"DEVELOPMENT OF MOLECULAR MARKERS FOR BLIGHT DISEASE RESISTANCE IN TARO USING BIOINFORMATICS TOOLS"

by

ATHUL V. S.

(2013-09-109)

Thesis

Submitted in partial fulfilment of the

requirement for the degree of

B. Sc. - M. Sc. (INTEGRATED) BIOTECHNOLOGY

Faculty of Agriculture

Kerala Agricultural University, Thrissur

B. Sc. - M. Sc. (INTEGRATED) BIOTECHNOLOGY

DEPARTMENT OF PLANT BIOTECHNOLOGY

COLLEGE OF AGRICULTURE

VELLAYANI, THIRUVANANTHAPURAM - 695 522

KERALA, INDIA

DECLARATION

I, hereby declare that this thesis entitled "DEVELOPMENT OF MOLECULAR MARKERS FOR BLIGHT DISEASE RESISTANCE IN TARO USING BIOINFORMATICS TOOLS" is a bonafide record of research work done by me during the course of research and that the thesis has not previously formed the basis for the award to me of any degree, diploma, associateship, fellowship or other similar title, of any other University or Society.

Vellayani

Date: 07.12.2018

ATHUL V. S. (2013-09-109)

भारत

CERTIFICATE

"DEVELOPMENT OF entitled Certified this thesis that DISEASE MARKERS FOR BLIGHT MOLECULAR **RESISTANCE IN TARO USING BIOINFORMATICS TOOLS"** is a record of research work done by Mr. ATHUL V. S. (2013-09-109) under my guidance and supervision and that this is not previously formed the basis for the award of any degree, diploma, fellowship or associateship to him.

Place: Sreekariyam Date: 07.12.2018

Dr. J. Sreekumar (Major Advisor, Advisory Committee) Principal Scientist, (Agricultural Statistics) ICAR-CTCRI

डॉ. जे. श्रीकुमार/Dr. J. SREEKUMAR प्रधान वैज्ञानिक (कृषि सांख्यिकी) Principal Scientist (Agricultural Statistics) एक्सटेंशन और सामाजिक विज्ञान अनुमाग Section of Extension and Social Sciences भा कु अनु प-केंद्रीय कंट फराल अनुसंधान संस्थान I C.A.R - Central Tuber Crops Research Institute श्रीकार्यम / Sreekartyam तिरुबनंतपुरम / Thiruvananthapuram- 695 017

Phone : +91-471-2598551 to 2598554 Director (Per) : +91-471-2598431 (Res) : +91-471-2597211 Sr. Admn. Officer : +91-471-2598193

Fax :+91-471-2590063 E-mail : director.ctcri@icar.gov.in ctcritvm@gmail.com Web : http://www.ctcri.org

CERTIFICATE

We, the undersigned members of the advisory committee of Mr. Athul V. S. (2013-09-109), a candidate for the degree of B. Sc. - M. Sc. (Integrated) Biotechnology, agree that the thesis entitled "DEVELOPMENT OF MOLECULAR MARKERS FOR BLIGHT DISEASE RESISTANCE IN TARO USING BIOINFORMATICS TOOLS" may be submitted by Mr. ATHUL V. S. in partial fulfillment of the requirement for the degree.

Dr. J. Sreekumar (Chairman, Advisory Committee) Principal Scientist, Section of Extension and Social Sciences (ICAR-CTCRI) Sreekariyam, Thiruvananthapuram

heator

Dr. Swapna Alex (Member, Advisory Committee) Professor and Head Department of Plant Biotechnology, College of Agriculture, Vellayani Thiruvananthapuram

Dr. A. Asha Devi (Member, Advisory Committee) Principal scientist (Genetics) Division of Crop Improvement (ICAR-CTCRI) Sreekariyam, Thiruvananthapuram

Dr. K. B. Soni (Member, Advisory Committee) Professor Department of Plant Biotechnology, College of Agriculture, Vellayani Thiruvananthapuram

Dr. M. K. Rajesh (External examiner) Principal Scientist (Biotechnology) Central Plantation Crops Research Institute Indian Council of Agricultural Research Kasaragod, Kerala

ACKNOWLEDGEMENT

With no creation in the world being a solo effort, it's my privilege to look over the journey past and thank everyone who supported me in making this thesis to a good shape. I blissfully take this opportunity to express my heartfelt gratitude to:

Almighty GOD, for the blessings and presence, providing me the perseverance and mental support without which I would not have completed the work.

Dr. Archana Mukherjee, Director, ICAR-CTCRI, for giving me an opportunity to work at the institute for my M. Sc. project and supporting me.

Dr. Sheela Immanuel, Head, Division of Extension and Social Sciences, for extending the facilities to perform my work at the department.

Dr. J. Sreekumar, my cherished advisor, who gave me the freedom to work on my own way, supporting my participation at various seminars and conferences. His patience, guidance and advice were of great encouragement throughout my project.

Dr. A. Asha Devi, my advisory committee member who assisted me with great enthusiasm in performing the wet lab part of my work at Division of Crop Improvement.

Dr. Mohan who provide me valuable insights on wet lab experiments and assisting me to get in contact with IDT technology.

Dr. Senthil for helping me in using primer designing tools and designing the primers.

Mr. Prakash Krishnan B. S. for sparing his busy schedule at the department for being with me for assisting in PCR and DNA isolation.

Dr. Anil Kumar A., Dean, COA, Vellayani for providing all the necessary help and facilities provided.

Dr. Swapna Alex, Professor and Head, Department of Plant Biotechnology for her talented guidance and valuable suggestions. Dr. Soni K. B. for her reasoned criticism and inspiring support from the college. Even with her busy schedule she takes her time to spare for our academic matters and being strict.

Ambu chetan for giving valuable lessons during BSL life and guiding me. He always helped kindheartedly with open suggestions.

BSL members - Reshma, Sahla, Aswathy, Achuth, Shilpa, Gayathri, Haritha, Sruthy, Akshay, Rekha chechi and Priya chechi for all the fun, unparallel affection and care and making BSL more lively.

Special thanks to members of Crop improvement lab - Bimal, Sabari, Arya and Anjitha who spared their valuable time for me at the end phase.

Jithu Sanghi for being with me at CTCRI during the project and supporting me.

Archnaleksmi, for being with me and supporting during my hardtimes through thoughtful and enjoyable discussions.

To all my seniors and juniors at College of Agriculture, who have been the real inspiration for me.

All my colleagues of 2013 kidilams batch for being with me during all my ups and downs for the past 5 years.

My parents Valsalakumar C. and Sreekala D. for being supporting all the times.

Athira V. S. for helping me during the project and mentoring me.

I convey my wholehearted thanks to all my well wishers who were far too numerous to have been mentioned here.

Athul V. S.

Dedicated to My Parents

TABLE OF CONTENTS

i

Sl. No.	Chapters	Page No.
	LIST OF TABLES	ü
	LIST OF FIGURES	ш
	LIST OF PLATES	iv
	LIST OF APPENDICES	V
	LIST OF ABBREVATIONS	vi
1	INTRODUCTION	1-3
2	REVIEW OF LITERATURE	4-20
3	MATERIALS AND METHODS	21-34
4	RESULTS	35-49
5	DISCUSSION	50-53
6	SUMMARY	54-55
7	REFERENCES	56-74
8	APPENDICES	75-83
9	ABSTRACT	84-85

LIST OF TABLES

Table No.	Title	Page No.
	3. MATERIALS AND METHODS	
1	List of taro varieties selected for DNA isolation	31
	4. RESULTS	
2	Distribution of transition and transversion of SNPs from QualitySNP	36
3	Distribution of transition and transversion of SNPs from AutoSNP	37
4	Comparison of AutoSNP and QualitySNP	38
5	Summary of MISA based prediction of SSR	38
6	Category wise distribution of SSRs predicted using MISA	39
7	Summary of SSRIT based prediction of SSR	39
8	Distribution of different classes of repeats identified in SSRIT	40
9	Predicted markers and selected markers for primer synthesis	41
10	List of SNP primers designed using Primer3Plus	42
11	List of SSR primers designed using Primer3Plus	43
12	Selected SNP primers for Synthesizing	44
13	Selected SSR primers for Synthesizing	45
14	Quantification of DNA	46
15	Annealing Temperature for the synthesized primers	47

LIST OF FIGURES

Figure No.	Title	Between pages
	3. MATERIALS AND METHODS	
1	Workflow for the identification of SNP and SSR markers for blight disease resistance in taro.	21-22
2	Trimmomatic workflow for paired reads	23
3	Steps in CAP3 assembly	24
4	Primer Order Form	30-31
	4. RESULTS	
5	Distribution of SNP polymorphisms in QualitySNP and AutoSNP	37-38
6	Distribution of SSR in MISA and SSRIT	40-41
7	ClustalX alignment of CeSNP3 with Muktakeshi	48-49

LIST OF PLATES

Plate No.	Title	Between Pages
	4. RESULTS	
1	0.8% EtBr stained agarose gel showing DNA of 6 taro samples after electrophoresis.	46-47
2	Gel image of CeSNP1, CeSNP2, CeSNP3, CeSNP4 and CeSNP5	48-49
3	SSR screening against CeSSR1, CeSSR2, CeSSR3, CeSSR4, CeSSR5	48-49
4	Gel image of CeSSR4	48-49

....

, 17

LIST OF APPENDICES

Sl. No.	Title	Appendix No.
1	DNA extraction buffer	Ι
2	TE buffer (10X)	П
3	TBE Buffer (10X)	III
4	100bp marker	IV
5	PCR Mastermix	V
6	List of synonymous SNP coding data identified by QualitySNP	VI
7	List of non-synonymous SNP coding data identified by QualitySNP	VII
8	List of SSRs identified by MISA	VIII
9	List of SSRs identified by SSRIT	IX

LIST OF ABBREVIATIONS

%	Percentage
°C	Degree Celsius
A_{260}	Absorbance at 260nm wavelength
A_{280}	Absorbance at 280nm wavelength
AFLP	Amplified Fragment Length Polymorphisms
AGE	Agarose Gel Electrophoresis
ABVC	Alomae–Bobone virus complex
BC	Before Christ
CTCRI	Central Tuber Crops Research Institute
DNA	Deoxyribonucleic acid
EDTA	Ethylenediaminetetraacetic acid
EST	Expressed Sequence Tag
E-value	Expect value
FAOSTAT	Food And Agricultural organziation Database
GC	Guanine-Cytosine
GBS	Genotyping by sequencing
g	gram
h	hour
ha	hectare
HTML	Hypertext Markup Language
ie	that is
kb	Kilobase

kg	kilogram
mg	milligrams
MAS	Marker Assisted Selection
MgCl ₂	Magnesium chloride
min	Minute
ml	Milli Litre
mm	Milli Metre
mM	Milli Molar
NCBI	National Centre for Biotechnology Information
ng	Nanogram
NIH	National Institutes of Health
nm	Nano Metre
OD	Optical Density
PCR	Polymerase Chain Reaction
RNA	Ribose Nucleic Acid
RNase	RiboNuclease
rpm	Rotation per minute
SNP	Single Nucleotide Polymorphism
SRA	Sequence Read Archive
SSR	Simple Sequence Repeats
TANSAO	Taro Network for South East Asia and Oceania
Taq	Thermus aquaticus
TBE	Tris-Borate-EDTA
TLB	Taro Leaf Blight
Tm	Melting Temperature

UV	UltraViolet
V	Volt
v/v	volume/volume
w/v	weight/volume
μL	Microlitre
μΜ	MicroMolar

INTRODUCTION

1. INTRODUCTION

Colocasia esculenta (L.) Schott. a member of the Araceae family, is a widely distributed tropical tuber crop in the world with a global production of 10 million tonnes and a yield of 6,066 kg/ha (FAOSTAT, 2016). Being a tuber, it is the staple food crop of many Pacific countries. With uncertainties existing regarding the origin of taro, the crop is believed to be originated in the south-east Asian regions by ethno botanical evidence and introduced to other countries (Lebot *et al.*, 2004). Taro has a chromosome number of 14 and two cytotypes, a diploid one with 28 chromosomes and a triploid one with 42 chromosomes (Chaïr *et al.*, 2016). With more than 200 cultivars, the crop is mainly classified into wetland taro and upland taro. The ability to propagate vegetatively (by corms) and to adapt to a wide variety of substrate and climate make them an attractive crop globally.

Taro posses a high calorific value of 112 calories/100 grams and serves to be a major source for carbohydrates, dietary fibers, Pyridoxine, Riboflavin, Copper, Zinc and a minor source for fats and proteins (USDA, National Nutrient Database, 2018).

Colocasia esculenta suffers great damage due to the taro leaf blight caused by *Phytophthora colocasiae* apart from the attack by taro beetles which significantly lowered the yield globally (Singh *et al.*, 2012). As chemical controls are harmful and less effective with evolving pathogens, a genetic basis should be adopted for controlling plant-pathogen interactions. Molecular basis of pathogen attacks and crop resistance hold a key role in developing resistant varieties.

In the absence of a reference genome sequence, transcriptome sequencing has proved to be an efficient tool for discovery of molecular markers, gene expression profiling and mapping (Mutz *et al.*, 2013). The *in-silico* approaches for the discovery of molecular markers mainly revolve around the information gathered from expressed sequence tags (EST) using Sanger sequencing. Recent trend focuses on next-generation sequencing (NGS) for the molecular marker and gene discovery which bypasses the expensive and time-consuming nature of the EST-based method and generates significant output data with quality, robustness

and low noise with the aid of powerful computers and complex algorithms (Buermans et al., 2014).

Single nucleotide polymorphisms (SNPs) are the type of genetic markers with high abundance and slow mutation rate within the genome. SNP discovery is crucial to determine the genetic variability of an organism and the *in-silico* approach is based upon the sequence information available in public databases, in most cases as EST and NGS and are considered to be faster and cheaper than experimental procedures (Tang *et al.*, 2006).

SSRs (simple sequence repeat) originally designated as STRs (short tandem repeats) are the class of molecular markers with repeats of 2 - 6 nucleotides with genetic co-dominance, abundance, high level of polymorphism, multi-allelic variation, high reproducibility and dispersal throughout the genome, make them ideal for molecular mapping and plant breeding studies (Li *et al.*, 2002 : Eujayl *et al.*, 2004).

Crop research is a gradually expanding field of science with significant achievements being made in the past decade (Bilsborough, 2013). Data sharing, integration, and annotation are crucial for validating the findings made experimentally. Bioinformaticians and computer scientists with little or no help from biologist could perform these. On the contrary, biologists are crucial as they are the major producers and penultimate users of the data. Sharing, integration, and annotation, however, depends on the adoption of standards, submission mechanism, shared formats etc. which enables the convenience for other research purposes. Successful data integration from a computational viewpoint and its application in the field of biological research contributes to new discovery and scope in the future (Laptas *et al.*, 2015).

With the arrival of new sequencing platforms, identification of genome wide distribution of SNPs, SSRs, etc. was possible, which in turn helped in identifying the disease-resistance genes. The genome sequences of organisms are fundamentally important for discerning the genes, their functions, evolutionary relationships and unknown regulatory mechanisms. The approach not only has a

weighty impact on human disease and diagnostics but also aids in crop improvement. Sequential information comes handy for breeding, identifying challenges and to utilize the variation present within a genome (Bevan *et al.*, 2013).

The present study was undertaken with the following objectives to computationally develop SNPs and SSRs for taro leaf blight disease resistance, and to validate them for understanding their effectiveness.

Review of Literature

2. REVIEW OF LITERATURE

Taro [*Colocasia esculenta* (L.) Schott], referred to as "potato of the tropics" or "elephant ears" is a member of Araceae family with wide adaptability and large-scale acceptability. It is grown primarily for its edible corms, leaves, and petioles. The taro plant as such is useful with the stem being used as salads, the tubers as a source of digested starch, leaves as a green vegetable and for wrapping food.

The crop is known by different names all over the country such as arvi (Hindi), chempu (Malayalam), seppan kizhangu (Tamil), kachchi (Kannada), chamadumpa (Telugu), alu (Marathi) and kachu (Bengali) (Edison *et al.*, 2003).

Apart from being a backyard crop, its commercial cultivation accounts for about 16,69,708 ha globally (FAOSTAT, 2016). Taro grows with an average annual precipitation of 2500 mm or more (Weightman, 1989). Survival in waterlogged conditions utilizing the hydromorphic soil makes it more acceptable where other tuber crops fail (Onwueme, 1978).

Aroids, often known as "orphan crops" are not extensively traded and studied by researchers and constitute to be a minor crop globally. Even being a minor crop it is quite essential for the food security with their unique nutrient profile. *Colocasia* and *Xanthosoma* represent the major class of aroids with the former known as taro/dasheen and the latter as cocoyam or tannia.

The narrow genetic bases available are the major limitations faced by taro breeding programmes (Banjaw, 2017), however, exchange of genotypes could broaden up the bases of breeding (Lebot and Aradhya, 1991). Lebot *et al.* (2004) suggested a breeding strategy using wide genetic bases composing of parents from diverse regions. The diversification allows for gene pools among different cross cultivars as crosses from one country are not desirable. *Phytophthora colocasiae* Rac., a foliar pathogen causes TLB which accounts for a decrease in taro production. TLB occurrence is highly related to the climatic condition of a region (Edison *et al.*, 2003). The deadly disease affects taro globally with serious outbreaks being reported in Samoa in 1993 and in the Cameroon, Ghana, and Nigeria during the past few years (Singh *et al.*, 2012). Leaf blight caused by *Phytophthora colocasiae* Raciborski limited the production of the crop in Nagaland with expression being reported around monsoon and continues throughout the rainy season (Pongener *et al.*, 2016).

Many breeding programmes target either resistance against disease or increasing yield, achieved by means of molecular markers (Scholten *et al.*, 2005). Molecular marker improves the efficiency of plant breeding by carrying out the selection of traits linked on to it (Mohan *et al.*, 1997). Being unaffected by environmental conditions in which plants are grown and detectable in all plant growth stages makes marker-assisted selection (MAS) more practical.

It has been predicted that a combination of changing dietary habits and prospering human population growth will result in an increased demand for agricultural production of 60-110% by 2050 (Alexandratos and Bruinsma, 2012). Increasing production demands for the practice of cultivation of high yielding and disease resistant plants (Godfray *et al.*, 2010). Improvement demands the better understanding of the genetic mechanisms controlling traits of interest, and genomics approaches (Bilsborough *et al.*, 2013).

In this chapter, literature concerning the leaf blight disease, *in-silico* development of molecular markers (SSR and SNP), and their validation have been presented.

2.1 CENTRE OF ORIGIN

Taro (*Colocasia esculenta*), a vegetable and starchy tuber cultivated all over the world, is believed to have originated in South Central Asia, probably in India or the Malay Peninsula with Nigeria, Cameroon, and Ghana account for more than 50% of global production (FAOSTAT, 2017). The absence of written records, linguistic records, archeological evidence and descriptional confusion with *Xanthosoma* species make it difficult to support the exact view of origin (Leon, 1977).

Even before human used planting, harvesting cycles, and conventional agricultural techniques, the collection of starch from the sago palm (*Metroxylon sagu*) and taro (*Colocasia esculenta*) was in practice around marshy areas, lakes, swamp forests, and rivers (Goltenboth *et al.*, 2006). With significant citations in the Classical (Greek and Latin) texts that record the name *Colocasia* from the 3^{rd} century BC onwards, there is a possibility for the crop to be originated in the Mediterranean region also (Grimaldi *et al.*, 2018).

The diversity and number of private alleles were observed more in Asian accessions, mainly from India. Bayesian clustering revealed the origin of diploids around Asia-Pacific region and a second diploid-triploid group to India (Chair *et al.*, 2016).

Being a crop significant for production and trade due to their medicinal and edible qualities may also contribute to their worldwide dispersal all over the world through maritime and terrestrial trading routes.

2.2 TARO NUTRITION PROFILE

Njintang *et al.* (2008) found out that taro starch has high solubility index and water holding capacity than other starch synthesizing counterparts. With low fat and protein, 70–80 % starch, minerals, vitamins and rich in anthocyanins such as cyanidin-3-chemnoside, pelargonidin-3-glucoside, and cyanidin-3-glucoside which were revealed to possess anti-inflammatory and antioxidative property makes taro more preferable (Kaushal *et al.*, 2015). The presence of resistant starch and mucilage in taro peculiarized with slower digestion leads to the slower release of glucose and aids in treating diabetes, obesity and several diseases (Liu *et al.*, 2006).

Several studies reveal the presence of several macro and micro minerals in taro with potassium being the abundant one along with magnesium, calcium, phosphorous etc. (Mwenye *et al.*, 2011). Huang *et al.* (2007) investigated the role of cultivars and field preparations and observed taro to be rich in thiamin, riboflavin, and ascorbic acid. Lewu *et al.* (2010) carried out the comparative assessment of taro and observed fewer concentrations of zinc, manganese, and iron. The composition of minerals, however, was influenced by the interaction of the genotype and climatic conditions (Mwenye *et al.*, 2011). The nutrient profile comprising high vitamin E, fiber, potassium, and other macro and micronutrients makes taro unique over other tuber counterparts (USDA, 2018).

2.3 PLANT MORPHOLOGY

In the book "Species Plantarum" by Carl Linnaeus, taro was classified into two types - Arum colocasia and Arum esculentum. However, in 1832, Schott established the genus Colocasia and renamed them as Colocasia esculenta and Colocasia antiquorum respectively. Purseglove in 1972 morphologically identified two varieties of taro: eddoe and dasheen. Eddoe characterized with a central corm surrounded by many small cormels, and dasheen, with one main large corm (Plucknett 1983). O'Sullivan et al. (1996) described eight polymorphic variants in Colocasia esculenta of which Colocasia (L.) Schott var. esculenta and Colocasia (L.) Schott var. antiquorum being the widely cultivated ones.

A monocotyledonous herbaceous plant with 1-2 cm height, apically growing large heart-shaped leaves from the top of corms composed of a multilayered palisade and air-filled spongy mesophyll, abaxial and adaxial stomata, highly vacuolated epidermal cells, variable morphology, peltate structure and

laterally growing underground corms (Stein *et al.*, 1983). The name taro now accounts for about 3 aroid species *Alocasia macrorrhiza* (L.) G. Don (giant taro), *Colocasia esculenta* (true taro), and *Cyrtosperma merkusii* (Hassk.) Schott (swamp taro). Among them, true taro is further classified into two as *C. esculenta* var. *esculenta* and *C. esculenta* var. *antiquorum* (Ivancic and Lebot, 2000).

Onwueme in 1978 reported chromosome numbers as, 2n = 22, 26, 28, 38, and 42 for taros from various regions. Chromosomal variation occurs in the plant depending on their origin with 2n = 24 and 4n = 48 for clones from India, 2n = 28 for clones from Polynesia, while 2n = 28 is found directionally distributed from India to Japan and to New Caledonia, and 3n = 42 in New Zealand (Yen *et al.*, 1968). However, two chromosome numbers are commonly reported for taro, 2n = 28 and 3n = 42 (Kuruvilla *et al.*, 1981). In India both triploid and diploids are reported, diploids dominate in the southern region while triploids dominate in the north (Sreekumari and Mathew, 1991).

2.4 TARO LEAF BLIGHT (TLB)

Attacks on plants represent a global threat to food security. Due to the local consumption and lack of entry to the international trade and market, taro blight has gone unnoticed over the past (Gregory, 1983). One of the important destructive disease of taro accounting for 20-50 yield loss, caused by *Phytophthora colocasiae* Rac. The pathogen also caused serious post-harvest loss to the species (Misra *et al.*, 2008). Trujillo (1965) observed the higher frequency of TLB in areas with high humidity and rainfall whereas lower in areas with a warmer climate.

Wagih *et al.* (1994) reported declining production of taro in Papua New Guinea by the attack of *Phytophthora colocasiae*. Along with taro leaf blight (TLB), declining soil fertility, attacks by taro beetles, and the Alomae – Bobone virus complex (ABVC) together add to the declining production globally (Singh *et al.*, 2008). Sharma *et al.* (2009) identified the genes which conferred blast disease resistance. Sharma *et al.* (2008) used virulent *P. colocasiae* to inoculate

compatible and incompatible varieties to characterize the host-pathogen interactions using Suppressive Subtractive Hybridization (SSH), Northern blot analysis and high throughput DNA sequencing.

Phytophthora colocasiae with a limited host range, primarily infecting the *Colocasia* species is believed to reduce the corm yield by 50%, leaf yield by 95% and also possess significant threats during the storage periods (Singh *et al.*, 2012). Genetic analysis of plant pathogen is crucial to determine the evolution and resistance for an efficient leaf blight management (Milgroom *et al.*, 1997; Lebot *et al.*, 2003).

2.5 MOLECULAR MARKERS

Development of molecular marker technology in the 1980s had revolutionized plant breeding and achieved significant improvements. Morphological, cytological and biochemical markers constitute the major classes of markers and DNA markers such as AFLP, RAPD, SNP, SSR, and ISSR are the widely used ones. Depending on the types of repeats and purity, the efficiency of marker development varies (Vieira *et al.*, 2016). Molecular markers serve as the ideal candidates for detection and screening of mutations, insertion-deletions, and duplications (Hayward *et al.*, 2015).

2.6 SNP

Single nucleotide polymorphism (SNP) refers to an alteration in a single nucleotide -A-T-C or G- between members of a species (Ching *et al.*, 2002). SNPs can be categorized into 3

- Transition (C/T or G/A)
- Transversion (C/G, A/T, C/A, or T/G)
- InDels (small insertions/deletions)

Doveri *et al.* (2008) found SNPs to be bi-, tri- or tetra-allelic, with bi-allelic being common and tetra being rarest. The detection of SNPs has a great role in determining the relation between allelic forms of a gene and their phenotypes (Jorde, 2000). Recent developments in sequencing technology eased the

discovery of SNP and insertion-deletions. With high frequencies of one per $\sim 100-500$ base pairs (bp) SNPs are widely used choice to exploit the linkage disequilibrium and obtain high-resolution genetic mapping (Rafalski, 2002).

With high abundance and amenability for high throughput detection, computational-based approaches dominate the SNP discovery methods (Batley *et al.*, 2003). Increasing sequential information in the database and complexity of genomes posses a great challenge in the identification of SNPs. SNP assays with accurate phenotyping have accelerated marker-assisted selection to create salt-tolerant soybean cultivars (Patil *et al.*, 2016). SNPs are crucial for pathogen analysis, phylogenetic analysis and correlation of genotype with phenotype.

2.7 SSR

Microsatellites often referred to as SSR (simple sequence repeats) or STR (short tandem repeats) are short 2- 6 bp DNA motifs repeated within the genome of an organism. SSR markers are being widely exploited to study the functional genomics of an organism. Its occurrence results from either addition or deletion of repeating motifs. With the difference in the number and type of repeats, variation occurs in the genome.

Being found in both prokaryotes and eukaryotes with wide distribution found in coding and non-coding DNA, SSRs are widely used for genotyping plants over last decades (Taheri *et al.*, 2018). Temnykh *et al.* (2001) found out SSRs with longer repeats to be highly polymorphic and shorter repeats to be less polymorphic while studying the rice genome. Qu *et al.* (2013) observed the distribution of SSR across the maize genome to be non-random, with UTR region accounting for the most. Various researches and findings by researchers propose that longer and purer repeats posses higher mutation frequency whereas shorter repeats have lower frequencies.

