NUTRIENT SCHEDULING IN BUSH PEPPER (Piper nigrum L.)

by

FARHANA C.

(2016 - 12 - 016)

THESIS

Submitted in partial fulfilment of the

requirement for the degree of

MASTER OF SCIENCE IN HORTICULTURE

Faculty of Agriculture

Kerala Agricultural University

DEPARTMENT OF PLANTATION CROPS AND SPICES COLLEGE OF AGRICULTURE VELLAYANI, THIRUVANANTHAPURAM-695 522 KERALA, INDIA

DECLARATION

I, hereby declare that this thesis, entitled "NUTRIENT SCHEDULING IN BUSH PEPPER (*Piper nigrum* L.)" is a bonafide record of research work done by me during the course of research and the thesis has not previously formed the basis for the award of any degree, diploma, associateship, fellowship or othersimilar title, of any other University or Society.

Vellayani

Date: 29/9/2018

(2016-12-016)

FARHANA C.

2

ii.

CERTIFICATE

Certified that this thesis, entitled "NUTRIENT SCHEDULING IN BUSH PEPPER (*Piper nigrum* L.)" is a record of bonafide research work done independently by Ms. Farhana C. (2016-12-016) under my guidance and supervision and that it has not previously formed the basis for the award of any degree, diploma, fellowship or associateship to her.

Place: Vellayani

Date: 29/9/2018

Dr. G. S. Sreekala (Major Advisor, Advisory Committee) Assistant Professor Department of Plantation Crops & Spices, College of Agriculture, Vellayani.

CERTIFICATE

We, the under signed members of the advisory committee of Ms. Farhana C. a candidate for the degree of **Master of Science in Horticulture** with major in Plantation Crops and Spices agree that the thesis entitled "NUTRIENT SCHEDULING IN BUSH PEPPER (*Piper nigrum* L.)" may be submitted by Ms. Farhana C. in partial fulfilment of the requirement for the degree.

Dr. G. S. Sreekala

College of Agriculture, Vellayani Thiruvananthapuram

Dr. Shalini Pillai, P. (Member, Advisory Committee) Professor Department of Agronomy College of Agriculture, Vellayani Thiruvananthapuram

peeps 19/18

Dr. Deepa S. Nair (Member, Advisory Committee) Assistant Professor and Head Department of Plantation Crops and Spices College of Agriculture, Vellayani Thiruvananthapuram

Dr. Biju Joseph (Member, Advisory Committee) Assistant Professor Department of Soil Science and Agricultural Chemistry College of Agriculture, Vellayani Thiruvananthapuram

09.9.15

EXTERNAL EXAMINER

Dr. J.	Prem Joshua, Ph.D., PROFESSOR & HEAD
FLORIC	ULTURE RESEARCH STATION
TAMUC	AL - 629 302

ACKNOWLEDGEMENT

I humbly bow my head before God Almighty for all the blessings showered upon me to complete the thesis work successfully.

I am pleased to place my profound etiquette to major advisor Dr. G. S. Sreekala, Assistant Professor, Department of Plantation Crops and Spices, College of Agriculture, Vellayani for her meticulous guidance, constructive suggestions, constant encouragement, affectionate advice and extreme patience right from conceptualization of the research work to preparation of the thesis.

I express my deep-felt gratitude to **Dr. Deepa. S. Nair**, Assistant Professor & Head, Department of Plantation Crops and Spices, College of Agriculture, Vellayani for her unambiguous advices, support and valuable suggestions throughout my research work.

I consider it my honor in expressing my loyality to the member of my advisory committee **Dr. Shalini Pillai, P**. Professor, Department of Agronomy, College of Agriculture, Vellayani for help, well timed support and worthy suggestions throughout my study.

I sincerely express my profound gratitude to member of my advisory committee **Dr. Biju Joseph**, Assistant Professor, Department of Soil science and Agricultural chemistry, College of Agriculture, Vellayani for the affectionate advise and support rendered in all phases of my thesis work.

I thankfully acknowledge **Dr. P. C. Jessykutty** (Retd) for her assistance and well timed support throughout my course programme. My special thanks for **Dr. P. Babu Mathew**, Professor, Department of Agronomy, College of Agriculture, Vellayani for his help, motivation and support in the course of work.

I express my immense gratitude to farm manager and all labourers for their timely help and support.

My special thanks goes to my classmates Avinash and Ajil for their help and support during the entire period of study.

I am indebted to my dear friends Sree, Daly, Anju, RA, Shamsi, Sooryaja and Reshu for their company, help, support and motivation. I accord my sincere thanks to my batchmates Divya, Shahiba, Geethu and Nagamani for their help.

I express my gratitude to my seniors Sandra chechi, Aparna chechi, Afnatha, Ishratha, Nibinchettan for their help and support. It is my pleasure to express my special thanks to my dear juniors Anargha, Pooja, Nivya and Krishnaveni.

I am greatful to the KAU for awarding the KAU fellowship during my study.

Words are not enough to express my whole hearted and affectionate gratitude to my Uppa and Umma for their love. I express my love to my dear sister and my niece fidha mol who was there for me always. I also wish to express my warm gratitude to, ummamma, aunties, kakkus and other family members. I acknowledge with high sense of regards to my fiance Shebi for great support and love.

At the end. I felt elated to express my special thanks to those people who made this thesis possible.

FARHANA. C

vii

SI. No	Title	Page No.
1	INTRODUCTION	1-2
2	REVIEW OF LITERATURE	3-17
3	MATERIALS AND METHODS	18-34
4	RESULTS	35-101
5	DISCUSSION	102-145
6	SUMMARY	146-151
7	REFERENCES	152-170
8	ABSTRACT	171 - 172
9	APPENDICES	173-205

TABLE OF CONTENTS

viii

LIST OF TABLES

Table no.	Title	Page no.
1	Details of method used for chemical analysis of potting media	31
2	Nutrient content of organic sources utilized	32
3	Analytical methods followed in plant analysis	33
4	Effect of potting media and inorganic fertilizers on plant height, cm	36
5	Effect of potting media and inorganic fertilizers on number of primary branches	38
6	Effect of potting media and inorganic fertilizers on number of secondary branches	39
7	Effect of potting media and inorganic fertilizers on length of primary branches, cm	41
8	Effect of potting media and inorganic fertilizers on length of secondary branches, cm	43
9	Effect of potting media and inorganic fertilizers on number of leaves	45
10	Effect of potting media and inorganic fertilizers on leaf length, cm	47
11	Effect of potting media and inorganic fertilizers on leaf width, cm	49
12	Effect of potting media and inorganic fertilizers on leaf area, cm^2	50

13	Effect of potting media and inorganic fertilizers on yield parameters	53
14	Effect of potting media and inorganic fertilizers on hundred berry weight, g and hundred berry volume, cm ³	58
15	Effect of potting media and inorganic fertilizers on root parameters	61
16	Effect of potting media and inorganic fertilizers on the dry matter production, specific leaf weight and harvest index at 12 MAP	63
17	Effect of potting media and inorganic fertilizers on moisture percentage and drying percentage at 12 MAP	66
18	Effect of potting media and inorganic fertilizers on chlorophyll content, mg g^{-1}	68
19	Effect of potting media and inorganic fertilizers on quality parameters of berries at 12 MAP	71
20a	pH, EC, organic carbon content of potting media before the experiment	75
20b	pH, EC, organic carbon content of potting media after the experiment	75
21a	Available N, P and K content of potting media before the experiment	ヨチ
21b	Available N, P and K content of potting media after the experiment	77
22a	Available Ca, Mg and S content of potting media before the experiment	79
22b	Available Ca, Mg and S content of potting media after the experiment	79
23	Effect of potting media and inorganic feriltizers on plant uptake of nitrogen, g plant ⁻¹	82

24	Effect of potting media and inorganic feriltizers on plant uptake of phosphorus, mg plant ⁻¹	84
25	Effect of potting media and inorganic feriltizers on plant uptake of potassium, g plant ⁻¹	86
26	Effect of potting media and inorganic feriltizers on plant uptake of calcium, g plant ⁻¹	88
27	Effect of potting media and inorganic feriltizers on plant uptake of magnesium, mg plant ⁻¹	90
28	Effect of potting media and inorganic feriltizers on plant uptake of sulphur, mg plant ⁻¹	92
29	Effect of potting media and inorganic feriltizers on nitrogen, phosphorus and potassium harvest index, %	95
30	Effect of potting media and inorganic feriltizers on calcium, magnesium and sulphur harvest index, %	98
31	The discounted benefit cost ratio, net present worth and internal rate of return of bush pepper	100

[]

xi

LIST OF PLATES

Plate no.	Title	Between pages
1	Different types of potting media	22-23
2	Preparation of leaf compost	22-2
3	Field overview 4 months after planting	23-23
4	Field overview 12 months after planting	23-21
5	Fertilizer application	23-22
6	Foliar spraying	23-24
7	Harvest of fresh berries	53-51
8	Root mass	59-60

xii

LIST OF FIGURES

Table no.	Title	Between pages
1	Interaction effect of potting media and inorganic fertilizers on plant height (cm)	103-101
2	Interaction effect of potting media and inorganic fertilizers on number of primary branches plant ⁻¹	103-102
3	Interaction effect of potting media and inorganic fertilizers on number of secondary branches plant ⁻¹	105-10
4	Interaction effect of potting media and inorganic fertilizers on number of leaves	105-10
5	Interaction effect of potting media and inorganic fertilizers on leaf area (cm^2)	111-112
6	Interaction effect of potting media and inorganic fertilizers on number of spikes plant ⁻¹	111 - 112
7	Interaction effect of potting media and inorganic fertilizers on length of spike (cm)	112 - 113
8	Interaction effect of potting media and inorganic fertilizers on number of berries spike ⁻¹	112-113
9	Interaction effect of potting media and inorganic fertilizers on fresh weight of berries (g plant ⁻¹)	114-115
10	Interaction effect of potting media and inorganic fertilizers on dry weight of berries (g plant ⁻¹)	114-115
11	Interaction effect of potting media and inorganic fertilizers on dry matter production (g plant ⁻¹)	120-22

12	Interaction effect of potting media and inorganic fertilizers on harvest index	120-121
13	Interaction effect of potting media and inorganic fertilizers on starch (%)	125-126
14	Interaction effect of potting media and inorganic fertilizers on essential oil (%), oleoresin (%) and piperine (%)	125-126
15	Interaction effect of potting media and inorganic fertilizers on available N (g kg ⁻¹) of potting media after the experiment	130-131
16	Interaction effect of potting media and inorganic fertilizers on available P (mg kg ⁻¹) of potting media after the experiment	130 - 131
17	Interaction effect of potting media and inorganic fertilizers on available K (mg kg ⁻¹) of potting media after the experiment	131 - 132
18	Interaction effect of potting media and inorganic fertilizers on available Ca, Mg and S (mg kg ⁻¹) of potting media after the experiment	131-132
19	Interaction effect of potting media and inorganic fertilizers on nitrogen uptake (g plant ⁻¹) by roots, leaves, stem, berries and spikes	133-134
20	Interaction effect of potting media and inorganic fertilizers on phosphorus uptake (mg plant ⁻¹) by roots, leaves, stem, berries and spikes	133-134
21	Interaction effect of potting media and inorganic fertilizers on potassium uptake (g plant ⁻¹) by roots, leaves, stem, berries and spikes	135 - 136
22	Interaction effect of potting media and inorganic fertilizers on calcium uptake (g plant ⁻¹) by roots, leaves, stem, berries and spikes	135-136
23	Interaction effect of potting media and inorganic fertilizers on magnesium uptake (mg plant ⁻¹) by roots, leaves, stem, berries and spikes	137-138

24	Interaction effect of potting media and inorganic fertilizers on sulphur uptake (mg plant ⁻¹) by roots, leaves, stem, berries and spikes	137-138
25	Interaction effect of potting media and inorganic fertilizers on nitrogen, phosphorus and potassium harvest index (%)	141-142
26	Interaction effect of potting media and inorganic fertilizers on calcium, magnesium and sulphur harvest index (%)	141-142

xv

LIST OF APPENDICES

Appendices no.	Title	Page no.
1	Fertilizer schedule	173
2	Economics of cultivation of bush pepper for 15 years for the calculation of discounted benefit cost ratio, net present worth and internal rate of returns	175
3	Discounted benefit cost ratio, net present worth and internal rate of returns for various treatments of bush pepper for 15 years	190

xvi

LIST OF ABBREVIATIONS

%	Per cent
@	At the rate of
μm	Micrometer
Al	Aluminium
AMF	Arbuscular Mycorrhizal Fungi
BCR	Benefit Cost Ratio
Са	Calcium
CD	Critical Difference
cfu	Colony forming units
cm	Centimeter
cm ³	Centimeter cube
CRD	Completely Randomized Design
dS m ⁻¹	deci Siemens per meter
EC	Electrical Conductivity
et al.	And others
Fe	Iron
Fig.	Figure
FYM	Farm Yard Manure
g	Gram
g bush ⁻¹	Gram per bush
g kg ⁻¹	Gram per kilogram
g plant ⁻¹	Gram per plant
g plant ⁻¹ year	Gram per plant per year
g pot ⁻¹	Gram per pot

g vine ⁻¹ year ⁻¹	Gram per vine per year
ha	Hectare
i.e.	That is
IPC	International Pepper Community
IRR	Internal Rate of Return
K	Potassium
K ₂ O	Potash
KAU	Kerala Agricultural University
kg	Kilogram
kg ha ⁻¹	Kilogram per hectare
kg pot ⁻¹	Kilogram per pot
kg vine ⁻¹	Kilogram per vine
MAP	Months After Planting
m ²	Square meter
meq	Milliequivalents
mg	Milligram
Mg	Magnesium
mg	Milli gram
mg m ⁻²	Milligram per meter square
Mg SO ₄	Magnesium sulphate
ml	Millilitre
Mn	Manganese
МОР	Murate of potash
MSL	Mean Sea Level
N	Nitrogen
Na	Sodium

NHI	Nitrogen Harvest Index
No.	Number
NPW	Net Present Worth
NS	Non Significant
°C	Degree Celsius
Р	Phosphorus
P ₂ O ₅	Phosphate
PGPR	Plant Growth Promoting Rhizobacteria
pН	Power of hydrogen
PHI	Phosphorus Harvest Index
plant ⁻¹ year ⁻¹	Per plant per year
RUBP	Ribulose 1,5-bisphosphate
S	Sulphur
SEm	Standard Error of mean
SOP	Sulphate of potash
t ha ⁻¹	Tonnes per hectare
TNAU	Tamil Nadu Agricultural University
v/v	Volume by volume
vines ha ⁻¹	Vines per hectare
Zn	Zinc

INTRODUCTION

1. INTRODUCTION

Black pepper, (*Piper nigrum* L.) christened as "King of spices" and "Black gold" is the most important and widely used spice in the world which originated from the tropical evergreen forest of Western Ghats. The black pepper of commerce is the dried mature fruits of the tropical climbing plant *Piper nigrum* L. Vietnam is the largest producer of pepper in the world accounting for about 41 per cent of total world production followed by Indonesia, India and Brazil (IPC, 2016). In India, black pepper is grown in about 1.29 lakh ha of land with production of 48500 tonnes (Spice Board, 2016). The black pepper is cultivated to a large extent in Kerala, Karnataka, Tamil Nadu and to a little extend in Goa, Orissa, Assam and Andaman Islands

The productivity of black pepper in Kerala is 2.5 times lower than that of Karnataka. The low productivity in Kerala is due to poor genetic potential of the vines, high population of senile and unproductive vines, losses caused by pests, diseases and soil constraints. An immediate improvement of productivity can be attained only by better agronomic practices. Thus nutrient management is one of the aspects that need to address immediately since it can increase the productivity as well as improve the general health of the plant and reduce pests and diseases.

The trailing nature of the black pepper limits its cultivation in rural areas only. Nowadays bush pepper raised from the plagiotropic shoots of pepper grown in pots is gaining momentum in urban horticulture. Growing bush pepper is one of the important suggestions to bridge the gap between demand and supply of black pepper (Madhura and Chandini, 2000). Since bush pepper does not need any standards for trailing, harvesting is quite easy and manageable. Raising bush pepper in 3-4 pots in households can thus meet the demand of the homes in urban areas (Lakshmana *et al.*, 2016).

Potting medium directly influence the growth, yield and quality of black pepper grown in pots. A conducive medium is thus necessary for better productivity. Traditional potting mixture with soil, sand and farm yard manure needs to be replaced due to less availability of sand. Moreover the medium needs to be supplemented with fertilizers for increased growth and yield. Nutrient management is a complex process and to understand which nutrients and at what time these nutrients are to be applied, an analysis of plant nutrient status is required. This understanding will provide opportunity to optimize fertilizer rates and application timings.

The evaluation of nutrient uptake and partitioning can provide the foundation for fine-tuning nutrient management practices as producers aim for increased yields and profitability. Key nutrients for high yield in the production of bush pepper can be identified based on nutrient harvest index values and removal of a given nutrient. Hence the present investigation on "Nutrient scheduling in bush pepper (*Piper nigrum* L.)" was taken up with the objective of standardization of potting media and nutrient level in bush pepper for yield.

REVIEW OF LITERATURE

2. REVIEW OF LITERATURE

The investigation on "Nutrient scheduling in bush pepper (*Piper nigrum* L.)" was taken up with the objective to standardize potting media and nutrient level in bush pepper for yield. Growing bush pepper is one of the important alternatives to the vine pepper due to its potential for cultivation in urban households. The relevant literature on effect of potting media and nutrients on growth, yield, root, physiology, quality parameters and uptake of nutrients on black pepper are reviewed.

2.1 Influence of potting media on growth, yield, root, physiological and quality parameters of crops.

Bush pepper is the black pepper (*Piper nigrum* L.) plant in the shape of a bush grown with decorative and economic value which is raised from lateral branches or plagiotrops of yielding vines (Mol *et al.*, 2017).

Growing of plants in pots restricts the roots and the demand made on the potting media for water, air and nutrients becomes much more intense than those made by plants grown in field which have greater volume of soil to grow (Bunt, 1988). Potting media is the substrate which provides physical support, moisture and aeration to the growing plants and plays a vital role in growth and development of plants. The important components of potting media are soil, sand, compost, FYM, vermiculite, peat, coco peat and perlite (Kala, 2017).

A study conducted by Bayu *et al.* (2012) revealed increased content of soil N, P and K on application of FYM. Khan *et al.* (2010) reported that FYM improved soil physical, chemical and biological properties. Sharangi (2011) reported that in the cultivation of black pepper variety Panniyur 1, organic matter supplementation by 25 per cent FYM along with 75 per cent urea was the best nutrient schedule under West Bengal climatic condition and the highest response of growth parameters was noticed

in plant height (269.37 cm), plant fresh weight (533.80 g), plant dry weight (178.01 g) and relative growth rate (5.10 g g^{-1} day⁻¹) after 36 months of planting.

Edwards and Burrows (1988) reported that vermicompost is finely divided peat-like material with high porosity, aeration, drainage and water-holding capacity. Vermicomposting is the result of bio-oxidation and stabilization process of organic materials which involves action of both earthworms and bacteria without undergoing a thermophilic stage. The earthworms turn, fragment and aerate the composting materials (Dominguez et al., 1997). The organic macro molecules are broken down by the action of several enzymes, intestinal mucous and antibiotics in the earthworm's intestinal tract (Doube and Brown, 1998). The excellent aeration, structure, porosity, drainage and moisture holding capacity of worm castings as well as the variety of essential plant nutrients in a readily available form make vermicompost a good potting media (Dominguez et al., 1997; Metzger, 1998 and Atiyeh et al., 2000). According to Winsome and Coll (1998) about 90 per cent of worm casting aggregates are water stable. Sinha et al. (2010) reported vermicompost as a slow release organic fertilizer. Vermicompost releases organic nitrogen and other nutrients in compost at constant rate from the accumulated humus. According to them, net overall efficiency of NPK of vermicompost over a period of years was significantly greater than 50 per cent of that of chemical fertilizers.

Composted coir pith resembles peat and has characteristics similar to that of sphagnum peat, the most commonly used rooting medium in horticulture and hence it is commercially known as coco peat (Bavappa and Gurusinghe, 1978; Karon *et al.*, 1999 and Rao, 1999). Coir pith compost has low bulk and particle density and the low particle density is due to high specific surface which gives high cation exchange capacity (Mapa and Kumara, 1995). It has high moisture retention capacity of 500–600 per cent and cation exchange capacity varies from 38.9 to 60 m eq/100 g (Evans *et al.*, 1996) which enables it to retain large amount of nitrogen and the absorption

complex has high content of exchangeable K, Na, Ca and Mg (Verhagen and Papadopoulos, 1997). Srinivasan *et al.* (2005) found that application of composted coir pith @ 2.5 t ha⁻¹ with full recommended dose of NPK (100:40:140 kg ha⁻¹ of N, P_2O_5 and K_2O) resulted in highest yield in the third year (4.18 kg vine⁻¹) which was 21 per cent higher than the recommended NPK in black pepper.

Neem seed cake is the residue obtained after the extraction of oil from neem seed. It contains more nitrogen (2-5 %), phosphorus (0.5-1.0 %), calcium (0.5 -3 %), magnesium (0.3-1 %) and potassium (1 - 2 %) than farm yard manure or sewage sludge (Radwanksi and Wickens, 1981). Loss of nitrogen was prevented by the use of azadirachtin by preventing the activity of nitrifiers like *Nitrosomonas* and *Nitrobacter* (Usha and Patra, 2003; Gopal *et al.*, 2007).

Experiments conducted to evaluate the effects of neem seed cake on the main groups of soil microflora and some soil properties revealed that neem seed cake increased the population of organic nitrogen users and actinomycetes and reduced the population of fungi, *Nocardia, Bactoderma* and the whole population of inorganic nitrogen users which include nitrifying bacteria. Fluctuating effects on *Mycobacterium, Micromonospora* and *Arthrobacter* were noticed. Neem seed cake also significantly increased electrical conductivity, exchangeable calcium, iron, manganese, copper and zinc content (Elnasikh *et al.*, 2011). Neemcake helps to increase the nitrogen and phosphorous content in the soil. It is rich in sulphur, potassium, calcium, nitrogen thus nourishing the soil and plants by providing all the macro and micro-nutrients (Lokanadhan *et al.*, 2012).

Balanced use of nutrients through organic sources like farm yard manure, poultry manure, vermicompost, green manuring, neem cake and biofertilizers are prerequisites for sustaining soil fertility and producing maximal crop yield with optimal input levels (Dahiphale *et al.*, 2003).

Rooting and establishment of lateral cuttings of black pepper is rather less compared to the runner shoot. A success rate of 35 per cent was reported in bush pepper by Lakshmana *et al.* (2016) while the rate fluctuated between 10 to 40 per cent in farmer's nursery (Prakash *et al.*, 2016). Experiments conducted by Mol *et al.* (2017) to standardize potting mixture and humidity conditions for rooting and establishment of bush pepper cuttings of Panniyur 1 revealed that potting mixture containing coir pith compost kept in 8 x 5 cm black nursery bags under the humid chamber made by covering with thin white plastic sheet (200 μ m) recorded the highest establishment (63.3 %).

Thankamani *et al.* (1996) noticed that in black pepper, vermicompost had a positive and significant effect on height and number of leaves after 3 and 6 months of growth. The height of cutting raised in vermicompost and in potting mixture containing soil, sand and farmyard manure (3:1:1 proportion) was 137.63 and 51.50 cm, respectively, after 6 months of growth. The number of leaves produced was higher in cuttings raised in vermicompost (20.07) compared to those raised in potting mixture (8.10) after 6 months. Prasath *et al.* (2014) revealed that composted coir pith with vermicompost in 3:1 proportion and *Trichoderma* (*a*) 10 g kg⁻¹ of potting mixture as an ideal potting medium for black pepper nursery. Maximum plant growth characteristics like plant height (13.28 cm), number of leaves (3.50), number of roots (20.88), root length (18.28 cm) and root:shoot ratio (0.42) was recorded in plants grown in the above media.

Thankamani *et al.* (2007) reported that black pepper cuttings raised in solarized potting mixture containing soil, sand, and farm yard manure in the proportion 2:1:1with recommended nutrients (urea, superphosphate, potash and magnesium sulphate 4:3:2:1) produced significant increase in number of leaves(5.3), length of roots (20 cm), leaf area (177 cm²), nutrient content of leaves (N- 3.1 %, P-

0.21 % and K- 1.36 %) in the above treatment and 20 per cent increase in biomass production compared to non solarized potting mixture + recommended nutrients.

Application of decomposed coir pith, sand and farmyard manure increased dry matter production in black pepper (Srinivasan and Hamza, 2000). Akshay *et al.* (2014) worked on effect of media on black pepper cuttings and observed that the cuttings raised in the media comprising soil + sand + FYM + vermicompost (1:1:1:1 v/v) significantly increased days to sprout (15.93 days), number of leaves per cutting (6.70), length of shoot (20.26 cm) , percentage of sprouting (85.33 %), fresh weight (17.47 g), dry weight (6.65 g), minimum days to rooting (33.07 days), percentage of rooting (80 %), number of primary roots (11.07), fresh and dry weight of roots (5.08 g and 1.96 g respectively) whereas, the maximum root length (26.79 cm) was noticed in the media containing soil + sand + FYM + coir dust (1:1:1:1 v/v).

2.2 Influence of potting media on uptake of primary and secondary nutrients

Kayalvizhi *et al.* (2013) reported that media consisting of soil + sand + FYM + vermicompost (2:1:1:0.5 - 670 g + 335 g + 335 g + 165 g) significantly increased the leaf nutrient content of N, P and K in *Asparagus densiflorus* 'Meyersii'. Application of organic amendments (poultry droppings, goat droppings and cow dung) resulted in higher nutrient uptake (Ca, Mg, K and P) by maize plant relative to control (Nwokocha *et al.*, 2016). Ofosu *et al.* (2018) reported that total N, P, K and Mg uptake by oil palm seedlings was significantly influenced by the growing media. Nutrient uptake analysis of seedlings showed that growing media which included soil + rice husk biochar + compost (1:1:2) recorded the highest N uptake (0.24 g plant⁻¹).

Diby *et al.* (2005) reported significant uptake of nitrogen (N) and phosphorus (P) and enhanced vigour of black pepper when inoculated with *Pseudomonas fluorescens* strains, due to higher root proliferation and nutrient mobilization

especially that of P in the rhizosphere. *P. fluorescens* strains enhanced the P uptake by 122 per cent over control (non bacterised plants) and N uptake by 65 per cent over control resulting in increased root growth and biomass production.

In an experiment conducted at Peruvannamuzhi (Kerala), to study the feasibility of using soil-less medium containing coir pith compost and granite powder for raising black pepper (*Piper nigrum*) cuttings in the nursery, dry matter production and total uptake of nitrogen in the plant was comparatively higher for the treatment coir pith compost: granite powder (1:1) along with *Azospirillum* and phosphobacter (10⁸ cfu ml⁻¹ applied @ 50 ml bag⁻¹) followed by the treatment coir pith compost: granite powder: FYM (2:1:1). Higher uptake of phosphorous, potassium, calcium and magnesium was observed for the treatment coir pith compost: granite powder: FYM (2:1:1) followed by coirpith compost: granite powder (1:1) along with *Azospirillum* and phosphobacter (10⁸ cfu ml⁻¹ applied @ 50ml bag⁻¹) and these values were on par with conventional potting mixture (Thankamani *et al.*, 2007)

2.3 Influence of inorganic fertilizers on growth, yield, root, physiological and quality parameters.

Major nutrients N, P, K, secondary nutrients Ca, Mg and micronutrients especially Zn are the most important nutrients essential for black pepper growth, development and yield and their influence depend on their ratios in the soil as well as in the plant (Srinivasan *et al.*, 2007).

A field experiment was conducted with organics and biofertilizers (*Azospirillum*, phosphobacteria and arbuscular mycorrhizal fungi) along with inorganic fertilizers in black pepper varieties Panniyur 1 and Panniyur 2. Treatment with 50 per cent N as FYM + 50 per cent N as inorganic along with 100 per cent P and K as inorganic in Panniyur 2 recorded higher yield while treatment with 50 % N

as FYM + 50 % N and P as inorganic + *Azospirillum* + P solubilizers + AMF + 100 % K as inorganic recorded maximum yield in Panniyur 1 (Stephen and Nybe, 2003).

An experiment was conducted at Horticultural Research Station, Pechiparai to evaluate the performance of bush pepper variety Panniyur 1 both under the pot and field condition. The bush pepper grown in the field and pots were properly nourished with FYM, 5 Kg per bush along with 100 g of N, 140 g of P and 100 g of K. The bush pepper grown in pot had longer spike length and grains per spike but whereas the bush pepper grown in the field condition had more number of spikes bush⁻¹, green pepper yield and dry pepper yield. This practice of growing bush pepper in the field would reduce the cost of plucking and also the standard maintenance cost (Swaminathan, 2000).

Pillai *et al.* (1979) reported that an optimum ratio of 5:5:10 for N, P and K for obtaining maximum yield. Nybe and Nair (1986) observed a reduction in vegetative growth due to deficiency of N and P. The reduction in shoot growth and leaf area index was maximum in the case of deficiency of N (56 % and 63 %) followed by P (32 % and 2 %). Deficiency of P resulted in the highest reduction in root growth (45 %) followed by N (39 %). Deficiency of K however did not affect the growth of black pepper. Geetha and Aravindakshan (1992) reported that number of leaves, total leaf area, total and aerial biomass production differed significantly between vines and bush pepper and were dependent on nitrogen levels. Devadas and Chandini (2000) studied the influence of nutrients under different light intensities on growth of bush pepper (*Piper nigrum* L.) plants. Three levels of N, P (25.0, 37.5, 50.0 g bush⁻¹) and K (50, 75 and 100 g bush⁻¹) at three levels of shade intensity (50 %, 75 % and 100%) revealed better growth characters at 50 per cent light intensity and 37.5 g each of N and P and 50.0 g of K year⁻¹pot⁻¹. They reported that N and P had a significant effect on number and length of primary and secondary branches as well as on the number of

leaves and leaf area. K had significant effect on number of primary branch, length of secondary branch, number of leaves and total leaf area.

Waard and Sutton (1960) reported that pepper applied with 240 kg N, 120 kg P_2O_5 , 340 kg K_2O per ha produced the highest yield. Mohankumaran and Cheeran (1981) conducted a study on the nutrient requirement of pepper vines trained on dead and live standards reported that dead standards with 75 g N and 50 g K_2O vine⁻¹ year⁻¹ produced the highest yield of green berries per vine. Sadanandan (1993) reviewed an exhaustive series of fertilizer trials with pepper in major pepper growing countries of the world and reported that the levels of fertilizers used in India was very low and was perhaps one of the reasons for poor yield in the India. Studies conducted in farmers field over a period of four years (1979-84) showed that application of FYM, neem cake and bone meal @ 5, 1 and half kg vine⁻¹ year⁻¹ together with NPK fertilizer at a subdued level of 100, 40, 140 g vine⁻¹ year⁻¹ increased soil available K status by 45 per cent, leaf K status by 13 per cent and pepper yield by 172 per cent and there was 250 per cent increase in pepper yield.

Sadanandan and Hamza (1998) observed that application of NPK fertilizers @ 1, 0.5, 2 g plant⁻¹ at bimonthly interval increased the spiking intensity and yield of bush pepper by 240 per cent over no fertilizers. Neem cake application @ 30 g pot⁻¹ or ground nut cake @ 14 g pot⁻¹ was equivalent to ferilizer application. Devadas (1997) found that bush pepper plants that received NPK fertilizers 37.5:37.5:50 g plant⁻¹ year⁻¹ at monthly interval recorded the highest number of spikes, number of developed berries, fresh weight of berries and dry weight of berries. Rao *et al.* (2010) revealed that dry spike yield was significantly increased due to integrated management of FYM and fertilizers in long pepper. Application of 40 t ha⁻¹ FYM and 125:50:160 kg N, P₂O₅ and K₂O ha⁻¹ gave significantly higher dry spike yield (2412 kg ha⁻¹) and also increased the piperine yield (32.3 kg ha⁻¹). Thankamani *et al.* (2011) reported that application of *Azospirillum* sp. in combination with 50 % recommended

Muthumanickiam (2003) reported soil application of 40 g P_2O_5 per vine as rock phosphate along with spraying of zinc sulphate 0.5% increased the dry pepper yield (9.21 kg vine⁻¹) and oleoresin content (12.34 %). Field experiments were conducted at two locations, viz., Kannur (Kerala) and Chettalli (Kodagu, Karnataka) for evaluating the efficacy of sulphate of potash (SOP) as a source of potassium (K) on black pepper. The results showed significantly higher yield, oleoresin and piperine content in the treatment recommended dose of K as SOP + SOP 2% as foliar spray (Srinivasan *et al.*, 2013).

Devadas (1997) reported that there was significant difference among dry matter production at three levels of N and P (25, 37.5 and 50 g bush⁻¹) while it was not affected by three levels of potassium (50, 75 and 100 g bush⁻¹).

Menon and Nair (1987) reported that specific leaf weight (mg m⁻²) was higher in Karimunda than Panniyur 1. According to Geetha and Aravindakshan (1992) leaf area per plant in bush pepper depends primarily on the increasing leaf area while in vine pepper it is primarily dependent on the number of leaves produced. Increasing specific leaf weight improved apparent photosynthesis (Thomson *et al.*, 1996)

Asghar *et al.* (2010) conducted a study to investigate the effect of different NPK rates on growth and yield of maize cultivars Golden and Sultan. They observed that harvest index was markedly influenced by NPK application in different proportions.

Quantity of chlorophyll per unit area is an indication of photosynthetic capacity and productivity of a plant. The amount of chlorophyll in the leaf tissues can be influenced by nutrient availability and environmental factors (Otitoju and Onwurah, 2010).

The photosynthetic capacity of leaves is related to the nitrogen content because the protein content of the Calvin cycle and the thylakoids represent the majority of leaf nitrogen. Thylakoid nitrogen is proportional to the chlorophyll content. There are strong linear relationship between nitrogen and both RUBP carboxylase and chlorophyll. With increasing nitrogen per unit leaf area, the proportion of total leaf nitrogen in the thylakoids remains the same while the proportion in soluble protein increases (Evans, 1989). Nutrient treatments had influence on the chlorophyll content of leaves. Maximum chlorophyll content was recorded at 50g N, 50 g P and 75 g K per plant of bush pepper (Devadas, 1997).

Devadas (1997) found that N application had significant effect on the volatile oil content of berries and P application had significant effect on the oleoresin content of the berries. Manjunath *et al.* (2008) observed the highest protein content, protein yield and piperine content in long pepper plants receiving 100:40:140 kg N, P₂O₅, K₂O per hectare + 30 t FYM. Krishnamurthy *et al.* (2013) recorded the highest oleoresin content in black pepper plants receiving 0.5 % NPK (19:19:19) spray. The effect of *Azospirillum* along with nutrients influenced the yield of black pepper while no pronounced effect was noticed in the quality parameters (Thankamani *et al.*, 2014). Abhimannue (2016) reported oleoresin content of 15.10 kg ha⁻¹ was noticed in water soluble NPK fertilizer + PGPR Mix 1 + fluorescent *Pseudomonas* in *Piper longum*.

