervision and that it has not previously formed the basis for the award of any degree, fellowship or associateship to her.

VELLANIKKARA, 3-1-1990.

V.K.GOPINATHAN UNNITHAN (CHAIRMAN, Advisory Board) ASSOCIATE PROFESSOR OF AGRL. STATISTICS COLLEGE OF HORTICULTURE

ACKNOWLEDGEMENT

With immense pleasure, I express my deepest sense of gratitude and indebtedness to Sri.V.K. Gopinathan Unnithan, Associate Professor of Agricultural Statistics and Chairman of the Advisory Committee for his inspiring guidance and co-operation in the preparation of the thesis.

I place on record my indebtedness to Dr.K.C. George, Professor and Head of the Department of Statistics, College of Veterinary and Animal Sciences for his constant encouragement and help rendered.

I wish to thank Dr.P.B. Pillai, Professor, Agrimeteorology, College of Horticulture, Vellanikkara for his advice during the study period.

Profound thanks are also due to Sri.V. Sukumara Pillai, Professor, Pepper Research Station, Panniyoor, for the supply of necessary data and for his advice and help.

I extend my sincere thanks to the staff and students, Department of Statistics, College of Veterinary and Animal Sciences and College of Horticulture.

I express my sincere thanks to the Dean, College of Veterinary and Animal Sciences and Associate Dean, College Horticulture for providing the necessary facilities. I am grateful to the Kerala Agricultural University financial assistance in the form of fellowship.

Lastly, but never the least, I here record my heartfelt gratitude and high indebtedness to all my beloveds especially my parents and my husband Mr. Cheriyan Joseph, for their constant encouragement, unflagging interest and support in completing the research programme.

DESSY MABEL

$\underline{C} \ \underline{O} \ \underline{N} \ \underline{T} \ \underline{E} \ \underline{N} \ \underline{T} \ \underline{S}$

Page No.

INTRODUCTION	••	1
REVIEW OF LITERATURE	••	6
MATERIALS AND METHODS	••	16
RESULTS AND DISCUSSION	••	24
TABLES	••	82
SUMMARY	••	144
REFERENCES	••	149
APFENDICES	••	153
ABSTRACT	••	155

GLOSSARY OF SYMBOLS

MNT	Minimum temperature
MXT	Maximum temperature
NR · · ·	Number of rainy days
RF	Rainfall
RH	Relative humidity
Ŷ	Trend
z _{mn}	Regression estimate of yield with minimum temperature of fortnights as predictor variables
Z _{MN.1}	Regression estimate of yield with minimum temperature in first group of standard weeks (April to June) as predictor variables
Z _{MN.2}	Regression estimate of yield with minimum temperature in the second group of standard weeks (June to August) as predictor variables
Z _{MX}	Regression estimate of yield with maximum temperature of fortnights as predictor variables
Z _{MX•1}	Regression estimate of yield with maximum temperature in the first group of standard weeks as predictor variables
Z _{MX.2}	Regression estimate of yield with maximum temperature in the second group of standard weeks as predictor variables
Z _{NR}	Regression estimate of yield with number of rainy days of fortnights as predictor variables
Z _{NR.1}	Regression estimate of yield with number of rainy days in the first group of standard weeks as predictor variables
Z _{NR,2}	Regression estimate of yield with number of rainy days in the second group of standard weeks as predictor variables

.

,

.

- Z_{RF} Regression estimate of yield with rainfall of fortnights as predictor variables
- Z_{RF.1} Regression estimate of yield with rainfall in first group of standard weeks as predictor variables
- Z_{RF.2} Regression estimate of yield with rainfall in second group of standard weeks as predictor variables
- Z_{RH} Regression estimate of yield with relative humidity of fortnights as predictor variables
- ^Z_{RH.1} Regression estimate of yield with relative humidity in first group of standard weeks as predictor variables
- ^ZRH.2 Regression estimate of yield with relative humidity in second group of standard weeks as predictor variables

Introduction

.

.

.

.

INTRODUCTION

Though man has no control over climatic factors, adequate knowledge of the influence of these factors on crops helps to derive maximum benefit through planned measures.

Weather is a major factor influencing growth, sustainance and yield of any crop. It control every phase of agricultural activity. A knowledge of the risk due to adverse weather conditions such as drought, flood, frost and environmental conditions conducive to pest and disease incidence, is of vital importance for proper planning of production and distribution of crops.

Forecasting yield of agriculture crops is of prime importance to the nation. It helps to estimate production of the crop well ahead of harvest in a particular season. Such estimates are essential for proper planning of distribution of food and other relief measures in areas with impending crop failure, for determination of the quantity of food to be purchased in the case of expected shortage and aiding with decisions regarding withdrawals and additions to national food resources.

Crop-weather models are practical research tools for the analysis of crop response to weather and climatic variations. A crop-weather model may be defined as simplified representation of a complex relationship between weather or climate on one hand and crop performance such as growth, yield or yield components on the other hand by using established mathematical or statistical techniques.

Although there are numerous studies utilizing the linear, curvilinear and multiple regression techniques, we are still in the dark as regards the exact manner in which various weather elements influence and control crop growth and the resulting yield.

It is very seldom that a single weather factor accounts for all of the variations in the performance of a crop. Hence multiple linear regression analysis is in wide use for crop-weather models. The predictability of such models increases with increase in the number of explanatory variables at the expense of simplicity and hence practical utility. Therefore utmost care has to be taken in developing the forecasting models with a large number of weather elements. 1.1. Pepper and weather

Pepper (<u>Piper nigrum</u> L) is most important of all spices and is popularly known as the king of spices. The pepper plant is a native of Kerala. It originated in the evergreen forests of the Wester Ghats and exhibit several peculiarities morphologically and histologically.

Pepper required a fully tropical climate and rainfall of at least 1500 mm and a humid warm atmosphere. The crop stands a fairly wide range of temperature as the average of the daily maximum temperature may go up to 38°C and the minimum to an average of 16°C with about 10°C as the lowest. As regards altitude, pepper can be grown from sea level up to elevation of 1220 metres. The soil on which the crop is grown are the red loams and sandy loams and largely lateritic in type. It is grown in situations where there is no lack of drainage on the slopes and elevated levels.

Pepper is a major foreign exchange earner for India and India is a major exporting country of pepper. Pepper is produced mainly in India, Indonesia, Malaysia, Brazil and Sri Lanka. These countries account for more than 95% of the world production. Though India has over 50% of

total area under pepper in world, it accounts only less than 30% of the production. The all India estimate of production of black pepper for the year 1987-88 was 49.23 thousand tonnes. The area under the crop was estimated at 158.49 thousand ha in 1987-88 (George, 1989). Kerala state alone accounts for 96% of the area and production of this crop in the country. Thus pepper has a very important position in the economy of the state.

Pepper plant begins to yield a full crop only after the 5th or 6th year. The yield from the vines is exceedingly variable both on account of the varieties that usually comprise the garden and on account of seasonal variations.

This crop is known to be very sensitive to climatic parameters especially the pattern of rainfall. The performance of the crop is highly dependent on the quantity and distribution of rains. This is mainly because of the influence of the moisture regime (both in the soil and atmosphere) on the various stages of the sexual phase of the plant, starting from flower bud differentiation to pollination and berry development.

. 5

So far, no serious attempt has been made to extract information on the different stages at which the weather elements influence the yield of pepper and their extent of influence. Therefore the present study was undertaken with an objective of assessing the influence of weather elements at various periods on the yield of black pepper and developing yield forecasting models based on the weather elements.

Review of Literature

ι

۱

.

REVIEW OF LITERATURE

Literature on crop weather relationship in pepper is scanty and more so is that on yield forecasting models in this crop. Even in the case of perenial crops in general, research on the influence of various weather elements on the performance of the crop and prediction models based on weather factors have not been taken up extensively. The limited literature available are reviewed in this chapter.

2.1. Pepper

The flowering process in the pepper plant initiates by the application of water equivalent to 70 mm of more of rainfall within a period of 3 weeks, following a dry spell (KAU, 1953-54).

Paulose (1973b) observed that in major pepper growing areas of Kerala the annual average rainfall is over 300 cm distributed in 8 to 10 months with day temperature ranging from 28°C to 35°C.

Menon (1981) reported that extension growth of plagio tropes in pepper starts in April-May with the receipt of premonsoon showers and continues upto August-September.

It was also found that 82 to 83 per cent of the total annual growth of the fruiting branches register in June-July, coinciding with the peak period of monsoon. Rainfall was found to be positively correlated with flower bud differentiation process. Histological examinations revealed that flower bud differentiation starts in the shoots in April-May with the receipt of premonsoon showers and reaches a peak in June-July (Nalini, 1983).

Ibrahim <u>et al</u>. (1985) reported that the seasonal variation influences different varieties differently and the high yielding varieties are increasingly susceptible to climatic changes.

Pillay <u>et al</u>. (1988) compared the rainfall pattern and yield of pepper during the two extremely adverse years (1980-81 and 1986-87) to that of a favourable year (1981-82). It was found that during both the adverse years, there was a distinct break in the rainfall during the critical period following flower initiation. The break was experienced at two different times and therefore at different stages of the crop during the two years but in both cases, the pepper yields were low when compared κ to favourable year, the rainfall remained steady without

7

.!

any break and the yield was high. They concluded that a break in the rainfall even for a few days at a stretch during any part of the critical period of reproductive phase of the pepper would affect the yield considerably.

2.2. Cashew

Menon (1987) fitted forecasting models for yield in cashew. Six forecasting models were developed by attributing three different weights to the general square and square root forecasting models. With an effective crop season of six months, four seasons were developed by taking different combinations of these six months period. Thus for each variety of cashew in a particular season, 6 forecasting models were developed, using the generated weather prediction variables. The final crop forecasting models were constructed using the technique of stepwise regression. Correlation of meteorological parameters with yield revealed that sunshine and temperature in November while rainfall in January were the trend setting factors of production.

2.3. Tea

In Malwi, Laycock (1958) observed that there was no correlation between annual rainfall or monthly rainfall

with annual yield of tea. By splitting the year into 3 distinct parts he fitted a multiple regression equation.

Y = .091E + .047M + .06D + 1.79

where

Y - tea yield in 100 kg/ha
E - early rains (November-December)
M - Main rain (January-May)
D - when soil dry (June-December)

Dry season rain had a depressing effect on yield and early rain was found to be twice productive as the main rain.

Sen <u>et al</u>. (1966) correlated tea yield with climate in an unshaded area at Tocklai Research Station. The mean value of rainfall, relative humidity, sunshine hours and temperature were used as a predictor variables. Time variables were added as predictor variables for changes in the growth rate of tea plants. They split the year into four main seasons based on the relative soil moisture availability. Rainfall in the period of January to March and rise in mean temperature during the same time were found to have greatest influence on early crop, which in turn led to an increase in main crop. April to June

rainfall was found to depress the late crop while during October-December it was beneficial.

An emperical expression for the tea yield was proposed by Devanathan (1975) which relates vegetative growth to the product of rainfall and bright sunshine hours over a specified period. The prediction equation was

,	Y = 0.255 RS87 r = .97
where	Y - the expected yield
,	R - Rainfall in the specified period
	S - Sunshine hours in the period

Mustaffi and Chaudhari (1981) attempted to predict tea crop yield in Danguajhar tea estate, Jalpaigari, West Bengal on the basis of data on monthly green tea leaves production, monthly rainfall and penman's evaporation records. This involved in expressing the crop production process as a function of the past values of monthly tea crop production and also of both past and current values of the meteorological parameters. Ivakhnanko's Multilayer groups Method of Data Handling (GMDH) was used to estimate production model. The process can be described by $\emptyset = f(x_1, x_2 \dots x_n)$ and it involves the construction of several layers of partial descriptions. Using two input variables at a time 1st layer can be represented by $Y_i = f(x_j, x_k)$ for $j = k = 1, \ldots, n$ $j \neq k$ and i = 1, 2 \ldots m where m = (n). Scand layer can be represented $Z_{i'} = g(y_{j'}, y_{k'})$ for $j' = k' = 1, \ldots, m$ $(j' \neq k')$ and i' = 1, 2 p where $p = \binom{m}{2}$ m and p are the number of pairwise combination of first and second layers respectively. The first step concerns the selection of input variables on the basis of strong correlation.

2.4. Coconut

Patel and Anandan (1936) investigated the influence of rainfall on yield of coconut and reported that the crop yield in a particular year is influenced by January to April rains of the two years previous to the year of harvest together with the rains in January-April of the year of harvest.

Balasubramanian (1956) reported that the yield of coconut was influenced by rainfall of January at North Kanara district, of February at Kasargod and of February and March at Pilicod and stated that the differential influence was due to the effect of soil type.

Abeywardene (1968) termed the rainfall during the critical period of crop development as effective rainfall. He developed a yield forecasting model from rainfall at critical periods of the coconut which extends over a period of three years. The model was given by

 $Y = 8.98 + 0.02 X_{1} - 0.6 X_{3} - 0.6 X_{4} + 0.13 X_{5} + 0.84 X_{6}$ + 0.027 X₇ + 0.02 X₈ + 0.03 X₉ + 0.023 X₁₀ - 0.013 X₁₁ + 0.048 X₁₂ R² = .873

where

Y - the estimated yield of coconut X_1 - May-August rainfall (two years prior) X_2 - January-April previous year X_3 - May-August previous year X_4 - September-December previous year X_5 - September-December to year prior X_6 - January-May of harvest year X_7 - Product of X_1 and X_4 X_8 - Product of X_2 and X_4 X_9 - Product of X_2 and X_3 X_{10} - Product of X_3 and X_5 X_{11} - Product of X_5 and X_6 X_{12} - Previous years rainfall with an effective monthly maximum of 12.5 cm of rainfall

.) 12

Rao (1984) estimated the relationship between annual coconut yields and annual rainfall using 20 years of data from Pilicode region. He concluded that both high rainfall during the month of June, July and August as well as absence of pre and post monsoon showers adversely affected the subsequent years coconut yield.

Nair (1985) reported the influence of pre and post monsoon showers on the coconut yield of subsequent years. He developed a number of forecasting models for coconut yield using step-wise regression. The model for annual coconut yield estimated from month-wise climatic factors was

 $Y = -.0518 X_1 + .1177 X_2 - .079 X_3 - .0621 X_4 + .1159 X_5$ -.388 $X_6 - .189 X_7 + 20.68 R^2 = .853$

where

Y - the expected yield of coconut X_1 - Relative humidity in September X_2 - Evaporation in July X_3 - Range in soil temperature (15 cm) in April X_4 - Range in soil temperature (15 cm) in December X_5 - Sunshine hours in May X_6 - Sunshine hours in December X_7 - Pre-yield He also developed a model using the climatic factors in 12 seasons prior to harvest. (Each year is divided into four seasons Season I - December, January and February. Season II - March, April and May Season III - June, July and August Season IV - September, October and November). The second stage model obtained was

 $\dot{Y} = .5972$ RHAN +.4867 SSH -.6643 $R^2 = .914$

Y - the square root of the estimated annual yield RHAN = $-.1031 X_2 -.1477 X_4 -.0389 X_8 +.0611 X_9 -.078 X_{11}$ +24.22

X is the relative humidity in the season, i + 3 seasons
prior to the harvest year

SHAN = .3263 X_2 +.5076 X_{12} -.754 X_9 -.229 X_6 -.2521 X_7 +.2645 X_{10} +.2415 X_8 -.1946 X_4 +.2279 X_1 +.6713

X is the sunshine hours in the season i + 3 seasons
prior to the year of harvest.

Swe (1985) estimated yield forecasting models for coconut from weather parameters of quarterly as well as half yearly periods of the effective crop season which extend from the month just before harvest to 36 months

before harvest. He used step-wise regression to estimate the final model with generated weather variables as predictor variables.

2.5. 011 palm

Devuyst (1948) reported positive correlation between annual yield and the sum of monthly rainfall upto 300 mm during the consecutive 12 months as well as 33 months before harvest. Hemptinne and Ferwerda (1961) reported negative correlation of bunch yield with precipitation during the month which is 31 months prior to harvest and possitive correlation with that during the month which is 12 months prior to harvest in northern region in West Africa and a quadratic relationship with precipitation of 33 months earlier to harvest in the southern region.

Sparnadi <u>et al</u>. (1967) observed positive correlation between sunshine hour per annum and bunch yield.

Robertson and Foong (1976) observed that solar radiation was least influential on the yield of oil palm.

Materials and Methods

MATERIALS AND METHODS

3.1. Materials

Materials for this investigation consisted of annual yield data for 29 varieties of pepper for the period from 1963-64 to 1979-80 taken from the field records of The Pepper Research Station, Kerala Agricultural University, Panniyoor along with daily weather data on maximum temperature, minimum temperature, relative humidity, rainfall and number of rainy days for the same period recorded at the same station. The yield was recorded in Kg and were averages of five vines for every variety.

Weather data during 1976 and 1977 were missing in the field records and hence the corresponding yield data were also omitted for the analysis. Thus data on yield and weather for 15 years were utilised for this investigation.

The Pepper Research Station, Panniyoor is situated in Cannanore District of Kerala State, at a latitude of 12° 05' N and longitude of 75° 23' E.

The daily observations on weather elements were converted to weekly data according to standard weeks

(Appendix I). In the case of rainfall and number of rainy days, weekly totals were considered, while for all other parameters weekly averages were taken.

The weekly weather data were converted to that of fortnight by averaging the weekly weather data of two consicutive weeks for all weather parameters except for rainfall and number of rainy days. For these two weather parameters, weekly data of two consicutive weeks were added.

The data were entered into the computer system (HCL - work horse) available at the College of Horticulture, Kerala Agricultural University, Vellanikkara, Kerala and were verified.

3.2. Methods

In the life span of a crop it is noticeable that weather variables have profound influence on its yield and affects it differently at different stages of development. The impact depends on both the magnitude and distribution of weather variables over the crop season.

These conditions necessiate the division of the crop season into effective and non effective crop seasons.

An effective crop season is defined as the length of the time interval during which the weather variables are considered to have significant influence on the crop yield.

In pepper the period from flower initiation to early berry development was reported to be the critical period which extends over 110-120 days (Pillay <u>et al</u>., 1988). Menon (1981) and Nalini (1983) reported that extension growth of plagiotropes starts in April-May with the receipt of premonsoon showers and continue upto August-September. Flowering was found to be initiated by the application of water equivalent of 70 mm or more within a period of three weeks following a dry spell (KAU, 1954).

Thus the critical period in the reproductive phase of the plant was identified as 18 weeks which starts from 15th standard week and ends in the 32nd standard week. Weekly as well as fortnightly data were used for the analysis.

3.2.1. Coefficients of correlation

Coefficient of correlation is a measure of intensity or degree of linear relationships between two variables.

 $\cdot 13$

In order to study the relationship between the weather parameters, at different lag periods and the yield of pepper, simple correlations were worked out between each of the five weather variables of every standard week and fortnight with annual yield of all the 29 varieties of pepper.

3.2.2. Correlogram

With a view to study the hidden pattern of relationship between the yield and weekly weather variables in the critical period, correlograms were drawn for, five selected common varieties and all the five weather parameters.

The yield forecasting models for the 29 varieties were estimated in two stages.

3.2.3. First stage models

Each weather parameter for a standard week or a fortnight was considered as a variable in the respective model. Consequently a very large number of explanatory variables had to be considered. Therefore these variables were grouped into ten in the case of weekly data and five in the case of fortnightly data.

. 19

For the weekly data the grouping was done as fallows. Observation on each weather parameter from 15th standard week to 23rd standard week (April 9 to June 10) were considered as one group. Thus there were five sets of variables belonging the first group of standard weeks. Similarly five sets of variables were constituted by the five weather parameters belonging to the second group of standard weeks ie. from 24th standard week to 32nd standard week. Thus there were 10 groups of variables when weekly data were considered.

In the case of fortnightly data each weather parameter for the nine fortnights of the critical period was considered as one set of variables. Thus there were five sets of weather variables for the fortnightly data.

Multiple regression of the annual yield of pepper on the weather elements in each set of variables was estimated for all the 29 varieties under consideration both for the weekly as well as fortnightly weather data.

The first stage models from weekly data were of the form

$$z_{ij} = b_{ij0} + \sum_{k=k}^{k_{j2}} c_{ik} x_{ik} + e_{ij}$$
 (1)

 $i = 1, 2, \dots, 5$ j = 1, 2 $k_{11} = 15$ $k_{12} = 23$ $k_{21} = 24$ $k_{22} = 32$

where

Z_j is the estimate of the yield using the ith weather variable in the jth group of standard weeks;

The first stage models from fortnightly weather data were of the form

$$Z_{i} = C_{o} + \sum_{K=8}^{16} g_{ik} X_{ik} + e_{i}$$
 (2)

C_o - the intercept

g_{ik} - the regression coefficient of Z_i on X_{ik}

 x_{ik} - the value of ith weather variable in the kth fortnight

e, - the error term

Second stage models

The final yield forecasting model for each variety, both from the weekly as well as fortnightly data were obtained by regressing annual yield on the estimates of yield from different first stage models and the trend variable. Step wise regression was adopted to arrive at this final model.

The second stage model from weekly data is of the form

$$Y = b_0 + \sum_{i=1}^{5} \sum_{j=1}^{2} b_{ij} z_{ij} + h_0 T + e$$
 (3)

where

Y is the expected yield,

- b_o intercept b_{ij} - regression coefficient of Y on Z_{ij}, Z_{ij} - the estimate of the yield using the ith weather parameter belonging to the jth group of standard weeks,
- h_{o} regression coefficient of Y on T,

T - the trend value and

e - the error term.

The form of the second stage model from the fortnightly weather data is

$$Y = p_0 + \sum_{i=1}^{5} p_i Z_i + e$$
 (4)

where

.

Y is the expected yield,

p_o - the intercept,

 p_i - the regression coefficient of Y on Z_i ,

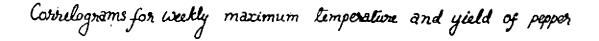
- Z_i the estimate of the yield using the ith weather parameter at the first stage and
- e the error term.

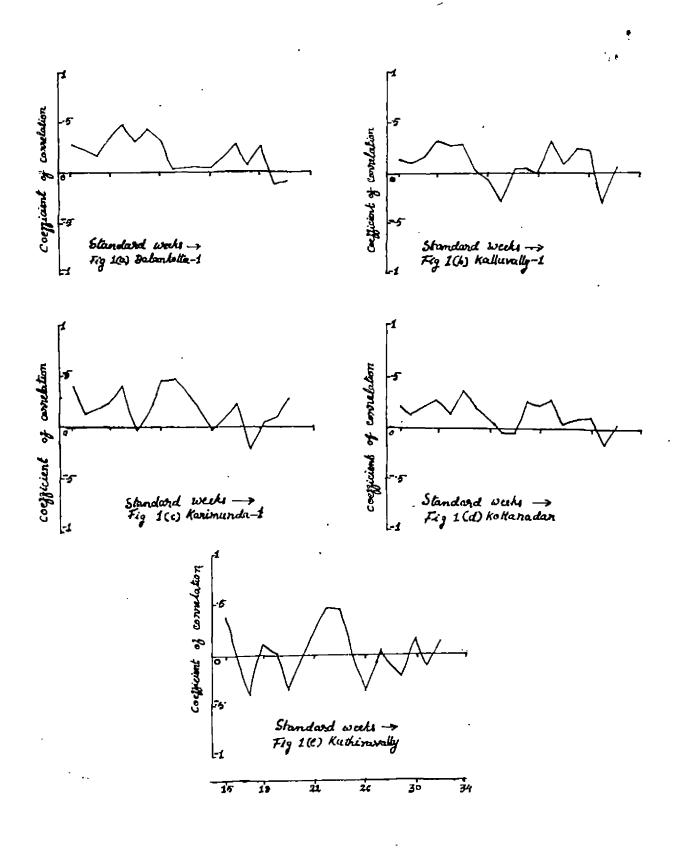
Results and Discussion

RESULTS AND DISCUSSION

The coefficients of correlation between the five weather parameters of the critical period (weekly and fortnightly) and annual yield of 29 varieties of pepper were worked out and are presented in Tables 1 to 15.

No regular pattern of the relationship of the annual yield with various weather elements at different lag weeks or lag fortnights was observed among the varieties considered. However correlograms for the annual yield and the five weather parameters of critical standard weeks were drawn for five common varieties and are shown in Fig. 1(a) to 5(e).


4.1. Correlogram

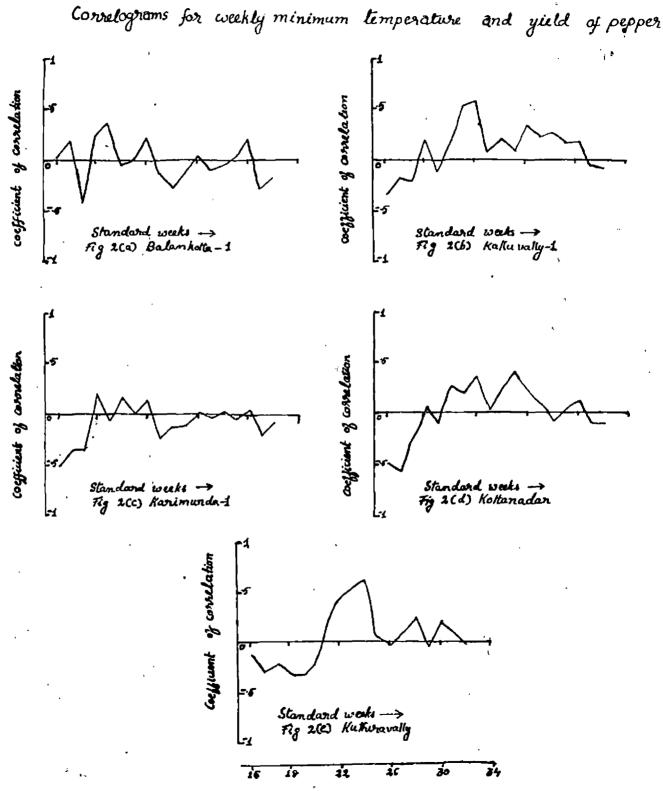

4.1.1. Maximum temperature

The correlogram of maximum temperature with yield of five selected varieties of pepper are presented in Fig. 1(a) to 1(e). It may be observed that the relationship of maximum temperature with yield has similar trend for Balamkotta I, Kalluvally and Kottanadan while that of Karimunda I and Kuthiravally have entirely opposite trend from 20th week onwards. This indicates substantial interaction of the genotypes with environment.