2.8 SNP AND SSR MARKERS IN PLANTS

SSR markers with high polymorphism and SNPs with high abundance are essential in plant breeding programmes (Gonzaga et al., 2015). With significant

achievements being made in the field of molecular genetics, the co-dominant markers such as SNP and SSR are being exploited more and more to achieve progress. By surviving innovation and possessing technical advances, these markers remain as the prime target of the research community (Vieira *et al.*, 2016).

2.9 MOLECULAR ASPECTS OF TARO

The major constraint in the field of research in taro is the narrow genetic base and the lack of exotic collections. Genetic improvement for taro could be achieved with the acquisition of pathogen-free varieties from Pacific and other regions (Edison *et al.*, 2003).

22 ESTs, 144 genes, 88 UniGenes, 2,088 protein sequences, 2,138 DNA and RNA sequences, six experimentally-determined biomolecular structures, 117 sequence sets from phylogenetic and population studies and one functional genomics study have been so far reported for taro in NCBI, which clearly highlights the lack of research in the crop.

In the absence of a well-sequenced genome and EST information, the molecular marker development provides sufficient information for obtaining a genetic linkage map, to study the genetic basis of phenotypic traits of interest and other genotypic information (Helmkampf *et al.*, 2017).

Segregation of traits could be better understood by employing techniques to develop molecular marker and linkage maps. Isozyme studies conducted by Lebot and Aradhya in 1991 showed greater variation in accessions from Indonesia, Hawaii, and Melanesia. However, of the 1,417 accessions, 343 accessions from the Hawaiian region doesn't constitute any variation. Matthews *et al.* (1992) analyzed ribosomal DNA to separate a few taro accessions from Japan. Irwin *et al.* (1998) used random amplified polymorphic DNA (RAPD) primers for evaluating genetic diversity in *Colocasia* from Hawaiian and Indonesian accessions. The study also reported triploid and diploid accessions to be useful in parental selection for crop improvement.

Quero-García *et al.* (2006) recommended for the inclusion of a large number of SSR markers, progenies and important traits for an effective mapping analysis in taro. Eleven microsatellite markers were isolated from a population of 30 for germplasm management and population evolution in China (Hu *et al.*, 2009). A simple sequence repeat-sequence characterized amplified region (SSR-SCAR) was developed by Dai *et al.* (2016) for facilitating the conservation and utilization of *Colocasia esculenta* cv. Xinmaoyu which clearly distinguished between cultivars of Jiangsu Province and Fujian Province. Wang *et al.* (2017) sequenced the transcriptome of Jingjiang Xiangsha variety to develop 127 pathways in the Kyoto Encyclopedia of genes and genomes (KEGG). With high polymorphism value which ranged from 0.042 to 0.778, the 65,878 unigenes could be used up for gene analysis and other discoveries.

Kreike *et al.* (2004) used a combination of three AFLP primers to group 255 accessions from Vietnam, Thailand, Malaysia, Indonesia, Philippines, Papua New Guinea, and Vanuatu based on gene distance and genetic diversity measured. Similarly, Noyer *et al.* (2003) made use of AFLP primers to study genetic diversity within the accessions of TANSAO.

DarT (diversity arrays technology) markers were used to analyze the somaclonal variation in taro along with greater yam (*Dioscorea alata*) in the islands of Vanuatu (Vandenbroucke *et al.*, 2016). A low, 3 % polymorphic clones were detected against 13% in yam on the DArT arrays and somaclonal variants were selected as the new varieties.

Mace *et al.* (2002) used microsatellites as a tool for genome mapping and marker-assisted selection for the genotypes from Southeast Asia and Oceania region. Lu *et al.* (2011) opted SSR markers for distinguishing and studying the evolutionary history of taro species in southwestern China.

Inter-Simple Sequence Repeat (ISSR) markers were used for distinguishing Xanthosoma sagittifolium (L.) Schott (Taioba) and Colocasia esculenta (L.) Schott (Taro) (Sepúlveda-Nieto et al., 2017).

Matsuda *et al.* (2002) discovered Restriction fragment length polymorphism (RFLP) while investigating ribosomal DNA (rDNA) polymorphism in 227 accessions of taro from China, Japan, Taiwan, and Vietnam. Sharma *et al.* (2008) used AFLP markers for analyzing geographical differentiation and for identifying markers linked to taro leaf blight disease.

Tahara *et al.* (1999) studied the SNPs in 13 accessions of taro for distinguishing *Colocasia* and *Alocasia*. Of the two loci, only trnL - trnF loci showed variations which were not sufficient to classify them. Soulard *et al.* (2017) constructed two genetic linkage maps of taro using SNPs identified using GBS to develop a reliable SNP set in taro.

2.10 NEXT-GENERATION SEQUENCING (NGS).

Sanger and Coulson's sequencing proved to be effective in *Arabidopsis thaliana*, however, the complexity of genomes, time factor and cost made the research community to pull out of it to move towards NGS platforms (Arabidopsis Genome Initiative, 2000). Advances in NGS have made a new plot for detection of markers, especially SSR and SNP.

Different platforms are present in NGS analysis such as 454 Roche (http://www.my454.com) for bacterial and viral genomes, Illumina genome analyzer (http://www.Illumina.com) for plants, humans, and mouse, ABI SOLID (http://www.thermofisher.com), Ion Torrent (http://www.thermofisher.com), and Qiagen GeneReader (http://www.genereaderngs.com) for other microbes and prokaryotes.

Being huge in size NGS data provide solutions to overcome issues related to origin, external contamination, and degradation of samples. The advances being made in the field further promotes and boosts research interest among scientific community (Di Donato et al., 2018).

More and more sequencing of plant genomes is being done with the onset of the NGS. Genome assembly generation in plants having polyploid genomes with high levels of repetitive sequences is confronting (Bevan *et al.*, 2013).

Gimode *et al.* (2016) used Next Generation Sequencing (NGS) for developing SSR and SNP markers. 10,327 SSRs and 23,285 non-homologous SNPs were found out and validated which significantly contributed to the finger millet genetic information. Wang *et al.* (2013) used NGS for the discovery of SSR markers and assembling of unigenes in *Chrysanthemum nankingense*, which yielded 70,895 unigenes and 1,788 primer pairs.

With the combination of genomics and NGS technology, SNP and SSR markers have accelerated the pace of plant breeding programmes (Mammadov *et al.*, 2012). NGS technology provides powerful methods to breeders for high accurate analysis of genomes. With the higher accuracy and reproducibility they are being widely accepted for marker development and genotyping (Torkamaneh *et al.*, 2018). Illumina, 454 pyrosequencing are being widely used for developing SSR and SNP among plant species (Taheri *et al.*, 2018).

NGS technology as a whole got applications among pathogen detection and data management also. It bridges the gap among genome data and breeding programmes via marker development and utilization of the raw data (Choe *et al.*, 2018). Genome assembly of many crops has been accomplished by combined approaches of bioinformatics and next-generation sequencing which opened up new frontiers for developing and improving new varieties.

2.11 BIOINFORMATICS TOOLS FOR MOLECULAR MARKER DEVELOPMENT

Being faster and cheaper, bioinformatic approaches are effective for molecular marker development. With various tools written in different scripts assigned to different functions, a combined approach among breeders and researchers will foster improved crop production. A few tools are being described below.

2.11.1 Trimmomatic

Developed by Bolger *et al.* (2014), it is a faster-multithreaded command line tool which trims and crops the paired or single end data according to the parameters users provide and also assists in removing adaptors. Trimmomatic performs trimming and clipping in 2 different steps, in the first step the java programme finds for matches between adapters and reads based on input parameters and gives an alignment score based on which the second sliding window step trims with a threshold score.

Trimmomatic over the past few years has cited several applications, analyzing lncRNAs in CD4+ T cell differentiation (Ranzani *et al.*, 2017), drafting genome sequence of *Pythium periplocum* (Kushwaha *et al.*, 2017), characterization of species among juniper forests (Wahid *et al.*, 2016), enhancing structural annotation of yeast genome (Devillers *et al.*, 2016), for identifying differential expression in CHO cells (Monger *et al.*, 2017), for assembly of cucumber somaclones (Skarzynska *et al.*, 2017), for identifying gene regulation in maize during root emergence and initial growth (Hwang *et al.*, 2018) etc.

2.11.2 Trinity

Trinity serves as the platform for *de novo* reconstruction of transcriptomes from RNA-Seq data without a reference genome. Inchworm, Chrysalis, and Butterfly serve as the three different software modules for Trinity. The 3 step process begins with assembling the datasets into transcript sequences by inchworm, construction of de Bruijn graphs and partitioning of the reads to produce transcripts by Chrysalis and synthesis of transcripts by Butterfly. The runtime of the protocol depends on the size and complexity of data (Grabherr *et al.*, 2011).

Several researches had used Trinity as the *de novo* assembly and transcriptome analysis tool such as in expression analysis of *Diuraphis noxia* for

selecting reference genome (Sinha et al., 2014), genome annotation of *Colletotrichum acutatum* (Han et al., 2016), *De novo* assembly and transcriptome analysis of *Rubus idaeus* (Ward et al., 2012), *Oryza officinalis* (Bao et al., 2015), Chili Pepper (Liu et al., 2013), *Camelina sativa* (Liang et al., 2013) *Monotropa hypopitys* (Beletsky et al., 2017) and *Petunia hybrida* (Villarino et al., 2014).

2.11.3 CAP3

CAP3 refers to the sequence assembly program for clipping 5' and 3' lowquality regions of reads is the third successor to CAP (Contig Assembly Program) developed by Huang in 1992. It generates consensus sequences based on multiple sequence alignment of the reads based on quality values (Huang *et al.*, 1999). CAP3 on comparison with PHRAP produces smaller contigs with few or nill error. He *et al.*, 2015 observed CDTA (Combined *De novo* Transcriptome Assembly) strategy and SAMP (Single-Assembler Multiple-Parameter) strategy to be better for transcriptome assembly.

CAP3 is widely used in molecular marker development studies such as ESTderived SSRs in *Epimedium sagittatum* (Zeng *et al.*, 2010), common bean (Hanai *et al.*, 2007), *Vicia faba* (Ma *et al.*, 2011), *Vaccinium corymbosum* (Boches *et al.*, 2005), study of molecular chaperones in sugarcane (Borges *et al.*, 2007) *and* annotation of cDNAs in *Thellungiella halophila* (Taji *et al.*, 2008).

2.11.4 SNP Identification Tools

With the experimental methods highly expensive and unavailable to all, computational approach holds the potential for the discovery of SNPs (Schlotterer, 2004). Different tool are being used for identification of SNP such as SNAP (Johnson *et al.*, 2008), kSNP3.0 (Gardner *et al.*, 2015), PolyPhred (Nickerson *et al.*, 1997), POLYBAYES (Marth *et al.*, 1999), *Consed* (Gordon *et al.*, 1998; 2013) Phred (Ewing *et al.*, 1998), SNPServer (Savage *et al.*, 2005) AutoSNP (Barker *et al.*, 2003) and QualitySNP (Tang *et al.*, 2006) being a few among them. Unfortunately, many of them are outdated due to lack of funding and are not publicly available to the research community.

2.11.4.1 AutoSNP

A freely available perl script programme for detection of SNPs from sequence data using redundancy-based approach. d2cluster and cap3 are being used by AutoSNP for aligning the sequences and differentiating the candidate SNPs (Barker *et al.*, 2003). Batley *et al.*, 2003 used AutoSNP for identifying SNPs in maize and found out them to be of true genetic variation.

2.11.4.2 Quality SNP

An algorithm developed for the detection of reliable SNPs in the presence or absence of quality files. It runs on UNIX/ LINUX and Windows platform using 3 filters for SNP detection from polyploid and diploid species. The filters screens for potential SNPs, reliable SNPs and calls non-synonymous SNPs (Tang *et al.*, 2006). It also hosts for an SNP database with SNPs developed from apple, potato and other species using ESTs. It outperforms almost all SNP prediction pipelines by identifying haplotypes and examining the gene cluster.

2.11.5 SSR Identification Tools

Conventional methods for SSR detection seems to be expensive and timeconsuming (Powell *et al.*, 1996) whereas the advent of sequencing technologies, increased potential and less expensiveness makes computational approaches good to go. Microsatellite identification tools like WebSat (Martins *et al.*, 2009), GMATo (Wang *et al.*, 2013), SSR Locator(Da Maia *et al.*, 2008), FullSSR (Metz *et al.*, 2016), SciRoKo (Kofler *et al.*, 2007) and SSRIT (Temnykh *et al.*, 2001) are being employed. Unfortunately, many of them are outdated due to lack of funding, the complexity of organisms and increased sequential information.

2.11.5.1 MISA

A platform-independent perl script programme for the identification of SSRs. It serves to be an offline tool capable of handling large sequences (Thiel *et al.*, 2003). With additional supplementary scripts MISA can also design primers

and perform statistical analysis. However, acceptance of input data only in fasta format and inappropriate clustering are some of the disadvantages. MISA has been employed up for detecting SSRs in eukaryotic organisms (Sharma *et al.*, 2007), eucalyptus (Ceresini *et al.*, 2005) and coffee (Aggarwal *et al.*, 2007).

2.11.5.2 SSRIT

A platform independent program for finding SSRs (2-6 bp) available in both online and stand-alone version. SSRIT accepts only perfect repeats and statistical analysis needs to be done separately (Temnykh *et al.*, 2001). SSRIT has been successfully employed for identification of SSRs in *Gossypium raimondii* (Wang *et al.*, 2006), wheat (Li *et al.*, 2008), barley, maize, rice, sorghum and wheat (Kantety *et al.*, 2002) and *Jatropha curcas* (Yuanzhen *et al.*, 2010).

2.11.5.3 GMATo

Genome-wide Microsatellite Analyzing Tool (GMATo), an SSR mining programme for data of any length (Wang *et al.*, 2013). Being accessible on Windows, Linux, and Mac and written on both perl and java scripts, GMATo serves to be better in characterizing huge genome. Wang *et al.* (2013) found out GMATo to be more effective in processing large datasets within a short time. Zhang *et al.* (2017) used GMATo for characterization of the chloroplast genome of *Primula chrysochlora*.

2.11.6 Primer3plus

A web-based interface to the primer design program primer3, in Perl script instead of CGI scripts with an open architecture. With Polymerase chain reaction (PCR) becoming more vital in modern science, the need for reliable primer design is also of utmost importance (Untergasser *et al.*, 2007; 2012). A successful molecular biological experiments crucial part lies in designing of oligonucleotide primers (Hung *et al.*, 2016). With general settings and advanced settings, Primer3Plus let users define parameters such as Product Size Ranges, Primer Size,

Primer Tm, Max Tm Difference, Primer GC%, Concentration of monovalent cations and dNTPs with minimum, optimum and maximum values.

2.11.7 ClustalW

Clustal programs, in general, are used for aligning nucleotide or protein sequences. ClustalX corresponds to a simple text system whereas ClustalW provides a graphical interface system (Thompson *et al.*, 2003). ClustalW is a tool for carrying out multiple sequence alignment via a three-step process - pairwise alignment, tree generation and progressive alignment (Li, 2003).

2.12 VALIDATION TECHNIQUES OF IN SILICO DATA

2.12.1 Gel electrophoresis

Obtained from seaweeds, agar can be classified into agaropectin, with high sulphate and carboxyl groups and agarose, with a neutral fraction of components (Jeppson *et al.*, 1979). Separation (0.5 to 25 kb DNA fragments) and visualization of DNA can be done by agarose gel electrophoresis with varying gel concentrations (0.3-3%). With submarine gel system being universally used, it is run either horizontally or vertically (Smith, 1996). It is a 3 stage process starting with gel preparation followed by loading of samples and staining of the gel (Voytas, 2000).

2.12.2 PCR

A technique developed for *in vitro* amplification of DNA or RNA using repeated cycles of denaturation, annealing, and polymerase extension (Mullis *et al.*, 1986). PCR makes use of polymerase enzymes that use a defined segment in DNA or RNA as a template and synthesize a complementary strand (Schochetman *et al.*, 1988). Thermostable DNA polymerase isolated from *Thermus aquaticus* is being used for the amplification, at higher temperatures for greater specificity, yield, and products (Saiki *et al.*, 1985). New types of PCR are being developed such as Droplet Digital Polymerase Chain Reaction (PCR) which surpasses the real-time PCR (Doi *et al.*, 2015). PCR has got applications in a

wide area ranging from smartphone-assisted molecular diagnostics (Jiang *et al.*, 2014) to microfluidic devices (Ahrberg *et al.*, 2016).

MATERIALS AND METHODS

3. MATERIALS AND METHODS

The study entitled "Development of molecular markers for blight disease resistance in taro using bioinformatics tools" was conducted at the Central Tuber Crop Research Institute (CTCRI) during 2017-2018. In this chapter, details regarding the experimental materials used and methodology adopted are disclosed.

3.1 TARO SEQUENCE DATA SET

The preliminary data for marker development was obtained from SRA section of NCBI (https://www.ncbi.nlm.nih.gov/sra). Sequence Read Archive (SRA) comprises of biological sequence data information collected from sequencing platforms such as Roche 454 GS System®, Illumina Genome Analyzer®, Applied Biosystems SOLiD System®, Helicos Heliscope®, Complete Genomics®, and Pacific Biosciences SMRT®.

Being the primary archive for high throughput sequencing data of NIH (National Institutes of Health), it makes the data available to the research community for new discoveries and addresses the challenges faced by massive sequencing technologies. Being the central repository of NGS data, it also provides a link to other related data sets and facilitates easy data retrieval.

SRA data with the accession number SRX290678 submitted by the College of Life Sciences, Wuhan University was used (Wang *et al.*, 2017). The data was obtained from the leaf sample of a general taro variety named - "HBTARO No. 1". The sequences were obtained in paired fastq format using high-throughput Illumina HiSeq 2000 sequencing technology.

Workflow for identifying SSR and SNP from the above data set is given in Figure 1.

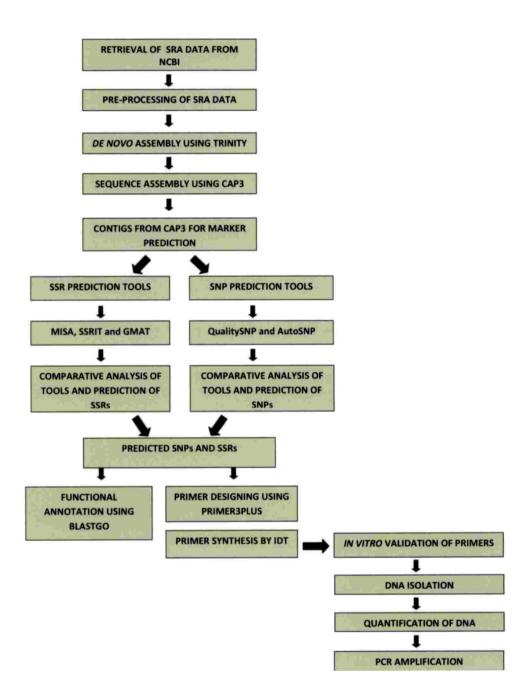


Figure 1. Workflow for the identification of SNP and SSR markers for blight disease resistance in taro.

3.2 PREPROCESSING OF SEQUENCES

Trimmomatic was used for preprocessing the taro sequences to remove sequences of lower quality. The program works by trimming the input paired sequence based on parameters provided in the command.

Since two individual reads are needed for preprocessing in trimmomatic, the given SRA file was split to the left and right reads using the command -

fastq-dump --split-files SRR873449.sra

where SSR873449 was the run ID of the accession number SRX290678.

The important parameters which were given to trimmomatic were,

ILLUMINACLIP - for cutting adapters and illumina specific sequences from the input sequence given.

SLIDINGWINDOW- for trimming within the window for below average sequences.

LEADING - for cutting bases from the start of sequence which fails to meet the threshold quality.

TRAILING - for cutting bases from the end of sequence which fails to meet the threshold quality.

CROP - for trimming the read to a desired length

HEADCROP - for removing certain bases from the start of a read

MINLEN - for eliminating a read, if it fails to meet the desired length.

TOPHRED33 - for converting the quality scores to Phred-33

TOPHRED64 - for converting the quality scores to Phred-64.

Default value set is Phred-64, *ie* if no conversion parameters are given, sequences quality file would be converted to Phred-64.

For a paired data the workflow of trimmomatic is as given in Figure 2. With default parameters (Bolger *et al.*, 2014) trimmomatic was run in terminal using the command -

java -jar trimmomatic-0.30.jar PE -phred64 R1.fastq R2.fastq R1_paired.fq.gz R1_unpaired.fq.gz R2_paired.fq.gz R2_unpaired.fq.gz

ILLUMINACLIP:contams_forward_rev.fa:2:30:10 LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:36

22

After the terminal operation gets over a log file was generated indicating the name of the read, the length of the sequence after trimming, the location of first and last base present after leading and trailing cut, which indicates amount of reads trimmed from the start and end. Depending upon the reads multiple commands could be added up.

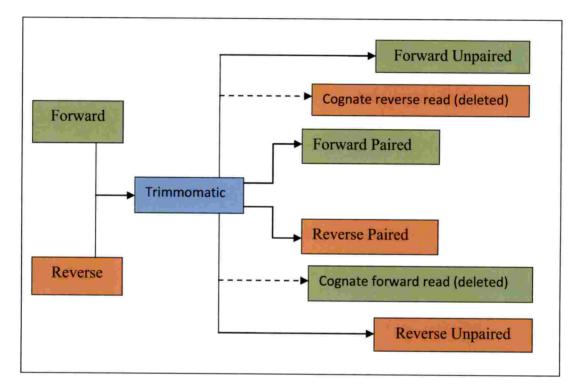


Figure: 2 Trimmomatic workflow for paired reads

3.3 DE NOVO ASSEMBLY USING TRINITY

For *de novo* assembly Trinity (version Trinity- v2.4.0) was used (Haas *et al.*, 2011). The Perl script program consists of 3 steps Inchworm, Chrysalis, Butterfly. Trinity exports the final output in fasta format after assessing the quality of the reads. Trinity was downloaded from https://github.com/trinityrnaseq/trinityrnaseq/releases.

Trinity normally performs assembling at a single k-mer size, hence no merging was done. Based on the length and number of reads, the time for *de novo* assembly varies. Trinity was run with initial parameters set to :

--seqType fq --left SRR873449_TRIM1.fastq --right SRR873449_TRIM2.fastq --CPU 8 --max_memory 100G

where SRR873449_TRIM1.fastq and SRR873449_TRIM2.fastq where the two trimmed reads.

3.4 CAP3

Single-Assembler Multiple-Parameter (SAMP) strategy (Iorizzo *et al.*, 2011) was employed which uses raw input data assembled with different parameters and assembled with CAP3. It was used to reduce the number of *de novo* assembled transcripts.

CAP3 is a 3 step sequence assembly and clustering program (Figure 3). It starts by clipping 5' and 3' low-quality regions, merges two overlapping sequences to make contigs and finally aligns the reads with the base quality values (Huang and Madan, 1999).

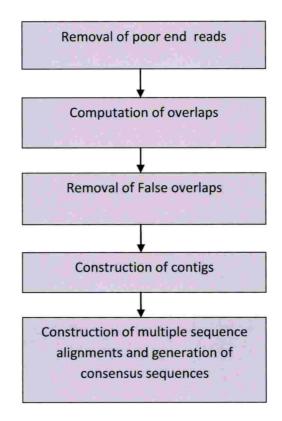


Figure: 3 Steps in CAP3 assembly

A standalone version of CAP3 compatible for Linux was downloaded from http://seq.cs.iastate.edu/cap3.html. The downloaded file was extracted and input file for assembling was copied into it. The command for CAP3 was given as -

./cap3 Trinity.fasta

where Trinity.fasta was the output of *de novo* assembly using Trinity. Options in CAP3 (default values) (Huang and Madan, 1999) :

-a N specify band expansion size N > 10 (20)

- -b N specify base quality cutoff for differences N > 15 (20)
- -c N specify base quality cutoff for clipping N > 5 (12)
- -d N specify max qscore sum at differences N > 20 (200)
- -e N specify clearance between no. of diff N > 10 (30)
- -f N specify max gap length in any overlap N > 1 (20)
- -g N specify gap penalty factor N > 0 (6)
- -h N specify max overhang percent length N > 2 (20)
- -i N specify segment pair score cutoff N > 20 (40)
- -j N specify chain score cutoff N > 30 (80)
- -k N specify end clipping flag N ≥ 0 (1)
- -m N specify match score factor N > 0 (2)
- -n N specify mismatch score factor N < 0 (-5)
- -o N specify overlap length cutoff > 15 (40)
- -p N specify overlap percent identity cutoff N > 65 (90)
- -r N specify reverse orientation value $N \ge 0$ (1)
- -s N specify overlap similarity score cutoff N > 250 (900)
- -t N specify max number of word matches N > 30 (300)
- -u N specify min number of constraints for correction N > 0 (3)
- -v N specify min number of constraints for linking N > 0 (2)
- -w N specify file name for clipping information (none)
- -x N specify prefix string for output file names (cap)
- -y N specify clipping range N > 5 (100)
- -z N specify min no. of good reads at clip pos N > 0 (3)

3.5 MARKER PREDICTION

For the obtained contigs SSR and SNP marker prediction were done using various tools.

3.5.1 QualitySNP

The standalone version for QualitySNP was downloaded from http://www.bioinformatics.nl/tools/snpweb/download2.html. It is an efficient tool for discovering SNPs particularly insertions/deletions (indels). The QualitySNP detects SNPs in 4 steps - Assembly of sequences using CAP3 clustering, analyzing the alignment information, detecting SNP and haplotype and finally the discovery of non-synonymous SNP.

The file named QualitySNP11102007.tar.gz was downloaded and extracted and compiled using

% make all

After making QualitySNP, the assembled 8547 contigs were run with the following commands-

% Getalignmentinfo testseq.cap 4, (4- default minimal cluster size) After getting alignment information, these steps were done simultaneously

% Getavailcontigseq filename.cap

% Getavailcontigqual filename.cap

% QualitySNP filename.cap min-allelesize lowqual5side similarity1 similarity2 lowqual3side weightlowqual min-confidencescore

where Min-allelesize is the minimum size of alleles of SNP (default - 2), lowqual5side - the length of the low quality region at the 5' end of sequence (default -30) similarity1 is the similarity on one polymorphic site (default - 0.75) similarity2 is the similarity on all polymorphic sites (default - 0.8) lowqual3side is the low quality region of 3' side (default - 0.2) weightlowqual is the weight value of the low quality region (default - 0.5) min-confidence score is the minimal confidence score (default - 2).

Next step was the most crucial one, *ie* identification of non-synonymous SNPs and was done using Fasty34.

- % fasty34_t allavailcontigseqwithSNP Viridiplantae -b 6 -d 6 -Q > allavailcontigseqwithSNP.fasty
- % GetnonsySNPfasty availcontigseq allavailcontigseqwithSNP allavailcontigseqwithSNP.fasty

where Viridiplantae is the protein database, "availcontigseq" contains the consensus sequences of contigs with SNPs, As these sequences are not curated, they may contain padding symbols ("*"), which may indicate either insertions and/or deletions in the sequences, but in many cases these may be caused by sequencing errors and "allavailcontigseqwithSNP" contains the consensus sequences of SNP-containing contigs which did not contain any insertions or deletions.