2.4 Influence of inorganic fertilizers on plant uptake of primary and secondary nutrients

The critical stages of nutrient requirement are during initiation of flower primordial, flower emergence, berry formation and development (Raj, 1978). Sushama *et al.* (1989) found that first mature leaf of fruiting laterals just before flushing is ideal for foliar diagnosis.

Waard and Sutton (1960) reported that maximum uptake of NPK occurred when applied at 240 kg N, 120 kg P_2O_5 and 340 kg K_2O ha⁻¹ in Malaysia. According to Waard (1964), the nutrient removal of black pepper variety Kuching with a plant population of 1729 vines ha⁻¹ was 252.04 kg N, 31.75 kg P_2O_5 and 224.04 kg K_2O per hectare. Waard (1969) worked out critical levels of N, P, K, Ca and Mg as 2.7, 0.1, 2.0, 1.0 and 0.20 per cent respectively on dry weight basis below which deficiencies of the concerned element were expected to develop. Sim (1971) found that 233 kg N, 39 kg P_2O_5 , 207 kg K_2O , 30 kg MgO, 105 kg CaO ha⁻¹ were removed from the soil by seventeen year old vine.

Nagarajan and Pillai (1975) reported that Panniyur 1 is more nutrient exhaustive than Kalluvally for N, P, K, Ca and Mg and the order of nutrient removal was N >K>Ca> Mg> P. Geetha and Nair (1990) reported the order of nutrient removal as K>N>Ca>Mg> P>S>Fe >Mn>Zn in pepper.

Pillai and Sasikumaran (1976) observed that one hectare of pepper garden having a plant population of 1200 vines yielding on an average 1 kg dry pepper per vine removed 34 kg N, $3.5 \text{ kg P}_2\text{O}_5$ and $32 \text{ kg K}_2\text{O}$.

Nutrient uptake varies with varieties. Panniyur 1 removed higher N, P and K when compared to the Karimunda. Nutrient removal by an adult pepper vine of Panniyur 1 is 292 kg ha⁻¹ N, 56 kg ha⁻¹ P₂O₅, 405 kg ha⁻¹ K₂O where as Karimunda removed 183 kg ha⁻¹ N, 49 kg ha⁻¹ P₂O₅, 376 kg ha⁻¹ K₂O (Sadanandan, 1993). Ann (2012) reported that 293.08 kg of nitrogen, 46.41 kg of phosphorus, 264.95 kg of potassium, 35.4 kg of magnesium and 74.82 kg of calcium were removed by one hectare of pepper variety Semongok Aman with a population of 2000 plants per hectare.

Investigation on Panniyur 1 pepper variety in laterite soil indicated that application of 140 g N, 55 g P_2O_5 and 270 g K_2O vine⁻¹ year⁻¹ resulted in significant

increase in the availability of N, P and K in the soil and resulted in higher uptake of nutrients by the pepper vine (Sivaraman *et al.*, 1987).

Azmil and Yau (1993) observed N content in various plant parts like leaves (2.30 %), branches (2.07 %), stem (1.96 %) fruit spikes (2.21 %) and flower (2.11 %) and N uptake by leaves (30 g vine⁻¹), branches (47.6 g vine⁻¹), stem (35.3 g vine⁻¹), spikes (0.7 g vine⁻¹), white pepper (36.4 g vine⁻¹) and flowers (2.1 g vine⁻¹).

According to Azmil and Yau (1993) P removed by leaves (3.64 g vine⁻¹) branches (2.58 g vine⁻¹) stem (3.96 g vine⁻¹), spikes (0.08 g vine⁻¹), white pepper (3.20 g vine⁻¹) and flowers (0.18 g vine⁻¹). K removed by various parts of pepper was worked out and the values obtained were leaves (28.73 g vine⁻¹), branches (28.70 g vine⁻¹), stem (19.60 g vine⁻¹), fruit spikes (0.05 g vine⁻¹), white pepper (42 g vine⁻¹) and flowers (1.40g vine⁻¹). Ca removal by plant parts were leaves (8.32 g vine⁻¹), branches (11.50 g vine⁻¹), stem (1.20 g vine⁻¹), fruit spikes (0.11 g vine⁻¹), white pepper (5.00 g vine⁻¹) and flowers (0.32 g vine⁻¹). Mg removed were leaves (4.55 g vine⁻¹), branches (5.98 g vine⁻¹), stem (5.04 g vine⁻¹), fruit spikes (0.10 g vine⁻¹), white pepper (5.80 g vine⁻¹) and flowers (0.22 g vine⁻¹).

Experiment conducted on evaluation of Sulphate of Potash (SOP) as potassium source on growth, yield and quality of bush pepper reported that leaf N content was the highest in treatment containing recommended K as MOP and Mg @ 25 kg ha⁻¹ as Mg SO₄ (2.60 %). P content was maximum in 50 % of recommended K as SOP (0.21 %). Treatment containing 50 % of recommended K as SOP + SOP 2 % foliar Spray showed the highest K concentration of 3.62 %. Leaf calcium was maximum in recommended K as MOP, while control showed the highest content of leaf magnesium (Kandiannan and Srinivasan, 2007).

2.5 Nutrient content of organic sources

NPK content of FYM was reported to be 1 % N, 0.5 % P, 1 % K (KAU, 2016). According to TNAU (2016) on an average well decomposed FYM contains 0.5 % N, 0.2 % P_2O_5 and 0.5 % K_2O and vermicompost contains 0.5-1.50 % N, 0.1- 0.3 % P_2O_5 , 0.15-0.56 % K_2O . Sadanandan (2000) reported that nutrient content of neem cake (3 % N, 0.7 % P_2O_5 and 1.6 % K_2O) and leaf litters (2 % N, 0.5 % P_2O_5 and 2.4 % K_2O). Coir board (2016) reported that nutrient status of coir pith organic manure is 1.26 % N, 0.06 % P_2O_5 , and 1.20 % K_2O .

2.6 Nutrient harvest index of primary and secondary nutrients

Fageria and Baligar (2003) opined that Nitrogen Harvest Index (NHI) is very helpful in measuring N partitioning in crop plants, and it provides an evidence of how efficiently the plant utilized acquired N for grain production.

Rattunde and Frey (1986) reported that the NHI was positively associated with grain yield of oats and response of grain yields to environmental productivity but was inversely related to mean straw yield. A high NHI indicates increased partitioning of N to the grain (Bulman and Smith, 1994). According to Rao and Dao (1996) soil and crop management practices also influence NHI.

The NHI can be improved in crop plants by adopting appropriate soil and plant management practices. These practices are use of adequate N rate, source and time of application, planting efficient crop species or genotypes within species and use of legumes in the crop rotation (Fageria, 2014).

High yields would result in greater amounts of N and P in grains, but grain concentration of these nutrients would vary intricately. Harvest index was strongly related to NHI and Phosphorus Harvest Index (PHI) (Araujo and Teixeira, 2003).

The N harvest index was only slightly affected by N fertilization whereas the K harvest index tended to increase and the P harvest index increased strongly with increasing rates of N (Thiraporn *et al.*, 1992).

Accoding to Dass *et al.* (2010) the greatest values of nutrient harvest index were registered with farmers' practice, because under nutrient-stress conditions, the plant tries to extract more from the soil volume and converts maximum toward fruits for completion of its life cycle.

The impact of Arbuscular Mycorrhizal Fungi (AMF), inorganic phosphorus (P), and irrigation regimes was studied in an okra (*Abelmoschus esculentus*)–pea (*Pisum sativum*) cropping system in an acidic Alfisol. The fourteen treatments involoving AMF, inorganic phosphorus (50, 75, 100 % soil test based recommendation) and irrigation regime at 40 and 80 per cent available water capacity, generalized recommended NPK and irrigation and farmers practice revealed that N, P and K harvest index were significantly higher in farmers practice in okra while it was higher in the treatment AMF @ 12 kg ha⁻¹ + 100 % P + 100 % NK + irrigation 80 % of available water capacity in pea (Kumar *et al.*, 2015).

2.7 Economics of cultivation

Mohammed *et al.* (2017) studied the financial feasibility and risk bearing ability of black pepper production. Results of economic performance indicators revealed that black pepper farming generated a total discounted revenue of birr 416,024.4 per hectare with benefit cost ratio of 5.7 and internal rate of return of 61 per cent. The finding also indicated that harvesting cost accounted for the higher share (about 51 %) of the total cost of black pepper production. The findings in general reveal that, in spite of high initial investment cost and long gestation period, black pepper farming is a financially viable and a less risky enterprise.

2.8 Incidence of pests and diseases

According to Anandaraj and Sharma (1995) leaf rot and blights of black pepper are caused by *Rhizoctonia solani*, *Pythium* sp. and *Colletotrichum* sp. In the case of *R. solani* greyish spots develop on the leaves and the infected leaves remain attached to one another. *Colletotrichum* spots are characterized by a yellowish halo surrounding the necrotic spots. These diseases can be prevented by collecting runner shoots from healthy gardens and by spraying Bordeaux mixture (1kg). Phytosanitation plays an important role in reducing the inoculum build up. The affected vines should be removed and destroyed.

MATERIALS AND METHODS

3. MATERIALS AND METHODS

The investigation on "Nutrient scheduling in bush pepper (*Piper nigrum* L.)" was undertaken in the Department of Plantation Crops and Spices, College of Agriculture, Vellayani, during the period of May 2017- May 2018, to standardize potting media and nutrient level in bush pepper for yield. The materials utilized and methods followed for the experiment are presented in this chapter.

3.1 EXPERIMENTAL SITE

The pot culture experiment was carried out at the Instructional Farm, College of Agriculture, Vellayani located at 8° 42' North latitude and 76° 98' East latitude at an altitude of 29m above MSL.

3.2 SEASON

The experiment was conducted from May 2017 to May 2018.

3.3 MATERIALS

3.3.1 Planting material

Rooted cuttings of bush pepper, variety "Panniyur 1" were collected from Coconut Research Station, Balaramapuram and planted in pots.

3.3.2 Pots

Mud pots of size 30cm diameter were used for the experiment.

3.3.3 Potting media

Potting media consisted of combinations of soil, FYM, Neem cake, coir pith compost, vermicompost, sand and leaf compost. Dried FYM was collected from Department of Animal Husbandry, College of Agriculture, Vellayani. Neem cake, coir pith compost and vermicompost were purchased. Leaf compost was prepared in Department of Plantation Crops and Spices, College of Agriculture, Vellayani.

3.3.4 Fertilizers

Urea (46 per cent N), Mussooriephos (20 per cent P_2O_5) and Muriate of potash (60 per cent K_2O) were used as inorganic source of N, P, K and foliar fertilizer (13:0:45) was used in treatments where foliar application was included.

3.4 METHODS

3.4.1 Design of the experiment

Design	: CRD
Treatments	: 16

Replications : 3

No of pots treatment⁻¹: 2

3.4.1.1 Treatments

Potting media (P)

P1	-	soil + FYM + neem cake + coir pith compost (3:3:1:1)
P_2	-	soil + FYM + vermicompost + coir pith compost (3:3:1:1)
P ₃	-	soil + FYM + leaf compost + coir pith compost (3:3:1:1)

Inorganic fertilizers (I)

I_1	-	37.5: 37.5: 50.0 g of NPK plant ⁻¹ year ⁻¹ at monthly splits
I_2	-	37.5: 37.5: 50.0 g of NPK plant ⁻¹ year ⁻¹ at quarterly splits

I₃ - 25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at monthly splits
I₄ - 25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits
I₅ - 12.5:12.5:25.0 g of NPK plant⁻¹ year⁻¹ as soil application at equal monthly splits up to 3 MAP and foliar application of 13:0:45 (0.5%) at fortnightly intervals from 4th MAP.

4

Treatment combinations:

p_1i_1	-	soil + FYM + neem cake + coir pith compost (3:3:1:1) and 37.5: 37.5:
		50.0 g of NPK plant ⁻¹ year ⁻¹ at monthly splits.
p_1i_2	-	soil + FYM + neem cake + coir pith compost (3:3:1:1) and 37.5: 37.5:
		50.0 g of NPK plant ⁻¹ year ⁻¹ at quarterly splits.
p_1i_3	-	soil + FYM + neem cake + coir pith compost (3:3:1:1) and 25.0: 25.0:
		50.0 g of NPK plant ⁻¹ year ⁻¹ at monthly splits.
p_1i_4	-	soil + FYM + neem cake + coir pith compost (3:3:1:1) and 25.0: 25.0:
		50.0 g of NPK plant ⁻¹ year ⁻¹ at quarterly splits.
p_1i_5	-	soil + FYM + neem cake + coir pith compost (3:3:1:1) and
		12.5:12.5:25.0 g of NPK plant ⁻¹ year ⁻¹ as soil application at equal
		monthly splits up to 3 MAP and foliar application of 13:0:45
		(0.5%) at fortnightly intervals from 4 th MAP.
$p_2 i_1$	-	soil + FYM + vermicompost + coir pith compost (3:3:1:1) and 37.5:
		37.5: 50.0 g of NPK plant ⁻¹ year ⁻¹ at monthly splits.
p_2i_2	-	soil + FYM + vermicompost + coir pith compost (3:3:1:1) and 37.5:
		37.5: 50.0 g of NPK plant ⁻¹ year ⁻¹ at quarterly splits.

$p_2 i_3$	-	soil + FYM + vermicompost + coir pith compost (3:3:1:1) and 25.0: 25.0: 50.0 g of NPK plant ⁻¹ year ⁻¹ at monthly splits.
p ₂ i ₄	-	soil + FYM + vermicompost + coir pith compost (3:3:1:1) and 25.0: 25.0: 50.0 g of NPK plant ⁻¹ year ⁻¹ at quarterly splits.
p ₂ i ₅	-	soil + FYM + vermicompost + coir pith compost (3:3:1:1) and 12.5:12.5:25.0 g of NPK plant ⁻¹ year ⁻¹ as soil application at equal monthly splits up to 3 MAP and foliar application of 13:0:45 (0.5%) at fortnightly intervals from 4^{th} MAP.
p ₃ i ₁	-	soil + FYM + leaf compost + coir pith compost (3:3:1:1) and 37.5: $37.5: 50.0 \text{ g of NPK plant}^{-1} \text{ year}^{-1} \text{ at monthly splits.}$
p_3i_2	-	soil + FYM + leaf compost + coir pith compost (3:3:1:1) and 37.5: $37.5: 50.0 \text{ g of NPK plant}^{-1}$ year $^{-1}$ at quarterly splits.
p ₃ i ₃	-	soil + FYM + leaf compost + coir pith compost (3:3:1:1) and 25.0: 25.0: 50.0 g of NPK plant ⁻¹ year ⁻¹ at monthly splits.
p ₃ i ₄	-	soil + FYM + leaf compost + coir pith compost (3:3:1:1) and 25.0: 25.0: 50.0 g of NPK plant ⁻¹ year ⁻¹ at quarterly splits.
p3i5	-	soil + FYM + leaf compost + coir pith compost (3:3:1:1) and 12.5:12.5:25.0 g of NPK plant ⁻¹ year ⁻¹ as soil application at equal monthly splits up to 3 MAP and foliar application of 13:0:45 (0.5%) at fortnightly intervals from 4^{th} MAP.
Control	-	package of practices recommendations (KAU, 2016) - potting mixture (soil + sand + FYM, 1:1:1) 1.0:0.5:2.0 g of NPK plant ⁻¹ at bimonthly interval.

3.4.2 Preparation of potting media

Potting media were prepared with different sources of organic manures in the following proportion.

Potting media, P ₁ -	soil + FYM + neem cake + coir pith compost (3:3:1:1)
Potting media, P ₂ -	soil + FYM + vermicompost + coir pith compost (3:3	:1:1)
Potting media, P_3 -	soil + FYM + leaf compost + coir pith compost (3:3:1	:1)
Control -	soil + sand + FYM (1:1:1).	

 P_1 , P_2 , P_3 and control were prepared separately (Plate. 1) and filled in pots @ 10 kg pot⁻¹. Trichoderma @1 g kg⁻¹ was mixed with the potting media.

3.4.3 Preparation of leaf compost

Preparation of leaf compost is shown in plate. 2.

A shaded area was selected and cleaned for composting. Fallen jack leaves were collected, spread in a circle of radius 1m up to a height of 10 cm and moistened. 10 g of composting inoculum obtained from of Department of Agricultural Microbiology, College of Agriculture, Vellayani was used. Cow dung slurry was spread over the composting inoculum. This was covered with second layer of leaves to a thickness 10 cm and composting inoculums and cow dung slurry were spread. The process was repeated till it reached a height of 75cm. Then it was allowed to decompose. Water was sprinkled on alternate days. Turning of heap was done at 15 days interval. It took 2 months for complete decomposition. Leaf compost was collected and shade dried.

Plate 1a. Potting media (P₁)

Plate 1b. Potting media (P₂)

Plate 1c. Potting media (P₃)

Plate 1d. Potting media - control

Plate 1. Different types of potting media

Plate 2a. Composting inoculum

Plate 2b. Application of composting Inoculums

Plate 2c. Spresding of cowdung slurry

Plate 2d. Heap of leaf for composting

Plate 2. Preparation of leaf compost

The pots were filled with respective potting media to one fourth of the volume prior to planting of rooted cuttings. The rooted cuttings were removed from the polybag and transplanted into the pots. The pots were then filled with potting media upto the brim. Lime was applied @ 50 g plant ⁻¹ to all pots.

46

3.4.5 Fertilizer application

Fertilizer application was done at monthly, bimonthly, quarterly intervals as per the treatments. The quantity of fertilizer applied for each treatment is given in appendix 1. Fertilizer application and foliar spraying are presented in Plate. 5 and Plate.6 respectively.

3.5 AFTER CULTIVATION

3.5.1 Weeding and Irrigation

Hand weeding was done as and when needed and timely irrigation was also given.

3.5.2 Plant protection

Leaf rot was noticed one month after planting, which was controlled by spraying of Ridomil Gold @ 0.2 % twice at one week interval

3.6 OBSERVATION

3.6.1 Growth parameters

The observations on growth parameters were taken from two plants at bimonthly intervals from 2 MAP to 12 MAP for each treatment and the mean was worked out.

Plate 3. Field overview 4 months after planting

Plate 4. Field overview 12 months after planting

Plate 5. Fertilizer application

Plate 6. Foliar spraying

The height of the plant was taken from the base of the plant to the base of the young fully opened leaf and expressed in cm

3.6.1.2 Number of primary branches

The number of primary branches per plant was counted and recorded

3.6.1.3 Number of secondary branches

The number of secondary branches per plant was counted and recorded

3.6.1.4 Length of primary branches

The length of primary branches was measured from base of the branch to the base of the youngest fully opened leaf and expressed in cm

3.6.1.5 Length of primary branches

The length of secondary branches was taken from base of the secondary branch to the base of the youngest fully opened leaf and expressed in cm

3.6.1.6 Number of leaves

Total number of fully opened leaves per plant was counted and recorded at bimonthly interval.

3.6.1.7 Leaf length

Five leaves per plant were selected randomly and leaf length is measured and expressed in cm.

3.6.1.8 Leaf width

Leaves used for measuring the leaf length were used for recording the width of the leaves. The width was measured at the broadest part of the leaves and expressed in cm.

3.6.1.9 Leaf area

The leaf area for individual leaf was estimated using equation

 $LA = L \times W \times 0.61$ (Ibrahim *et al.*, 1985)

Where,

LA= Leaf area

L= Length of leaves

W= Width of leaves

The average leaf area was worked out from the leaf length and leaf width recorded. This was multiplied with a constant and number of leaves to get total leaf area and was expressed in cm².

3.6.2 Yield parameters

3.6.2.1 Number of spikes per plant

The number of spikes of each plant at harvest till 12 MAP was counted and expressed as the total number of spikes per plant.

3.6.2.2 Length of spike

Five spikes were randomly selected from each plant at harvest till 12 MAP and the length was measured and the mean length worked out and recorded in cm.

3.6.2.3 Number of berries per spike

Number of berries on each spike was counted at harvest upto 12 MAP from five randomly selected spikes and the average worked out and recorded

3.6.2.4 Fresh weight of berries per plant

The berries were separated from the spikes and the fresh weight was taken using electronic balance and recorded in g.

3.6.2.5 Dry weight of berries per plant

The berries were oven dried at $70^{\circ}\pm5^{\circ}$ C until constant weight was obtained and expressed in g.

3.6.2.6 Hundred berry weight

Five spikes were selected randomly from each plant and the berries were separated. From this hundred berries were randomly selected and weighed using an electronic balance and expressed in g (Thankamani, 2000).

3.6.2.7 Hundred berry volume

Twenty ml of water was taken in a measuring cylinder and 100 berries were immersed in water for one minute. Hundred berry volume was determined by observing water displacement (Thankamani, 2000).

3.6.3 Root parameters

3.6.3.1 Fresh weight of roots

After carefully removing the plant from the pot at 12 MAP. The roots were washed gently in tap water to remove all adhering soil particles and allowed to air dry. Then roots were separated by cutting at soil level and fresh weight of the root was recorded using electronic balance and the mean was expressed in g.

3.6.3.2 Dry weight of roots

The roots were dried in a hot air oven at $70^{\circ}\pm5^{\circ}$ C till constant weight was obtained and the mean was expressed in g (Bruns and Croy, 1985).

3.6.3.3 Volume of roots

The fresh roots was harvested at 12 MAP and washed gently to remove the adhering soil particles and was air dried. The roots were then placed in measuring beaker and volume displaced was recorded and expressed in cm³ (Bruns and Croy, 1985).

3.6.4 Physiological parameters.

3.6.4.1 Dry matter production

Leaves, stem, root, spikes and berries of the uprooted plants were separated and dried to a constant weight at $70^{\circ}\pm5^{\circ}$ C in a hot air oven. The sum of dry weight of component parts gave the total dry matter production of plant and mean value expressed as g plant⁻¹(Thankamani, 2000).

3.6.4.2 Specific leaf weight

From each plant, fully expanded five leaves were collected. Leaf area was measured by using the formula by (Ibrahim *et al.*, 1985). Then leaves were dried at $70^{0}\pm5^{0}$ C in a hot air oven to a constant weight. SLW was calculated using the formula.

SLW $(g m^{-2}) =$ _____ (Amanullah, 2015)

Leaf area

Harvest index was calculated at final harvest as the ratio of dry weight of berries to the dry weight of whole plant.

Harvest Index (HI) = $\frac{Y_{econ}}{Y_{bio}}$

 Y_{eco} = Total dry weight of berries Y_{bio} = Total dry weight of plant

3.6.4.4 Moisture percentage

Fresh berries were weighed and oven dried at $70^{\circ}\pm5^{\circ}$ C till constant weight was obtained. Moisture percentage was calculated by using formula.

Moisture percentage = A-B x 100

Where, A = Fresh weight of berries (g).

B = Dry weight of berries (g).

3.6.4.5 Drying percentage

Drying percentage was calculated at harvest. Fresh berries was weighed and kept in hot air oven at $70^{\circ}\pm5^{\circ}$ C till constant weight was obtained. The dry weight was then noted and drying percentage was expressed as given below.

Drying percentage (%) = $B/A \times 100$

Where, A = Fresh weight of berries (g).

B = Dry weight of berries (g).

3.6.4.6 Chlorophyll content (6 MAP and at harvest)

Total chlorophyll content of the leaves were estimated at 6 MAP and 12 MAP by Spectrophotometric method (Starnes and Hardly, 1965) and expressed in mg g^{-1} of fresh leaf weight.

Chlorophyll a = 12.7 (A₆₆₃) -2.69 (A₆₄₅) × V 1000×W

Chlorophyll b= 22.9 (A₆₄₅) - 4.68 (A₆₆₃) × V 1000×W

Total chlorophyll = 20.2 (A₆₄₅) +8.02 (A₆₆₃) × <u>V</u> 1000×W

Where,

A= Absorbance at specific wave length (645 and 663 nm)

V= final volume of 100 per cent acetone extract

W= Fresh weight of leaf tissue in g

3.6.5 Quality parameters of berries

3.6.5.1 Starch

Starch content of berries was analyzed at harvest by acid hydrolysis method (Pruthi, 1999) and expressed as percentage on dry weight basis.

3.6.5.2 Total ash

The berries were oven dried at $70^{\circ}\pm5^{\circ}$ C and ground. 2 g of powdered sample was placed in a crucible, weighed accurately, and slowly carbonized using a muffle furnace $550\pm25^{\circ}$ C until the sample turned into white ash to constant weight. The ash was weighed and the percentage of total ash was calculated (FSSAI, 2015).

3.6.5.3 Essential oil

The content of essential oil was estimated at harvest by Clevenger distillation method (Pruthi, 1999) and expressed as percentage (w/w) on dry weight basis.

3.6.5.4 Oleoresin

The oleoresin content was estimated by soxhlet extraction method using acetone as solvent and expressed as percentage on dry weight basis (Pruthi, 1999).

3.6.5.5 Piperine

The piperine content in dried berries was determined by spectrophotometric method described by Sowbhagya *et al.* (1990). Freshly powdered oven dried berries (100 mg) was transferred to a 100ml volumetric flask. The volume was made up with 100 per cent acetone. The flask was shaken well and allowed to settle for 2 h under dark condition. Then 0.5 ml of the solution was pipetted out from the volumetric flask and made upto 5 ml with acetone. The absorbance of the solution was read at 337 nm with acetone as blank. The standard values for pure piperine at different concentrations were also worked out following the same procedure and standard curve for piperine was plotted.

3.6.6 Analysis of soil and potting medium (before and after the experiment)

Potting media (P_1 , P_2 , P_3 and control) were collected at the time of potting media preparation were analysed for pH, EC, organic carbon, availabe N, P, K, Ca, Mg and S. Potting media were collected from each pot after the experiment and analysed for pH, EC, organic carbon, availabe N, P, K, Ca, Mg and S as detailed in table 1.

SI. No	Parameters	Method of estimation	Reference			
1	рН	pH meter	Jackson (1973)			
		(1:2.5 soil water ratio)				
2	Electrical	Conductivity meter	Jackson (1973)			
	conductivity	(1:2.5 soil water ratio)				
3	Organic carbon	Walkley and Black rapid titration	Walkley and Black			
		method	(1934)			
4	Available N	Alkaline permanganate method	Subbiah and Asija (1956)			
		i intainite permanganate method	Subbian and Asija (1950)			
5	Available P	Bray extraction and photoelectric	Jackson (1973)			
		colorimetry				
6	Available K	Neutral normal ammonium acetate	Jackson (1973)			
		extraction and estimation using flame				
		photometry				
7	Available Ca	Ammonium acetate method and	Hesse (1971)			
		estimation using atomic absorption				
	31 21	Spectrophotometer				
0						
8	Available Mg	Ammonium acetate method and	Hesse (1971)			
		estimation using atomic absorption				
		Spectrophotometer				
9	Available S	Calcium chloride extraction and	Chesnin and Yien (1950)			
		estimated by turbidimetry				

Table 1. Details of method used for chemical analysis of potting media

3.6.7 Analysis of nutrient content of organic sources utilized.

Nitrogen, phosphorus, potassium content of FYM, coir pith compost, vermicompost, leaf compost, and neem cake was analyzed using the methods mentioned in table 3. The nutrient content of organic sources used are presented in table 2.

8

Organic sources	N (%)	P (%)	K (%)
FYM	0.50	0.41	0.64
Neem cake	1.20	0.75	0.78
Vermicompost	1.28	1.36	0.77
Leaf compost	1.18	0.95	0.68
Coir pith compost	0.45	0.46	0.18

Table 2. Nutrient content of organic sources utilized

3.6.8 Plant uptake of N, P, K, Ca, Mg and S of roots, leaves, stem and spikes at harvest stage

The plant samples were analysed for N, P, K, Ca, Mg, S by adopting standard procedure (Table 3). The plant samples were separated in to leaves, stem, root and spikes and dried in hot air oven at $70^{\circ}\pm5^{\circ}$ C till a constant weight was obtained. Dried samples were ground and used for analysis.

SI. No	Parameters	Method	Reference
1	Total N	Modified microkjeldal method	Jackson (1973)
2	Total P	Vanadomolybdate phosphoric yellow colour method	Piper (1966)
3	Total K	Flame photometry	Jackson (1973)
4	Total Ca, Mg	Diacid digestion and estimation using atomic absorption specrtrometry	Piper (1966)
5	Total S	Diacid digestion and estimation by turbidimetric method	Chesnin and Yien (1950)

Table 3: Analytical methods followed in plant analysis

The uptake of N, P, K, Ca, Mg and S by the plant was calculated by multiplying the nutrient content of the plant with respective dry weight of the plant parts and expressed as g plant⁻¹.

3.6.9 Nutrient harvest index (N, P, K, Ca, Mg and S)

Nutrient harvest index of different nutrients was computed using formula by Dass *et al.* (2010).

Nutrient harvest index =	Uptake of a particular nutrient by berries g plant ⁻¹		
Nutrient narvest index –	Total uptake of that nutrient in biomass g plant ⁻¹	x 100	

3.6.10 Economics of cultivation

Bush pepper requires long gestation period to generate profit. Since bush pepper is a perennial crop, fifteen years of cost of production and yield data were calculated for each treatment on per pot basis. Financial evaluation tools (Harberger, 1972), such as net present Worth (NPW), discounted benefit cost ratio and internal rate of return (IRR) were used for the analysis.

NPW= Sum of discounted benefit stream – Sum of discounted cost stream Discounted BCR= Sum of discounted benefit stream / Sum of discounted cost stream IRR = $\sum (B_t - C_t) / (1+i)^t = 0$

Where $B_t =$ Benefit in each year

 C_t = Cost in each year $t = 1, 2, 3, \dots$ N n = number of years i = interest (discount) rate

3.6.11 Incidence of diseases

Leaf rot was noticed one month after planting, which was controlled by spraying of Ridomil Gold @ 0.2 % twice at one week interval.

3.6.12 Incidence of pests

There was no incidence of pest during the crop period.

3.6.13 Statistical analysis

Statistical analysis was carried out for 15 treatments and 1 control (Factorial CRD) with two factors, potting media and inorganic fertilizers. Critical difference (CD) values at 5% level of significance were provided whereever the effects were found to be significant.

RESULTS

//

4. RESULTS

The results of the experiment conducted during 2017-2018 to standardize potting media and nutrient level in bush pepper for yield are presented in this chapter.

4.1 MORPHOLOGICAL PARAMETERS

4.1.1 Growth parameters

4.1.1.1 Plant height

The main and interaction effect of potting media and inorganic fertilizers on height of bush pepper at different periods of crop growth are furnished in table 4.

Significant variation in plant height was observed in potting media throughout the crop period. Plants which were raised in P_2 (soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1) recorded the highest plant height at all growth periods. P_3 (soil + FYM + leaf compost + coir pith compost in the ratio 3:3:1:1) was found to be on par with P_2 throughout the growth period. P_2 and P_3 recorded a plant height of 63.60 cm and 61.00 cm respectively at 12 MAP.

With regard to the effect of inorganic fertilizers, significant difference was noticed at different periods of crop growth. I_4 (25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) resulted in highest plant height at 2 MAP, was on par with I_3 (25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at monthly splits) and I_5 (12.5:12.5:25.0 g of NPK plant⁻¹ year⁻¹ at monthly splits) and I_5 (12.5:12.5:25.0 g of NPK plant⁻¹ year⁻¹ at monthly splits up to 3 MAP and foliar application of 13:0:45 (0.5 %) at fortnightly intervals from 4th MAP). I_5 recorded the highest plant height from 4 MAP to 12 MAP, which was on par with I_3 and I_4 . Plant height of 62.44 cm was recorded by I_5 at 12 MAP was on par with I_3 , I_4 and I_2 .

Interaction effect between potting media and inorganic fertilizers was nonsignificant at 2 MAP and significant from 4 MAP to 12 MAP. Treatment combination p_{2i_5} (potting media- soil + FYM + vermicompost + coir pith compost in

Treatments	2MAP	4MAP	6MAP	8MAP	10MAP	12MAP
Potting media (P)						
P ₁	31.28	42.00	44.60	46.87	47.82	49.60
P ₂	42.60	54.40	57.40	59.00	60.40	63.60
P ₃	37.60	50.73	53.40	56.07	58.50	61.00
SEm±	2.320	2.180	2.110	1.830	1.780	1.652
CD (0.05)	6.750	6.320	6.130	5.310	5.160	4.794
Inorganic fertilizers (I)						
I ₁	30.66	44.44	45.83	47.22	48.00	50.56
I ₂	33.11	44.11	47.18	50.22	53.22	56.33
I ₃	42.03	52.44	56.32	57.78	59.48	60.44
I_4	42.67	49.67	53.11	55.89	57.56	60.56
I_5	37.33	54.56	56.56	58.78	59.61	62.44
SEm±	3.000	2.810	2.730	2.360	2.300	2.133
CD (0.05)	8.710	8.160	7.920	6.850	6.660	6.189
Interaction (p×i)						
p_1i_1	17.63	20.67	23.67	26.00	26.67	29.33
p_1i_2	23.33	33.67	36.33	40.67	43.33	46.33
p1i3	40.77	54.00	56.67	56.33	56.77	57.67
p_1i_4	36.33	46.00	49.67	53.67	54.33	57.67
p1i5	38.33	55.67	56.67	57.67	58.00	59.67
p_2i_1	37.67	58.33	57.17	58.00	58.33	62.33
p_2i_2	34.67	51.33	54.53	54.33	56.33	60.67
p ₂ i ₃	42.33	52.00	57.97	60.00	62.00	62.67
p ₂ i ₄	54.33	51.00	55.67	57.00	58.33	64.67
p ₂ i ₅	44.00	59.33	61.67	65.67	67.00	67.67
p ₃ i ₁	36.67	54.33	56.67	57.67	59.00	60.00
p ₃ i ₂	41.33	47.33	50.67	55.67	60.00	62.00
p ₃ i ₃	43.00	51.33	54.33	57.00	59.67	61.00
p ₃ i ₄	37.33	52.00	54.00	57.00	60.00	62.00
p3i5	29.67	48.67	51.33	53.00	53.83	60.00
SEm±	5.200	4.870	4.730	4.090	3.980	3.694
CD (0.05)	NS	14.140	13.720	11.860	11.540	10.720
Control	17.00	28.00	30.33	34.00	36.33	38.00
Control Vs Treatment	S	S	S	S	S	S

Table 4. Effect of potting media and inorganic fertilizers on plant height, cm

the ratio 3:3:1:1 and inorganic fertilizers 12.5:12.5:25.0 g of NPK plant⁻¹ year⁻¹ as soil application at equal monthly splits up to 3 MAP and foliar application of 13:0:45 (0.5 %) at fortnightly intervals from 4th MAP) recorded the highest plant height from 4 MAP to 12 MAP. Plant height of 67.67 cm was recorded by p_{2i_5} at 12 MAP. The treatment combinations p_{1i_3} , p_{1i_4} , p_{1i_5} , p_{2i_1} , p_{2i_2} , p_{2i_3} , p_{2i_4} , p_{3i_1} , p_{3i_2} , p_{3i_3} , p_{3i_4} and p_{3i_5} were found to be on par with p_{2i_5} at 12 MAP. Significant difference in plant height in all periods of growth was recorded between treatment and control.