24

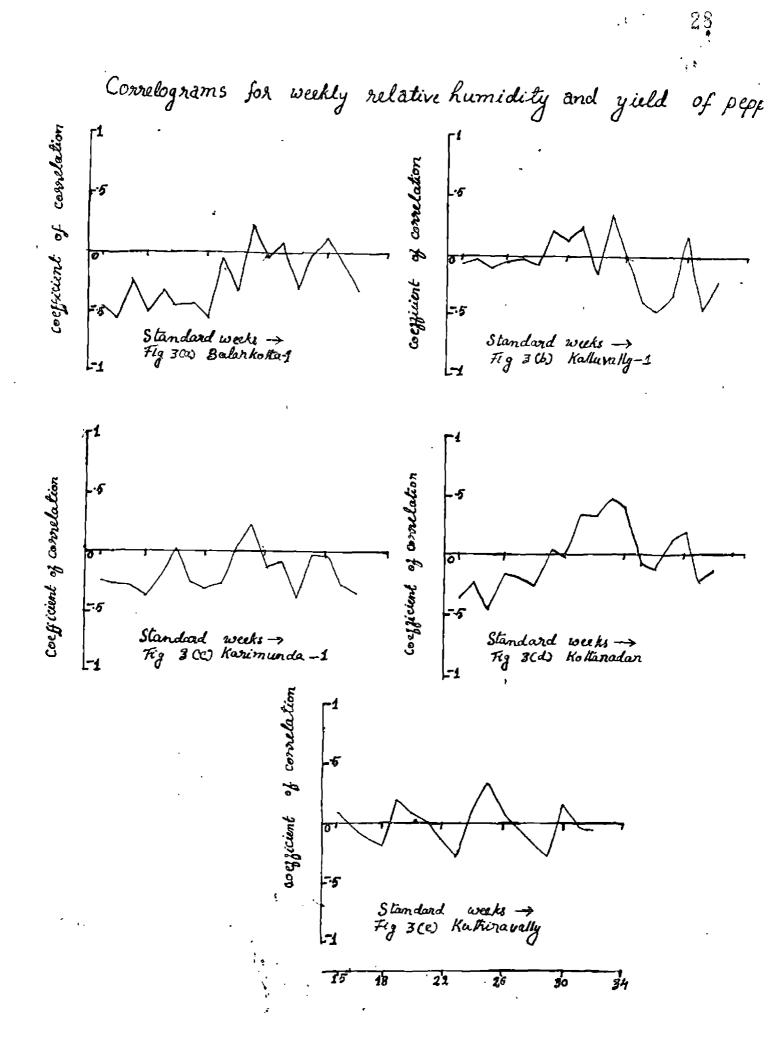
. .

4.1.2. Minimum temperature


The correlograms of minimum temperature for the five varieties during the critical periods are given in Fig. 2(a) to 2(e).

Here also the trends in relationship for the five varieties are not uniform. Similarity in trend among the varieties is not at all in the pattern for maximum temperature. Therefore it becomes almost impossible to have a grouping of varieties based on the trend in relationships of major weather elements with yield.

4.1.3. Relative humidity


The correlogram showing the trend in relationship of RH in the critical period with the yield of the five selected varieties are presented in Fig. 3(a) to 3(e).

It may be noted that there is cyclical pattern of relationship in the case of Kuthiravaly. The relationship is mostly negative for the other four varieties. In all cases, the relationship is positive just after the 24th standard week (June 11 to 17).

27

÷

4.1.4. Rainfall

The correlogram of weekly rainfall and yield of five selected varieties of pepper during the critical period are given in Fig. 4(a) to 4(e).

During the 23rd week (June 4 to 10) there is high positive correlation in the case of three varieties where as for Kuthiravaly and Karimunda-I the relation is negligible and negative. This is a further evidence of interaction of genotypes with environment.

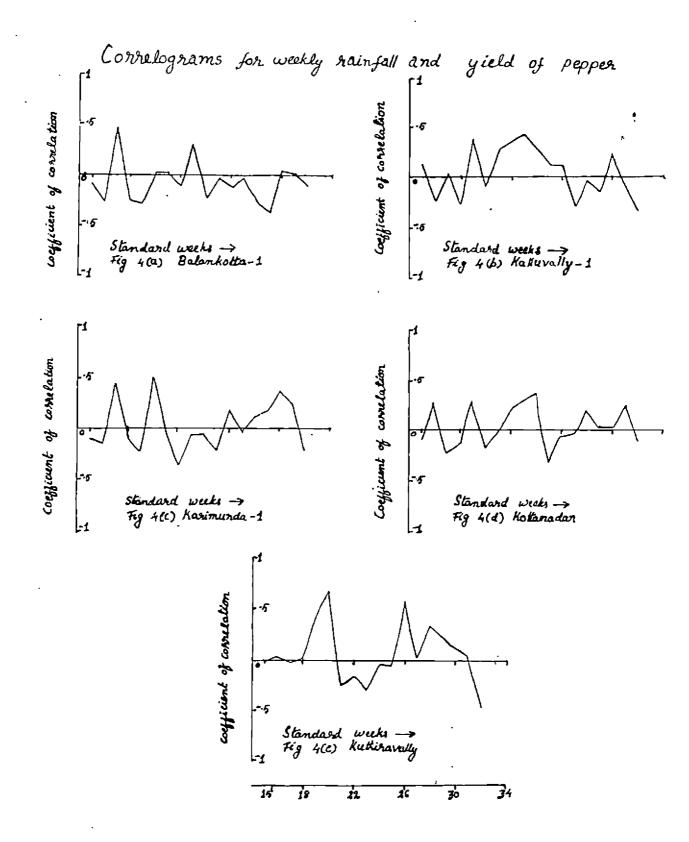
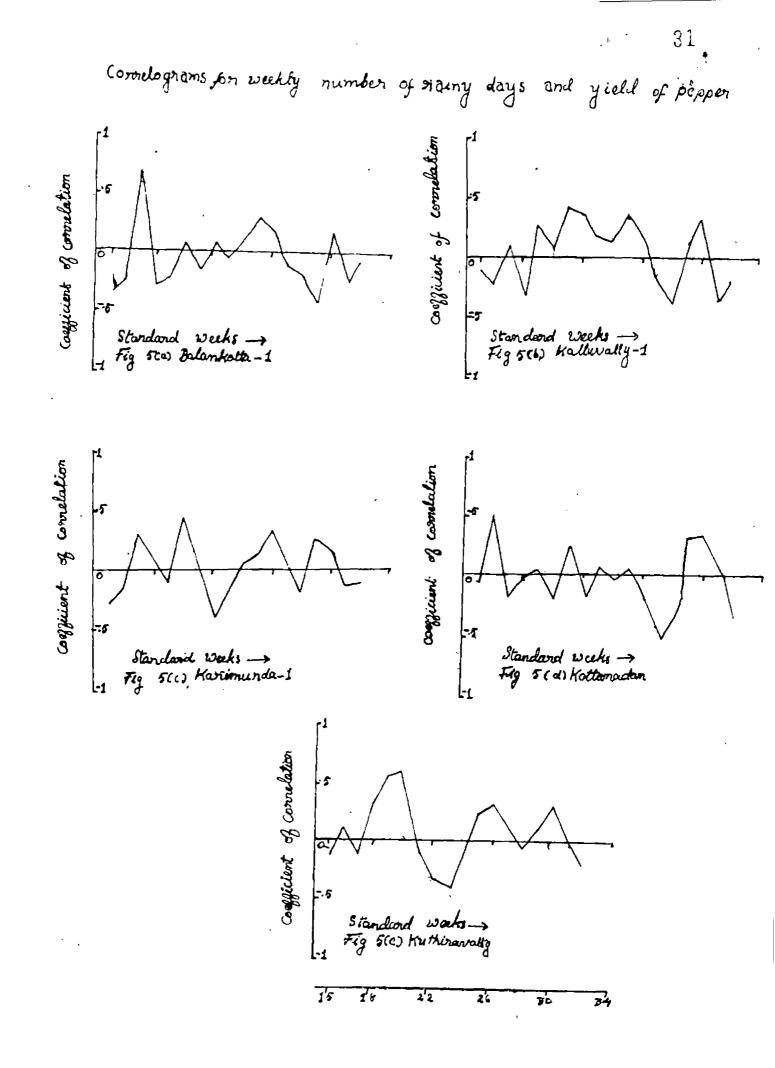

4.1.5. Number of rainy days

Fig. 5(a) to 5(e) represent the correlogram of number of rainy days during the critical period and yield of the five selected varieties.

Here also no similarity in trend in relationship can be observed among the varieties. Karimunda-I and Kuthiravaly have negative correlation with this character during the 22nd standard weeks while the other three have positive correlation. In fact this is the period of summer showers.


Though there is no natural grouping among the genotypes with regard to their relationship with the five

.' ' 3

ь.

.

weather elements, Kuthiravaly and Karimunda-I show a / response almost entirely opposite to that of Balankotta-1, Kalluvally and Kottanadan.

Two stage regression models to forecast annual yield of pepper for the 29 varieties from weather elements of standard weeks as well as of fortnights in the critical period were estimated and are presented in Tables 16 to 104.

The results obtained are explained and discussed variety by variety below:

Variety 1 - Balankotta-1

On examing Tables 1 to 10, it may be noted that the number of rainy days in the 17th standard week (April 23 to 29) had significant positive correlation with the annual yield of this variety. This period is the time when the pre-monsoon showers are received. It is quite natural that the distribution of rainfall has stronger relationship on the yield than the rainfall, and the number of rainy days is a good index of the distribution of rainfall. Relative humidity during the 16th (April 16 to 22) and 22nd (May 28 to June 3) weeks had significant

negative influence on the annual yield of this variety. This could perhaps be due to the congenial atmosphere for the pathogens to rear and thereby adversely affecting the crop. No other weather variable of standard weeks in the critical period has any substantial influence on the annual yield.

When the weather elements of fortnights were considered, relative humidity during 8th fortnight alone had substantial influence on the yield and it is the fortnight corresponding to 16th standard weeks for which negative correlation with yield was obtained. No other variable of any fortnight showed any substantial influence on the annual yield when considered individualy.

The ten first stage forecasting models estimated from weekly weather elements are given in Tables 16 and 17. It is interesting to note that the model with number of rainy days from April 9 to June 10 had a predictability of 83.5%. Hence it could be stated that though the weather variables of individual weeks did not indicate substantial influence on the yield, the same variable when considered for a longer period has remarkable influence on the yield. This model itself could very well be used to forecast

yield with the error in prediction being only 16.5%. This period is nothing but the period of pre-monsoon showers and it means that the annual yield of pepper gets substantial benefit from well distributed premonsoon showers. This type of relationship was reported by Nalini (1983).

The next model having substantial predictability at the first stage was that using relative humidity during June 11 to August 12, the coefficient of determination being,76.

Along with the ten generated variables trend was used as an explanatory variable at the second stage for step-wise regression. Five generated variables viz. $Z_{MN.1}$, $Z_{RH.1}$, $Z_{RF.1}$, $Z_{NR.1}$ and $Z_{NR.2}$ were selected as predictor variables in the final prediction model. This model could explain 98.01% of the variation in yield.

The first stage and second stage forecasting models from the fortnightly weather elements, had comparatively low predictability.

The final model from weekly weather elements had high predictability and the prediction is almost without

error. It may be noted that the first stage model using number of rainy days in the first set will be quite helpful as the yield can be predicted as early as in June with relatively good predictability.

Variety 2 - Balankotta-2

Relative humidity in the 28th week (July 9th to 15) showed a significant negative correlation with the yield of this variety. This may be due to the cogenial atmosphere for the fungal diseases to affect the crop adversely. Rainfall in the 23rd week (June 4 - 10) also showed positive significant correlation with yield. This could be because the flower bud differentiation starts in the shoots in April-May with the receipt of premonsoon showers and reaches a peak in June-July (Nalini, 1983).

For the fortnightly data maximum temperature in the 10th fortnight and rainfall in the 12th fortnight had substantial influence on the yield. Both of these weather variables had significant positive correlation. Relative humidity in the 14th fortnight which corresponds to the 28th standard week had significant negative correlation with yield.

The estimated first stage prediction models from the weekly weather parameters are given in Tables 18 and 19. It is worth noting that the number of rainy days during the period from April 15th to June 10th could explain 91.2% of variation in the annual yield of this variety as in the case of Balankotta-1. This could be used as the forecasting model for this variety also and the prediction of the yield can be made as early as in the second week of June.

Minimum temperature during monsoon period (June 10 to August 12) could explain 85.2% of variation in yield response.

The final model came out with $Z_{MX.2}$, $Z_{MN.1}$, $Z_{MN.2}$, $Z_{RF.1}$, $Z_{NR.1}$ and $Z_{NR.2}$ as the predictor: variables with a coefficient of determination is of 0.998. This model is capable of predicting yield very accurately.

Of the first stage models from the fortnightly weather parameters the one using relative humidity had maximum R^2 value of .71. The model using rainfall had R^2 value of .66 and that using number of rainy days had R^2 value of .66 and that using number of rainy days had R^2 value of .37. The estimated second stage prediction model included four generated variables. They are Z_{NY} .

 z_{MN} , z_{RH} and z_{RF} explaining 85.2% of the variation in the annual yield (Table 104).

Here also the model using weekly weather elements is found to be having higher predictability. Moreover the first stage model with number of rainy days from April 9th to June 10th can be of advantage to predict the yield of the year as early as in the second week of June.

:

Variety 3 - Cheriyakaniyakadan

Number of rainy days in the 17th week (April 23 to 29) had significant positive correlation with yield. That means the premonsoon showers which is a trigering factor of flowering affect the yield of this variety very much as in the case of Balankotta-I. This result is found in agreement with the result obtained by Menon (1981). No other variable in any standard week or fortnight of the critical period showed significant correlation with annual yield of this variety.

Table 20 and 21 present the estimated forecasting models at the first stage from weekly weather parameters 88% of the variation in yield could be accounted by

number of rainy days during April 9 to June 10 which can be used to forecast the annual yield. The model from minimum temperature during June 11 to August 12 also had same predictability.

Among the 10 generated variables and the trend variable, five were included in the final model. $Z_{MN,2}$, $Z_{RH,2}$, $Z_{RF,2}$, $Z_{NR,2}$ and T (trend) are the predictor variables and corresponding coefficient of determination was 9866.

Seventy nine per cent of the variation in the annual yield of this variety was accounted by relative humidity in different fortnights of critical period (Table 77). The five generated variables viz., Z_{MX} , Z_{MN} , Z_{RH} , Z_{RF} and Z_{NR} were included in the final prediction model with a coefficient of determination of .931.

Here also the model using weekly weather elements was found to be having higher predictability. The first stage model using, the number of rainy days during the premonsoon period can be used to predict the yield without much error.

Variety 4 - Chumala

It may be noted that maximum temperature in the 15th, 22nd and 23rd weeks (April 9 to 15, May 28 to June 10) and rainfall in the 18th week (April 30 to May 6) had significant positive correlation with the yield of this variety. At the same time relative humidity in the 22nd week (May 28 to June 3) and rainfall and number of rainy days in the 21st week showed significant negative correlation. The premonsoon showers during April 30 - May 6 affected the yield of this variety like other varieties. But rainfall during the 21st week had negative correlation.

Maximum temperature in the 11th and 12th fortnights which corresponds to the 22nd and 23rd standard weeks showed significant positive correlation with yield, while number of rainy days in the 11th fortnight showed significant negative correlation.

The first stage model estimated from number of rainy days of standard weeks during April 9 to June 10 had R^2 value of .86 and that from relative humidity during the same period had R^2 value of .79. As 86% of the variation in the yield could be accounted by the

premonsoon showers, this model itself can be used to predict the annual yield of the variety as early as in June.

Table 74 gives estimated second stage forecasting models from weekly weather data. $Z_{MX.1}$, $Z_{MX.2}$, $Z_{MN.1}$, $Z_{RF.1}$, $Z_{NR.1}$ and T were the predictor variables that entered in the final forecasting model with a coefficient of determination of .955.

Table 78 provides the first stage regression models estimated from the weather elements of fortnights in the critical period. The model with maximum temperature in various fortnights as the explanatory variables had a coefficient of determination .82.

Finally two generated variables viz. Z_{MX} and Z_{RH} entered in the second stage forecasting model with R^2 value of .84.

Variety 5 - Kalluvally-1

For this variety minimum temperature in the 21st and 22nd weeks (May 21 to June 3) showed significant positive correlation with yield. No other weather variable of critical standard weeks had any substantial influence on the annual yield.

When the weather elements of fortnights are considered, minimum temperature in the 11th fortnight alone had substantial influence on the yield and it is the fortnight corresponding to the 21st and 22nd standard weeks for which positive significant correlation with yield were obtained.

Estimated first stage models reveal that relative humidity during the monsoon period (June 11 to August 12) alone could explain 96% of the variation in yield and 82% of the variation is accounted by minimum temperature during the same period. Prediction of yield using these models is possible only in the second week of August.

Six predictor variables were finally included at the second stage prediction model. When six generated variables are used in the prediction model the predictability is 99 per cent where as with a single generated variable (for the relative humidity of the second half of the critical period) the prediction model had a predictability of 96 per cent. Hence for all practical purposes, the first stage prediction model using relative humidity of the second group of standard weeks can be made use of.

It is worth mentioning the superiority of the prediction model using weekly weather data over that using fortnightly data. Even with a single weather element from the second group of standard weeks, 96 per cent predictability could be obtained where as, all the fortnightly data during the entire critical period could account only 84 per cent predictability.

Variety 6 - Kalluvally-2

For this variety relative humidity and number of rainy days in the 28th week (July 9 to 15) and number of rainy days in the 31st week (July 30 to August 5) showed significant negative correlation with the yield of this variety. This could perhaps be due to the congenial atmosphere for the incidence of diseases and thereby adversely affecting the crop. Rainfall in the 23rd week (June 4 to 10) showed positive significant correlation.

For the fortnightly data, relative humidity in the 14th and 15th fortnights and number of rainy days in the 14th and 16th fortnights showed substantial negative influence on the yield.

The estimated first stage regression models from weekly weather parameters are given in Tables 26 and 27. It is interesting to note that relative humidity during April 9 to June 10 alone could explain 98 per cent of the variation in the yield and maximum temperature during the same period could account for 91 per cent of variation.

The final model came out with $Z_{NX.2}$, $Z_{MN.1}$, $Z_{MN.2}$, $Z_{RH.2}$ and $Z_{RF.2}$ as the predictor variables with a coefficient of determination .996. That is, the prediction is almost with out error.

Though forecasting model using weekly weather data has a predictability of 99.6 per cent, that using the RH in the first half of the critical period alone is quite satisfactory as it has a predictability of 94 per cent and the prediction can be made as early as in the second week of June. With six generated variables making use of weather elements of all the critical period, the increase in predictability is only very marginal.

Among the first stage models from the fortnightly weather parameters the one using relative humidity had maximum R^2 of .93, same as in the case of Balankotta-2.

The second stage model with Z_{RH} and Z_{NR} as predictor variables had predictability 95.6 per cent.

Variety 7 - Kalluvally-3

For this variety rainfall in the 19th week (May 7 to 13) showed significant positive correlation while maximum temperature in the 31st week (July 30 to August 5) showed significant negative correlation. Rainfall in the 19th week is nothing but premonsoon showers which is reported to have high influence on the yield (Nalini, 1981). Minimum temperature in the 21st, 22nd, 24th and 26th weeks (May 21 to June 3, June 11 to 17, June 25 to July 1) showed significant positive correlation.

Minimum temperature in the 11th, 12th and 13th fortnights had substantial positive influence on the yield of this variety.

Tables 28 and 29 present the estimated forecasting models at the first stage from weekly weather parameters. Ninty six per cent of the variation could be accounted by relative humidity in the second group of standard weeks and minimum temperature during this period accounts for 98% of the variation in yield. The prediction of the yield of this variety is possible in the second week of August using minimum temperature alone in the second group of standard weeks with remarkable accuracy.

Among the 10 generated variables and the trend variable, four were included in the second stage model. $Z_{MX.1}$, $Z_{MX.2}$, $Z_{MN.2}$ and $Z_{RH.2}$ were the predictor variables and the corresponding coefficient of determination was .992.

Here also with four generated variables making use of weather elements from the whole of critical period, the increase in predictability was only 4 per cent over the model making use of the minimum temperature of the second half of the critical period. Therefore the first stage model with minimum temperature of the second half of the critical period is perhaps the best forecasting model for this variety.

Table 81 provides the first stage regression models estimated from the weather elements in fortnights of critical period. The model with minimum temperature in various fortnights as explanatory variables had a coefficient of determination of .80. The final model with Z_{MN} and Z_{RH} as predictor variables had a predictability 83.5 per cent.

The predictability of the model using fortnightly data is far below compared to that using weekly weather elements and hence the model using weekly weather elements is to be preferred.

Variety 8 - Kaniyakadan

Relative humidity in the 27th and 28th weeks (July 2 to 15) and number of rainy days in the 16th standard week (April 16 to 22) had substantial negative influence on the yield. This may be because the higher relative humidity during this period may produce ideal conditions for the multiplication of the pathogens and thus adversely affect the yield. Rainfall during June 4 to 10 had significant positive correlation.

Relative humidity in the 14th and 15th fortnights had significant negative correlation with the yield of this variety. No other weather parameters showed substantial effect on the yield.

Tables 30 and 31 present the estimates of the forecasting models at the first stage from weekly weather parameters. It may be noted that maximum temperature during the premonsoon period (April 9 to June 10) alone could account for 94 per cent of the variation in yield and relative humidity in the second group of standard weeks (June 11 to August 12) could accounts for 92 per cent of the variation. The prediction of the yield of this variety is possible as early as in the second week of June, using the maximum temperature alone in various standard weeks in group I.

The predictability for the second stage model using the weekly weather parameters was 99.2 per cent and the explanatory variables in the model were $Z_{MX.1}$, $Z_{MN.1}$, $Z_{RH.1}$, $Z_{RH.2}$, $Z_{RF.1}$, $Z_{NR.2}$ and T. The increase in predictability is only very marginal compared to that using maximum temperature alone of the first half of the critical period, even though the second stage model utilized six generated variables along with the trend. Therefore the first stage prediction model with maximum temperature of the first half of the critical period could be very well used for predicting yield of this variety.

Table 82 provides the estimates of the forecasting models at the first stage using the fortnightly weather parameters. Relative humidity in various fortnights of

critical period could explain 85 per cent of the variation in yield. The final model using four generated variables viz. Z_{MX} , Z_{MN} , Z_{RH} and Z_{RF} had predictability 93.9 per cent.

In fact the first stage model using weekly maximum temperature from April 9 to June 10 has higher predictability than that of the second stage model from the fortnightly weather elements.

Variety 9 - Karivilanchy

For this variety minimum temperature in the 21st and 22nd weeks (May 21 to June 3) showed significant positive correlation with yield. No other weather variable in the standard weeks of critical period had substantial influence on the yield.

From among the fortnightly weather variables, MNT in the 11th fortnight which corresponds to the 21st and 22nd standard weeks had significant positive correlation with the yield.

Estimated first stage models reveal that minimum temperature in the group II (June 11 to August 18) alone could explain 91 per cent of variation in yield and

43

ι.

relative humidity in the same period could explain 90 per cent of the variation (Tables 32 and 33).

Table 74 gives estimated second stage forecasting models from weekly weather data. $Z_{MX.1}$, $Z_{MX.2}$, $Z_{MN.1}$, $Z_{MN.2}$, $Z_{RH.2}$, $Z_{NR.1}$ and $Z_{NR.2}$ were the predictor variables that entered in the final model which had coefficient of determination .99.

Here the second stage model had seven generated explanatory variables and had a predictability of 99 per cent where as the first stage model with minimum temperature of the second group of standard weeks as explanatory variables alone has a predictability of 91 per cent. Therefore this first stage forecasting model using minimum temperature of the second half of the critical period could very well be used for forecasting the yield.

Sixty four per cent of the variation in the annual yield of this variety was accounted by number of rainy days in different fortnights of the critical period. Four generated variables viz. Z_{MX} , Z_{MN} , Z_{RH} and Z_{NR} were included in the final prediction model with a coefficient of determination .81.

49

. .

The forecasting model using weekly data is found to be superior.

Variety 10 - Karimunda-1

Rainfall in the 20th standard week (May 14 to 20) showed significant positive correlation. This period is the time when the premonsoon showers, which is a tregering factor of flower bud differentiation, are received. Premonsoon showers were reported to have high influence on pepper yield (Menon, 1981). Minimum temperature in the 17th standard week had substantial influence on the yield and the correlation obtained was negative.

The fortnightly weather variables did not show any substantial influence on the yield of this variety.

The ten first stage forecasting models estimated from weekly weather elements are given in Tables 34 and 35. It may be noted that like the variety Kaniyakadan, for this variety also the first stage model with maximum temperature in the premonsoon period (April 9 to June 10) had a predictability 95 per cent. Hence it could be stated that though weather variables of individual weeks did not indicate substantial influence on yield, the

same variable when considered for longer period has remarkable influence on yield.

The final model came out with $Z_{MX.1}$, $Z_{MN.1}$, $Z_{RF.2}$ and T as the predictor variables with a coefficient of determination of 0.994.