Results obtained were classified into allavailSNP- total SNPs detected, Ssnpcodingdata- corresponding to list of synonymous SNPs, Nssnpcodingdata list of Non-Synonymous SNPs, Ssnpfastydata - list showing the transcribed sequence of the SNPs, Nssnpfastydata - list showing the transcribed sequence of the SNPs, Indelsnpdata – list of Indels.

3.5.2 AutoSNP

AutoSNP is an online tool for detecting SNPs based on the frequency of occurrence of polymorphisms and co-segregation of multiple SNPs. It uses the d2 cluster and cap3 for clustering and aligning the input data. SNP detection is being carried out using redundancy score and co-segregation score. Co-segregation score corresponds to the percentage of other SNPs with an identical segregation and redundancy score refers to the minimum number of reads per allele.

AutoSNP takes input either in the form of fasta sequences or ace file. Command for running AutoSNP is-

```
perl cap3SNP (-f <fasta name> | -a <ace name>)
```

It also provides option to create tab delimited text files and zip files.

3.5.3 MISA

MISA (MIcroSAtellite identification tool) was downloaded from http://pgrc.ipk-gatersleben.de/misa/download/misa.pl. The command given for executing MISA was

perl misa.pl <FASTAfile>

where <FASTAfile> corresponds to contig files containing DNA sequences in FASTA format.

Default unit size / minimum number of repeats condition set for identifying microsatellites in MISA is (1/10) (2/6) (3/5) (4/5) (5/5) (6/5). If a sequence fails to achieve the minimum number of repeats, then it will go undetected.

3.5.4 SSRIT

Simple Sequence Repeat Identification Tool was downloaded from ftp://ftp.gramene.org/pub/gramene/archives/software/scripts/ssr.pl. The command given for executing MISA was

perl ssr.pl <FASTAfile> >SSRIT_OUTPUT

where FASTAfile corresponded to the contig sequences. The default unit size / minimum number of repeats condition set for identifying microsatellites in SSRIT is (2/6) (3/5) (4/5) (5/5) (6/5).

3.6 RESISTANT VIRUS GENE DATABASE

A leaf blight resistant database was constructed for screening the molecular markers predicted. A database was constructed manually from protein sequences obtained from different leaf blight resistant genes from different plants. The sequences were retrieved from the UniProt Knowledgebase (UniProtKB) (https://www.uniprot.org/help/uniprotkb) which accounts for the protein information.

The sequence duplication within the resistant gene sequences was removed using the command-

After removing duplication a blight disease resistant database was constructed using the command-

makeblastdb -in UNIPROT_SEQ -out leafblightdatabase -dbtype prot parse seqids

where UNIPROT_SEQ was the set of protein sequences corresponding to leaf blight resistant genes.

The desired sequence with the contig ID was retrieved from the CAP3 output using the seqretrieve command.

perl -ne 'if(/^>(\S+)/){\$c=\$i{\$1}}\$c?print:chomp;\$i{\$_}=1 if @ARGV' CONTIGLIST CAP3OUTPUT > retrieved_output

where CONTIGLIST contained the set of contig IDs. The seqretrieve command was done for both SSR and SNP and the sequences were retrieved and further processed.

The sequence for primer designing was chosen based on the percentage identity and e-value obtained on blastx against the resistant database created. The command given was-

blastx -query INPUT -out OUTPUT -outfmt 6 -db leafblightdatabase where INPUT file refers to the set of contig sequences that contain the SNP/SSR.

3.7 PRIMER DESIGNING

Primer Designing for the predicted SNPs and SSRs using QualitySNP and MISA was done using Primer3plus. 5 contigs each for SNP and SSR were taken and primers were designed using the web interface of Primer3plus tool. The primer designing takes into account certain criteria such as Product Size Range (ranging from 150 - 1000 bp), Primer Size, Primer Tm, Max Tm Difference, Primer GC%, Concentration of monovalent cations, Concentration of divalent cations and Concentration of dNTPs where user could give a minimum, optimum and maximum values.

The primer design was done with SSR and SNP site serving to be the target site. The primer length was set between 20-22 bp, Primer Tm between 55-60 °C, GC content between 55-60%, product size between 200-600 bp, Max Tm

difference 5°C and remaining conditions were set to default (Untergasser *et al.*, 2007; 2012).

3.8 PRIMER SYNTHESIS

The 20 designed primers sequences (both forward and reverse) were sent to IDT technologies for synthesizing (Figure 4).

3.9 VALIDATION OF SNP AND SSR MARKERS FOR TLB RESISTANCE

The *in silico* predicted markers need to be validated for assuring their ability to differentiate susceptible and tolerant varieties. The validation was done using PCR with the designed primers using resistant and susceptible DNA samples in Agarose Gel Electrophoresis.

3.9.1 Genomic DNA isolation

A total of six taro varieties were taken which included 3 TLB resistant and 3 TLB susceptible varieties based on field trials at Central Tuber Crop Research Institute (CTCRI), Thiruvananthapuram.

Fresh young leaves from the plants were collected in small plastic bags and were bought to the lab. CTAB method proposed by Doyle and Doyle (1987), and modified by Sharma *et al.* (2008) was used for the isolation. 160 mg of leaf tissue was weighed and grounded into a fine powder using liquid nitrogen in an autoclaved mortar and pestle. 2 ml of freshly prepared extraction buffer (Appendix I) was added to mortar before sample get thawed up. The contents were transferred to a sterile 2 ml Eppendorf tubes and 5 μ l of proteinase K (10mg/ml) was added to the tubes. The tubes were then incubated at 37 °C with intermittent shaking for 30 minutes. The tubes were then again incubated at 65 °C for 30 minutes followed by centrifugation at 12,000 rpm for 15 minutes. The supernatant obtained was transferred to a fresh tube. An equal volume of chloroform: isoamyl alcohol (24:1) was added to it and mixed thoroughly by inversion. The tubes were then allowed to stand at room temperature for 5

	-	
	-	3
		1
	-	
	œ	
	-	ł
		J
	-	
		1
	\sim	2
	-	
	-	ł
	\sim	l
	-	1
	~	2
	1000	1
	-	5
	•	ų
		ì
		1
	~	1
	-	1
	_	١
	-	2
		1
	-	
	<u> </u>	
		l
h		1
	1.1	
	1	
	-	2
	_	ľ
	100	
		f
	-	2
P	1.0	
1	2	l
T.	-	
	~	ĺ
	1000	
	0	í
	1	1
		1
	2	1
T)		
Ι.		
1		
1		
1		
ł		
l		

Name of Primer	Primer Sequence (5' - 3)	No of Base pair	Concentration	
CeSNPIF	TCTCCACCACTTCCTCCTCT	20	25 nmole DNA Oligo	
CeSNPIR	GAGTCTTCCACGTCACTTGC	20	25 nmole DNA Oligo	
CeSNP2F	CTGACCTTGCCTTTGGACTC	20	25 nmole DNA Oligo	
CcSNP2R	ACTCGTCCAGCCTTCTTCAC	20	25 nmole DNA Oligo	
CeSNP3F	GGTACACCAGTTGCTCACGA	20	25 nmole DNA Oligo	
CeSNP3R	GCGAGCGAGACGTACAAGAT	20	25 nmole DNA Oligo	
CcSNP4F	GCACTCTTCACTCGTGTTGC	20	25 nmole DNA Oligo	
CeSNP4R	CUTTCCTTCACCAGAACTGC	20	25 nmole DNA Oligo	
CeSNP5F	CGAGAAGGGTCCCAGGTACT	20	25 nmole DNA Oligo	
CeSNP5R	GCCAGCCACCACTATCTCTC	20	25 nmole DNA Oligo	
CeSSRIF	CAGGGTTTTCCATTACCTCCTC	21	25 nmole DNA Oligo	
CeSSR1R	GAGCTTTGTGAGGTCCAGATG	21	25 nmole DNA Oligo	
CeSSR2F	CTAGTCAGTCCTGGCAAAGC	20	25 nmole DNA Oligo	
CeSSR2R	GCTCAGAGGTTAGAGCATCG	20	25 nmole DNA Oligo	
CeSSR3F	CTGTGTGAGGAAGCGAAGAG	21	25 nmole DNA Oligo	
CeSSR3R	CCAATCAGGTCAGAACACCAC	21	25 nmole DNA Oligo	
CeSSR4F	CCACCAGAACAACACTCTTCG	21	25 nmole DNA Oligo	
CeSSR4R	CGCTCCTCTTTTCTGTTCT	21	25 nmole DNA Oligo	
CeSSR5F	CAGCAACCCTCAGGTGTAGAG	21	25 nmole DNA Oligo	
CeSSR5R	CTGCGTTTCCTTGATGATCC	20	25 nmole DNA Oligo	
	Total number of bases	407		

Figure 4. Primer Order Form

minutes to ensure phase separation. The tubes were then again centrifuged at 12,000 rpm for 15 minutes at room temperature. The upper aqueous phase of the tubes was transferred to fresh tubes using cut tips. An equal volume of chloroform: isoamyl alcohol (24:1) was again added to the tubes and mixed gently by inversion. After inversion, the tubes were centrifuged at 12,000 rpm for 15 minutes at room temperature. The resultant upper aqueous phase was transferred to new tubes and an equal volume of isopropanol was added to it. The tubes were then gently mixed until DNA threads get formed. The threads formed were then centrifuged at 10,000 rpm for 10 minutes. The precipitated DNA was then washed using 70 % ethanol for 2-3 times. The pellets were then air dried to remove the traces of ethanol and was finally dissolved in 100 μ l TE buffer (Appendix II). RNase 5 μ l (10ng/ μ l) was added to the tubes and incubated at 37 °C for 1 hour. After RNase treatment the DNA was properly labeled and stored at -20 °C freezer.

Table 1. List of taro varieties selected for DNA isolation

Sl No.	Susceptible varieties	Tolerant varieties
1	Sree Rashmi	Muktakeshi
2	Sree Kiran	Bhu Kripa (Field tolerant)
3	Telia	Bhu Sree (Field tolerant)

3.9.1.1 Analysis of DNA using Agarose Gel Electrophoresis

Agarose gel electrophoresis (0.8%) was used for checking the quality of the DNA obtained. The casting tray and comb was cleaned and assembled to make a mold on a plane surface. 0.8% agarose (Sigma Aldrich) was dissolved in 1X TBE (Appendix III) and melted by boiling for 1-3 minutes. 0.4 μ l of EtBr was added to the conical flask after the temperature gets lowered and mixed well. The molten gel was then poured onto the casting tray and allowed to solidify. The combs were removed after 10-15 minutes and the gel was transferred to the electrophoretic system containing TBE. Sufficient buffer was added to the tank to ensure gel get immersed completely. 5 μ l of DNA along with 3 μ l loading dye was mixed and loaded into the wells using a micropipette. The gel was then allowed to run for 40 minutes at 100V. The gel was then visualized under UV light for visualizing the DNA using the gel documentation system (G: Box, M/S Syngene).

3.9.1.2 Quantification of DNA

The quantification of DNA was done using Nanodrop® ND-100 by taking 1 μ L of each DNA sample with TE buffer as blank. For each sample information regarding concentration of DNA(ng/ μ L), A260/230 and A260/280 ratio were noted down.

3.9.2 Dilution of DNA

The DNA samples were diluted to obtain a uniform concentration. The dilution was done using sterile distilled water based on the concentration of DNA present in the sample.

3.9.3 Dilution of the primer

The primers synthesized by IDT were centrifuged and dissolved in sterile distilled water for preparing master stock inside a Laminar Air Flow chamber. The primers were dissolved according to the specification sheet provided. The master stock was prepared for obtaining a concentration of 100μ M. The master stock was again diluted to get a working stock for PCR reactions.

3.10 PCR AMPLIFICATION

The annealing temperature for the PCR reaction was calculated using the formula

$$Ta = Tm-5$$

where Ta and Tm corresponds to annealing temperature and melting temperature respectively.

For determining the efficiency of primers, the amplified PCR products were checked by AGE. The PCR products were resolved in 3% AGE with 100 bp ladder. The gel was then visualized under UV light of G: Box gel documentation system using GeneSyS software (M/s. Syngene). Band quality was observed and scored to validate the primers. PCR master mix was prepared for a volume of 15 μ l with DNA sample, forward and reverse primer, MgCl₂, dNTPs, *Taq* Buffer, *Taq* polymerase and autoclaved distilled water (Appendix V).

3.11 VALIDATION OF SNP

For validation, two samples (one TLB resistant and one TLB susceptible variety) were taken against the five primer sets and PCR was done. A total of 15 µl reaction with 40ng/ µl genomic DNA, 0.25 µM of each forward and reverse primer (CeSNP1, CeSNP2, CeSNP3, CeSNP4 and CeSNP5), 1U *Taq* DNA polymerase, 0.25 mM of dNTP, 1X *Taq* buffer, 1.5 mM MgCl₂ and autoclaved ultrapure water. Amplifications were done in a BioRad C1000TM thermal Cycler programmed with an initial denaturation of 3 min. at 94°C then 30 cycles of 45-second denaturation at 94°C, 1-minute annealing (different Ta for different primers), 1-minute extension at 72°C and a final extension of 10-minutes at 72°C. The amplification of PCR products was then analyzed in 3% agarose gel electrophoresis. Based on the prominent single band appearance at desired product size, primers were selected. The selected primers were again amplified and the PCR products were sequenced.

3.11.1 Clustal Omega

Clustal is a graphical interface for performing multiple sequence alignment of nucleotide and protein sequences. Varying versions were found for Clustal program with Clustal Omega (ClustalO) being the latest one. ClustalX is an offline interface for multiple sequence alignment whereas Clustal Omega, on the other hand, is a command line interface. It provides multiple sequence alignment of hundreds of sequences within a shorter time span. Alignment scores can be calculated and desired sequences could be highlighted. Clustal Omega can be run online at http://www.ebi.ac.uk/Tools/msa/clustalo/.

The multiple sequence alignment was done using Clustal Omega with the sequenced PCR products and contig sequences to validate the predicted SNPs.

3.12 VALIDATION AND SCREENING OF SSR

For screening, two samples (one TLB resistant and one TLB susceptible) were taken against the five primer sets and PCR was done. A total of 15 μ l reaction with 40ng/ μ l genomic DNA, 0.25 μ M of each forward and reverse primer (CeSSR1, CeSSR2, CeSSR3, CeSSR4, CeSSR5), 1U *Taq* DNA polymerase, 0.25 mM of dNTP, 1X *Taq* buffer, 1.5 mM MgCl₂ and autoclaved ultrapure water. Amplifications were done in a BioRad C1000TM thermal Cycler programmed with an initial denaturation of 3-minute at 94°C then 30 cycles of 45-second denaturation at 94°C, 1-minute annealing (various temperatures for different primers), 1-minute extension at 72°C and a final extension of 10-minutes at 72°C. The amplification of PCR products was then analyzed in 3% agarose gel electrophoresis.

Based on product size and banding pattern one among the primer was selected for further screening of the six DNA samples and PCR was done.

RESULTS

4. RESULTS

The results of the study entitled "Development of molecular markers for blight disease resistance in taro using bioinformatics tools" carried out at ICAR -CTCRI are presented in this chapter.

4.1 TARO SEQUENCE DATASET

The preliminary data set was obtained from NCBI with accession number SRX290678 in .sra format and was split into two reads -left/forward and right/reverse. About 6,479,882 sequences in fastq format were present and split into R1.fastq and R2.fastq. The splitted sequences were then taken up for further processing.

4.2 PRE-PROCESSING OF SEQUENCES

The taro sequence dataset obtained from NCBI was split into two reads and were processed by Trimmomatic. The sequences were checked for adaptors, bases with lower threshold quality, and length. The sequences which failed for the given parameters were trimmed off. The pre-processing step minimized the number of sequences and only good quality sequences were further taken up for *de novo* assembly.

A total of 160,048 sequences were removed from 6,479,882 sequences, minimizing the total sequences to be 6,319,834. The trimmed files were - SRR873449_TRIM1 and SRR873449_TRIM2.

4.3 DE NOVO ASSEMBLY OF SEQUENCES

De novo assembly of the trimmed fastq sequence was carried out with Trinity to give output as Trinity.fasta. The assembly generated about 79,608 sequences.

4.4 ASSEMBLY OF SEQUENCES USING CAP3

After *de novo* assembly of the sequences, CAP3 was run to obtain the assembled reads and singlets. It also computed the overlaps among the reads and removed false reads. A total of 8,547 contigs and 59,242 singlets were obtained with the default parameters set. The contigs were then taken up for marker prediction and development. Apart from contigs and singlets, a links file, an ace file, a quality file, info file and con file were also produced.

4.5 MARKER PREDICTION

Molecular marker prediction for the obtained 8547 contigs was done successfully using different pipelines. MISA and SSRIT were chosen for predicting SSRs and QualitySNP and AutoSNP were chosen for predicting SNPs.

4.5.1 Identification of SNP using QualitySNP

562 SNPs identified using QualitySNP are summarized in the table below (Table 2).

Characterization	Type of nucleotide substitution	Number of SNPs	Total
TRANSITION	C/T	81	180
	G/A	99	
	A/C	30	
TRANSVERSION	A/T	30	138
	C/G	39	100
· · · · · · · · · · · · · · · · · · ·	T/G	39	

Table 2. Distribution of transition and transversion of SNPs from QualitySNP

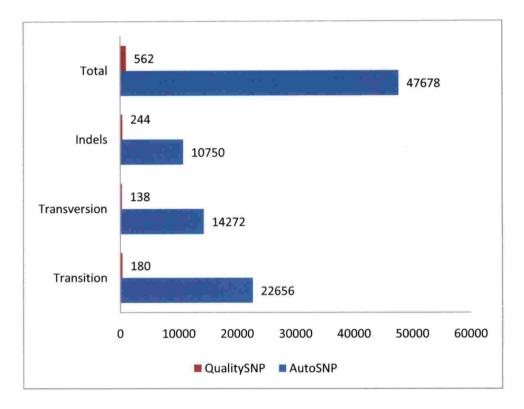


Figure 5. Distribution of SNP polymorphisms in QualitySNP and AutoSNP

Of the identified SNPs 518 were non-synonymous which indicated a change in translational product and 44 were synonymous. 180 transitions, 138 transversions, and 244 indels were obtained among the 562 SNPs identified. Both C/T and A/G transitions were observed to be same, however, C/G transversion dominated A/C, A/T, and T/G.

4.5.2 Identification of SNP using AutoSNP

AutoSNP detected a massive total of 47,678 SNPs. The output was displayed in HTML format with summary and list of contigs. The detected SNPs consist of 22656 transitions, 14272 transversions, and 10750 InDels. The SNP occurrence frequency was found out to be 0.52/100 bp. The list of SNPs detected using AutoSNP is shown in Table 3.

Characterization	Type of nucleotide substitution	Number of SNPs
Transition	C/T + G/A	22656
Transversion	A/C + A/T + C/G + T/G	14272

4.5.3 Comparative evaluation of SNP prediction tools

Both QualitySNP and AutoSNP were executed in a stand-alone mode. With the difference in the programme and parameters, a varying number of SNPs were produced. In comparison, AutoSNP produced 47,678 SNPs whereas QualitySNP identified 562 SNPs (Figure 5). The results are summarized in table 4.

Of the two, AutoSNP has a polymorphism ratio of 1.58 which is quite higher comparing to a healthy ratio of 1.30 by QualitySNP. QualitySNP doesn't need trace/quality files or genomic sequences for identifying SNPs whereas

AutoSNP cannot distinguish paralogs, leading to false detection of SNPs. QualitySNP was also capable of distinguishing between synonymous and nonsynonymous SNPs. Hence contigs containing SNPs detected using QualitySNP were taken for primer designing.

Table 4. Comparison of AutoSNP and QualitySNP

SNP Tools	Number of SNPs	Transition to Tansversion Ratio
AutoSNP	47,678	1.58
QualitySNP	562	1.30

4.5.4 Identification of SSR using MISA

Two output files were created, "<FASTAfile>.misa which corresponds to a tablewise distribution of identified microsatellites and "<FASTAfile>.statistics" which summarizes the frequency of SSR according to their size (Table 5).

Using MISA 3034 SSRs were identified from 8547 contig sequences (Table 3). Dinucleotide repeats were the abundant ones accounting for 48.91%. SSRs with repeat motifs of 1–3 bp (mono-, di- and tri-)accounted for 99.28% of total SSRs detected. The distribution of different SSRs is being shown in Table 6.

Table 5. Summary of MISA based prediction of SSR

MISA - Result summary		
Total number of assembled transcripts examined	8547	
Total size of assembled transcripts sequences (bp)	9121567	
Total number of identified SSRs	3034	
Number of SSR containing transcript sequences	2113	
Number of sequences containing more than 1 SSR	610	
Number of SSRs present in compound formation	393	

Type of SSR identified	No: of SSRs	Percentage (%)
Mono	967	31.87
Di	1484	48.91
Tri	558	18.30
Tetra	14	0.46
Penta	2	0.06
Hexa	9	0.20
Poly	0	0
Total	3034	100

Table 6. Category wise distribution of SSRs predicted using MISA

4.5.5 Identification of SSR using SSRIT

An output file containing sequence ID, motif (repeat) type, no. of repeats, SSR start, SSR end and length of the sequence was displayed (Table 7).

Dinucleotide repeats were the abundant ones accounting for 75.13 %. SSRs with repeat motifs of 2-4 bp (di-, tri- and tetra-) accounted for 100 % of SSRs detected (Table 8). However, the algorithm doesn't detect any mono repeats.

SSRIT - Result summary		
Total number of assembled transcripts examined	8547	
Total size of assembled transcripts sequences (bp)	9121567	
Total number of identified SSRs	1078	
Number of SSR containing transcript sequences	916	
Number of sequences containing more than 1 SSR	134	

Table 7. Summary of SSRIT based prediction of SSR

Type of SSR identified	No: of SSR	Percentage (%)
Mono	0	0
Di	810	75.13
Tri	254	23.56
Tetra	14	1.29
Penta	0	0
Hexa	0	0
Poly	0	0
Total	1078	100

Table 8. Distribution of different classes of repeats identified in SSRIT

4.5.6 Comparative evaluation of SSR prediction tools

MISA and SSRIT were used for identifying SSRs in the contigs. Both tools produced significant results with more number of SSR being reported by MISA, 3034 comparing to 1078 by SSRIT (Figure 6). MISA identified mono-, pentaand hexa- repeat in addition to di-, tri-, and tetra- repeats identified by SSRIT. In both the tools di- repeats were found out to be more in number, however, the type of repeats and their distribution varies among species.

The output generated from SSRIT needs to be inter-converted for better understanding, which would be difficult in larger datasets. MISA produced more types of repeats in a shorter duration of time comparing to SSRIT. Hence contigs containing SSRs detected using MISA were chosen up for primer designing.

4.6 LEAF BLIGHT RESISTANT DATABASE

The leaf blight resistant database was constructed from 42 different genes. The database comprised of 1199 sequences, both reviewed and unreviewed. The

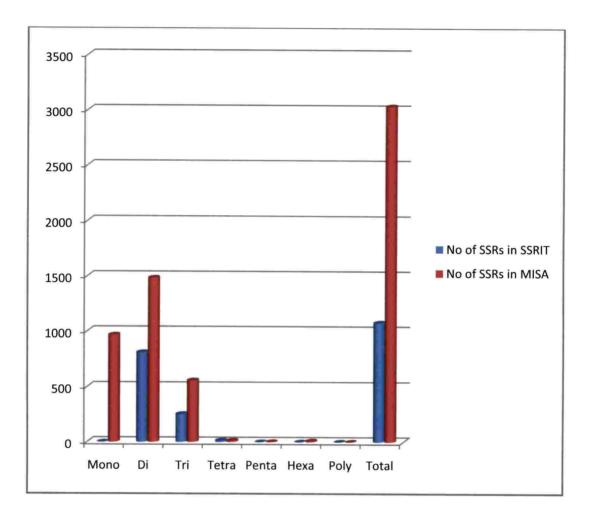


Figure 6. Distribution of SSR in MISA and SSRIT

number of sequences was reduced to 1012 after removing duplication. Leaf blight resistant database was constructed using this 1012 sequences and a file with six different extensions - .pin .phr .psq .pog .psi .psd were produced.

The desired contigs were selected from BLAST result based on higher percentage identity (90-100%) and lower E-values (≤ 0) and were retrieved using the seqretrieve command. Five contigs were selected for both SNP and SSR (Table 9).

Type of marker	No of sequences with polymorphism	No of sequences selected for primer synthesis
SNP	996	5
SSR	3034	5

Table 9. Predicted markers and selected markers for primer synthesis

4.7 PRIMER DESIGNING

Primer designing was done using Primer3plus. Of the 5 primer combinations displayed, one was selected for synthesizing based on GC (> 50%) content and Tm (55-60°C) values for each contig.

5 pairs of primers were designed for each contig of SNP (Table 10) and SSR (Table 11). Based on adequate product size, Tm and GC content a single primer pair was selected from the combinations and send for synthesis. A total of five forward and reverse primers for both SNP & SSR was sent (Table 12 & 13).

4.8 PRIMER SYNTHESIS

Primers were synthesized and delivered by a company named Integrated DNA Technologies, Inc. (IDT) in lyophilized form.