4.1.1.2 Number of primary branches

The main and interaction effect of potting media and inorganic fertilizers on number of primary branches of bush pepper at different growth periods are presented in table 5.

Potting media did not significantly influence the number of primary branches throughout the crop period. There was no significant variation in number of primary branches among the different inorganic fertilizers also at different growth periods of crop.

Interaction effect was not significant from 2 MAP to 10 MAP. At 12 MAP treatment combination p_{2i4} (7.33), (potting media (soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1) and inorganic fertilizers (25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) recorded the highest number of primary branches, was on par with p_{1i3} (7.00) , p_{1i5} (6.67), p_{3i4} (6.67), p_{2i2} (6.33), p_{2i1} (6.00), p_{3i1} (5.67), $p_{3i5}(5.67)$, p_{1i4} (5.33) and p_{2i5} (5.33). The number of primary branches were noted non significant between treatment and control in all periods of growth.

4.1.1.3 Number of secondary branches

The effect of treatments on number of secondary branches at different periods of crop growth are shown in table 6.

Treatments	2MAP	4MAP	6MAP	8MAP	10MAP	12MAP
Potting media (P)						
P ₁	1.87	4.53	4.67	5.00	5.27	5.40
P ₂	2.20	4.13	4.13	4.47	4.80	5.87
P ₃	2.07	4.53	4.73	5.00	5.07	5.20
SEm±	0.300	0.460	0.400	0.400	0.390	0.379
CD (0.05)	NS	NS	NS	NS	NS	NS
Inorganic fertilizers						
(I)						
I_1	1.67	3.78	4.11	4.33	4.56	5.11
I ₂	2.22	3.89	3.89	4.22	4.33	4.78
I ₃	2.11	4.89	4.89	5.11	5.11	5.22
I_4	2.44	5.33	5.56	5.67	5.89	6.44
I_5	1.78	4.11	4.11	4.78	5.33	5.89
SEm±	0.390	0.590	0.520	0.510	0.500	0.489
CD (0.05)	NS	NS	NS	NS	NS	NS
Interaction (p×i)						
p_1i_1	1.67	2.67	3.00	3.33	3.67	3.67
p_1i_2	1.33	3.33	3.33	3.67	3.67	4.33
p1i3	2.00	7.00	7.00	7.00	7.00	7.00
p1i4	2.00	5.00	5.33	5.33	5.33	5.33
p1i5	2.33	4.67	4.67	5.67	6.67	6.67
$p_2 i_1$	1.67	4.00	4.00	4.00	4.33	6.00
p_2i_2	3.67	5.00	5.00	5.33	5.67	6.33
$p_2 i_3$	1.67	3.67	3.67	4.00	4.00	4.33
p2i4	3.00	5.00	5.00	5.33	5.67	7.33
p ₂ i ₅	1.00	3.00	3.00	3.67	4.33	5.33
p ₃ i ₁	1.67	4.67	5.33	5.67	5.67	5.67
p_3i_2	1.67	3.33	3.33	3.67	3.67	3.67
p3i3	2.67	4.00	4.00	4.33	4.33	4.33
p3i4	2.33	6.00	6.33	6.33	6.67	6.67
p3i5	2.00	4.67	4.67	5.00	5.00	5.67
SEm±	0.670	1.030	0.900	0.890	0.870	0.848
CD (0.05)	NS	NS	NS	NS	NS	2.460
Control	1.66	5.00	5.00	5.33	5.33	5.33
Control Vs						
Treatment	NS	NS	NS	NS	NS	NS

Table 5. Effect of potting media and inorganic fertilizers on number of primary branches

Treatments	2MAP	4MAP	6MAP	8MAP	10MAP	12MAP
Potting media (P)						1.1.1.1
P1	1.73	5.13	6.00	6.87	7.53	8.87
P ₂	2.60	5.80	7.73	8.33	8.87	10.40
P ₃	2.47	5.67	6.80	7.33	7.67	9.33
SEm±	0.390	0.196	0.185	0.204	0.200	0.211
CD (0.05)	NS	NS	0.536	0.591	0.580	0.612
Inorganic fertilizers						
(I)						
I ₁	2.00	5.56	6.89	7.67	8.22	9.67
I ₂	1.89	5.11	6.67	7.44	8.00	9.44
I ₃	3.00	5.89	6.22	6.89	7.33	8.89
I ₄	2.56	5.67	7.44	8.11	8.67	10.22
I_5	1.89	5.44	7.00	7.44	7.89	9.44
SEm±	0.510	0.253	0.238	0.263	0.258	0.272
CD (0.05)	NS	NS	0.692	0.763	0.749	0.790
Interaction (p×i)						
p_1i_1	1.33	4.67	5.67	6.67	7.33	8.67
p_1i_2	1.67	4.67	5.67	6.67	7.33	8.67
p_1i_3	3.67	5.67	6.67	7.67	8.33	9.67
p_1i_4	1.33	5.67	6.00	7.00	7.67	9.00
p_1i_5	0.67	5.00	6.00	6.33	7.00	8.33
$p_2 i_1$	2.33	6.00	8.33	9.00	9.67	11.00
p_2i_2	3.33	6.33	8.00	8.67	9.33	10.67
p ₂ i ₃	1.67	5.67	5.67	6.33	6.67	8.33
p2i4	3.33	5.33	9.33	10.00	10.33	12.00
p2i5	2.33	5.67	7.33	8.00	8.33	10.00
p ₃ i ₁	2.33	6.00	6.67	7.33	7.67	9.33
p ₃ i ₂	0.67	4.33	6.33	7.00	7.33	9.00
p ₃ i ₃	3.67	6.33	6.33	6.67	7.00	8.67
p3i4	3.00	6.00	7.00	7.67	8.00	9.67
p3i5	2.67	5.67	7.67	8.00	8.33	10.00
SEm±	0.880	0.439	0.413	0.455	0.447	0.471
CD (0.05)	NS	NS	1.198	1.322	1.298	1.368
Control	1.33	2.33	5.66	5.66	7.00	8.33
Control Vs						
Treatment	NS	S	S	S	S	S

Table 6. Effect of potting media and inorganic fertilizers on number of secondary branches

Potting media had no significant effect in number of secondary branches plant⁻¹ from 2 MAP to 4 MAP. Potting media P_2 (soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1) recorded the highest number of secondary branches from 6 MAP to 12 MAP. Secondary branches of 7.33, 8.33, 8.87 and 10.40 were recorded by P_2 at 6 MAP, 8 MAP, 10 MAP and 12 MAP respectively.

There was no significant variation in number of secondary branches plant⁻¹ between inorganic fertilizers from 2 MAP to 4 MAP. Inorganic fertilizer, I_4 (25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) recorded the highest number of secondary branches from 6 MAP to 12 MAP. I₄ was found to be on par with I_{1, I_2} and I_5 at 12 MAP.

Interaction effect was found to be non significant from 2 MAP to 4 MAP. Interaction was found significant from 6 MAP to 12 MAP. The treatment combination p_{2i4} (potting media- soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1 and inorganic fertilizers 25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) recorded the highest number of secondary branches from 6 MAP to 12 MAP, was on par with p_{2i1} (potting media- soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1, inorganic fertilizers. 37.5: 37.5: 50.0 g of NPK plant⁻¹ year⁻¹ at monthly splits) and p_{2i2} (potting media- soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1 and inorganic fertilizers 37.5: 37.5: 50.0 g of NPK plant⁻¹ year⁻¹ at monthly splits) and p_{2i2} (potting media- soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1 and inorganic fertilizers 37.5: 37.5: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits). At 12 MAP, the highest number of secondary branches was recorded by p_{2i4} (12.00), was on par with p_{2i1} (11.00) and p_{2i2} (10.67). There was no significant difference in number of secondary branches plant⁻¹ among treatments and control at 2 MAP. Subsequently significant difference was noticed between treatments and control.

4.1.1.4 Length of primary branches

The main and interaction effects of treatment on length of primary branches is provided in table 7.

Treatments	2MAP	4MAP	6MAP	8MAP	10MAP	12MAP
Potting media (P)						
P ₁	12.06	24.85	28.75	33.84	34.97	36.14
P ₂	15.39	37.10	38.22	42.70	44.07	45.45
P ₃	13.55	34.72	36.81	39.73	40.99	42.30
SEm±	2.080	1.421	0.923	0.499	0.495	0.497
CD (0.05)	NS	4.123	2.679	1.447	1.437	1.443
Inorganic fertilizers (I)						
I ₁	11.10	26.78	31.09	38.66	39.90	41.17
I ₂	9.82	31.17	33.36	38.76	40.02	41.29
I ₃	15.01	32.84	34.56	36.13	37.39	38.70
I ₄	18.41	36.17	38.22	40.31	41.57	42.88
I5	13.99	34.17	35.74	39.92	41.18	42.46
SEm±	2.690	1.834	1.192	0.644	0.639	0.642
CD (0.05)	NS	5.323	3.459	1.869	1.855	1.863
Interaction (p×i)						
p_1i_1	5.33	14.00	22.80	34.00	35.10	36.27
$p_1 i_2$	9.87	20.33	24.83	33.37	34.53	35.63
p1i3	15.53	27.77	30.00	33.10	34.23	35.40
p1i4	16.73	29.33	30.67	32.33	33.47	34.63
p1i5	12.82	32.83	35.43	36.40	37.53	38.77
$p_2 i_1$	11.30	34.67	36.40	43.70	45.07	46.43
$p_2 i_2$	12.92	36.83	37.23	42.83	44.20	45.63
p ₂ i ₃	17.42	35.17	37.00	38.23	39.60	41.03
p2i4	16.32	41.00	44.67	47.60	48.97	50.40
p ₂ i ₅	19.00	37.83	35.80	41.13	42.50	43.77
p ₃ i ₁	16.67	31.67	34.07	38.27	39.53	40.80
p_3i_2	6.67	36.33	38.00	40.07	41.33	42.60
p ₃ i ₃	12.08	35.60	36.67	37.07	38.33	39.67
p3i4	22.17	38.17	39.33	41.00	42.27	43.60
p ₃ i ₅	10.17	31.83	36.00	42.23	43.50	44.83
SEm±	4.650	3.177	2.064	1.115	1.107	1.112
CD (0.05)	NS	NS	5.991	3.236	3.213	3.227
Control	9.16	19.50	25.33	28.90	32.06	32.33
Control Vs Treatment	NS	S	S	S	S	S

Table 7. Effect of potting media and inorganic fertilizers on length of primary branches, cm

Potting media was found to have significant effect on length of primary branches from 4 MAP to 12 MAP. P_2 (soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1) recorded the highest length of primary branches from 4 MAP to 12 MAP. P_3 (soil + FYM + leaf compost + coir pith compost in the ratio 3:3:1:1) was found to be on par with P_2 during 4 MAP and 6 MAP.

Plants which received inorganic fertilizers I₄ (25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) was found to produce the highest length of primary branches from 4 MAP to 12 MAP, and was found to be on par with I₅ (12.5:12.5:25.0 g of NPK plant⁻¹ year⁻¹ as soil application at equal monthly splits up to 3 MAP and foliar application of 13:0:45 (0.5 %) at fortnightly intervals from 4th MAP) from 4 MAP to 12 MAP.

The interaction effect between potting media and inorganic fertilizers was noted non significant during initial 4 months after planting, thereafter p_{2i4} (Potting media- soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1 and inorganic fertilizers 25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) recorded the highest value. P_{3i4} (soil + FYM + leaf compost + coir pith compost in the ratio 3:3:1:1 and 25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) was found to be on par with p_{2i4} at 6 MAP. Primary branches length of (50.40 cm) was recorded by p_{2i4} at 12 MAP. Significant difference in length of primary branches was noticed between treatment and control from 4 MAP to 12 MAP.

4.1.1.5 Length of secondary branches

The effect of treatments on length of secondary branches in different growth periods are presented in table 8.

Potting media significantly influenced the length of secondary branches from 4 MAP to 12 MAP. P_2 (soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1) recorded the highest length of secondary branches from 4 MAP to 12 MAP.

Treatments	2MAP	4MAP	6MAP	8MAP	10MAP	12MAP
Potting media (P)						
P ₁	6.94	20.50	28.63	31.63	32.73	36.14
P ₂	7.11	33.11	38.77	40.77	44.27	45.45
P ₃	8.45	31.97	35.17	37.57	39.70	42.30
SEm±	1.050	0.860	0.468	0.468	0.491	0.497
CD (0.05)	NS	2.480	1.358	1.358	1.426	1.443
Inorganic fertilizers						
(I)						
I ₁	6.80	25.57	34.16	36.62	39.16	41.17
I ₂	6.53	25.49	33.86	36.32	39.13	41.29
I ₃	9.96	28.29	31.59	34.06	36.57	38.70
I_4	7.32	33.97	35.91	38.38	40.03	42.88
I ₅	6.89	29.33	35.46	37.92	39.61	42.46
SEm±	1.350	1.100	0.604	0.604	0.634	0.642
CD (0.05)	NS	3.200	1.753	1.753	1.841	1.863
Interaction (p×i)					-	
p_1i_1	4.33	11.67	28.83	31.83	32.93	36.27
p_1i_2	5.77	16.00	28.03	31.03	32.13	35.63
p_1i_3	11.95	23.33	27.80	30.80	31.90	35.40
p_1i_4	7.00	24.50	27.27	30.27	31.37	34.63
p1i5	5.67	27.00	31.23	34.23	35.33	38.77
$p_2 i_1$	5.23	32.70	39.73	41.73	46.20	46.43
p_2i_2	6.50	32.00	39.00	41.00	45.43	45.63
p ₂ i ₃	9.33	29.03	34.20	36.20	40.83	41.03
p2i4	5.83	40.00	43.73	45.73	47.67	50.40
p2i5	8.67	31.83	37.20	39.20	41.20	43.77
p ₃ i ₁	10.83	32.33	33.90	36.30	38.33	40.80
p_3i_2	7.33	28.47	34.53	36.93	39.83	42.60
p3i3	8.60	32.50	32.77	35.17	36.97	39.67
p3i4	9.13	37.40	36.73	39.13	41.07	43.60
p3i5	6.33	29.17	37.93	40.33	42.30	44.83
SEm±	2.340	1.910	1.046	1.046	1.099	1.112
CD (0.05)	NS	5.550	3.036	3.036	3.189	3.227
Control	8.50	16.83	23.33	26.80	29.00	30.33
Control Vs Treatment	NS	S	S	S	S	S

Table 8. Effect of potting media and inorganic fertilizers on length of secondary branches, cm

However P_3 (soil + FYM + leaf compost + coir pith compost in the ratio 3:3:1:1) found to be on par with P_2 at 4 MAP.

Significant variation among inorganic fertilizers was noticed from 4 MAP to 12 MAP. I₄ (25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) recorded the highest length of secondary branches from 4 MAP to 12 MAP. I₄ was found to be on par with I₅ (12.5:12.5:25.0 g of NPK plant⁻¹ year⁻¹ as soil application at equal monthly splits up to 3 MAP and foliar application of 13:0:45 (0.5 %) at fortnightly intervals from 4th MAP), I₂ (37.5: 37.5: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) and I₁ (37.5: 37.5: 50.0 g of NPK plant⁻¹ year⁻¹ at monthly splits) at 8 MAP, 10 MAP and 12 MAP.

Interaction was significant from 4 MAP to 12 MAP and treatment combination, p_{2i4} (potting media- soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1 and inorganic fertilizers 25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) recorded the highest length of secondary branches from 4 MAP to 12 MAP. While at 10 MAP, treatment combination p_{2i4} was on par with p_{2i1} (potting media- soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1 and 37.5: 37.5: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) and p_{2i2} (potting media- soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1 and 37.5: 37.5: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) and p_{2i2} (potting media- soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1 and 37.5: 37.5: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) and p_{2i2} (potting media- soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1 and 37.5: 37.5: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) and p_{2i2} (potting media- soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1 and 37.5: 37.5: 50.0 g of NPK plant⁻¹ year⁻¹ at monthly splits. Significant difference in length of secondary branches was observed between treatment and control from 4 MAP to 12 MAP.

4.1.1.6 Number of leaves

The main and interaction effect of potting media and inorganic fertilizers on number of leaves of bush pepper at different periods of crop growth are furnished in table 9.

There was significant difference in the number of leaves produced with different potting media from 4 MAP to 12 MAP. P₂ (soil + FYM + vermicompost +

Treatments	2MAP	4MAP	6MAP	8MAP	10MAP	12MAP
Potting media (P)						
P1	10.40	37.00	37.60	44.60	52.13	59.33
P ₂	12.80	42.33	53.07	57.53	65.53	73.00
P ₃	12.60	38.67	45.60	50.47	58.47	65.87
SEm±	1.180	1.900	1.919	1.294	1.230	1.186
CD (0.05)	NS	5.510	5.571	3.757	3.571	3.434
Inorganic fertilizers (I)						
I_1	9.22	36.33	43.67	49.67	57.00	63.12
I ₂	11.78	36.67	43.67	48.56	56.22	64.13
I ₃	14.33	37.89	44.33	48.67	57.26	64.44
I ₄	10.22	37.56	48.78	56.11	63.67	70.89
I ₅	14.11	39.33	46.67	51.33	59.44	66.78
SEm±	1.520	2.450	2.478	1.671	1.589	1.531
CD (0.05)	NS	NS	NS	4.850	4.610	4.443
Interaction (p×i)						
p_1i_1	6.67	23.00	28.33	37.67	44.67	51.67
p_1i_2	9.33	29.33	35.00	37.33	44.33	51.33
p1i3	15.33	30.33	40.67	52.33	60.67	68.00
p_1i_4	6.00	34.00	39.67	48.00	55.67	63.33
p_1i_5	14.67	37.00	44.33	47.67	55.33	62.33
p_2i_1	7.00	44.00	52.67	59.00	66.67	73.67
p ₂ i ₂	16.67	44.67	49.67	57.67	65.00	73.00
p ₂ i ₃	13.33	48.00	49.67	50.33	58.67	66.00
p ₂ i ₄	10.67	40.67	64.33	67.67	75.33	82.33
p ₂ i ₅	16.33	42.33	49.00	53.00	62.00	70.00
p ₃ i ₁	14.00	42.00	50.00	52.33	59.67	67.00
p_3i_2	9.33	36.00	46.33	50.67	59.33	68.00
p3i3	14.33	35.33	42.67	43.33	52.33	59.33
p3i4	14.00	38.00	42.33	52.67	60.00	67.00
p3i5	11.33	38.67	46.67	53.33	61.00	68.00
SEm±	2.640	4.250	4.292	2.894	2.751	2.651
CD (0.05)	NS	NS	NS	8.400	7.985	7.695
Control	8.33	19.00	28.33	41.00	47.33	46.00
Control Vs Treatment	NS	S	S	S	S	S

Table 9. Effect of potting media and inorganic fertilizers on number of leaves

coir pith compost in the ratio 3:3:1:1) produced the highest number of leaves from 4 MAP to 12 MAP. P₂ recorded the highest number of leaves (73.00) at 12 MAP.

Inorganic fertilizers were found to be non significant up to 6 MAP. Inorganic fertilizer I₄ (25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) showed significantly high value from 8 MAP to 12 MAP. I₄ recorded the highest number of leaves (70.89) at 12 MAP.

Among the interaction, p_{2i_4} (potting media- soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1 and inorganic fertilizers 25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) produced the highest number of leaves from 8 MAP to 12 MAP. Significant difference in number of leaves was noted between treatment and control from 4 MAP to 12 MAP.

4.1.1.7 Leaf length

The effects of treatments on leaf length at different growth period of crop are provided in table 10.

Potting media showed no significant difference in leaf length from 2 MAP to 6 MAP. Significant variation in leaf length was noticed among the potting media from 8 MAP to 12 MAP. P₂ (soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1) recorded the highest leaf length from 8 MAP to 12 MAP, which was on par with P₃ (soil + FYM + leaf compost + coir pith compost in the ratio 3:3:1:1).

Leaf length among inorganic fertilizers was found to be non significant throughout the period of observation.

Interaction effect was noted non significant at all periods of growth. There was no significant difference in leaf length between treatment and control throughout the period of observation.

Treatments	2MAP	4MAP	6MAP	8MAP	10MAP	12MAP
Potting media (P)						
P ₁	9.82	11.32	11.65	11.86	12.05	12.30
P ₂	11.11	11.92	12.49	12.55	12.99	13.18
P ₃	11.17	11.84	12.18	12.47	12.64	12.77
SEm±	0.470	0.368	0.280	0.190	0.230	0.240
CD (0.05)	NS	NS	NS	0.540	0.660	0.680
Inorganic fertilizers (I)						
I ₁	10.07	11.14	11.70	11.88	12.28	12.60
I_2	11.11	11.53	11.83	12.00	12.32	12.43
I ₃	11.08	11.71	12.40	12.60	12.76	12.83
I_4	10.07	12.38	12.51	12.70	12.76	12.89
I ₅	11.18	11.71	12.09	12.29	12.68	13.00
SEm±	0.610	0.475	0.361	0.240	0.300	0.300
CD (0.05)	NS	NS	NS	NS	NS	NS
Interaction (p×i)						
p_1i_1	8.67	10.92	11.33	11.57	11.63	11.97
p_1i_2	9.83	10.17	10.67	10.83	11.23	11.23
p_1i_3	10.93	11.67	12.33	12.57	12.60	12.73
p_1i_4	8.50	12.53	12.53	12.90	12.90	13.17
p_1i_5	11.17	11.33	11.37	11.43	11.87	12.40
$p_2 i_1$	11.20	11.67	12.00	11.73	12.37	12.67
p_2i_2	11.90	12.53	12.73	12.83	13.37	13.50
p ₂ i ₃	10.10	11.23	12.50	12.57	12.93	12.97
p2i4	10.67	12.60	12.83	12.87	12.93	13.03
p ₂ i ₅	11.67	11.57	12.40	12.73	13.33	13.73
p ₃ i ₁	10.33	10.83	11.77	12.33	12.83	13.17
p_3i_2	11.60	11.90	12.10	12.33	12.37	12.57
p ₃ i ₃	12.20	12.23	12.37	12.67	12.73	12.80
p3i4	11.03	12.00	12.17	12.33	12.43	12.47
p3i5	10.70	12.23	12.50	12.70	12.83	12.87
SEm±	1.050	0.822	0.625	0.420	0.510	0.530
CD (0.05)	NS	NS	NS	NS	NS	NS
Control	10.60	11.50	11.86	12.00	12.20	12.41
Control Vs Treatment	NS	NS	NS	NS	NS	NS

Table 10. Effect of potting media and inorganic fertilizers on leaf length, cm

4.1.1.8 Leaf width

The main and interaction effects of treatment on leaf width are shown in table 11.

Potting media and inorganic fertilizers did not influence the leaf width at all periods of growth. Interaction effect was also non significant throughout the period of observation. There was no significant difference in leaf width between treatment and control from 2 MAP to 12 MAP.

4.1.1.9 Leaf area

The effects of treatments on leaf area at different periods of crop growth are provided in table 12.

Potting media had significant effect on leaf area from 4 MAP to 12 MAP. P_2 (soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1) recorded the highest leaf area from 4 MAP to 12 MAP. P_2 recorded the leaf area of 3798.07 cm², 4188.15 cm², 5057.97 cm² and 5823.13 cm² at 6 MAP, 8 MAP, 10 MAP and 12 MAP respectively.

Inorganic fertilizers did not influence the leaf area up to 6 MAP. Significant variation among inorganic fertilizers was noticed from 8 MAP to 12 MAP. I₄ (25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) was found to be significant from 10 MAP to 12 MAP, which was on par with I₅ (12.5: 12.5: 25.0 g of NPK plant⁻¹ year⁻¹ as soil application at equal monthly splits up to 3 MAP and foliar application of 13:0:45 (0.5 %) at fortnightly intervals from 4th MAP) and I₁ (37.5: 37.5: 50.0 g of NPK plant⁻¹ year⁻¹ at monthly splits).

The interaction effect was non significant from 2 MAP to 6 MAP. Significant difference was observed among the treatment combination from 6 MAP to 12 MAP. In the interaction effect p_{2i4} (potting media- soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1 and inorganic fertilizers 25.0: 25.0: 50.0 g of NPK plant⁻¹

Treatments	2MAP	4MAP	6MAP	8MAP	10MAP	12MAP
Potting media (P)						121111
P ₁	7.11	8.92	9.16	9.33	9.44	9.65
P ₂	8.54	9.02	9.26	9.44	9.70	9.89
P ₃	8.23	8.61	8.79	8.91	9.03	9.18
SEm±	0.490	0.320	0.290	0.272	0.240	0.240
CD (0.05)	NS	NS	NS	NS	NS	NS
Inorganic fertilizers						110
(I)						
I ₁	8.53	9.18	9.39	9.52	9.83	10.17
I ₂	7.17	8.28	8.43	8.61	8.78	8.90
I ₃	7.86	8.46	8.78	8.95	9.04	9.31
I_4	8.21	9.08	9.30	9.43	9.58	9.67
I ₅	8.04	9.27	9.46	9.61	9.71	9.82
SEm±	0.630	0.410	0.370	0.351	0.310	0.310
CD (0.05)	NS	NS	NS	NS	NS	NS
Interaction (p×i)						110
p_1i_1	7.77	9.07	9.17	9.43	9.50	9.73
p_1i_2	6.03	8.90	9.00	9.00	9.10	9.27
p ₁ i ₃	7.27	8.70	9.10	9.40	9.60	10.03
p_1i_4	6.43	9.27	9.53	9.67	9.73	9.87
p1i5	8.07	8.67	9.00	9.17	9.27	9.33
$p_2 i_1$	8.27	8.70	9.00	9.03	9.63	10.03
p_2i_2	8.17	8.17	8.47	8.90	9.23	9.27
p ₂ i ₃	8.07	8.23	8.40	8.93	8.57	8.90
p ₂ i ₄	10.27	10.15	10.50	10.60	10.87	10.93
p2i5	7.93	9.87	9.93	10.13	10.20	10.33
p ₃ i ₁	9.57	9.77	10.00	10.10	10.37	10.73
p ₃ i ₂	7.30	7.77	7.83	7.93	8.00	8.17
p3i3	8.23	8.43	8.83	8.93	8.97	9.00
p3i4	7.93	7.83	7.87	8.03	8.13	8.20
p ₃ i ₅	8.13	9.27	9.43	9.53	9.67	9.80
SEm±	1.090	0.710	0.650	0.608	0.540	0.530
CD (0.05)	NS	NS	NS	NS	NS	NS
Control	6.46	8.10	8.23	8.30	8.46	8.56
Control Vs Treatment	NS	NS	NS	NS	NS	NS

Table 11. Effect of potting media and inorganic fertilizers on leaf width, cm

Treatments	2MAP	4MAP	6MAP	8MAP	10MAP	12MAP
Potting media (P)						
P ₁	506.11	1923.32	2478.11	3056.83	3664.38	4358.72
P ₂	773.06	2904.37	3798.07	4188.15	5057.97	5823.13
P ₃	700.25	2382.95	2999.05	3427.32	4071.61	4713.01
SEm±	92.380	200.661	203.946	160.870	163.095	178.847
CD (0.05)	NS	582.355	591.888	466.872	473.330	519.046
Inorganic fertilizers (I)						
I ₁	508.26	2358.26	3017.53	3450.65	4240.99	5060.37
I ₂	608.01	2186.81	2702.40	3112.75	3758.68	4393.48
I ₃	783.28	2290.07	2938.03	3347.66	4021.66	4702.72
I4	597.20	2549.04	3514.32	4152.84	4812.46	5450.25
I ₅	802.29	2633.56	3286.43	3723.27	4489.49	5217.96
SEm±	119.262	259.052	263.293	207.682	210.554	230.891
CD (0.05)	NS	NS	NS	602.730	611.066	670.086
Interaction (p×i)						0701000
p ₁ i ₁	300.02	1487.10	1894.51	2557.97	3063.12	3728.73
p_1i_2	334.52	1735.60	2151.97	2258.52	2799.25	3337.56
p ₁ i ₃	794.81	1888.30	2779.56	3765.60	4470.60	5305.41
p ₁ i ₄	279.01	2279.60	2763.89	3643.07	4266.19	5010.40
p1i5	822.20	2226.00	2800.63	3058.97	3722.74	4411.51
$p_2 i_1$	411.38	2802.80	3519.80	3815.15	4840.63	5704.23
p ₂ i ₂	1004.91	2823.40	3292.63	4039.42	4897.85	5568.20
p ₂ i ₃	657.92	2764.60	3193.33	3287.26	3955.96	4636.81
p ₂ i ₄	840.90	3192.70	5291.38	5630.74	6468.09	7162.73
p2i5	950.20	2938.30	3693.16	4168.16	5127.33	6043.68
p ₃ i ₁	813.37	2784.90	3638.26	3978.82	4819.21	5748.15
p ₃ i ₂	484.58	2001.40	2662.63	3040.29	3578.94	4274.67
p ₃ i ₃	897.10	2217.30	2841.20	2990.11	3638.41	4165.93
p3i4	671.68	2174.80	2487.68	3184.70	3703.09	4177.63
p ₃ i ₅	634.48	2736.30	3365.49	3942.66	4618.39	5198.68
SEm±	206.568	448.692	456.037	359.715	364.690	399.914
CD (0.05)	NS	NS	NS	1043.968	1058.407	1160.623
Control	342.33	1152.32	1739.88	2498.34	2977.00	3178.00
Control Vs Treatment	S	S	S	S	S	S178.00

Table 12. Effect of potting media and inorganic fertilizers on leaf area, cm²

year⁻¹ at quarterly splits) noted the highest leaf area from 8 MAP to 12 MAP. The treatment combination p_{2i4} recorded the highest leaf area of 5630.74 cm², 6468.09 cm² and 7162.73 cm² at 8 MAP, 10 MAP and 12 MAP respectively. Significant difference was noticed in leaf area between treatment and control from 2 MAP to 12 MAP.

4.1.2 Yield parameters

4.1.2.1 Number of spike planf¹

The main and interaction effect of potting media and inorganic fertilizers on number of spikes plant⁻¹ is furnished in table 13.

The number of spikes plant⁻¹ differed significantly among potting media. P_2 (soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1) recorded the highest number of spikes (27.20) during the crop period. This was followed by P_3 (soil + FYM + leaf compost + coir pith compost in the ratio 3:3:1:1) and P_1 (soil + FYM + neem cake + coir pith compost in the ratio 3:3:1:1). P_3 and P_1 recorded 25.47 and 24.00 number of spikes plant⁻¹ respectively.

In the inorganic fertilizers, I_4 (25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) recorded more number of spike (27.22), which was on par with $I_1(37.5: 37.5: 50.0 \text{ g of NPK plant}^{-1} \text{ year}^{-1}$ at monthly splits) and I_5 (12.5:12.5:25.0 g of NPK plant⁻¹ year⁻¹ as soil application at equal monthly splits up to 3 MAP and foliar application of 13:0:45 (0.5 %) at fortnightly intervals from 4th MAP). The number of spikes plant⁻¹ recorded by I_4 , I_5 , I_1 , I_2 and I_3 were 27.22, 25.88, 25.33, 25.22 and 24.11 respectively.

Interaction effect was significant and among interaction treatment combination, p_{2i4} (potting media- soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1 and inorganic fertilizers 25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) recorded the highest number of spikes plant⁻¹ (32.67). This was

4.1.2.2 Length of spike

The main and interaction effect of treatments on length of spikes are shown in table 13.

Significant variation in length of spike was noticed among different potting media. Plants raised in P_2 (soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1) recorded the highest value for length of spike. The length of spike recorded by P_2 , P_3 and P_1 were 10.72 cm, 10.04 cm and 9.30 cm respectively.

Plants which received the inorganic fertilizers I_4 (25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) resulted in the highest length of spike (11.01 cm), followed by I_3 , I_1 , I_5 and I_2 .

Interaction effect was significant and among different treatment combination p_{2i4} (potting media- soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1 and inorganic fertilizers 25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) recorded the highest value (12.38 cm) and was on par with p_{2i2} (P₂-soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1 and I₂-37.5: 37.5: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits). Significant difference in length of spike was observed between treatment and control.

4.1.2.3 Number of berries spike⁻¹

The main and interaction effects of treatment on number of berries spike⁻¹ is provided in table 13.

Potting media significantly influenced the number of berries spike⁻¹. P_2 (soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1) produced the highest

	Number of spikes plant ⁻¹	Length of spike (cm)	Number of berries spike ⁻¹	Fresh weight of berries (g plant ⁻¹)	Dry weight of berries (g plant ⁻¹)
Treatments					
Potting media (P)					
P ₁	24.00	9.30	48.86	117.24	40.70
P ₂	27.20	10.72	57.11	156.07	54.40
P ₃	25.47	10.04	53.80	137.17	47.69
SEm±	0.513	0.220	0.509	3.213	1.124
CD (0.05)	1.486	0.640	1.479	9.306	3.256
norganic fertilizers (I)					
I ₁	25.33	9.82	52.81	134.38	46.34
I ₂	25.22	9.66	54.00	136.70	47.26
I ₃	24.11	9.84	49.32	118.82	41.39
I_4	27.22	11.01	56.90	156.15	54.72
I5	25.88	9.77	53.26	138.08	48.26
SEm±	0.662	0.280	0.658	4.148	1.451
CD (0.05)	1.919	0.820	1.909	12.014	4.204
Interaction (p×i)					
p_1i_1	24.33	9.00	47.20	114.79	39.11
p ₁ i ₂	23.66	8.33	48.40	114.68	39.59
p ₁ i ₃	24.33	9.60	46.93	114.14	40.21
	22 (7	10.00	52 (7	100.05	

30

Table 13.