Of the first stage models using fortnightly weather data, the one using relative humidity had maximum R^2 value of .74. Four generated variables viz. Z_{MX} , Z_{MN} , Z_{RH} and Z_{NR} were included in the final forecasting model which had coefficient of determination .912.

Here also the model using weekly weather elements was found to have higher predictability.

Variety 11 - Karimunda-2

RH in the 26th week (June 25 to August 1) showed significant negative correlation for this variety while minimum temperature in the 21st, 22nd, 23rd and 25th weeks showed significant positive correlation with yield. The negative correlation of relative humidity in the 26th week may perhaps be due to the adverse effect of diseases on the crop. For the fortnightly weather data, minimum temperature in the 11th and 13th fortnights showed substantial positive influence on the yield. No other weather variable in various fortnights of critical period showed any substantial effect on the crop.

The estimated first stage prediction models from the weekly weather parameters are given in Tables 36 and 37. It is worth noting that RH during the period from April 15 to June 10, could explain 70 per cent of variation in the annual yield of this variety and 84 per cent of the variation could be accounted by minimum temperature during the same period.

Among the ten generated variables and the T (trend) seven were selected as predictor variables in the final model and the predictability of the model was 97.8 per cent. This model can predict the yield of this variety more accurately.

Table 84 provides estimates of the first stage model from the fortnightly weather data. Relative humidity in various fortnights of the critical period could explain 82 per cent of the variation in the annual yield. Four generated variables viz. Z_{MX} , Z_{MN} , Z_{RH} and

 Z_{NR} were included in the final model with a coefficient of determination of .947.

Variety 12 - Karimunda-3

The maximum temperature in most of the standard weeks of the critical period showed significant positive correlation in the case of this variety. Relative humidity in the 23rd week (June 4 to 10) had significant negative correlation. Relative humidity during June 11 to August 12 had adverse effect on the yield of other varieties also.

Maximum temperature in the 8th, 11th, 12th and 13th fortnights had significant positive correlation while relative humidity in the 12th fortnight had significant negative correlation.

Tables 38 and 39 provide estimated first stage models from weekly weather parameters of the critical period. Maximum temperature in various standard weeks during April 9 to June 10 alone could explain 76 per cent of the variation in yield and 75 per cent of the variation was accounted by relative humidity during June 11 to August 12. Among the 10 generated variables and the trend variable, five variables were included in the final model, and they were $Z_{MX.1}$, $Z_{RH.1}$, $Z_{RH.2}$, $Z_{RF.1}$ and $Z_{RF.2}$ with a coefficient of determination of .968.

Table 86 reveals that relative humidity in various fortnights of the critical period alone could account for 86 per cent of the variation in the annual yield. Only two generated variables viz. Z_{MX} and Z_{RF} were selected as predictor variables in the final forecasting model with a predictability of 85.4 per cent.

For practical purposes the second stage model from weekly weather data, which has very high predictability, can be recommended for predicting yield of this variety.

Variety 13 - Karivally

Maximum temperature in the 18th, 19th and 30th weeks (April 30 to May 20) and minimum temperature in the 21st, 22nd and 26th weeks (May 21 to June 3, June 25 to July 1) showed significant positive correlation with the yield of this variety. Other weather parameters in any of the standard weeks of critical period did not have substantial influence on yield. When fortnightly weather elements were considered, maximum temperature in the 10th fortnight, minimum temperature in the 11th fortnight and rainfall in the 12th fortnight showed significant positive correlation while relative humidity in the 15th fortnight showed significant negative correlation.

The ten first stage forecasting models estimated from weekly weather elements are given in Tables 40 and 41. It may be noted that relative humidity in various standard weeks during June 11 to August 12 alone could explain 97% of the variation in the annual yield of this variety and minimum temperature in various standard weeks during the same period could explain 84% of the variation. Hence it could be stated that though the weather elements of individuals weeks did not indicate substantial influence on the yield, the same variable when considered for a longer period has remarkable influence on the yield. The model from relative humidity itself could very well be used to forecast the yield with a very low error in prediction. Moreover yield prediction can be done as early as in the second week of August, if this first stage model is used.

The final prediction model include three generated variables and the trend value as the predictown variables. $Z_{MX.2}$, $Z_{RH.2}$, $Z_{NR.2}$ and T could account for 99 per cent of the variation in the yield. With a negligible error, the prediction of the yield of this variety can be done using this final model.

Table 87 presents estimated forecasting models at the first stage from fortnightly weather parameters. Minimum temperature in various fortnights of critical period could explain 79 per cent of the variation in the annual yield. The final model with Z_{MX} and Z_{MN} as the predictor variables had a coefficient of determination of 0.861.

Here also the model using weather elements in standard weeks was found to have higher predictability. Moreover the first stage model with relative humidity during June 11 to August 12 can be used to predict annual yield at the second week of August.

Variety 14 - Kottanadan

Minimum temperature in the 16th week (April 16 to 22) and number of rainy days in the 27th standard week (july 2 to 8) had significant negative correlation with the yield of this variety.

56

Minimum temperature in the 8th fortnight which corresponds to the 16th standard week, had significant negative correlation.

The estimated first stage regression models from weekly weather parameters are given in Tables 42 and 43. Minimum temperature in various standard weeks during April 9 to June 10 alone could explain 86 per cent of variation in the yield and number of rainy days during the same period could explain 85 per cent of the variation.

Among the 10 generated variables and trend variable T, five were selected as predictor variables in the second stage model. The predictability of this model was 98.8 per cent.

Sixty six per cent of the variation in yield of this variety, could be explained by minimum temperature in the fortnights of the critical period. The second stage model for this variety included three predictor variables. They are Z_{MX} , Z_{MN} and Z_{RH} . The predictability for the final model was 87.6 per cent.

Variety 15 - Kumbhakody

On examining Tables 1 to 10, it may be noted that relative humidity in the 27th and 28th weeks (July 2 to 15) had significant negative correlation with the yield of this variety. This may be due to the adverse effect of pathogens on the crop. No other variable was found to influence yield of this variety when considered individually. Even when variables of fortnights were considered relative humidity during the 14th fortnight alone was found to have significant negative correlation with yield of this variety. In fact the 14th fortnight coincides with 27th and 28th standard weeks for which the relative humidity was found to influence the yield.

The estimated first stage regression models from weekly weather parameters are given in Tables 44 and 45. Ninty per cent of the variability in yield of this variety could be accounted by maximum temperature in various standard weeks during April 9 to June 10. If we use this model for predicting the yield, the prediction is possible as early as in the second week of June.

Five generated variables along with trend variable were selected as predictor variables for the second stage

-58

. t. ^{*}

model. The explanatory variables that entered in the final model were $Z_{MX.1}$, $Z_{MN.1}$, $Z_{MN.2}$, $Z_{RH.1}$, $Z_{NR.2}$ and T with the coefficient of determination of .968. The details of the model can be had from Table 74.

Table 89 provides the estimated first stage regression models from fortnightly weather parameters. We could note that 95 per cent of the variation in yield could be accounted by relative humidity in various fortnights of critical period. Z_{RH} alone was included in the final model which had a coefficient of determination of .95.

Variety 16 - Kuthiravally

Tables 1 to 10 reveal that minimum temperature in the 23rd and 24th weeks (June 4 to 17), rainfall in the 20th and 26th weeks and number of rainy days in the 19th and 20th weeks had significant positive correlation with the yield of this variety. In short premonsoon showers have a major role for determining yield of this variety. No other weather element of standard weeks had significant correlation with yield. None of the variables showed negative significant correlation in the case of this variety.

· 60

When weather elements of fortnights were considered (Table 11 to 15) maximum temperature and minimum temperature during 12th fortnight and rainfall during 10th fortnight had positive significant correlation with yield of Kuthiravally.

The estimated first stage regression models from weekly weather parameters are presented in Tables 46 and 47. Eighty six per cent of the variation in yield could be explained by minimum temperature in the first group of standard weeks (April 9 to June 10). The percentage of variation explained by rainfall in the second group (June 11 to August 15) was also 86.

Six generated variables were selected as predictor variables in the final forecasting model. They were $Z_{MX.1}$, $Z_{MN.1}$, $Z_{MN.2}$, $Z_{RH.1}$, $Z_{RF.2}$ and $Z_{NR.2}$. The R^2 value for this model was .992.

The estimated first stage regression models from the fortnightly weather parameters are given in Table 90. The largest R^2 was observed for the model from minimum temperature ($R^2 = .88$). The second stage forecasting model in Table 104 included two generated variables viz. $Z_{\rm MN}$ and $Z_{\rm RH}$ as predictor variables and 95.3 per cent of the variation in the yield could be explained by it. Variety 17 - Kuthiravally - AR

Tables 1 to 10 reveal that minimum temperature in the 24th and 25th weeks (June 11 to 24) had significant positive correlation with yield while relative humidity in the 14th, 16th and 19th weeks and number of rainy days in the 24th and 29th weeks had substantial negative correlation with the yield of this variety.

For the fortnightly data, even a single variable in the fortnights of critical period did not show substantial influence on the yield.

The estimated first stage regression models from weekly data are provided in Tables 48 to 49. Maximum R^2 value was observed for the model with relative humidity in the second group of standard weeks (June 11 to August 12) as explanatory variables, the value being .87. The model from relative humidity in the first group of standard weeks (April 9 to June 10) had a R^2 value of .83.

The estimated second stage model presented in Table 74, had 5 predictor variables viz. $Z_{MX.1}$, $Z_{MN.1}$, $Z_{RH.1}$, $Z_{RH.2}$ and $Z_{RF.2}$. This final model could explain 98.6 per cent of the variation in the yield of this variety. 61

, ·

Eighty per cent of the variation in yield could explained by relative humidity in the fortnights (Table 91). The estimated second stage forecasting model is given in Table 104. There were three predictor variables in the second stage model. They were Z_{MX} , Z_{RH} and Z_{NR} . The predictability for this model was 93.5 per, cent.

Variety 18 - Munda

Tables 1 to 10 reveal that maximum temperature in the 22nd and 23rd weeks (May 28 - June 10) had significant positive correlation while relative humidity in the 21st, 22nd and 23rd weeks (May 21 - June 10) and rainfall in 22nd week had significant negative correlation with yield of this variety. Rainfall in the 22nd week had negative correlation which could be because of the need for a dry spell after the flower bud initiation (KAU, 1954).

Maximum temperature in the 11th and 12th fortnights had significant positive correlation while relative humidity in the 12th fortnight and rainfall in the 11th fortnight had significant negative correlation with yield.

Estimated first stage regression models from the weekly weather parameters are presented in Tables 50 and 51. Relative humidity in the standard weeks belonging to April 9 to June 10 alone could explain 91 per cent of variation in the yield. Number of rainy days in the same period could explain 86 per cent of the variation.

The estimated second stage regression model included six predictor variables. They were $Z_{MX.1}$, $Z_{MN.1}$, $Z_{RF.2}$, $Z_{NR.1}$ and T. The R^2 value for this model was .978.

The first stage model with relative humidity of the standard weeks in the first half of the critical period can very well be used for predicting yield of this variety as the predictability is as high as 91 per cent.

The estimated first stage regression models from the fortnightly data are given in Table 92. The model from maximum temperature alone had R^2 value of .84. The second stage model included four predictor variables and they were Z_{MX} , Z_{RH} , Z_{RF} and Z_{NR} . The R^2 value for this model was .895 which was even lower than the first stage model with relative humidity of standard weeks in the first half of the critical period.

. 64

Variety 19 - Narayakodi

Relative humidity and number of rainy days in the 28th week (July 9 to 15) had significant negative correlation with yield of this variety (Tables 1 to 10). No other weather variable of standard weeks was having significant correlation with yield when considered individually. Negative correlation of relative humidity as well as number of rainy days with yield was observed for the standard weeks for which the monsoon was in peek. It could be because of the adverse effect of excessive rains on the infloresence or due to the indirect effect of rains through pathogens and diseases.

For the fortnightly data relative humidity in the 14th fortnight and number of rainy days in the 16th fortnight had significant negative correlation with the yield of this variety.

The estimated first stage regression models from weekly weather data are given in Tables 52 and 53. It was observed that 90 per cent of the variation in yield could be accounted by relative humidity in the second group of standard weeks (June 10 to August 12), 84 per cent of the variation could be explained by maximum temperature in the first group of standard weeks and an equal amount by rainfall in the second group of standard weeks.

The estimated second stage model is given in Table 74. Four predictor variables viz. $Z_{MN.2}$, $Z_{RH.2}$, $Z_{RF.2}$ and $Z_{NR.1}$ were selected in this final forecasting model which had R^2 value of .988.

Table 93 gives the estimated first stage models from fortnightly weather parameters. Eighty six per cent of the total variation in yield could be accounted by relative humidity in fortnights of the critical period. The estimated second stage model is provided in Table 104 and had R^2 value of .904. Three generated variables viz. Z_{MX} , Z_{MN} and Z_{RH} were selected into this second stage model.

Here also the model from relative humidity in various standard weeks during June 11 to August 12 can be used as a forecasting model and the yield can be estimated in the second week of August.

Variety 20 - Palulauta

Maximum temperature in the 20th week and number of rainy days in the 17th week showed significant positive correlation with yield of this variety while relative humidity in the 15th and 20th weeks (April 9 to 15, May 14 to 20) had significant negative correlation. Since positive correlation was observed for number of rainy days in the 17th week, the distribution of rainfall in the premonsoon period have high influence on the yield of this variety (Menon, 1981).

Among the weather elements of fortnights relative humidity during 10th fortnight had significant negative correlation with yield (Tables 11 to 15). No other variable could express significant correlation with yield when considered individually.

Tables 54 and 55 give the estimated first stage regression models from weekly weather parameters. Number of rainy days in group I (April 9 to June 10) alone could explain ninty per cent of the total variation in the yield. The prediction of the yield of this variety is possible as early in the second week of June, if we use this model.

The estimated second stage repression model had R^2 value of .986. The predictor valiables that entered into the final forecasting model wre $Z_{MX.1}$, $Z_{MN.1}$, $Z_{RF.2}$, $Z_{NR.1}$ and $Z_{NR.2}$.

Table 94 gives the estimated first stage regression models from the fortnightly weather data. Relative humidity alone could explain 99 per cent of the total variation in the yield. The second stage model had R^2 value .992. $Z_{\rm RH}$ and $Z_{\rm RF}$ were selected as predictor variables. The first stage model using relative humidity of fortnights as predictor variables itself has very high predictability and hence can be used as forecasting model for yield of this variety.

Variety 21 - Perumkodi

Relative humidity in the 16th and 18th weeks and rainfall in the 32nd week showed significant negative correlation with yield of this variety while number of rainy days in the 20th week showed significant positive correlation.

Among the weather variables of various fortnights, relative humidity in the 9th fortnight showed significant negative correlation and rainfall in the 10th fortnight showed significant positive correlation with yield of the variety.

Tables 56 and 57 give the estimated first stage regression models from weekly weather parameters. Rainfall

in the second group of standard weeks during June 11 to August 12 alone could explain 84 per cent of the variation in yield and relative humidity during April 9 to June 10 could explain 83 per cent of the variation in yield.

The second stage model included four predictor variables viz. $Z_{RH.1}$, $Z_{RH.2}$, $Z_{RF.1}$ and $Z_{RF.2}$ and T could account for 95.65 per cent of the variation in yield.

The estimated first stage models from the fortnightly data are given in Table 95. The first stage model with relative humidity in fortnights of critical period as explanatory variables had the highest R^2 value of .88. The second stage model given in Table 104 had R^2 value of .935. Three predictor variables viz. Z_{MX} , Z_{MN} and Z_{RH} were included in this model.

Variety 22 - Perumunda

Minimum temperature in the 27th week and number of rainy days in the 28th week had significant negative correlation with yield of this variety.

For the fortnightly weather data the minimum temperature in the 13th and 14th fortnights and number

of rainy days in the 16th fortnight showed significant negative correlation with yield of this variety.

The estimated first stage regression models using weekly weather elements are presented in Tables 58 and 59. Ninety two per cent of the variation in yield could be explained by the model with relative humidity in the second group of standard weeks as explanatory variables.

 $Z_{MN.2}$, $Z_{RH.1}$, $Z_{RH.2}$ and $Z_{RF.2}$ were selected as predictor variables in the second stage prediction model by step-wise regression. The R^2 for this forecasting model was as high as .984 (Table 74).

It may be noted, from the estimated first stage models from fortnightly data given in Table 96, that 86 per cent of variation in yield could be explained by relative humidity alone from fortnights in the critical period. Four variables generated by the first stage regression viz. Z_{MX} , Z_{MN} , Z_{RH} and Z_{RF} entered into the final regression model when the step-wise regression was done and this model has R^2 value of .972.

Variety 23 - Sullia

Tables 1 to 10 provide coefficients of correlation between weekly weather parameters and yield of different

varieties. Maximum temperature and minimum temperature in the 29th week and number of rainy days in the 21st week had significant positive correlation with yield of the variety and rainfall in the 18th week (April 30 to May 6) had significant negative correlation.

Rainfall in the 9th fortnight had negative significant correlation with yield while number of rainy days in the 11th fortnight had significant positive correlation, when the variables were considered for fortnights (Tables 11 to 15).

Tables 60 and 61 give the estimated first stage regression models from weekly weather parameters. Number of rainy days in the first group of standard weeks could explain 86 per cent of the variation in yield of this variety. MNT in the second group of standard weeks also could explain same amount of variation in yield.

The estimated second stage model included for predictor variables viz., $Z_{RH.1}$, $Z_{RH.2}$, $Z_{NR.1}$ and $Z_{NR.2}$ and could attain a predictability of 97.8 per cent.

Table 97 provides the first stage regression models estimated from fortnightly weather data. Seventy

six per cent of the variation in yield could be explained by number of rainy days alone in fortnights. Z_{MN} , Z_{RH} , Z_{RF} and Z_{NR} were the generated variables that entered in the final forecasting model during the process of step-wise regression and this model had R^2 value of 89.87 per cent.

Variety 24 - Taliparamba I

Relative humidity in the 24th and 28th week (June 11 to 17, July 9 to 15) had significant negative correlation with the yield of this variety. No other weather variable showed significant correlation.

For the fortnightly data relative humidity in the 14th and 16th fortnights showed significant negative correlation.

Estimated first stage regression models from the weekly weather data are presented in Tables 62 and 63. It may be noted that rainfall in the first group of standard weeks (April 9 to June 10) alone could explain 94 per cent of the total variation in yield, while relative humidity in the group II could account for 91 per cent of the variation. Prediction of the yield of this variety can be done using the model using relative humidity in the

. 1 71

group I of standard weeks, with negligible error and the prediction is possible as early as in the second week of June.

 $Z_{MN.2}$, $Z_{RH.2}$, $Z_{RF.1}$, $Z_{RF.2}$, $Z_{NR.1}$ and $Z_{NR.2}$ were selected as predictor variables at the second stage by step-wise regression. 99.8 per cent of the variation could be accounted by this forecasting model.

Table 98 provides first stage estimated forecasting models from fortnightly data. Ninty per cent of the total variation in yield could be accounted by relative humidity alone while number of rainy days could explain ninety three per cent of the variation in yield. The second stage prediction model estimated using step-wise regression included only one generated variable viz., Z_{RH} . This model had R^2 value of 90.

Variety 25 - Taliparamba II

Minimum temperature in the 15th and 16th weeks (April 9 to 22) had significant negative correlation with annual yield of this variety while rainfall in the 24th week and number of rainy days in the 29th week (July 16 to 22) had significant positive correlation.

When weather data for fortnights were considered, minimum temperature in the 8th fortnight had significant negative correlation with yield and rainfall in the 15th fortnight had significant positive correlation (Table 11 to 15).

Tables 64 to 65 provide the first stage regression models estimated from weekly weather data. Ninty five per cent of variation in yield could be explained by minimum temperature in the first group of standard weeks. The prediction can be made with this first stage model with negligible error and as early as in the second week of June.

Four predictor variables were included in the second stage forecasting model. They were $Z_{MX.2}$, $Z_{MN.1}$, $Z_{RH.2}$ and T and accounted for 98.4 per cent of the total variation in yield.

The estimated first stage models from the fortnightly weather parameters are given in Table 99. Minimum temperature alone could explain 79 per cent of the variation. The predictor variables were included in the second stage forecasting model, when step-wise regression was

employed. They were Z_{MN} and Z_{NR} and they together could explain 85.93 per cent of the variation in yield (Table 104).

Variety 26 - Taliparamba III

Rainfall in the 32nd week and number of rainy days in the 28th and 32nd week showed significant negative correlation with yield. The weather parameters in the premonsoon period did not show any significant correlation.

Number of rainy days in the 14th and 16th fortnights had significant negative correlation with the yield of this variety (Table 11 to 15).

The estimated first stage models in Tables 66 and 67 reveal that the model using rainfall in the standard weeks during June 11 to August 12, had highest R^2 value of .93 among the first stage models. Maximum temperature in the second group of standard weeks accounts for ninty per cent of the variation.

The estimated second stage model from weekly weather parameters is given in Table 74. $Z_{MX.2}$, $Z_{MN.1}$, $Z_{RH.2}$ and $Z_{RF.2}$ were the variables entered in this model and it could explain 99.6 per cent of the variation in yield of this variety. Table 100 provides the first stage models estimated from fortnightly weather data. Number of rainy days alone could explain ninty three per cent of the variation in yield and the model using relative humidity in various fortnights had R^2 value of .91. The second stage forecasting model for this variety included three predictor variables viz. Z_{RH} , Z_{RF} and Z_{NR} and could explain 97.8 per cent of the variation in the yield of this variety.

Variety 27 - Taliparamba IV

Maximum temperature in the 29th week and minimum temperature in the 29th and 32nd weeks had substantial positive influence on the yield while minimum temperature in the 27th week had negative influence on the yield.

Minimum temperature in the 14th fortnight had significant negative correlation with the yield of this variety. No other variable when considered with reference to the fortnights had significant influence on yield in this case.

The estimated first stage regression models from weekly weather parameters are given in Tables 68 and 69. The model using minimum temperature in standard weeks of group II had greatest R^2 value ($R^2 = .77$). 75

ŀ

Six generated variables were selected as predictor variables in the second stage forecasting model and the details are given Table 74. $Z_{MX.1}$, $Z_{MX.2}$, $Z_{MN.2}$, $Z_{RH.1}$, $Z_{RH.2}$ and $Z_{NR.1}$ were the predictor variables entered in to the final forecasting model and could explain 96.82 per cent of the variation in yield of this variety.

The first stage models estimated from fortnightly weather variables are given in Table 101. Only 65 per cent of the variation could be explained by relative humidity in fortnights of critical period. The second stage model given in Table 104 had R^2 value of .828 and the variables entered into this model when step-wise regression was done were Z_{MX} , Z_{MN} , Z_{RH} and Z_{NR} .

Variety 28 - Valli

Table 1 to 10 reveal that number of rainy days in the 17th week was the only weather variable which showed significant positive correlation with yield of this variety. In other words premonsoon showers during this standard week had positive influence on the yield and no other variable when considered for each standard week seperately, could express substantial influence on the yield of this variety.

75

ŀ.

When weather variables were considered with reference to fortnightly periods, MXT in the 10th fortnight alone could influence the yield significantly and that too positively (Tables 11 to 15).

From the estimated first stage regression models given in Tables 70 and 71, we could note that nearly eighty per cent of the total variation in yield could be explained by MNT in thestandard weeks during June 11th to August 12.

The R^2 value for the second stage forecasting model was .98 and the predictor variables entered in this model were $Z_{MN.1}$, $Z_{MN.2}$, $Z_{RH.1}$, $Z_{RH.2}$ and $Z_{NR.2}$ as a result of step-wise regression.

The first stage model using maximum temperature in fortnights of critical period had R^2 value of .70. From Table 104 we could get the second stage forecasting model from the fortnightly data. 86.86 per cent of the variation could be accounted by this forecasting model in which the prediction variables selected were Z_{MX} , Z_{MN} , Z_{RF} and Z_{NR} .

Variety 29 - Valiyakodi

Maximum temperature in the 26th week (June 26 to 1) showed substantial negative influence on the yield while rainfall in the 20th week and number of rainy days in the 19th and 20th weeks had substantial positive influence on the yield.

When the fortnightly data were considered, rainfall and number of rainy days in the 10th fortnight had significant positive correlation. No other variable in a fortnight could express substantial influence on yield.

The estimated first stage models in Tables 72 and 73 reveal that 92 per cent of the variation could be accounted by relative humidity in the first group of standard weeks and ninty one per cent of the variation could be explained by minimum temperature in the same period.

The estimated second stage forecasting model given in Table 74 had R^2 value of .986 and predictor variables selected for this model were Z_{MN-1} , Z_{RH-1} , Z_{RF-2} and Z_{NR-1} .

Table 103 reveal that number of rainy days in the fortnights could account for 85 per cent of the variation

73

, I

in yield of this variety. The second stage forecasting model given in Table 104 had R^2 value of .964. All the five generated variables were selected as predictor variables in this forecasting model when step-wise regression was employed.

On the whole, the influence of the different weather elements considered viz. maximum temperature, minimum temperature, relative humidity rainfall and number of rainy days was not uniform on the performance of different varieties. In other words different varieties of pepper are affected by weather elements differently.

Perhaps the most important reason for such differencing response of different varieties to weather changes could be the existance of interaction on genotypes with environments. Though all the varieties for which data were utilized had been grown in the same research station, there is likely to be variability in soil type and micro environments for the different varieties. Their contribution on the performance of the crop cannot be under estimated. Another possible reason for the differing type of influence of weather elements could be bighial bearing tendency which is a general characteristic of perennial crops.

Even though the pattern of influence of weather elements differs from variety to variety, the yield forecasting models estimated for all varieties have very high predictability especially those utilizing the weekly data. In other wards these forecasting models can be used to predict the yield of all the 29 varieties considered well ahead of the harvest with remarkable accuracy. The predictability of almost all forecasting models using weekly weather data is in the neighbourhood of ninty nine per cent. In most of the cases the prediction can be done as early as in the second week of June even with the first stage models with high accuracy.