Table 10 --- List of SNP primers designed using Primer3Plus

Ontrol Left Primer Length (b) Im(°C) GC(%) Right Primer Length (b) Im(°C) GC(%) 2330 CTCTCTCTCCACCATTCCT 21 58 57.1 GAGTCTTCCACCATTCCC 20 58.4 55 CTCTCTCTCCACCATTCCT 20 58.3 55 GAGTCTTCCACCTCACTCC 20 58.4 55 CTCTCCTCCACCTTCTCT 20 58.3 55 GAGTCTTCCACCTCACTCCC 20 58.4 55 TCTCCACCTTCTCTT 20 58.3 55 GAGTCTTCCACCTCACTCCC 20 58.4 55 CTCACCACTTCCTCTT 20 58.8 55 GAGTCTCACCTCACTCACTCCC 20 58.4 55 CTCACCACTTCCTCTT 20 59.8 55 GAGTCTCACGGAGCACTCCCC 20 59.4 55 CTCACCTTGGACTT 20 59.8 55 GAGTCTCCACGGAGCATTCCCC 20 59.4 55 CTCACCTTGGACTT 20 59.8 55 GAGTCTCCACGTGACTCCC 20 59.4 55 CTCACCTCCCTTGGACT	1	-	Left Primer	r 5'-3'			Right Prin	Right Primer 5'- 3'			Droduct Size(hn)
CTCTCTCCACACTTICC 21 58 57.1 CAGTCTTCACCACTTICC 20 84 55 2330 CTCTCTCTCCACCACTTICC 21 58 57.1 CAGTCTTCACCACTTICC 20 58.4 55 CTCCACCACTTCCTCTCT 20 58.3 55 GAGTCTTCCACCACTTICC 20 58.4 55 53 TCCCACCACTTCCTCTCT 20 58.3 55 GAGTCTTCCACTCTCTCC 20 58.4 55 53 53 54 55 55 55 55 55 55 55 55 55 55 56 55 56 55 56 55 55 56 55 55 56 55	SI No.	Contig			Tm(°C)	GC(%)	Right Primer	Length(bp)	Tm(°C)	GC(%)	רו טעערו אובר שאין
CTCTCTCTCTCTCTCT 21 58 57.1 CAGTCTCCGTCTTCC 20 58.4 55 CAGTCTCCGTCTTCC 20 58.4 55 CAGTCTCCGTCTTCCC 20 58.4 55 CAGTCTCCGTCTTCCC 20 58.4 55 CAGTCTCCGTCTCCTCTCC 20 58.4 55 CAGTCTCCGTCTCCTCTCC 20 58.4 55 CAGTCTCCGCTTCGC 20 58.4 55 CAGTCTCCGCTTCGC 20 58.4 55 CAGTCTCGCCTTCGC 20 58.4 55 CAGTCTCGCCTTCGC 20 58.4 55 CAGTCTCCCCTCTCCC 20 58.4 55 CAGTCTCCCCTCTCCCCCTCCCCCCCCCTCACTCC 20 58.4 55 CAGTCTCCCCTCTCCCCCCCCCCCCCCCCCCCCCCCCCC			CTCTCTCCCCCCCCCTCCTC	21	58	57.1	GAGTCTTCCACGTCACTTGC	20	58.4	55	310
2330 CCACCACTTCCTCTT 20 58.3 5.5 GGGTCTTCCACCTTCCT 20 58.4 55 TCTCCACCACTTCCTCTT 20 58.8 5.5 GGGTTTCCACCTTGCT 20 58.4 55 TCTCCACCACTTCCTCTT 20 58.8 5.5 GGGTTTCCACGTGACTTGC 20 58.4 55 TCTCCACCACTTCGGAGC 20 58.8 5.5 GGGTTTCGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG			CTCTCTCTCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	21	58	57.1	GAGTCTTCCACGTCACTTGC	20	58.4	55	312
CTCCACCACTTCCTCT 20 58.3 55 CGATCTCCACCTCACTTCC 20 58.4 55 CGATCTCCACCTCACTTCCTCT 20 58.4 55 CGATCTCCACCTCACTTCCCTCT 20 58.4 55 CGATCTCCACCTCACTTCCCCTC 20 58.4 55 CGATCTCCACCTCCACTTCCCCCTC 20 58.4 55 CGATCTCCACCTCCCCCCCCCCCCCCCCCCCCCCCCCCC	-	2330	CCACCACTTCCTCCTCTTCT	20	58.3	55	GAGTCTTCCACGTCACTTGC	20	58.4	55	302
TCTCCACCACTTCCTCCT 20 58.8 55 GAGTTCCACGCTTCCCCC 20 58.4 55 CTCCACCTTGCATTCCTCCTC 20 59.8 55 AGGTACTTGCGAGCGATACCG 20 59.1 55 CTCACCTTGCCTTTGGATCT 20 59.8 55 AGGTACTTGGGAGCATACCG 20 59.1 55 CTGACCTTGGATCTCGGAGC 20 59.8 55 AGGTGCTGGGAGCATACCG 20 59.1 55 CTGACTTGGCTTGGAAGC 20 59.8 55 ACTGGTCGGGAGCATACCAT 20 59.8 55 4 55 5			CTCCACCACTTCCTCCTCTT	20	58.3	55	GAGTCTTCCACGTCACTTGC	20	58.4	55	304
CTGAACTFGCATTGCATT 20 59.8 5.5 AGGTACTFGGGAGCATCGC 20 59.1 55 32 3289 CTGAACTFGGATC 20 59.9 5.5 AGGTACTFGGGAGCAGCTGG 20 59.1 55 3289 CTGACCTFGGATC 20 59.8 5.5 GGTGGGAAGGAGCAGCTGG 20 59.8 55 5.5			TCTCCACCACTTCCTCCTCT	20	58.8	55	GAGTCTTCCACGTCACTTGC	20	58.4	55	305
3289 GCGTTACTGGTTCTCGGAGG 20 59,9 55 AGGGTACTGGGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAG			CTGACCTTGCCTTTGGACTC	20	59.8	55	AGGTACTTGGGGGGCGTACCG	20	59.1	55	381
3289 CTGACCTTGCCTTTGCAACC 20 59.8 55 GTGGGAAGGGCGCGTG 20 59.8 55 <td></td> <td></td> <td>GCGTTACTGGTTCTCGGAAG</td> <td>20</td> <td>59.9</td> <td>55</td> <td>AGGTACTTGGGGGGCATACCG</td> <td>20</td> <td>59.1</td> <td>55</td> <td>430</td>			GCGTTACTGGTTCTCGGAAG	20	59.9	55	AGGTACTTGGGGGGCATACCG	20	59.1	55	430
CTGACCTTGGCTTTGGACTC 20 59.8 55 ACTCGTCGGCGCTGCTGC 20 59.5 55 <td>2</td> <td>3289</td> <td>CTGACCTTGCCTTTGGACTC</td> <td>20</td> <td>59.8</td> <td>55</td> <td>GTGTGGAAAGAGCAGCTGTG</td> <td>20</td> <td>59.8</td> <td>55</td> <td>490</td>	2	3289	CTGACCTTGCCTTTGGACTC	20	59.8	55	GTGTGGAAAGAGCAGCTGTG	20	59.8	55	490
Image: contracting contracted contracting c			CTGACCTTGCCTTTGGACTC	20	59.8	55	ACTCGTCCAGCCTTCTTCAC	20	59.5	55	600
ACGAGCTGGTGACTTGGTG 20 61.3 55 GCGAGCGGAGCGTACAGM 20 60.6 55 35 3577 GGGTACCCGGTTGCTCGG 20 61.3 55 6CGAGCGGAGCGTACAGM 20 60.6 55 55 55 3577 GGGGTACCCGGTGGCACCTTCC 20 61 55 6CGAGCGGAGCGTACAGM 20 60.6 55 55 55 ATCCACCGGTGCACCTTCC 20 61 55 GGGGGTACACCTTCC 20 60.6 55 55 ATCCACCGGTGCACCTTCC 20 61 55 GCGAGCGAGCGTCTCC 20 60.6 55 55 ATCCACCAGTGGCACCTTCC 20 61 55 GCCACGGAGCGACCTTCC 20 60.6 60 60 60 60 55			GCGTTACTGGTTCTCGGAAG	20	59.9	55	GTGTGGAAAGAGCAGCTGTG	20	59.6	55	539
3571 GGTACACCAGTTGCTCACG 20 59.8 55 GGGGCGAGAGGTA 20 60.6 55 3577 GGGGTACACGTTGCTCAC 20 60.4 60 60.6 55 60.6 55 ATCCACCAGTGGCTGCTCC 20 61 55 GGGGTGACAGAGG 20 60.6 55 ATCCACCAGTGGCACACTTCC 20 61 55 GGGGTCACAGTGCCCCCTCCCCCCCCCCCCCCCCCCCCC			ACGAGCTGGTGAACTTGGTG	20	61.3	55	GCGAGCGAGACGTACAAGAT	20	60.6	55	277
3577 GGGGTACACCAGTTGCTCAC 20 60.4 60 60 55 55 ATCCACCAGTGCACAGTTGCT 20 61 55 64CATCTCCTCCTTCC 20 60.6 55 60 60 50 55 ATCCACCAGTGCACATTCC 20 61 55 6ACATCTCCTCCTTCC 20 60 60 60 59 60 59 55 <			GGTACACCAGTTGCTCACGA	20	59.8	55	GCGAGCGAGACGTACAAGAT	20	60.6	55	293
ATCCACCAGTGCACTTCC206155GCATCTCCTCCTCCTCC206060ATCCACCAGTGCACTTCC206155555555.66060ATCCACCAGTGCACTTCC2061555555.7.15057.15057.15057.15057.15057.15057.15057.15057.15057.15057.15057.15057.150	e	3577	GGGGTACACCAGTTGCTCAC	20	60.4	09	GCGAGCGAGACGTACAAGAT	20	60.6	55	295
ATCCACCAGTGCACTTCC 20 61 55 CCCACTGACATCTCC 20 59.6 60 AGAGAGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG			ATCCACCAGTGCACACTTCC	20	61	55	GACATCTCCTCCTCCCTTCC	20	90	60	250
AGAGAGAGAGAGAGAGAGAGAG 21 58.7 57.1 CCCCAGAAGCCAACATCTAC 20 59.5 55 AGAGAGAGAGAGAGAGAGAGAGA 21 59.5 57.1 CCCCAGAAGCCAACATCTAC 20 59.5 55 55 AGAGAGAGAGAGAGAGAGAGAGA 21 59.5 57.1 CCCCAGAAGCCAACATCTAC 20 59.5 55 55 AGAGAGAGAGAGAGAGAGAGAGA 22 59.6 59.1 CCCCAGAAGCCAACATCTAC 20 59.5 55 55 AGAGAGAGAGAGAGAGAGAGA 22 59.6 59.1 CCCCAGAAGCCAACATCTAC 20 59.5 55 55 AGAGAGAGAGAGAGAGAGAGAC 20 59.6 59.1 CCCCAGAAGCCAACATCTAC 20 59.6 59.6 59.6 59.8 55 55 55 55 55 55 55 55 55 55 55 55 55 56 56 56 56 56 56 56 57 50 57 50 57.7 50 57.4 50			ATCCACCAGTGCACACTTCC	20	61	55	CCCACTGACATCTCCTCCTC	20	59.6	09	256
5624aGaGaGaGaGaGaGaGaGaGaGa2159.557.1CCCCAGAAGCCAACATCTAC2059.555562GGGTGGAGAGAGAGAGAGAG2258.859.1CCCCAGAAGCCAACATCTAC2059.555AGAGAGAGAGAGAGGAGGAGGAGCAC2259.659.1CCCCAGAAGCCAACATCTAC2059.555AGAGAGAGGAGGAGGAGCAC2259.659.1CCCCAGAAGCCAACATCTAC2059.555AGACATCTCACTCGTGGTTGC2059.655.6CCTTCCTTCACCAGAACTGC2059.855CGACAAGGGTCCCAGGTACT2060.560.560GCCAGCCACCACTATCTCT2059.8557006CGAGAAGGGTCCCAGGTACT2060.560AGAAGCCTCTTTCCATCC2059.7507006CGAGAAGGGTCCCAGGTACT2060.560AGAAGCCTCTTTTCCATCC2059.7507006CGAGAAGGGTCCCAGGTACT2060.560AGAAGCCTCTTTTCCATCC2059.7507006CGAGAAGGGTCCCAGGTACT2060.560TCCTCTCTTCCATCCT2059.7507006CGAGAAGGGTCCCAGGTACT2060.560TCCTCTCTTCCATCCT2059.7507006CGAGAAGGGTCCCAGGTACT2060.560TCCTCTCTCTTCCATCCT2059.7507006CGAGAGGGTCCCAGGTACT2060.560TCCTCTCTCTTCCTTCCATCCT2059.7507006CGAGAGGGTCCCAGGTACT2060.560TCCTCTCTCTTGCCATTCCT20 <t< td=""><td></td><td></td><td>AGAGAGAGAGAGAGGGGGGGGGG</td><td>21</td><td>58.7</td><td>57.1</td><td>CCCCAGAAGCCAACATCTAC</td><td>20</td><td>59.5</td><td>55</td><td>526</td></t<>			AGAGAGAGAGAGAGGGGGGGGGG	21	58.7	57.1	CCCCAGAAGCCAACATCTAC	20	59.5	55	526
5624GGGTGGAGAGAGAGAGAGAGAGAGAG2258.859.1CCCCAGAAGCCAACTCTAC2059.555AGAGAGAGAGAGAGAGGGGGGGGG2259.659.1CCCCAGAAGCCAACTCTAC2059.55555AGAGAGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG			AGAGAGAGAGAGGGGGGGGGGGGCACA	21	59.5	57.1	CCCCAGAAGCCAACATCTAC	20	59.5	55	524
AGAGAGAGAGAGGGGGGGGGGGGGGGGGGGGGGGGGG	4	5624	GGGTGGAGAGAGAGAGAGAGAG	22	58.8	59.1	CCCCAGAAGCCAACATCTAC	20	59.5	55	536
7006 CGAGGAGGGTCCCAGGTACT 20 59.6 55 60 GCCAGCCAGCACTATCTCTC 20 59.8 55 7006 CGAGAGGGTCCCAGGTACT 20 60.5 60 AGAAGCCTCTTCCACCATCTCTC 20 59.8 60 7006 CGAGAGGGTCCCAGGTACT 20 60.5 60 AGAAGCCTCCTTTCCATCC 20 59.7 50 7006 CGAGAGGGTCCCAGGTACT 20 60.5 60 GAGAGCCTCCTTTCCATCC 20 59.7 50 7006 CGAGAAGGGTCCCAGGTACT 20 60.5 60 GAGAGCTCCTTTCCATCC 20 59.7 50 7006 CGAGAAGGGTCCCAGGTACT 20 60.5 60 TCCTCTTCCATCC 20 59.7 50 7006 CGAGAAGGGTCCCAGGTACT 20 60.5 60 TCCTCTTCCATCCTTCCATCC 20 59.7 50 7006 CGAGAAGGGTCCCAGGTACT 20 60.5 60 TCCTCTTCCATCCTTCCATCC 20 59.4 50 7006 CGAGAAGGGTCCCAGGTACT 20 60.5			AGAGAGAGAGAGAGGGGGGGGGGGGG	22	59.6	59.1	CCCCAGAAGCCAACATCTAC	20	59.5	55	526
7006CGAGAAGGGTCCCAGGTACT2060.560GCCAGCCACCATCTCTC2059.8607006CGAGAAGGGTCCCAGGTACT2060.560.560AGAAGCCTCCTTTCCATCC2059.7507006CGAGAAGGGTCCCAGGTACT2060.560.560GAAGCCTCCTTTCCATCC2059.7507007CGAGAAGGGTCCCAGGTACT2060.560.560TCCTCTTCCTTCCATCC2059.4507006CGAGAAGGGTCCCAGGTACT2060.560.560TCCTCTTCCTTCCATCC2059.4507007CGAGAAGGGTCCCAGGTACT2060.560.560TCCTCTTCCTTGGCATTTC2059.450			GCACTCTTCACTCGTGTTGC	20	59.6	55	CCTTCCTTCACCAGAACTGC	20	59.8	55	524
7006CGAGAAGGGTCCCAGGTACT2060.560AGAAGCCTCCTTTCCATCC2059.7507006CGAGAAGGGTCCCAGGTACT2060.560GAAGCCTCCTTTCCATCCT2059.750CGAGAAGGGTCCCAGGTACT2060.56060.560TCCTCTCCTTGCATCT2059.450CGAGAAGGGTCCCAGGTACT2060.560.560TCCTCTCTTGGCATTTC2059.450CGAGAAGGGTCCCAGGTACT2060.560TCCTCTTGGCATTTC2059.450			CGAGAAGGGTCCCAGGTACT	20	60.5	99	GCCAGCCACCACTATCTCTC	20	59.8	60	252
7006 CGAGAAGGGTCCCAGGTACT 20 60.5 60 GAAGCCTCTTTTCCATCCT 20 59.7 50 CGAGAAGGGTCCCAGGTACT 20 60.5 60 TCCTCTTCCTTGGCATTTC 20 59.4 50 CGAGAAGGGTCCCAGGTACT 20 60.5 60 TCCTCTTCCTTGGCATTTC 20 59.4 50 CGAGAAGGGTCCCAGGTACT 20 60.5 60 TCCTCTTGGCATTTC 20 59.4 50			CGAGAAGGGTCCCAGGTACT	20	60.5	99	AGAAGCCTCCTTTTCCATCC	20	59.7	50	279
20 60.5 60 TCCTCTCTCGCTTGGCATTTC 20 59.4 50 20 60.5 60 TCTCTCCTTGGCATTTCC 20 59.4 50	2	7006	CGAGAAGGGTCCCAGGTACT	20	60.5	60	GAAGCCTCCTTTTCCATCCT	20	59.7	50	278
20 60.5 60 TCTCCCTTGGCATTTCTCC 20 59.4 50			CGAGAAGGGTCCCAGGTACT	20	60.5	99	TCCTCTCTCCTTGGCATTTC	20	59.4	50	231
			CGAGAAGGGTCCCAGGTACT	20	60.5	60	TCTCTCCTTGGCATTTCTCC	20	59.4	20	228

Table 11 --- List of SSR primers designed using Primer3Plus

		200	רפון אנווי	Left Primer 5'- 3'			KIGUL P	Right Primer 5-3			
-04110	COULIE	YCC	Left Primer	Length (bp)	Tm (°C)	GC (%)	Right Primer	Length (bp)	Tm (°C)	GC (%)	Product Size (pp)
			CAGGGTTTCCATTACCTCCTC	21	59.8	52.4	GAGCTTTGTGAGGTCCAGATG	21	59.9	52.4	231
			CAGGGTTTCCATTACCTCCTC	21	59.8	52.4	GAGCCTCTTCAGGTGCTTCTT	21	60.1	52.4	152
F	1315(SSR1)	(cgg)6	GGTTTCCATTACCTCCTCCAC	21	59.7	52.4	GCTTTGTGAGGTCCAGATGAG	21	59.9	52.4	226
			GGTTTCCATTACCTCCTCCAC	21	59.7	52.4	GAGCTITGTGAGGTCCAGATG	21	59.9	52.4	228
			CAGGGTTTCCATTACCTCCTC	21	59.8	52.4	GTGAGGTCCAGATGAGGGTTT	21	60.4	52.4	224
			CTAGTCAGTCCTGGCAAAGC	20	57.7	55	CTTATGCCGTGGTGAACTTCC	20	57.2	50	474
			GTCGCTCTGTCAGACCATAA	20	56.4	50	CTTATGCCGTGGTAACTTCC	20	57.2	50	596
2	6412(SSR2)	(ta)15	GGTCCTCGGTAACGAGACATA	21	59.1	52.4	AGCTCAGAGGTTAGAGCATCG	21	58.9	52.4	556
			ACTAGTCAGTCCTGGCAAAGC	21	58.6	52.4	CTCCAAATGTCGAGTTGCTC	20	58.4	20	509
			CTAGTCAGTCCTGGCAAGC	20	57.7	55	GCTCAGAGGTTAGAGCATCG	20	57.8	55	603
			CTGTGTGAGGAAGCGAAGAG	21	60.2	52.4	ATCAGGTCAGAACACCACCAG	21	99	52.4	194
			CTGTGTGAGGAAGCGAAGAG	21	60.2	52.4	CAGGTCAGAACACCACCAGTT	21	60.1	52.4	192
e	6734(SSR3)	(ga)14	CTGTGTGAGGAAGCGAAGAG	21	60.2	52.4	CCAATCAGGTCAGAACACCAC	21	60.4	52.4	197
			CTGTGTGAAGGAAGCGAAGAG	21	60.2	52.4	TCAGGTCAGAACACCACCAGT	21	60.6	52.4	193
			GTGTGAGGAAGCGAAGAGG	20	60	55	ATCAGGTCAGAACACCACCAG	21	60	52.4	192
			CTCTTCGCGGGCTTTTCTCTAC	21	60.6	52.4	CGCTCCCTCTTTCTGTTCT	21	60.1	52.4	182
			GCGGCTTTTCTCTACTTCTGC	21	60.6	52.4	CGCTCCCTCTTTCTGTTCT	21	60.1	52.4	176
4	7825(SSR4)	(ga)11	CCACCAGAACAACACTCTTCG	21	60.7	52.4	CGCTCCCTCTCTTCTGTTCT	21	60.1	52.4	196
			CTCTTCGCGGGCTTTTCTCTA	20	59.9	50	CGCTCCCTCTTTCTGTTCT	21	60.1	52.4	182
			TCGCGGCTTTTCTCTACTTC	20	59.7	50	CGCTCCCTCTTCTGTTCT	21	60.1	52.4	178
			CAGCAACCCTCAGGTGTAGAG	21	59.9	57.1	CTGCGTTTCCTTGATGATCC	20	60.6	50	226
			GAACAGCAACCCTCAGGTGTA	21	60.2	52.4	CCCCAGTTAGGGTTTCCTCT	20	59.4	55	168
5	8428(SSR5)	(ag)12	GAACAGCAACCCTCAGGTGTA	21	60.2	52.4	CTGCGTTTCCTTGATGATCC	20	60.6	50	229
			ACAGCAACCCTCAGGTGTAGA	21	59.8	52.4	CCCCAGTTAGGGTTTCCTCT	20	59.4	55	166
			ACAGCAACCCTCAGGTGTAGA	21	59.8	52.4	CTGCGTTTCCTTGATGATCC	20	60.6	50	227

ynthesizing
for S
primers 1
SNP
Selected
12.
Table

SI. No.	Name of Primer	Forward Primer (5'-3')	Tm(°C)	Reverese primer (5' - 3')	Tm(°C)	Product Size (bp)
1	CeSNP1	TCTCCACCACTTCCTCCTCT	58.8	GAGTCTTCCACGTCACTTGC	58.4	305
2	CeSNP2	CTGACCTTGCCTTTGGACTC	59.8	ACTCGTCCAGCCTTCTTCAC	59.5	600
3	CeSNP3	GGTACACCAGTTGCTCACGA	59.8	GCGAGCGAGACGTACAAGAT	60.6	293
4	CeSNP4	GCACTCTTCACTCGTGTTGC	59.6	CCTTCCTTCACCAGAACTGC	59.8	524
5	CeSNP5	CeSNP5 CGAGAAGGGTCCCAGGTACT	60.5	GCCAGCCACCACTATCTCTC	59.8	252

Table 13. Selected SSR primers for Synthesizing

SI. No.	Name of Primer	Forward Primer (5' - 3')	Tm(°C)	Reverese primer (5' - 3')	Tm(°C)	Product Size (bp)
1	CeSSR1	CAGGGTTTCCATTACCTCCTC	59.8	GAGCTTTGTGAGGTCCAGATG	59.9	231
2	CeSSR2	CTAGTCAGTCCTGGCAAAGC	57.7	GCTCAGAGGTTAGAGCATCG	57.8	603
3	CeSSR3	CeSSR3 CTGTGTGAAGGAAGCGAAGAG	60.2	CCAATCAGGTCAGAACACCAC	60.4	197
4	CeSSR4	CeSSR4 CCACCAGAACAACACTCTTCG	60.7	CGCTCCCTCTTTTCTGTTCT	60.1	196
5	CeSSR5	CeSSR5 CAGCAACCCTCAGGTGTAGAG	59.9	CTGCGTTTCCTTGATGATCC	60.6	226

4.9 VALIDATION OF SNP AND SSR MARKERS FOR TLB RESISTANCE

The *in-silico* predicted markers were validated using the designed primers against TLB resistant and susceptible varieties.

4.9.1 ISOLATION OF DNA

DNA isolation of 6 taro leaf samples were done using the CTAB method and were stored at -20 $^{\circ}$ C.

4.9.1.1 Analysis of DNA

The DNA samples isolated using the CTAB method were analyzed using 0.8% agarose gel electrophoresis (Plate 1). Although some shearing were present the samples showed clear bands.

4.9.1.2 Quantification of DNA

Quantification of DNA was done using NanoDrop[®] ND-100. The concentration of DNA(ng/ μ L), A_{260/230}, A_{260/280} obtained are shown below (Table 14).

SI. No.	Sample Name	Concentration of DNA(ng/µL)	A _{260/230}	A _{260/280}
1	Muktakeshi	363.116	1.28	2.08
2	Bhu Kripa	777.059	1.68	2.20
3	Bhu Sree	1180.209	1.62	2.09
4	Sree Rashmi	3028.352	2.03	2.19
5	Sree Kiran	2028.846	1.85	2.19
6	Telia	173.613	0.69	1.80

Table 14. Quantification of DNA

Plate 1: 0.8% EtBr stained agarose gel showing DNA of 6 taro samples after electrophoresis (5 μ l DNA sample + 1 μ l 1X loading dye)

A- 100 bp ladder, B- Muktakeshi , C- Bhu Kripa , D- Bhu Sree, E- Sree Rashmi, F- Sree Kiran and G- Telia

4.9.3 Dilution of The DNA

Based on the stock concentration a working stock of 10 ng/ μ L was prepared using the dilution volume obtained. Sterile distilled water was used for dilution and the samples were stored at -20°C.

4.9.4 Dilution of the primer

A working stock of 10 μ M was prepared. The master stock of primers with 100 μ M concentration was properly labelled and stored at -20°C. The working stock was taken for preparing PCR cocktail.

4.10 PCR

PCR reaction for the designed primers was carried out using the designed primers and the calculated annealing temperatures (Table 15).

SI No.	Name of the primer	Annealing temperature - Ta (°C)
1	CeSNP1	56
2	CeSNP2	56
3	CeSNP3	56
4	CeSNP4	56
5	CeSNP5	56
6	CeSSR1	56
7	CeSSR2	54
8	CeSSR3	56
9	CeSSR4	56
10	CeSSR5	56

Table 15. Annealing Temperature for the synthesized primers

4.11 VALIDATION AND SCREENING OF SNP

The diluted DNA samples of one resistant and one susceptible taro variety was screened against the five SNP primers- CeSNP1, CeSNP2, CeSNP3, CeSNP4 and CeSNP5 using PCR in AGE. Banding pattern in resistant and susceptible varieties were looked upon.

CeSNP3 produced a prominent thick band at the desired product size (293 bp) (Plate 2). The prominent single band in both resistant and susceptible varieties confirmed the markers ability to distinguish resistant and susceptible varieties.

The PCR products of CeSNP3 were sequenced using Genei Laboratories Pvt Ltd., Bangalore using 3500 capillary DNA Genetic Analyzer (Applied Biosystem). Replicates were also sent in order to avoid sequencing errors. The sequences obtained were then aligned against corresponding contigs using Clustal Omega (ClustalO) (Figure 7).

Sequence bands from the resistant variety Muktakeshi were aligned against sequence from Contig 3577 from which the primer CeSNP3 was designed. The results showed that sequence with CeSNP3 showed SNP at positions 359, 377, 402, 452 as predicted using QualitySNP. The predicted SNPs were to be G/A at 359th position, A/G at 377th position, G/C at 401st position, G/A at 452th position.

4.12 VALIDATION AND SCREENING OF SSR

The diluted DNA samples of one resistant and one susceptible taro variety were screened against five SSR primers - CeSSR1, CeSSR2, CeSSR3, CeSSR4, CeSSR5. The PCR products were validated using AGE and banding pattern between resistant and susceptible varieties was looked upon.

The primer CeSSR4 produced some banding at the desired product size of 196 bp only among the resistant variety (Plate 3) and was selected to screen the remaining samples.

The presence of bands which could clearly distinguish between resistant and susceptible varieties were looked upon. Banding was observed at the desired

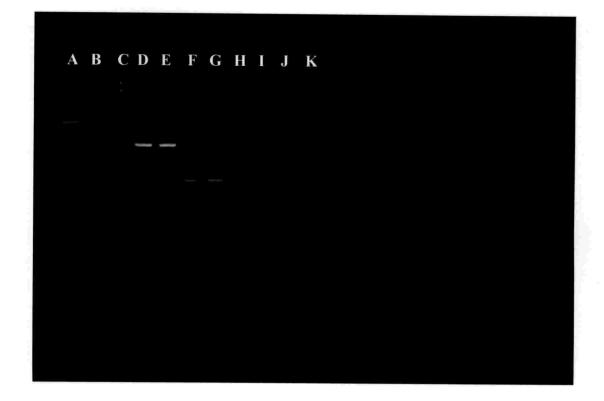
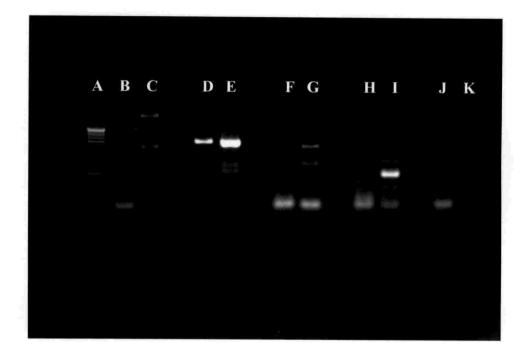


Plate 2. Screening of CeSNP1, CeSNP2, CeSNP3, CeSNP4 and CeSNP5 in 3% agarose gel.