5Lm-	0.002	0.200	0.050	4.140	1.451
CD (0.05)	1.919	0.820	1.909	12.014	4.204
Interaction (p×i)					
p_1i_1	24.33	9.00	47.20	114.79	39.11
p_1i_2	23.66	8.33	48.40	114.68	39.59
p1i3	24.33	9.60	46.93	114.14	40.21
p1i4	23.67	10.03	53.67	127.25	44.13
p115	24.00	9.53	48.10	115.35	40.47
$p_2 i_1$	26.33	10.13	57.53	151.84	52.66
p ₂ i ₂	26.67	11.57	58.00	154.66	53.21
p ₂ i ₃	25.00	9.92	50.25	125.59	43.65
p ₂ i ₄	32.67	12.38	61.12	199.49	70.92
p2i5	25.33	9.59	58.67	148.73	51.55
p ₃ i ₁	25.33	10.33	53.70	136.52	47.27
p ₃ i ₂	25.33	9.06	55.60	140.75	48.99
p ₃ i ₃	23.00	10.02	50.77	116.72	40.30
p3i4	25.33	10.61	55.92	141.71	49.02
p3i5	28.33	10.20	53.00	150.17	52.77
SEm±	1.147	0.490	1.139	7.185	2.514
CD (0.05)	3.324	1.420	3.306	20.809	7.282
Control	21.33	8.35	49.33	104.68	35.75
Control Vs Treatment	S	S	S	S	S

number of berries spike⁻¹(57.11) and was followed by P_3 (soil + FYM + leaf compost + coir pith compost in the ratio 3:3:1:1) and P_1 (soil + FYM + neem cake + coir pith compost in the ratio 3:3:1:1).

Significant variation in the number of berries spike⁻¹ was noticed among the inorganic fertilizers. I₄ (25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) showed the highest number of berries spike⁻¹(56.90) and was followed by I₂, I₅, I₁ and I₃.

Significant difference in number of berries spike⁻¹ was noticed among the treatment combination. The treatment combination, p₂i₄ (potting media- soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1 and inorganic fertilizer 25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) resulted in the highest number of berries spike⁻¹(61.12) which was on par with p₂i₂ (potting media- soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1 and inorganic fertilizer 37.5: 37.5: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) and p₂i₅ (potting media- soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1 and inorganic fertilizer 12.5:12.5:25.0 g of NPK plant⁻¹ year⁻¹ as soil application at equal monthly splits up to 3 MAP and foliar application of 13:0:45 (0.5 %) at fortnightly intervals from 4th MAP) with 58.00 and 58.67 number of berries spike⁻¹ respectively. Significant difference in number of berries spike⁻¹ was noticed between treatment and control.

4.1.2.4 Fresh weight of berries planf¹

The main and interaction effect of potting media and inorganic fertilizers on fresh weight of berries $plant^{-1}$ are presented in table 13. The first and second harvest of fresh berries of treatment combination, p_{2i4} and control is shown in Plate 7.

Fresh weight of berries $plant^{-1}$ differed significantly among different potting media. Potting media, P₂ (soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1) recorded the highest fresh weight of berries (156.07 g plant⁻¹). This was

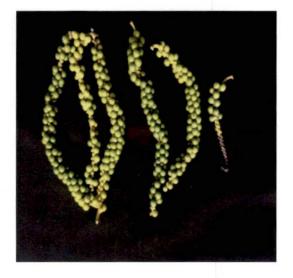


Plate 7a. First harvest of fresh berries of p_2i_4

Plate 7c. First harvest of fresh berries of control

Plate 7b. Second harvest of fresh berries of p₂i₄

Plate 7d. Second harvest of fresh berries of control

Plate 7. Harvest of Fresh berries

followed by P_3 (soil + FYM + leaf compost + coir pith compost in the ratio 3:3:1:1) and P_1 . Fresh weight of berries plant⁻¹ recorded by P_3 and P_1 was 137.17 g and 117.24 g respectively.

Significant difference in fresh weight of berries $plant^{-1}$ was noticed among the inorganic fertilizers. I₄ (25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) obtained the highest fresh weight of berries $plant^{-1}(156.15 \text{ g plant}^{-1})$ and was followed by I₅ (138.08 g plant⁻¹), I₂ (136.70 g plant⁻¹), I₁ (134.38 g plant⁻¹) and I₃ (118.82 g plant⁻¹).

The interaction were significant and the treatment combination p_{2i_4} (potting media- soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1 and inorganic fertilizer 25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) resulted in the highest fresh weight of berries plant⁻¹(199.49 g plant⁻¹). This was followed by p_{2i_2} (154.66 g plant⁻¹), p_{2i_1} (151.84 g plant⁻¹) p_{3i_5} (150.17 g plant⁻¹) and p_{2i_5} (148.73 g plant⁻¹). Significant difference in fresh weight of berries plant⁻¹ was noticed between treatment and control.

4.1.2.5 Dry weight of berries plant¹

The main and interaction effect of potting media and inorganic fertilizers on dry weight of berries plant⁻¹ are furnished in table 13.

The dry weight of berries $plant^{-1}$ was significantly influenced by different potting media. Potting media, P₂ (soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1) recorded the highest dry weight of berries $plant^{-1}$ (54.40 g $plant^{-1}$). P₃ and P₁ produced 47.69 and 40.70 grams of dried pepper berry respectively.

Significant variation in dry weight of berries $plant^{-1}$ between inorganic fertilizers was noticed. Inorganic fertilizer I₄ (25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) exhibited the highest dry weight of berries (54.72 g plant⁻¹) which was followed by I₅, I₂, I₁ and I₃ respectively.

The interaction effect was significant and treatment combination, p_{2i4} (potting media- soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1 and inorganic fertilizer- 25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) registered the highest dry weight of berries (70.92 g plant⁻¹). This was followed by p_{2i2} (53.21 g plant⁻¹), p_{3i5} (52.77 g plant⁻¹), p_{2i1} (52.66 g plant⁻¹) and p_{2i5} (51.55 g plant⁻¹). Significant difference in dry weight of berries plant⁻¹ was observed between treatment and control. The dry weight of berries recorded by control was 35.75 g plant⁻¹ which was significantly lower than the treatment combinations.

4.1.2.6 Hundred berry weight

The main and interaction effect of potting media and inorganic fertilizers on hundred berry weight is shown in table 14.

Significant variation in hundred berry weight was registered among different potting media. Potting media, P_2 (soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1) recorded the highest hundred berry weight (11.13 g). The lowest value (9.65 g) for hundred berry weight was recorded by P_1 (soil + FYM + neem cake + coir pith compost in the ratio 3:3:1:1).

Hundred berry weight was not found to be influenced by inorganic fertilizers.

In interaction, p_{2i4} which is combination of potting media (soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1) and inorganic fertilizers (25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) resulted in the highest hundred berry weight (13.03 g), which was on par with p_{2i2} (P_{2} - soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1 and I_2 -37.5: 37.5: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits). Hundred berry weight was found to be non significant between treatment and control.

4.1.2.7 Hundred berry volume

The main and interaction effect of potting media and inorganic fertilizers on hundred berry volume is provided in table 14.

Hundred berry volume varied significantly among different potting media. P_2 (soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1) reported the highest hundred berry volume (10.63 cm³) followed by P_3 (9.31 cm³) and P_1 (9.17 cm³).

Hundred berry volume was found to be non significant among different inorganic fertilizers.

The interaction effect was significant and treatment combination p_{2i_4} (P_{2} - soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1 and I_4 -25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) resulted in the highest berry volume (12.53 cm³), which was on par with p_{2i_2} (11.70 cm³). A non significant difference in hundred berry volume was noticed between treatment and control.

Treatments	Hundred berry weight (g)	Hundred berry volume (cm ³)
Potting media (P)	(5)	(em)
P ₁	9.65	9.17
P ₂	11.13	10.63
P ₃	9.78	9.31
SEm±	0.280	0.270
CD (0.05)	0.800	0.790
Inorganic fertilizers (I)	0.000	0.790
I ₁	10.29	9.77
I ₂	10.27	9.72
I ₃	10.02	9.51
I ₄	10.36	9.93
I ₅	10.01	9.57
SEm±	0.360	0.350
CD (0.05)	NS	NS
Interaction (p×i)	110	145
p ₁ i ₁	10.75	10.17
p ₁ i ₂	9.43	8.93
p1i3	9.93	9.43
p1i4	8.97	8.57
p1i5	9.17	8.73
p ₂ i ₁	9.69	9.23
p ₂ i ₂	12.30	11.70
p ₂ i ₃	10.73	10.10
p ₂ i ₄	13.03	12.53
p ₂ i ₅	9.90	9.57
p ₃ i ₁	10.42	9.90
p ₃ i ₂	9.07	8.53
p ₃ i ₃	9.38	9.00
p ₃ i ₄	9.07	8.70
p ₃ i ₅	10.97	10.40
SEm±	0.610	0.960
CD (0.05)	1.780	1.760
Control	9.99	9.53
Control Vs Treatment	NS	NS

Table 14. Effect of potting media and inorganic fertilizers on hundred berry weight, g and hundred berry volume, cm³

4.1.3 Root parameters

4.1.3.1 Fresh weight of roots

The main and interaction effect of potting media and inorganic fertilizers on fresh weight of roots are furnished in table 15.

Significant variation in fresh weight of roots was observed among different potting media and P_2 (soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1) resulted in highest fresh weight of roots (31.69 g plant⁻¹). The lowest fresh weight of roots (19.38 g plant⁻¹) was recorded by P_1 (soil + FYM + neem cake + coir pith compost in the ratio 3:3:1:1).

There was significant difference in fresh weight of roots among inorganic fertilizers. I₄ (25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) recorded the highest fresh root weight (30.50 g plant⁻¹) and was on par with I₂ (37.5: 37.5: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits). This was followed by I₅ (12.5:12.5:25.0 g of NPK plant⁻¹ year⁻¹ as soil application at equal monthly splits up to 3 MAP and foliar application of 13:0:45 (0.5 %) at fortnightly intervals from 4th MAP), I₁ (37.5: 37.5: 50.0 g of NPK plant⁻¹ year⁻¹ at monthly splits) and I₃ (25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at monthly splits).

Among the treatment combination, p_{2i4} (potting media- soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1 and inorganic fertilizers 25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) recorded the highest fresh weight of roots (41.52 g plant⁻¹). p_{2i4} was followed by p_{2i2} (35.62 g plant⁻¹), p_{3i2} (34.88 g plant⁻¹), p_{3i5} (31.73 g plant⁻¹), p_{2i1} (30.04 g plant⁻¹). Root mass of p_{2i4} and control is shown in plate 8. Significant difference in fresh weight of roots was noticed between treatment and control.

Plate 8a. Root mass of p_2i_4

Plate 8b. Root mass of control

Plate 8. Root mass

4.1.3.2 Dry weight of roots

The main and interaction effects of treatment on dry weight of roots are provided in table 15.

Potting media significantly influenced the dry weight of roots and P_2 (soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1) recorded the highest dry weight of roots (13.78 g plant⁻¹). This was followed by P_3 (12.01 g plant⁻¹) and P_1 (8.42 g plant⁻¹).

Significant difference in dry weight of roots was noticed among inorganic fertilizers. I₄ (25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) resulted in highest dry root weight (13.25 g plant⁻¹) which was on par with I₂ (37.5: 37.5: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits). The lowest dry root weight (8.42 g plant⁻¹) was recorded by I₃ (25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at monthly splits).

Interaction effect was significant and treatment combination, p_{2i4} (Potting media- soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1 and inorganic fertilizers 25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) recorded the highest dry weight of roots (18.05 g plant⁻¹), followed by p_{2i2} (15.48 g plant⁻¹), p_{3i2} (15.16 g plant⁻¹), p_{3i5} (13.79 g plant⁻¹), p_{3i5} (13.79 g plant⁻¹) and p_{2i1} (13.06 g plant⁻¹). Significant difference in dry weight of roots was observed between treatment and control.

	Fresh weight of roots (g plant ⁻¹)	Dry weight of roots (g plant ⁻¹)	Volume of roots (cm ³ plant ⁻¹)
Treatments			
Potting media (P)			
P ₁	19.38	8.42	22.38
P ₂	31.69	13.78	34.75
P ₃	27.62	12.01	30.55
SEm±	0.415	0.181	0.392
CD (0.05)	1.202	0.523	1.135
Inorganic fertilizers (I)			
I ₁	24.57	10.68	27.57
I ₂	29.91	13.00	32.79
I ₃	20.34	8.84	23.54
I_4	30.50	13.25	33.49
I ₅	25.84	11.23	28.73
SEm±	0.536	0.233	0.506
CD (0.05)	1.552	0.675	1.465
Interaction (p×i)			
p1i1	20.32	8.83	23.32
p1i2	19.22	8.35	22.22
p1i3	17.28	7.51	20.28
p1i4	22.59	9.82	25.59
p1i5	17.48	7.60	20.48
p ₂ i ₁	30.04	13.06	33.04
p ₂ i ₂	35.62	15.48	38.62
p ₂ i ₃	22.98	9.99	26.58
p2i4	41.52	18.05	44.52
p ₂ i ₅	28.31	12.31	30.98
p ₃ i ₁	23.33	10.14	26.33
p ₃ i ₂	34.88	15.16	37.54
p3i3	20.77	9.03	23.77
p ₃ i ₄	27.41	11.89	30.36
p ₃ i ₅	31.73	13.79	34.73
SEm±	0.929	0.403	0.876
CD (0.05)	2.689	1.168	2.537
Control	17.16	7.40	20.16
Control Vs Treatment	S	S	S

Table 15. Effect of potting media and inorganic fertilizers on root parameters

4.1.3.3 Volume of roots

The main and interaction effect of treatments on volume of roots is presented in table 15.

Significant variation in volume of roots was observed among different potting media. P_2 (soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1) recorded the highest volume of roots (34.75 cm³ plant⁻¹). P_2 was followed by P_3 (30.55 cm³ plant⁻¹) and P_1 (22.38 cm³ plant⁻¹).

There was significant difference in volume of roots among inorganic fertilizers. I₄ (25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) noted the highest root volume (33.49 cm³ plant⁻¹) and was on par with I₂ (37.5: 37.5: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) which recorded 32.79 cm³ plant⁻¹ of root volume.

Among the treatment combination, p_{2i4} (P_2 -soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1 and I₄-25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) recorded the highest root volume (44.52 cm³ plant⁻¹). This was followed by p_{2i2} (38.62 cm³ plant⁻¹), p_{2i2} (37.54 cm³ plant⁻¹), p_{3i5} (34.73 cm³ plant⁻¹), p_{2i1} (33.04 cm³ plant⁻¹). Significant difference in volume of roots was found between treatment and control.

4.2 PHYSIOLOGICAL PARAMETERS

4.2.1 Dry matter production

The main and interaction effect of potting media and inorganic fertilizers on dry matter production of bush pepper at 12 MAP are furnished in table 16.

Treatments	Dry matter production (g plant ⁻¹)	Specific leaf weight (g m ²)	Harvest index
Potting media (P)		(8)	
P ₁	86.72	38.62	0.47
P ₂	122.69	39.07	0.45
P ₃	105.89	42.71	0.45
SEm±	1.223	1.509	0.006
CD (0.05)	3.542	NS	0.018
Inorganic fertilizers (I)			
I ₁	100.76	38.44	0.47
I ₂	108.47	43.05	0.44
I ₃	91.90	40.34	0.45
I ₄	120.33	39.64	0.45
I ₅	104.03	39.20	0.46
SEm± •	1.579	1.948	0.008
CD (0.05)	4.573	NS	0.023
Interaction (p×i)			
p ₁ i ₁	81.91	45.90	0.48
p1i2	85.79	40.66	0.46
p1i3	81.79	33.08	0.49
p1i4	100.55	35.90	0.44
p1i5	83.56	37.55	0.49
p ₂ i ₁	120.51	35.57	0.46
p ₂ i ₂	125.75	41.47	0.42
p ₂ i ₃	99.54	43.46	0.44
p ₂ i ₄	150.92	36.97	0.47
p ₂ i ₅	116.71	37.88	0.44
p ₃ i ₁	99.87	33.83	0.47
p ₃ i ₂	113.86	47.01	0.43
p3i3	94.39	44.47	0.42
p3i4	109.51	46.06	0.45
p ₃ i ₅	111.82	42.17	0.47
SEm±	2.735	3.375	0.014
CD (0.05)	7.920	NS	0.040
Control	72.42	41.80	0.43
Control Vs Treatment	S	NS	S

Table 16. Effect of potting media and inorganic fertilizers on the dry matter production, specific leaf weight and harvest index at 12 MAP

Significant variation was observed in dry matter production among the different potting media at 12 MAP. Plants raised in P₂ (soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1) recorded the highest dry matter production (122.69 g plant⁻¹). The lowest dry matter production (86.72 g plant⁻¹) was recorded by P₁ (soil + FYM + neem cake + coir pith compost in the ratio 3:3:1:1).

With regard to the effect of inorganic fertilizers, I_4 (25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) produced the highest dry matter (120.33 g plant⁻¹). This was followed by I_2 , I_5 , I_1 and I_3 . I_2 , I_5 , I_1 and I_3 recorded the dry matter of 108.47, 104.03, 100.76 and 91.90 g plant⁻¹ respectively.

Interaction effect between potting media and inorganic fertilizers was significant and treatment combination, $p_{2}i_4$ (potting media- soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1 and inorganic fertilizers- 25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) resulted in the highest dry matter production (150.92 g plant⁻¹). This was followed by $p_{2}i_2$ (P_{2} - soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1 and 37.5: 37.5: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits), which was on par with $p_{2}i_1$ (P_{2} - soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1 and 37.5: 37.5: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits), which was on par with $p_{2}i_1$ (P_{2} - soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1 and 37.5: 37.5: 50.0 g of NPK plant⁻¹ year⁻¹ at monthly splits). Significant variation in dry matter production was noticed between treatment and control. The dry matter production recorded by the control was 72.42 g plant⁻¹.

4.2.2 Specific leaf weight

The main and interaction effect of potting media and inorganic fertilizers on specific leaf weight at 12 MAP are provided in table 16.

Potting media, inorganic fertilizers and their interaction did not influence the specific leaf weight at 12 MAP. Treatment effects also did not vary with the control.

4.2.3 Harvest index

The main and interaction effect of potting media and inorganic fertilizers on harvest index at 12 MAP are presented in table 16.

Significant difference in harvest index was noticed among different potting media used. Plants raised in potting media, P_1 (soil + FYM + neem cake + coir pith compost in the ratio 3:3:1:1) recorded the highest harvest index (0.47). P_2 and P_3 recorded the harvest index value of 0.45.

Significant variation was observed in harvest index between inorganic fertilizers. I₁ (37.5: 37.5: 50.0 g of NPK plant⁻¹ year⁻¹ at monthly splits) reported the highest harvest index (0.47) and was on par with I₃ (37.5: 37.5: 50.0 g of NPK plant⁻¹ year⁻¹ at monthly splits), I₄ (25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) and I₅ (12.5:12.5:25.0 g of NPK plant⁻¹ year⁻¹ as soil application at equal monthly splits up to 3 MAP and foliar application of 13:0:45 (0.5 %) at fortnightly intervals from 4th MAP).

The interaction between potting media and inorganic fertilizers was significant. Treatment combination, $p_1i_3(P_1-soil + FYM + neem cake + coir pith compost in the ratio 3:3:1:1 and I_3-37.5: 37.5: 50.0 g of NPK plant⁻¹ year⁻¹ at monthly splits) and <math>p_1i_5$ (P_1 - soil + FYM + neem cake + coir pith compost in the ratio 3:3:1:1 and I_5 - 12.5:12.5:25.0 g of NPK plant⁻¹ year⁻¹ as soil application at equal monthly splits up to 3 MAP and foliar application of 13:0:45 (0.5 %) at fortnightly intervals from 4th MAP) recorded the highest harvest index (0.49), which was on par with p_1i_1 , p_1i_2 , p_2i_1 , p_2i_4 , p_3i_1 , p_3i_4 and p_3i_5 . Significant difference was noticed in harvest index between treatment and control.

4.2.4 Moisture percentage

The main and interaction effect of potting media and inorganic fertilizers on moisture percentage at 12 MAP are provided in table 17.

Treatments	Moisture percentage	Drying percentage
Potting media (P)		
P ₁	65.28	34.65
P ₂	65.17	34.78
P ₃	65.25	34.74
SEm±	0.200	0.210
CD (0.05)	NS	NS
Inorganic fertilizers (I)		
I ₁	65.49	34.4
I ₂	65.44	34.44
I ₃	65.14	34.86
I ₄	65.06	34.94
I ₅	65.02	34.98
SEm±	0.250	0.270
CD (0.05)	NS	NS
Interaction (p×i)		
p1i1	65.93	33.73
p_1i_2	65.53	34.47
p1i3	64.77	35.23
p1i4	65.27	34.73
p1i5	64.90	35.10
p ₂ i ₁	65.23	34.77
p ₂ i ₂	65.60	34.13
p ₂ i ₃	65.23	34.77
p ₂ i ₄	64.47	35.53
p ₂ i ₅	65.30	34.70
p ₃ i ₁	65.30	34.70
p ₃ i ₂	65.20	34.73
p ₃ i ₃	65.43	34.57
p3i4	65.46	34.54
p ₃ i ₅	64.87	35.13
SEm±	0.440	0.470
CD (0.05)	NS	NS
Control	65.96	33.73
Control Vs Treatment	NS	NS

Table 17. Effect of potting media and inorganic fertilizers on moisture percentage and drying percentage at 12 MAP

Moisture percentage was not significantly influenced by the potting media and inorganic fertilizers. The interaction effect of potting media and inorganic fertilizers also did not influence the moisture percentage. There was no significant variation in moisture percentage between treatment and control.

4.2.5 Drying percentage

The main and interaction effect of potting media and inorganic fertilizers on drying percentage at 12 MAP are presented in table 17.

Drying percentage was not affected by the potting media and inorganic fertilizers. Interaction effect between potting media and inorganic fertilizers also did not affect the drying percentage. The drying percentage was not varied between treatment and control.

4.2.6 Chlorophyll content

The main and interaction effect of potting media and inorganic fertilizers on chlorophyll content at 6 MAP and 12 MAP are presented in table 18.

Significant variation in chlorophyll at 6 MAP was observed among different potting media. Potting media, P_2 (soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1) recorded the highest chlorophyll content (0.93 mg g⁻¹) at 6 MAP. This was followed by P_3 (soil + FYM + leaf compost + coir pith compost in the ratio 3:3:1:1) and P_1 (soil + FYM + neem cake + coir pith compost in the ratio 3:3:1:1) with 0.87 and 0.82 mg g⁻¹ respectively.

In inorganic fertilizers, I_3 (25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at monthly splits) resulted in the highest chlorophyll content (0.99 mg g⁻¹) which was on par with I_4 (25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) (0.97 mg g⁻¹).

Interaction effect between potting media and inorganic fertilizers was significant for chlorophyll content at 6 MAP. Treatment combination, p₂i₄ (P₂- soil +

Treatments	6MAP	12MAP
Potting media (P)		
\mathbf{P}_1	0.82	1.21
\mathbf{P}_2	0.93	1.2
P ₃	0.87	1.22
SEm±	0.020	0.050
CD (0.05)	0.057	NS
Inorganic fertilizers (I)		
I ₁	0.88	1.25
I ₂	0.70	1.17
I ₃	0.99	1.25
I4	0.97	1.19
I ₅	0.83	1.19
SEm±	0.020	0.060
CD (0.05)	0.057	NS
Interaction (p×i)		
$\mathbf{p}_1 \mathbf{i}_1$	0.96	1.38
p1i2	0.72	1.31
p ₁ i ₃	0.91	1.27
p_1i_4	0.68	0.95
p1i5	0.83	1.16
$p_2 i_1$	0.69	0.95
p ₂ i ₂	0.64	0.98
p ₂ i ₃	0.96	1.17
p2i4	1.22	1.41
p ₂ i ₅	1.15	1.47
p ₃ i ₁	1.00	1.41
p ₃ i ₂	0.74	1.22
p ₃ i ₃	1.11	1.31
p ₃ i ₄	1.00	1.22
p ₃ i ₅	0.51	0.95
SEm±	0.040	0.110
CD (0.05)	0.115	0.318
Control	1.10	1.23
Control Vs Treatment	S	NS

Table 18. Effect of potting media and inorganic fertilizers on chlorophyll content (mg g^{-1})

FYM + vermicompost + coir pith compost in the ratio 3:3:1:1and I₄- 25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) showed the highest chlorophyll content (1.22 mg g⁻¹), which was on par with $p_{2}i_{5}$ (1.15 mg g⁻¹) and $p_{3}i_{3}$ (1.11 mg g⁻¹). Significant difference in chlorophyll at 6 MAP was noticed between treatment and control.

The potting media and inorganic fertilizers did not influence the chlorophyll content at 12 MAP.

Treatment combinations p_{2i_5} (P_{2-} soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1 and $I_5 - 12.5:12.5:25.0$ g of NPK plant⁻¹ year⁻¹ as soil application at equal monthly splits up to 3 MAP and foliar application of 13:0:45 (0.5 %) at fortnightly intervals from 4th MAP) recorded the highest chlorophyll content(1.47 mg g⁻¹) at 12 MAP and was on par with p_{2i_4} (1.41 mg g⁻¹), p_{3i_1} (1.41mg g⁻¹) p_{1i_1} (1.38 mg g⁻¹), p_{1i_2} (1.31 mg g⁻¹), p_{3i_3} (1.31 mg g⁻¹), p_{1i_3} (1.27 mg g⁻¹), p_{3i_2} (1.22 mg g⁻¹), p_{3i_4} (1.22 mg g⁻¹) and p_{2i_3} (1.17 mg g⁻¹). There was no significant difference in chlorophyll content at 12 MAP among the treatments and the control.

4.3 QUALITY PARAMETERS OF BERRIES

4.3.1 Starch

The main and interaction effects of potting media and inorganic fertilizers on starch content of berries are presented in table 19.

Potting media significantly influenced the starch content and the highest starch content was produced by potting media P_1 (soil + FYM + neem cake + coir pith compost in the ratio 3:3:1:1) (36.68 %), which was followed by P_3 (soil + FYM + leaf compost + coir pith compost in the ratio 3:3:1:1) and P_2 (soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1).

There was significant difference in starch content among the inorganic fertilizers. I_5 (12.5:12.5:25.0 g of NPK plant⁻¹ year⁻¹ as soil application at equal monthly splits up to 3 MAP and foliar application of 13:0:45 (0.5 %) at fortnightly intervals from 4th MAP) recorded the significantly higher starch content (36.74 %) in berries. This was followed by I_1 , I_3 , I_2 and I_4 .

Interaction effects were significant and treatment combination, p_{1i_5} (potting media- soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1 and inorganic fertilizers 12.5:12.5:25.0 g of NPK plant⁻¹ year⁻¹ as soil application at equal monthly splits up to 3 MAP and foliar application of 13:0:45 (0.5 %) at fortnightly intervals from 4th MAP) produced the highest starch content of (36.82%) in berries. The control did not vary with treatment combination in starch content of berries.

4.3.2 Total ash

The main and interaction effect of potting media and inorganic fertilizers on total ash of berries are presented in table 19.

The potting media and inorganic fertilizers did not influence the total as content of berries. Interaction effect between potting media and inorganic fertilizers were also non significant. The treatments combination did not show variation with the control in total ash content of berries.

4.3.3 Essential oil

The main and interaction effects of treatment on essential oil content of berries are provided in table 19.

Significant change in essential oil was noticed among different potting media. Plants raised in P₂ (soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1) recorded the highest essential oil (3.46 %), which was on par with P₃ (3.44 %) (soil + FYM + leaf compost + coir pith compost in the ratio 3:3:1:1). The lowest

Treatments	Starch (%)	Total ash (%)	Essential oil (%)	Oleoresin	Piperine
Potting media (P)	(70)	(70)	(70)	(%)	(%)
P_1	36.68	5.49	3.42	11.32	5.41
P ₂	36.64	5.46	3.46	11.32	
P ₃	36.66	5.53	3.40		5.50
SEm±	0.010	0.033	0.011	11.34	5.45
CD (0.05)	0.028	NS	0.011	0.016	0.016
Inorganic fertilizers (I)	0.020	115	0.031	0.045	0.040
I ₁	36.69	5.45	3.42	11.33	5.39
I ₂	36.62	5.52	3.42	11.33	
I2 I3	36.68	5.47	3.48	11.38	5.49
I3	36.58	5.49			5.43
I4I5			3.52	11.46	5.57
SEm±	36.74 0.013	5.53	3.36	11.26	5.37
CD (0.05)	0.013	0.043	0.014	0.020	0.020
Interaction (p×i)	0.039	NS	0.040	0.058	0.059
	36.71	5.46	2.40	11.20	5.20
p ₁ i ₁	36.64	5.46	3.40	11.30	5.30
p ₁ i ₂		5.55	3.47	11.37	5.48
p ₁ i ₃	36.65	5.42	3.46	11.36	5.47
p ₁ i ₄	36.62	5.45	3.48	11.38	5.49
p1i5	36.82	5.55	3.29	11.19	5.30
p ₂ i ₁	36.65	5.36	3.46	11.41	5.47
p ₂ i ₂	36.6	5.53	3.51	11.41	5.52
p ₂ i ₃	36.71	5.43	3.39	11.29	5.40
p_2i_4	36.51	5.49	3.59	11.59	5.70
p ₂ i ₅	36.72	5.50	3.38	11.28	5.39
p_3i_1	36.71	5.53	3.40	11.30	5.41
p ₃ i ₂	36.62	5.49	3.48	11.38	5.49
p3i3	36.69	5.56	3.41	11.31	5.42
p3i4	36.61	5.54	3.50	11.40	5.51
p3i5	36.68	5.55	3.43	11.33	5.44
SEm±	0.023	0.075	0.024	0.035	0.035
CD (0.05)	0.067	NS	0.069	0.101	0.102
Control	36.77	5.50	3.32	11.27	5.40
Control Vs Treatment	NS	NS	S	S	NS

Table 19. Effect of potting media and inorganic fertilizers on quality parameters of berries at 12 MAP

essential oil content (3.42 %) was recorded by P_1 (soil + FYM + neem cake + coir pith compost in the ratio 3:3:1:1).

Significant difference in essential oil was observed between inorganic fertilizers. I₄ (25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) resulted in highest essential oil content (3.52 %) and was on par with I₂ (37.5: 37.5: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits). The lowest value (3.36 %) was observed in I₅ (12.5:12.5:25.0 g of NPK plant⁻¹ year⁻¹ as soil application at equal monthly splits up to 3 MAP and foliar application of 13:0:45 (0.5 %) at fortnightly intervals from 4th MAP).

Interaction effect was significant and treatment combination, p_{2i4} (Potting media- soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1 and inorganic fertilizers 25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) recorded the highest essential oil content in berries (3.59 %). This was followed by p_{2i2} (3.51 %), p_{3i4} (3.50 %), p_{3i2} (3.48 %) and p_{1i4} (3.48 %). Significant variation in essential oil content of berries was noticed between treatment and control.

4.3.4 Oleoresin

The main and interaction effects of treatment on oleoresin of berries are shown in table 19.

Oleoresin was significantly influenced among the potting media. The highest oleoresin content of (11.40 %) was recorded by P_2 (soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1). P_3 (soil + FYM + leaf compost + coir pith compost in the ratio 3:3:1:1) was found to be on par with P_2 .

There was significant difference in oleoresin among the different inorganic fertilizers. I₄ (25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) indicated the highest oleoresin of (11.46 %). Treatment I₂ was on par with I₁ and I₃.

The interactions were significant and treatment combination, p_{2i4} (Potting media- soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1 and inorganic fertilizers 25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) resulted in highest oleoresin content (11.59%). This was followed by p_{2i2} (11.41 %), p_{2i1} (11.41 %), p_{3i4} (11.40 %), p_{3i2} (11.38 %) and p_{1i4} (11.38 %). Significant change in oleoresin of berries was noticed between treatment and control.

4.3.5 Piperine

The main and interaction effect of treatments on piperine content of berries are presented in table 19.

Significant variation in piperine was noticed among different potting media. Plants raised in P_2 (soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1) recorded the highest piperine (5.50 %), which was on par with P_3 (soil + FYM + leaf compost + coir pith compost in the ratio 3:3:1:1). P_3 recorded a value of 5.45 %.

Significant variation in piperine content was noticed among different inorganic fertilizer Inorganic fertilizer, I₄ (25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) resulted the highest piperine content (5.57 %). This was followed by I₂, I₃, I₁ and I₅.

Interaction effect was significant and treatment combination, p_{2i_4} (Potting media- soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1 and inorganic fertilizers 25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) recorded the highest piperine content in berries (5.70 %). This was followed by p_{2i_2} which recorded piperine content of 5.52 %. However no variation in piperine content was noticed between treatment and control.

4.4 ANALYSIS OF POTTING MEDIUM BEFORE AND AFTER THE EXPERIMENT

The soil pH, electrical conductivity and organic carbon content of potting media before the experiment is furnished in table 20 a. Table 20 b represents the soil pH, electrical conductivity and organic carbon content of potting media after the experiment.

4.4.1 Soil pH

Soil pH value of potting media was P₂ (5.59), P₃ (5.44), P₁ (5.26) and control (5.13) before the experiment. Soil pH value found To vary significantly after the experiment. The treatment combination, p_{2i4} (potting media- soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1, inorganic fertilizers. 25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) recorded the highest pH (5.47) which was on par with p_{2i1} (potting media- soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1, inorganic fertilizers. 37.5: 50.0 g of NPK plant⁻¹ year⁻¹ at monthly splits) and p_{2i2} (potting media- soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1, inorganic fertilizers. 37.5: 50.0 g of NPK plant⁻¹ year⁻¹ at monthly splits) and p_{2i2} (potting media- soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1, inorganic fertilizers. 37.5: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits). There was no significant difference in soil pH between treatment and control.

4.4.2 Electrical conductivity

EC value of different potting media was 0.73 dSm^{-1} in P₁, 0.70 dSm⁻¹ in P₃, 0.67 dSm⁻¹ in control and 0.57 in dSm⁻¹ in P₂ before the experiment. Analysis of potting media after the experiment revealed that significant variation existed between treatment combinations. The treatment combination, p₃i₁ (potting media- soil + FYM + leaf compost + coir pith compost in the ratio 3:3:1:1, inorganic fertilizers. 37.5: 37.5: 50.0 g of NPK plant⁻¹ year⁻¹ at monthly splits) recorded the highest EC value of 0.96 dSm⁻¹. EC found to be non significant between treatment and control.