Though the predictability of forecasting models utilizing weekly weather data had been very close to unity in all cases the influence of any weather element during any particular standard week was not that high. In other wards, only the cumulative effects of weather factors on the yield of different varieties was substantial.

When the weather data with reference to the fortnights were considered, the forecasting models in

- 80

general had less predictability compared to those utilizing weekly data. Still the final forecasting models utilizing fortnightly weather data can also be made use of for prediction of yield with satisfactory predictability.

. .

.

Tables

.

.

82 . -

	tt	emperat	ure and	the yi	eld of	pepper			
Vari-				St	andard	weeks		_	
eties	15	16	17	18	19	20	21	22	23
1	.286	.216	.161	.342	.478	.343	.43 0	.317	.017
2	.201	.242	.340	.361	.450	•644	.272	.072	367
3	.116	.065	.296	.343	.433	.461	,348	•38§	.085
4	.517	.115	420	050	.019	.019	. 507	•549	. 58Ô
5	.135	.105	.172	.334	.280	.303	.001	061	280
6	.083	.068	.232	.364	.292	.319	081	131	345
7	.208	.104	061	.173	.090	.064	.045	.038	039
8	.119	.177	.282	.50	.384	.244	043	.145	373
9	.003	016	.128	.213	.135	.229	049	108	179
10	.419	.139	.199	.251	.411	081	.159	.454	.471
11	.288	.427	.183	.321	.351	.087	.033	298	.108
12	•695	.448	.029	. 51 ⁸	•564	.153	. 682	.711	• 59 ⁸
13	.366	.499	.318	. 56 ⁸	. 637	. 560	.334	.324	127
14	.226	.137	.214	.286	.121	.380	.204	.097	 053
15	.078	004	.238	.195	.172	.426	.119	.374	234
16	.385	007	372	.112	.020	348	016	.333	.495
17	.245	.131	024	.512	.405	.093	.483	.386	.322
18	.350	.098	-,186	.151	.215	081	,233	.653	.673
19	.193	.062	028	.373	.258	.127	038	.034	188
20	.286	.070	.214	.033	,308	. 520	.382	.324	.169
21	.321	.194	253	.465	,356	200	.088	.252	. 205
22	169	371	098	067	082	035	242	078	114
23	233	282	039	.212	002	.053	269	163	218
24	.237	.179	.203	.461	.469	.373	.283	.445	054
25	.166	.002	.102	145	.238	.256	015	.065	.205
26	•09 7	027	094	.322	.164	.026	138	133	166
27						057			
28	.355	•234	.202	. 256	.428	•532 [*]	.412	.266	113
						 499			

Table 1. Coefficient of correlation between the weekly maximum temperature and the yield of pepper

		temperat	ure and	the y i	eld of	pepper			
Vari- eties		 25	26	St 27	andard 28	weeks 29	30	31	32
1	.035	.05	.040	.148	.293	.070	.259	119	122
2	165	.253	.296	.099	.191	.329	.119	308	•068
`3	.029	.294	.20	211	.298	.434	.061	.102	.287
4	.440	.260	.117	.106	.232	197	.220	.023	.176
5	.022	.030	016	.307	.066	.237	.213	332	.055
6	077	130	157	.325	.383	.124	•0 77	015	.044
7	.189	.126	.018	.265	234	.143	.154	542	019
8	.114	.114	071	•069	. 469	.434	26	.079	.110
9	003	.066	.021	.176	- .228	.309	.214	478	.075
10	.330	<u>.</u> 146	- <u>.</u> 077	.058	. 226	220	.023	.074	.252
11	.023		•020	.130	296	014	201	142	034
12	•61́5	. 602	.367	.300	. 176	044	.088	300	.301
13	136	.122	.12 1	.271	075	.150	_011	440	143
14	052	.269	,229	<u>265</u> ,	.065	. 106	.101	170	.040
15	099	.042	.044	046	.421	•349	002	.057	062
16	.486		-,338	.073	101	156	.195	076	203
17	.518	. 569	<u>,</u> 296	- .097	.380	.313	.080	.109	.490
18	.343	.049	213	-,099	•001	<mark>,</mark> 002	.143	.295	.214
19	.185	093	-,266	,269	, 302	•200	.219	029	.080
20	196	.102	.170	-,125	. 278	- _• 107	.271	032	.185
21	.407	108	- ,380	.250	• 220	119	.260	.112	:096
22	.142	169	359	119	. 496	• 30 4	.117	.392	.311
23	.041	145	356	117	.020	. 585	•227	.102	.148
24	.182	.426	.193	-,258	.443	.463	- 200	05 9	.373
25	337	-,144	- ,089	114	176	309	.183	.013	.089
		215		•	•				
		174		-					
		.081							
29	.274	256	531	.005	47	002	.346	.045	076

Table 2. Coefficients of correlation between the weekly maximum temperature and the yield of pepper

* Significant at 5% level ** Significant at 1% level

Vari-Standard weeks 22 eties 15 16 17 18 19 20 21 23 .233 -.034 .108 ,208 -.144 .009 .187 -.418 .370 1 .244 2 -.436 -.076 -.307 -.116 :252 :335 .424 -:068 3 -.226 .086 -.387 .078 .173 -.208 -.205 .010 -.077 .437 .062 .00 .182 4 -.297 -.149 -.040 -:036 .289 **.**576 .244 -.124 -.339 -.177 -.204 .187 **.**52Ï .096 5 .124 -.046 .167 .144 -.231 6 -,504 -.340 -.343 .191 .722 .818 .063 7 .126 .127 .094 .017 -.152 .450 -.345 -.430 -.422 .0801 -.015 .002 .155 -.225 8 .079 **-.**108 [`] .<u>6</u>89 9 -.039 -.034 .238 -.093 .303 -.593 -.386 -.315 -.098 -.331 -.178 .044 .322 10 .077 •641 •534 .557 .079 11 -.452 -.160 .079 .063 -.371 .656 .086 .201 .278 12 .073 -.073 .166 --225 .511 .771 .795 13 -.345 .060 -.099 .356 -.065 .299 .322 -.586 14 -.503 -.218 .065 -.458 .241 .186 .320 .018 15 -.28 .002 -.436 -.129 -.251 -.020 -.073 .192 -.369 •539 -.304 16 -.136 -.213 -.324 -.332 -.220 .216 .440 17 -.132 -.052 .089 .207 .386 -.446 -.401 -.197 .081 -.053 -.109 18 -.179 -.30 -.175 -.264 .014 .198 .406 -.377 -.219 -.342 19 -.118 -.031 .219 .064 .350 -.079 20 -.387 -.324 -.511 -.112 -.089 .298 -.193 -.043 -.066 21 -.393 -.221 -.097 .098 .083 -.112 .078 .149 .114 22 -.201 -.173 -.382 -.203 .026 -.285 -.503 -.333 -.428 23 -.230 -.083 -.279 -.014 -.054 .059 -.232 .198 -.156 24 -.378 .167 -.376 .011 -.035 -.365 -.198 .054 -.047 -.672 **~.**58ĉ 25 -.305 -.266 -.481 .488 ,126 .094 .233 26 -.364 -.317 -.202 .112 -.014 .099 .139 .182 -.093 27 -.035 .025 -.369 -.338 -.119 -.463 -.209 .017 -.122 -.041 28 .064 -.442 .159 .069 .203 .260 .449 -.080 29 .036 -.234 -.240 -:069 -.240 -.224 .299 .382 ,387

Table 3. Coefficients of correlation between the weekly minimum temperature and the yield of pepper

* Significant at 5% level

** Significant at 1% level

		mperacu			F	ebber			
Vari- eties	24	25	26	St 27	andard 28	weeks 29	30	31	32
1	264	110	058	101	060	.025	.212	- .30	120
2	073	.224	.263	.066	.106	.145	.080	208	169
3	321	178	278	45	456	, 303	.004	109	.121
4	.333	.022	064	.011	.335	104	.188	.084	157
5	.201	.091	. 3 7 5	.229	.265	.174	.185	043	080
6	116	- 097	.003	008	.015	045	.055	201	072
7	.5 7 2	.170	•61 [*]	.444	.479	.303	.134	.132	097
8	067	.139	070	206	∸ .001	.163	313	202	.029
9	.315	013	.505	.274	.168	.418	.194	.138	.034
10	.060	133	34	283	145	278	.010	232	140
11	.323	•52 [*]	.505	.427	.316	083	196	.086	205
12	.513	.158	.217	.273	.301	066	.052	095	392
13	.072	.309	•595	.406	.245	.101	018	172	289
14	.242	.391	.200	.087	101	.016	•090	117	148
15	291	.142	174	447	195	.198	062	142	.172
16	. 586	.039	029	.066	.231	078	.178	.060	039
17	.072	113	392	293	287	.049	.034	175	098
18	.121	048	189	202	092	.045	.105	.202	.115
19	.130	.013	.035	002	. 20 7	.046	.175	085	014
20	-,415	166	337	325	263	201	.249	282	119
21	.151	.019	157	.064	.202	344	.235	175	173
22	247	474	621	622	373	.171	.074	018	.351
23	015	266	101	323	297	. 565	.175	.174	.419
24	127	.070	296	418	217	.172	263	258	007
25	148	050	094	037	159	283	.205	084	094
26	.076	192	056	.036	.108	097	.20	156	056
27	123	383	372	- 611	513	•62 [*]	•019	. 267	• 590°
28	130	.028	.179	.044	.173	.064	.219	234	175
29	.483	027	.127	.124	106	.207	.338	.338	.228
						: 5% lev			

Table 4. Coefficients of correlation between the weekly minimum temperature and the yield of pepper

* Significant at 5% level ** Significant at 1% level

.

85

·

Vari-			<u>ہ</u> ۔		andard			~~	• •
eties	15 	16	17 	18	19 	20 	21	22	23
1	-,452	552	235	497	339	421	416	- .55	064
2	428	177	112	169	329	455	.016	147	.197
3	389	390	.006	266	313	366	347	491	126
4	056	166	108	22	09	007	424	517	468
5	090	041	104	061	013	088	.208	.130	.250
6	294	297	248	149	078	29	.174	.114	.36
7	.306	.276	.103	.145	.250	,348	.255	.187	.088
8	289	-,268	102	196	134	222	017	176	.251
9	,224	.228	.152	.194	.209	.214	.344	.299	.218
10	257	277	281	-,367	173	.030	253	319	 25′
11	044	.144	102	327	285	.111	243	158	416
12	172	234	248	-,353	166	.040	504	454	-,58
13	281	128	104	433	369	240	291	304	210
14	366	250	472	169	213	271	.047	029	, 338
15	397	250	104	347	393	450	304	508	.24
16	.088	019	137	191	.182	.344	.001	165	26
17	423	527	198	236	099	297	351	391	33
18	103	277	088	514	246	.052	607	683	67
19	251	331	243	273	043	206	.064	107	.18
20	576	339	162	370	498	- •544	301	477	14
21	408	528	417	 629	166	266	342	382	36
22	125	314	.007	.029	.165	141	.173	021	.32
23	.036	199	.107	.045	.219	.018	.283	.051	.33
24	443	283	.026	235	263	337	252	476	11
25	249	.031	089	180	278	141	.034	066	14
						137			
						.154			
						414			
	.301	034	054	096	.305	.440	.149	002	12

Table 5. Coefficient of correlation between the weekly relative bumidity and the yield of pepper

* Significant at 5% level ** Significant at 1% level

. 86

	ł	umidity	and th	e yield	of per	pper			
Vari				5°	tandard	l weeks			
eties	24	25	26	27	28	29	30	31	32
1	344	.217	026	.096	324	015	.181	105	343
2	331	.125	140	315	-,633	316	.049	- 545	-,429
3	359	.071	171	076	386	072	049	095	362
4	240	.067	.005	.254	.116	- .071	.184	.289	.001
5	155	.375	005	38	485	313	.171	463	206
6	083	. 39 3	.128	352	562	031	.045	642	184
7	012	.304	084	273	120	436	.137	037	.008
8	324	154	383	718	805	476	368	~ ₀636	230
9	001	.449	.031	269	179	288	.190	133	072
10	.045	.235	145	084	384	008	002	264	-,348
11	182	246	515	 339	159	317	.188	158	426
12	428	.138	386	016	176	330	.05 7	.109	308
13	404	.099	367	293	381	- 296	022	256	** 599
14	.321	.466	.386	095	179	.105	.096	223	159
15	180	043	046	 52ô	609	176	132	358	375
16	.094	.336	.094	047	179	262	.17 3	003	053
17	539	.021	136	.121	341	222	.008	.045	141
18	240	.033	177	.125	.029	018	.077	.279	267
19	245	.321	.056	351	623	307	.144	523	163
20	151	.253	.123	.190	386	.217	.227	319	534
21	479	.147	014	019	477	216	.226	264	295
22	045	.282	.283	209	449	.008	.025	326	.126
	028	.404	.229	2001	309	176	.124	144	.087
24	528	254	441	453	787	489	326	407	413
25	.255	+.346	.249	.206	099	.323	.222	262	417
26	109	.486	.264	- .190	471	084	.199	461	069
27	.062	.235	.144	117	109	052	046	.126	.132
28	263	.281	024	091	409	108	.191	297	363
29	.282	•407	.303	.252	-267	054	.336	.317	.226

Table 6. Coefficients of correlation between the weekly relative humidity and the yield of pepper

* Significant at 5% level ** Significant at 1% level

			eks 	dard we	Stan				Vari- eties
.31	109	.004	.042	264	248	.457	267	07	1
.63	.259	.265	358	.143	408	,200	263	.185	2
.25	308	.206	181	-,309	404	.351	053	016	3
40	398	547	.208	.271	•5 3 9	150	.206	174	4
.42	.370	.255	089	.375	272	.035	236	.129	5
,55	.286	.480	136	041	308	.172	235	.011	6
.01	.330	186	.076	. 697	.025	244	136	006	7
.62	067	.452	۰O95	075	297	.467	391	.307	8
.16	.426	.103	179	.513	271	218	109	029	9
07	374	032	.519	236	112	.438	149	123	10
.10	143	083	•279	.279	017	040	098	.347	11
19	391	449	.375	.325	.109	,050	194	108	12
.46	.069	006	099	.175	308	.043	337	.106	13
.29	.206	021	179	.277	196	224	. 28 7	138	14
.46	285	.130	183	175	057	.252	017	.102	15
- ,26	154	236	•662	.407	.015	023	.036	007	16
.05	369	.087	.195	107	453	.320	202	.067	17
33	641	225	.478	045	.124	.119	.234	.045	18
.44	.164	.345	.192	,191	271	.265	249	.215	19
.21	171	.062	257	370	227	.277	.018	154	20
.20	202	.158	. 541	012	314	.378	361	.310	21
		•507				.273	-,004	019	22
.29	.226	.50	009	.108	541	.143	.036	.123	23
.44	360	.250	_004	171	422	•455	331	.23	24
.02	.063	.053	142	123	186	088	.222	144	25
.35	.265	.367	.134	.088	327	.107	264	.011	26
.00	168	.327	.104	114	304	. 158	.268	002	27
		025							28
32	.122	092	.613	.409	-,103	070	.273	.087	29

Table 7. Coefficients of correlation between the weekly rainfall and the yield of pepper

* Significant at 5% level ** Significant at 1% level

	an	d the y	ield of	pepper					
Varie- ties	- 24	25	26	Sta 27	andard 28	weeks 29	30	31	32
1	245	043	120	 043	259	369	.048	.037	-,089
2	.358	•04 7	075	.052	085	269	۰099	۵ 07 ،	180
3	087	177	217	.235	273	287	.104	.373	006
4	335	038	.296	.243	.019	.054	-,388	~. 0 6 8	072
5	.266	.110	.111	302	040	145	.225	088	-,329
6	.207	.034	.086	415	343	004	. 32 7	279	434
7	.241	.171	.176	256	.252	174	040	002	103
8	.091	296	086	085	496	295	.031	.041	243
9	.329	.232	.068	314	.163	173	.198	•092	147
10	056	210	.187	009	.105	.168	.364	.234	224
11	.439	152	.003	.143	.456	.196	.08 7	177	273
12	153	041	.152	.130	· . 171	261	131	.286	.089
13	.437	.115	081	080	.155	214	.074	168	323
14	.374	315	076	035	.202	.004	.032	.242	123
15	.003	325	176	.073	467	283	210	.048	360
16	017	071	• 574	.027	.359	.224	. 1 1 0	.049	456
17	405	097	.096	.378	219	452	024	₊ 558ُ	.205
18	251	303	.1433	.296	.149	.232	.047	.036	336
19	.002	059	.256	228	256	091	.205	164	516
20	.124	.067	.080	.235	003	,146	.245	. 006	318
21	293	.012	.473	.011	079	037	.209	211	 58Ô
22	272	106	.187	161	603	023	• 202	.09 9	346
23				162	232	147	.299	.289	288
24	- <u></u>	180				370			- L -
25						•62 ື	.461	184	
26	.038	.177	.384	399	-,238	.005	.307	205	549
		332	030			.013		.258	
						249		113	
29	117	175	.312	054	.469	.278	.261	.009	277

Table 8. Coefficients of correlation between the weekly rainfall and the yield of pepper

90

		of rainy	days	and the	yield	of peppe	r		
Vari	e-	, 1 2 - 1 2 - 12 - 12 - 12 - 12 - 12 - 12 - 12		,	Standar	d weeks		ی بنیا شد سا مل بی بی نو د	
ties	15	16	17	18	19	20	21	22	23
1	360	 221	.719	292	202	.114	 146	.115	048
2	193	242	.309		018	231	.302	.286	.219
3	065	225	. 58	401	31	172	002	.029	236
4	191	.085	.061	.471	.291	.013	- •565	348	-,498
5	113	219	.091	372	.261	.061	.433	.360	.161
6	100	241	.271	351	021	049	.458	.266	.274
7	119	077	192	123	.510	.228	.176	.264	071
8	022	528	.333	252	033	.176	.431	.115	.233
9	035	088	069	443	.318	.023	.400	.436	021
10	302	191	.278	.029	13	. 435	141	403	226
11	.243	119	-,389	011	.221	.31 3	.137	187	.202
12	299	167	.063	.124	.229	.27 0	468	286	414
13	074	290	.137	442	.076	.098	.147	.190	.213
14	107	.476	-,215	010	. 29 3	262	.221	216	.031
15	140	321	.308	259	200	- 123	.086	075	.048
16	149	.118	127	.329	\$ 554	• 57Ž	.035	380	396
17	174	- .073	.393	.021	.002	.022	-,169	201	422
18	.154	.013	.159	.140	.134	.335	313	420	471
19	116	237	.298	172	.293	.244	.396	.175	.088
20	323	076	•52 9	203	341		202	189	114
21	140	-0.79	.261	.101	.345	.569	.064	189	041
22	014	19	•454	158	037	025	.031	.099	170
23	.168	002	.356	412	,195	.091	. 617	.357	141
24	139	466	•446	174	103	.002	.083	115	116
25	043	.225	014	074	095	162	.052	214	0
26		149							.087
		.031					.351	.089	083
		243		•			063		.051
29	.179	.450	094	.187	. 560	•5 7 5	.225	.082	315
						~~~~~~			

Table 9. Coefficients of correlation between the weekly number of rainv davs and the vield of pepper

. 91

		of rainy	y days	and the	yield	of pepp	er		
Varie					tandard				
ties	24	25	26	27	28	29	30	31.	32
1	.079	.295	.184	107	202	434	.177	268	027
2	.124	.309	.121	225	322	139	.157	353	141
3	143	.139	.367	055	098	488	078	153	047
4	256	.169	.079	.275	031	496	.183	121	047
5	.135	.357	.167	220	429	.119	.318	427	205
б	<b>.</b> 189	.338	.109	479	<b>-</b> .696	.345	.226	<b>-</b> .582	449
7	.093	.388	.164	.146	047	105	.235	180	.096
8	.012	.202	.275	159	-,379	.031	280	396	063
9	.117	.382	.227	.057	170	037	.316	240	010
10	.038	.111	.328	.011	227	.254	.164	159	137
11	.133	189	.247	.176	.233	.220	045	.139	.098
12	207	.290	.332	.234	.070	446	.201	059	.187
13	.277	.324	.385	074	072	211	.137	214	033
14	008	.033	220	556	349	.309	.303	.023	392
15	010	.107	.249	321	-,501	141	115	274	344
16	148	,228	.297	.083	081	.114	.283	006	235
17	534	.168	•244	083	.089	575	.008	.111	.098
18	219	-,129	.435	.275	.141	296	.123	.059	.005
19	001	•330	.200	279	533	.109	.251	477	349
20	.109	.199	.198	205	373	103	.316	299	395
21	184	.175	.299	234	230	.024	.262	125	366
22	195	.230	.205	320	576	.044	.040	427	389
23	134	<b>.</b> 205	.250	195	229	120	.152	222	106
24	212	.260	.451	031	126	422	287	169	012
25	.268	.037							
26	•050	•439	.180	442	604	.256	.327	468	515
2 <b>7</b>	598	.053	370 ،	•044	059	277	057	113	.005
28	.208	.384	.135	109	<b></b> 39 <b>7</b>	292	.262	474	139
29	117	078	.053	.174	.239	.092	.341	.207	.038
	ا ستر سو می باد که ای						·		

Table 10. Coefficients of correlation between the weekly number of rainy days and the yield of pepper

		maximum	temper	ature	and the	yield of	E pepper	c	_
Vari	e	، باي مي هي هي هي اين بي بي بي م			Fortnig	hts			
ties	8	9	10	11	12	13	14	15	16
1	.269	.281	.441	.394	.029	•045	.259	.264	151
2	.231	.428	<b>₊62</b> 3	.158	303	.286	.170	.164	124
3	.098	.385	.497	.411	. 065	.262	.032	.122	.255
4	• 359	348	.021	<b>.</b> 58	.576	.204	.198	.188	,135
5	.128	.286	. 324	043	3 <b>-</b> .150	.009	.233	.243	146
6	.081	.345	.340	125	5241	150	.422	.093	.022
7	•171	.032	.983	.044	.080	.080	.037	.171	314
<b>8</b> .	.153	.445	.334	.086	<b></b> 153	.029	<b>.</b> 308	193	.119
9	006	.196	.210	096	<b></b> 105	.037	016	.254	213
10	.312	.268	.137	. 384	.453	.045	.164	009	.216
11	.367	.289	.218	.224			082	20	103
12	<b>.</b> 618	.259	.359	.7 <b>7</b> 1	682	•518	.290	.080	.042
13	.448	.506	•655°	.361	148	.127	.131	.032	343
14	.197	.296	.301	.148	059	.263	.205	.114	067
15	.045	<u>.</u> 273	.354	.311	190	.025	.206	.048	•0 <b>7</b> 4
16	.224	236	215	.229	• • 551	144	010	.169	<b>.</b> 098
17	.205	.215	.246	.463	.468	.464	.151	.123	.401
18	.252	075	.047	•55 ³	.577	076	062	.141	.312
19	.143	.149	.200	.009	008	176	.341	.244	.039
20	.202	.18	.502	.379	009	.140	.076	.251	.145
21	.28	.017	.037	.213	.341	245	.284	.238	.129
22	271	045	060	150	.011	270	.202	<b>.1</b> 59	.434
23	268	.066	.033	222	104	255	064	.306	.160
24	.233	.367	.456	.426	.068	.333	.084	130	.292
25	.099	.013	.217	.040	<b>-</b> .065	124	171	.135	.069
26	.045	0.75	.092	148	029	298	.350	.217	.029
27			مله			320			.338
28						.111			231
29	066	363	419	131	.348	402	261	.339	028
*									

Table 11. Coefficients of correlation between the fortnightly maximum temperature and the yield of pepper

* Significant at 5% level ** Significant at 1% level

92

	I	ninimum	tempera	ture an	d the y	yield of	pepper		4
Varie-	-			Fo	rtnight	tly			
ties	8	9	10	11	12	- 13	14	15	16
	100								
1	.102	131	.284	.112	226	085	092	.212	223
2	298	052	.076	.392	079	.280	.089	.095	201
3	090	204	.022	099	217	273	494	.036	.007
4	.291	178	152	•076 *	.347	074	.159	.174	<b>-</b> .039
5	293	.015	.025	•565	.163	.312	.265	.201	054
6	475	108	<b>.07</b> 6	.138	197	035	.001	.050	145
7	.124	•086	082	•793	<b>.</b> 569	<b>.</b> 52Ô	.500	.164	.018
8	215	226	248	.081	166	.001	131	292	<b>-</b> .093.
9	084	.121	.037	•6 ⁶ 7 ⁻	.345	.368	.251	.235	.092
10	392	444	162	069	.221	302	183	020	202
11	351	.089	253	<b>.</b> 617	.484	<b>.</b> 57Ĝ	.415	203	064
12	.088	.074	015	.407	•658	.221	.309	.045	260
13	174	.149	.151	<b>.</b> 807	.225	•55 ⁹	.369	007	245
14	603	102	216	.261	.141	.298	.009	.091	142
15	166	361	223	.062	37	074	373	040	.015
16	238	333	432	. 339	•63Ô	-,006	.147	.170	.011
17	032	.091	.016	307	.087	333	316	.039	145
18	088	296	325	.110	<b>.3</b> 02	158	171	<b>.1</b> 08	.169
19	338	184	119	.293	.024	.030	.092	<b>.</b> 178	053
20	398	398	.130	120	261	312	327	.225	214
21	347	004	007	.118	.146	109	.132	.196	185
22	209	370	173	43	381	641	565	.091	.177
23	180	190	202	.133	099	178	341	.232	.316
24		265	240	073	095	191	364	241	141
25	696	358	066	.113	.056	090	097	.173	095
26	380	063	.056	.165	013	116	.071	.187	113
27	008	443	417	098		423			
28	.009					.144			217
29	100	190							.301

Table 12. Coefficients of correlation between the fortnightly

,

.

.