Expected product Size: CeSNP1 - 305 bp , CeSNP2- 600bp, CeSNP3- 293bp, CeSNP4-524bp and CeSNP5- 252bp

A- 100bp ladder, B- Muktakeshi CeSNP1, C- Sree Rashmi CeSNP1,
D- Muktakeshi CeSNP2, E- Sree Rashmi CeSNP2, F- Muktakeshi CeSNP3,
G- Sree Rashmi CeSNP3, H- Muktakeshi CeSNP4, I- Sree Rashmi CeSNP4,
J- Muktakeshi CeSNP5, K- Sree Rashmi CeSNP5


CLUSTAL O(1.2.4) multiple sequence alignment

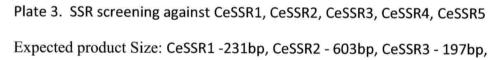

Contig3577 R1	CTTGGAATCCACCAGTGCACACTTCCGAACCAAAAACAATGAAACCCACACGGCACAGAC 60 0
Contig3577 Rl	AACACCATTTAATCAGCCAAGAGTAGAAAATTTGATCCACAAAGAAAACCGGGGCATTTCT 12 0
Contig3577 Rl	CTTTTACATGTCAAAGCAGCCTCCTTTTTTCCATGTAACTGCGAGAAAAACAGAAGAGGG 18 0
Contig3577 Rl	ATGGGGGCAACAACGCCTGCAGATTCCGACATCTACAAGGTTTTACAGCAGTAAAGGGAA 24
Contig3577 Rl	GGGAGGAGGAGATGTCAGTGGGAAATTTGGGAACACTCTAAACGGGGGAATTGAGCGGGG 30
Contig3577 Rl	GTACACCAGTTGCTCACGAGCTGGTGAACTTGGTGACGGCCTTGGTGCCCTCGGAGACAG 36 TGAACTTGGTGACCGCCTTGGTGCCCTCGGAGACGG 36 ************************************
Contig3577 Rl	CGTGCTTGGCGAGCTCACCGGGGAGGACGAGGCGGACGGA
Contig3577 R1	TGATGGTGGGCTTCTTGTTGTAGCGGGCGAGACGGGATGCCTCCTGGGCGAGCTTCTCGA 48 TGATGGTGGGCTTCTTGTTGTAGCGGGCGAGGCGGGGCGGGGCGCCTCCTCGG 15 ************************************
Contig3577 R1	AGATGTCGTTGATGAAGCTGTTCATGATGACCATGGCCTTGCTGGAGATGCCGATGTCCG AGATGTCGTTGATGAAGCTGTTCATGATGCCCATGGCCTTGCTGGAGATGCCCAATGTCC **********************************
Contig3577 Rl	GGTGCACCTGCTTCAGCACCTTGAAGATGTAGATCTTGTACGTCTCGCTCG
Contig3577 R1	CTTCATCTTCTTCTTCTTGTCCCCG 626

Figure 7. ClustalX alignment of CeSNP3 with Muktakeshi

Contig3577- Contig sequence containing predicted SNP

R1- sequenced PCR product of Mukthakeshi with CeSNP3

CeSSR4 - 196bp, CeSSR5 - 226bp

A- 100bp ladder, B-Muktakeshi CeSSR1, C-Sree Rashmi CeSSR1,

D- Muktakeshi CeSSR2, E- Sree Rashmi CeSSR2, F- Muktakeshi CeSSR3,

G- Sree Rashmi CeSSR3, H- Muktakeshi CeSSR4, I- Sree Rashmi CeSSR4,

J- Muktakeshi CeSSR 5, K- Sree Rashmi CeSSR5

Plate 4. Gel image of CeSSR4

Expected Product Size - 196 bp

A - 100 bp ladder, B -Bhu Sree, C- Bhu Kripa, D - Muktakeshi,

E- Sree Rashmi, F- Sree Kiran, G - Telia

product size in Muktakeshi and were absent among others. Hence the designed SSR marker CeSSR4 was capable of differentiating between resistant and susceptible varieties.

DISCUSSION

5. DISCUSSION

The results of the study entitled "Development of molecular markers for blight disease resistance in taro using bioinformatics tools" carried out at ICAR -CTCRI are discussed in this chapter.

Molecular markers have got wider acceptance globally in spite of its type. With emerging technologies and innovations, there is a trend to overcome the traditional methods and techniques. Development of molecular markers using information publicly available in the biological databases has been attributed with enhanced credibility over the years. The advent of molecular markers made biologists to exploit the unseen potential in breeding endeavors. The markers could be used to accelerate agricultural productivity through better techniques (Paterson *et al.*, 1991). With GBS and NGS platforms dominating the sequence availability, a comprehensive understanding of markers could complement breeding programmes (Nadeem *et al.*, 2018). Molecular markers are considered to be efficient in detecting heritable variations or polymorphisms and exploits them. They could deploy favourable gene combinations to achieve disease control in plants (Kumar *et al.*, 1999). With greater amplification and cost-effective nature, *in silico* molecular markers are being widely exploited.

The utility and approach of molecular marker varies with the context of the crop. SNP and SSR markers have gained importance in plant breeding programmes over the years. SNP markers serve to be efficient in characterizing an organism whereas, SSR seems to be more suitable in diversity analysis and fingerprinting (Varshney *et al.*, 2007). However, combination of SNP and SSR markers were efficiently demonstrated in cowpea, capable of identifying resistant locus within the genome (Kusi *et al.*, 2018). In taro RAPD and SSR were widely used either for evaluating genetic diversity (Irwin *et al.*, 1998) or germplasm management (Mace *et al.*, 2002). Little thrust has been given to SNP and SSR, as a marker against leaf blight or any disease. This could be the first report on developing markers on blight disease resistance using the information available in public databases. Lack of adequate EST and other genetic information on

databases limits the developmental procedures. However, with the transcriptomic data available it opens up new fronts in marker development.

For several organisms computational strategies for marker prediction revolved around EST information available in databases (Nagaraj *et al.*, 2006). However, many crops faced the barrier for marker prediction with fewer ESTs available. In taro, with 22 ESTs reported so far were not enough to develop SSRs or SNPs. Transcriptome information (Wang *et al.*, 2017) on taro was used here to develop the molecular marker- SNP and SSR, which served to be a reliable option even with a complex methodology and processing.

The molecular marker discovery not only helps in achieving better yields but also in identifying gene functions and genetic diversity, the relation between the polymorphism detected and molecular breeding (Semagn *et al.*, 2005).

Taro leaf blight continues to remain a major threat for the farming community with chemical controls quiet unsuccessful. Being a staple food crop in many countries, the decreasing production seems to worsen the condition. However, not as a prominent contributor and competitor in the international market, TLB hasn't achieved significant attention yet. With marker-assisted selection and breeding being an efficient tool for enhanced disease resistance, it could pave the way to substitute fungicides and other harmful chemicals.

Marker-assisted selection always seems to be superior to conventional breeding techniques where there is increased risk or presence of harmful organisms. Marker-assisted selection enables a breeder to eliminate susceptible varieties and concentrate on resistant varieties. MAS could be more beneficial in the case of TLB, enabling breeder to concentrate on fewer lines of varieties.

In this work, about 562 SNPs and 3034 SSRs were predicted form a generalized taro transcriptome data. Of the detected SNPs, 518 were nonsynonymous which resulted in a change in the translational product with a change in the nucleotide. Among the SSRs identified using MISA, 49% corresponded to dinucleotide repeats.

The *in-silico* predicted markers were validated against TLB resistant and susceptible varieties to determine their efficacy.

5.1 COMPARATIVE EVALUATION OF SNP PREDICTION TOOLS

QualitySNP and AutoSNP were used to predict SNPs from the assembled contigs. On comparative evaluation, QualitySNP produced more reliable results with a fewer number of SNPs and classified them to Synonymous and Nonsynonymous. AutoSNP, on the other hand, produced more SNPs which were not reliable. The major highlight of SNPs detected by QualitySNP was that they were classified based on the translational product produced with the change in nucleotide sequence.

5.2 COMPARATIVE EVALUATION OF SSR PREDICTION TOOLS

MISA and SSRIT were used to predict SSR among the assembled contigs. On comparative evaluation, MISA showed the higher number of SSR and polymorphism among the detected SSR, whereas in SSRIT the repeats were confined within di-, tri-, and tetra repeats. Increase diversity among the type of repeats and the higher number make MISA more preferable.

5.3 VALIDATION OF THE PREDICTED SNP AND SSR

In-silico developed markers were screened on resistant and susceptible varieties to validate them. The validation confirms the credibility of the developed markers. However, the primers designed for the predicted SNP and SSR maybe hypothetical, as all designed primers may not work well to distinguish between resistant and susceptible varieties. It could be influenced and inhibited by many external factors.

With prediction tools, we could develop markers for plants targetted with a specific function. The transcriptomic data served to be an excellent choice for marker prediction with fewer EST available in the database. The markers designed could be of great use in breeding programmes once it is validated in

SUMMARY

6. SUMMARY

The study entitled "Development of Molecular markers for blight disease resistance in taro using bioinformatics tools" was conducted at the Central Tuber Crop Research Institute (CTCRI) during 2017 - 2018. The main objectives of the study were to develop and evaluate marker prediction pipelines of SNP and SSR, computational prediction, and validation of the markers. The study was divided into two phases, *in silico* prediction of molecular markers and their validation. The notable observations of the study are stated below.

The raw data for identifying SSR and SNP marker were obtained from the SRA section of NCBI (<u>https://www.ncbi.nlm.nih.gov/sra</u>). The NGS data served to be raw dataset in absence of adequate number of EST. The transcript corresponded to about 6,479,882 paired reads which were trimmed to 6,319,834 reads. The reads were then assembled *de novo* by Trinity and aligned using CAP3 to produce 8547 contigs which served to be the input for marker prediction.

QualitySNP and AutoSNP were the SNP prediction tools used for detecting SNP, whereas SSRIT and MISA were employed to predict SSRs for the dataset obtained.

QualitySNP with better algorithm proved to be more useful and reliable, as it clearly distinguished between synonymous and nonsynonymous SNPs. Nonsynonymous SNPs produced a precise change in the translational product with the change in single nucleotide sequence. With the huge number of SNPs detected by AutoSNP, it is quite untrustworthy. MISA, on the other hand, serves to be more reliable even with the increased number comparing to lower repeats identified by SSRIT. With a better algorithm, it predicted more types of repeats and compound SSRs. With the SSR/SNP containing contigs crosschecked via BLAST against a leaf blight resistant database enhanced the decisiveness of the markers.

QualitySNP identified about 562 SNPs of which 518 were nonsynonymous and 44 were synonymous which corresponded to 238 contigs. In MISA 967 mono, 1484 di, 558 tri, 14 tetra, 2 penta and 9 hexa repeats were detected which together add to a total of 3034 SSRs. Five sequences from each with lower evalue and good percentage identity on BLAST with resistant database were chosen for primer designing to validate the *in silico* data. The primers were validated against 3 susceptible and 3 tolerant varieties. Among the primers designed, CeSSR4 in the case of SSR and CeSNP2 and CeSNP3 in SNP were capable of distinguishing resistant and susceptible varieties.

Scope for future work

With only 5 SSR and SNP being validated, the remaining markers could be validated in future. With CeSSR4 and CeSNP3 being able to differentiate susceptible and resistant lines among the five selected, validation of remaining could add up the resources. The designed markers could also prove to be beneficial in marker-assisted selection and other breeding programmes for taro.

174553

85

REFERENCES

7. REFERENCES

- Aggarwal, R.K., Hendre, P.S., Varshney, R.K., Bhat, P.R., Krishnakumar, V., and Singh, L. 2007. Identification, characterization and utilization of ESTderived genic microsatellite markers for genome analyses of coffee and related species. *Theor. and Appl. Genet.* 114(2): 359p.
- Ahrberg, C.D., Manz, A., and Chung, B.G. 2016. Polymerase chain reaction in microfluidic devices. *Lab on a Chip* 16(20): 3866-3884.
- Alexandratos, N. and Bruinsma, J. 2012. World agriculture towards 2030/2050: the 2012 revision. ESA Working paper No. 12-03. Rome, FAO.
- Arabidopsis Genome Initiative, 2000. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. *Nat.* 408(6814): 796-815.
- Banjaw, D.T. 2017. Review of Taro (*Colocasia esculenta*) Genetics and Breeding
 J. Hortic. 4(1): 196. Available: http://DOI:10.4172/2376-0354.1000196
 [30 January 2018].
- Bao, Y., Xu, S., Jing, X., Meng, L., and Qin, Z. 2015. De novo assembly and characterization of Oryza officinalis leaf transcriptome by using RNA-Seq. *BioMed. Res. Int.* 2015: 7. Available: http://dx.doi.org/10.1155/2015/982065 [15 March 2018].
- Barker, G., Batley, J., O'Sullivan, H., Edwards, K.J., and Edwards, D. 2003. Redundancy based detection of sequence polymorphisms in expressed sequence tag data using autoSNP. *Bioinforma*. 19(3): 421-422.
- Batley, J., Barker, G., O'Sullivan, H., Edwards, K.J., and Edwards, D. 2003. Mining for single nucleotide polymorphisms and insertions/deletions in maize expressed sequence tag data. *Plant Physiol.* 132(1): 84-91.

- Beletsky, A.V., Filyushin, M.A., Gruzdev, E.V., Mazur, A.M., Prokhortchouk, E.B., Kochieva, E.Z., Mardanov, A.V., Ravin, N.V., and Skryabin, K.G. 2017. *De novo* transcriptome assembly of the mycoheterotrophic plant *Monotropa hypopitys. Genomics data*, 11: 60-61. Available: https://doi.org/10.1016/j.gdata.2016.11.020 [22 December 2017].
- Bevan, M.W. and Uauy, C. 2013. Genomics reveals new landscapes for crop improvement. *Genome Biol.* 14(6): 206.
- Bilsborough, G.D., 2013. Plant genomics: sowing the seeds of success. Genome Biol. 14: 404. Available: https://doi.org/10.1186/gb-2013-14-6-404 [10 December 2017].
- Boches, P.S., Bassil, N.V., and Rowland, L.J. 2005. Microsatellite markers for Vaccinium from EST and genomic libraries. *Mol. Ecol. Notes*, 5(3), pp.657-660.
- Bolger, A. M., Lohse, M., and Usadel, B. 2014. Trimmomatic: A flexible trimmer for Illumina Sequence Data. *Bioinforma*. 30(15): 2114-2120.
- Borges, J.C., Cagliari, T.C., and Ramos, C.H. 2007. Expression and variability of molecular chaperones in the sugarcane expressome. J. plant physiol. 164(4): 505-513.
- Buermans, H.P.J. and Den Dunnen, J.T. 2014. Next generation sequencing technology: advances and applications. *Biochimica et Biophysica Acta* (BBA)-Mol. Basis Dis. 1842(10): 1932-1941.
- Ceresini, P.C., Silva, C.L.S.P., Missio, R.F., Souza, E.C., Fischer, C.N., Guillherme, I.R., Gregorio, I., Silva, E.H.T.D., Cicarelli, R.M.B., Silva, M.T.A.D., and Garcia, J.F. 2005. Satellyptus: Analysis and database of microsatellites from ESTs of Eucalyptus. *Genet. and Mol. Biol.* 28(3): 589-600.

- Chair, H., Traore, R.E., Duval, M.F., Rivallan, R., Mukherjee, A., Aboagye, L.M., Van Rensburg, W.J., Andrianavalona, V., de Carvalho, M.P., Saborio, F., Prana, M.S., and Komolong, B. 2016. Genetic diversification and dispersal of taro (*Colocasia esculenta* (L.) Schott). *PloS one*. 11(6), p.e0157712. Available: https://doi.org/10.1371/journal.pone.0157712 [10 January, 2018].
- Ching, A.D.A., Caldwell, K.S., Jung, M., Dolan, M., Smith, O., Tingey, S., Morgante, M., and Rafalski, A.J. 2002. SNP frequency, haplotype structure and linkage disequilibrium in elite maize inbred lines. *BMC genet.* 3(1): 19.
- Choe, J., Kim, J.E., Lee, B.W., Lee, J.H., Nam, M., Park, Y.I., and Jo, S.H. 2018. A comparative synteny analysis tool for target-gene SNP marker discovery: connecting genomics data to breeding in Solanaceae. *Database*, 2018: 47.
- Da Maia, L.C., Palmieri, D.A., De Souza, V.Q., Kopp, M.M., de Carvalho, F.I.F., and Costa de Oliveira, A. 2008. SSR locator: tool for simple sequence repeat discovery integrated with primer design and PCR simulation. *Int. J. Plant Genomics*, 2008: 194-200. Available: https://doi.org/10.1155/2008/412696. [18 March, 2018].
- Devillers H., Morin N., and Neuveglise C. 2016. Methods in Molecular Biology (volume 1361). Humana Press, New York, 41-56.
- Doi, H., Takahara, T., Minamoto, T., Matsuhashi, S., Uchii, K., and Yamanaka, H. 2015. Droplet digital polymerase chain reaction (PCR) outperforms realtime PCR in the detection of environmental DNA from an invasive fish species. *Environ. Sci. Technol.* 49(9): 5601-5608.
- Doveri S., Lee D., Maheswaran M. and Powell W. (2008). Principles and Practices of Plant Genomics (Volume 1) Science Publishers, USA, pp.23-68.
- Doyle J.J. and J.L. Doyle. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. *Phytochem. Bull* 19: 11–15.

- Edison, S., Sreekumari, M.T., Pillai, S.V., and Sheela, M. N. 2003. Diversity and genetic resources of taro in India. In: *3rd Taro Symposium*; 21-23, May, 2003, Fiji islands. Secretariat of the Pacific Community and the International Plant Genetic Resources Institute, Rome, 85-88. Paper 1.7.
- Eujayl, I., Sledge, M.K., Wang, L., May, G.D., Chekhovskiy, K., Zwonitzer, J.C., and Mian, M.A.R. 2004. Medicago truncatula EST-SSRs reveal crossspecies genetic markers for Medicago species. *Theor. and Appl. Genet.* 108(3): 414-422.
- Ewing, B., Hillier, L., Wendl, M.C., and Green, P. 1998. Base-calling of automated sequencer traces using Phred. I. Accuracy assessment. *Genome Res.* 8(3): 175-185.
- FAOSTAT [Food and Agriculture Organization Corporate Statistical Database] 2016 Available: http://www.fao.org/faostat/en/#data/qc [2 July, 2018].
- Gardner, S.N., Slezak, T., and Hall, B.G. 2015. kSNP3. 0: SNP detection and phylogenetic analysis of genomes without genome alignment or reference genome. *Bioinforma*. 31(17): 2877-2878.
- Gimode, D., Odeny, D.A., de Villiers, E.P., Wanyonyi, S., Dida, M.M., Mneney, E.E., Muchugi, A., Machuka, J., and de Villiers, S.M. 2016. Identification of SNP and SSR markers in finger millet using next generation sequencing technologies. *PLoS one*, 11(7): p.e0159437. Available: https://doi.org/10.1371/journal.pone.0159437. [20 February, 2018].
- Godfray, H.C.J., Beddington, J.R., Crute, I.R., Haddad, L., Lawrence, D., Muir, J.F., Pretty, J., Robinson, S., Thomas, S.M., and Toulmin, C. 2010. Food security: the challenge of feeding 9 billion people. *Sci.* Available: DOI: 10.1126/science.1185383. [15 November, 2017].
- Goltenboth, F., Timotius, K. H., Milan, P.P., and Margraf, J. 2006. Ecology of Insular Southeast Asia. Elsevier, Amsterdam, 568p.

- Gonzaga, Z.J., Aslam, K., Septiningsih, E.M., and Collard, B.C. 2015. Evaluation of SSR and SNP markers for molecular breeding in rice. *Plant Breed. Biotechnol.* 3(2): 139-152.
- Gordon, D. and Green, P. 2013. Consed: a graphical editor for next-generation sequencing. *Bioinforma*. 29(22): 2936-2937.
- Gordon, D., Abajian, C. and Green, P., 1998. Consed: a graphical tool for sequence finishing. *Genome Res.* 8(3): 195-202.
- Grabherr, M.G., Haas, B.J., Yassour, M., Levin, J.Z., Thompson, D.A., Amit, I., Adiconis, X., Fan, L., Raychowdhury, R., Zeng, Q., and Chen, Z. 2011. Full-length transcriptome assembly from RNA-Seq data without a reference genome. *Nat. Biotechnol.* 29(7): 644.
- Gregory, P.H. 1983. Some major epidemics caused by Phytophthora. In *Phytophthora: its biology, taxonomy, ecology and pathology.* pp.271-278.
- Grimaldi, I.M., Muthukumaran, S., Tozzi, G., Nastasi, A., Boivin, N., Matthews,
 P.J., and van Andel, T. 2018. Literary evidence for taro in the ancient
 Mediterranean: A chronology of names and uses in a multilingual world. *PloS* one 13(6): p.e0198333. Available:
 https://doi.org/10.1371/journal.pone.0198333 [20 March, 2018].
- Haas, B.J., Grabherr, M.G., Yassour, M., Levin, J.Z., Thompson, D.A., Amit, I., Adiconis, X., Fan, L., Raychowdhury, R., Zeng, Q., and Chen, Z. 2011. Full-length transcriptome assembly from RNA-Seq data without a reference genome. *Nat. Biotechnol.* 29(7): 644.
- Han, J.H., Chon, J.K., Ahn, J.H., Choi, I.Y., Lee, Y.H., and Kim, K.S. 2016. Whole genome sequence and genome annotation of *Colletotrichum acutatum*, causal agent of anthracnose in pepper plants in South Korea. *Genomics data* 8: 45-46.

- Hanai, L.R., De Campos, T., Camargo, L.E.A., Benchimol, L.L., De Souza, A.P., Melotto, M., Carbonell, S.A.M., Chioratto, A.F., Consoli, L., Formighieri, E.F., and Siqueira, M.V.B.M. 2007. Development, characterization, and comparative analysis of polymorphism at common bean SSR loci isolated from genic and genomic sources. *Genome* 50(3): 266-277.
- Hayward, A.C., Tollenaere, R., Dalton-Morgan, J., and Batley, J. 2015. Plant Genotyping Humana Press, New York, 1245:13-27.
- He, B., Zhao, S., Chen, Y., Cao, Q., Wei, C., Cheng, X., and Zhang, Y. 2015. Optimal assembly strategies of transcriptome related to ploidies of eukaryotic organisms. *BMC genomics* 16(1): 65.
- Helmkampf, M., Wolfgruber, T.K., Bellinger, M.R., Paudel, R., Kantar, M.B., Miyasaka, S.C., Kimball, H.L., Brown, A., Veillet, A., Read, A., and Shintaku, M. 2017. Phylogenetic relationships, breeding implications, and cultivation history of Hawaiian taro (*Colocasia esculenta*) through genomewide SNP genotyping. J. Heredity, 109(3): 272-282.
- Hu, K.A.N., Huang, X.F., Ke, W.D., and Ding, Y.I. 2009. Characterization of 11 new microsatellite loci in taro (*Colocasia esculenta*). *Mol. Ecol. Resour.* 9(2): 582-584.
- Huang, C.C., Chen, W.C., and Wang, C.C. 2007. Comparison of Taiwan paddyand upland-cultivated taro [*Colocasia esculenta* (L.)] cultivars for nutritive values. *Food Chem.* 102(1): 250-256.
- Huang, X. and Madan, A. 1999. CAP3: A DNA sequence assembly program. Genome Res. 9(9): 868-877.
- Hung, J.H. and Weng, Z. 2016. Designing polymerase chain reaction primers using Primer3Plus. Cold Spring Harbor Protocols [e-journal] 2016(9). Available: http://cshprotocols.cshlp.org/content/2016/9/pdb.prot093096.short [1 April 2018].

- Hwang, S.G., Kim, K.H., Lee, B.M., and Moon, J.C. 2018. Transcriptome analysis for identifying possible gene regulations during maize root emergence and formation at the initial growth stage. *Genes genomics*, 40(7): 755-766.
- Iorizzo, M., Senalik, D.A., Grzebelus, D., Bowman, M., Cavagnaro, P.F., Matvienko, M., Ashrafi, H., Van Deynze, A., and Simon, P.W. 2011. *De* novo assembly and characterization of the carrot transcriptome reveals novel genes, new markers, and genetic diversity. *BMC genomics* 12(1): 389.
- Irwin, S.V., Kaufusi, P., Banks, K., De la Pena, R., and Cho, J.J. 1998. Molecular characterization of taro (*Colocasia esculenta*) using RAPD markers. *Euphytica*, 99(3): 183.
- Ivancic, A. and Lebot, V. 2000. The genetics and breeding of taro. French Agricultural Research Centre for International Development (CIRAD), Paris, 194p.
- Jeppson, J.O., Laurell, C.B., and Franzén, B. 1979. Agarose gel electrophoresis. Clin. Chem. 25(4): 629-638.
- Jiang, L., Mancuso, M., Lu, Z., Akar, G., Cesarman, E., and Erickson, D. 2014. Solar thermal polymerase chain reaction for smartphone-assisted molecular diagnostics. *Sci. Rep.* 4: 4137.
- Johnson, A.D., Handsaker, R.E., Pulit, S.L., Nizzari, M.M., O'donnell, C.J., and De Bakker, P.I. 2008. SNAP: a web-based tool for identification and annotation of proxy SNPs using HapMap. *Bioinforma*. 24(24): 2938-2939.
- Jorde, L.B. 2000. Linkage disequilibrium and the search for complex disease genes. *Genome Res.* 10(10): 1435-1444.

- Kantety, R.V., La Rota, M., Matthews, D.E., and Sorrells, M.E. 2002. Data mining for simple sequence repeats in expressed sequence tags from barley, maize, rice, sorghum and wheat. *Plant Mol. Biol.* 48(5-6): 501-510.
- Kaushal, P., Kumar, V., and Sharma, H.K. 2015. Utilization of taro (Colocasia esculenta): a review. J. Food Sci. Technol. 52(1): 27-40.
- Kofler, R., Schlötterer, C., and Lelley, T. 2007. SciRoKo: a new tool for whole genome microsatellite search and investigation. *Bioinforma.*, 23(13): 1683-1685.
- Kreike, C.M., Van Eck, H.J., and Lebot, V. 2004. Genetic diversity of taro, Colocasia esculenta (L.) Schott, in Southeast Asia and the Pacific. Theor. and Appl. genetics 109(4): 761-768.
- Kumar, L.S. 1999. DNA markers in plant improvement: an overview. *Biotechnol.* Adv. 17(2-3): 143-182.
- Kuruvilla, K.M., and Singh, A. 1981. Karyotypic and electrophoretic studies on taro and its origin. *Euphytica*, 30(2): 405-413.
- Kushwaha, S.K., Vetukuri, R.R., and Grenville-Briggs, L.J. 2017. Draft genome sequence of the mycoparasitic oomycete Pythium periplocum strain CBS 532.74. *Genome announcements*, 5(12): e00057-17. Available: https://doi.org/10.1128/genomeA.00057-17 [26 January 2018].
- Kusi, F., Padi, F.K., Obeng-Ofori, D., Asante, S.K., Agyare, R.Y., Sugri, I., Timko, M.P., Koebner, R., Huynh, B.L., Santos, J.R., and Close, T.J. 2018. A novel aphid resistance locus in cowpea identified by combining SSR and SNP markers. *Plant Breed*. 137(2): 203-209.
- Lapatas, V., Stefanidakis, M., Jimenez, R.C., Via, A., and Schneider, M.V. 2015. Data integration in biological research: an overview. J. Biol. Res. 22(1): 9.