Potting media	рН	EC (dSm ⁻¹)	Organic carbon (%)
P1	5.26	0.73	2.31
P ₂	5.59	0.57	2.58
P ₃	5.44	0.7	2.37
Control	5.13	0.67	2.05

Table 20 a. pH, EC, organic carbon content of potting media before the experiment

Table 20 b. pH, EC, organic carbon content of potting media after the experiment

Interaction (p×i)	pН	EC (dSm ⁻¹)	Organic carbon (%)
p_1i_1	5.09	0.66	2.88
p_1i_2	5.07	0.69	2.88
p1i3	5.10	0.50	2.80
p_1i_4	5.14	0.48	2.81
p1i5	5.10	0.35	2.73
$p_2 i_1$	5.40	0.50	2.95
p_2i_2	5.37	0.41	2.89
p ₂ i ₃	5.18	0.57	2.88
p ₂ i ₄	5.47	0.35	2.91
p2i5	5.25	0.27	2.76
p ₃ i ₁	5.15	0.96	3.06
p ₃ i ₂	5.20	0.44	2.82
p ₃ i ₃	5.04	0.74	2.89
p3i4	5.25	0.36	2.80
p3i5	5.27	0.30	2.79
SEm±	0.045	0.031	0.022
CD (0.05)	0.129	0.090	0.064
Control	5.00	0.56	2.17
Control Vs Treatment	NS	NS	S

4.4.3 Organic carbon

Potting media analysis before the experiment showed that potting media, P_2 (soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1) recorded the highest organic carbon of (2.58 %), followed by P_3 (2.37 %), P_1 (2.31 %) and control (2.05%). Organic carbon showed significant variation among treatment combinations. The treatment combination, p_3i_1 (potting media- soil + FYM + leaf compost + coir pith compost in the ratio 3:3:1:1, inorganic fertilizers. 37.5: 37.5: 50.0 g of NPK plant⁻¹ year⁻¹ at monthly splits) noted the highest organic carbon (3.06 %) after the experiment. After the experiment, Significant change in organic carbon was noticed between treatment and control.

4.4.4 Primary nutrients (N, P and K)

The available N, P and K of potting media before the experiment is given in table 21 a. The data on available N, P and K of potting media after the experiment is presented in table 21 b.

Available nitrogen of potting media before the experiment ranged from 0.490 g kg⁻¹ to 0.597 g kg⁻¹. Potting media (soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1) recorded the highest value of 0.597 g kg⁻¹, which is followed by P₃ (0.553 g kg⁻¹), P₁ (0.542 g kg⁻¹) and control potting media (0.490 g kg⁻¹). Available nitrogen noted significant change after the experiment. The treatment combination, p_1i_1 (potting media- soil + FYM + neem cake + coir pith compost in the ratio 3:3:1:1, inorganic fertilizers. 37.5: 37.5: 50.0 g of NPK plant⁻¹ year⁻¹ at monthly splits) recorded the highest available nitrogen of 0.834 g kg⁻¹. Significant difference in available N was noticed betweentreatment and control.

Soil chemical analysis before the experiment revealed that, available phosphorus varied among different potting media from 36.45 mg kg⁻¹ to 37.83 mg kg⁻¹. P_2 (soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1) recorded

Potting media	Nitrogen (g kg ⁻¹)	Phosphorus (mg kg ⁻¹)	Potassium (mg kg ⁻¹)
P1	0.542	36.89	384.82
P2	0.597	37.83	382.00
P ₃	0.553	37.63	378.35
Control	0.490	36.45	363.17

Table 21 a. Available N, P and K content of potting media before the experiment

Table 21 b. Available N, P and K content of potting media after the experiment

Interaction (p×i)	Nitrogen (g kg ⁻¹)	Phosphorus (mg kg ⁻¹)	Potassium
			$(mg kg^{-1})$
p ₁ i ₁	0.834	48.30	393.70
p1i2	0.762	47.11	394.50
p_1i_3	0.509	46.74	393.00
p_1i_4	0.521	45.54	394.20
p1i5	0.501	44.04	362.30
p_2i_1	0.775	47.69	399.30
p_2i_2	0.695	46.65	382.30
p ₂ i ₃	0.559	46.84	399.00
p2i4	0.521	46.17	380.00
p ₂ i ₅	0.533	46.36	371.70
p_3i_1	0.746	48.29	395.70
p_3i_2	0.725	47.74	396.70
p ₃ i ₃	0.561	47.27	396.00
p3i4	0.560	47.72	397.00
p3i5	0.521	45.32	365.00
SEm±	0.0121	0.303	0.120
CD (0.05)	0.0350	0.877	0.347
Control	0.492	44.81	350.40
Control Vs Treatment	S	S	S

the highest available P of 37.83 mg kg⁻¹. Available P after the experiment was significantly influenced by the interaction of potting media and inorganic fertilizers. The treatment combination, p_1i_1 (potting media- soil + FYM + neem cake + coir pith compost in the ratio 3:3:1:1, inorganic fertilizers. 37.5: 37.5: 50.0 g of NPK plant⁻¹ year⁻¹ at monthly splits) recorded available P value of 48.30 mg kg⁻¹, which was on par with p_3i_1 (48.29 mg kg⁻¹), p_3i_2 (47.74 mg kg⁻¹), p_3i_4 (47.72 mg kg⁻¹) and p_2i_1 (47.69 mg kg⁻¹). There is significant difference in available P after the experiment between treatment and control.

Available K of potting medium varied from $363.17 \text{ mg kg}^{-1}$ to $384.82 \text{ mg kg}^{-1}$. Potting media, P₁ (soil + FYM + neem cake + coir pith compost in the ratio 3:3:1:1) noted the highest available K of $384.82 \text{ mg kg}^{-1}$, followed by P₂ ($382.00 \text{ mg kg}^{-1}$), P₃ ($378.35 \text{ mg kg}^{-1}$), and control ($363.17 \text{ mg kg}^{-1}$). Available K was significantly different in different treatment combinations. The treatment combination, p₂i₁ (potting mediasoil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1, inorganic fertilizers. $37.5: 37.5: 50.0 \text{ g of NPK plant}^{-1}$ year⁻¹ at monthly splits recorded the highest available K ($399.30 \text{ mg kg}^{-1}$) and on par with p₂i₃ ($399.00 \text{ mg kg}^{-1}$). There is significant variation in available K between treatment and control after the experiment.

4.4.5 Secondary nutrients (Ca, Mg and S)

The data on available Ca, Mg and S of potting media before the experiment is presented in table 22 a. Table 22 b provides the data on available Ca, Mg and S of potting media after the experiment.

Soil chemical analysis before the experiment exhibited that available Ca ranged from 325.75 mg kg⁻¹ to 343.75 mg kg⁻¹. Potting media, P₂ (soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1) registered the highest value (343.75 mg kg⁻¹) followed by P₃ (339.75 mg kg⁻¹), P₁ (338.25 mg kg⁻¹) and control potting media (325.75 mg kg⁻¹). Available Ca showed significant variation among the

Potting media	Calcium (mg kg ⁻¹)	Magnesium (mg kg ⁻¹)	Sulphur (mg kg ⁻¹)
P1	338.25	140.75	22.02
P ₂	343.75	144.50	24.51
P ₃	339.75	142.40	23.02
Control	325.75	140.98	21.76

Table 22 a. Available Ca, Mg and S content of potting media before the experiment

Table 22 b. Available Ca, Mg and S content of potting media after the experiment

Interaction (p×i)	Calcium (mg kg ⁻¹)	Magnesium (mg kg ⁻¹)	Sulphur (mg kg ⁻¹)
$p_1 i_1$	355.50	120.64	21.99
p_1i_2	356.50	121.27	22.99
p1i3	356.50	120.59	23.22
p_1i_4	353.50	115.46	23.31
p1i5	356.13	120.51	24.31
$p_2 i_1$	348.58	113.94	22.57
p_2i_2	348.50	109.17	22.37
p ₂ i ₃	353.10	118.41	22.76
p2i4	346.50	106.98	22.57
p2i5	350.00	117.51	22.45
p ₃ i ₁	352.50	116.06	22.44
p_3i_2	348.50	113.86	22.53
p3i3	354.30	115.57	21.21
p3i4	351.00	112.69	23.76
p3i5	347.06	114.62	22.54
SEm±	0.398	0.763	0.536
CD (0.05)	1.153	2.211	NS
Control	358.50	126.00	21.66
Control Vs Treatment	NS	NS	NS

treatment combinations after the experiment. The treatment combinations, p_{1i_2} (potting media- soil + FYM + neem cake + coir pith compost in the ratio 3:3:1:1, inorganic fertilizers. 37.5: 37.5: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) and p_{1i_3} (potting media- soil + FYM + neem cake + coir pith compost in the ratio 3:3:1:1, inorganic fertilizers. 25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at monthly splits) recorded the highest value of 356.50 mg kg⁻¹, which was on par with p_{1i_5} and p_{1i_1} . Available Ca was found to be non significant among the treatments and control.

Available Mg of potting media differed before the experiment. P_2 (soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1) recorded the highest available Mg of 144.50 mg kg⁻¹, followed by P_3 (142.40 mg kg⁻¹), control potting media (140.98 mg kg⁻¹) and P_1 (140.75 mg kg⁻¹). After the experiment, available Mg varied significantly among different treatment combinations. The treatment combinations, p_1i_2 (potting media- soil + FYM + neem cake + coir pith compost in the ratio 3:3:1:1, inorganic fertilizers. 37.5: 37.5: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) registered the highest value of 121.27 mg kg⁻¹ and was on par with p_1i_1 (120.64 mg kg⁻¹), p_1i_3 (120.59 mg kg⁻¹) and p_1i_5 (120.51 mg kg⁻¹). There is no significant variation in available Mg between treatment and control after the experiment.

Soil analysis before the experiment showed that available S was 24.51 mg kg⁻¹ in P₂, 23.02 mg kg⁻¹ in P₃, 22.02 mg kg⁻¹ in P₁ and 21.76 mg kg⁻¹ in control. After the experiment, the available S was found to be non significant among the different treatment combinations. Available S was noticed non significant among the treatments and the control after the experiment.

4.5 PLANT UPTAKE OF PRIMARY AND SECONDARY NUTRIENT BY ROOTS, LEAVES, STEMS, BERRIES AND SPIKES

Uptake of primary and secondary nutrients viz., N, P, K, Ca, Mg and S were estimated from roots, leaves, stem, berries, spikes and total uptake at 12 MAP.

4.5.1 N uptake

The main and interaction effect of potting media and inorganic fertilizers on the uptake of N by roots, leaves, stem, berries, spikes and total uptake are presented in the Table 23.

The nitrogen uptake by roots, leaves, stem, berries and spike were significantly influenced by the different potting media. P_2 (soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1) indicated the highest nitrogen uptake in these plant parts. P_3 found to be on par with P_2 in N uptake by leaves. P_2 recorded the highest total uptake of nitrogen (1.860 g plant⁻¹), followed by P_3 (soil + FYM + leaf compost + coir pith compost in the ratio 3:3:1:1) and P_1 (soil + FYM + neem cake + coir pith compost in the ratio 3:3:1:1).

The plants which received inorganic fertilizer, I_4 (25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) resulted in highest nitrogen uptake in different plant parts viz., roots, leaves, stem and berries and was on par with I_5 (12.5:12.5:25.0 g of NPK plant⁻¹ year⁻¹ as soil application at equal monthly splits up to 3 MAP and foliar application of 13:0:45 (0.5 %) at fortnightly intervals from 4th MAP) in leaves. The total N uptake also found to be highest for the I_4 (1.870 g plant⁻¹). This was followed by I_2 (1.686 g plant⁻¹), I_5 (1.675 g plant⁻¹), I_1 (1.498 g plant⁻¹) and I_3 (1.435g plant⁻¹).

In interaction, treatment combination, p_{2i4} (potting media- soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1 and inorganic fertilizers 25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) recorded the highest N uptake in all plant parts. With regard to uptake of N in roots, leaves, stem and berries the treatment combination p_{2i4} was on par with p_{2i2} (potting media- soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1 and inorganic fertilizers 37.5: 37.5: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits). With respect to N uptake of spike, p_{2i4} was on par with p_{2i1} (potting media- soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1 and inorganic fertilizers 37.5: spike, p_{2i4} was on par with p_{2i1} (potting media- soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1 and inorganic fertilizers 37.5: spike, p_{2i4} was on par with p_{2i1} (potting media- soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1 and inorganic fertilizers 37.5: spike, p_{2i4} was on par with p_{2i1} (potting media- soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1 and inorganic fertilizers 37.5: spike, p_{2i4} was on par with p_{2i1} (potting media- soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1 and inorganic fertilizers 37.5: spike, p_{2i4} was on par with p_{2i1} (potting media- soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1 and inorganic fertilizers 37.5: spike, p_{2i4} was on par with p_{2i1} (potting media- soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1 and inorganic fertilizers 37.5: spike, p_{2i4} was on par with p_{2i1} (potting media- soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1 and inorganic fertilizers 37.5: spike, p_{2i4} was part of parts at parts

Treatments	Roots	Leaves	Stem	Berries	Spikes	Total
Potting media (P)						
P1	0.126	0.315	0.378	0.414	0.102	1.334
P ₂	0.200	0.453	0.514	0.576	0.118	1.860
P ₃	0.176	0.442	0.478	0.504	0.104	1.704
SEm±	0.003	0.006	0.006	0.013	0.002	0.018
CD (0.05)	0.008	0.018	0.017	0.036	0.006	0.052
Inorganic fertilizers (I)						
I_1	0.160	0.358	0.406	0.463	0.111	1.498
I_2	0.181	0.395	0.485	0.514	0.111	1.686
I ₃	0.137	0.383	0.406	0.410	0.099	1.435
I_4	0.197	0.451	0.523	0.590	0.106	1.870
I_5	0.161	0.429	0.464	0.511	0.110	1.675
SEm±	0.004	0.008	0.007	0.016	0.002	0.023
CD (0.05)	0.011	0.024	0.021	0.047	0.008	0.066
Interaction (p×i)						
$\mathbf{p}_1 \mathbf{i}_1$	0.129	0.272	0.338	0.375	0.099	1.213
p_1i_2	0.110	0.257	0.386	0.371	0.110	1.233
p1i3	0.115	0.292	0.342	0.370	0.099	1.217
p_1i_4	0.154	0.417	0.477	0.518	0.092	1.658
p1i5	0.120	0.337	0.349	0.434	0.108	1.348
$p_2 i_1$	0.188	0.397	0.458	0.554	0.128	1.724
p ₂ i ₂	0.224	0.483	0.560	0.635	0.116	2.018
p ₂ i ₃	0.159	0.425	0.466	0.444	0.105	1.599
p2i4	0.242	0.492	0.573	0.716	0.132	2.159
p ₂ i ₅	0.185	0.465	0.516	0.529	0.107	1.802
p ₃ i ₁	0.162	0.405	0.423	0.459	0.108	1.556
p ₃ i ₂	0.208	0.444	0.509	0.537	0.108	1.806
p ₃ i ₃	0.136	0.431	0.411	0.416	0.094	1.489
p3i4	0.195	0.444	0.519	0.534	0.093	1.792
p ₃ i ₅	0.176	0.485	0.528	0.571	0.115	1.875
SEm±	0.006	0.014	0.013	0.028	0.003	0.040
CD (0.05)	0.019	0.041	0.037	0.081	0.01	0.115
Control	0.109	0.270	0.274	0.330	0.086	1.069
Control Vs Treatment	S	S	S	S	S	S

Table 23. Effect of potting media and inorganic feriltizers on plant uptake of nitrogen, g plant⁻¹

plant⁻¹ year⁻¹ at monthly splits). The total uptake was also superior for treatment combination p_{2i4} (2.159g plant⁻¹) followed by p_{2i2} (2.018 g plant⁻¹) and p_{3i5} (1.875 g plant⁻¹). Significant variation in N uptake of different plant parts and total N uptake was noticed between the treatment and control.

4.5.2 P uptake

The main and interaction effect of potting media and inorganic fertilizers on the P uptake by roots, leaves, stem, berries, spikes and total uptake are furnished in the Table 24.

Uptake of P in different plant parts was significantly influenced by the potting media. Plants grown in potting media, P_2 (soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1) registered highest P uptake in roots, leaves, stem, berries and spike. P_2 recorded the highest total P uptake of 126.76 mg plant⁻¹, followed by P_1 (109.06 mg plant⁻¹) and P_3 (90.73 mg plant⁻¹).

Significant variation in P uptake of different plant parts was noticed among the inorganic fertilizers. Plants of treatment I₄ (25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) registered the highest P uptake in all parts. With respect to uptake of P in leaves I₄ was on par with I₂ (37.5: 37.5: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) and I₅. I₄ recorded the highest P uptake of 125.79 mg plant⁻¹. The lowest P uptake was recorded by I₃ (92.70 mg plant⁻¹).

The treatment combination, p_{2i_4} recorded the highest P uptake in different plant parts like roots, leaves, stem and berries. There was no significant variation of P uptake by spikes among the treatment combination. With respect to uptake of P by leaves the treatment combination, p_{2i_4} was on par with p_{2i_1} , p_{2i_2} , p_{3i_2} and p_{3i_5} . Treatment combination, p_{2i_4} recorded the highest total P uptake of 155.17 mg plant⁻¹ followed by p_{2i_2} (135.33 mg plant⁻¹), p_{2i_5} (125.95 mg plant⁻¹) and p_{3i_5} (124.33 mg

Treatments	Roots	Leaves	Stem	Berries	Spikes	Total
Potting media (P)						
P ₁	6.91	21.19	24.95	32.88	4.81	90.73
P ₂	11.07	26.39	34.77	49.06	5.45	126.76
P ₃	9.36	24.07	31.24	39.56	4.83	109.06
SEm±	0.190	0.463	0.443	0.98	0.169	1.464
CD (0.05)	0.553	1.344	1.283	2.84	0.492	4.242
Inorganic fertilizers (I)						
I_1	7.21	22.99	27.22	37.63	4.21	99.00
I ₂	9.71	24.45	33.08	41.29	4.58	113.12
I ₃	7.33	21.96	26.29	32.26	4.86	92.70
I_4	11.37	25.60	35.42	47.60	5.79	125.79
I ₅	9.94	24.42	29.60	43.72	5.71	113.38
SEm±	0.246	0.599	0.572	1.265	0.219	1.891
CD (0.05)	0.714	1.736	1.657	3.666	0.636	5.477
Interaction (p×i)						
p_1i_1	7.03	20.85	22.39	28.61	4.70	83.59
p_1i_2	6.78	18.80	25.64	30.89	4.70	86.79
p_1i_3	5.42	19.67	21.54	30.63	4.18	81.44
p_1i_4	8.48	24.59	33.58	40.27	5.08	111.99
p1i5	6.83	22.04	21.60	34.01	5.39	89.88
$p_2 i_1$	8.70	26.21	32.26	47.09	4.66	118.91
p ₂ i ₂	11.70	27.99	38.26	52.52	4.86	135.33
$p_2 i_3$	8.27	23.72	28.39	32.98	5.09	98.46
p ₂ i ₄	15.59	28.69	40.21	63.69	6.99	155.17
p ₂ i ₅	11.09	25.36	34.76	49.04	5.70	125.95
p ₃ i ₁	5.91	21.91	27.02	37.20	3.29	95.32
p ₃ i ₂	10.66	26.56	35.33	40.48	4.20	117.24
p3i3	8.29	22.48	28.96	33.17	5.32	98.22
p3i4	10.04	23.53	32.47	38.87	5.31	110.21
p ₃ i ₅	11.89	25.86	32.44	48.11	6.03	124.33
SEm±	0.426	1.036	0.991	2.193	0.380	3.275
CD (0.05)	1.236	3.006	2.870	6.351	NS	9.486
Control	5.41	14.93	20.27	20.38	3.67	64.65
Control Vs Treatment	S	S	S	S	S	S

Table 24. Effect of potting media and inorganic feriltizers on plant uptake of phosphorus, mg plant⁻¹

plant⁻¹).Significant change in P uptake in different plant parts and total uptake was noticed between the treatment and control.

4.5.3 K uptake

The main and interaction effect of potting media and inorganic fertilizers on the K uptake by roots, leaves, stem, berries, spikes and total uptake are provided in the Table 25.

Significant difference in uptake of K in various parts and total uptake was noticed among the different potting media. P_2 (soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1) recorded the highest total uptake of K as well as uptake of K by different plant parts. With regards to the uptake of K in leaves and spikes, P_3 (soil + FYM + leaf compost + coir pith compost in the ratio 3:3:1:1) was found on par with the P_2 . A total K uptake of 2.013 g plant⁻¹ was registered by P_2 , followed by P_3 (1.823 g plant⁻¹) and P_1 (1.374 g plant⁻¹).

In inorganic fertilizers, uptake of K showed significant variation. I₄ (25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) recorded the highest uptake of K in different parts like roots, leaves, stem, berries and total uptake. With respect to uptake of K in roots and stem, I₄ was on par with I₂ (37.5: 37.5: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits). With regard to K uptake of spikes, I₅(12.5:12.5:25.0 g of NPK plant⁻¹ year⁻¹ as soil application at equal monthly splits up to 3 MAP and foliar application of 13:0:45 (0.5 %) at fortnightly intervals from 4th MAP) recorded the highest value, which was on par with I₂ and I₄. With respect to uptake of K by berries, I₄ found to be on par with I₂ and I₅. The total K uptake was superior for I₄ (1.926 g plant⁻¹), followed by I₂ (1.811 g plant⁻¹), I₅ (1.744 g plant⁻¹), I₁ (1.677 g plant⁻¹) and I₃ (1.526 g plant⁻¹).

Interaction effect showed that, p_{2i_4} (potting media- soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1 and inorganic fertilizers 25.0:

Treatments	Roots	Leaves	Stem	Berries	Spikes	Total
Potting media (P)						
P ₁	0.102	0.406	0.421	0.399	0.045	1.374
P ₂	0.174	0.574	0.607	0.607	0.055	2.013
P ₃	0.153	0.563	0.529	0.525	0.053	1.823
SEm±	0.002	0.008	0.007	0.014	0.001	0.02
CD (0.05)	0.007	0.023	0.020	0.041	0.004	0.058
Inorganic fertilizers (I)						
I ₁	0.132	0.512	0.481	0.499	0.049	1.677
I_2	0.164	0.499	0.561	0.537	0.052	1.811
I_3	0.106	0.480	0.467	0.430	0.046	1.526
I_4	0.166	0.557	0.583	0.570	0.052	1.926
I_5	0.148	0.523	0.501	0.517	0.054	1.744
SEm±	0.003	0.01	0.009	0.018	0.002	0.026
CD (0.05)	0.009	0.029	0.026	0.053	0.005	0.074
Interaction (p×i)						
p_1i_1	0.108	0.393	0.423	0.400	0.043	1.370
p_1i_2	0.112	0.370	0.443	0.410	0.053	1.387
p ₁ i ₃	0.098	0.389	0.403	0.383	0.050	1.323
p1i4	0.104	0.471	0.460	0.407	0.033	1.477
p1i5	0.090	0.413	0.373	0.393	0.043	1.313
$p_2 i_1$	0.156	0.577	0.540	0.573	0.053	1.903
$p_2 i_2$	0.189	0.584	0.690	0.647	0.050	2.153
p ₂ i ₃	0.118	0.498	0.500	0.487	0.047	1.647
p2i4	0.238	0.620	0.703	0.743	0.067	2.367
p ₂ i ₅	0.164	0.589	0.600	0.587	0.057	1.993
p ₃ i ₁	0.130	0.569	0.480	0.523	0.050	1.757
p_3i_2	0.194	0.543	0.550	0.553	0.053	1.893
p3i3	0.101	0.547	0.497	0.420	0.040	1.607
p3i4	0.155	0.584	0.587	0.560	0.057	1.933
p ₃ i ₅	0.187	0.572	0.530	0.570	0.063	1.935
SEm±	0.005	0.017	0.015	0.031	0.003	0.044
CD (0.05)	0.015	NS	0.045	0.091	0.009	0.129
Control	0.089	0.343	0.300	0.270	0.038	1.040
Control Vs Treatment	S	S	S	S	S	S

Table 25. Effect of potting media and inorganic feriltizers on plant uptake of potassium, g plant⁻¹

25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) recorded the highest K uptake in roots, stem, berries, spikes and total uptake. The uptake of K in leaves was non significant. With regard to uptake of K by stem p_{2i4} was on par with p_{2i2} (potting media- soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1 and inorganic fertilizers 37.5: 37.5: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits). With respect to spikes, p_{2i4} was on par with p_{3i5} (potting media- soil + FYM + leaf compost + coir pith compost in the ratio 3:3:1:1 and inorganic fertilizers 12.5:12.5:25.0 g of NPK plant⁻¹ year⁻¹ as soil application at equal monthly splits up to 3 MAP and foliar application of 13:0:45 (0.5 %) at fortnightly intervals from 4th MAP). The treatment combination p_{2i4} recorded the highest total uptake of K (2.367 g plant⁻¹), followed by p_{2i2} (2.153 g plant⁻¹), p_{2i5} (1.993) and p_{3i4} (1.933 g plant⁻¹). Significant difference in K uptake in all parts and total uptake was observed between the treatment and control.

4.5.4 Ca uptake

The main and interaction effect of potting media and inorganic fertilizers on the Ca uptake by roots, leaves, stem, berries, spikes and total uptake are furnished in table 26.

Significant variation in uptake of Ca in roots, leaves, stem, berries, spikes and total uptake of Ca was noticed by the use of different potting media. Potting media P_2 (soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1) registered the highest Ca uptake in roots, leaves, stem, berries and spike. The total uptake of Ca was the highest for P_2 (1.332 g plant⁻¹), followed by P_3 (1.193 g plant⁻¹) and P_1 (0.919 g plant⁻¹).

Inorganic fertilizer I₄ (25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) recorded the highest total Ca uptake and Ca in all parts and total uptake. With regards to Ca uptake in leaves, I₄ was on par with I₂ (37.5: 37.5: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits). I₄ recorded the highest total uptake of Ca (1.283 g plant⁻¹)

Treatments	Roots	Leaves	Stem	Berries	Spikes	Total
Potting media (P)					parts	- I Ottai
P1	0.118	0.267	0.307	0.193	0.033	0.919
P ₂	0.177	0.392	0.411	0.303	0.050	1.332
P ₃	0.156	0.374	0.361	0.260	0.042	1.193
SEm±	0.003	0.005	0.004	0.006	0.001	0.01
CD (0.05)	0.008	0.016	0.011	0.019	0.003	0.01
Inorganic fertilizers (I)					0.000	0.05
I ₁	0.148	0.326	0.360	0.232	0.043	1.108
I ₂	0.155	0.346	0.388	0.264	0.034	1.186
I ₃	0.129	0.323	0.306	0.226	0.043	1.027
I_4	0.165	0.376	0.407	0.294	0.042	1.283
I ₅	0.153	0.352	0.340	0.245	0.047	1.136
SEm±	0.004	0.007	0.005	0.008	0.001	0.013
CD (0.05)	0.011	0.020	0.014	0.024	0.004	0.039
Interaction (p×i)					0.001	0.057
p_1i_1	0.132	0.248	0.291	0.181	0.029	0.883
p_1i_2	0.101	0.237	0.304	0.181	0.032	0.857
p1i3	0.112	0.262	0.296	0.198	0.034	0.903
p1i4	0.143	0.320	0.373	0.235	0.029	1.100
p1i5	0.101	0.267	0.271	0.170	0.042	0.850
p_2i_1	0.179	0.375	0.428	0.286	0.055	1.323
p_2i_2	0.190	0.407	0.454	0.319	0.038	1.407
p ₂ i ₃	0.132	0.353	0.328	0.241	0.043	1.097
p2i4	0.210	0.443	0.467	0.395	0.064	1.577
p2i5	0.172	0.381	0.379	0.275	0.049	1.257
p_3i_1	0.134	0.351	0.360	0.229	0.043	1.117
p_3i_2	0.176	0.391	0.406	0.292	0.031	1.293
p ₃ i ₃	0.143	0.356	0.293	0.238	0.053	1.080
p ₃ i ₄	0.141	0.365	0.380	0.252	0.033	1.173
p3i5	0.185	0.408	0.369	0.290	0.050	1.300
SEm±	0.006	0.012	0.009	0.014	0.002	0.023
CD (0.05)	0.018	0.035	0.025	0.042	0.006	0.025
Control	0.090	0.234	0.246	0.150	0.030	0.657
Control Vs Treatment	S	S	S	S	S	S

Table 26. Effect of potting media and inorganic feriltizers on plant uptake of calcium, $g plant^{-1}$

followed by I_5 (1.136 g plant⁻¹), I_2 (1.186 g plant⁻¹), I_1 (1.108 g plant⁻¹) and I_3 (1.027 g plant⁻¹).

Interaction effects were significant and the treatment combination, $p_{2}i_4$ (P_{2} -soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1 and I_4 -25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) recorded the highest uptake in different parts like roots, leaves, stem, berries and spike. With respect to uptake of calcium in leaves, $p_{2}i_4$ was found to be on par with $p_{3}i_5$ (potting media- soil + FYM + leaf compost + coir pith compost in the ratio 3:3:1:1 and inorganic fertilizers 12.5:12.5:25.0 g of NPK plant⁻¹ year⁻¹ as soil application at equal monthly splits up to 3 MAP and foliar application of 13:0:45 (0.5 %) at fortnightly intervals from 4th MAP). With regards to stem $p_{2}i_4$ was on par with $p_{2}i_2$. The treatment combination, $p_{2}i_4$ recorded the highest total uptake of 1.577 g plant⁻¹, followed by $p_{2}i_2$ (1.407 g plant⁻¹), $p_{2}i_1$ (1.323 g plant⁻¹), and $p_{3}i_5$ (1.300 g plant⁻¹). Significant variation in Ca uptake in different plant parts and total uptake was noticed between treatment and control.

4.5.5 Mg uptake

The main and interaction effect of potting media and inorganic fertilizers on the Mg uptake by roots, leaves, stem, berries, spikes and total uptake are presented in table 27.

The total Mg uptake and uptake of Mg in roots, leaves, stem, berries, spikes were significantly influenced by the potting media. P_3 (soil + FYM + leaf compost + coir pith compost in the ratio 3:3:1:1) recorded the highest uptake of Mg in roots and leaves. P_2 (soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1) registered the superior uptake of Mg in stem, berries and spike. The total Mg uptake was the highest under P_2 (260.10 mg plant⁻¹), followed by P_3 (248.22 mg plant⁻¹) and P_1 (182.59 mg plant⁻¹).

Treatments	Roots	Leaves	Stem	Berries	Spikes	Total
Potting media (P)						
P ₁	16.95	61.30	67.44	28.97	7.92	182.59
P ₂	25.59	89.12	88.43	47.98	8.99	260.10
P ₃	27.20	89.52	83.04	40.06	8.40	248.22
SEm±	0.705	1.114	1.219	0.926	0.159	2.464
CD (0.05)	2.045	3.234	3.536	2.688	0.462	7.151
Inorganic fertilizers (I)						
I_1	22.85	73.51	74.38	36.37	8.73	215.83
I ₂	25.32	77.97	86.42	41.11	8.32	239.14
I ₃	18.56	76.21	71.84	34.35	7.96	208.93
I ₄	25.67	89.23	90.57	45.98	8.64	260.10
I ₅	23.81	82.97	74.97	37.21	8.54	227.51
SEm±	0.911	1.439	1.573	1.196	0.205	3.181
CD (0.05)	2.641	4.175	4.565	3.471	NS	9.232
Interaction (p×i)						
p_1i_1	15.38	51.44	55.43	28.17	8.03	158.45
p_1i_2	18.12	52.29	79.55	28.45	7.81	186.22
p1i3	15.39	57.95	60.50	28.15	8.03	170.01
p_1i_4	19.78	78.85	81.20	31.77	7.81	219.41
p1i5	16.06	66.00	60.54	28.33	7.92	178.84
p_2i_1	29.01	85.50	89.55	43.53	9.79	257.38
p ₂ i ₂	26.87	95.99	93.09	53.76	8.80	278.52
p ₂ i ₃	19.69	79.81	76.64	39.28	8.25	223.67
p2i4	29.45	96.43	97.19	63.83	9.75	296.64
p ₂ i ₅	22.92	87.86	85.67	39.46	8.36	244.27
p ₃ i ₁	24.15	83.57	74.38	37.41	8.36	231.64
p ₃ i ₂	30.97	85.64	86.42	41.10	8.36	252.69
p3i3	20.60	90.89	71.84	35.62	7.59	233.09
p3i4	27.79	92.43	90.57	42.35	8.36	264.24
p3i5	32.47	95.07	74.98	43.82	9.35	259.42
SEm±	1.576	2.492	2.725	2.071	0.356	5.521
CD (0.05)	4.574	7.232	7.907	6.011	1.032	15.99
Control	13.44	48.27	46.17	21.45	7.04	136.38
Control Vs Treatment	S	S	S	S	S	S

Table 27. Effect of potting media and inorganic feriltizers on plant uptake of magnesium, mg plant⁻¹

The uptake of Mg in roots, leaves, stem, berries spikes and total Mg uptake were significantly differed by the inorganic fertilizers. Inorganic fertilizer I₄ (25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) registered the highest Mg uptake in different parts like roots, leaves, stem and berries. The uptake of Mg by spikes was non significant. The highest total Mg uptake was recorded by I₄ (260.10 mg plant⁻¹) followed by I₂ (239.14 mg plant⁻¹), I₅ (227.51 mg plant⁻¹), I₁ (215.83 mg plant⁻¹) and I₃ (208.93 mg plant⁻¹).

Interaction effects were significant and treatment combination, p_2i_4 (P_2 -soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1 and I_4 -25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) recorded the highest Mg uptake in plant parts like leaves, stems, berries and spikes. With regard to roots, p_{3i5} (potting mediasoil + FYM + leaf compost + coir pith compost in the ratio 3:3:1:1 and inorganic fertilizers 12.5:12.5:25.0 g of NPK plant⁻¹ year⁻¹ as soil application at equal monthly splits up to 3 MAP and foliar application of 13:0:45 (0.5 %) at fortnightly intervals from 4th MAP) recorded the highest value. Treatment combination, p_2i_4 recorded the highest total uptake of Mg (296.64 mg plant⁻¹), followed by p_2i_2 (278.52mg plant⁻¹), p_3i_4 (264.24 mg plant⁻¹), p_3i_5 (259.42 mg plant⁻¹) and p_2i_1 (257.38 mg plant⁻¹).

Significant change in Mg uptake in different plant parts and total uptake was noticed between treatments and control.

4.5.6 S uptake

The main and interaction effect of potting media and inorganic fertilizers on the S uptake by roots, leaves, stem, berries, spikes and total uptake are furnished in table 28.