* Significant at 5% level ** Significant at 1% level

93

ŀ.

		relativ	e humið	ity and	the yi	eld of	pepper	2	-
Vari	 e-		یہ جا جا ہے جا کا ہے ۔	Fo	rtnight				
ties	8	9	10	11	12	13	14	15	16
	53 ^{\$}		<b></b> 412	<b></b> 572	<b></b> .210	.130	154	.172	267
2	312	156	404	078	034	.021	<b></b> 540	.012	622
3	415	152	353	446	257	027	276	055	271
4	122	183	<b></b> 05 <b>5</b>	496	421	.046	.196	.169	.209
5	068	089	049	.172	.086	.240	486	.129	440
б	315	-,215	183	.147	.197	.309	521	.040	552
7	.309	.138	.308	.228	.051	.161	208	.083	022
8	295	167	182	110	.004	263	** 849	406	574
9	.241	.191	.222	.333	.141	.304	243	.150	133
10	285	359	085	302	144	.090	279	003	381
11	.061	243	111	205	358	379	264	216	351
12	219	334	077	497	589	075	117	.018	098
13	211	306	326	311	336	092	379	054	518
14	323	342	251	.005	.376	.466	158	.104	245
15	339	256	439	436	.069	047	634	146	462
16	.033	182	.268	095	123	.257	134	.138	031
17	51	240	198	390	481	044	151	017	049
18	209	345	117	<b>-</b> .678	556	054	.080	.072	.044
19	313	285	122	032	.001	.232	558	.104	457
20	478	3	543	416	170	.216	146	.241	518
21	503	582	221	380	469	.089	304	.192	351
22	242	.021	.027	.068	.191	.303	380	.025	156
23	096	.081	.134	.161	.202	.359	289	.099	051
24	380	124	31	393	331	352	<b></b> 708	367	- 518
25	104	151	226	022	030	330	.039	.248	418
		207							
		.127							
		302							
		084							

Table 13. Coefficients of correlation between the fortnightly

* Significant at 5% level ** Significant at 1% level

•

	1 	ainfall	and th	e yield	of pep	per			
Varie		9	10		rtniģht		14	15	16
ties	8 	y 		11	12	13	14 		
1	185	12	085	092	.013	093	181	210	007
2	.048	362	232	.298	<b>,</b> 576	014	073	120	065
З	038	313	291	206	.082	227	012	129	.280
4	065	.513	.297	-,497	436	.143	.167	162	079
5	.011	271	.096	.391	.401	.127	217	.023	195
б	097	268	131	.383	.434	.068	469	.164	304
7	067	048	.381	.231	.162	.201	014	131	042
8	.102	168	.045	.071	.398	224	349	172	064
9	075	346	.085	.395	.302	.176	103	009	.012
10	179	.016	.324	330	076	020	.057	.292	.089
11	.271	030	.358	147	.338	088	.362	.169	24
12	186	<b>.12</b> 8	.459	464	-,206	.060	.184	232	.251
13	056	306	003	.058	•53 ²	.023	0.41	-,098	252
14	.004	271	023	.171	.399	229	.098	.018	-,134
15	.085	.016	232	208	.255	292	231	287	104
16	.009	.009	<b>.7</b> 35	199	155	.279	.231	.198	140
17	031	373	.113	292	228	004	.112	299	.501
18	.146	,164	.376	614	342	10	.277	.170	103
19	.083	201	.247	.239	.245	.108	298	.047	324
20	132	152	382	129	.198	.085	.148	.217	119
21	.119	212	•52 [*] 6	128	076	.272	039	.083	385
22	019	180	106	.094	059	.042	461	.088	060
23	.128	513	.042	.336	.137	052	241	.059	.031
24	.059	301	<b>-</b> .075	238	.267	101	.043	276	.183
25	031	219	174	.069	.352	.228	.358	<b>.</b> 634	342
26	110	307	.151	.332	.214	.32	396	.159	368
27	.119	267	.034	051	109	215	146	.095	.095
		001							
29	.203	217	•69 <u>5</u>	.079	254	.071	.245	.309	100

Table 14. Coefficients of correlation between the fortnightly rainfall and the yield of pepper

* Significant at 5% level ** Significant at 1 % level

95

i

	f rainy	Fo	rtnight	 S	ه جلو بين جينا ونه خد جيد يوه		*
9	10	<u>11</u>	12	13	14	15	16
.361	060	.006	.003	.291	178	033	203
-,059	147	.326	.196	.263	317	.072	337
.169	296	.018	215	.302	088	209	075
.409	.190	- 532	<b>4</b> 34	.151	.120	053	114
21	.199	.435	.164	.320	375	.313	43
048	042	.386	.260	.274	67	.330	698
251	.453	.253	006	.337	.045	.151	062
.078	.083	.276	.156	.287	314	218	315
<b></b> 395	.213	.469	.038	.370	133	.247	172
.248	.173	326	129	.261	134	.241	200
324	.322	056	.189	.027	.233	.053	.160
.146	.303	404	359	.374	.161	018	.082
226	.105	.191	.259	.427	081	.026	170
183	129	<b>-</b> .036	.017	109	496	.379	242
.053	197	008	.027	.213	470	153	416
,148	.6 ⁸³	261	321	.316	008	.281	159
.336	.014	208	-,506	.242	.013	231	.142
.236	<b>.</b> 280	417	401	.175	.226	020	.044
.111	.327	.298	.056	<u>, 3</u> 22	469	<b>.</b> 253	560
.274	383	184	269	.239	333	.219	467
.289	.550	091	107		250		327
.249	038	.209	195	.263	516	.051	551
	.176		150				223

Table 15. Co ກພ

Varieties

1

2

3

4

5

6

7

8

9

10 11

12

13

14

15

16

17

18 19

20

21 22

23

24

25

26

27

28

29

8

-.353

-.276

-.194

-.045

-.216

-.224

-.120

-.382

-.081 -.301

.050

-.282

-.244

.274

-.302

.001 -.147

.094

-.231

-.231 -.203

-.141

-.403

-.188

-.371

.091

.134

.182

.414

.229

-.068

.046

.145

.203

.066

-.064

-.154

.271

.106

-.087

.689

*Significant at 5% level

-.035

-.113

.300

.222

.106

.053

-.168

.117

.079

.124

-.334

-.255

.426

.099

.378

.249

.321

-.017

-.093

-.239

-.595

-.014

-,299

.235

-.413

.509

.377

-.162

.096

.321

-.125

-.408

-.663

-.075

-.420

.168

**Significant at 1% level

95

. ' '

	weather pa	arameters of	group 1 :	for varie	ety 1
Standard weeks	Regression MXT	coefficient MNT	s for the RH	weather RF	parameters NR
15	.07045	<b></b> 26733	0089	0503	2728
16	-1.10168	20236	2413	.0177	.2291
17	11142	13166	.2427	.0874	1.0190
18	08476	24613	0758	0071	-1.0026
19	<b>.874</b> 84	.69259	.0348	.0285	.6961
20	′ <b></b> 04529	.21226	0311	0087	2318
21	.41378	5052	1384	0	4362
22	.08 <b>786</b>	.72967	0324	0059	4191
23	,28958	46754	.1378	.0039	.1721
Intercept	20.06575	15.34805	11.4830	.4401	2.5712
$R^2$	.662595	.70392	.57456	.53144	.8354

Table 16. Estimated 1st stage regression models from weekly weather parameters of group 1 for variety 1

Table 17. Estimated 1st stage regression models from weekly weather parameters of group II variety 1

Standard weeks	Regression MXT	coefficient MNT	ts for the RH	weather RF	parameters NR
24	 0		287	- <b></b>	.5725
25	1010	.7153	.4721	0021	4105
26	0	4403	.3744	0	.3408
27	0	6005	.34 <b>9</b> 7	0	·8547
28	.3500	<b>.</b> 1992	.0276	0012	-1.0725
29	.1571	1.0092	.1223	0074	-1.9017
30	0	-2.0989	9029	.0061	.2854
31	2551	5624	.2338	0020	1024
32	0	.8064	1023	0046	<b>.</b> 5497
Intercept	-11.0075	82.3245 -	-27.0285	3.8684	18.4872
$R^2$	.2200	.6006	.7552	<b>.</b> 3672	.7056

97

. ^I

·

	weather pa	arameters of	group 1	variety .	
Standard weeks	Regression MXT	coefficients MNT	for the RH	weather RF	parameters NR
15	.19404	19574	0999	0163	-,5902
16	54957	.16941	.0356	0026	1127
17	03823	12298	.0397	.0298	.2875
18	.05231	.20431	0321	0043	4545
19	.25677	09808	0	•02 <b>2</b> 6	.4716
20	.10015	.11774	0576	0083	3846
21	.01998	15497	.1217	.0014	.2238
22	.00983	.18926	0218	0026	2999
23	13037	07226	0	•0029	.1161
Intercept	9.00211	-2.01896	2.2587	.3632	1.9608
$R^2$	.829921	.61152	.44356	.8372	<b>.912</b> 0
		,			

Table 18. Estimated 1st stage regression models from weekly weather parameters of group I variety 2

Table 19. Estimated 1st stage regression models from weekly weather parameters of group II for variety 2

Standard weeks	Regression MXT	coefficient MNT	s for the RH	weather RF	parameters NR
24	1420	.0774	- <b>.</b> 0788	.0035	.0964
25	.1845	.5295	.1841	001	<b>O</b> '
26	2138	.0624	.3312	.0013	.0819
27	07 <b>7</b> 2	7713	0237	.0010	3513
28	.299	.1079	.3822	0015	0
29	.245	.4183	2470	0039	3848
30	2164	-1.2321	2500	.0039	<b>.</b> 0 <b>7</b> 59
31	1390	2421	2470	0008	2305
32	.0149	•5391	<b></b> 256 <b>7</b>	0013	0
Intercept	4.9409	37.7206	20.6676	.6590	5,5683
R ²	.8100	.8519	.7921	.6053	.3782

•

	weather pa	arameters (	of group I	for varie	ety 3
Standard weeks	Regression MXT	coefficien MNT	nts for the RH	weather RF	parameters NR
15	03576	4863	3340	0586	<b></b> 0651
16	-1.09529	.41708	3276	.0236	2882
17	09707	16247	.3986	.0912	.8461
18	.06502	.29837	.1468	0124	7958
19	.70903	.04587	0650	.0413	.3774
20	.15938	.15639	.1994	0177	5221
21	.18510	61988	3324	.0129	.1349
22	.12041	.47498	.0501	0121	5046
23 .	13423	· 0	.1425	.0021	1633
Intercept	16.33898	-6.77732	12.8597	2,1679	5.9586
R ²	.81 <b>36</b> 0	.50837	.6989	.8649	.8798
,	بر هو هو هو چو چو چو چو هو هو هو چو چو چو و	1914 - مرد الله مرد الله عنه المرد الله الم			

Table 20. Estimated 1st stage regression models from weekly weather parameters of group I for variety 3

Table 21. Estimated 1st stage regression models from weekly weather parameters of group II for variety 3

,

.

Standard weeks	Regression MXT	coefficien MNT	ts for the RH	weather RF	parameters NR
24	0664	1706	<b></b> 2298	.002	.1644
25	.0460	.6730	.4113	.0012	<b>578</b> 0
26	0	4006	0061	0031	<b>.75</b> 80
27	2287	-1.1800	.2055	.0036	-1.2674
28	.3977	3226	5279	.0051	5099
29	•2746	1.1742	.3833	0027	-1.4089
30	-,0846	-1.6237	7434	.0053	.0727
31	1361	02	.5401	.0053	4627
32	0	4273	.1495	0075	<b>.657</b> 0
Intercept	-14.4755	169.4691	-15,2653	2.2361	19.0703
R ²	.4409	<b>.</b> 88 <b>36</b>	.8010	.6052	.6642

.

99



Table 22. Estimated 1st stage regression models from weekly weather parameters of group 1 for the variety 4

			15 <u>5 6 / /</u>		
Standard weeks	Regression MXT	coefficient MNT	s for the RH	weather RF	parameters NR
15	.02202	•2295	.2114	<b>-</b> .0075	.3257
16	00394	09158	.0183	.0099	.0478
17	0655	0119	1307	.0162	,1949
18	07056	0	.0916	.0026	0815
19	00707	0469	.0279	.0100	.2590
20	.04439	.0888	1357	0011	0776
21	.07878	1460	.0557	0031	4345
22 ·	.03100	.1296	1785	0019	0350
23	.01806	.0807	0804	.0000	.0370
Intercept	-3.39728	-16.8404	11.7992	.2770	.6772
R ²	.7744	.53876	.7850	.6257	.8556

Table 23. Estimated 1st stage regression models from weekly weather parameters of group II for the variety 4 Standard Regression coefficients for the weather parameters weeks MXT MNT RH RF NR -------------______ -----.0630 -.0560 -.002 .0658 24 .0690 .06192 .0001 25 -.0257 0 -.0515 26 .0432 0 0 0 -.2033 27 0 -.3764 .1227 .7321 .0001 28 0 .2216 0 .0009 -.4776 29 -.0947 0 0 .0014 -.5896 .0681 30 .0724 -.0646 -.1220 -.0027 31 0 .2106 .1072 -.0004 ,1787 32 0 -.2978 0 0 -.2753 Intercept -4.6776 18.3306 -10.5460 1.0361 3.8759  $R^2$ ...3422 .3894 .3125 .4747 .7140

	weather par	cameters of	group I f	or the va	riety 5
Standard weeks	Regression MXT	coefficier MNT	nts for the RH	weather RF	parameters NR
15	.50862	1507	0	0291	8155
16	78639	4365	.0414	0140	1137
17	.01682	0134	` <b>0</b>	.0182	.1561
18	.22201	1955	1739	0024	5087
19	.20085	.2522	° 0	.0311	.5627
20	.08474	1257	0	0016	2595
21	19696	.0431	.2210	.0117	.3653
22	0435	.2804	0	0021	2279
23	11226	2964	.0208	.0036	.1110
Intercept	11.21845	50,5412	-7.8433	.71672	2.5797
$R^2$	.64481	.61309	∂.2759	.61623	.7586
و من من بن کار به من من بن بن					

Table 24. Estimated 1st stage regression models from weekly weather parameters of group I for the variety 5

Table 25. Estimated 1st stage regression models from weekly weather parameters of group II for the variety 5

Standard weeks	Regression MXT	coefficie MNT	nts for the RH	weather RF	parameters NR
24	1783	• <b>4</b> 422	<b></b> 0549	.0040	0
25	.2364	.4680	.3678	0033	.2365
26	3960	.2926	.2436	.0042	.4092
27	.1077	9170	2515	0018	6198
28	.2647	.1471	.5080	0005	0898
29	.2501	.2572	3880	0054	.1873
30	2141	-1.8287	1380	.0053	.2097
31	1904	5451	3640	0009	2821
32	.1121	1.5490	2682	0031	.4126
Intercept	3.0182	10.7449	35.4161	2.4491	5958
R ²	.810	.8172	.9624	.6496	.5141
				د این میں میں جن جو سے میں کو	

	weather pa	arameters o	of group I	for the v	variety 6
Standard weeks	Regression MXT	coefficier MNT	nts for the RH	weather RF	parameters NR
15	.59751	3569	1663	0404	8203
16	90952	5071	0	0092	2071
17	.04051	.0385	.0845	.0074	.2173
18	.27861	3824	1794	0006	3195
19	.21254	.4515	.0689	.0200	.3141
20	.09643	0639	0	.0030	3058
21	2693	0254	.0941	.0218	.5848
22	06167	.2839	.1026	0030	3061
23	11128	4214	.0680	.0051	.0637
Intercept	12.3150	75.8671	-5.3418	0457	2.1377
$R^2$	.91394	.5914	.4872	.6989	.6889

Table 26. Estimated 1st stage regression models from weekly weather parameters of group I for the variety 6

Table 27.	Estimated weather pa		regression f group II		
Standard weeks	Regression MXT	coefficien MNT	ts for the RH	weather RF	parameters NR
24	2192	.2294	<b></b> 0557	.0044	1511
25	.2292	<b>.6</b> 262	<b>.</b> 2949	0030	.1833
26	4161	2113	.1101	.0041	.4399
27	.0702	2529	2234	0017	-1.1270
28	.4118	0	0690	0029	.4398
29	.2107	.3222	.0138	0039	.4773
30	2460	-1.7544	0989	.0060	.0728
31	1116	5655	1838	.0003	6885
32	.1273	1.5412	0073	0040	.2606
Intercept	-2.705	5.3709	22.7986	1.7381	2.1256
R ²	.8538	.5446	.9370	.8817	.8010
			، جی حد حد حد حد حد مد مد مد مد مد مد .		~ ~ ~ ~ ~ ~ ~ ~ ~ ~

	weather pa	arameters	of group I	for the v	variety 7
Standard weeks	Regression MXT	coefficie MNT	nts for the RH	weather RF	parameters NR
15	.20734	.3281	0	0212	<b></b> 58 <b>6</b> 1
16	0	4018	.0821	0188	.0444
17	0	0760	1006	.0143	0808
18	0	0025	0	0006	8683
19	0	0135	<b>O</b> · ·	.0357	.5411
20	0	2367	.0952	0007	0132
21	15372	.1617	0	.0018	0
22	0	.1934	0	0001	.0654
23	0	0726	0	.0015	.0755
Intercept	-4.55097	10.2677	-5.9263	.1077	.9588
$\mathbb{R}^2$	.09	.8010	.1945	.6626	<b>.</b> 56 <b>55</b>
د مله مي من من من دان دان مله مي مع					

Table 28. Estimated 1st stage regression models from weekly weather parameters of group I for the variety 7

Table 29.			e regression of group II		
Standard weeks	Regression MXT	coefficie MNT	ents for the RH	weather RF	parameters NR
24	0880	•68 <b>76</b>	.0059	.0023	0
25	.1984	3435	.4272	0029	.4891
26	311	1.0404	.1863	.0039	.24
27	.2345	-1.5434	-,2573	0034	0
<b>2</b> 8	0524	.3985	.9744	.0028	1907
29	.0842	0737	7159	0033	.1804
30	.0127	9381	1577	0	.2612
31	2240	4523	3952	0	0
32	.0972	.9151	3768	0013	.4308
Intercept	5.1735	22.3807	31.1292	1.8053	-7.4683
R ²	•7123	.9781	.9584	.4476	.3648

Standard weeks	Regression MXT	coefficien MNT	ts for the RH	weather p RF	arameter NR
15	.30225	2834	1616	0227	2952
16	51916	.0478	0411	0110	3927
17	.03636	0360	.0892	.0174	.1340
18	.15299	.0099	0476	÷0002	0747
19	.16308	.0558	0	.0177	.0922
20	02231	1892	.1171	.0005	1153
21	13473	0594	0	.0137	.4305
22	.04795	.1503	. 0	-,0042	2262
23	14354	2063	.0969	,0035	0051
Intercept	11.34090	39.5953	-4.1579	.01206	1,5992
R ²	.9370	•7517	.3994	.87049	.7921

Table 30. Estimated 1st stage regression models from weekly weather parameters of group I for the variety 8

.

.

.

.

Table 31.			regression of group II		
Standard weeks	Regression MXT	coefficie MNT	nts for the RH	weather RF	parameters NR
24	0635	0	0240	.003	-,1279
25	.1024	.5836	<b>.144</b> 8	0029	.0 <b>022</b>
26	1688	3273	0078	.0026	.3863
27	0118	0316	1591	0	5907
28	<b>.</b> 2436	.2069	2082	0024	2005
29	.1336	.4312	.0580	0035	.1769
30	0462	-,7864	1089	.0037	1206
31	08280	3465	.0366	.0003	2509
32	.0063	.5963	.0975	0015	.4316
Intercept	-8.3120	-22.8691	24.5279	1.4660	2.9798
R ²	.7022	<b>.</b> 5565	•9158	.8949	.6675

104

	weather pa	arameters	or group 1	for the v	ariety 9
Standard weeks	Regression MXT	coefficie MNT	nts for th RH	e weather RF	parameters NR
15	.1484	.0216	0	0166	4710
16	2414	2379	.0392	0097	.0052
17	· <b>`</b> 0	0	0	,0094	0086
18	<b>.</b> 126 <b>73</b>	0791	0767	0031	3001
19	0	,0999	0	.0197	.2707
20	.09628	0872	0	0029	1031
21	14168	.0655	.1031	.0048	.1710
22	0	.1285	.0172	0007	0230
23	0	0981	0	•000 <b>7</b>	0013
Intercept	1.55902	14.6679	-16.8662	.1509	.9509
R ²	.3091	.5685	.2209	.6384	.71910

Table 32. Estimated 1st stage regression models from weekly weather parameters of group I for the variety 9

Table 33.			regression of group II		
Standard weeks	Regression MXT	coefficier MNT	nts for the RH	weather RF	parameters NR
24	1086	.3182	0136	.0024	0
25	.1251	0461	.2556	0009	.2429
26	2066	.4209	.1189	.0018	.2551
27	.0969	-,7085	1713	0013	2545
28	.0499	.0058	.441	0	1849
29	.1272	.1047	3040	0023	.1367
30	0712	8083	0979	.0023	.1652
31	1370	2769	1962	,0008	0
32	.0903	.6554	1894	0015	.3702
Intercept	3.5015	24.1530	15.7679	.3412	-3.8197
r ²	.8354	.9063	•9006	.5271	.4761

106

Standard weeks	Regression MXT	coefficient MNT	s for the RH	weather ; RF	parame N
15	•33526		<b></b> 1997	252	
16	37548	2905	0414	.0085	0
17	.08617	0636	.0319	.0235	.0
18	<b>.</b> 06393	2290	0396	0008	0
19	.13224	.2761	0438	.0099	0
20	<b>0</b> 6058	0781	.2512	.0041	.0
21	16466	0819	0182	.0072	,2
22	.00713	.1476	.0335	0029	1
23	.01280	.0284	.0340	.0009	0
Intercept	-2.38950	28.03199	.173	.8775	2.1
$R^2$	.9525 <b>76</b>	.86862	.5806	.7225	•2

,

Standard weeks	Regression MXT	COEIIICIEN MNT	ts for the RH	weather RF	parameter NR
24	.0228	.2793	.1230	.0007	<b></b> 0915
25	0	.2329	.1283	0022	.1193
26	· 0	0283	4462	.0022	.3455
27	0	3873	.0862	0009	0
28	0	2681	6704	0	1673
29	1062	0406	.1936	0007	.4485
30	<b>.</b> 0487	7903	.1324	.0022	.0618
31	0	1808	.2311	.0016	0
32	.0476	.5873	.1289	<b>002</b> 0	.2192
Intercept	.3218	44.281	11.1748	1.3045	-4.3375
$\mathbf{R}^2$	.2480	.5883	.7500	.5213	.5868

tandard weeks	Regression MXT	coefficient MNT	for the RH	weather pa RF	arameters NR
15	0574	1782	0197	.0150	.5120
16	.5002	,1048	,0608	0	0387
17	0	0648	0433	0172	0616
18	.01711	.0534	1235	0	3210
19	0497	1815	1230	0	.2771
20	.0641	1622	,1622	.0046	.1367
21	3765	<b>.</b> 2767	.1293	0044	1889
22	.0436	1805	.0414	0	2468
23	.1263	.2003	0649	.0020	.2373
Intercept	-24.4455	11.5457	3698	1.1399	1.0994
r ²	.6448	.8409	.69556	.31923	.6368

anion models f Table 26 Retimated fin - -

Table 37. Estimated first stage regression models from weekly weather parameters of group II for the variety 11 - Karimunda-2

Standard weeks	Regress MXT	ion coeffic MNT	cient for RH	the weather RF	parameters NR
24	0853	.1590	•0220	.0014	<b>-----</b>
25	<b>.2</b> 221	.1384	.0343	0023	1086
26	2104	.4684	0845	.0005	.3794
27	.1140	4985	1879	0004	1538
28	1105	1456	.5350	.0026	.5973
29	0	3101	2818	0014	.5162
30	0130	0	.1022	0	0
31	0	.1831	2686	0017	1947
32	0	.10	3485	0031	0
Intercept	8.5007	1.6376	47.1992	2.2636	-5.1585
R ²	.3588	.4775	.5889	.5213	.3844

.