- Lebot, V. and Aradhya, K.M. 1991. Isozyme variation in taro (*Colocasia* esculenta (L.) Schott) from Asia and Oceania. *Euphytica*, 56(1): 55-66.
- Lebot, V., Herail, C., Gunua, T., Pardales, J., Prana, M., Thongjiem, M., and Viet, N. 2003. Isozyme and RAPD variation among *Phytophthora colocasiae* isolates from South-east Asia and the Pacific. *Plant Pathol.* 52(3): 303-313.
- Lebot, V., Prana, M.S., Kreike, N., Van Heck, H., Pardales, J., Okpul, T., Gendua, T., Thongjiem, M., Hue, H., Viet, N., and Yap, T.C. 2004. Characterisation of taro (*Colocasia esculenta* (L.) Schott) genetic resources in Southeast Asia and Oceania. *Genetic Resour. Crop Evol.*, 51(4): 381-392.
- Lewu, M.N., Adebola, P.O., and Afolayan, A.J. 2010. Comparative assessment of the nutritional value of commercially available cocoyam and potato tubers in South Africa. J. food Qual. 33(4): 461-476.
- Li, K. B., 2003. ClustalW-MPI: ClustalW analysis using distributed and parallel computing. *Bioinforma*. 19(12): 1585-1586.
- Li, L., Wang, J., Guo, Y., Jiang, F., Xu, Y., Wang, Y., Pan, H., Han, G., Li, R., and Li, S. 2008. Development of SSR markers from ESTs of gramineous species and their chromosome location on wheat. *Prog. Nat. Sci.* 18(12): 1485-1490.
- Li, Y.C., Korol, A.B., Fahima, T., Beiles, A., and Nevo, E. 2002. Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review. *Mol. Ecol.* 11(12): 2453-2465.
- Liang, C., Liu, X., Yiu, S.M., and Lim, B.L. 2013. *De novo* assembly and characterization of *Camelina sativa* transcriptome by paired-end sequencing. *BMC genomics* 14(1): 146.
- Liu, Q., Donner, E., Yin, Y., Huang, R.L., and Fan, M.Z. 2006. The physicochemical properties and in vitro digestibility of selected cereals, tubers and legumes grown in China. *Food Chem.* 99(3): 470-477.

- Liu, S., Li, W., Wu, Y., Chen, C., and Lei, J. 2013. De novo transcriptome assembly in chili pepper (*Capsicum frutescens*) to identify genes involved in the biosynthesis of capsaicinoids. *PloS one*, 8(1): p.e48156. Available: https://doi.org/10.1371/journal.pone.0048156 [14 November 2017].
- Lu, Z., Li, W., Yang, Y., and Hu, X. 2011. Isolation and characterization of 19 new microsatellite loci in *Colocasia esculenta* (Araceae). *Am. J. Bot.* 98(9): 239-241.
- Ma, Y., Yang, T., Guan, J., Wang, S., Wang, H., Sun, X., and Zong, X. 2011. Development and characterization of 21 EST-derived microsatellite markers in *Vicia faba* (fava bean). *Am. J. Bot.* 98(2): 22-24.
- Mace, E.S. and Godwin, I.D. 2002. Development and characterization of polymorphic microsatellite markers in taro (*Colocasia esculenta*). *Genome* 45(5): 823-832.
- Mammadov, J., Aggarwal, R., Buyyarapu, R., and Kumpatla, S. 2012. SNP markers and their impact on plant breeding. *Int. J. Plant Genomics*, 2012: 1-11 Available: http://dx.doi.org/10.1155/2012/728398 [20 February 2018].
- Marth, G.T., Korf, I., Yandell, M.D., Yeh, R.T., Gu, Z., Zakeri, H., Stitziel, N.O., Hillier, L., Kwok, P.Y., and Gish, W.R. 1999. A general approach to singlenucleotide polymorphism discovery. *Nat. Genetics* 23(4): 452.
- Martins, W.S., Lucas, D.C.S., de Souza Neves, K.F., and Bertioli, D.J. 2009. WebSat - A web software for microsatellite marker development. *Bioinformation*, 3(6): 282.
- Matsuda, M. and Nawata, E. 2002. Geographical distribution of ribosomal DNA variation in taro, *Colocasia esculenta* (L.) Schott, in eastern Asia. *Euphytica*, 128(2): 165.

- Matthews, P., Matsushita, Y., Sato, T., and Hirai, M., 1992. Ribosomal and mitochondrial DNA variation in Japanese taro (*Colocasia esculenta* L. Schott). *Jpn. J. Breed.* 42(4): 825-833.
- Metz, S., Cabrera, J.M., Rueda, E., Giri, F., and Amavet, P. 2016. FullSSR: microsatellite finder and primer designer. *Adv. Bioinforma.*, 2016: 1-4. Available: https://doi.org/10.1155/2016/6040124 [10 March 2018].
- Milgroom, M.G. and Fry, W.E. 1997. Contributions of population genetics to plant disease epidemiology and management. In: *Advances in Botanical Research* (Vol. 24) Academic Press, Cambridge. pp 1-30.
- Misra, R.S., Sharma, K., and Mishra, A.K. 2008. Phytophthora leaf blight of Taro (*Colocasia esculenta*)–a review. *Asian Aust. J. Plant Sci. Biotechnol.* 2: 55-63.
- Mohan, M., Nair, S., Bhagwat, A., Krishna, T.G., Yano, M., Bhatia, C.R., and Sasaki, T. 1997. Genome mapping, molecular markers and marker-assisted selection in crop plants. *Mol. Breed.* 3(2): 87-103.
- Monger, C., Motheramgari, K., McSharry, J., Barron, N., and Clarke C. 2017. A Bioinformatics Pipeline for the Identification of CHO Cell Differential Gene Expression from RNA-Seq Data. *Methods Mol. Biol.* 1603: 169-186.
- Moss, P. and Thein, S.L. 1998. Clinical Applications of PCR. Humana Press, New York City, pp.145-148.
- Mullis, K., Faloona, F., Scharf, S., Saiki, R.K., Horn, G.T., and Erlich, H., 1986. Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. In: *Cold Spring Harbor symposia on quantitative biology*. Cold Spring Harbor Laboratory Press, New York. 51: 263-273

- Mutz, K.O., Heilkenbrinker, A., Lonne, M., Walter, J.G., and Stahl, F. 2013. Transcriptome analysis using next-generation sequencing. *Curr. Opin. Biotechnol.* 24: 22–30.
- Mwenye, O.J., Labuschagne, M.T., Herselman, L., and Benesi, I.R.M. 2011. Mineral composition of Malawian cocoyam (*Colocasia esculenta* and *Xanthosoma sagittifolium*) genotypes. J. Biol. Sci. 11(4): 331-335.
- Nadeem, M.A., Nawaz, M.A., Shahid, M.Q., Doğan, Y., Comertpay, G., Yıldız, M., Hatipoğlu, R., Ahmad, F., Alsaleh, A., Labhane, N., and Özkan, H. 2018. DNA molecular markers in plant breeding: current status and recent advancements in genomic selection and genome editing. *Biotechnol. Biotechnological Equip.* 32(2): 261-285.
- Nagaraj, S.H., Gasser, R.B., and Ranganathan, S. 2006. A hitchhiker's guide to expressed sequence tag (EST) analysis. *Briefings Bioinforma*. 8(1): 6-21.
- Nickerson, D.A., Tobe, V.O., and Taylor, S.L. 1997. PolyPhred: automating the detection and genotyping of single nucleotide substitutions using fluorescence-based resequencing. *Nucleic acids Res.* 25(14): 2745-2751.
- Njintang, Y.N., Scher, J., and Mbofung, C.M.F. 2008. Physicochemical, thermal properties and microstructure of six varieties of taro (*Colocasia esculenta* L. Schott) flours and starches. J. Food Eng. 86(2): 294-305.
- Noyer, J.L., Billot, C., Weber, A., Brottier, P., Quero-Garcia, J., and Lebot, V. 2003, May. Genetic diversity of taro (*Colocasia esculenta* (L.) Schott) assessed by SSR markers. In: *Proceedings of the Third Taro Symposium*, 21 – 23 May 2003, Nadi, Fiji Islands. pp.21-23.
- O'Sullivan, J.N., Asher, C.J., Blamey, F.P.C., Asher, C.J., and Blamey, F.P.C. 1996. Nutritional disorders of taro. Department of Agriculture, The University of Queensland. 80-81.

- Onwueme, I.C., 1978. The tropical tuber crops: yams, cassava, sweet potato, and cocoyams. John Wiley and Sons, Chichester, 3-97.
- Paterson, A.H., Tanksley, S.D., and Sorrells, M.E. 1991. DNA markers in plant improvement. In: *Adv. Agron.* Academic Press, United States, 39-90
- Patil, G., Do, T., Vuong, T.D., Valliyodan, B., Lee, J.D., Chaudhary, J., Shannon, J.G., and Nguyen, H.T. 2016. Genomic-assisted haplotype analysis and the development of high-throughput SNP markers for salinity tolerance in soybean. *Sci. Rep.* [e-journal] 6(19199). Available: https://www.nature.com/articles/srep19199 [21 March 2018].
- Plucknett, D.L. 1983. Taxonomy of the genus Colocasia. In: Wang J.K. (Ed.), A Review of Colocasia esculenta and its Potentials, Univ Hawaii Press, Honolulu. pp. 14–19.
- Pongener, N. and Daiho, L. (2016). Survey on leaf blight of taro (*Phytophthora colocasiae* Raciborski) in Nagaland. *Acta Hortic*. 1118: 125-130
 DOI:10.17660/ActaHortic.2016.1118.18 Available: https://doi.org/10.17660/ActaHortic.2016.1118.18
- Powell, W., Machray, G.C., and Provan, J. 1996. Polymorphism revealed by simple sequence repeats. *Trends Plant Sci.* 1(7): 215-222.
- Purseglove, J.W. 1972. Tropical crops: monocotyledons Halsted Press, Division of John Wiley and Sons, London. 334p.
- Qu, J. and Liu, J. 2013. A genome-wide analysis of simple sequence repeats in maize and the development of polymorphism markers from next-generation sequence data. *BMC Res. Notes* 6(1): 403.
- Rafalski, A., 2002. Applications of single nucleotide polymorphisms in crop genetics. *Curr. Opinion Plant Biol.* 5(2): 94-100.

- Ranzani, V., Arrigoni, A., Rossetti, G., Panzeri, I., Abrignani, S., Bonnal, R.J., and Pagani, M. 2017. Next-generation sequencing analysis of long noncoding RNAs in CD4+ T cell differentiation. In: *T-Cell Differentiation* Humana Press, New York. pp.173-185.
- Saiki, R.K., Scharf, S., Faloona, F., Mullis, K., Hoorn, G.T., and Arnheim, N. 1985. Polymerase chain reaction. *Sci.* 230: 1350-1354.
- Savage, D., Batley, J., Erwin, T., Logan, E., Love, C.G., Lim, G.A., Mongin, E., Barker, G., Spangenberg, G.C., and Edwards, D. 2005. SNPServer: a realtime SNP discovery tool. *Nucleic Acids Res.* 33(2). Available: https://doi.org/10.1093/nar/gki462 [January 2018].
- Schlotterer C. (2004) The evolution of molecular markers just a matter of fashion? *Nat. Rev. Genet.* 5(1): 63-69.
- Schochetman, G., Ou, C.Y. and Jones, W.K., 1988. Polymerase chain reaction. J. infectious Dis. 158(6): 1154-1157.
- Scholten, O.E., van der Linden, C.G., and Vosman, B. 2005. Molecular markers for disease resistance in various crops obtained by NBS profiling. In: Scholten O.E. (ed.), COST SUSVAR/ECO-PB Workshop on organic plant breeding strategies and the use of molecular markers. Proceedings of an international workshop, Driebergen, The Netherlands. Louis Bolk Institute, Driebergen, The Netherlands, 95p.
- Semagn, K., Bjørnstad, Å., and Ndjiondjop, M.N. 2006. An overview of molecular marker methods for plants. *Afr. J. Biotechnol.* 5(25): 2540-2568
- Sepúlveda-Nieto, M.D.P., Bonifacio-Anacleto, F., Faleiros de Figueiredo, C., de Moraes-Filho, R.M., and Alzate-Marin, A.L. 2017. Accessible Morphological and Genetic Markers for Identification of Taioba and Taro, T wo Forgotten Human Foods. *Horticulturae*, 3(4): 49.

- Sharma, K., Mishra, A.K., and Misra, R.S. 2008. A simple and efficient method for extraction of genomic DNA from tropical tuber crops. *Afr. J. Biotechnol.*, 7(8): 1018-1022.
- Sharma, K., Mishra, A.K., and Misra, R.S. 2008. Analysis of AFLP variation of taro population and markers associated with leaf blight resistance gene. *Academic J. Plant Sci.* 1(3): 42-48.
- Sharma, K., Mishra, A.K., and Misra, R.S. 2009. Identification and characterization of differentially expressed genes in the resistance reaction in taro infected with *Phytophthora colocasiae*. *Mol. Biol. Rep.* 36(6): 1291-1297.
- Sharma, P.C., Grover, A., and Kahl, G. 2007. Mining microsatellites in eukaryotic genomes. *Trends Biotechnol.* 25(11): 490-498.
- Singh, D., Jackson, G., Hunter, D., Fullerton, R., Lebot, V., Taylor, M., Iosefa, T., Okpul, T., and Tyson, J. 2012. Taro leaf blight—a threat to food security. *Agric.* 2(3): 182-203.
- Singh, D., Mace, E.S., Godwin, I.D., Mathur, P.N., Okpul, T., Taylor, M., Hunter, D., Kambuou, R., Rao, V.R., and Jackson, G. 2008. Assessment and rationalization of genetic diversity of Papua New Guinea taro (*Colocasia esculenta*) using SSR DNA fingerprinting. *Genetic Resour. Crop Evol.* 55(6): 811-822.
- Sinha, D.K. and Smith, C.M., 2014. Selection of Reference Genes for Expression Analysis in *Diuraphis noxia* (Hemiptera: Aphididae) Fed on Resistant and Susceptible Wheat Plants. *Sci. Rep.* 4: 5059.
- Skarzynska, A., Kusmirek, W., Pawełkowicz, M., Pląder, W., and Nowak, R.M. 2017. Assembly of cucumber (*Cucumis sativus* L.) somaclones. In: *Photonics Appl. Astron. Commun. Ind. High Energy Phys. Exp.* 2017. International Society for Optics and Photonics. 10445: 1044534.

- Smith D.R. (1996) Agarose Gel Electrophoresis. In: Harwood A.J. (ed.) Basic DNA and RNA Protocols. Methods in Molecular Biology, vol 58. Humana Press, , New York, pp.17-21.
- Soulard, L., Mournet, P., and Guitton, B. 2017. Construction of two genetic linkage maps of taro using single nucleotide polymorphism and microsatellite markers. *Mol. Breed.* 37(3): 37.
- Sreekumari, M.T. and Mathew, P.M. 1991. Karyotypically Distinct Morphotypes in Taro (*Colocasia esculenta* (L.) Schott). *Cytologia*, 56(3): 399-402.
- Stein, B.D., Strauss, M.S., and Scheirer, D.C. 1983. Anatomy and Histochemistry of Taro, *Colocasia esculenta* (L.) Schott, Leaves[abstract]. In Abstracts, Sixth Symposium of International Society for Tropical Root Crops; 21-26 February, 1983, Peru. International Potato Centre Lima, Peru, p.12. Abstract No. 5.1.5.
- Tahara, M., 1999. Phylogenetic Relationships of taro, Colocasia esculenta (L.) Schott and related taxa by non-coding chloroplast DNA seguence analysis. Aroideana, 22: 79-89.
- Taheri, S., Lee Abdullah, T., Yusop, M.R., Hanafi, M.M., Sahebi, M., Azizi, P., and Shamshiri, R.R. 2018. Mining and development of novel SSR markers using next generation sequencing (NGS) data in plants. *Molecules*, 23(2): 399.
- Taji, T., Sakurai, T., Mochida, K., Ishiwata, A., Kurotani, A., Totoki, Y., Toyoda, A., Sakaki, Y., Seki, M., Ono, H., and Sakata, Y. 2008. Large-scale collection and annotation of full-length enriched cDNAs from a model halophyte, *Thellungiella halophila*. *BMC Plant Biol*. 8(1): 115.
- Tang, J., Vosman, B., Voorrips, R.E., van der Linden, C.G., and Leunissen, J.A. 2006. QualitySNP: a pipeline for detecting single nucleotide polymorphisms

and insertions/deletions in EST data from diploid and polyploid species. BMC Bioinforma. 7(1): 438.

- Temnykh, S., DeClerck, G., Lukashova, A., Lipovich, L., Cartinhour, S., and McCouch, S. 2001. Computational and experimental analysis of microsatellites in rice (*Oryza sativa* L.): frequency, length variation, transposon associations, and genetic marker potential. *Genome Res.* 11(8): 1441-1452.
- Thiel, T. 2003. MISA—Microsatellite identification tool [on-line]. Available: http://pgrc. ipk-gatersleben. de/misa/ [17 December 2017].
- Torkamaneh, D., Boyle, B., and Belzile, F. 2018. Efficient genome-wide genotyping strategies and data integration in crop plants. *Theor. Appl. Genet.* 131: 499-511.
- Trujillo, E.E. 1965. Effects of humidity and temperature on Phytophthora blight of taro. *Phytopathol.* 55(2): 183.
- Untergasser, A., Cutcutache, I., Koressaar, T., Ye, J., Faircloth, B.C., Remm, M., and Rozen, S.G. 2012. Primer3—new capabilities and interfaces. *Nucleic* acids Res. 40(15): 115.
- Untergasser, A., Nijveen, H., Rao, X., Bisseling, T., Geurts, R., and Leunissen, J.A. 2007. Primer3Plus, an enhanced web interface to Primer3. *Nucleic* acids Res. 35(2): 71-74.
- USDA (United States Department of Agriculture) 2018 Available: https://ndb.nal.usda.gov/ndb/search/list/?manu=&fgcd=&ds=&qlookup=Tar o,%20raw [July 15, 2018].
- Vandenbroucke, H., Mournet, P., Vignes, H., Malapa, R., Duval, M.F., and Lebot,V. 2016. Somaclonal variants of taro (*Colocasia esculenta* L. Schott) and

yam (*Dioscorea alata* L.) are incorporated into farmers varietal portfolios in Vanuatu. *Genet. Resour. crop Evol.* 63(3): 495-511.

- Varshney, R.K., Chabane, K., Hendre, P.S., Aggarwal, R.K., and Graner, A. 2007. Comparative assessment of EST-SSR, EST-SNP and AFLP markers for evaluation of genetic diversity and conservation of genetic resources using wild, cultivated and elite barleys. *Plant Sci.* 173(6): 638-649
- Vieira, M.L.C., Santini, L., Diniz, A.L., and Munhoz, C.D.F. 2016. Microsatellite markers: what they mean and why they are so useful. *Genet. Mol. Biol.* 39(3): 312-328.
- Villarino, G.H., Bombarely, A., Giovannoni, J.J., Scanlon, M.J., and Mattson, N.S. 2014. Transcriptomic analysis of *Petunia hybrida* in response to salt stress using high throughput RNA sequencing. *PLoS One*, [e-journal] 9(4). Available: https://doi.org/10.1371/journal.pone.0094651. [21 March 2018].
- Voytas, D. 2000. Agarose gel electrophoresis. Curr. protocols Neuroscience, [ejournal] 11(1): Available: https://doi.org/10.1002/0471142301.nsa01ns11.
- Wagih, M.E. 1994. Seed rescue culture: a technique for the regeneration of Taro (Colocasia esculenta). Afr. Crop Sci. J. 2(1): 9 - 15.
- Wahid, H.A., Barozai, M.Y.K., and Din, M. 2016. Functional characterization of fifteen hundred transcripts from *Ziarat juniper (Juniperus excelsa M. Bieb)*. *Advmt. Life Sci.* 4(1): 20-26.
- Wang, C., Guo, W., Cai, C., and Zhang, T. 2006. Characterization, development and exploitation of EST-derived microsatellites in *Gossypium raimondii* Ulbrich. *Chinese Sci. Bull.* 51(5): 557-561.
- Wang, H., Jiang, J., Chen, S., Qi, X., Peng, H., Li, P., Song, A., Guan, Z., Fang,
 W., Liao, Y., and Chen, F. 2013. Next-generation sequencing of the *Chrysanthemum nankingense* (Asteraceae) transcriptome permits large-scale

unigene assembly and SSR marker discovery. *PloS one*, [e-journal] 8(4): Available: https://doi.org/10.1371/journal.pone.0062293.

- Wang, L., Yin, J., Zhang, P., Han, X., Guo, W. and Li, C., 2017. De novo assembly and characterization of transcriptome and microsatellite marker development for Taro (*Colocasia esculenta* (L.) Schott.). *Int. J. Genet. Mol. Biol.* 9(5): 26-36.
- Wang, X., Lu, P., and Luo, Z. 2013. GMATo: a novel tool for the identification and analysis of microsatellites in large genomes. *Bioinformation*, 9(10): 541.
- Ward, J.A., Ponnala, L., and Weber, C.A. 2012. Strategies for transcriptome analysis in nonmodel plants. Am. J. Bot. 99(2): 267-276.
- Weightman, B. 1989. Agriculture in Vanuatu, A Historical Review. Grosvenor Press, Portsmouth. 54-78.
- Yen, D.E., and Wheeler, J.M. 1968. Introduction of taro into the Pacific: the indications of the chromosome numbers. *Ethnol.* 7(3): 259-267.
- Yuanzhen, L., Hai, G., and Chunxin, L. 2010. Screening and analysis of EST-SSR in *Jatropha curcas*. BMC Res. Notes [e-journal] 3(42). Available: https://doi.org/10.1186/1756-0500-3-42 [23 March 2018].
- Zeng, S., Xiao, G., Guo, J., Fei, Z., Xu, Y., Roe, B.A., and Wang, Y. 2010. Development of a EST dataset and characterization of EST-SSRs in a traditional Chinese medicinal plant, *Epimedium sagittatum* (Sieb. Et Zucc.) Maxim. *BMC Genomics*, 11(1): 94.
- Zhang, C.Y., Liu, T.J., Xu, Y. and Yan, H.F., 2017. Characterization of the whole chloroplast genome of a rare candelabra primrose *Primula chrysochlora* (Primulaceae). *Conserv. Genet. Res.* 9(3): 361-363.

APPENDICES

APPENDIX I

Preparation of DNA extraction buffer (Sharma et al. 2008)

- a. Tris- HCl (pH 8.0) : 100 mM
- b. EDTA (pH 8.0) : 20 mM
- c. NaCl: 2M
- d. $\beta\text{-mercaptoethanol}:$ 0.2 % (v/v) freshly added prior to DNA extraction
- e. PVP: 0.2% (w/v)
- f. Ice-cold Isopropanol
- g. RNase 10 mg/ml (RNase A was dissolved in TE buffer and boiled for 15 minutes at 100 °C to destroy DNase and stored at -20 °C).
- h. Chloroform:Isoamyl alcohol : (24:1)
- i. Ethanol : 70%

APPENDIX II

Preparation of TE buffer (10X)

- 1. Tris- HCl (pH 8.0) :10 mM
- 2. EDTA : 1 mM

Final volume made upto 100ml with distilled water.

APPENDIX III

TBE buffer (10X)

- 1. Tris base : 107 g
- 2. Boric acid : 55 g
- 3. 0.5 M EDTA (pH 8.0) : 40 ml
- 4. Final volume made up to 1000 ml with distilled water and autoclave before use.