Significant change in uptake of S and uptake of S in Mg in roots, leaves, stem, berries, spikes was noticed among different potting media. P_2 (soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1) registered the highest S uptake

Treatments	Roots	Leaves	Stem	Berries	Spikes	Total
Potting media (P)						
P1	21.30	39.56	46.49	30.32	4.88	134.14
P ₂	34.62	58.96	66.94	58.61	5.40	210.70
P ₃	30.86	52.32	54.49	40.74	5.66	172.0
SEm±	0.618	0.837	1.025	2.079	0.248	2.239
CD (0.05)	1.792	2.423	2.976	6.034	NS	6.499
Inorganic fertilizers (I)						
I ₁	27.50	45.84	52.04	42.19	5.82	162.7
I ₂	32.12	46.00	62.57	40.80	4.80	173.3
I ₃	21.66	47.29	49.82	39.38	4.30	153.6
I4	34.33	59.45	61.58	47.44	5.74	195.3
I_5	29.03	52.82	53.87	46.30	5.90	176.6
SEm±	0.797	1.081	1.324	2.684	0.32	2.891
CD (0.05)	2.314	3.138	3.842	NS	0.928	8.372
Interaction (p×i)						
p_1i_1	22.88	35.54	41.79	32.07	5.43	128.8
p_1i_2	21.00	33.25	54.14	33.73	4.77	138.5
p1i3	16.94	37.66	42.35	32.17	2.97	124.5
p_1i_4	24.96	51.14	52.47	23.43	4.87	147.0
p1i5	20.70	40.19	41.72	30.20	6.37	131.5
$p_2 i_1$	33.05	51.19	63.71	65.37	6.10	206.3
p ₂ i ₂	37.46	60.20	76.51	57.57	4.63	220.8
p ₂ i ₃	24.36	48.99	53.67	46.07	4.50	167.6
p ₂ i ₄	46.89	73.33	70.66	74.07	6.40	253.34
p ₂ i ₅	31.36	61.10	70.16	49.97	5.37	205.6
p ₃ i ₁	26.58	50.79	50.61	29.13	5.93	152.9
p ₃ i ₂	37.91	44.56	57.06	31.10	5.00	160.4
p3i3	23.69	55.22	53.44	39.90	5.43	168.62
p3i4	31.13	53.89	61.59	44.83	5.97	185.49
p3i5	35.02	57.16	49.74	58.73	5.97	192.70
SEm±	1.381	1.873	2.293	4.649	0.554	5.007
CD (0.05)	4.008	5.435	6.654	13.492	NS	14.53
Control	19.40	40.65	34.11	21.50	4.90	113.03
Control Vs Treatment	S	S	S	S	S	S

Table 28. Effect of potting media and inorganic feriltizers on plant uptake of sulphur, mg plant⁻¹

in roots, leaves, stem and berries. Uptake of S by spikes were found to be non significant among different potting media. P_2 registered the highest total S uptake (210.76 mg plant⁻¹), followed by P_3 (172.05 mg plant⁻¹) and P_1 (134.14 mg plant⁻¹).

Inorganic fertilizer, I₄ (25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) recorded the highest uptake of S in different parts like roots and leaves. With regards to S uptake by stem, I₂ (37.5: 37.5: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) recorded the highest value and was on par with I₄. Uptake of S by berries was found to be non significant among different inorganic fertilizers. I₄ recorded the highest total S uptake of 195.30 mg plant⁻¹ followed by I₅ (176.66 mg plant⁻¹), I₂ (173.30 mg plant⁻¹), I₁ (162.71 mg plant⁻¹) and I₃ (153.60 mg plant⁻¹).

Interaction effects were found to be significant. The treatment combination p_{2i4} , (P_{2} -soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1 and I_{4} -25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) recorded the highest S uptake in different plant parts like roots, leaves and berries. Regarding the uptake of S by stem, p_{2i2} (potting media- soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1 and inorganic fertilizers 37.5: 37.5: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) recorded the highest value. The uptake of S by spikes were noted to be non significant among treatment combinations. The treatment combination, p_{2i4} recorded the highest total uptake of S (253.34 mg plant⁻¹) followed by p_{2i2} (220.87 mg plant⁻¹), p_{2i1} (206.33 mg plant⁻¹) and p_{2i5} (205.67 mg plant⁻¹). Significant variation in uptake of S by different plant parts and total uptake were noticed among the treatments and control.

4.6.1 Nitrogen harvest index

The main and interaction effect of potting media and inorganic fertilizers on nitrogen harvest index are presented in Table 29.

Potting media significantly influenced the nitrogen harvest index. Plants raised in P₁ (soil + FYM + neem cake + coir pith compost in the ratio 3:3:1:1) recorded the highest nitrogen harvest index and was on par with P₂ (31.24 %).

Significant change in nitrogen harvest index was noticed among different inorganic fertilizers. I₄ (25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) registered the highest nitrogen harvest index (31.62 %) and was on par with I₁, I₂ and I₅.

Interaction effects were found to be significant and the treatment combination, p_{2i4} (potting media- soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1 and 25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) recorded the highest nitrogen harvest index (33.58 %) and was on par with p_{1i5} (32.83 %) and p_{2i1} (32.89 %) and p_{1i5} (32.83 %). Nitrogen harvest index found to be non significant between treatment and control.

4.6.2 Phosphorus harvest index

The main and interaction effect of potting media and inorganic fertilizers on phosphorus harvest index are provided in Table 29.

Phosphorus harvest index significantly varied among different potting media. Potting media, P_2 (soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1) registered the highest phosphorus harvest index (38.36 %). The lowest phosphorus harvest index was recorded by P_3 (36.19 %).

Treatments	Nitrogen	Phosphorus	Potassium
Potting media (P)			
P ₁	31.59	36.21	29.39
P ₂	31.24	38.36	30.04
P ₃	29.81	36.19	28.77
SEm±	0.276	0.552	0.247
CD (0.05)	0.802	1.601	0.716
Inorganic fertilizers (I)			
I ₁	31.51	37.54	29.77
I ₂	30.93	36.3	29.51
I ₃	29.21	34.93	28.22
I_4	31.62	37.38	29.88
I ₅	31.12	38.45	29.62
SEm±	0.357	0.712	0.319
CD (0.05)	1.036	2.067	0.925
Interaction (p×i)			
p1i1	31.63	34.22	29.27
p1i2	31.04	35.56	29.46
p1i3	31.15	37.57	28.86
p1i4	31.28	35.88	29.49
p1i5	32.83	37.83	29.88
p ₂ i ₁	32.89	39.59	30.25
p ₂ i ₂	31.72	38.79	29.87
p ₂ i ₃	28.22	33.49	29.44
p2i4	33.58	41.03	31.41
p ₂ i ₅	29.78	38.86	29.25
p ₃ i ₁	30.01	38.8	29.79
p ₃ i ₂	30.05	34.54	29.19
p3i2 p3i3	28.25	33.73	
p3i3	29.99		26.36
	30.74	35.24	28.75
p3i_5 SEm±	0.618	38.64	29.73
CD (0.05)	1.794	1.234 3.573	0.552
Control	31.34	31.49	1.601 26.02
Control Vs Treatment	S	S1.49	S

Table 29. Effect of potting media and inorganic feriltizers on nitrogen, phosphorus and potassium harvest index, %

Significant variation in phosphorus harvest index was noticed among different inorganic fertilizers. I₅ (12.5:12.5:25.0 g of NPK plant⁻¹ year⁻¹ as soil application at equal monthly splits up to 3 MAP and foliar application of 13:0:45 (0.5 %) at fortnightly intervals from 4th MAP) resulted in highest phosphorus harvest index (38.45 %) and was on par with I₁ and I₄.

Interaction effects were found to be significant and the treatment combination, p_{2i4} (potting media- soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1 and 25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) resulted in highest phosphorus harvest index (41.03 %) and was on par with p_{2i1} (39.59 %), p_{2i5} (38.86 %), p_{3i1} (38.80 %), p_{2i2} (38.79 %), p_{1i5} (37.83 %), p_{1i3} (37.57 %) and p_{3i5} (38.64 %) Significant difference in phosphorus harvest index was recorded between treatment and control.

4.6.3 Potassium harvest index

The main and interaction effect of potting media and inorganic fertilizers on potassium harvest index are presented in Table 29.

Potting media significantly influenced the potassium harvest index. Plants raised in potting media, P_2 (soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1) registered the highest value (30.04 %). The potassium harvest index of P_1 and P_3 were (29.39 %) and (28.77 %) respectively.

Significant change in potassium harvest index was noticed among different inorganic fertilizers. I₄ (25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) resulted in highest potassium harvest index (29.88 %) and was on par with I₁ (29.77 %), I₅ (29.62 %) and I₂ (29.51 %).

Interaction effects were found to be significant. Treatment combination, p_{2i4} (potting media- soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1 and 25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) recorded the highest

potassium harvest index (31.41 %) and was on par with p_2i_1 (30.25 %), p_1i_5 (29.88 %), and p_2i_2 (29.87 %). Significant variation in potassium harvest index was noticed between treatment and control.

4.6.4 Calcium harvest index

The main and interaction effect of potting media and inorganic fertilizers on calcium harvest index are furnished in Table 30.

Calcium harvest index significantly varied among different potting media. Potting media, P_2 (soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1) registered the highest calcium harvest index (22.61 %).

Significant variation in calcium harvest index was noticed among different inorganic fertilizers. I₄ (25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) resulted in highest value (22.60 %) and was on par with I₂ (22.10 %) and I₃ (21.98 %).

Interaction effects were found to be significant and the treatment combination, p_{2i_4} (potting media- soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1 and 25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) resulted in highest calcium harvest index (24.97 %). The calcium harvest index of control was 20.20 %. Calcium harvest index was found to be non significant between treatment and control.

4.6.5 Magnesium harvest index

The main and interaction effect of potting media and inorganic fertilizers on magnesium harvest index are presented in Table 30.

Potting media significantly influenced the magnesium harvest index. Plants raised in potting media, P_2 (soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1) registered the highest value (18.28 %).

Treatments	Calcium	Magnesium	Sulphur
Potting media (P)			
P1	21.00	15.98	22.80
P ₂	22.61	18.28	27.66
P ₃	21.73	16.12	23.21
SEm±	0.244	0.462	0.885
CD (0.05)	0.709	0.947	2.569
Inorganic fertilizers (I)			
I ₁	20.87	16.96	25.06
I ₂	22.1	16.92	23.19
I ₃	21.98	16.47	25.59
I4	22.6	17.32	23.07
I ₅	21.34	16.30	25.87
SEm±	0.315	0.596	1.143
CD (0.05)	0.915	NS	NS
Interaction (p×i)			
p_1i_1	20.53	17.80	24.89
$p_1 i_2$	21.18	15.20	24.33
p ₁ i ₃	21.94	16.59	25.88
p1i4	21.33	14.45	15.95
p1i5	20.01	15.84	22.95
p_2i_1	21.62	16.89	31.58
p ₂ i ₂	22.62	19.29	25.86
p ₂ i ₃	21.99	17.55	27.48
p ₂ i ₄	24.97	21.50	29.15
p ₂ i ₅	21.83	16.15	24.22
p ₃ i ₁	20.47	16.18	18.71
p ₃ i ₂	22.51	16.26	19.37
p ₃ i ₃	22.00	15.26	23.42
p3i4	21.48	16.02	24.12
p ₃ i ₅	22.18	16.91	30.43
SEm±	0.546	1.032	1.979
CD (0.05)	1.585	2.118	5.744
Control	20.2	15.63	18.86
Control Vs Treatment	NS	NS	S

Table 30. Effect of potting media and inorganic feriltizers on calcium, magnesium and sulphur harvest index, %

Magnesium harvest index was found to be non significant among different inorganic fertilizers.

Interaction effects were found to be significant. Treatment combination, p_{2i_4} (potting media- soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1 and 25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) recorded the highest value (21.50 %). There was no significant variation in magnesium harvest index between treatment and control.

4.6.6 Sulphur harvest index

The main and interaction effect of potting media and inorganic fertilizers on sulphur harvest index are presented in Table 30.

Significant difference in the sulphur harvest index was noticed among potting media. Potting media P_2 (soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1) recorded the highest sulphur harvest indices of 27.66 % followed P_3 (23.21 %) and P_1 (22.80 %).

Sulphur harvest index was found to be non significant among different inorganic fertilizers.

Interaction effects were found to be significant. Treatment combination, p_{2i_1} (potting media- soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1 and 37.5: 37.5: 50.0 g of NPK plant⁻¹ year⁻¹ at monthly splits) recorded the highest sulphur harvest index (31.58 %) and was on par with p_{1i_3} , p_{2i_2} , p_{2i_3} , p_{2i_4} and p_{3i_5} .

4.7 ECONOMICS OF CULTIVATION

Economics of cultivation of bush pepper for 15 years for the calculation of discounted benefit cost ratio, net present worth and internal rate of returns is shown in Appendix 2. The Discounted benefit cost ratio, net present worth and internal rate of returns for various treatments of bush pepper for 15 years is furnished in Appendix 3.

Treatments (p×i)	Discounted cost	Discounted benefit	Discounted benefit cost ratio	NPW	IRR(%)
p ₁ i ₁	550.22	639.54	1.16	89.32	20
p1i2	550.22	646.43	1.18	97.21	21
p1i3	537.49	651.50	1.22	120.01	23
p ₁ i ₄	537.49	722.67	1.34	184.19	28
p1i5	527.57	661.89	1.25	134.31	24
p ₂ i ₁	475.65	681.28	1.81	385.63	44
p ₂ i ₂	475.65	870.19	1.83	394.53	45
p ₂ i ₃	462.32	713.82	1.54	251.50	34
p ₂ i ₄	462.92	1159.89	2.51	696.97	67
p_2i_5	452.40	842.98	1.86	390.58	45
pi	475.65			297.43	
		773.08	1.63		38
p3i_2	475.65	801.15	1.68	325.49	40
p ₃ i ₃	462.32	659.14	1.43	196.82	30
p ₃ i ₄	462.92	801.61	1.73	338.69	41
p ₃ i ₅	452.40	863.03	1.91	410.63	47
Control	523.79	584.66	1.12	60.87	18

Table 31. The discounted benefit cost ratio, net present worth and internal rate of return of bush pepper

The discounted benefit cost ratio, net present worth and internal rate of return of bush pepper is presented in table 31. The treatment combination of potting media (soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1) and inorganic fertilizer (25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) generated the highest discounted benefit cost ratio of 2.51. This was followed by p_{3i_5} (1.91), p_{2i_5} (1.86) and p_{2i_2} (1.83). All the treatment combinations resulted in higher discounted benefit cost ratio (1.12).

The net present worth recorded was \gtrless 696.97 in p₂i₄ (potting media- soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1 and inorganic fertilizer (25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) followed by \gtrless 410.63 in p₃i₅.

Internal rate of return was the highest in the treatment combination, p_{2i4} (potting media- soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1 and inorganic fertilizer (25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) (67 %) followed by p_{3i5} (47 %).

4.8 INCIDENCE OF PESTS

There was no pest incidence in the field during the period of observation.

4.9 INCIDENCE OF DISEASES

Leaf rot was noticed 1 month after planting, which was controlled by spraying of Ridomil Gold @ 0.2 % twice at one week interval.

DISCUSSION

5. DISCUSSION

The study entitled "Nutrient scheduling in bush pepper (*Piper nigrum* L.) was undertaken in the Department of Plantation Crops and Spices in 2017- 2018. The effect of potting media and inorganic fertilizers on morphological, physiological, quality, uptake of primary and secondary nutrients and nutrient harvest indices were discussed in this chapter.

5.1 MORPHOLOGICAL PARAMETERS

5.1.1 Growth parameters

5.1.1.1 Plant height

Plant height showed significant variation among potting media and inorganic fertilizers from 2 MAP to 12 MAP (Table 4). The interaction effect of potting media and inorganic fertilizers from 6 MAP to 12 MAP are provided in Fig. 1.

The plant height was significantly higher for plants raised in P₂ (soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1) at all growth period. The plant height increased from 42.60 cm to 63.60 cm from 2 MAP to 12 MAP and it was least in P₁ (soil + FYM + neem cake + coir pith compost in the ratio 3:3:1:1) varied from 31.28 cm to 49.60 cm. A similar effect of vermicompost on plant height of black pepper cutting was noticed by Thankamani *et al.* (1996). Vermicompost contains nutrients essential for plant growth in readily available form (Theunissen *et al.*, 2010). Prasath *et al.* (2014) revealed that composted coir pith with vermicompost in 3: 1 proportion and *Trichoderma* (*a*) 10 g kg⁻¹ of potting mixture as an ideal potting medium for black pepper nursery and maximum plant growth characteristics like plant height (13.28 cm) was also noted in that medium. Kala (2017) observed the highest plant height in chrysanthemum cv. Pusa Sona raised in potting media

composed of soil: sand: FYM: vermicompost in the ratio 2:1:0.5:0.5. Kerketa (2015) reported maximum plant height of *Populus deltoides* in potting media containing soil: sand: vermicompost in the ratio 1: 1: 1.

Inorganic fertilizers also significantly influenced the plant height of bush pepper. I₅ (12.5:12.5:25.0 g of NPK plant⁻¹ year⁻¹ as soil application at equal monthly splits upto 3 MAP and foliar application of 13:0:45 (0.5 %) at fortnightly intervals from 4th MAP) recorded the highest plant height from 4 MAP to 12 MAP. Chaurasia *et al.* (2005) reported that foliar application of water soluble fertilizers significantly increased the plant height of Tomato (*Lycopersicon esculentum* L.). Foliar spray enables plants to absorb the applied nutrients from the solution through their leaf surface and thus, may result in the economic use of fertilizer (Manasa *et al.*, 2015). The highest plant height in I₅ may be due to the increased absorption of nutrients due the combined application of soil and foliar fertilizers.

Interaction effect between potting media and inorganic fertilizers was non significant at 2 MAP and significant from 4 MAP to 12 MAP. Treatment combination, p₂i₅ (potting media- soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1 and inorganic fertilizers 12.5:12.5:25.0 g of NPK plant⁻¹ year⁻¹ as soil application at equal monthly splits upto 3 MAP and foliar application of 13:0:45 (0.5 %) at fortnightly intervals from 4th MAP) produced the plants with higher plant height from 4 MAP to 12 MAP. It may be due to the efficient release of nutrients from the soil during initial period upto 3 MAP and thereby absorption of nutrients through foliar application. Significant difference in plant height in all periods of growth was recorded between treatment and control. The plant height produced by the control was significantly lower compared to the treatments.

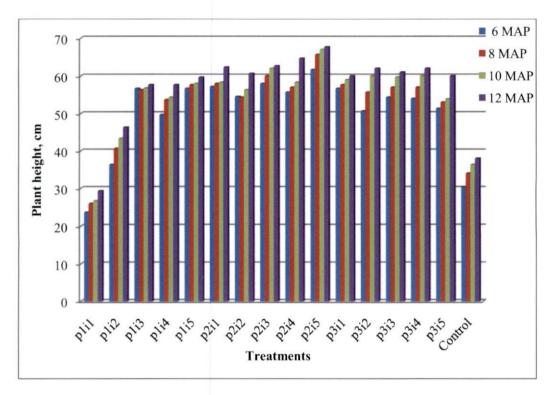


Fig. 1 Interaction effect of potting media and inorganic fertilizers on plant height (cm)

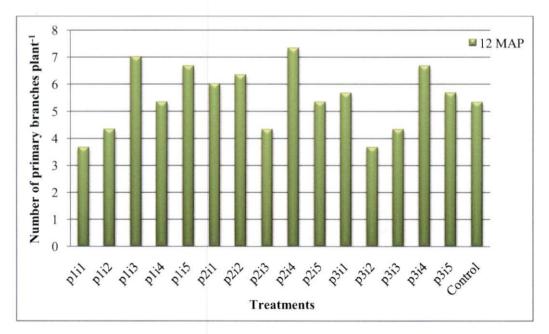


Fig. 2 Interaction effect of potting media and inorganic fertilizers on number of primary branches plant⁻¹

5.1.1.2 Number of primary branches

Potting media and inorganic fertilizers did not significantly influence the number of primary branches throughout the crop period from 2 MAP to 12 MAP (Table 5).

Significant difference was noticed between the interaction of potting media and inorganic fertilizers at 12 MAP and is presented in Fig. 2.

Interaction effect between potting media and inorganic fertilizers was noted to be non significant upto 10 MAP. At 12 MAP treatment combination, p_{2i4} (potting media- soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1 and inorganic fertilizers- 25.0:25.0:50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) recorded the highest number of primary branches was on par with p_{1i3} (7.00), p_{1i5} (6.67), p_{3i4} (6.67), p_{2i2} (6.33), p_{2i1} (6.00), p_{3i1} (5.67), p_{3i5} (5.67), p_{1i4} (5.33) and p_{2i5} (5.33). The number of primary branches also did not show any significant difference between the treatments and control.

Devadas and Chandini (2000) reported significantly higher production of primary branches in bush pepper plants grown under 50 per cent shade and applied with 37.5, 25 and 75 g of NPK plant⁻¹ year⁻¹. However Abhimannue (2016) observed no significant difference in branches of *Piper longum* grown under different methods of irrigation and levels of fertigation from 7 MAP to 15 MAP.

5.1.1.3 Number of secondary branches

Number of secondary branches was influenced significantly by potting media, inorganic fertilizers from 6 MAP to 12 MAP (Table 6). The interaction effect was also significant from 6 MAP to 12 MAP and is presented in Fig. 3.

Potting media did not influence the number of secondary branches upto 4 MAP. Subsequently, P_2 (soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1) produced the highest number of secondary branches from 6 MAP to 12 MAP. Tomati *et al.* (1987) reported that the presence of microbiota like fungi, bacteria and actinomycetes in vermicompost makes it suitable for plant growth. Thankamani *et al.* (1996) observed that when clove seedlings (*Syzygium aromaticum*) grown in potting medium (soil: vermicompost in the ratio 1:1) produced maximum number of branches. Kala (2017) found maximum number of branches plant⁻¹ in potted chrysanthemum raised in the potting media composed soil: sand: FYM: vermicompost in the ratio 2:1:0.5:0.5.

There was no significant variation in the number of secondary branches among inorganic fertilizers from 2 MAP to 4 MAP. After 4 MAP inorganic fertilizer, I_4 (25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) recorded the highest number of secondary branches from 6 MAP to 12 MAP and was on par with I_1 , I_2 , and I_5 at 12 MAP. Devadas and Chandini (2000) observed maximum number of secondary branches in bush pepper grown in potting media containing soil: sand: FYM in the ratio 1:1:1 supplemented with 37.5: 37.5: 50 g of NPK year⁻¹at monthly splits.

Interaction effect was non significant upto 4 MAP. After that significant difference was noted among the different treatment combination. The treatment combination, p_{2i4} (potting media- soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1 and inorganic fertilizers 25.0:25.0:50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) resulted in the highest value, which was on par with the p_{2i1} and p_{2i2} at 12 MAP. The increase in the number of branches may be due to increased uptake of nutrients when plants were fertilized, which resulted in stimulation in lateral meristem and which developed into branches (Tisdale *et al.*, 1995). Treatment differed significantly from the control from 4 MAP to 12 MAP. The number of

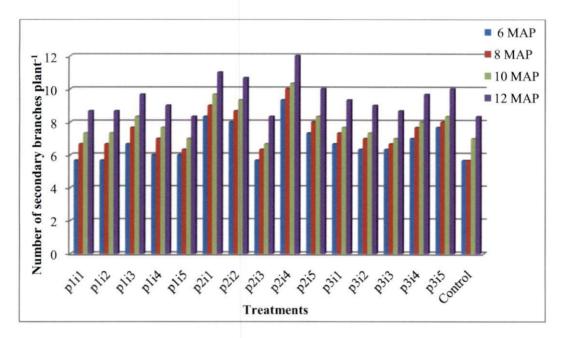


Fig. 3 Interaction effect of potting media and inorganic fertilizers on number of secondary branches plant⁻¹

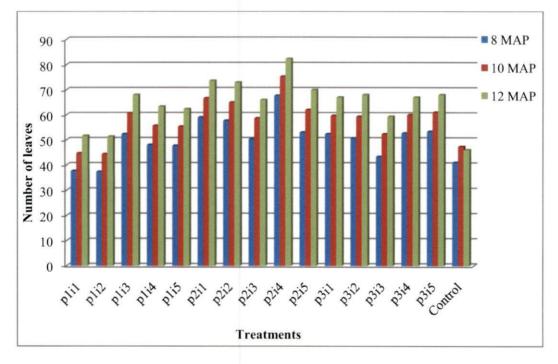


Fig. 4 Interaction effect of potting media and inorganic fertilizers on number of leaves

secondary branches was comparatively less in the control compared to treatments from 4MAP to 12 MAP.

5.1.1.4 Length of primary branches

Length of primary branches showed significant variation among potting media and inorganic fertilizers from 4 MAP to 12 MAP (Table 7).

Potting media, P_2 (soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1) found to produce the highest value from 4 MAP to 12 MAP. This might be due to the effect of vermicompost along with soil, FYM and coir pith compost. Vermicompost has higher nutritional value than traditional composts, due to increased rate of mineralization and degree of humification by the action of earthworms (Albanell *et al.*, 1988). Akshay *et al.* (2014) viewed that the black pepper cuttings raised in the media comprising soil + sand + FYM + vermicompost (1:1:1:1 v/v) significantly increased days to sprout (15.93 days) and length of shoot (20.26 cm).

Plants which received inorganic fertilizers, I_4 (25.0:25.0:50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) produced the highest length of primary branches from 4 MAP to 12 MAP and was on par with I_5 (12.5:12.5:25.0 g of NPK plant⁻¹ year⁻¹ as soil application at equal monthly splits upto 3 MAP and foliar application of 13:0:45 (0.5 %) at fortnightly intervals from 4th MAP) from 4 MAP to 12 MAP. Geetha and Aravindakshan (1992) reported the importance of NPK fertilizers on length of primary and secondary branches. Devadas and Chandini (2000) reported that bush pepper plants which received 37.5 g N, 50 g P and 50 g K bush⁻¹ year⁻¹ in monthly splits produced the maximum length of primary branches.

The combination of potting media and inorganic fertilizers was noted non significant upto 4 MAP, thereafter p_{2i_4} (potting media- soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1 and inorganic fertilizers 25.0: 25.0: 50.0 g of

contributed to the superior length of primary branches. The treatment combinations differed significantly from the control during 4 MAP to 12 MAP.

5.1.1.5 Length of secondary branches

Significant difference in length of secondary branches was noticed among potting media and inorganic fertilizers and their interaction from 4 MAP to 12 MAP (Table 8).

 P_2 (soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1) recorded the highest length of secondary branches from 4 MAP to 12 MAP. P_2 recorded 33.11cm, 38.77 cm, 40.77 cm, 44.27 cm and 45.45 cm length for secondary branches at 4 MAP, 6 MAP, 8 MAP, 10 MAP and 12 MAP respectively. Orozco *et al.* (1996) reported that vermicompost contains nutrients such as nitrates, phosphates, and exchangeable calcium and soluble potassium in easily available forms to the plants. The availability of the primary nutrients and calcium might have resulted in higher length of secondary branches in P_2 .

Significant variation among inorganic fertilizers was noticed from 4 MAP to 12 MAP. I₄ (25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) recorded the highest length of secondary branches from 4 MAP to 12 MAP and was on par with I₅ from 6 MAP to 12 MAP, I₂ and I₁ from 8 MAP to 12 MAP. Devadas and Chandini (2000) reported that under NPK interaction the length of secondary branches of bush pepper variety Karimunda found to be the maximum in 37.5 g N, 50 g P and 50 g K bush⁻¹ year⁻¹ at monthly application but 37.5 g N was found to be on par with 25 g N.

Interaction effect was significant from 4 MAP to 12 MAP and treatment combination p_{2i_4} (potting media- soil + FYM + vermicompost + coir pith

compost in the ratio 3:3:1:1 and inorganic fertilizers25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) recorded the highest length of secondary branches from 4 MAP to 12 MAP. Significant difference in length of secondary branches was observed between treatment and control from 4 MAP to 12 MAP and the recorded length was significantly lower than the treatments.

4.1.1.5 Number of leaves

The number of leaves differed significantly between potting media from 4 MAP to 12 MAP while inorganic fertilizers (Table 9) and interaction between potting different significantly from 8 MAP to 12 MAP (Fig. 4).

Potting media, P_2 (soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1) produced the highest number of leaves from 4 MAP to 12 MAP. Available N is greater in vermicompost than conventionally composted manure (Taleshi *et al.*, 2011). Prasath *et al.* (2014) reported maximum number of leaves in black pepper raised in potting media containing composted coir pith with vermicompost in 3: 1 proportion and *Trichoderma* @ 10 g kg⁻¹. The higher number of secondary branches and length of primary and secondary branches in P₂ might have resulted in significantly higher number of leaves. The readily available nutrients in the media might have favoured the production of more number and length of primary and secondary branches.

Inorganic fertilizers were found to be non significant upto 6 MAP. Inorganic fertilizer, I₄ (25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) showed significantly high value from 8 MAP to 12 MAP. I₄ produced 56.11, 63.67 and 70.89 numbers of leaves at 8 MAP, 10 MAP and 12 MAP respectively. Nybe and Nair (1986) reported the importance of N in leaf production of black pepper. Geetha and Aravindakshan (1992) reported higher number of leaves at higher level of N in bush pepper. Devadas and Chandini (2000) found that maximum number of leaves was

produced when plants received 50 g N, 50 g P and 75 g K bush⁻¹ year⁻¹at monthly splits.

The combination of potting media and inorganic fertilizers also influenced the leaf production. Unlike other combinations, p_{2i4} (potting media- soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1 and inorganic fertilizers25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) produced the highest number of leaves from 8 MAP to 12 MAP. Higher number of leaves corresponded with higher number and length of primary and secondary branches in the above treatment.

The number of leaves produced by the treatments varied significantly from the control from 4 MAP to 12 MAP. The potting media and inorganic fertilizers increased the number and length of secondary branches, which resulted in the more number of leaves than in the plants grown under potting mixture (soil: sand: FYM in the ratio 1: 1: 1 and applied with NPK 1.0:0.5:2.0 g plant⁻¹ at bimonthly interval.

5.1.1.7 Leaf length

Leaf length was significantly influenced by potting media from 8 MAP to 12 MAP. The inorganic fertilizers and the interaction between potting media and inorganic fertilizers could not significantly affect the leaf length from 2 MAP to 12 MAP (Table 10).

Potting media showed no significant change in leaf length from 2 MAP to 6 MAP. P_2 (soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1) recorded the highest leaf length from 8 MAP to 12 MAP, which was on par with P_3 (soil + FYM + leaf compost + coir pith compost in the ratio 3:3:1:1). Application of 15 t ha⁻¹ of vermicompost and 50 % NPK in (*Allium sativum* L.) under field condition produced the highest leaf length (Suthar, 2009).

The leaf length did not vary between treatment combinations and control.

5.1.1.8 Leaf width

The effect of potting media, inorganic fertilizers and their interaction on leaf width was not significant during the growth period from 2 MAP to 12 MAP. The control also did not differ from the treatment with respect to the leaf width (Table 11).

5.1.1.9 Leaf area

Significant effect of interaction of potting media and fertilizers from 6 MAP to 12 MAP is presented in Fig.5. while the main effects are presented in Table 12.

Potting media had significant effect on leaf area from 4 MAP to 12 MAP. P_2 (soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1) recorded the highest leaf area from 4 MAP to 12 MAP. Zaman *et al.* (2015) reported that leaf area of *Stevia rebaudiana* increased with increasing levels of vermicompost application upto 7.5 t ha⁻¹ and then declined with further addition. The highest number of leaves and leaf length in P_2 resulted in higher leaf area.

Significant difference in leaf area among different inorganic fertilizers was noticed from 8 MAP to 12 MAP. I₄ (25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) was found to be at par with I₅ and I₁at 10 and 12 MAP. I₄ produced more number of leaves which might have resulted in highest leaf area. Devadas and Chandini (2000) reported that application of 50 g N, 25 g P and 75 g K bush⁻¹ year⁻¹ at monthly interval recorded maximum leaf area in black pepper variety Karimunda.

Significant variation was observed among the treatment combination from 8 MAP to 12 MAP. Treatment combination, p_{2i4} (potting media- soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1 and inorganic fertilizers25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) produced the highest leaf area from 8 MAP to 12 MAP. p_{2i4} produced the highest number of leaves which resulted

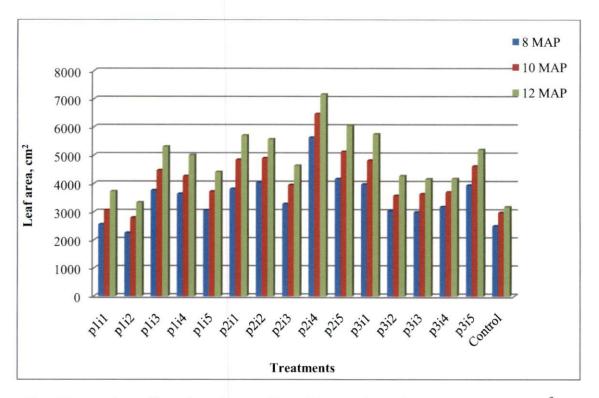


Fig. 5 Interaction effect of potting media and inorganic fertilizers on leaf area (cm²)

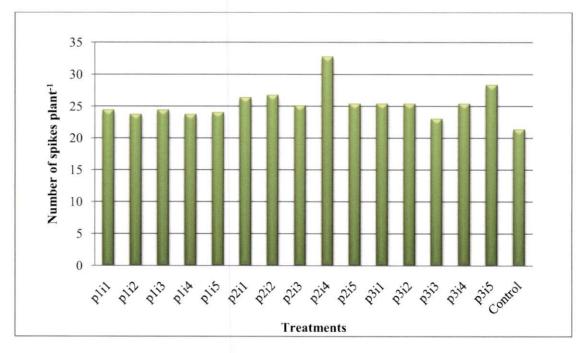


Fig. 6 Interaction effect of potting media and inorganic fertilizers on number of spikes plant⁻¹

in highest leaf area. Thankamani *et al.* (2007) reported that black pepper cuttings raised in solarized potting mixture containing soil, sand and farm yard manure in the proportion 2:1:1 with recommended nutrients (urea, superphosphate, potash and magnesium sulphate 4:3:2:1) produced significant increase in number of leaves (5.3), and leaf area (177 cm²). Significant variation in leaf area was noticed among control and treatment combination throughout the growth period.

5.1.2 Yield parameters

5.1.2.1 Number of spikes planf¹

Table 13 represents the effect of potting media and inorganic fertilizers on the number of spikes plant⁻¹. Fig. 6 represents the interaction effect of potting media and inorganic fertilizers on number of spikes plant⁻¹ at harvest.

The number of spikes plant⁻¹ differed significantly among potting media. P_2 (soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1) recorded the highest number of spikes (27.20) during the crop period followed by P_3 (25.47) and P_1 (24.00). Arancon *et al.* (2004) reported that slow increase in number of fruits in straw berry by the application of vermicompost as compared to inorganic fertilizers. Kala (2017) observed the highest number of flowers plant⁻¹ in pot chrysanthemum when raised in potting media composed of soil: sand: FYM: vermicompost in the ratio 2:1:0.5:0.5.

In the inorganic fertilizers, I_4 (25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) recorded more number of spike (27.22), which was on par with I_1 (25.88) and I_5 (25.33). This was followed by I_2 (25.22) and I_3 (24.11). Sheela (1996) reported that application 30:30:60 N: P₂O₅: K₂O kg ha⁻¹ along with 20 tonnes organic manure increased the number of spikes plant⁻¹ in long pepper. Devadas and Chandini (2000) reported that N and P had significant effect on number of spikes where as K

had no significant effect. They found that 37.5 g of N and P produced maximum number of spikes.