Table 38.	Estimated first stage regression models from weekly
	weather parameters of group I for the variety 12 -
	Karimunda-3

Standard weeks	Regress MXT	sion coeff. MNT	icient for RH	the weather RF	parameters NR
15	.056	.0573	0155	0123	.0751
16	0857	0139	0131	0035	0108
17	•000 <b>7</b>	0457	0290	.0163	.0910
18	.0305	.1511	.0298	0004	1465
19	.0490	0514	0050	.0129	.1568
20	0125	0261	.0543	0010	0
21	.0260	0894	0331	•000 <b>7</b>	1804
22	.0115	.0824	0218	0022	0644
23	.0143	.1203	0249	.0002	.0153
Intercept	-7.61339	-13.0912	5,8691	.5392	1.0577
$R^2$	.75864	.7174	<b>.</b> 58 <b>37</b> 0	.73274	.5155

Table 39. Estimated first stage regression models from weekly weather parameters of group II for the variety 12 -Karimunda-3

Standard weeks	Regressio: MXT	n coeffici MNT	ent for th RH	e weather RF	parameters NR
24	.0130	.045	0293	0	0
25	.0511	.7018	.1274	0	.0611
26	0261	.4173	1465	.0004	.1207
27	.0623	.59910	.0261	0	0
28	0335	.1221	0202	0	2401
29	0443	.6947	0221	0	1332
30	.0445	1.02694	0451	0	.0780
31	0179	.2458	.0678	.0008	.05 <b>79</b>
32	.0237	.1016	0065	0	,1924
Intercept	-5.4650	46.6654	5.5025	.44933	0335
R ²	.6178	.640	.7465	.1116	.4886

Standard weeks	Regression MXT	n coeffici MNT	ent for the . RH	e weather RF	parameter: NR
15	0097	2329	0	0098	.0456
16	0832	.1077	0	0073	.0216
17	0814	0725	.0769	0	.3152
18	.0434	0021	1521	0035	8009
19	.2685	0505	0306	.0129	.6920
20	.1385	.0499	0	0	1625
21	1693	.0415	.0655	0011	278
22	.0440	.1449	.0436	0019	3604
23	0132	0227	0	.0043	.2944
Intercept	-11.6205	-3.6976	1.2392	.9154	1.8673
R ²	.65125	.8154	.3192	.46104	.7396
Table 41.	Estimated f weather par				
 Standard	weather par Karivally Regression	ameters c	of group II ent for the	for the v	parameters
	weather par Karivally	ameters c	of group II	for the v	variety 13
Standard weeks	weather par Karivally Regression	ameters c coeffici MNT	ent for the RH	for the v	parameter
Standard weeks	weather par Karivally Regression MXT	ameters c coeffici MNT	ent for the RH	for the veather RF	parameter NR .2007
Standard weeks 24	weather par Karivally Regression MXT 1928	ameters c coeffici MNT .1834	ent for the RH 1554	for the weather RF .0026	variety 13 parameter NR .2007 1058
Standard weeks 24 25	weather par Karivally Regression MXT 1928 .2689	ameters c coeffici MNT .1834 .3912	ent for the RH 1554 .2954	for the weather RF .0026 0012	variety 13 parameters NR .2007 1058 .4594
Standard weeks 24 25 26	weather par Karivally Regression MXT 1928 .2689 3066	ameters c 1 coeffici MNT .1834 .3912 .3538	ent for the RH 1554 .2954 .3261	for the weather RF .0026 0012 .0001	variety 13 parameters NR .2007 1058 .4594
Standard weeks 24 25 26 27	weather par Karivally Regression MXT 1928 .2689 3066 .1403	ameters c 1 coeffici MNT .1834 .3912 .3538 8195	ent for the RH 1554 .2954 .3261 1647	for the weather RF .0026 0012 .0001 0001	variety 13 parameters NR .2007 1058 .4594 8558
Standard weeks 24 25 26 27 28	weather par Karivally Regression MXT 1928 .2689 3066 .1403 .0709 .0950	ameters c a coeffici MNT .1834 .3912 .3538 8195 0373	ent for the RH 1554 .2954 .3261 1647 .8524	for the weather RF .0026 0012 .0001 0001 .001	variety 13 parameters NR .2007 1058 .4594 8558 .5663
Standard weeks 24 25 26 27 28 29	weather par Karivally Regression MXT 1928 .2689 3066 .1403 .0709 .0950	ameters c a coeffici MNT .1834 .3912 .3538 8195 0373 .2443	ent for the RH 1554 .2954 .3261 1647 .8524 3538	for the weather RF .0026 0012 .0001 0001 .001 0045	variety 13 parameters NR .2007 1058 .4594 8558 .5663 3413
Standard weeks 24 25 26 27 28 29 30	weather par Karivally Regression MXT 1928 .2689 3066 .1403 .0709 .0950 0658	ameters c . coeffici MNT . 1834 . 3912 . 3538 8195 0373 .2443 -1.2481 2646	ent for the RH 1554 .2954 .3261 1647 .8524 3538 3689	for the weather RF .0026 0012 .0001 0001 .001 0045 .0028	variety 13 parameters NR .2007 1058 .4594 8558 .5663 3413 .1537 4892
Standard weeks 24 25 26 27 28 29 30 31	weather par Karivally Regression MXT 1928 .2689 3066 .1403 .0709 .0950 0658 1068 .0594	ameters c . coeffici MNT . 1834 . 3912 . 3538 8195 0373 .2443 -1.2481 2646	ent for the RH 1554 .2954 .3261 1647 .8524 3538 3689 3004 4664	for the weather RF .0026 0012 .0001 0001 .001 0045 .0028 0020	variety 13 parameters NR .2007 1058 .4594 8558 .5663 3413 .1537 4892 .1430

Table 40. Estimated first stage regression models from weekly

,

.

Standard weeks	Regression MXT	n coefficie MNT	nt for RH	the weather RF	parameters NR
15	<b>.3</b> 062	.0273	<b>1</b> 020	0187	
16	2605	2309	.0673	.040 <b>9</b>	.2561
17	.0848	0627	0920	.0068	.0247
18	.2084	.2572	0	0037	2105
19	2579	1802	0031	.0122	.1541
20	.0843	.0042	.0664	.0018	2056
21	0702	1761	.0687	0023	.3473
22	0341	.1965	0457	0009	2671
23	.0104	0529	.0499	8.0046	•04 <b>37</b>
Intercept	-5.6334 3	l8.1009	.1083	3.3148	2.1166
R ²	,59136	.86103	.5329	.76038	.8538

Table 42. Estimated first stage regression models from weekly weather parameters of group I for variety 14 -Kottanadan

Table 43. Estimated first stage regression models from weekly weather parameters of group II for the variety 14 -Kottanadan

Standarð weeks	Regressi MXT	on coeffici MNT	ent for the RH	weather RF	parameters NR
24	0	.3030	.0447	.0022	0
25	1010	.4336	.1167	0027	• <b>09</b> 85
26	0	.1832	.3406	.0015	0947
27	0	4670	-,0469	0013	3176
28	.3500	4440	.2671	.0006	0
29	.1571	0453	2008	001	.1166
30	0	-,6696	1468	.0004	.0629
31	2551	1593	1621	.0018	.0640
32	0	.5361	2260	0026	0
Intercept	-11.0076	24.7946	2.7122	1,7891	2.1100
R ²	.2200	.5776	<b>.71</b> 06	.5852	.3894

•	1	l	1

Ĺ

		arameters d			variety 15 -
Standard weeks	Regressi MXT	MNT	lent for the RH	e weather RF	parameters NR
15	.5093	4324	0997	0421	<b></b> 5724
16	-1.2777	1614	.0056	.0410	5584
17	.0378	0625	.1281	.0561	<b>.</b> 5670
18	.1414	.0370	.0050	001	6868
19	.1920	.0132	.0366	.03 <b>3</b> 4	<b>.</b> 50 <b>77</b>
20	.1186	.1814	0253	009	6132
21	0209	7004	1345	<b>.</b> 00 <b>7</b> 6	.4869
22	.2672	.8088	1944	0109	7880
23	3871-^	5885	.2974	.0095	.0602
Intercept	41.8620	47.6113	.0975	.1637	5.3036
R ²	.9006	.8482	.67733	.6675	.5991

Table 44. Estimated first stage regression models from weekly

7

_

____

Table 4	Estimated first stage regression models from weekly
	weather parameters of group II for the variety 15 - Kumbhakody

Standard weeks	Regress MXT	ion coeffic. MNT	ient for th RH	e weather RF	parameters NR
24	1679	.2349	<b></b> 1712	.0023	.3806
25	.2280	.4865	.2410	0020	6685
26	2043	1.1091	.8364	0029	.4381
27	.1482	-3.2377	3383	.0010	0811
28	0	.400	.1172	0040	-2.3731
29	0138	.0568	.0428	0031	-1.4373
30	0	-1.3796	8050	.000 <b>7</b>	1721
31	.0126	-,5469	.1142	.0037	.4462
32	.0818	.6616	2268	0162	.3285
Intercept	-5.2978	162.0319	19.8636	6.1490	22.4123
R ²	.4692	.8226	,8538	.6956	<b>.</b> 6922
بر برو هم مله مرد بو من ما 20 مار وم		، بری اور است روه است ومواند هم است است و ا			الی سے جار ہے حا کے بند حار سے ابتا ہے

Table 46.		rameters	ge regress of group I		from weekly ariety 16
Standard weeks	Regressio MXT	on coeffic MNT	ient for th RH	ne weather RF	parameters NR
15	.6050	0635	.0367	0289	2781
16	3835	9490	.1144	.0250	.1430
17	.0279	.1340	2044	.0073	.0875
18	.1721	7926	1652	-,0007	1593
19	0123	•5439	.0591	.0205	.3143
20	0075	3053	.1286	.0148	.1912
21	4180	.0420	.3366	.0062	.1843
22	0091	.3416	1813	0018	2615
23	.0792	1107	0898	.0026	0317
Intercept	-4,6106	90.0661	-1.6686	2456	1.3553
$R^2$	.7921	.89492	.79388	.6996	.6197

Table 46 Estimated first stage regression models from weekly

Table	47.	Estimated first stage regression models from weekly
		weather parameters of group II for the variety 16 -
		Kuthiravally

******					
Standard weeks	Regressi MXT	on coeffic MNT	ient for RH	the weather RF	parameters NR
24	0827	.9077	.1500	.0006	2674
25	.36610	.4026	.2578	0057	.5084
26	4720	.1790	0305	.0069	.2178
27	.1945	6674	.0936	0031	.8130
28	1268	1784	1038	.0032	0
29	2209	2740	3191	0015	.8162
30	.0467	-1.4759	0	•0 <b>01</b>	.1879
31	.0571	-:5377	.0259	.0008	.1659
32	.1347	1.8289	1248	0043	1965
Intercept	9.9823	-13.5341	6.7442	1.8323	-13.0117
R ²	.7957	.8100	.5155	.8949	.5198

Kuthiravally-AR								
Standard weeks	Regression MXT	coeffic MNT	ient for the RH	weather RF	parameters NR			
15	1035	3970	3341	.0399	0			
16	7114	.1185	2076	0063	1132			
. 17	0872	.1609	.1894	.0545	.5529			
18	.1762	.2440	.1298	0101	284			
19	.4645	.1663	1429	.0325	<b>.</b> 267 <b>9</b>			
20	0839	1024	.0803	0064	22388			
21	<b>.41</b> 80	5204	2898	.0121	.0563			
22 .	.0109	.3561	.0591	0087	3656			
23	0 <b>779</b>	.0410	0035	0002	1355			
Intercept	2.8242 -	2.9830	22.4742	1 <b>.7</b> 795	<b>3.2</b> 908			
R ²	.7885	<b>.73</b> 45	.83357	.6757	.5446			

Table 48. Estimated first stage regression models from weekly weather parameters of group I for the variety 17 -Kuthiravally-AR

Table 49. Estimated first stage regression models from weekly weather parameters of group II for the variety 17 -Kuthiravally-AR

Standard weeks	Regressi MXT	on Coeffic MNT	ient for the RH	weather RF	parameters NR
24	.1670	<b></b> 0927	<b></b> 1528	:	3515
25	.0725	1.0024	1.1659	0012	.0084
26	0	-1.5004	3535	.0027	.2724
27	<b>3</b> 052	1.1063	.3672	.0027	-1.2103
28	.3417	<b></b> 409 <b>7</b>	-1.0861	0032	<b>.</b> 40 <b>72</b>
29	.2743	1.1267	.4197	0039	4814
30	.2572	-1.0019	1582	.0049	.0105
31	0061	.0004	.6158	.0019	4879
32	.14787	2099	.4364	.0024	.4448
Intercept	-10.5138	.5832	-22.7442	.3318	10.4586
$R^2$	<b>.</b> 56 <b>7</b> 0	.7242	.8668	.7006	.6147

,

.

.

Table 50.					from weekly ariety 18 -
Standard weeks	Regressio MXT	n coeffic: MNT	ient for t RH	he weather: RF	parameters NR
15	<b>039</b> 8	0	.0986	0060	.5225
16	.0601	0564	0610	.0172	.0466
17	0424	0367	0041	.0083	.1971
<b>1</b> 8	0219	0589	0061	0001	2083
19	.0845	0	0398	.0034	.1581
20	.0480	0479	.0377	.0026	<b>.</b> 06 <b>79</b>
2 <b>1</b>	1206	0	.0179	.0008	2790
22	.0453	0	0602	0023	1601
23	.0751	.1106	039	.0004	.0261
Intercept	-7.1134	7.7966	5.9334	.7900	.9678
$R^2$	.7191	.32376	.91394	.6273	.8630
********	·				و بود ها هر ۲۰ جز ۱۰۰ ها ها ه

Table 50 Estimated first stage regression models from weekly

Table 51. Estimated first stage regression models from weekly weather parameters of group II for the variety 18 -Munda

Standard weeks	Regressic MXT	n coeffic MNT	ient for the RH	weather RF	parameters NR
24	.0106	0		0012	 0
25	0	0	.0761	001	1819
26	0	0419	- 0	Ő	.1815
27	.0986	0	.0629	0	.2144
28	1334	0	0	.0009	0
29	1355	0	.0371	.0005	1752
30	.1419	0	1628	0004	.0483
31	.0605	.0551	.130	.0004	05 <b>79</b>
32	.0527	0	0223	.0031	1178
Intercept	-7.2335	1341	-5.9189	1.4579	1.1763
$R^2$	.4330	.07	.4583	<b>.</b> 459 <b>7</b>	.4665

Standard weeks	Regressio MXT	n coeffic MNT	ient for RH	the weather RF	parameters NR
15	.5791	3128	0	0348	6089
16	0162	6773	.0125	0013	1512
17	0210	.1126	0	.0176	.3517
18	.2314	5756	2027	0006	4074
19	.3077	<b>.</b> 5681	•08 <b>7</b> 8	.026 <b>7</b>	<b>.</b> 5569
20	.0397	2234	0502	•0057	1999
21	2321	0207	.2264	.0173	.4027
22 ·	0159	.4104	0438	0033	3512
23	1495	5040	.0172	.0051	.1036
Intercept	17.8029	95.2335	-2.1093	.1122	2.2475
r ²	.8427	.69389	.4422	.6416	.7293

Table 52. Estimated first stage regression models from weekly weather parameters of group I for the variety 19.-Narayakodi

Ŧ

Table 53. Estimated first stage regression models from weekly weather parameters of group II for the variety 19 -Narayakodi

_	-				
Standard weeks	Regressio MXT	n coeffici MNT	ent for the RH	e weather RF	parameters NR
24	1006	• <b>3</b> 907	0849	.0028	
25	.2250	.9268	.3192	0048	.1423
26	4220	3670	.2706	<b>.</b> 0056	.3386
27	.0284	-,2036	1197	0016	6016
28	.3643	.2191	.1001	0012	.4303
29	.2285	.4229	1919	0055	. 2174
30	2343	-2.0939	2178	.0059	.1033
31	1105	6903	1769	0015	6168
32	.0448	2.0104	0753	<b>.</b> 0043	0
Intercept	.2849	-43.6367	19.0201	3.1318	2.9500
$R^2$	.7621	<b>.7</b> 815	•9006	.8354	<b>.</b> 5256

.

· 115

	Palulauta	alameter O	r group i id		.160¥ 20 -
Standard weeks	Regressio MXT	on coeffic: MNT	ient for the RH	weather RF	parameters NR
15	.0957	1747	0895	0142	1956
16	3579	.0205	0160	.0133	.0127
17	0420	0753	.0488	.0251	.3052
18	<b>~.</b> 0685	0996	.0163	0029	2896
19	.2408	.1095	0195	.0071	.2089
20	.0932	.2579	0	0049	2446
21	.0110	2112	.0358	0	0003
22	.0166	.1668	0262	0023	2515
2 <b>3</b>	<b>02</b> 56	.0239	0094	.0008	.0235
Intercept	4.61716	6741	5.8913	.5141	1.6804
R ²	.8281	.7921	.52273	.5565	.9025

Table 54. Estimated first stage regression models from weekly weather parameter of group I for the variety 20 -Palulauta

Table 55. Estimated first stage regression models from weekly weather parameters of group II for the variety 20 -Palulauta

Standard weeks	Regressi MXT	on coeffic: MNT	ient for th RH	e weather RF	parameters NR
24	0603	.0254	0238	.000 <b>7</b>	.1379
25	0	.1729	.0635	0	1464
26	0	•090 <b>7</b>	.1294	0	.0617
27	0819	7611	.1663	.001	0066
28	.1422	1069	1204	0008	0
29	.0098	.0873	.0578	0	3979
30	0610	7377	- 1533	.0015	.0945
31	0375	.0049	.0280	0	1321
32	.0539	.1135	0923	0018	2186
Intercept	3.6895	81.1477	-4.2704	.3012	4.4212
R ²	.4356	.8836	.8208	.2916	.5170

	- Perumkod	ramete <b>rs</b> of g i	roup I fo	or the var	iety 21
Standard weeks	Regression MXT	coefficients MNT	for the RH	weather p RF	arameters NR
15	<b>.1</b> 400	-,36695	0110	0079	.0668
16	2918	5876	0045	0062	.0242
17	0817	.2021	.0081	0065	.3357
18	.0871	7346	2044	0008	3658
19	.3501	.6701	.1209	.00 <b>29</b>	.4629
20	0514	1678	0519	.0105	.0578
21	1299	0447	.1234	.008	0617
22	•00 <b>43</b>	<b>.332</b> 5	.0182	0015	3303
23	0308	3247	0728	.0025	.1660
Intercept	1.0941	78.6802	8.0554	.2586	.6687
R ²	•7362	•6956	• .83174	.6642	.6906

Table 56. Estimated 1st stage regression models from weekly weather parameters of group I for the variety 21

Table 57. Estimated 1st stage regression models from weekly weather parameters of group II for the variety 21 - Perumkodi

.

.

Standard weeks	Regression MXT	coefficients MNT	for the RH	weather RF	parameters NR
24	.0323	.2318	0792	0003	0803
25	.1629	.9974	.0937	0032	0
26	2765	8533	0	.0040	.2192
27	0404	.8828	.0896	0004	0
28	.1872	1004	2939	.0005	0
29	.0906	.2670	.0262	0041	0
30	2192	-1.5016	.0293	.0041	.095
31	.0358	4235	.0496	0027	1179
32	0383	1.6626	.0089	0033	1254
Intercept	6.4613	-83,9233	8.2688	2.0208	.9299
R ²	.6384	.7534	.5285	.8482	.2959

1

Table 58.		lst stage reg rameters of a			
Standard weeks	Regression MXT	coefficient MNT	for the RH	weather pa RF	rame N
15	.5170	3543	1504	0477	6
16	-1.1569	5737	1263	.0041	38
17	.0047	.2001	.1677	.0228	.2'
18	.2332	6619	0375	0009	.0
19	.2802	.6381	.1251	.0193	0
20	.0373	1372	0	.0026	2
21	1156	2321	0574	0574	.74
22	0082	<b>.</b> 40 <b>76</b>	.0144	0056	19
23	1515	5282	.1148	.0022	26
Intercept	35.4539	95.8127	-3.1392	.3479	2.8
$R^2$	.8208	.71403	.5198	.6889	.69

Table 59.		lst stage re rameters of a	-		
Standa <b>r</b> d weeks	Regression MXT	coefficient MNT	s for the RH	weather RF	parameters NR
24	0341	.1144	0410	.0016	2893
25	0209	.430	.1862	0015	.0426
26	1760	6072	227	.0030	.3511
27	1259	.0038	0404	0004	<b>-</b> ,5508
28	.4412	.Ú825	9071	0050	1682
29	.1776	.4813	.3917	0007	.1319
30	1352	-1.1856	1531	.0042	0628
31	0893	4746	<b>.</b> 3446	.0039	4347
32	.0858	1.0168	.4464	0048	.1707
Intercept	-8,6433	11.1469	-17.8730	1.4850	6.5247
R ²	<b>.</b> 7310	.7123	.9197	.8 <b>72</b> 4	.5730

	- Sallia				
Standard weeks	Regression MXT	coefficients MNT	for the RH	weather : RF	parameters NR
15	.2215	1934	0180	0268	3811
16	6207	4595	0922	.0143	.0027
17	0278	.1200	.1200	.0150	.2100
18	.1933	4241	0955	0051	2434
19	.1945	.4004	.03411	.0176	.1807
20	.0719	2420	.0212	.0014	1025
21	1250	.0056	.0728	.0129	.4358
22	0212	.2588	0	0022	1502
23	0599	3863	.0617	.0020	0995
Intercept	17.5357	70.9126	-17.3883	.1145	1.5104
R ²	.7850	.5806	.50268	.6956	.8630

Table 60. Estimated 1st stage regression models from weekly weather parameters of group I for the variety 23 - Sallia

Table 61. Estimated 1st stage regression models from weekly weather parameters of group II for the variety 23 - Sallia

Standard weeks	Regression MXT	coefficients MNT	for the RH	weather RF	parameters NR
24	0614	.1693	<b></b> 0560	.0018	1036
25	.1113	.6150	<b>.2</b> 462	0021	0
<b>2</b> 6	2320	4869	.2381	.0020	.3461
27	0290	.3380	0559	0008	6251
28	.1828	0956	.059	0014	О
29 5	.2241	<b>.</b> 5679	091	0026	0
30	1355	-1.2484	2953	.0039	.0638
31	0681	4847	.0287	.0018	2615
32	.0134	1.2224	.0308	0040	.3354
Intercept	.6640	-42.8281	-9.0408	1.4211	2.7286
$\mathbb{R}^2$	.7259	.8612	.7208	.6773	.3782

119

•

Tadle 62.		lst stage reg cameters of g nba 1			
Standard weeks	Regression MXT	coefficients MNT	for the RH	weather pa RF	rameters NR
15	.1565	4771	3499	0301	2717
16	6911	.4700	<b></b> 070 <b>7</b>	0110	5361
17	0712	0243	.1842	.0430	.4122
18	.0790	.1480	.0531	0049	2507
19	.4056	0655	.0571	.0295	.2994
20	.0338	0068	.1221	0068	3488
21	.0068	3662	1081	.0117	.3775
22	.1122	.2769	<b></b> 018 <b>7</b>	0082	4632
23	1678	.0072	.0626	.0026	0694
Intercept	14.7396	5.89462	7,3483	1.0028	3.4352
$R^2$	.8208	.75689	.67898	.9409	.8761
Table 63.	Estimated	1st stage rea	gression 1	models from	m weekly
Table 63.		rameters of o			
Table 63. Standard weeks	weather pa - Talipara	rameters of o	group II	for the va	riety 24
Standard	weather pa - Talipara Regression	arameters of o amba 1 coefficients	for the	for the va  weather pa	riety 24 
Standard weeks	weather pa - Talipara Regression MXT	arameters of o amba 1 coefficients MNT	for the RH	for the va weather pa RF	riety 24 rameters NR
Standard weeks 24	weather pa - Talipara Regression MXT 0627	arameters of o amba 1 coefficients MNT .0450	for the RH 0702	for the va weather pa RF .0035	riety 24 rameters NR 1607
Standard weeks 24 25	weather pa - Talipara Regression MXT 0627 .1844	arameters of o amba 1 coefficients MNT .0450 .7018	for the RH 0702 .1419	for the va weather pa RF .0035 0014	riety 24 rameters NR 1607 0861
Standard weeks 24 25 26	weather para - Talipara Regression MXT 0627 .1844 .1861	coefficients MNT .0450 .7018 .4173	for the RH 0702 .1419 0625	for the va weather pa RF .0035 0014 .0023	riety 24 rameters NR 1607 0861 .4227
Standard weeks 24 25 26 27	weather pa - Talipara Regression MXT 0627 .1844 .1861 2043	coefficients MNT .0450 .7018 .4173 5991	for the RH 0702 .1419 0625 .0806	for the va weather pa RF .0035 0014 .0023 .0026	riety 24 rameters NR 1607 Q861 .4227 5898
Standard weeks 24 25 26 27 28	weather pa - Talipara Regression MXT 0627 .1844 .1861 2043 .3729	coefficients MNT .0450 .7018 .4173 5991 .1221	for the RH 0702 .1419 0625 .0806 5104	for the va weather pa RF .0035 0014 .0023 .0026 0039	riety 24 rameters NR 1607 Q861 .4227 5898 0331
Standard weeks 24 25 26 27 28 29	weather pa - Talipara Regression MXT 0627 .1844 .1861 2043 .3729 .1675	arameters of 6 amba 1 coefficients MNT .0450 .7018 .4173 5991 .1221 .6947	for the RH 0702 .1419 0625 .0806 5104 .1240	for the va weather pa RF .0035 0014 .0023 .0026 0039 0035	riety 24 rameters NR 1607 Q861 .4227 5898 0331 3478
Standard weeks 24 25 26 27 28 29 30	weather pa - Talipara Regression MXT 0627 .1844 .1861 2043 .3729 .1675 1095	coefficients MNT .0450 .7018 .4173 5991 .1221 .6947 1.0269	for the RH 0702 .1419 0625 .0806 5104 .1240 2535	for the va weather pa RF .0035 0014 .0023 .0026 0039 0035 .0039	riety 24 rameters NR 1607 0861 .4227 5898 0331 3478 1380
Standard weeks 24 25 26 27 28 29 30 31	weather pa - Talipara Regression MXT 0627 .1844 .1861 2043 .3729 .1675 1095 1075 0049	coefficients MNT .0450 .7018 .4173 5991 .1221 .6947 1.0269 .2458 .1016	for the RH 0702 .1419 0625 .0806 5104 .1240 2535 .2694	for the va weather pa RF .0035 0014 .0023 .0026 0039 0035 .0039 .0016	riety 24 rameters NR 1607 0861 .4227 5898 0331 3478 1380 3705 .2442

·

Table 64.		1st stage rea arameters of a amba II			
Standard weeks	Regression MXT	coefficients MNT	for the RH	weather RF	parameters NR
15	.1066	1370	051	0037	0
16	0443	1219	.0393	.0106	.1075
17	0118	0341	0111	0	0
18	0256	2230	0488	0021	1081
19	•0474	.1023	0396	0	0
20	.1098	.1437	.0280	0	0
21	1811	.0142	.1304	D	0
22	0199	.0102	0	0	0809
23	.0717	.0605	0449	0	0
Intercept	4.5249	14.5952	.1853	.4306	.7289
R ²	.5960	.9448	.52273	.1568	.1806

Table 65.	Estimated 1st stage regression models from weekly
	weather paremeters of group II for the variety 25 - Taliparamba II

		بدو من جو مو مراحة ما ما ما ما ما ما م			
Standard weeks	Regression MXT	coefficients MNT	for the RH	weather RF	parameters NR
24	156	.1342	.0530	.0011	.0408
25	.1817	.1511	.01291	.0002	0155
26	1903	.1462	.0932	.0001	.0583
27	.0316	.3946	.0713	.0001	.0403
28	0004	2631	.0567	.0003	.5087
29	0710	1488	0659	.0009	<b>.</b> 18 <b>76</b>
30	0627	5501	.0145	.0007	.0856
31	.0545	0	1062	.0008	1902
32	.0965	.4026	1678	0028	3411
Intercept	10.4501	38.0500	4.1151	1057	-2.0830
r ²	<b>.</b> 8649	.5685	.6464	.8372	.7157

Table 66.	Estimated weather pa - Thalipar	1st stage re arameters of ramba III	gression group I :	models fr For the va	om weekly riety 26
Standard weeks	Regression MXT	coefficients MNT	for the RH	weather p RF	arameters NR
15	.5150	3402	1127	0328	711
16	7857	7541	.0146	0126	0660
17	0183	.2185	.0444	0051	.2104
18	.2486	7504	2216	001	<b></b> 285 <u>1</u>
19	.2429	.7239	.1365	.0149	.3835
[″] 20	.0472	1197	0266	.0079	1574
21	2353	.0164	.1418	.0191	.4273
22	0711	.3405	.0716	0015	2357
23	0783	4660	.0121	.0037	.0513
Intercept	12.89 <b>79</b>	86.83067	-4.3373	1962	1.1814
$R^2$	.82992	.59908	.5746	.6241	.6068
Table 67.		1st stage re arameters of amba III			
Standard weeks	Regression MXT	coefficients MNT	for the RH	weather p RF	arameters NR
24	1184	.3712	0456	.0027	2378
25	<b>.2123</b>	•6223	.2562	0031	.3379
[`] 26	4296	4275	.1282	.0054	.3242

akly

24	1184	.3712	<b>-</b> .0456	.0027	2378
25	.2123	.6223	.2562	0031	.3379
` <b>2</b> 6	4296	4275	.1282	.0054	.3242
27	.0173	.2547	1059	0021	8386
28	.3591	0284	1459	0014	.7481
29	.1880	.2602	0491	0038	.5498
30	2816	-1.7449	0331	.0052	.1253
. 31	0932	6655	1086	0004	6567
32 .	.0806	1.8923	.0189	0036	.0109
Intercept	6.8057	-38.7201	9.3167	1.3374	-1.3527
R ²	.8987	.6906	•8336	.9273	.7797

•

1.