APPENDIX IV

100bp marker

- 1. 100bp marker : 5µl
- 2. Loading dye : $40\mu l$
- 3. Sterile distilled water: 55µl

APPENDIX V

PCR Mastermix

PCR Cocktail	Stock concentration	Final concentration	Volume taken (µL)	
DNA	100 ng/ μL	40 ng/ μL	4	
Forward Primer	10 μM	0.25 μM	0.375	
Reverse Primer	10 μM	0.25 μM	0.375	
dNTPS	2.5 mM	0.25 mM	1.5	15 μL
Taq Buffer	10X	1X	1.5	
Taq polymerase	5U/ μL	1U/ μL	0.2	
MgCl ₂	25mM	1mM	0.6	
Sterile Water		•	6.45	

List of Synonymous SNP codi SI. No. Contig Name Position SNP Sequence 1 Contig Name Position SNP Sequence 2 Contig S07 157 TC ATCGTITTGAITGEATGGAGCGATTGG 3 Contig S07 465 TC ATCGTITTGAITGEATGGAGCGATTGG 4 Contig S07 465 TC CGTACACCTGAITTGAGGAGCAGTTGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGA					APPENDIX VI	1 / 1		
Contig Name Position SNP Contig 507 157 TC A Contig 507 157 TC A Contig 507 210 CT 6 Contig 507 210 CT 6 Contig 1284 780 AC Contig 1284 256 Contig 1284 1973 TC C A Contig 1284 1973 TC C A Contig 1284 203 TC C A Contig 1284 285 CT C A Contig 1284 285 TC C A Contig 21722 2126 CT A A Contig 21705 580 TC C A Contig 22930 659 TC A A Contig 22930 1904 TC TC A Contig 22930 1959 TC TC A Contig 23930 1969 TC C					List of Synonymous SNP coding data identified by QualitySNP	uta identified by QualitySNP		
Contig507 157 TC A Contig507 210 CT 6 Contig567 756 TC 6 Contig1866 750 TC 6 Contig1884 123 CT 6 Contig1884 123 CT 6 Contig1684 123 7C 6 Contig1725 2126 CT 7 Contig22902 392 CT 7 Contig23902 580 TC 6 Contig23903 590 TC 7 Contig23903 590 TC 7 Contig23903 590 TC 7 Contig23903 590 TC 7 Contig23917 1004 TC 7 <	SI. No.	Contig Name	Position	SNP	Sequence	Sequence with Base change	Transcribed Proteins	
Contig507 210 CT G Contig567 756 7 60 7 6 Contig1866 750 7 6 7 6 Contig1866 750 7 6 7 6 Contig1884 123 7 7 6 7 6 Contig1684 1973 7 6 7 6 7 6 Contig1634 203 7 7 6 7 6 7 6 7 6 7 6 7 7 7 6 7	1	Contig507	157	TC	ATCGTTTTGTTTTGAGGGGCGTAC	ATCGTTTTGTTTCTGAAGGGCGTAC	INLFLKGVX	
Contig507 465 CT C Contig1866 750 TC C Contig1866 750 TC C Contig1866 750 TC C Contig1813 780 AC C Contig1813 780 AC C Contig1684 285 CT A Contig1722 21126 CT A Contig2705 446 CT A Contig23930 1973 TC A Contig23930 1959 212 CT A Contig23930 1959 7T C A Contig23930 1964 TC A C Contig23930 1964 TC A A Contig23930 1964 TC A A Contig33430 1004 TC A C A Contig239178 518 TC A C C C	0	Contig507	210	CT		GCAACACCTGATTTACAGGTTTGGC	ATPDLOWWX	Γ
Contiga6/5 756 TC C Contig1284 780 TC A Contig1284 780 TC A Contig1284 780 A C A Contig1284 285 70 C A Contig1722 2126 C A C Contig1722 2126 CT A C A Contig1725 2126 CT A C A C A C A C A C A C A C A C A C A C A C A C A C A A C A A C A A C A A C A A C A A C C A A C A A C A A C A A C C A	8	Contig507	465	Ե		CGTACGGGCGTATTGGACGCAATCC	RTGVLĎAIX	Γ
Contigates 760 TC A Contigatada 123 CT A Contigatada 123 CT A Contigatada 1973 TC G Contigatada 1973 TC G Contigatada 285 CT G Contigatada 285 CT G Contigatada 285 CT G Contigatada 285 CT G Contigatada 2892 CT G Contigatada 2893 100 TC G Contigatada 194 TC G G Contigatada 100 TC G G Contigatada 100 <td< td=""><td>4</td><td>Contig6/9</td><td>256</td><td>2</td><td>CAACTITATCTGTTGCCGGACACCT</td><td>CAACTTTATCTGCTGCCGGACACCT</td><td>QLYLLPDTX</td><td></td></td<>	4	Contig6/9	256	2	CAACTITATCTGTTGCCGGACACCT	CAACTTTATCTGCTGCCGGACACCT	QLYLLPDTX	
Contig1284 123 CT A Contig1471 1973 TC C Contig1471 1973 TC C Contig1684 285 CT G Contig1684 285 CT G Contig1725 2126 CT G Contig2705 580 TC G Contig2705 580 TC G Contig2705 580 TC G Contig2705 580 TC G Contig22902 392 CT G Contig22903 393 TC G Contig23915 547 TC G Contig23916 1004 TC G Contig32555 327 TC G Contig32555 327 TC G Contig32663 1004 TC G Contig32555 327 TC G Contig32655 327 TC G <td>2</td> <td>Contig866</td> <td>760</td> <td>2</td> <td>AAGGACGAGAGCTTAGAAAGTTTG</td> <td>AAGGACGAGAGCCTAGAAAGTTTG</td> <td>KDESLEKFX</td> <td>Γ</td>	2	Contig866	760	2	AAGGACGAGAGCTTAGAAAGTTTG	AAGGACGAGAGCCTAGAAAGTTTG	KDESLEKFX	Γ
Contig1423 780 AC C/ Contig1634 285 CT G Contig1725 2126 CT G Contig1725 2126 CT G Contig1725 2126 CT G Contig1725 2126 CT G Contig2580 492 CT G Contig29105 392 CT G Contig29105 392 CT G Contig29105 392 CT G Contig29105 392 TC G Contig29105 392 TC G Contig2910 590 TC G Contig3178 518 TC G Contig31316 217 AC G Contig313178 518 TC G Contig33178 518 TC G Contig33178 518 TC G Contig33430 990 AC G <	9	Contig1284	123	5	AATCTGACCGATCTAAGGTCATTTC	AATCTGACCGATTTAAGGTCATTTC	NLTDLRSFX	Γ
Contig1471 1973 TC Go Contig1684 203 TC G Contig1684 203 TC G Contig1755 2126 CT A Contig1755 2126 CT A Contig2560 492 CT A Contig2902 392 CT A Contig2910 659 CT A Contig23416 1004 TC A Contig3178 518 TC A Contig3430 920 AC C A Contig1748 518 TC A A Contig13410 182 TC A A Contig13455 2119 TC A A Contig142555	7	Contig1423	780	AC	CAGCCACTGCTCAGACGACGGATCG	CAGCCACTGCTCCGACGACGGATCG	QPLLRRRIX	Γ
Contig1634 203 TC C Contig1684 285 CT A Contig1725 2126 CT A Contig1725 2126 CT A Contig2580 492 CT A Contig25902 392 CT A Contig2902 392 CT A Contig2902 392 CT A Contig2902 392 CT A Contig2902 392 CT A Contig2903 1004 TC A Contig3068 1004 TC A Contig30657 218 TC A Contig36557 288 TC A Contig36557 288 TC A	8	Contig1471	1973	10	GeccAGCCTTCCTTGGAGAGATTTC	GGCCAGCCTTCCCTGGAGAGATTTC	GOPSLERFX	Γ
Contig1684 285 CT 6 Contig1725 2126 CT 7 Contig1725 2126 CT 7 Contig1725 2126 CT 7 Contig2705 446 CT 7 Contig2762 565 CT 7 Contig2762 580 TC 7 Contig2902 580 TC 7 Contig2902 580 TC 6 Contig2902 580 TC 6 Contig2902 580 TC 6 Contig2902 580 TC 6 Contig2301 194 TC 7 Contig3416 217 4C 7 Contig34301 182 TC 6 Contig34301 182 TC 6 Contig4402 210 TC 6 Contig44301 182 TC 6 Contig44301 182 TC 6	6	Contig1634	203	5		CCATTCTTGCTCCTGACAAGGGACA	PFLLLTRDX	Γ
Contig1722 407 CT A Contig1725 2126 CT T Contig1755 446 CT T Contig27680 446 CT T Contig2767 565 CT T Contig2768 392 CT T Contig27691 392 CT T Contig29102 392 CT T Contig29103 393 TC T Contig29103 394 T T Contig29118 518 T T Contig33178 518 T T Contig33178 518 T T Contig34301 182 T T Contig34301 182 T T Contig3455 327 T T T Contig34563 304 T T T Contig34563 310 T T T Contig3440 182	10	Contig1684	285	ct	GGAGTTTATTAGCTGGATCGAGAAC	GGAGTITATTAGTTGGATCGAGAAC	GVY*LDREX	Γ
Contig1725 2126 CT T1 Contig25902 392 CT A Contig22902 5446 CT A Contig22902 392 CT A Contig23902 392 CT A Contig23913 659 CT G Contig23915 3045 TC G Contig23916 3044 TC G Contig239178 510 TC G Contig239178 513 TC G Contig239178 547 TC G Contig23416 217 AC G Contig33178 518 TC A Contig3416 217 AC G Contig34301 182 CT A Contig34301 182 CT A Contig34301 182 CT A Contig34301 182 CT A Contig43055 3210 CT A<	п	Contig1722	407	сt	AAAGACTGTATACTGTTTCCCTTCT	AAGACTGTATATTGTTTCCCTTCT	KDCILEPFX	Γ
Contig2580 492 CT A Contig2705 446 CT T Contig2705 446 CT T Contig2705 565 CT T Contig2702 580 T G Contig2302 580 T G Contig23030 659 T G Contig23049 194 T G Contig3178 547 T G Contig3178 547 T G Contig3178 547 T G Contig33657 258 1004 T G Contig33657 2588 T G G Contig33657 288 T G G </td <td>12</td> <td>Contig1725</td> <td>2126</td> <td>сı</td> <td>TGCAGTAATTATCTGCCGCAGAGGC</td> <td>TGCAGTAATTATTTGCCGCAGAGGC</td> <td>CSNYLPORX</td> <td>Γ</td>	12	Contig1725	2126	сı	TGCAGTAATTATCTGCCGCAGAGGC	TGCAGTAATTATTTGCCGCAGAGGC	CSNYLPORX	Γ
Contig2705 446 CT T Contig2762 565 CT 70 Contig27902 580 TC 6 Contig23902 580 TC 6 Contig23902 580 TC 6 Contig23910 659 TC 6 Contig23915 345 TC 6 Contig3178 518 TC 6 Contig3178 518 TC 6 Contig3178 518 TC 6 Contig3178 518 TC 7 Contig3178 518 TC 7 Contig3178 518 TC 7 Contig3430 990 AC 7 Contig3455 2217 AC 7 Contig4255 327 TC 7 Contig4402 210 AC 7 Contig4405 288 TC 6 Contig4455 210 CT 6	13	Contig2580	492	t	AACTITCTAGCTCTAATTGCAGAAA	AACTITICTAGCTITIAATTIGCAGAAA	NFLALIAEX	Γ
Contig2762 565 CT G Contig2902 392 CT G Contig2902 580 TC G Contig2902 580 TC G Contig2902 580 TC G Contig2913 194 TC A Contig2915 345 TC A Contig3178 518 TC A Contig34316 920 AC A Contig34310 920 AC A Contig34310 920 AC A Contig34301 182 CT A Contig4455 327 TC A Contig4455 327 TC A Contig44555 327 TC A Contig4455 328 TC A Contig4455 328 TC A Contig44255 328 TC A Contig44255 210 CT A	14	Contig2705	446	t	TATCTGCAAGAGCTGGTGTACAAGC	TATCTGCAAGAGTTGGTGTGCAAGC	YLOELVYKX	Γ
Contig23902 392 CT C Contig23930 659 CT C Contig23930 659 TC G Contig23975 345 TC G Contig23975 345 TC G Contig23975 345 TC G Contig33178 518 TC G Contig33430 2004 TC A Contig33430 518 TC A Contig33430 209 AC G Contig33557 268 CT A Contig4301 182 TC A Contig43655 327 TC A Contig43655 327 TC A Contig43655 328 TC A Contig43655 328 TC A Contig43657 210 CT A Contig4383 238 TC A Contig4383 238 TC A	15	Contig2762	565	сı		GGCATCTGCCTCTTGATATCCTCCG	GICLLISSX	Γ
Contig23902 580 TC C Contig23945 345 TC A Contig23975 345 TC A Contig23975 345 TC A Contig23975 345 TC A Contig23178 518 TC A Contig3178 518 TC A Contig3178 517 TC A Contig3178 517 TC A Contig3178 518 TC A Contig3255 327 TC A Contig3255 327 TC A Contig3255 327 TC A Contig3255 327 TC A Contig4301 182 TC A Contig4301 182 TC A Contig4302 210 TC A Contig4305 710 CT A Contig4305 1195 CT A	16	Contig2902	392	сt	CGGCACAACCACCTATTTTGATGGA	CGGCACAACCACTTATTTTGATGGA	RHNHLF*WX	Τ
Contig2930 659 CT 66 Contig2949 194 TC A Contig3068 194 TC A Contig3068 1004 TC A Contig3178 5318 TC A Contig3416 217 AC C Contig3416 217 AC G Contig3416 217 AC G Contig34557 268 CT AG Contig4301 182 CT AG Contig4402 210 AC G Contig4402 210 CT AG Contig4403 210 CT AG Contig4403 210 CT AG <td>17</td> <td>Contig2902</td> <td>580</td> <td>10</td> <td></td> <td>CTAAAGTACAGACTGGACGACATGG</td> <td>LKYRLDDMX</td> <td>Τ</td>	17	Contig2902	580	10		CTAAAGTACAGACTGGACGACATGG	LKYRLDDMX	Τ
Contig2349 194 TC A Contig32975 345 TC A Contig3168 1004 TC TC A Contig31616 217 AC TC TC TC Contig31657 326 TC T	18	Contig2930	629	сı	GCCTGGGTCCTGCTGCACGCCTGAG	GCCTGGGTCCTGTTGCACGCCTGAG	AWVLLHA*X	Τ
Contrig3075 345 TC A Contrig3068 1004 TC TC TC Contrig3178 518 TC TC TC TC Contrig3176 217 AC G	19	Contig2949	194	Ц	AACAACTGACCTTGAAAGATCGA	AACAACTGACCCTGAAAGATCGA	KOLTLKRSX	Ι
Contiga3068 1004 TC TC TC Contiga3178 518 TC G Contiga3178 518 TC G Contiga3178 518 TC G Contiga3178 517 AC G Contiga3130 990 AC G Contiga3301 182 CT AG Contiga40255 327 TC AG Contiga40255 329 AC C Contiga40255 210 CT AG Contiga605 288 TC A Contiga605 288 TC A Contiga6405 288 TC A Contiga7480 1195 CA A Contig7843 207 AC C Contig7843 216 CT A Contig7843 216 CT A Contig78309 1195 CA A Contig788067 1232 CT	20	Contig2975	345	TC	ACGACATCATCTITATTGGGTCCCT	ACGACATCATCTCTATTGGGTCCCT	TTSSLLGPX	Γ
Contig3178 518 TC 0 Contig3416 547 TC 0 Contig3416 920 AC 0 Contig3457 258 77 AC 0 Contig3457 258 77 AC 0 Contig3455 327 72 AC 0 Contig3455 327 72 AC 0 Contig4255 327 72 A 0 Contig44002 419 72 A 0 Contig45563 210 CT A 0 Contig45651 300 CT A 0 Contig45963 210 CT A 0 Contig4483 210 CT A 0 Contig7483 2195 CA A 0 Contig78309 176 CT A 0 Contig788309 176 CT A 0 Contig78810 1280 C	21	Contig3068	1004	ЪС	TCCACAGGGCAGTTGAATGGCCTCT	TCCACAGGGCAGCTGAATGGCCTCT	STGOLNGLX	Γ
Contig3178 547 TC G Contig3416 217 AC C Contig3416 217 AC C Contig3416 217 AC C Contig3430 269 AC C Contig3430 182 TC AG Contig4301 182 TC AG Contig4402 419 TC A Contig4465 210 CT A Contig5542 419 TC A Contig5542 450 CT A Contig5542 450 CT A Contig7096 711 CT A Contig7843 207 AC C Contig7843 716 CT A Contig7843 716 CT A Contig7843 716 CT A Contig78309 176 CT A Contig78309 176 CT A <tr< td=""><td>22</td><td>Contig3178</td><td>518</td><td>TC</td><td></td><td>GAGTATTCTCATCTACAAGTCTTGG</td><td>EYSHLOVLX</td><td>Γ</td></tr<>	22	Contig3178	518	TC		GAGTATTCTCATCTACAAGTCTTGG	EYSHLOVLX	Γ
Contigation 217 AC C Contigation 990 AC C C Contigation 990 AC G G Contigation 182 TC AG TC AG Contigation 210 TC A TC AG Contigation 210 TC A A AG Contigation 250 210 CT A A Contigation 1195 CA A A C C Contigation 1280 CT A C C C C C C C C C C C C C C C C <	23	Contig3178	547	TC	GCCTTTTAACTTTTGAACAATGCTA	GCCTTTTAACTTCTGAACAATGCTA	AF*LLNNAX	Γ
Contiga657 268 CT 40 63 Contiga6577 268 CT 40 63 Contiga6557 268 CT 40 40 Contiga6557 268 CT 40 40 Contiga6402 419 TC 40 70 40 Contiga65563 748 CT 40 70 40 70 Contig6542 210 CT 46 C 40 71 70 70 70 70 70 70 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 70 71 7	24	Contig3416	217	AC		CGGCTATGCCTGCGATCAGGATATA	RLCLRSGYX	Γ
Contiga557 268 CT AG Contig4301 182 CT AG Contig4301 182 TC A Contig4301 182 TC A Contig4301 182 TC A Contig4301 210 T A Contig4405 210 CT A Contig6542 210 CT A Contig6542 288 TC A Contig6542 288 TC A Contig7065 288 TC A Contig7065 288 TC A Contig7065 288 TC A Contig7065 288 TC A Contig7843 207 A C Contig7843 207 A C A Contig8309 176 CT A C Contig8309 176 CT A A Contig8309 176	25	Contig3430	066	AC	GTAAGGCCTTGGAGACATCAAGCCT	GTAAGGCCTTGGCGACATCAAGCCT	VRPWRHQAX	Ι
Contig/1255 327 TC Ad Contig/1301 182 CT Ad Contig/1402 219 TC Ad Contig/1402 210 CT Ad Contig/1402 210 CT Ad Contig/1402 210 CT Ad Contig/1405 288 TC Ad Contig/1657 1195 CT Ad Contig/1667 1195 CA Ad Contig/1843 207 AC CC Contig/1843 207 AC CC Contig/1843 216 CT Ad Contig/1843 216 CT Ad Contig/1843 216 CT Ad Contig/1843 1135 TC Ad Contig/18309 176 CT Ad Contig/18316 1232 CT Ad Contig/18316 1232 CT Ad Contig/18316 126 TC	26	Contig3657	268	ե	AGGAGGTGGCGTCTGTCCAGGGAGC	AGGAGGTGGCGTTTGTCCAGGGAGC	RRWRLSREX	Γ
Contige/301 182 CT A Contige/402 419 TC T T Contige/402 419 TC T T T Contige/405 249 TC T	27	Contig4255	327	2	AGGGTCGACCTGTTGAAAACCCTAA	AGGGTCGACCTGCTGAAAACCCTAA	RVDLLKTLX	Γ
Contiga402 419 TC T Contig4702 210 CT C Contig4702 210 CT C Contig4702 210 CT C Contig4555 288 TC G Contig6542 450 CT A Contig6571 300 CT A Contig7067 1195 CA A Contig7086 711 CT G Contig7086 711 CT G Contig7843 716 CT A Contig7843 716 CT A Contig8309 176 CT A Contig8309 176 CT A Contig8309 176 CT A Contig8309 176 CT A Contig83109 176 CT A	28	Contig4301	182	Ե		AAGACAATGAAATTGGCGAGCTTTT	KTMKLASFX	Γ
Contrigation 210 CT C Contrigation 2388 C A Contrigation 2388 C A Contrigation 2388 C A Contrigation 2300 C A Contrigation 300 C A Contrigation 300 C A Contrigation 1195 CA A Contrigation 1280 C A Contrigation 1232 C A Contrigation 1232 C A Contrigation 1235 C A Contrigation 126 A A Contrigation 126 A A	29	Contig4402	419	ų	\leq	TCATTGACTGTCCTAGGCTCTATTT	SLTVLGSIX	
Contige5563 748 CT A Contige6405 288 TC 6 Contige5571 300 CT 6 Contige5571 300 CT 6 Contige5571 300 CT 6 Contige5571 300 CT 6 Contige571 1195 CA 47 Contig7096 711 CT 64 Contig7480 1280 CT 6 Contig7843 207 AC CC Contig7843 716 CT 6 Contig7843 716 CT 6 Contig83067 1232 CT 6 Contig8309 176 CT 6 Contig8309 176 C 7 Contig8309 176 C 6	30	Contig4702	210	ե	U 1	CCTTGAGTACCATTGGAAGGCGGTA	P*VPLEGGX	
Contige5405 288 TC G Contige5571 280 TC G Contige5571 1395 CT A Contige5571 1395 CT A Contige5571 1395 CT A Contige5571 1395 CA A Contig7096 711 CT A Contig7096 711 CT A Contig7096 711 CT A Contig7096 711 CT A Contig7096 714 195 CC G Contig8067 1232 CT G G G Contig8309 176 CT G G G A Contig8309 176 CT G A G A G A G A G G G G G G G G G G G G G G G <td< td=""><td>31</td><td>Contig5563</td><td>748</td><td>ե</td><td></td><td>ACCTCTAGGTGGTTATGTATCAACC</td><td>TSRWLCINX</td><td></td></td<>	31	Contig5563	748	ե		ACCTCTAGGTGGTTATGTATCAACC	TSRWLCINX	
Contige542 450 CT A Contige571 300 CT C Contig7067 1195 CA A Contig7067 1195 CA A Contig7067 1195 CA A Contig7067 1195 CA A Contig7880 1280 CT G Contig7843 207 AC CC Contig7843 716 CT A Contig8067 1232 CT G Contig8309 176 CT A Contig8309 176 CT A Contig8305 176 C A Contig8305 176 C A Contig8305 176 C A	32	Contig6405	288	2	GAAAATTATGCTTGGCATTGGTTT	GAAAATTATGCCTGGCATTGGTTT	EKLCLALVX	
Contrig65/1 300 CT CC Contig7067 1195 CA AI Contig7086 711 CT G/ Contig7843 207 AC G/ Contig7843 207 AC G/ Contig7843 207 AC CC Contig7843 716 CT A Contig7843 716 CT A Contig8067 1232 CT A Contig8309 176 CT A Contig8309 176 CT A Contig8309 176 CT A Contig8309 176 CT A	33	Contig6542	450	5		AGTGAACGTTAATTGGAAGCTGTAT	SER*LEAVX	
Contig7067 1195 CA A1 Contig7096 711 CT G/ Contig7843 2130 CT G/ Contig7843 216 CT A Contig7843 716 CT A Contig7874 195 TC T Contig8309 176 CT A Contig8309 176 CT A Contig8310 176 CT A Contig8310 176 CT A	R	Contig65/1	300	5		CCCTTTCCCCTGTTGCCCCTCGGCA	PFPLLPLGX	
Contig/1096 711 CT G/ Contig/1480 1280 CT A Contig/1843 716 CT G Contig/1843 716 CT G Contig/1844 195 TC T Contig/1874 195 TC T Contig/18067 1232 CT A Contig/18309 176 CT A Contig/1820 156 CT A	35	Contig7067	1195	CA	ATCACCCAGTACC66CCCTCCT666	ATCACCCAGTACAGGCCCTCCTGGG	TOYRPSWX	Γ
Contig/1480 1280 CT A Contig/1443 207 AC CC Contig/1843 716 CT 6 Contig/1843 716 CT 7 Contig/18067 1232 CT 7 Contig/8309 176 CT 76 Contig/8319 156 CT 76	36	Contig7096	711	Ե	GAAGTTGAAGAACTGACAGTGAGGA	GAAGTTGAAGAATTGACAGTGAGGA	EVEELTVRX	Γ
Contig7843 207 AC CC Contig7843 716 CT 6 Contig7844 195 TC 7 Contig8067 1232 CT 6 Contig8309 176 CT 7 Contig83109 176 CT 7 Contig83105 176 CT 7	37	Contig7480	1280	ե	AGACCGACACTACTAGTATTAAGAG	AGACCGACACTATTAGTATTAAGAG	RPTLLVLRX	Γ
Contig/843 716 CT G Contig/874 195 TC TG Contig8067 1232 CT A Contig8319 176 CT TG Contig8318 155 CT A	38	Contig7843	207	AC	CCGCGAAGGAGCAGAGGAGGGCGAG	CCGCGAAGGAGCCGAGAAGGGCGAG	PRRSREGRX	Γ
Contige 1874 195 TC TC Contige 3067 1232 CT A Contige 319 176 CT TG Contige 316 126 TC A Contige 318 155 CT A	39	Contig7843	716	Ե	GTAACGATCTTCCTGTTCAACTTCT	GTAACGATCTTCTTGTTCAACTTCT	VTIFLENEX	Γ
Contig8067 1232 CT A Contig8309 176 CT TG Contig8316 126 TC A Contig8182 155 CT C	40	Contig7874	195	2	TGATATGAGTGTTTGCGTGGAGTTC	TGATATGAGTGTCTGCGTGGAGTTC	*YECLRGVX	Γ
Contig8309 176 CT TG Contig8316 126 TC A Contig8830 155 CT 76	41	Contig8067	1232	с t	ATGAGTGTCTGTCTGTTAACTTTTT	ATGAGTGTCTGTTTGTTAACTTTTT	MSVCLLTFX	
Contig8316 126 TC A	42	Contig8309	176	5	TGCCAAAGGAGTCTGAAGCCAGAAA	TGCCAAAGGAGTTTGAAGCCAGAAA	CORSLKPEX	Γ
Contragage 155 155	43	Contig8316	126	2	AAAGAGAACATTTGTATTGGGTTC	AAAGAGAACATCTGTATTGGGTTC	KREHLYWVX	Γ
	44	Contig8482	155	Ե	CGCCATGCCCAACTGTTGCATAAGG	CGCCATGCCCAATTGTTGCATAAGG	RHAQLLHKX	Γ