Interaction effect was significant and among interaction treatment combination, p_2i_4 (potting media- soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1 and inorganic fertilizers 25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) recorded the highest number of spikes plant⁻¹ (32.67). This was followed by p_3i_5 (28.33) which was on par with p_2i_2 (26.67), p_2i_1 (26.33), p_2i_5 (25.33), p_3i_1 (25.33), p_3i_2 (25.33) and p_3i_4 (25.33). According to Thanuja and Rajendran (2003) the number of leaves per lateral and leaf area of lateral was positively correlated with the number of spikes per lateral. Treatment combination, p_2i_4 produced significantly higher number of leaves, leaf area which might have resulted in the production of more photosynthates leading to diversion to sink thus constituting more number of spikes. The treatment differed significantly from the control. The lower number of spikes in control might be because of the less production of photosynthates due to the less number of leaves and leaf area.

5.1.2.2 Length of spike

The interaction effect of potting media and inorganic fertilizers on length of spikes is furnished in Fig. 7. The main effect of potting media and inorganic fertilizers is presented in table 13.

Significant variation in length of spike was observed among different potting media. Plants raised in P₂ (soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1) recorded the highest value for length of spike (10.72 cm) followed by P₃ (10.04 cm) and P₁ (9.30 cm).

Plants which received the inorganic fertilizers, I_4 (25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) resulted in the highest length of spike (11.01 cm), followed by I_3 , I_1 , I_5 and I_2 .

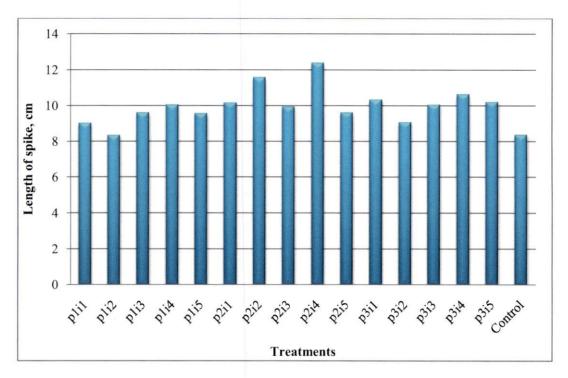


Fig. 7 Interaction effect of potting media and inorganic fertilizers on length of spike (cm)

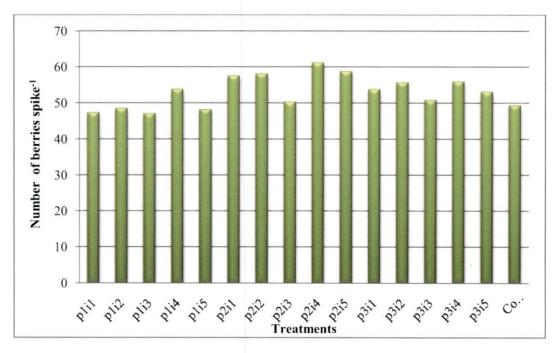


Fig. 8 Interaction effect of potting media and inorganic fertilizers on number of berries spike⁻¹

Interaction effect was significant and among different treatment combination. p_{2i4} , which contained potting media made of soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1 and inorganic fertilizers 25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits recorded the highest value (12.38 cm) and was on par with p_{2i2} . The total uptake of primary and secondary nutrients were higher in the treatment p_{2i4} compared to other treatment combinations which might have resulted in the production of more growth characters resulting in more number and length of spikes. Significant difference in length of spike was observed between treatment and control.

5.1.2.3 Number of berries spike⁻¹

The interaction effects of potting media and inorganic fertilizers on number of berries spike⁻¹ is shown in Fig. 8. The main effect of potting media and inorganic fertilizers is presented in table 13.

Potting media significantly influenced the number of berries spike⁻¹. P_2 (soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1) produced the highest number of berries spike⁻¹ (57.11) and was followed by P_3 and P_1 .

Significant variation in the number of berries spike⁻¹ was noticed among the inorganic fertilizers. I₄ (25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) showed the highest number of berries spike⁻¹(56.90) and was followed by I₂, I₅, I₁ and I₃. Devadas and Chandini (2000) reported that application of 37.5 g each of N and P bush⁻¹ year⁻¹ at monthly intervals produced maximum number of developed berries. However different levels of K application did not significantly influence the number of developed berries.

Significant difference in number of berries spike⁻¹ was noticed among the treatment combination. The treatment combination, $p_{2i_4}(61.12)$ resulted in the highest number of berries spike⁻¹ which was on par with p_{2i_2} (58.00) and p_{2i_5} (58.67). Number of berries spike⁻¹ is an important yield contributing character and hence the

treatment combination p_{2i_4} , significant difference in number of berries spike⁻¹ was noticed between treatment and control.

5.1.2.4 Fresh weight of berries planf¹

The interaction effect of potting media and inorganic fertilizers on fresh weight of berries plant⁻¹ is presented in Fig. 9

Fresh weight of berries plant⁻¹ differed significantly among different potting media (table 13). Potting media, P_2 (soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1) recorded the highest fresh weight of berries (156.07 g plant⁻¹) followed by P_3 (137.17g plant⁻¹) and P_1 (117.24 g plant⁻¹). Truong (2018) revealed that the addition of vermicompost in media significantly increased the physical as well as chemical properties and resulted in substantial increase of yield in tomato. Sainamole *et al.* (2002) reported that number of berries spike⁻¹ is positively correlated to fresh yield of black pepper. P_2 recorded the highest value for number of berries spike⁻¹ and length of spike. This might have produced the highest fresh weight of berries.

Significant difference in fresh weight of berries plant⁻¹ was noticed among the inorganic fertilizers. I₄ (25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) obtained the highest fresh weight of berries plant⁻¹(156.15 g plant⁻¹) and was followed by I₅ (138.08 g plant⁻¹), I₂ (136.70 g plant⁻¹), I₁ (134.38 g plant⁻¹) and I₃ (118.82 g plant⁻¹). Devadas and Chandini (2000) reported yield reduction in bush pepper at higher level of N and 37.5 g N per plant was sufficient for getting optimum yield. They also reported that N and P had significant effect on the yield of bush pepper.

The interaction was significant and the treatment combination p_{2i4} (potting media- soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1 and inorganic fertilizer 25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) resulted in the highest fresh weight of berries plant⁻¹(199.49 g plant⁻¹). This was followed by

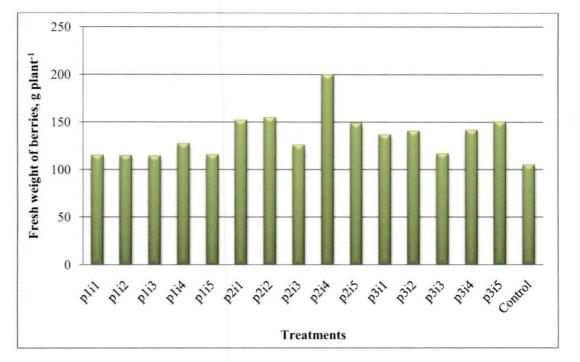


Fig. 9 Interaction effect of potting media and inorganic fertilizers on fresh weight of berries (g plant⁻¹)

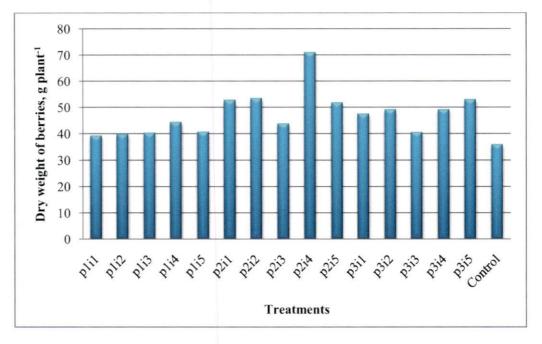


Fig. 10 Interaction effect of potting media and inorganic fertilizers on dry weight of berries (g plant⁻¹)

99

 p_2i_2 (154.66 g plant⁻¹), p_2i_1 (151.84 g plant⁻¹) p_3i_5 (150.17 g plant⁻¹) and p_2i_5 (148.73 g plant⁻¹). Experiment conducted at Horticultural Research Station, Pechiparai to evaluate the performance of bush pepper variety Panniyur 1 both under the pot and field condition revealed that bush pepper properly nourished with FYM, 5 kg per bush along with 100 g of N, 140 g of P and 100 g of K had longer spike length and grains per spike but whereas the bush pepper grown in the field condition had more number of spikes bush⁻¹ and green and dry yield of pepper (Swaminathan, 2000).

The fresh weight of berries plant⁻¹ recorded by control was lower than the treatments.

5.1.2.5 Dry weight of berries planf¹

The interaction effect of potting media and inorganic fertilizers on dry weight of berries plant⁻¹ is furnished in Fig. 10

The dry weight of berries $plant^{-1}$ was significantly influenced by different potting media. Potting media, P₂ (soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1) recorded the highest dry weight of berries $plant^{-1}$ (54.40 g $plant^{-1}$) followed by P₃ and P₁ (47.69 g $plant^{-1}$) and (40.70 g $plant^{-1}$). The higher dry weight of berries in P₂ might be due to higher number of leaves, leaf area, secondary branches, length of primary and secondary branches among potting media.

Significant variation in dry weight of berries $plant^{-1}$ between inorganic fertilizers was noticed. Inorganic fertilizer, I₄ (25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) exhibited the highest dry weight of berries (54.72 g plant⁻¹) which was followed by I₅, I₂, I₁ and I₃ respectively.

The interaction effect was significant and treatment combination, p_{2i_4} (potting media- soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1 and inorganic fertilizer- 25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits)

registered the highest dry weight of berries (70.92 g plant⁻¹). This was followed by p_{2i_2} (53.21 g plant⁻¹), p_{3i_5} (52.77 g plant⁻¹), p_{2i_1} (52.66 g plant⁻¹) and p_{2i_5} (51.55 g plant⁻¹). Sujatha and Namboothiri (1995) reported positive and significant influence on yield with the spike length of black pepper. Number of leaves per lateral, lateral length, number of spikes per lateral, spike length and green yield registered highly significant positive correlation with the dry yield per vine (Thanuja and Rajendran, 2003). Treatment combination, p_{2i_4} produced the highest number and length of primary branches, leaf area, number of spikes, number of berries spike⁻¹, spike length fresh weight, dry weight and volume of roots which might have resulted the significantly higher dry weight of berries.

5.1.2.6 Hundred berry weight

Significant variation in hundred berry weight was registered among different potting media (Table 14). Potting media, P_2 (soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1) recorded the highest hundred berry weight (11.13 g).

Hundred berry weight was not found to be influenced by inorganic fertilizers.

In interaction, p_{2i_4} which is combination of potting media (soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1) and inorganic fertilizers (25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) resulted in the highest hundred berry weight (13.03 g), which was on par with p_{2i_2} (12.30 g). Hundred berry weight was found to be non significant between treatment and control.

5.1.2.7 Hundred berry volume

Hundred berry volume varied significantly among different potting media (table 14). P_2 (soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1)

reported the highest hundred berry volume (10.63 cm³) followed by P_3 (9.31 cm³) and P_1 (9.17 cm³).

Hundred berry volume was found to be non significant among different inorganic fertilizers.

The interaction effect was significant and treatment combination, p_{2i_4} (P₂- soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1 and I₄ -25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) resulted in the highest berry volume (12.53 cm³), which was on par with p_{2i_2} (11.70 cm³). A non significant difference in hundred berry volume was noticed between treatment and control.

5.1.3 Root parameters

5.1.3.1 Fresh weight of roots

Significant variation in fresh weight of roots was observed among different potting media (Table 15) and P₂ (soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1) resulted in the highest fresh weight of roots (31.69 g plant⁻¹). Hormone like activity of vermicompost leads to an increase in root biomass, root initiation and better growth and development of plants (Bachman and Metzger 2007; Mycin *et al.* 2010). According to Garcia *et al.* (2014) vermicompost stimulate root growth and increases the coverage of plant nutrition. Akshay *et al.* (2014) worked on effect of media on black pepper cuttings and observed that the cuttings raised in the media comprising soil + sand + FYM + vermicompost (1:1:1:1 v/v) significantly increased percentage of rooting (80%), number of primary roots (11.07), fresh and dry weight of roots (5.08 g and 1.96 g respectively) whereas, the maximum root length (26.79 cm) was noticed in the media containing soil + sand + FYM + coir dust (1:1:1:1 v/v). The combined effect of FYM, vermicompost and coir pith compost might have produced the highest fresh weight of roots in P₂. There was significant difference in fresh weight of roots among inorganic fertilizers. I₄ (25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) recorded the highest fresh root weight (30.50g plant⁻¹) and was on par with I₂ (37.5: 37.5: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) which recorded a value of 29.91g plant⁻¹.

03

Among the treatment combination, p_{2i_4} (potting media- soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1 and inorganic fertilizers 25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) recorded the highest fresh weight of roots (41.52 g plant⁻¹).

Significant difference in fresh weight of roots was noticed between treatment and control

5.1.3.2 Dry weight of roots

Potting media significantly influenced the dry weight of roots (Table 15) and P_2 (soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1) recorded the highest dry weight of roots (13.78 g plant⁻¹). This was followed by P_3 (12.01 g plant⁻¹) and P_1 (8.42 g plant⁻¹). Thankamani *et al.* (1996) reported that clove seedlings raised in potting media soil: vermicompost in the ratio 1:1 produced the maximum root dry weight. Thankamani *et al.* (2007) found that coir pith compost and granite powder in the proportion of 1:1 along with biofertilizers *Azospirillium* sp. and phosphobacteria recorded the highest root dry weight (0.89 g plant⁻¹). Renuka *et al.* (2015) reported that carnation cuttings raised in media cocopeat and vermicompost recorded the highest percentage of rooting, cumulative root length, fresh weight of roots and percentage of establishment of rooted cuttings.

Significant difference in dry weight of roots was noticed among inorganic fertilizers. I₄ (25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) resulted in highest dry root weight (13.25 g plant⁻¹) which was on par with I₂ (37.5: 37.5: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits).

Interaction effect was significant and treatment combination, p_{2i_4} (Potting media- soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1 and inorganic fertilizers 25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) recorded the highest dry weight of roots (18.05 g plant⁻¹). Treatment and control varied significantly with respect to dry weight of roots.

5.1.3.3 Volume of roots

Significant variation in volume of roots was observed among different potting media (Table 15). P₂ (soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1) recorded the highest volume of roots (34.75 cm³ plant⁻¹).

There was significant difference in volume of roots among inorganic fertilizers. I₄ (25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) noted the highest root volume (33.49 cm³ plant⁻¹) and was on par with I₂.

Among the treatment combinations, p_{2i4} (P₂- soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1 and I₄-25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) recorded the highest root volume (44.52 cm³ plant⁻¹). The higher number as well as weight of roots might have contributed to more root volume. Treatments and control varied significantly with respect to root volume.

5.2 PHYSIOLOGICAL PARAMETERS

5.2.1 Dry matter production

The interaction effect of potting media and inorganic fertilizers on dry matter production of bush pepper at 12 MAP is presented in Fig. 11

Significant variation was observed in dry matter production was among the different potting media at 12 MAP (Table 16). Potting media, P_2 (soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1) recorded the highest dry

matter production (122.69 g plant⁻¹). The lowest dry matter production (86.72 g plant⁻¹) was recorded by P₁ (soil + FYM + neem cake + coir pith compost in the ratio 3:3:1:1). According to Vadiraj *et al.* (1992) growth and dry matter production of cardamom seedling enhanced with the application of vermicomposted forest litter than other media. Thankamani *et al* (2007) reported that dry matter production of black pepper cutting was significantly higher for the treatment coir pith compost: granite powder (1:1) along with *Azospirillum* and phosphobacter. The highest dry matter production in P₂ may be due to significantly higher uptake of primary and secondary nutrients, which resulted in the highest vegetative growth.

With regard to the effect of inorganic fertilizers, I_4 (25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) produced the highest dry matter (120.33 g plant⁻¹). This was followed by I_2 , I_5 , I_1 and I_3 . Geetha and Aravindakshan (1992) reported the beneficial effect of NPK fertilizers on the dry matter production in bush pepper. Devadas and Chandini (2000) recorded maximum dry matter production at 37.5 g N, 25 g P and 75 g K bush⁻¹ year⁻¹ at monthly splits.

Interaction effect between potting media and inorganic fertilizers was significant and treatment combination, p_{2i4} (potting media- soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1 and inorganic fertilizers- 25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) resulted in the highest dry matter production (150.92 g plant⁻¹). Anwar *et al.* (2005) observed that combination of vermicompost at 5 t ha⁻¹ and fertilizer NPK 50:25:25 kg ha⁻¹ performed superior with regard to growth, herb, dry matter, oil content and oil yield. Chung *et al.* (2000) reported that compost alone can not supply enough nutrients for the growth. Compost with adequate amount of chemical fertilizers produce high dry matter yield in corn. Chand *et al.* (2011) reported that combined application of 50 Per cent NPK along with vermicompost (@ 2.5 g kg⁻¹ increased the dry matter in geranium.

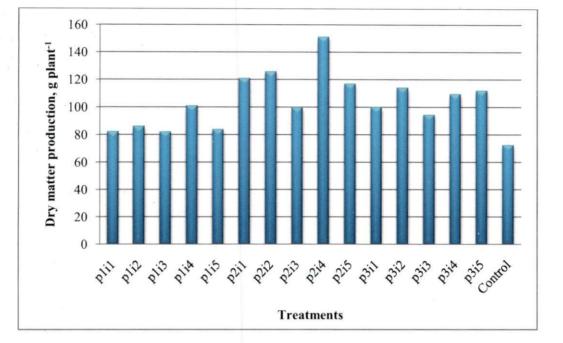


Fig. 11 Interaction effect of potting media and inorganic fertilizers on dry matter production (g plant⁻¹)

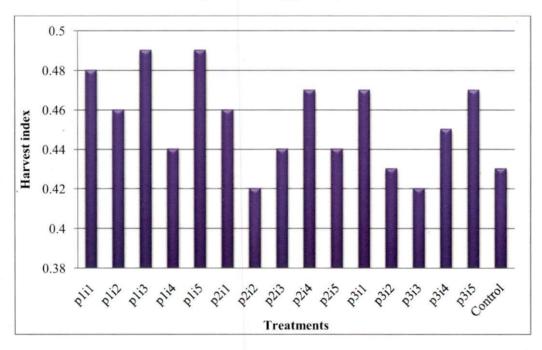


Fig. 12 Interaction effect of potting media and inorganic fertilizers on harvest index

107

According to Sadanandan (2000) in Panniyur 1 for a dry matter production of 15.5 kg ha⁻¹ the NPK removal by the adult black pepper vine was 292, 56, 405 kg ha⁻¹ while for Karimunda it was 183, 49 and 376 kg ha⁻¹ respectively for dry matter production of 13.4 kg ha⁻¹. Significant variation in dry matter production was noticed between treatment and control. The dry matter production recorded by the control was 72.42 g plant⁻¹. Higher dry matter production in treatments might be due to the higher nutrient removal by the treatments compared to the control. The best treatment (p₂i₄) removed an NPK of 2.159 g plant⁻¹,155.17 mg plant⁻¹ and 2.367 g plant⁻¹ for the dry matter production of 150.92 g plant⁻¹ while the NPK removal by the control treatment was 1.069 g plant⁻¹. Reduction in the uptake of NPK might be resulted in the decrease in the dry matter production indicating the importance of the nutrients in the dry matter production.

5.2.2 Specific leaf weight

Potting media, inorganic fertilizers and their interaction did not influence the specific leaf weight at 12 MAP (Table 16). Treatment effects also did not vary with the control.

Menon and Nair (1987) observed that the specific leaf weight of Karimunda was higher than Panniyur 1. According to Geetha and Aravindakshan (1992) leaf area per plant in bush pepper depends primarily on the increasing leaf area while in vine pepper it was primarily dependent on the number of leaves produced. Increasing specific leaf weight improves apparent photosynthesis (Thomson *et al.*, 1996). Specific leaf weight which is the leaf dry weight per unit area is correlated to photosynthesis.

5.2.3 Harvest index

The interaction effect of potting media and inorganic fertilizers on harvest index at 12 MAP is presented in Fig. 12

Significant difference in harvest index was noticed among different potting media used (Table 16). Plants raised in potting media, P_1 (soil + FYM + neem cake + coir pith compost in the ratio 3:3:1:1) recorded the highest harvest index (0.47). P_1 recorded the lowest dry matter production which might have resulted in the highest harvest index.

Significant variation was observed in harvest index between inorganic fertilizers. I₁ (37.5: 37.5: 50.0 g of NPK plant⁻¹ year⁻¹ at monthly splits) reported the highest harvest index (0.47) which was on par with I₃ and I₄. Asghar *et al.* (2010) observed that harvest index was markedly influenced by NPK application in different proportions. Harvest index is the ratio of economic yield and biological yield. I₁ recorded the lowest dry matter production which resulted in the highest harvest index compared to other inorganic fertilizers.

The interaction between potting media and inorganic fertilizers was significant. Treatment combination, p_1i_3 and p_1i_5 recorded the highest harvest index (0.49). Significant difference was noticed in harvest index between treatment and control. Harvest index of control was lower than the treatments. Harvest index represents the partitioning of photosynthate between the berries and the vegetative parts since the dry weight of berries was more compared to substantial increase in dry matter production the treatments recorded the higher harvest index than control.

5.2.4 Moisture percentage

Moisture percentage was not significantly influenced by the potting media and inorganic fertilizers (Table 17). The interaction effect of potting media and inorganic fertilizers also did not influence the moisture percentage. There was no significant variation in moisture percentage between treatment and control indicating that moisture percentage of pepper berries was not influenced by different potting mixtures and inorganic fertilizers.

5.2.5 Drying percentage

Drying percentage was not affected by the potting media and inorganic fertilizers (Table 17). Interaction between potting media and inorganic fertilizers also did not affect the drying percentage. The drying percentage was also non significant between treatment and control which specifies that drying percentage was not influenced by potting mixture and inorganic fertilizers.

5.2.6 Chlorophyll content

Significant variation in chlorophyll at 6 MAP was observed among different potting media while at 12 MAP, potting media did not influence chlorophyll content (Table 18). Potting media, P_2 (soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1) recorded the highest chlorophyll content (0.93 mg g⁻¹) at 6 MAP. According to Akshay *et al.* (2014) black pepper cuttings grown in media containing soil, sand, FYM and vermicompost (1:1:1:1 v/v) recorded the maximum chlorophyll a, chlorophyll b and total chlorophyll content.

Application of inorganic fertilizers showed significant variation in chlorophyll content at 6 MAP. At 12 MAP, inorganic fertilizers did not influence chlorophyll content. Inorganic fertilizers, I_3 (25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at monthly splits) resulted in the highest chlorophyll content at 6 MAP (0.99 mg g⁻¹) which was on par with I₄ (25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) which recorded a value of 0.97 mg g⁻¹.

Interaction effect between potting media and inorganic fertilizers were significant for chlorophyll content at 6 MAP and 12 MAP. Treatment combination, p_{2i4} showed the highest chlorophyll content at 6 MAP (1.22 mg g⁻¹), which was on

par with p_{2i_5} and p_{3i_3} . Treatment combination, p_{2i_5} recorded the highest chlorophyll content (1.47 mg g⁻¹) at 12 MAP and was on par with p_{2i_4} , p_{3i_1} , p_{1i_1} , p_{1i_2} , p_{3i_3} , p_{1i_3} , p_{3i_2} , p_{3i_4} , p_{1i_5} and p_{2i_3} . According to Devadas (1997) maximum chlorophyll content in leaf was recorded in bush pepper plant supplied with 50g N, 50 g P and 75 g K per plant.

Significant variation in chlorophyll content at 6 MAP was noticed between treatment and control while at 12 MAP, there was no significant variation between treatments and the control. Quantity of chlorophyll per unit area is an indication of photosynthetic capacity and productivity of a plant. According to Otitoju and Onwurah (2010) the amount of chlorophyll in the leaf tissues can be influenced by nutrient availability and environmental factors.

The photosynthetic capacity of leaves is related to the nitrogen content .The protein content of the Calvin cycle and the thylakoids represent the majority of leaf nitrogen. Thylakoid nitrogen is proportional to the chlorophyll content. There are strong linear relationship between nitrogen and both RUBP carboxylase and chlorophyll. With increasing nitrogen per unit leaf area, the proportion of total leaf nitrogen in the thylakoids remains the same while the proportion in soluble protein increases (Evans, 1989).Thus higher nutrient especially availability of nitrogen influences the leaf chlorophyll content.

5.3 QUALITY PARAMETERS OF BERRIES

5.3.1 Starch

The interaction effect of potting media and inorganic fertilizers on starch content of berries is presented in Fig. 13

Potting media significantly influenced the starch content and the highest starch content (36.68 %) was produced by potting media P_1 (soil + FYM + neem cake + coir pith compost in the ratio 3:3:1:1) (Table 19). However the starch content was significantly less for the potting media, P_2 .

There was significant difference in starch content among the inorganic fertilizers. I₅ (12.5:12.5:25.0 g of NPK plant⁻¹ year⁻¹ as soil application at equal monthly splits up to 3 MAP and foliar application of 13:0:45 (0.5 %) at fortnightly intervals from 4th MAP) recorded the significantly higher starch content (36.74 %) in berries. The treatment involving foliar nutrition produced significantly higher starch content. According to Mengel (2002) the efficiency of foliar nutrition depends on the mobility of the specific nutrient throughout the entire plant, mobility comprising long distance transport especially phloem transport as well as the symplastic transport. Potassium and nitrogen are examples of nutrients showing high mobility and when taken up by leaves can be rapidly distributed throughout the entire plant. The efficient absorption of the nutrients might have taken place in foliar treatment which resulted in higher starch content.

Interaction effects were significant and treatment combination, p_1i_5 produced the highest starch content of (36.82%) in berries. The treatment having foliar nutrition resulted in higher starch content compared to other nutrients. Essential oil is negatively correlated with starch (Pruthi, 1999). Treatment combination, p_1i_5 registered the significantly lowest essential oil content which might be due to the highest starch content. The starch content of the treatment combination did not vary significantly from the control.

5.3.2 Total ash

The potting media, inorganic fertilizers and their interaction did not influence the total ash content of berries (Table 19). The treatments combination did not show variation with the control in total ash content of berries.

5.3.3 Essential oil

The interaction effect of treatment on essential oil content of berries is provided in Fig. 14

125

Fig. 13 Interaction effect of potting media and inorganic fertilizers on starch (%)

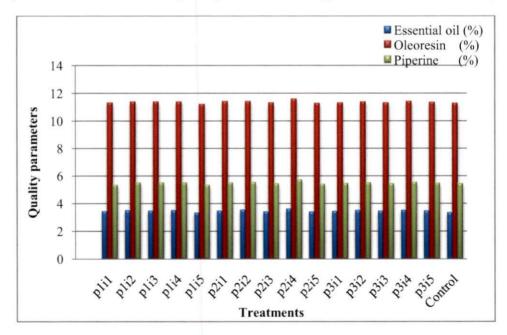


Fig. 14 Interaction effect of potting media and inorganic fertilizers on essential oil (%), oleoresin (%) and Piperine (%)

Significant change in essential oil was noticed among different potting media (Table 19). Plants raised in P_2 (soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1) recorded the highest essential oil (3.46 %) which was on par with P_3 . Sruthi *et al.* (2013) reported that in black pepper total phenol, essential oil, piperine and oleoresin showed positive correlation with each other and also with crude fibre and total fat, but negatively correlated with bulk density and starch.

Significant difference in essential oil was observed between inorganic fertilizers. I₄ (25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) resulted in highest essential oil content (3.52 %) and was on par with I₂ (37.5: 37.5: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits). Devadas (1997) reported that N application had significant effect on the volatile oil content of berries.

Interaction effect was significant and treatment combination, p_{2i_4} recorded the highest essential oil content in berries (3.59 %). Significant variation in essential oil content of berries was noticed between treatment and control.

5.3.4 Oleoresin

The interaction effect of treatment on oleoresin content of berries is shown in Fig. 14

Oleoresin was significantly influenced among the potting media (Table 19). The highest oleoresin content of (11.40 %) was recorded by P_2 (soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1). The essential oil and piperine content of P_2 was significantly high, which might be resulted the highest oleoresin content in P_2 .

There was significant difference in oleoresin among the different inorganic fertilizers. I₄ (25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) indicated the highest oleoresin of (11.46 %). Devadas (1997) observed that P application had significant effect on the oleoresin content of the berries. Abhimannue

(2016) reported oleoresin content was significantly influenced by fertigation levels and highest oleoresin content of 15.10 kg ha⁻¹ was noticed in water soluble NPK fertilizer + PGPR Mix 1 + fluorescent Pseudomonas in *Piper longum*.

The interactions were significant and treatment combination, $p_{2}i_{4}$ resulted in highest oleoresin content (11.59%). The positive correlation of essential oil with oleoresin content was also reported by Pruthi (1999). Experiment conducted at IISR showed that application of NPK fertilisers increased the yield and oleoresin in bush pepper and an increase of 228 Per cent in oleoresin content was noticed compared to check (Sadanandan and Hamza, 1998). The treatment combination, $p_{2}i_{4}$ registered the highest essential oil content, which might be resulted the significantly highest oleoresin content. Hamsa and Sadanandan (2005) reported that application of 0.25 % of ZnSO₄ as foliar increased the oleoresin as well as piperine content compared to other sources and method of application of ZnSO₄. Significant change in oleoresin of berries was noticed between treatment and control.

5.3.5 Piperine

The interaction effect of treatments on piperine content of berries is presented in Fig. 14

Significant variation in piperine was noticed among different potting media. Plants raised in P_2 (soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1) recorded the highest piperine (5.50 %), which was on par with P_3 (Table 19). Piperine (piperinoyl- piperidine) is a nitrogenous pungent substance contained in black pepper (Capasso *et al.*, 2002). Piperine is the most pungent alkaloid of black pepper which makes it spicy. Hence the higher piperine content in the treatment can thus reduce the quantity of use. Significant variation in piperine content was noticed among different inorganic fertilizers. Inorganic fertilizer, I₄ (25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) recorded the highest piperine content (5.57 %).

Interaction effect was significant and treatment combination, p_{2i4} recorded the highest piperine content in berries (5.70 %). Manjunath *et al.* (2007) observed highest piperine content in long pepper plants receiving 30 t FYM along with 100: 40: 140 kg N, P₂O₅, K₂O per hectare. Treatment combination, p_{2i4} recorded the highest oleoresin content and the efficient nutrition partitioning in the treatment might have resulted in significantly higher piperine in p_{2i4} .

However no variation in piperine content was noticed between treatment and control.

5.4 ANALYSIS OF POTTING MEDIUM BEFORE AND AFTER THE EXPERIMENT

5.4.1 Soil pH

The pH of the potting media before the experiment was higher compared to that after the experiment (Table 20a). Addition of inorganic fertilizers might have reduced the soil pH. A reduction in soil pH after each treatment involving interaction effect of potting media and inorganic fertilizers is presented in (Table 20b). Soil pH value was found vary significantly after the experiment. The treatment combination, p_{2i4} (potting media- soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1, inorganic fertilizers. 25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) recorded the highest pH (5.47) which was on par with p_{2i1} and p_{2i2} . There was no significant difference in soil pH between treatment and control.

Fertilizer application may alter rhizosphere pH by changing the relative concentration of different ions in the soil solution. This effect is further confounded by the influence of fertilizer nutrients on ion exchange between root and soil along with root metabolic processes, which may lead to as much as a 2 to 3 unit change in rhizosphere pH compared to bulk soil (Neumann and Romheld, 2001). As pH fluctuates, the availability of different ions changes as certain ions are chemically bound (e.g., P) while others become more available (e.g., Fe and Al). This may affect root system development, as high concentrations of Al tend to be toxic to roots (Jacob and Timmer, 2005). Soils of high yielding black pepper gardens have pH ranging from acidic to near neutral (Hamza and Sadanandan, 2004). Chao *et al.* (2014) reported that low pH may directly inhibit root development and function, limit K, Ca and Mg absorption and reduce seedling growth. At pH 5.5, black pepper attained maximum growth, while the minimum growth occurred at pH 3.5.

5.4.2 Electrical conductivity

The EC of the potting media before the experiment was higher for P1 while it was less for P2 (Table 20a). EC value found to decreased after the experiment (Table 20b). Analysis of potting media after the experiment revealed significant variation in EC among the treatment combinations. The treatment combination, p_{3i1} (potting media- soil + FYM + leaf compost + coir pith compost in the ratio 3:3:1:1, inorganic fertilizers. 37.5: 37.5: 50.0 g of NPK plant⁻¹ year⁻¹ at monthly splits) recorded the highest EC value of 0.96 dS m⁻¹. EC found to be non significant between treatment and control. Electrical conductivity (EC) can provide information on the nutrient condition of the soil. Fertilizer application may change the rhizosphere chemical properties such as pH, ion availability, and electrical conductivity (EC). These changes may inhibit root system growth and function by reducing soil osmotic potential and creating specific ion toxicities (Jacob and Timmer, 2005). Since fertilizer nutrients are salts that conduct an electrical charge and act to alter the electricity of the soil solution. Understanding the relationship between rhizosphere EC and root system development is crucial for formulating successful nursery and field fertilization protocols. EC values should range between 0.63 to 1.56 dSm-2 for media used for container grown plants and EC values > 3.5 dS m⁻¹ can have adverse

effects on seedling growth (Bernstein, 1975; Poole *et al.*, 1978). EC levels tend to rise exponentially with increasing fertilizer inputs and decreasing soil moisture. Concurrently, when low EC levels are detected, fertilizer inputs should be increased accordingly and EC levels re-assessed thereafter to ensure optimal nutrient availability. (Bunt, 1988; Landis *et al.*, 1989).

5.4.3 Organic carbon

The organic carbon percentage of the potting mixture (Table 20a) before the experiment was comparatively lesser compared to treatment combinations involving potting mixture and inorganic fertilizers. Organic carbon value increased for each treatment after the experiment (Table 20 b). Organic carbon showed significant variation among treatment combinations. The treatment combination, p_{3i_1} (potting media- soil + FYM + leaf compost + coir pith compost in the ratio 3:3:1:1, inorganic fertilizers. 37.5: 37.5: 50.0 g of NPK plant⁻¹ year⁻¹ at monthly splits) noted the highest organic carbon (3.06 %) after the experiment. The presence of leaf compost in the potting media might have increased the organic carbon content in the treatment. Hamza *et al.* (2007) reported that optimum value of organic carbon for black pepper cultivation was 2.00 to 7.50 Per cent. After the experiment, Significant change in organic carbon was noticed between treatment and control and organic carbon content of control was lower than the other treatments.