Table 68.	Estimated 1st stage regression models from weekly weather parameters of group I for the variety 27 - Taliparamba IV					
Standard weeks	Regression MXT	coefficien MNT	ts for the RH	weather p RF	arameters NR	
15	.0932	0933	.0172	0220	.0830	
16	3341	-,2952	- <b>1</b> 291	.0234	<b>-</b> .0237	
17	02799	.0595	.1106	.0151	.1922	
18	.0963	3606	0193	0029	099 <b>9</b>	
19	.1095	<b>,</b> 2668	0122	.0102	.0015	
20	.0746	2001	.0750	.0018	0048	
21	1401	0	0116	.0095	.2100	
22	.0250	.1598	0355	0028	1112	
23	0	2356	.0665	.0011	1386	
Intercept	10.6974	53.6424	-5.0379	1272	1.0003	
R ²	.5506	.55652	.7157	.6053	.7310	

Table 69. Estimated 1st stage regression models from weekly weather parameters of group II for the variety 27 - Taliparamba IV

~

*	- 				
Standard weeks	Regression MXT	coefficient: MNT	s for the RH	weather RF	parameters NR
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	,				
24	0323	.0735	0420	.0002	0785
25	.0382	<b>.257</b> 0	.1653	0010	<b>-</b> .0741
26	0989	2595	.1291	0	.2345
27	.0119	.0387	.0013	0003	0
28	.0267	0713	<b></b> 0557	0011	o
29	.0327	.3533	.0495	.0001	Ο
30	.0577	5525	3319	.001	0
31	.0039	-,2273	.1816	.0026	1353
32	.0277	.4801	.1017	0045	0
Intercept	-5.1245	-6.3831 -	-18.6850	1,1098	<b>.7</b> 5 <b>3</b> 2
$R^2$	.5898	.7656	.7362	.5373	.247

	weather pa - Valli	arameters of g	group 1 :	for the v	ariety 28
Standard weeks	Regression MXT	coefficients MNT	for the RH	weather ; RF	parameters NR
15	.2145	.0070	.0555	0238	3151
16	5790	0849	0	0	.0288
17	0475	1378	0	.0389	.4178
18	0233	0044	0	0012	4857
19	.2943	.1217	0	.0211	.4809
20	.0631	.1532	0843	0064	2560
21	.0892	2068	.0645	.0002	1495
22	.0322	.3243	1051	0027	2106
23	1398	1753	.0317	.0024	.1256
Intercept	10.5153	1.3816	4.7118	<b>.</b> 59 <b>7</b> 5	1.9137
R ²	.73103	.71234	.33408	.5314	.7621

Table 70. Estimated 1st stage regression models from weekly weather parameters of group I for the variety 28 - Valli

.

Table 71. Estimated 1ststage regression models from weekly weather parameters of group II for the variety 28 - Valli

Standard weeks	Regression MXT	coefficients MNT	for the RH	weather RF	parameters NR
24	0341	.0892	<b></b> 1306	 0	.2717
25	0095	.1073	.2618	0	1014
26	0387	.3465	.3755	0012	.0814
27	0	-1.1899	.0495	0	0800
28	.1945	.3157	.4237	0	6325
29	.0823	.2580	1729	0015	8241
30	0	-1.0375	4536	0	.1551
31	1610	2285	1337	0	0179
32	0	.3480	2140	0045	.1273
Intercept	-1.3886	72.9140	.3008	2.6368	7.9758
R ²	.3770	.8010	.7691	<b>.</b> 1866	.7850

.

Standard weeks	MXT	coefficients MNT	IOF the RH	RF	NR
15	.2267	.1195	3455	0045	.1953
16	.0783	-1.2093	.0014	.0545	.6578
17	0	.1967	1819	0100	.0663
18	.1325	9575	2212	0033	1643
19	0954	.6715	<del>.</del> .0075	.0012	.1990
20	-,0136	5262	.0221	.0181	.4544
21	<b>3</b> 452	.3667	.4207	0026	0181
22	0723	.1612	1734	.0037	0134
23	.1633	3213	1038	.0012	.0053
Intercept	-6.0351	115.7641	-7.2209	0262	2773
$R^2$	.51696	.91203	<b>.91</b> 585	.8281	.8317

•-

,

Table 72.	Estimated 1st stage regression models from weekly
	weather parameters of group I for the variety 29 - Valiyakodi

Table 73.	Estimated 1st stage regression models from weekly
	weather parameters of group II for the variety 29 - Valiyakodi

Standard	Regression				
weeks	MXT	coefficients MNT	s for the RH	weather RF	parameters NR
24	.0548	.5 <b>73</b> 6	.1326	0019	0
25	.2742	.7823	.1682	0055	.1454
26	3689	5899	.0783	.0043	.1526
27	.1469	1.1875	.1495	0034	0
28	3088	3387	.1649	.0052	.6014
29	0774	.0791	3620	0014	.4464
30	0287	-1.2583	0	.001	.2766
31	.1871	5286	0	0009	0
32	0576	2.1939	1099	0037	0
Intercept	16.1861	-152.0828 -	19.6585	2,8862	-8.6640.
R ²	.8612	.7157	.4830	.8538	.3158

125

/ariet- les	^Z MX.1	^Z MX.2	Z _{MN.1}	Z _{MN.2}	$z_{RH.1}$	Z _{RH.2}	Z _{RF.1}	Z _{RF.2}	Z _{NR.1}	Z _{NR.2}	T	Inter- cept	R ²	Ra ²
1	2 :	2	4	5	6	7	8	9	10	11	12	13	14	15
1	-				.3642			~	.2888	.3761	-	5159	.9801	.972
2	` <b></b>	.4086	.1121	.4534	-	-	3135	- ·	.5365	2272		.0133	<b>.99</b> 8	.998
3	ʻ <i>—</i>	<b>-</b>	, <u> </u>	.6043	<u>+</u>	.2558	-	.0734	-	<b>.</b> 2 <b>7</b> 72	0281	3156	<b>.9</b> 860	.9841
4 -	2755	2717	<b>.335</b> 6		-	-	.3873	-	<b>.</b> 9377	<u>~</u>	0177	.0745	.9545	.9293
5	.1863	-		.1996	-	.6741	1387	-	.1822	-	.0148	33257	.9900	.9860
6	-	<b>.17</b> 85	.0784	.0883	-	.4914	_ `	.3257	. —		-	~.2004	,996	.994
7	.1874	1258	<u></u>	.6896	-	<b>.</b> 40 <b>6</b> 6	-	, 	-	-	-	1914	.9940	.992
8	.2231	-	<b>4574</b>	-	1622	.3822	.0988		-	.1142	.0065	51658	.992	.988
9	.2868	1725	3683	.3149	-	.4113	-	•	.2606	.1471	-	0078	.990	<b>•9</b> 84:
10	.7718	_	.1655	-	-	-	_	.1230	-		0204	÷0823	.9940	.9920
11	.2982	243	.4697	-	<b>:2553</b>	.2547	.3298	-	.030	-	-	5834	.9781	.960
12	.0162	-	-	-	.3678	.5328	.5863	<b>7</b> 475	-	-	-	.1875	.9683	.956
13	~	.1706	-	-	-	.7391	-		-	.2184	.0104	2624	.990	.988
14	-	-	.6330	2504		• -	-	.2885	.5466	<b></b> ·	.0145	54258	.988	.982
15 -	.0833	-	.6449	.3910	2646	-	-	_	-	.5140	÷.003	1.9318	.9682	.956

Table 74. Estimated 2nd stage regression models from the weekly weather parameters

4

Contd.

.

321

•

Table 74. Continued

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
16	.2696	_	.3929	.3823	.3216		-	.0255	2675	<u> </u>		1771	.992	.988
17	.2567	-	.0733	_	.5382	.0551	-	.3293	-	-	-	4610	.9860	.9821
18	.4231	-	-	.8131	1.2758	-	-	1932	6554	-	0111	2754	.9781	.9662
19	-	-	-	<b>.</b> 4262	-	.5488	_	<b>_</b> 4615	3140	-	_	2135	.988	.984
20	.1954	-	.3567	-	_	_	-	.1976	.4391	.1692	-	2213	.986	.9801
21	-	-	-	-	.4476	<b>.</b> 2 <b>7</b> 55	.2008	.3541	-	-	-	2756	.9565	.9448
22	-	-	-	.2913	.0883	.4780	-	.3319	-	_	-	2863	.9841	.9801
23	-	-	-	-	.2478	.4006	-	-	.5871	.1409	-	4041	<b>.97</b> 81	.9683
24	-	-	-	.3292	-	.1315	.3085	.1570	.0782	.1610	-	2490	.998	.998
25	-	.2076	.6963	-	~	.2335	-	-	-	-	.0108	1405	.984	.9801
26	-	.3640	.1991	-	-	.3050	-	.3232	-	-	-	4786	.996	.994
27	<b>.</b> 2669	.0643	-	.0233	.3394	.3878	-	-	.3244	-	-	2254	.9682	.9526
28	-	-	.2421	.2512	<b>.</b> 17 <b>7</b> 1	.2760	-	-	-	.4285	-	4726	.9801	.9742
29	-	-	.4184	-	.1863	-		.1922	.3185		-	1817	.986	.9821

•

•

ortnight		Regression coefficient								
	MXT	MNT	RH	RF	NR					
8	4709	.4309	4189	0268	1429					
9	1004	0993	.3263	.0078	.657					
. 10	.5872	276	.2329	0185	1751					
11	.2127	.232	4014	0	.1775					
12	.1635	4869	.1789	0042	0					
13	2098	0	.0481	.0073	.5814					
14	.1974	9401	1435	.0086	7891					
15	.0367	.1277	.0752	0002	<b>.</b> 2454					
16	2147	9917	3611	0	.6959					
ntercept	-16-2926	146.8337	45.2356	-2.758	-8.9547					
$R^2$	.6022	.5610	.6626	.4816	.51					

Table 75. Estimated first stage regression models from the fortnightly weather parameters for the variety 1 - Balankotta 1

Table 76	5. E	stimated	first	stage	regressio	on me	odels	from	the
	f	ortnight	ly weat	ther pa	arameters	for	the	variet	:y 2
	-	Balankot	ta 2						

<b></b>	Regression coefficient							
Fortnight	MXT	MNT	RH	RF	NR			
8	0396	1382	.0501	.0051	0			
9	0566	0873	.1071	.0008	.0743			
10	.205	0	07	0005	0532			
11	.0052	.1383	.0082	.0025	.1073			
12	0494	1418	0398	.0001	0			
13	.0240	0	.2081	.0024	.1862			
14	0039	1861	2507	.0006	2003			
15	.0215	.0168	.0009	0015	0			
16	0	1809	1285	0	.0685			
Intercept	-8.7660	43.544	21.6696	2978	1483			
R ²	.5610	.4330	.7056	.6577	.3733			

.

-----

	- Cheriy	ya Kariyaka	dan		
Fortnight	MXT	Reg MNT	ression coe RH	efficient RF	NR
8	7100	.1101	3939	0	1019
9	0928	0	.5209	0023	.434
10	.7369	0	0048	0153	4015
11	.1825	.1276	3422	0057	.2211
12	.2037	066	0106	0005	2061
13	1071	.180	.400	.0038	.5157
14	.0209	-1.5854	258	.0037	5026
15	0177	.0433	.0011	.0019	.0222
16	.0227	5858	13	.0022	.4661
Intercept	-17.3040	130.6216	21.3871	358	-2.0487
$R^2$	.6642	.4556	<b>.7</b> 903	.5213	.6273
**					· · · · · · · · · · · · · · · · · · ·

Table 77. Estimated first stage regression models from the fortnightly weather parameters for the variety 3 - Cheriya Kariyakadan

Table 78.	Estimated first stage regression models from the
	fortnightly weather parameters for the variety 4
	- Chumala

Fortnigh	t	Regression coefficient						
	MXT 	MNT	RH	RF	NR			
8	0.0	.2068	0293	0035	0			
9	1634	057	.039	.0057	.0167			
10	•094 <b>9</b>	2143	.0403	001	0			
11	<b>.</b> 0890	0	1086	.0005	0773			
12	.0258	.0501	016	0017	0544			
13	0152	0	.0366	.0015	0492			
14	.0585	0	0	.0013	.2277			
15	.0072	.0385	.0072	0011	0			
16	0163	1913	.0491	0005	2113			
Intercep	t -5.990	12.6122	-1.4871	.3389	1.6761			
r ²	.8263	.4147	.5069	.6273	<b>.</b> 5806			

•

Table /9.	fortnight - Kalluva	ly weather:			e variety 5
Fortnight	Regression coefficient				
	MXT	MNT	RH	RF	NR
8 ·	.1130	2783	.0423	.0024	0578
9	0.0	.0672	0436	0	0
10	.156	3017	.0296	.0062	.0907
11	0857	.3333	.0695	.0033	.1502
12	0.0	2886	0613	.0003	•02 <b>35</b>
13	-0.0435	6471	.3006	.0028	.0226
14	0.0	.4744	4151	0002	1918
15	.0367	.0145	.0013	0007	.1403
16	0.0	0994	2347	0012	0
Intercept	-15.1240	55.8336	31.2660	6115	-1.2086
R ²	.2959	.5776	.7225	.6529	.6416
Table 80.	Estimated	l first sta ly weather	ge regress	sion mode:	ls from the e variety 6
Table 80. Fortnight	Estimated fortnight	first sta ly weather lly 2	ge regress	ion model s for the	ls from the
	Estimated fortnight - Kalluva	l first sta ly weather lly 2 Regres MNT	ge regress parameter  sion coeff	ion model s for the icient RF	ls from the e variety 6
Fortnight	Estimated fortnight - Kalluva MXT	first sta ly weather lly 2 Regres MNT 4586	ge regress parameter sion coeff RH	ion mode s for the ficient RF	ls from the variety 6 NR .0306
Fortnight	Estimated fortnight - Kalluva MXT 1267 .0368	first sta ly weather lly 2 Regres MNT 4586	ge regress parameter sion coeff RH 0634 .0178	ion model s for the cicient RF 0 0045	ls from the variety 6 NR .0306 .1446
Fortnight  8 9	Estimated fortnight - Kalluva MXT 1267 .0368	l first sta ly weather lly 2 Regres MNT 4586 .1882 3387	ge regress parameter sion coeff RH 0634 .0178	ion model s for the ficient RF 0 0045 .0044	ls from the variety 6 NR .0306 .1446 .0166
Fortnight  8 9 10	Estimated fortnight - Kalluva MXT 1267 .0368 .2840 1048	l first sta ly weather lly 2 Regres MNT 4586 .1882 3387	ge regress parameter sion coeff RH 0634 .0178 .0362 .0564	ion model s for the ficient RF 0 0045 .0044 .0003	ls from the variety 6 NR .0306 .1446 .0166 .152
Fortnight 	Estimated fortnight - Kalluva MXT 1267 .0368 .2840 1048 .1126	first sta ly weather lly 2 Regres MNT 4586 .1882 3387 .3117	ge regress parameter sion coeff RH 0634 .0178 .0362 .0564 0367	ion model s for the ficient RF 0 0045 .0044 .0003 .0015	ls from the variety 6 NR .0306 .1446 .0166 .152 .0289
Fortnight 	Estimated fortnight - Kalluva MXT 1267 .0368 .2840 1048 .1126 1361	first sta ly weather lly 2 Regres MNT 4586 .1882 3387 .3117 4648 9675	ge regress parameter sion coeff RH 0634 .0178 .0362 .0564 0367 .3892	ion model for the for the ficient RF 0 0045 .0044 .0003 .0015 .0010	ls from the variety 6 NR .0306 .1446 .0166 .152 .0289 .2796
Fortnight 	Estimated fortnight - Kalluva MXT 1267 .0368 .2840 1048 .1126 1361 .183	first sta ly weather lly 2 Regres MNT 4586 .1882 3387 .3117 4648	ge regress parameter sion coeff RH 0634 .0178 .0362 .0564 0367 .3892 3525	sion model rs for the Eicient RF 0 0045 .0044 .0003 .0015 .0010 0015	ls from the variety 6 NR .0306 .1446 .0166 .152 .0289 .2796 4543
Fortnight 8 9 10 11 12 13 14 15	Estimated fortnight - Kalluva MXT 1267 .0368 .2840 1048 .1126 1361 .183 .0043	first sta ly weather lly 2 Regres MNT 4586 .1882 3387 .3117 4648 9675 .5684	ge regress parameter sion coeff RH 0634 .0178 .0362 .0564 0367 .3892 3525 0096	ion model s for the ficient RF 0 0045 .0044 .0003 .0015 .0010 0015 .0015	ls from the e variety 6 NR .0306 .1446 .0166 .152 .0289 .2796 4543 .1081
Fortnight 	Estimated fortnight - Kalluva MXT 1267 .0368 .2840 1048 .1126 1361 .183 .0043 0.0	first sta ly weather lly 2 Regres MNT 4586 .1882 3387 .3117 4648 9675 .5684 0048	ge regress parameter sion coeff RH 0634 .0178 .0362 .0564 0367 .3892 3525 0096 3005	sion model rs for the ficient RF 0 0045 .0044 .0003 .0015 .0010 0015 .0015 .0015 .0015	ls from the variety 6 NR .0306 .1446 .0166 .152 .0289 .2796 4543 .1081 .0615

Table 79. Estimated first stage regression models from the

TI 4 4 7- 1	ient				
Fortnight	MXT	MNT	RH	RF	NR
8	0.0	.0456	.1709	<b></b> 0057	0
9	0.0	1456	1453	.0054	1723
10	.0343	-,107	.1162	.0101	.1743
11	0.0	<b>.</b> 2853	0	.0056	.0799
12	<u>,</u> 083	.0837	0	÷,0004	0
13	0	3036	.1867	.0028	0.1669
14	0	.491	2238	.0006	.1971
15	.027 <b>2</b>	.0058	0	0022	.1062
16	-,2118	<b>.</b> 1561 ·	2088	0	1568
Intercept	6,2172	-36.4708	12.5943	<b>9</b> 639	-3,403
$R^2$	.2265	.7975	.4083	.5270	.4747

Table 81. Estimated first stage regression models from the fortnightly weather parameters for the variety 7 - Kalluvally 3

-

.

Table 82. Estimated first stage regression models from the fortnightly weather parameters for the variety 8 - Kaniyakadan

Fortnight	MXT	Regressi MNT	lon coeffi RH	cient RF	NR
8	0.0	<b></b> 1395	0858	.0054	1558
9	.1199	069	.0263	0011	.0572
10	0	0.0	.0578	.0028	.0372
11	.0087	0	0136	0031	.104
12	0	0	.0293	.0027	0196
13	.0607	0	.0234	0	0
14	.0524	0	3479	0005	267
15	0074	0219	.0066	.0021	1093
16	.0881	0	0427	.0005	.0485
Intercept	-17.3006	18.4285	34.4589	6109	4.9435
R ²	.3770	.1815	.8501	.5184	.5285

		ly weather panchy			
Fortnight	MXT	Regression MNT	coeffic RH	ient RF	NR
8	0	0888	.0682	<b></b> 0013	.0327
9	0	0493	0161	0005	0531
10	1277	.0553	0	.0033	.029
11	109	.1786	<b>.</b> 0 <b>39</b> 6	.0028	.0945
12	.081	.008	0598	0003	.0085
13	0	2061	.2361	.0016	.2131
14	0	.098	1745	0	0244
15	.0159	0036	- <u>.</u> 0073	0008	.0996
16	0884	.1055	1125	0002	.0259
Intercept	-2.465	-7.0162	3.7010	1919	-3.9294
$R^2$	.2884	,5898	.5344	.5314	<b>.</b> 6384
Table 84.			arameter	s for the	
Fortnight	MXT	Regression MNT	RH	RF	NR
8	.1627	224 ·	0748	0019	0745
9	.1683	2128	0093	.0004	.0928
10	0863	.1446	.2233	.0034	0
11	.0097	•0474	1297	0029	0383
12	.0672	.1815	.068	.0009	0
13	1007	2257	0029	.0010	.1013
14	0437	0565	.0680	0001	0

Table 83. Estimated first stage regression models from the

on	coeffic:	lent	
	RH	RF	NR
	0748	0019	0745
	0093	.0004	.0928
	.2233	.0034	0
	1297	0029	0383

					•
12	.0672	.1815	.068	.0009	0
13	1007	-,2257	0029	.0010	.1013
14	0437	0565	.0680	0001	0
15	.0069	008	.0205	.0015	.1541
16	.0839	0781	4455	.0001	.0394
Intercept	-24.5110	33.4146	29.1328	.3644	-2.0787
$R^2$	.6432	.6593	.7396	.6496	.4045

	- Karimun	da 2			
Fortnight	MXT	Regression MNT	coeffici RH	ent RF	NR
8	.3805	3798	.2376	.0088	.0956
9	.1852	0962	2445	.0023	2892
10	1507	.1348	0041	.0051	.1677
11	0487	.1108	.0986	002	1226
12	0	.1746	1231	.0021	.1205
13	0665	0587	0135	.0013	0808
14	2135	.3401	0765	_é 0005	.3902
15	0	0576	0286	.005	0
16	.0948	.3237	1643	0003	2504
Intercept	-19.057	-33.8221	17.6296	6177	0358
R ²	<b>.</b> 458 <b>3</b>	.8226	.7345	<b>.</b> 6480	.6480
	fortnight - Karimun	سے ملک ہوتے ہیں جام جانے سے جور خلک جانا ہے۔		~~~ <u>~</u> ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	variety 12
Fortnight	MXT	Regression MNT	COETICI RH	ent RF	NR
8	0323	.0242	0033	0034	0619
9	003	0331	0193	.0033	0
10	.0905	.0155	.055	,0005	0
11	.0031	.0173	<b></b> 0385	0006	0277
12	.1057	.1515	0489	0004	0232
13	014	0	•04 <b>69</b>	.0017	.0408
14	.0095	0643	0017	.0011	.0606
15	0007	.0062	0023	0	.0484
16	0462	0791	0601	.0005	0
Intercept	-9.636	-2.3496	7,5659	6516	6738
R ²	.8500	•5256	.5715	.85 <b>7</b> 5	.3844

Table 85. Estimated first stage regression models from the fortnightly weather parameters for the variety 11 - Karimunda 2

	fortnightly - Karivally		parameters	for the	variety 1.
Fortnight	MXT	Regres: MNT	sion coeffic RH	cient RF	NR
8	0391	1711	.0908	005	.1181
9	0084	.0169	.0493	.0023	0646
10	.3258	0411	0	0023	.0386
11	011	.2968	0	.0004	0
12	.108	1471	1265	0	.1048
13	1037	2901	.2469	.0039	.2927
14	0688	.0472	0	.0029	0
15	.0112	0094	0275	0006	.0645
16	1038	0924	3167	0009	0
Intercept	-10.97	29.4995	18,9927	-1.0093	-4.2654
R ²	.6561	.7939	.4651	•7586	<b>.</b> 40 <b>7</b> 0

Table 87. Estimated first stage regression models from the fortnightly weather parameters for the variety 13 - Karivally

Table 88. Estimated first stage regression models from the fortnightly weather parameters for the variety 14 - Kottanadan

Fortnight	MXT	Regres MNT	sion coeff RH	icient RF	NR
8	0	- <b>.</b> 1826	.0408	.0050	.2123
9	0	0105	0372	0	.076
10	.0697	2187	0626	.0035	0
11	0	.0108	.0186	0	0
12	0	0009	.0076	.0016	.0339
13	0	.2791	.2951	.0002	.1,529
14	0	-,3498	1467	0009	3785
15	.0109	.0328	026	0	.0812
16	0	2721	.0199	.0009	.2058
Intercept	-6.018	54.6579	-9.3289	.1507	.0346
$R^2$	.127	.6561	6480	.3697	.4802

Fortnight	MXT	Regress	ion coeffi	cient	
	****	MNT	RH	RF	NR
8	2664	.1666	1185	.0108	2577
9	.0326	.233	.28	0	.0948
10	0939	-1.2243	0978	0056	0949
11	•5785	.3761	-,3351	0	.1084
12	4147	-,9187	.2181	0	1157
13	1031	2436	.3697	0	0
14	.2361	8993	-,8726	0	6168
15	.0354	.0954	.02	0018	2642
16	.2323	9788	<b>.</b> 1486	0	0
Intercept	-16.51	251.7262	<b>39.</b> 080	2.9649	14.6848
R ²	.6273	.6872	<b>.</b> 9526	.144	.4462

Table 89. Estimated first stage regression models from the

· ·

Table 90.	Estimated first stage regression models from the
	fortnightly weather parameters for the variety 16
	- Kuthiravally

*-* <u>-</u> -		De ene est			یں ہے جن کا ہے جز ہے ان ان ان ان ا
Fortnight	MXT	MNT	on coeffic: RH	RF	NR
8	.4458	<b></b> 2379	.012	0012	.2167
9	.1015	1183	1603	0012	.0302
10	1609	4816	.3886	.0157	<b>.</b> 2567
11	0405	.2447	1512	0004	<b>1</b> 05 <b>7</b>
12	.1301	.1617	.0388	,0004	.0391
13	1624	8128	.0841	.0009	.1921
14	1221	.5615	-,0497	0014	.1004
15	.0288	.0248	•0303	0001	.214
16	.0517	1703	5222	0018	1384
Intercept	-26,845	63.5455	34,2677	1,3062	-4.5101
$R^2$	.6131	.8780	•7975	.7656	.7674

.