			APPENDIX VII	DIX VII		
			Listo	fied by QualitySNP		
Contig No	Position	SNP		Sequence with Base change	Transcribed Proteins	roteins
Contig46	348	сı	AGAGGGGTTGAACGGCAGCACTGCG	AGAGGGGTTGAATGGCAGCACTGCG	RGVERQHCX	RGVEWQHCX
Contig286	267	<u>ფ</u>	AATCATCCGTTCGTTGTAGAGTAAC	AATCATCCGTTCCTTGTAGAGTAAC	NHPFWE*X	NHPFLVE*X
Contig297	2816	5	CTCAGATAITAGTAGCTCACCTCTT	CTCAGATATTAGCAGCTCACCTCTT	LRY**LTSX	LRY*QLTSX
Contig381	287	AC	GTTGTATGCATCATCAATCCTAGTC	GTTGTATGCATCCTCAATCCTAGTC	WCIINPSX	WCILNPSX
Contig499	408	GT	GGGTCACAGGTAGAATCTGCCTGTT	GGGTCACAGGTATAATCTGCCTGTT	GSQVESACX	GSQV*SACX
Contig499	627	ų	GGGAGGAGGATTTGTCATGAAAGA	GGGGGGGGGGGTTCGTCATGAAAGA	GRRICHEKX	GRRIRHEKX
Contig507	157	AG	GTACGCCTTCAAAACAAAACGAT	GTACGCCTTCAGAAACAAAACGAT	VRPSKTKRX	VRPSETKRX
Contig507	210	GA	GCCAAACCTGTAGATCAGGTGTTGC	GCCAAACCTGTAAATCAGGTGTTGC	AKPVDQVLX	AKPVNQVLX
Contig507	255	Ե	TACCCCGGTGACCTCCCGGAGGGG	TACCCCGGTGACTTCCCCGGAGGGG	YPGDLPERX	YPGDFPERX
Contig507	297	AG	GGAGAAATAGTCAGTGGCTGCCAGG	GGAGAAATAGTCGGTGGCTGCCAGG	GEIVSGCQX	GEINGGCQX
Contig507	465	Ą	GGATTGCGTCCAGTACGCCCGTACG	GGATTGCGTCCAATACGCCCGTACG	GLRPVRPYX	GLRPIRPYX
Contig507	480	AG	GACGCAATCCGTATACATGGTCGGC	GACGCAATCCGTGTACATGGTCGGC	DAIRIHGRX	DAIRVHGRX
Contig630	63	TA	TCTCTCTCTCTCTCTCATGGGGTTC	TCTCTCTCTCACTCATGGGGTTC	SLSLSHGVX	SLSLTHGVX
Contig653	133	2	TGACCCCATTITTGGAGGGCGTGTG	TGACCCCATTITCGGAGGGGCGTGTG	*PHFWRACX	*PHFRRACX
Contig653	265	СI СI	TCGAACGCCATACTCCGGGTTGACA	TCGAACGCCATAITCCGGGTTGACA	SNAILRVDX	SNAIFRVDX
Contig677	360	IJ	AGAAGAGGCTATCACTTGGTCGGAA	AGAGGGCTATTACTTGGTCGGAA	RRGYHLVGX	RRGYYLVGX
Contig677	378	Ц	GTCGGAATTICTTGATGTATTTAAC	GTCGGAATTTCTCCGATGTATTTAAC	VGIS*CI*X	VGISRCI*X
Contig677	696	GA	AGGTAGTTTTCGGCTACCGCAGCAG	AGGTAGTITTCGACTACCGCAGCAG	R*FSATAAX	R*FSTTAAX
Contig677	759	Ę	TTCTTCATCAGGTTTTGGTAAATGG	TTCTTCATCAGGCTTTGGTAAATGG	FFIRPW*MX	FFIRLW"MX
Contig679	256	AG	⊢	AGGTGTCCGGCAGCAGATAAAGTTG	RCPATDKVX	RCPAADKVX
Contig679	486	AG	-	GTACCAGATGAGGTTTATGGCACTT	VPDEIYGTX	VPDEVYGTX
Contig732	1015	GA		TITTACAGGAACACCGGATAAACAA	FYRNAG*TX	FYRNTG*TX
Contig737	143	AT		CAAGTCCATCTTCGCCCTCTTCT	QVHLIALFX	QVHLFALFX
Contig737	174	GA	GTCAGAAAICTCGACAGGATGTCCT	GTCAGAAATCTCAACAGGATGTCCT	VRNLDRMSX	VRNLNRMSX
Contig737	191	10	GATGTCCTCCCTTCTGATCGTCACC	GATGTCCTCCCTCCTGATCGTCACC	DVLPSDRHX	DVLPPDRHX
Contig737	243	5	TCCGTCTTCCTCCGAATCAGCTCGT	TCCGTCTTCCTCTGAATCAGCTCGT	SVFLRISSX	SVFL*ISSX
Contig737	265	10	CGTACACGAACTTATCCATCACTTT	CGTACACGAACTCATCCATCACTTT	RTRTYPSLX	RTRTHPSLX
Contig768	204	φ	GCCGGAGTGTGGAAGGGCCTCTCCG	GCCGGAGTGTGGGGAGGGCCTCTCC	AGVMKGLSX	AGWVEGPLX
Contig866	760	AG	CAAACTITICTAAGCTCTCGTCCTT	CAAACTITICTAGGCTCTCGTCGTC	QTFLSSRPX	QTFLGSRPX
Contig987	260	Ċ	GGAAGCATCCTCCCAACACTACTTTG	GGAAGCATCCTCAACACTACTTTGG	GSILQHYFX	GSILNTTLX
Contig1092	1398	AG	GATCTITCTTCTAGGTGCTGCCGTA	GATCTITICTTGGGTGCTGCCGTA	DLSSRCCRX	DLSSGCCRX
Contig1092	1415	TC	CTGCCGTAACAGTGGGGGTTGGTGTC	CTGCCGTAACAGCGGGGGGTGGTGCC	LP*QWSWCX	LP*QRSWCX
Contig1104	237	ც	CAGGGAGGGGGGGGGGGGGGCTCCTAGCTC	CAGGGGGGGGGGGGGGGCTCCTAGCTCG	QGGGELLAX	QGGGSS*LX
Contig1145	315	GA	-	GGTTTGAATTTCACCCATCCCTGAT	GLNFAHP*X	GLNFTHP*X
Contig1234	125	g	CTGGTCGTCCTCGTCCTGGCCCTGG	CTGGTCGTCCTCCTCGGCCCTGG	LUNLALX	LWILLALX
Contig1270	420	GA	\vdash	GAGGAAGATGTTAAGTAGCGTGTTC	EEDVE*RVX	EEDVK*RVX
Contig1284	103	TC		AATATAGGCTAGCTTCCCTTGAAAT	NIG*FPLKX	NIG*LPLKX
Contig1284	123	GA	GAAATGACCTTAGATCGGTCAGATT	GAAATGACCTTAAATCGGTCAGATT	EMTLDRSDX	EMITLNRSDX
Contig1284	160	TC	CGATTGCTAGATTGCCTTGATTCTG	CGATTGCTAGATCGCCTTGATTCTG	RLLDCLDSX	RLLDRLDSX
Contig1347	499	ပု	-	GATCGGAAAACCCGCCTCACTGCAC	DRKTASLHX	DRKTRLTAX
Contig1347	688	IJ	\vdash	AAGTAGTGGATCTGACGACGAGGCC	K*WIRRRGX	K*WI*RRGX
Contig1347	703	8	CGAC	CGACGAGGCCAGCGTGACCGATGTT	RRGQGDRCX	RRGQRDRCX
Contig1407	156	2	CGAT	CGATGAGGACGTCGACTGTTGAACT	R*GR*LLNX	R*GRRLLNX
Contig1407	239	AG	GACGTTAACCTGACATGCCTGTGTT	GACGTTAACCTGGCATGCCTGTGTT	DVNLTCLCX	DVNLACLCX

į

		end	1521	366	310	141	534	1255	72	219	43	162	299	245	172	459	331	13	1120	119	179	264	256	445	812	395	249	357	519	76	799	28	737	552	1598	630
		start	1506	353	289	89	525	1246	57	206	12	145	289	234	149	426	322	1	1027	110	168	246	242	431	799	384	234	324	505	45	790	19	724	527	1587	617
		size	16	14	22	53	10	10	16	14	32	18	п	12	24	34	10	13	94	10	12	19	15	15	14	12	16	34	15	32	10	10	14	26	12	14
APPENDIX VIII	List of SSRs identified by MISA	SSR	(AG)8	(GA)7	(GA)11	(CA)8ccaggccaggtactctctctctctCT)7	(A)10	(T)10	(GA)8	(GA)7	(GA)16	(AT)9	(1)11	(TC)6	(GA)12	(TC)17	(T)10	(T)13	(AG)19aacaagttgcctcaacaacagtgaccaagtgatggtggtagcataccc(T)10	(A)10	(CG)6	(T)19	(TCT)5	(GCC)5	(GA)7	(G)12	(AG)8	(AG)17	(GAG)5	(TC)16	(A)10	(A)10	(AG)7	(AG)13	(CT)6	(T)14
		SSR type	p2	p2	p2	J	p1	p1	p2	p2	p2	p2	p1	p2	p2	p2	p1	p1	υ	p1	p2	p1	p3	p3	p2	p1	p2	p2	p3	p2	p1	p1	p2	p2	p2	p1
		Number of SSR	1	1	1	1	1	2	1	2	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	· 1	1	1	1	1	1	1	1	1	1
		Contig ID	Contig4	Contig16	Contig23	Contig27	Contig46	Contig46	Contig53	Contig53	Contig65	Contig74	Contig77	Contig83	Contig91	Contig98	Contig110	Contig120	Contig125	Contig145	Contig153	Contig164	Contig176	Contig180	Contig182	Contig189	Contig196	Contig197	Contig198	Contig211	Contig219	Contig223	Contig224	Contig229	Contig234	Contig241

1155	486	88	28	1280	3431	26	207	952	950	166	1047	856	28	960	1660	362	148	1001	426	1222	399	396	38	1108	763	987	1054	42	894	151	126	346	1084	77	77	1161	2829	794
1143	477	71	19	1261	3420	6	193	919	927	146	1028	842	1	923	1647	342	139	987	402	1208	386	383	1	1083	754	973	1040	1	877	137	56	325	1055	1	1	1147	2818	171
13	10	18	10	20	12	18	15	34	24	21	20	15	28	38	14	21	10	15	25	15	14	14	38	26	10	15	15	42	18	15	71	22	30	22	17	15	12	24
(A)13	(1)10	(CCT)6	(A)10	(CT)10	(A)12	(CT)9	(TCC)5	(GA)17	(GA)12	(CTT)7	(GA)10	(CCA)5	(CT)14	(CT)11(CA)8	(A)14	(AAT)7	(G)10	(GCG)5	(CTTCC)5	(GAG)5	(CT)7	(CT)7	(CT)19	(AG)13	(A)10	(GGC)5	(A)15	(AG)21	(CGA)6	(CGT)5	(AAG)6agcagaagaaatcgaaaccct(AG)16	(GA)11	(TC)7ta(TC)7	(T)15agccaaaacgggacaaataatttttgtattgagaatgtaggtctgcatt(A)12	(T)15agccaaaacgggacaaataatttttgtattgagaatgtaggtctgcatt(A)12	(CTG)5	(AG)6	. (AT)12
pl	pl	p3	p1	p2	p1	p2	p3	p2	p2	p3	p2	p3	p2	J	p1	p3	p1	p3	p5	p3	p2	p2	p2	p2	p1	p3	p1	p2	p3	p3	J	p2	υ	J	c	p3	p2	p2
2	1	1	1	2	1	1	2	1	1	1	1	1	1	2	3	1	1	1	1	1	1	1	1	1	1	2	1	1	1	1	1	1	1	1	1	1	1	1
Contig241	Contig244	Contig253	Contig260	Contig260	Contig265	Contig267	Contig267	Contig275	Contig276	Contig291	Contig292	Contig293	Contig294	Contig294	Contig294	Contig301	Contig 305	Contig325	Contig332	Contig337	Contig338	Contig339	Contig345	Contig353	Contig354	Contig354	Contig357	Contig362	Contig365	Contig373	Contig374	Contig375	Contig391	Contig392	Contig 393	Contig398	Contig404	Contig408

94	872	629	1394	2670	30	789	10	474	371	188	30	1111	283	913	732	275	275	460	460	453	296	52	584	826	81	16	300	317	39	31	377	2158	865	569	167	782	1533	186
75	861	615	1380	2558	21	758	1	451	357	174	12	1098	269	903	692	261	261	449	449	320	279	32	567	721	67	e	286	224	28	17	314	2141	741	540	152	769	1520	177
20	12	15	15	113	10	32	10	24	15	15	19	14	15	11	41	15	15	12	12	134	18	21	18	106	15	14	15	94	12	15	64	18	125	30	16	14	14	10
(CT)10	(CA)6	(ATG)5	(ATG)5	Jaggccggatatcgccggggagcgcaggaaggaaggaagggggggg	(G)10	(CT)16	(G)10	(TC)12	(CAG)5	(TAT)5	(A)19	(GA)7	(AGG)5	(T)11 (T)	(AC)6gagcacaacggctcaac(CA)6	(GGA)5	(GGA)5	(GA)6	(GA)6	tiggtactcgccgccaccgacagagctcggcggcgcgcgcgggggggcccatcggcgtcag	(GCC)6	(CAG)7	(GA)9	kagagggggggggggagaccaaatgatagagaaagtacgtatgtaagggaagaagaagaagacga	(GGA)5	(GA)7	(AGC)5	(GA)16aggatgggtttgtagggaacaacgctaaggggggggggg	(T)12	(T)15	(CATA)6(AT)12*(TGTA)5*	(GCT)6	atgcatatgcgatgccagacgaatccatctagacatgagtcgtaaggagggggggg	(CGC)10	(CT)8	(GA)7	(GA)7	(T)10
p2	p2	p3	p3	c	p1	p2	p1	p2	p3	p3	p1	p2	p3	p1	c	p3	p3	p2	p2	c	p3	p3	p2	J	p3	p2	p3	J	p1	pl	°*	p3	J	p3	p2	p2	p2	p1
1	1	1	-	1	1	1	1	1	1	1	1	1	1	1	1	1	1	. 1	1	1	1	1	1	2	1	1	1	1	1	1	1	1	1	-1	1	1	1	1
Contig414	Contig417	Contig418	Contig420	Contig429	Contig430	Contig441	Contig449	Contig451	Contig458	Contig469	Contig474	Contig484	Contig492	Contig511	Contig516	Contig539	Contig540	Contig542	Contig543	Contig544	Contig545	Contig550	Contig551	Contig551	Contig555	Contig558	Contig562	Contig563	Contig564	Contig565	Contig566	Contig575	Contig581	Contig583	Contig585	Contig587	Contig588	Contig589

			APPENDIX IX			
			List of SSRs identified by SSRIT			
Contig ID	SSR number	SSR type	SSR	size	start	end
Contig4	1	p2	(AG)8	16	1506	1521
Contig16	1	p2	(GA)7	14	353	366
Contig23	1	p2	(GA)11	22	289	310
Contig27	1	c	(CA)8ccaggccaggtactctctccttc(CT)7	53	89	141
Contig46	1	p1	(A)10	10	525	534
Contig46	2	p1	(T)10	10	1246 57	1255
Contig53 Contig53	2	p2 p2	(GA)8 (GA)7	16 14	206	72
Contig65	1	p2 p2	(GA)16	32	12	43
Contig74	1	p2	(O/)10 (AT)9	18	145	162
Contig77	1	p1	(T)11	11	289	299
Contig83	1	p2	(TC)6	12	234	245
Contig91	1	p2	(GA)12	24	149	172
Contig98	1	p2	(TC)17	34	426	459
Contig110	1	p1	(T)10	10	322	331
Contig120	1	p1	(T)13	13	1	13
Contig125	1	C	caagttgcctcaacaacagtgaccaagtgatgggtagcata	94	1027	1120
Contig145	1	p1	(A)10	10	110	119
Contig153	1	p2	(CG)6	12	168	179
Contig164 Contig176	1	p1	(T)19	19 15	246	264 256
Contig180	1	p3 p3	(TCT)5 (GCC)5	15	242 431	256 445
Contig180	1	p3 p2	(GCC)5	15	799	812
Contig189	1	p2 p1	(GA)7 (G)12	14	384	395
Contig196	1	p1 p2	(AG)8	16	234	249
Contig197	1	p2	(AG)17	34	324	357
Contig198	1	p3	(GAG)5	15	505	519
Contig211	1	p2	(TC)16	32	45	76
Contig219	1	p1	(A)10	10	790	799
Contig223	1	p1	(A)10	10	19	28
Contig224	1	p2	(AG)7	14	724	737
Contig229	1	p2	(AG)13	26	527	552
Contig234	1	p2	(CT)6	12	1587	1598
Contig241	1	p1	(T)14	14	617	630
Contig241	2	p1	(A)13	13	1143	1155
Contig244	1	p1	(T)10	10	477	486
Contig253	1	p3	(CCT)6	18	71	88
Contig260 Contig260	1 2	p1 p2	(A)10 (CT)10	10	19	28
Contig265	1	p2 p1	(A)12	20	1261 3420	1280 3431
Contig267	1	p1 p2	(CT)9	18	9	26
Contig267	2	p3	(TCC)5	15	193	207
Contig275	1	p2	(GA)17	34	919	952
Contig276	1	p2	(GA)12	24	927	950
Contig291	1	р3	(CTT)7	21	146	166
Contig292	1	p2	(GA)10	20	1028	1047
Contig293	1	p3	(CCA)5	15	842	856
Contig294	1	p2	(CT)14	28	1	28
Contig294	2	C	(CT)11(CA)8	38	923	960
Contig294	3	p1	(A)14 (AAT)7	14	1647	1660
Contig301	1	p3	(AAT)7	21	342	362
Contig305 Contig325	1	p1 p3	(G)10 (GCG)5	10 15	139 987	148 1001
Contig332	1	p5	(CTTCC)5	25	402	426
Contig337	1	p3	(GAG)5	15	1208	1222
Contig338	1	p3 p2	(CT)7	14	386	399
Contig339	1	p2	(CT)7	14	383	396
Contig345	1	p2	(CT)19	38	1	38
Contig353	1	p2	(AG)13	26	1083	1108
Contig354	1	p1	(A)10	10	754	763
Contig354	2	р3	(GGC)5	15	973	987
Contig357	1	p1	(A)15	15	1040	1054
Contig362	1	p2	(AG)21	42	1	42
Contig365	1	р3	(CGA)6	18	877	894
Contig373	1	р3	(CGT)5	15	137	151
Contig373	2	с	gctgctgctccgtagcctccgtctctctgtgggccgcagcgat	147	253	399
Contig374	1	С	(AAG)6agcagaagaaatcgaaaccct(AG)16	71	56	126

Contig391	1	С	(TC)7ta(TC)7	30	1055	1084
Contig392	1	c	caaaacgggacaaataattttttgtattgagaatgtaggtctg	77	1	77
Contig393	1	c	caaaacgggacaaataatttttgtattgagaalgtaggtclg	77	1	77
Contig398	1	p3	(CTG)5	15	1147	1161
Contig404	1	p2	(AG)6	12	2818	2829
Contig408	1	p2	(AT)12	24	771	794
Contig414	1	p2	(CT)10	20	75	94
Contig417	1	p2	(CA)6	12	861	872
Contig418	1	p3	(ATG)5	15	615	629
Contig420	1	р3	(ATG)5	15	1380	1394
Contig429	1	С	cgccggggagcgcaggaaggaagaagggggggggggggg	113	2558	2670
Contig430	1	p1	(G)10	10	21	30
Contig441	1	p2	(CT)16	32	758	789
Contig449	1	p1	(G)10	10	1	10
Contig451	1	p2	(TC)12	24	451	474
Contig458	1	p3	(CAG)5	15	357	371
Contig469	1	p3	(TAT)5	15	174	188
Contig474	1	p1	(A)19	19	12	30
Contig484	1	p2	(GA)7	14	1098	1111
Contig492	1	p3	(AGG)5	15	269	283
Contig511	1	p1	(T)11	11	903	913
Contig516	1	C	(AC)6gagcacaacggctcaac(CA)6	41	692	732
Contig539	1	p3	(GGA)5	15	261	275
Contig540	1	p3	(GGA)5	15	261	275
Contig542	1	p2	(GA)6	12	449	460
Contig543	1	p2	(GA)6		449	460
Contig544	1	C	ccaccgacagagctcggcggcgccgcgtaccggcggcc	134	320	453
Contig545	1	p3	(GCC)6	18	279 32	296 52
Contig550	1	p3	(CAG)7 (GA)9	18	567	584
Contig551 Contig551	2	p2 c	gaccaaatgatagagaaagtacgtatgtaagggaagaag	106	721	826
Contig555	1	p3	(GGA)5	100	67	81
Contig558	1	p3	(GA)7	14	3	16
Contig562	1	p2	(AGC)5	15	286	300
Contig563	1	C	gggtttgtagggaacaacgctaaggggtggggggttctctg	94	224	317
Contig564	1	p1	(T)12	12	28	39
Contig565	1	p1	(T)15	15	17	31
Contig566	1	C*	(CATA)6(AT)12*(TGTA)5*	64	314	377
Contig575	1	p3	(GCT)6	18	2141	2158
Contig581	1	С	tgccagacgaatccatctagacatgagtcgtaaggaggga	125	741	865
Contig583	1	р3	(CGC)10	30	540	569
Contig585	1	p2	(CT)8	16	152	167
Contig587	1	p2	(GA)7	14	769	782
Contig588	1	p2	(GA)7	14	1520	1533
Contig589	1	p1	(T)10	10	177	186
Contig590	1	p1	(T)10	10	177	186
Contig591	1	p1	(T)10	10	1358	1367
Contig603	1	p3	(CTG)5	15	342	356
Contig630	1	p2	(CT)15	30	30	59
Contig631	1	C	tctccttctctgtttgct(TC)13ctctttcttcactctgcttccact	123	10	132
Contig632	1	p2	(TC)15	30	1422	1451
Contig633	1	C D2	atatataacatctgtatgtacacatatatacatatactttatatcg	125	58	182
Contig636	1	p2	(TC)9	18	55 55	72
Contig637	1	p2 p1	(TC)9	18	202	213
Contig645 Contig649	1	p1 p3	(A)12 (CTG)5	12	1756	1770
Contig651	1	p3 p2	(GA)9	15	287	304
Contig651	2	p2	(GA)13	26	595	620
Contig652	1	C C	(CA)9(GA)14	46	902	947
Contig657	1	p1	(A)11	11	219	229
Contig673	1	p2	(GA)14	28	238	265
Contig674	1	C C	caagaattcataggaagctcgatcacacttggcagtaatatt	114	523	636
Contig677	1	p3	(GCA)5	15	993	1007
Contig679	1	p3	(GCA)5	15	993	1007
Contig691	1	p1	(A)11	11	1	11
Contig691	2	p3	(CTC)6	18	271	288
Contig691	3	p3	(CAG)5	15	553	567
Contig692	1	p3	(CCT)6	18	32	49
Contig692	2	p3	(TCC)5	15	158	172
Contig693	1	p1	(T)11	11	322	332
Contig693	2	p1	(T)10	10	2132	2141
Contig700	1	p2	(CT)10	20	1061	1080

579	654
2723	2734
810	829
3651	3666
1220	1235
162	177
431	445
1773	1800
148	162
160	169
683	697

Contig700	2	p2	(GA)20	40	2335	2374
Contig725	1	p2	(TC)8	16	216	231
Contig726	1	p2	(AG)13	26	454	479
Contig728	1	p2	(CT)6	12	94	105
Contig730	1	p2	(GA)6	12	435	446
Contig730	2	p2	(AG)6	12	646	657
Contig732	1	p2	(CT)11	22	1488	1509
Contig733	1	С	Ottctgtcccctcacta(AATT)6tagtgaggggacagaa(A	96	272	367
Contig733	2	р3	(CTC)5	15	1144	1158
Contig739	1	p1	(A)10	10	2223	2232
Contig742	1	p2	(GA)10	20	599	618
Contig744	1	p2	(CT)26	52	1	52
Contig745	1	p2	(TC)13	26	114	139
Contig745	2	С	(AGC)5(AAC)7	36	342	377
Contig747	1	p1	(T)14	14	34	47
Contig747	2	p1	(C)14	14	1010	1023
Contig747	3	p1	(T)11	11	1173	1183
Contig749	1	p1	(T)14	14	34	47
Contig749	2	p1	(T)11	11	1166	1176
Contig751	1	p1	(T)11	11	3083	3093
Contig755	1	p3	(GCC)8	24	212	235
Contig756	1	p3	(GGA)6	18	1100	1117
Contig761	1	С	AG)9aagaaa(AGACG)5ggacgggagggagagagag	182	928	1109
Contig788	1	p3	(GCT)6	18	944	961
Contig800	1	p3	(GGC)5	15	227	241
Contig800	2	p2	(AT)6	12	567	578
Contig804	1	с	(TC)8tatgtaatctgtgtgtgtggatgtgcggcgt(G)17	64	378	441
Contig807	1	с	aggggggagaggggggggggggggggggggggggggggg	138	53	190
Contig819	1	p4	(TCAC)6	24	566	589
Contig822	1	p2	(GA)20	40	922	961
Contig825	1	p1	(T)10	10	553	562
Contig827	1	p2	(AG)8	16	199	214 738
Contig827	2	p3	(AGC)5	15	724	
Contig828	1	p1	(A)10	10	1414	1423
Contig829	1	p1	(T)10	10	847	856
Contig829	2	p1	(A)17	17	982	998
Contig830	1	p1	(T)11	11	986	996
Contig831	1	p3	(CGC)7	21	600	620
Contig832	1	p3	(CGG)7	21	317	337
Contig839	1	p2	(GA)6	12	1220	1231
Contig840	1	p2	(GA)7	14	122 59	135 70
Contig842	1	p2	(TC)6	12	59	70
Contig843	1	p2	(TC)6	12	1	34
Contig844	1	С	(CT)11(CA)6	34 12	1867	1878
Contig855	1	p1	(G)12	12	392	405
Contig863	1	p2	(TC)7	14	593	606
Contig863	2	p2	(AT)7	14	932	943
Contig863	3	p2	(TA)6	12	404	417
Contig864	1	p2	(TC)7	14	605	618
Contig864	2	p2	(AT)7	14	944	955
Contig864	3	p2	(TA)6 (CCT)5	12	87	101
Contig865	1	p3 p3	(GGA)5	15	290	304
Contig873	1			15	473	482
Contig885	1	p1 p3	(T)10 (CCG)5	10	818	832
Contig890 Contig893	1	p3 p1	(1)10	10	244	253
	1	p1 p3	(A)10 (TTC)5	15	831	845
Contig907	1	p3 p2	(AG)8	16	20	35
Contig914 Contig917	1	p2 p1	(AG)6 (A)16	16	10	25
Contig917 Contig923	1	c pr	(TC)8g(CT)11ttcatacgcagaa(AC)6	64	57	120
Contig923	1	p1	(G)11	11	1	11
Contig925	1	c pr	(AG)8atgattggcttgtccttggggtcggggt(AG)16	76	579	654
Contig925 Contig930	1	p2	(TC)6	12	2723	2734
Contig930 Contig932	1	p2 p1	(A)20	20	810	829
Contig932 Contig944	1	p1 p2	(TC)8	16	3651	3666
Contig965	1	p2	(1C)8 (AG)8	16	1220	1235
Contig965 Contig970	1	p2 p2	(AG)8	16	162	177
Contig970 Contig971	1	p2 p3	(TTC)5	15	431	445
Contig991	1	p3 p1	(T)28	28	1773	1800
Contig991 Contig993	1	p1 p3	(GCA)5	15	148	162
10000000000				10		162
Contig996	1	p1	(A)10	10	160	109

ABSTRACT

"DEVELOPMENT OF MOLECULAR MARKERS FOR BLIGHT DISEASE RESISTANCE IN TARO USING BIOINFORMATICS TOOLS"

ATHUL V.S.

(2013-09-109)

Abstract of the thesis submitted in partial fulfilment of the

requirement for the degree of

B. Sc. - M. Sc. (INTEGRATED) BIOTECHNOLOGY

Faculty of Agriculture

Kerala Agricultural University, Thrissur

B. Sc. - M. Sc. (INTEGRATED) BIOTECHNOLOGY

DEPARTMENT OF PLANT BIOTECHNOLOGY

COLLEGE OF AGRICULTURE

VELLAYANI, THIRUVANANTHAPURAM - 695 522

KERALA, INDIA

2018

119

ABSTRACT

Development of molecular markers using sequential information publicly available in the biological databases has enhanced their credibility over the years. The study entitled "Development of Molecular markers for blight disease resistance in taro using bioinformatics tools" was conducted at the Central Tuber Crop Research Institute (CTCRI) during 2017-2018. The objectives of the study included the development and evaluation of various Single Nucleotide Polymorphism (SNP) and Simple Sequence Repeats (SSR) prediction pipelines, computational prediction and validation of the molecular markers for blight disease resistance in taro.

The preliminary data set for the study was obtained from the Sequence Read Archive (SRA) section of NCBI. A total of 6,479,882 sequences obtained initially were reduced to 6,319,834 after pre-processing. The processed sequences were reduced to 79,608 sequences after *de novo* assembly and were finally assembled to 8547 contigs and 59,242 singlets. The contigs were then processed with various prediction pipelines to predict SSRs and SNPs.

The tools, QualitySNP and AutoSNP were employed to detect the SNPs present within the contig sequences. The efficiency of these tools in determining the number of synonymous and non-synonymous SNPs was also analyzed.

The tools, MISA and SSRIT were used to detect the SSRs within the sequences. The efficiency in predicting more number and types of reliable repeats were considered. The analysis was done with a wide range of repeats such as mono-, di-, tri-, tetra-, penta-, hexa-, and poly repeats and their numbers.

QualitySNP identified 518 synonymous and 44 non-synonymous SNPs from the 8547 contigs. MISA identified 967 mono-, 1484 di-, 558 tri-, 14 tetra-, 2 penta-, 9 hexa-, and 393 compound SSRs. Five SNP and SSR primers were designed and synthesized from the contigs containing SSRs and SNPs. The synthesized SNP and SSR primers were then validated against tolerant and susceptible varieties of taro leaf blight.

Among the primers synthesized the SSR primer CeSSR4 and SNP primer CeSNP3 were capable of differentiating leaf blight resistant and susceptible varieties. The markers need to be analyzed further with a large number of samples to develop them as a marker for taro leaf blight. Once analyzed, they could be used in marker-assisted selection and breeding programmes of taro.

121