	- Kuthira	vally_AR			
Fortnight	MXT	Regres: MNT	sion coeffi RH	cient RF	NR
8	1248	.181	3952	0	1564
9	.0542	.5179	.2626	0054	.4797
10	.1527	6052	.0756	0034	1916
11	.0544	048	1002	0045	.1384
12	.1353	0	1469	<b>0</b> 005	21
13	0	<b>-</b> .0979	.1259	.0017	.3041
, 14	0	8268	2641	.0015	7187
15	.0002	٥ <b>7</b> 07،	<b>.</b> 009	.0018	.0449
16	.1069	8235	.2210	.0025	.6608
Intercept	-31.7316	120.3039	20.5891	0502	3083
$R^2$	.4356	.5126	.8046	.5271	.7744

Table 91. Estimated first stage regression models from the fortnightly weather parameters for the variety 17 - Kuthiravally-AR

Table 92.	Estimated first stage regression models from the
	fortnightly weather parameters for the variety 18
	– Munda

Fortnight	به بيد بيد الله عبر غلة حله غلي الله الله الله ال	Regress	ion coeff:	icient	میں حمد متن جاہ سے جب اگر جن کہ جار ہ
	MXT	MNT	RH	RF	NR
8	.0526	0	0196	0	.0741
9	.0158	114	.009	0015	0
10	.0424	.0156	.090	0016	.021
11	.0718	.0276	121	0026	0598
12	.0545	<b>.1</b> 245	0078	0004	0218
13	1046	0	.019	.0012	0
14	0516	1496	.0741	.0014	.1672
15	.0052	0	.0045	.0007	0
16	.056	Ó	1024	0004	1292
Intercept	-13.21	7,7922	5.8763	.0181	.4987
$R^2$	.8409	.2916	•7686	<b>.7</b> 50	.4160
بدر به جر ها کا به خان به کا کا					يو هو هو بي مو مه خه بي جز مه .

	- Narayako	Q1			
Fortnight	MXT	Regression MNT	coefficient RH	RF	NR
8	0	2497	<b>1</b> 108	.0016	0284
9	0	.2443	0105	0018	<b>.</b> 1597
10	.2002	<b></b> 7 <b>77</b> 9	<b>.</b> 1650	.0062	.1377
11 -	0441	.3645	0266	.0004	.1414
12	.0940	-,5237	.0161	.0006	0
13	1532	-1.0499	.1727	.0020	.1847
14	.1391	.6708	4596	0	3754
15	.0238	.0398	.0338	.0008	.0887
16	0.0	374	2457	0021	.0203
Intercept	-21.6	124,7988	47.2449	.972	1.672
R ²	,3919	6368	.8556	,5550	<b>.7</b> 362
Table 94.		first stage y weather pa a			
Fortnight	MXT	Regression MNT	coefficient RH	rF	ہ ہے جو جن کا کر بنا جو قل ک
8	0913			102	NR
9			09 <b>7</b> 3	0	NR O
10	0975	125	09 <b>7</b> 3 .1593		
11	0975 .2232		-	0	0
12		125	.1593	0 0	0 .1354
	.2232	125 0076	.1593 .017	0 0 0035	0 .1354 1244 .0044
13	.2232 .0692	125 0076 .055	.1593 .017 123	0 0 0035 .0005	0 .1354 1244 .0044 .0266
13 14	.2232 .0692 0014	125 0076 .055 0693	.1593 .017 123 .0153	0 0 0035 .0005 0012	0 .1354 1244 .0044 .0266 .1692
	.2232 .0692 0014 0452	125 0076 .055 0693 0685	.1593 .017 123 .0153 .168	0 0 0035 .0005 0012 .0018	0 .1354 1244 .0044 .0266 .1692 0287
14	.2232 .0692 0014 0452 0006	125 0076 .055 0693 0685 2818	.1593 .017 123 .0153 .168 .0608	0 0 0035 .0005 0012 .0018 .0006	0 .1354 1244 .0044 .0266 .1692 0287 .1134

.6839

.

.990

.5476 .6691

 $R^2$ 

Table 93. Estimated first stage regression models from the fortnightly weather parameters for the variety 19 - Narayakodi

ortnight		Regression	coefficier	nt	
	MXT	MNT	RH	ŔF	NR
8	.3836	2142	0942	003	0
9	147ء	.3841	0912	0033	.1595
<b>10</b> ·	-,1686	6784	.1974	.0034	.1609
11	.0304	.2359	0236	002	.0086
12	0126	3323	0494	005	.0258
13	1759	-,9911	0279	.0017	.1136
14	0004	.6121	1459	.0011	2694
15	.0399	.0349	.0328	.0012	.1175
16	.137	4132	-,2028	0025	.0937
Intercept	-35.8606	101.6777	39.7937	.6327	8028
$R^2$	<b>.7</b> 569	.6973	<b>.</b> 8 <b>7</b> 98	.8299	.6593

Table 95. Estimated first stage regression models from the fortnightly weather parameters for the variety 21 - Perumkodi

Estimated first stage regression models from the
fortnightly weather parameters for the variety 22
- Perumunda

Fortnight	MXT	Regression MNT	coefficien RH	nt RF	NR
8	2223	111	2989	0	- <b>.</b> 0317
9	0004	<b>.</b> 2759	.2487	0066	<b>.</b> 29 <b>73</b>
10	.1197	6162	.1361	0	0731
11	.0682	<b>.</b> 2055	1401	0025	.199
12	0	4744	,0883	0	1452
13	1293	9853	.2478	0	.1952
14	.2084	.1366	4511	0013	5292
15	0	.0272	.0284	.0024	0305
16	.165	-,3505	0855	-,0013	.083
Intercept	-14.74	140.655	23,4908	2,4329	5,2439
R ²	.4886	.6529	<b>.</b> 8574	.3192	.8172

	- Sullia		paramecers 10		
Fortnight	 MXT	Regressio MNT	on coefficien RH	t RF	NR
8	0	0	1371	0	.1459
9	.0766	0	.1168	0061	.1671
10	<u>0288</u>	185	•07 <b>09</b>	.0012	0
11	0	.1722	0589	0	.1775
12	0	1733	•0323	.0003	042
13	0876	2951	.1883	0	.2816
14	0	0981	3061	-,0002	361
15	.020 <b>9</b>	.0142	.015	.001	.0314
16	.0613	0	0135	0003	.1956
Intercept	-8.437	42,6533	10.1964	.9896	-1.747
R ²	.2862	.4096	•6480	.4058	<b>.7</b> 639

Table 97. Estimated first stage regression models from the fortnightly weather parameters for the variety 23 - Sullia

-..

Table 98.	Estimated first stage regression models from the
	fortnightly weather parameters for the variety 24
	- Taliparamba-I

Fortnight	MXT	Regression MNT	Coeffic: RH	lent RF	ŃR
8	0534	0	2127	.008	2069
9	0	.1249	.2318	0028	.1194
10	.0962	4371	.0339	0	1025
11	.1324	.0756	1275	0044	.1006
12	0587	0946	0324	.0023	1185
13	0	0	.1329	.008	.0883
14	<b>03</b> 19	6582	3485	0	144
15	0085	.0201	.008	.0014	1577
16	.173	4914	0773	.0012	0
Intercept	-20.725	108.563	39.5524	1352	5,293
R ²	<b>.</b> 4692	<b>.</b> 4290	.9101	•4597	.5431

Fortnight	MXT	Regression MNT	coefficient RH	RF	NR
8	0.0	2634	.0309	.003	.162
9	0515	1676	.021	0019	0051
10	.1351	.1344	.0147	.0015	0275
11	0	.0558	0284	.0008	0487
12	.0279	.0513	0195	0002	<b>.</b> 0417
13	0512	1273	.1667	.0006	,1408
14	061	.0322	.1501	0008	.1285
15	0	0043	0103	0008	.1225
16	0	.014	3231	0013	1002
Intercept	4974	21.1386	.5384	1.3073	-3.6787
R ²	,3069	.7903	.7006	<b>.</b> 6053	.6724
				· · ·	

Table 99. Estimated first stage regression models from the fortnightly weather parameters for the variety 25 - Taliparamba-II

Table 100. Estimated first stage regression models from the fortnightly weather parameters for the variety 26 - Taliparamba-III

	- 				
Fortnight	MXT	Regression MNT	coefficient RH	RF	NR
8	0	3406	0765	004	.1003
9	0	.319	0245	<b>-</b> .0067	.173
10	.2126	-,5585	.132	.007	.1012
11	1184	.3379	.0355	.0005	.1204
12	.1434	4466	0501	.0003	.0274
13	1597	-1.2356	.3103	.0006	.3139
14	.1415	.7759	3024	0015	4228
15	.0129	.0164	.0067	.001	<b>.</b> 1505
16	0156	2842	-,2880	0029	.0749
Intercept	-18.75	105.545	26.1394	1.9086	-2.1291
$\mathbf{R}^2$	.4733	.6939	<b>.91</b> 01	.7191	.9331
					*******

Fortnight	MXT	Regression MNT	coefficient RH	RF	NR
8	1984	.0461	1311	0	.164
9	0	0371	.1386	-,0039	.0999
10	.1785	1522	.0892	0	0347
11	.0207	.1091	-:1453	0017	.0837
12	.1026	0856	.0666	· 0	.0586
13	1052	193	.1122	0004	.1638
14	0	2455	131	· <b>O</b>	-,0795
15	-,0106	.0052	.0083	.0012	-:0475
16	.019	0068	0146	0	0
Intercept	,1626	41.3713	1.3133	.6998	2014
R ²	.4476	.6178	<b>.</b> 6529	.2470	,5256

Table 101. Estimated first stage regression models from the fortnightly weather parameters for the variety 27 - Taliparamba-IV

Table 102.	Estimated first stage regression models from the
	fortnightly weather parameters for the variety 28
	- Valli

Fortnight	MXT	Regression MNT	coefficient RH	RF	NR
8	2104	.1192	<b></b> 0753	0	-;0997
9	1422	0993	.1235	.0042	.0724
10	.3415	2241	0	0032	0
11	.0794	<b>,</b> 179 <b>1</b>	121	0	.0531
12	.0537	2768	.0362	0	0
13	<b>-</b> .0636	1387	.1839	.0025	.0804
14	.1119	1237	1615	.0017	0
15	.0188	•055 <b>7</b>	.0151	0	0
16	1157	3871	1536	0002	1102
Intercept	-4.301	66.95	15.8532	<del>~</del> .5975	1.3231
R ²	<b>.7</b> 006	.6053	.558	.3102	.326

	- vallyakool				
Fortnight	MXT	Regression MNT	coefficient RH	RF	NR
8	.505	0769	011	0042	<b>.472</b> 8
9	.1442	2049	- 1797	002	.0974
10	2133	235	<b>₄</b> 3500	.0084	<b>.</b> 2682
11	135	.1412	1102	.0018	03
12	.1172	.1537	.1194	0011	.0905
13	1671	3111	1465	.0006	.2255
14	<b>2</b> 251	.4306	.1057	.0011	0
15	.0474	.0322	.0514	0	.2355
16	0043	.1584	254	0012	.1017
Intercept	-9.55	-3.6930	9.5799	.9015	-8.3107
$R^2$	.7379	.6022	.657 <b>7</b>	.6084	.8519
	و در بچ ها نه ده مار نه که ها د				-97 ins on an ins ins ins ins

Table 103. Estimated first stage regression models from the fortnightly weather parameters for the variety 29 - Valiyakodi

Varieties	Z _{MX}	Z _{MN}	Z _{RH}	z _{rf}	z _{NR}	Inter- cept	R ²	$(Ra^2)$
1	.5517	-	.4282	0651	.4858	4252	÷8836	.8519
2	<b>.</b> 4458	.2867	.6157	.1989	-	5749	.852	.810
3	.5100	.2234	.4131	1852	.3236	1141	.931	.804
4	<b>.8766</b>	-	.2293	-	-	0534	,840	.828
· 5	.3836	.3533	<b>.73</b> 48	-	-	5129	.8408	.8136
6	-	-	.7244	-	.3437	0866	.9506	.9467
7	-	.8624	.3639	-	-	2726	.8354	.8226
8	.4944	8638	.9814	.2261		.1515	<b>.9</b> 390	.9216
9	.4402	.5432	.5922	-	.0715	3203	.810	.7569
10	.5621	.6010	.4094	2660	-	3943	.9120	.889
11	.2526	.5555	.3224	-	.2102	5001	.9467	.9312
12	1.0325	-	-	0358	-	.0207	.8538	.8427
13	.4463	.7149	-	-	-	2109	.8612	.8501
14	3768	.7439	.6717	-	-	0514	.8761	.8538
15	-	-	1.0000	-	-	.0009	.9526	,9526
16	-	.6516	.4778	-	-	1835	.9526	.9487
17	.3529	-	.4540	-	.5383	6041	.9351	.9254
18	<b>.77</b> 97	-	.3125	1945	.3743	1580	.8949	<b>.</b> 8668
19	.2527	,2464	.7576	-	-	4896	.9044	.8874
20	-	-	.9971	.0354	-	0212	.992	.992
21	.3188	.3144	•5063	· 🗕	-	1717	.935	.9254
22	.3214	.1482	.7888	.1458	_	6116	.9722	.9643
23	-	.4667	.3482	.1581	.5617	7061	.8987	.8705
24	-	-	1.0312	-	-	7449	.9006	.9006
25	-	.6972	-	-	.4596	.0605	.8593	.8501
26	-	_	.5543	.1390	.3909	0575	.9781	.9821
27	.3266	.3430	.4390	-	.3497	2611	.8281	.781
28	.6094	.4455	-	1988	.4477	5316	.8686	.8336
29	.2278	.4132	.3060	5612	.7826	1604	.9643	<b>.9</b> 487

Table 104. Estimated 2nd stage regression models from fortnightly weather parameters

Summary

#### SUMMARY

Influence of five weather parameters viz. maximum temperature, minimum temperature, relative humidity, rainfall and number of rainy days on the yield of 29 varieties of pepper were studied at different lag periods. Daily observations on weather elements and annual yield of pepper recorded at the Pepper Research Station, Panniyoor, situated in Cannanore District of Kerala State, were used for the purpose.

The critical period of crop production for pepper was taken as 18 standard weeks or equivalently 9 fortnights during April to August. Each weather element in a standard week and similarly in a fortnight was considered as a variable. Thus for each weather element there were 18 standard weeks and 9 fortnights.

Coefficients of correlation between the weather parameters of each standard week and fortnight in the critical period of the crop production (from 15th standard week to 32nd standard week) and yield of each of the 29 varieties were worked out. There was no uniformity among the varieties with respect to the influence by weather variables of various lag periods due to large genotype-environment interaction. More over when individual week or fortnights were considered only very few significant relationship with yield could be observed.

Correlogram for five selected varieties were drawn to get the pattern of relationship. Here again there was no uniformity among varieties.

## Forecasting models from weekly data

Two stage linear regression was used to estimate yield forecasting models for the 29 varieties of pepper. When weekly observations were considered, the number of explanatory variables to be taken in to account was very large and hence they were classified into 10 groups. The standard weeks during the critical period were divided into two and each weather element for one group was considered as one set of explanatory variables. Thus altogether there were 10 sets of explanatory variables.

Multiple linear regression of annual yield on the explanatory variables in each set was worked out for all the 29 varieties and they formed the first stage forecasting models.

The estimated yield from the first stage models were taken as the explanatory variables for the models at the second stage. At the second stage also, regression of annual yield of each variety of pepper on the ten estimated yields from the first stage models and the trend variable was done by step-wise regression.

# Forecasting models from fortnightly data

Here also two stage linear regression models were used. The only deviation from that from weekly data is that each weather element in various fortnights were grouped in to one set of explanatory variables. Thus there were five sets of explanatory variables in this case.

Multiple linear regression of yield of each variety on the variables in each set was done and they formed the first stage models. At the second stage, estimated yields from the five first stage models constituted the explanatory variables available for selection in the step-wise regression for each of the 29 varieties considered.

For most of the varieties one of the first stage models could be used to forecast annual yield with remarkable accuracy.

In general the models using weekly weather data have high predictability compared to those from fortnightly data. More over almost all final forecasting models during weekly data have predictability more than 98 per cent.

Though weather elements in standard weeks or fortnights, when considered individualy, were not having very high relationship with annual yield of most of the varieties, their cumulative effect is substantial to the extend that annual yield can be predicted from weather elements with very negligible error in prediction.

References

.

#### REFERENCES

- *Anonymous (1954). Annu. Rep. 1953-56. Pepper Research Scheme Madras State, Directorate of Agriculture, Madras.
- Abeywardena, V. (1968). Forecasting coconut crops using rainfall data. <u>Ceylon Cocon</u>. <u>Quart</u>., 19:161-176.
- Afifi, A.A. and Azen, S.P. (1979). Statistical analysis. A Computer oriented approach, 2nd ed. Academic Press, London. 442p.
- Balasubramaniam, C. (1956). Rainfall and yield of coconut in South Kanara District. <u>Indian Cocon</u>. J. 9: 207-214.
- Deshpande, R.S. (1981). Bibiliography on crop-weather relationships. <u>Indian J. Agric</u>. <u>Econ</u>. 35(2): 144-151.
- Devanathan, M.A.V. (1975). Weather and yield of a crop. Expl. Agric. 11:183-186.
- Devuyst, A. (1948). Influence des pluies sur les rendements du palmier a huile enregistres a la station de Ls Me de 1938 a 1946. Oleagineux, 3:137-144.
- George, C.K. (1989). Accent on value addition. The Hindu Survey of Indian Agriculture 1986. 148-149.
- *Hemptinae, J. and Ferwerde, J.D. (1961). Influence des precipilation sur les production du palmier a' huile. <u>Oleagineux</u>. 16:431-437.

Ibrahim, K.K., Pillay, V.S. and Sisikumaran, S. (1985). Genotypes season interaction and stability parameters in black pepper. <u>Agric. Res. J.</u> <u>Kerala. 23(2):152-162.</u>

- *Laycock, D.H. (1964). An emperical correlation between weather and yearly tea yield in Malawi. <u>Trop. Agric. 41</u>:277.
- Menon, R. (1981). Growth, flowering, floral biology and spike shedding in pepper. Unpublished M.Sc. thesis submitted to Kerala Agricultural University.
- Menon, Usha, R. (1987). Forecasting models for crop yield in cashew. Unpublished M.Sc. thesis submitted to Kerala Agricultural University.
- Mustafi, A. and Choudhari, A.S. (1981). Use of multilayer group method of data handling for predicting crop production. <u>J. Indian Soc.</u> <u>Agric. Stat. 33(1):89-101.</u>
- Nair, B.P. (1985). Influence of weather parameters on the yield of coconut. Unpublished M.Sc. thesis submitted to Kerala Agricultural University.
- Nalini, P.V. (1963). Flower bud differentiation in pepper. Unpublished M.Sc. thesis submitted to Kerala Agricultural University.
- Patel, J.S. and Anandan, A.P. (1936). Rainfall and yield of coconut. <u>Madras Agric</u>. J. 24(1):9-15.

)

Paulose, T.T. (1973b). Pepper cultivation in India. Proceedings of a conference on spices. 10-14 April 1972 London. Trop. Products Institute.

111

Pillay, V.S., Sasikumaran, S. and Ibrahim, K.K. (1988) Effect of rainfall pattern on the yield of pepper. Agrometeorology of plantation crops - Proceedings of the national seminar organised by Kerala Agricultural University at Regional Agricultural Research Station, Pilicode.

- Rao, G.S.L.H.V.P. (1982). Rainfall and coconut yield in the Pilicode region. North Kerala. Proceedings of PLACROSYM - 1982. pp.388-393.
- Robertson, G.S. and Foong, S.F. (1976). Weather based yield forecasts for oil palm fresh fruits bunches. Malaysian Int. Agric. Oil Palm. Conf., 1976. Paper No.50, Kaula Lumpur, Malaysia.
- *Sen, A.R., Biswas, O.O., Ajit, K. and Sanyal, D.K. (1966). <u>J. Appl. Meteorol</u>. 5:789.
- Sparnaaij, L.D., Rees, A.R., Chapas, L.C. (1963). Annual yield variational in the cil palm. J. West Afr. Inst. Oil Palm Res., 4:111-125.
- Swe, M. (1985). Forecasting models for the yield of coconut. Unpublished M.Sc. thesis submitted to Kerala Agricultural University.

* Original not seen

Appendices

Ť

_

Date Standard Month Standard Month Date week No. week No. -----1 January 1-7 27 July 2-8 2. 8-14 28 9-15 3 , 15-21 , 29 16-22 . . . 4 22-28 30 23-29 5 29-4 31 30-5 February 32 August 6 ٠, 5-11 6-15 , ' 7 12-18 33 , 13-19 34 8 ۰. . . 19-25 20-26 . . . 9 26-4* 35 27-2 10 March 5-11 36 September 3-9 . 2.1 11 12-18 37 10-16 12 19-25 38 17-23 26-1 13 39 24 - 3014 April 2-8 40 October 1-7 15 9–15 41 8-14 42 · 16 16-22 15 - 2117 23-29 43 22-28 18 30-6 44 29-4 19 May 7–19 45 November 5-11 20 14-20 46 12 - 1821 21-27 47 19-25 22 28-3 48 26-2 23 June 4-10 49 December 3-9 24 11-17 50 10-16 25 18-24 51 17-23 26 25-1 52 24 - 31(*)

APPENDIX - I

* In leap year the week 9 will be 26th February to 4th March (8 days)

(*) Last week have 8 days, 24 to 31 December

· · ·	APPENDIX - II			
Number	Variety			
1	Balankotta-1			
2	Balankotta-2			
3	Cheriya Kaniyakada			
4	Chumala			
5 [.]	Kalluvally-1			
6	Kalluvally-2			
7	Kalluvally-3			
8	Kaniyakadan			
9	Karivilanchy			
10	Karimunda-1			
11	Karimunda-2			
12	Karimunda-3			
13	Karivally			
14	Kottanadan			
15.	Kumbhakody			
16	Kuthiravally			
. 17	Kuthiravally-AR			
18	Munda			
19	Narayakodi			
20	Palulauta			
21	Perumkodi			
22	Perumunda			
23	Sallia			
24	Taliparamba-I			
25	Taliparamba-II			
26	Taliparamba-III			
27	Taliparamba-IV			
28	Valli			
29	Valiyakodi			

.

_

# INFLUENCE OF WEATHER PARAMETERS ON THE YIELD OF BLACK PEPPER

By DESSY MABEL

# ABSTRACT OF THE THESIS

Submitted in partial fulfilment of the requirement for the degree

# Master of Science (Agricultural Statistics)

Faculty of Agriculture Kerala Agricultural University

Department of Agricultural Statistics COLLEGE OF HORTICULTURE Vellanikkara, Trichur

### ABSTRACT

Influence of weather parameters on the yield of black pepper was studied utilising the data on yield of 29 varieties of pepper (<u>Pipper nigrum</u>) and maximum temperature, minimum temperature, relative humidity, rainfall and number of rainy days recorded from 1963-64 to 1979-80 at The Pepper Research Station, Kerala Agricultural University, Panniyoor, in the Cannanore District of Kerala.

Averages/totals of weather elements for standard weeks as well as for fortnights during the critical period of crop growth viz. from April 9 to August 12 were determined. Correlation coefficients of all the weather elements of standard weeks and fortnights with annual yield when represented in correlograms revealed, wide variations in response of different varieties to changes in climatic factors among the 29 varieties. In other words there was definite evidence of genotype environment interaction.

Forcasting models, based on weekly as well as fortnightly weather elements were estimated for each of the 29 varieties of black pepper by two stage linear regression technique. First stage models were estimated by multiple linear regression and the second stage models were estimated with the estimates of yield from first stage models as explanatory variables by step-wise regression technique.

ł

The forecasting models utilising weekly climatic' data had higher predictability compared to that utilising fortnightly data. All the final forecasting models with weekly data had predictability of 98% and above. More over the first stage models, from weekly data, could also be used to forecast yield of all varieties of black pepper with remarkable accuracy.