5.4.4 Primary nutrients (N, P and K)

The interaction effect of potting media and inorganic fertilizers on available N is furnished in the Fig. 15

The available N and P content of potting mixture (Table 21 a) was maximum in P₂. The available nitrogen content of the treatment noted significant change after the experiment. The treatment combination, p_1i_1 (potting media- soil + FYM + neem cake + coir pith compost in the ratio 3:3:1:1, inorganic fertilizers. 37.5: 37.5: 50.0 g

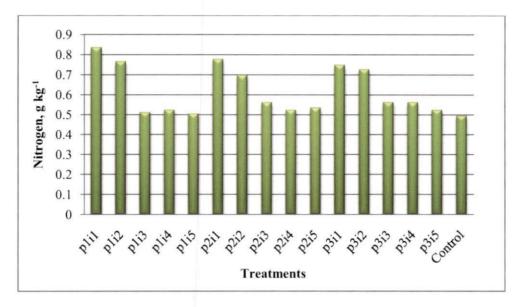


Fig. 15 Interaction effect of potting media and inorganic fertilizers on available N (g kg^{-1}) of potting media after the experiment

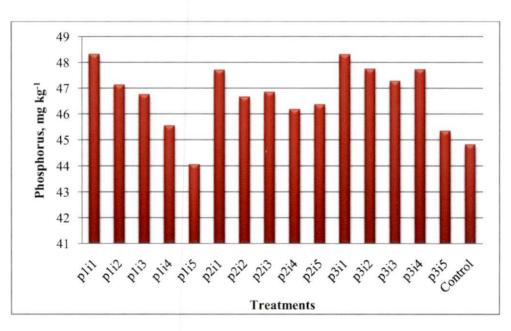


Fig. 16 Interaction effect of potting media and inorganic fertilizers on available P (mg kg^{-1}) of potting media after the experiment

of NPK plant⁻¹ year⁻¹ at monthly splits) recorded the highest available nitrogen of 0.834 g kg^{-1} . This might be due to the lowest uptake of nitrogen by the plants grown in treatment combination, p_1 is revealed from Table 23. Significant difference in available nitrogen was noticed between treatment and control.

The interaction effect of potting media and inorganic fertilizers on available P and K is furnished in the Fig. 16

Available P after the experiment significantly influenced by the interaction of potting media and inorganic fertilizers after the experiment. The treatment combination, p_1i_1 (potting media- soil + FYM + neem cake + coir pith compost in the ratio 3:3:1:1, inorganic fertilizers. 37.5: 37.5: 50.0 g of NPK plant⁻¹ year⁻¹ at monthly splits) recorded the highest available P value of 48.30 mg kg⁻¹. This also might be due to the lowest uptake of P by plants in treatment combination p_1i_1 . Available P varied significantly between the treatment and control after the experiment.

The interaction effect of potting media and inorganic fertilizers on available P and K is furnished in the Fig. 17

Available K was significantly different among treatment combinations. The treatment combination, p_2i_1 (potting media- soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1, inorganic fertilizers. 37.5: 37.5: 50.0 g of NPK plant⁻¹ year⁻¹ at monthly splits) recorded the highest available K (399.30 mg kg⁻¹) and on par with p_2i_3 (399.00 mg kg⁻¹). There was significant variation in available K between treatment and control after the experiment.

5.4.5 Secondary nutrients (Ca, Mg and S)

The interaction effect of potting media and inorganic fertilizers on available Ca, Mg and S after the experiment is furnished in the Fig. 18

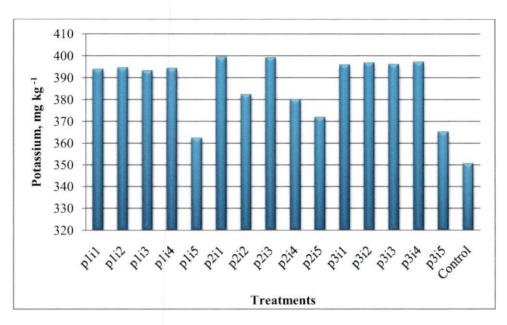


Fig. 17 Interaction effect of potting media and inorganic fertilizers on available K $(mg kg^{-1})$ of potting media after the experiment

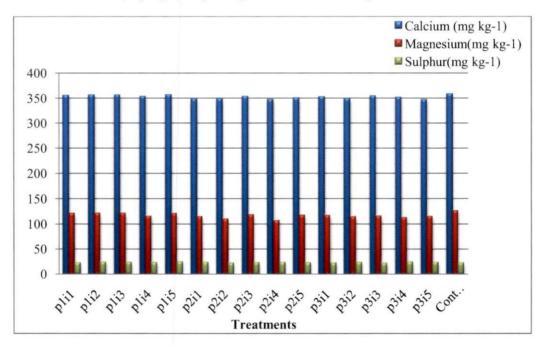


Fig. 18 Interaction effect of potting media and inorganic fertilizers on available Ca, Mg and S (mg kg⁻¹) of potting media after the experiment

Available Ca showed significant variation among the treatment combinations after the experiment. The treatment combinations, p_1i_2 (potting media- soil + FYM + neem cake + coir pith compost in the ratio 3:3:1:1, inorganic fertilizers. 37.5: 37.5: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) and p_1i_3 (potting media- soil + FYM + neem cake + coir pith compost in the ratio 3:3:1:1, inorganic fertilizers. 25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at monthly splits) recorded the highest value of 356.50 mg kg⁻¹, which was on par with p_1i_5 and p_1i_1 . Available Ca was found to be non significant among the treatments and control after the experiment.

After the experiment, available Mg varied significantly different among different treatment combinations (Table 22b). The treatment combination, p_{1i_2} (potting media- soil + FYM + neem cake + coir pith compost in the ratio 3:3:1:1, inorganic fertilizers. 37.5: 37.5: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) registered the highest value of 121.27 mg kg⁻¹ and was on par with p_{1i_1} (120.64 mg kg⁻¹), p_{1i_3} (120.59 mg kg⁻¹) and p_{1i_5} (120.51 mg kg⁻¹). There was no significant variation in available Mg between treatment and control after the experiment.

After the experiment, the interaction of potting media and inorganic fertilizers did not affect the available S content of the potting mixture. Available S was non significant between the treatments and the control after the experiment.

5.5 PLANT UPTAKE OF PRIMARY AND SECONDARY NUTRIENTS BY ROOTS, LEAVES, STEMS, BERRIES AND SPIKES

5.5.1 N uptake

The interaction effect of potting media and inorganic fertilizers on the uptake of N by roots, leaves, stem, berries and spikes are presented in Fig. 19

Potting media significantly influenced the uptake of nitrogen in different parts (Table 23). P₂ (soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1)

recorded the highest nitrogen uptake in roots, leaves, stem, berries and spike. The total nitrogen uptake was significantly higher for P₂. The increased root intensity was accompanied with increased nutrient uptake. Kumar *et al.* (2007) reported that application of vermicompost 2.5 t ha⁻¹ in maize recorded significantly higher nutrient uptake over FYM, poultry manure, green leaf manure and residues of sorghum.Vermicompost improved the microbial activity which led to greater root expansion ultimately resulting in greater uptake of nutrients and contributing increased flowering (Taleshi *et al.*, 2011).

The plants which received inorganic fertilizer, I_4 (25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) resulted in significantly higher nitrogen uptake in different plant parts viz., roots, leaves, stem and berries and was on par with I_5 in leaves. The total N uptake was also found to be the highest for the I_4 (1.870 g plant⁻¹). Nutrient uptake is the function of dry matter production and I_4 produced significantly higher dry matter.

In interaction, treatment combination, $p_{2}i_{4}$ (potting media- soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1 and inorganic fertilizers 25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) recorded the highest N uptake in all plant parts. With regard to uptake of N in roots, leaves, stem and berries the treatment combination $p_{2}i_{4}$ was on par with $p_{2}i_{2}$. With respect to N uptake of spike, $p_{2}i_{4}$ was on par with $p_{2}i_{1}$. Treatment combination, $p_{2}i_{4}$ recorded the significantly higher dry matter production than other treatment combination which might have resulted in higher nutrient uptake and dry weight of berries in $p_{2}i_{4}$. Rajkhowa *et al.* (2003) found significant increase in nutrient uptake by combined use of fertilizer along with vermicompost. Significant variation was noticed in N uptake of different plant parts and total N uptake between treatment and control. The total nitrogen uptake by control was 1.069 g plant⁻¹ which was lower than treatment combinations. The lower N uptake in control resulted in lower dry matter production and yield.

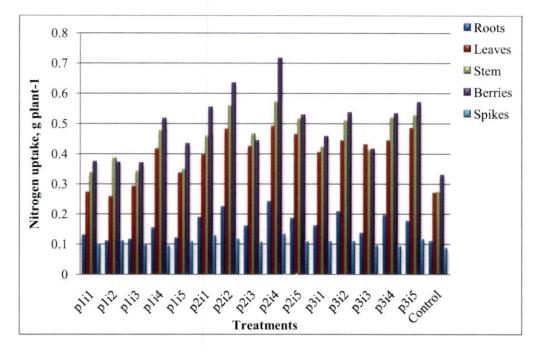


Fig. 19 Interaction effect of potting media and inorganic fertilizers on nitrogen uptake (g plant⁻¹) by roots, leaves, stem, berries and spikes

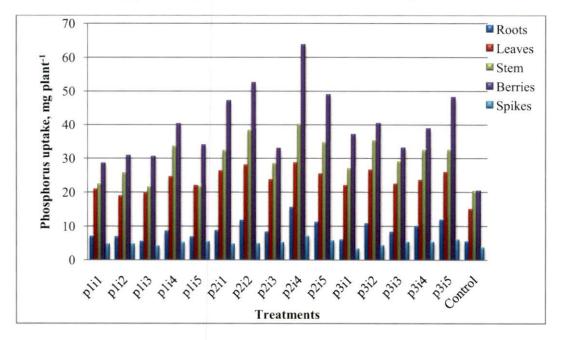


Fig. 20 Interaction effect of potting media and inorganic fertilizers on phosphorus uptake (mg plant⁻¹) by roots, leaves, stem, berries and spikes

5.5.2 P uptake

The main and interaction effect of potting media and inorganic fertilizers on the P uptake by roots, leaves, stem, berries and spikes are furnished in Fig. 20

Uptake of P in different plant parts was significantly influenced by the potting media (Table 24). Plants grown in potting media, P_2 (soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1) registered highest P uptake in roots, leaves, stem, berries and spike. Vermicompost increases the microorganisms in rhizosphere of plants which leads to more availability of N and P through biological fixation of N and biological solubilization of P (Mackey *et al.*, 1982; Mycin *et al.*, 2010). Diby *et al.* (2005) reported significant uptake of nitrogen (N) and phosphorus (P) and enhanced vigour of black pepper when inoculated with *Pseudomonas fluorescens* strains, due to higher root proliferation and nutrient mobilization especially that of P in the rhizosphere. *P. fluorescens* strains enhanced the P uptake by 122 per cent over control (non bacterised plants) and N uptake by 65 per cent over control resulting in increased root growth and biomass production. Thus the highest uptake in P₂ might be due to the more availability of the P through the biological solubilisation which had resulted the highest root growth and hence higher P uptake.

Significant variation in P uptake of different plant parts was noticed among the inorganic fertilizers. Plants of treatment, I₄ (25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) registered the highest P uptake in all parts. I₄ recorded the highest total P uptake of 125.79 mg plant⁻¹. The lowest P uptake was recorded by I₃ (92.70 mg plant⁻¹). Nutrient uptake is the function of dry matter and I₄ recorded the significantly higher dry matter due to the higher uptake. The lowest dry matter production was recorded by I₃.

The treatment combination, p_{2i_4} recorded the highest P uptake in different plant parts like roots, leaves, stem and berries. There was no significant variation of P

uptake by spikes among the treatment combination. Treatment combination, p2i4 recorded the highest total P uptake of 155.17 mg plant⁻¹ followed by p₂i₂ (135.33 mg plant⁻¹), p₂i₅ (125.95 mg plant⁻¹) and p₃i₅ (124.33 mg plant⁻¹). Raju et al. (2013) reported that 50 % N through inorganic fertilizer + 50 % N through vermicompost recorded the highest NPK uptake. This might be due to the immediate release of nutrients through inorganic fertilizers and the latter by the mineralization of nutrients through vermicompost resulting in steady supply of nutrients throughout the crop period. Phosphorus enters the plant through root hairs, root tips, and the outermost layers of root cells. Higher root mass was reported in p2i4 which hence had more root hairs, root tips and outer root cells which resulted in more absorption of P. Phosphorus (P) is vital to plant growth found in every living plant cell. Once inside the plant root, P may be stored in the root or transported to the upper portions of the plant. Through various chemical reactions, it is incorporated into organic compounds, including nucleic acids (DNA and RNA), phosphoproteins, phospholipids, sugar phosphates, enzymes, and energy-rich phosphate compounds. Significant change in P uptake in different plant parts and total uptake was noticed between the treatment and control

5.5.3 K uptake

The interaction effect of potting media and inorganic fertilizers on the K uptake by roots, leaves, stem, berries and spikes are provided in Fig. 21

Significant difference in uptake of K in various parts and total uptake was noticed among the different potting media (Table 25). P_2 recorded the highest total uptake of K as well as uptake of K by different plant parts. With regard to the uptake of K in leaves and spikes, P_3 was found on par with the P_2 . A total K uptake of 2.013 g plant⁻¹ was registered by P_2 , followed by P_3 (1.823 g plant⁻¹) and P_1 (1.374 g plant⁻¹). Basker *et al.* (1992) reported that earthworms enhance the availability of K by

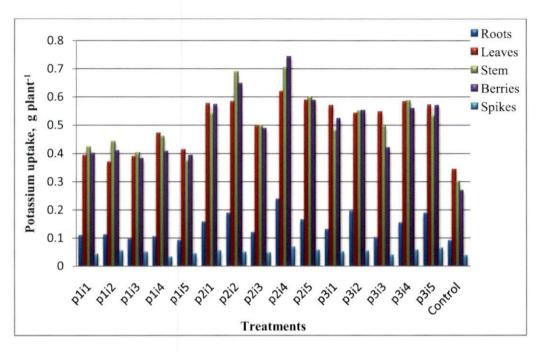


Fig. 21 Interaction effect of potting media and inorganic fertilizers on potassium uptake (g plant⁻¹) by roots, leaves, stem, berries and spikes

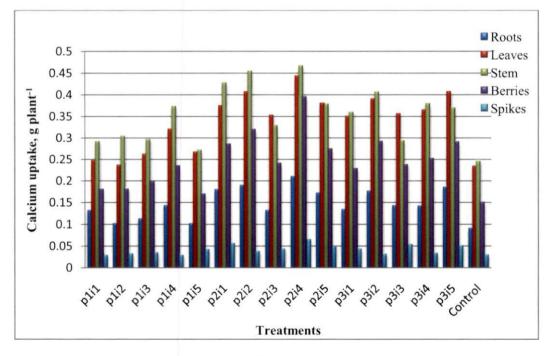


Fig. 22 Interaction effect of potting media and inorganic fertilizers on calcium uptake (g plant⁻¹) by roots, leaves, stem, berries and spikes

shifting the equilibrium between the forms of K from unavailable forms to more available forms in the soil.

In inorganic fertilizers, uptake of K showed significant variation. I₄ (25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) recorded the highest uptake of K in different parts like roots, leaves, stem, berries and total uptake. With regard to K uptake of spikes, I₅ recorded the highest value, which was on par with I₁, I₂ and I₄. The total K uptake was superior for I₄ (1.926 g plant⁻¹), followed by I₂ (1.811 g plant⁻¹), I₅ (1.744 g plant⁻¹), I₁ (1.677 g plant⁻¹) and I₃ (1.526 g plant⁻¹). I₄ produced significantly higher dry weight of roots. Increased root surface area provides more surface area for nutrient uptake.

Interaction effect showed that, p_2i_4 (potting media- soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1 and inorganic fertilizers 25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) recorded the highest K uptake in roots, stem, berries, spikes and total uptake. The uptake of K in leaves was non significant. The treatment combination p_2i_4 recorded the highest total uptake of K (2.367 g plant⁻¹), followed by p_2i_2 (2.153 g plant⁻¹), p_2i_5 (1.993 g plant⁻¹) and p_3i_4 (1.933 g plant⁻¹). Geetha and Nair (1990) reported the order of nutrient removal as K>N>Ca>Mg> P>S>Fe >Mn>Zn. According to Azmil and Yau (1993), K removed by various parts of pepper was worked out and the values obtained were leaves (28.73 g vine⁻¹), branches (28.70 g vine⁻¹), stem (19.60 g vine⁻¹), fruit spikes (0.05 g vine⁻¹), white pepper (42 g vine⁻¹) and flowers (1.40g vine⁻¹).

Significant difference in K uptake in all parts and total uptake was observed between the treatment and control.

5.5.4 Ca uptake

The interaction effect of potting media and inorganic fertilizers on the Ca uptake by roots, leaves, stem, berries and spikes are furnished in Fig. 22 Significant variation in uptake of Ca in roots, leaves, stem, berries, spikes and total uptake of Ca was noticed by the use of different potting media (Table 26). Potting media, P₂ (soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1) registered the highest Ca uptake in roots, leaves, stem, berries and spike. The total uptake of Ca was the highest for P₂ (1.332 g plant⁻¹). Thankamani *et al.* (2007) recorded higher uptake of phosphorous, potassium, calcium and magnesium in black pepper (*Piper nigrum*) cuttings raised in coir pith compost: granite powder: FYM (2:1:1).

Inorganic fertilizer, I₄ (25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) recorded the highest total Ca uptake and Ca uptake in all parts. I₄ recorded the highest total uptake of Ca (1.283 g plant⁻¹). According to Azmil and Yau (1993) Ca removal by different parts of black pepper was leaves (8.32 g vine⁻¹), branches (11.50 g vine⁻¹), stem (1.20 g vine⁻¹), fruit spikes (0.11 g vine⁻¹), white pepper (5.00 g vine⁻¹) and flowers (0.32 g vine⁻¹).

Interaction effects were significant and the treatment combination, p_{2i4} (P₂soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1 and I₄ -25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) recorded the highest uptake in different parts like roots, leaves, stem, berries and spike. With respect to uptake of calcium in leaves, found to be on par with p_{3i5} . With regards to stem p_{2i4} was on par with p_{2i2} . The treatment combination, p_{2i4} recorded the highest total uptake of 1.577 g plant⁻¹. Significant variation in Ca uptake in different plant parts and total uptake was noticed between the treatment and control.

4.5.5 Mg uptake

The interaction effect of potting media and inorganic fertilizers on the Mg uptake by roots, leaves, stem, berries and spikes are presented in Fig. 23

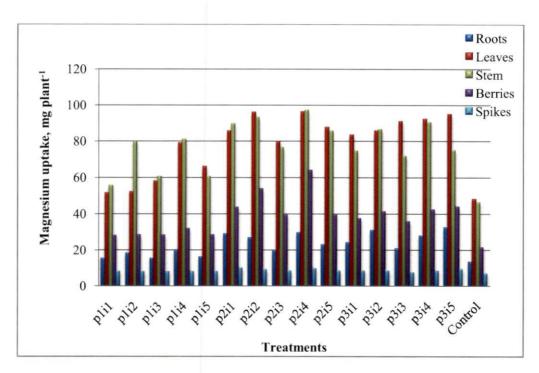


Fig. 23 Interaction effect of potting media and inorganic fertilizers on magnesium uptake (mg plant⁻¹) by roots, leaves, stem, berries and spikes

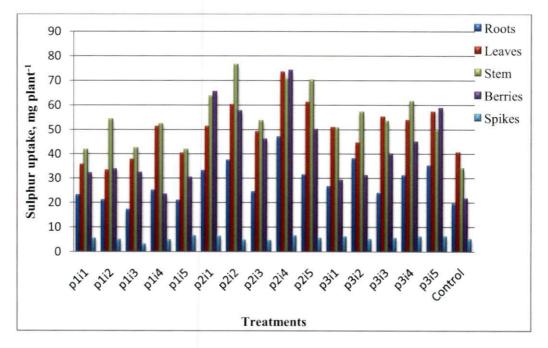


Fig. 24 Interaction effect of potting media and inorganic fertilizers on sulphur uptake (mg plant⁻¹) by roots, leaves, stem, berries and spikes

The total Mg uptake and uptake of Mg in roots, leaves, stem, berries, spikes were significantly influenced by the potting media (Table 27). P_3 (soil + FYM + leaf compost + coir pith compost in the ratio 3:3:1:1) recorded the highest uptake of Mg in roots and leaves. P_2 (soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1) registered the superior uptake of Mg in stem, berries and spike. The total Mg uptake was the highest under P_2 (260.10 mg plant⁻¹).

The uptake of Mg in roots, leaves, stem, berries spikes and total Mg uptake were significantly differed by the inorganic fertilizers. Inorganic fertilizer, I₄ (25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) registered the highest Mg uptake in different parts like roots, leaves, stem and berries. The uptake of Mg by spikes was non significant. The highest total Mg uptake was recorded by I₄ (260.10 mg plant⁻¹). Mg removal by different parts of black pepper were leaves (4.55 g vine⁻¹), branches (5.98 g vine⁻¹), stem (5.04 g vine⁻¹), fruit spikes (0.10 g vine⁻¹), white pepper (5.80 g vine⁻¹) and flowers (0.22 g vine⁻¹) as reported by Azmil and Yau (1993).

Interaction effects were significant and treatment combination, p_{2i4} (P₂-soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1 and I₄ -25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) recorded the highest Mg uptake in plant parts like leaves, stems, berries and spikes. With regard to roots, p_{3i5} recorded the highest value. Treatment combination, p_{2i4} recorded the highest total uptake of Mg (296.64 mg plant⁻¹).

Significant change in Mg uptake in different plant parts and total uptake was noticed between treatments and control.

4.5.6 S uptake

The interaction effect of potting media and inorganic fertilizers on the S uptake by roots, leaves, stem, berries and spikes are furnished in Fig. 24

Significant change in uptake of S was noticed in roots, leaves, stem and berries among different potting media (Table 28). P_2 (soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1) registered the highest S uptake in roots, leaves, stem and berries. Uptake of S by spikes were found to be non significant among different potting media. P_2 registered the highest total S uptake (210.76 mg plant⁻¹).

Inorganic fertilizer, I₄ (25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) recorded the highest uptake of S in different parts like roots and leaves. The S uptake by stem was highest foe 1_2 and was on par with I₄. Uptake of S by berries was found to be non significant among different inorganic fertilizers. I₄ recorded the highest total S uptake of 195.30 mg plant⁻¹.

Interaction effects were found to be significant. The treatment combination p_{2i_4} , (P_2 -soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1 and I_4 - 25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) recorded the highest S uptake in different plant parts like roots, leaves and berries. Regarding the uptake of S by stem, p_{2i_2} recorded the highest value. The uptake of S by spikes were noted to be non significant among treatment combinations. The treatment combination, p_{2i_4} recorded the highest total uptake of S (253.34 mg plant⁻¹).

Significant variation in uptake of S by different plant parts and total uptake were noticed among the treatments and control.

5.6 NUTRIENT HARVEST INDEX OF PRIMARY AND SECONDARY NUTRIENTS

5.6.1 Nitrogen harvest index

The interaction effect of potting media and inorganic fertilizers on nitrogen harvest index are presented in Fig. 25

Potting media significantly influenced the nitrogen harvest index (Table 29). Plants raised in P_1 (soil + FYM + neem cake + coir pith compost in the ratio 3:3:1:1) recorded the highest nitrogen harvest index (31.59 %) and was on par with P_2 (31.24 %).

Significant change in nitrogen harvest index was noticed among different inorganic fertilizers. I₄ (25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) registered the highest nitrogen harvest index (31.62 %) and was on par with I₁, I₂ and I₅. Nitrogen harvest index (NHI) is very helpful in measuring nitrogen partitioning in crop plants and it provides an evidence of how efficiently the plant utilized acquired N for grain production (Fageria and Baligar, 2003).

Interaction effects were found to be significant and the treatment combination, p_{2i4} (potting media- soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1 and 25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) recorded the highest nitrogen harvest index (33.58 %) and was on par with p_{1i5} (32.83 %) and p_{2i1} (32.89 %). Frageria, (2014) reported that NHI can be improved in crop plants by adopting appropriate soil and plant management practices. The treatment combination, p_{2i4} might be highly suitable for plant growth and yield which might have resulted in highest nitrogen harvest index. Ann (2012) reported the nitrogen removal of the seven parts of black pepper vine. The removal of nitrogen by fruits was highest contributing to 29.61 % of total annual N uptake, followed by leaves (25.20 %), stems (20.63 %), branches (15.64 %), roots (4.83 %), flowers (2.65 %) and fruit spikes (1.44 %). Nitrogen harvest index was found to be non significant between treatment and control.

5.6.2 Phosphorus harvest index

The interaction effect of potting media and inorganic fertilizers on phosphorus harvest index are provided in Fig. 25

Phosphorus harvest index significantly varied among different potting media (Table 29). Potting media, P_2 (soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1) registered the highest phosphorus harvest index (38.36 %). The lowest phosphorus harvest index was recorded by P_3 (36.19 %).

Significant variation in phosphorus harvest index was noticed among different inorganic fertilizers. I₅ (12.5:12.5:25.0 g of NPK plant⁻¹ year⁻¹ as soil application at equal monthly splits up to 3 MAP and foliar application of 13:0:45 (0.5 %) at fortnightly intervals from 4th MAP) resulted in highest phosphorus harvest index (38.45 %) and was on par with I₁ and I₄.

Interaction effects were found to be significant and the treatment combination, p_{2i_4} (potting media- soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1 and 25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) resulted in highest phosphorus harvest index (41.03 %) and was on par with p_{2i_1} (39.59 %), p_{2i_5} (38.86 %), p_{3i_1} (38.80 %), p_{2i_2} (38.79 %), p_{1i_5} (37.83 %), p_{1i_3} (37.57 %) and p_{3i_5} (38.64 %). Ann (2012) reported that in black pepper phosphorus removal was the highest in the fruits which contributed to 39.58 % of annual P uptake followed by stem (21.93 %), leaves (16 %) and branches (14.31 %). Significant difference in phosphorus harvest index was recorded between treatment and control.

5.6.3 Potassium harvest index

The interaction effect of potting media and inorganic fertilizers on potassium harvest index are presented in Fig. 25

Potting media significantly influenced the potassium harvest index (Table 29). Plants raised in potting media, P_2 (soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1) registered the highest value (30.04 %). The potassium harvest index of P_1 and P_3 were (29.39 %) and (28.77 %) respectively.

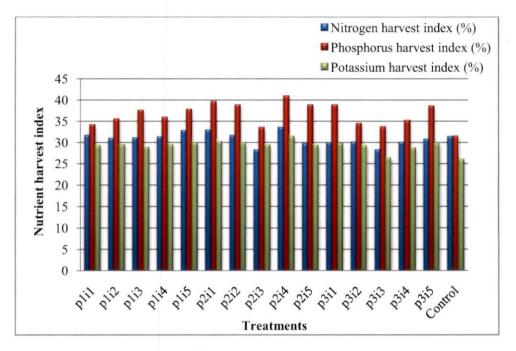


Fig. 25 Interaction effect of potting media and inorganic fertilizers on nitrogen, phosphorus and potassium harvest index (%)

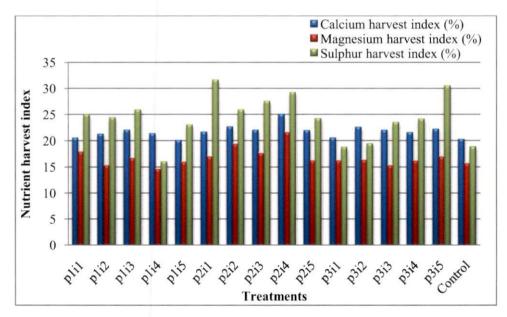


Fig. 26 Interaction effect of potting media and inorganic fertilizers on calcium, magnesium and sulphur harvest index (%)

Significant change in potassium harvest index was noticed among different inorganic fertilizers. I₄ (25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) resulted in highest potassium harvest index (29.88 %) and was on par with I₁ (29.77 %), I₅ (29.62 %) and I₂ (29.51 %).

Interaction effects were found to be significant. Treatment combination, p_{2i4} (potting media- soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1 and 25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) recorded the highest potassium harvest index (31.41 %) and was on par with p_{2i1} (30.25 %), p_{1i5} (29.88 %), and p_{2i2} (29.87 %). The total annual K accumulated in black pepper was mainly distributed among fruits (27.36 %), leaves (25.74 %), stems (20.49 %) and branches (18.08 %) (Ann, 2012). The higher potassium harvest index in p_{2i4} was due to the higher yield as well as higher concentration of potassium in the berries. Significant variation in potassium harvest index was noticed between treatment and control.

5.6.4 Calcium harvest index

The interaction effect of potting media and inorganic fertilizers on calcium harvest index are furnished in Fig. 26

Calcium harvest index significantly varied among different potting media (Table 30). Potting media, P_2 (soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1) registered the highest calcium harvest index (22.61 %).

Significant variation in calcium harvest index was noticed among different inorganic fertilizers. I₄ (25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) resulted in highest value (22.60 %) and was on par with I₂ (22.10 %) and I₃ (21.98 %).

Interaction effects were found to be significant and the treatment combination, p_{2i4} (potting media- soil + FYM + vermicompost + coir pith compost in the ratio

3:3:1:1 and 25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) resulted in highest calcium harvest index (24.97 %). The calcium harvest index of control was 20.20 %. Calcium harvest index was found to be non significant between treatment and control.

5.6.5 Magnesium harvest index

The interaction effect of potting media and inorganic fertilizers on magnesium harvest index are presented in Fig. 26

Potting media significantly influenced the magnesium harvest index (Table 30). Plants raised in potting media, P_2 (soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1) registered the highest value (18.28 %).

Magnesium harvest index was found to be non significant among different inorganic fertilizers.

Interaction effects were found to be significant. Treatment combination, p_{2i4} (potting media- soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1 and 25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) recorded the highest value (21.50 %). There was no significant variation in magnesium harvest index between treatment and control.

5.6.6 Sulphur harvest index

The interaction effect of potting media and inorganic fertilizers on sulphur harvest index are presented in Fig. 26

Significant difference in the sulphur harvest index was noticed among potting media (Table 30). Potting media, P_2 (soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1) recorded the highest sulphur harvest indices of 27.66 % followed P_3 (23.21 %) and P_1 (22.80 %).

Sulphur harvest index was found to be non significant among different inorganic fertilizers.

Interaction effects were found to be significant. Treatment combination, p_{2i_1} (potting media- soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1 and 37.5: 37.5: 50.0 g of NPK plant⁻¹ year⁻¹ at monthly splits) recorded the highest sulphur harvest index (31.58 %) and was on par with p_{1i_3} , p_{2i_2} , p_{2i_3} , p_{2i_4} and p_{3i_5} . There was significant variation in S harvest index between treatments and control.

5.7 ECONOMICS OF CULTIVATION

Economics of cultivation of bush pepper for 15 years for the calculation of discounted benefit cost ratio, net present worth and internal rate of returns is shown in Appendix 2. The Discounted benefit cost ratio, net present worth and internal rate of returns for various treatments of bush pepper for 15 years is furnished in Appendix 3.

The discounted benefit cost ratio, net present worth and internal rate of return of bush pepper is presented in table 31. The treatment combination of potting media (soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1) and inorganic fertilizer (25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) generated the highest discounted benefit cost ratio of 2.51. This was followed by p_{3i5} (1.91), p_{2i5} (1.86) and p_{2i2} (1.83). All the treatment combinations resulted in higher discounted benefit cost ratio than the control (1.12). The treatment combination p_{2i4} resulted in higher yield and higher gross and net income which resulted in higher discounted benefit cost ratio. The treatments p_{3i5} and p_{2i5} are foliar treatments which resulted in less cost of cultivation and substantially higher yield contributing to better discounted benefit cost ratio.

The Net present worth recorded was ₹ 696.97 in p_{2i4} (potting media- soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1 and inorganic fertilizer

(25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) followed by \gtrless 410.63 in p_{3i_5} .

Internal rate of return was the highest in the treatment combination, p_{2i4} (potting media- soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1 and inorganic fertilizer (25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) (67 %) followed by p_{3i5} (47 %). Mohammed *et al.* (2017) reported that black pepper farming generated a total discounted revenue of birr 416,024.4 per hectare with benefit cost ratio of 5.7 and internal rate of return of 61 per cent. The finding also indicated that harvesting cost accounted for higher share (about 51 %) of the total cost of black pepper production which reveal that, in spite of high initial investment cost and long gestation period, black pepper farming is a financially viable and a less risky enterprise.

The discounted benefit cost ratio of 2.51 and NPW of ₹ 696.97 with an IRR of 67 % was obtained from p_{2i4} . Thus investments made in bush pepper cultivation using potting medium containing soil + FYM + vermicompost + coir pith compost (3:3:1:1) and inorganic fertilizers applied at the rate of 25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits (p_{2i4}) was highly profitable.

SUMMARY

6. SUMMARY

An experiment on" Nutrient scheduling in bush pepper (Piper nigrum L.) was carried out at Department of Plantation Crops and Spices, College of Agriculture, Vellayani 2017-2018 with the objective of standardizing potting media and nutrient level in bush pepper for yield. The experiment was laid out in completely randomized design with three different types of potting media (P1, P2, P3), five inorganic fertilizer treatments (I1, I2, I3, I4, I5) and a control in bush pepper variety Panniyur 1. The different types of potting media used were soil + FYM + neem cake + coir pith compost (P_1), soil + FYM + vermicompost + coir pith compost (P_2) and soil + FYM + leaf compost + coir pith compost (P₃) in the ratio 3:3:1:1 Inorganic fertilizers applied at different levels and intervals were I1- 37.5: 37.5: 50.0 g of NPK plant⁻¹ year⁻¹at monthly splits, I₂ - 37.5: 37.5: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits, I₃ - 25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at monthly splits, I₄ - 25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits and I₅ - 12.5:12.5:25.0 g of NPK plant⁻¹ year⁻¹ as soil application at equal monthly splits up to 3 MAP and foliar application of 13:0:45 (0.5 %) at fortnightly intervals from 4th MAP. The control treatment contained soil + sand+ FYM, (1:1:1) as potting mixture and inorganic fertilizer applied as per package of practices recommendations of KAU (1.0, 0.5, 2 g of NPK plant⁻¹ at bimonthly interval). Trichoderma @ 1 g kg⁻¹ of potting medium and lime @ 50 g plant⁻¹ were applied to all the treatments. The study was planned to standardize potting media and nutrient level based on growth, yield, quality, nutrient uptake, physiological parameters and profitability of bush pepper cultivation. The salient findings are summarized below.

Plants raised in potting media, P_2 (soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1) resulted in significantly superior growth parameters like plant height from 2 MAP to 12 MAP, number of secondary branches from 6 MAP to 12 MAP, length of primary, secondary branches, number of leaves and leaf area from 4 MAP to 12 MAP. Plants applied with inorganic fertilizer, I₄ (25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) recorded the significantly higher growth attributes like number of secondary branches from 6 MAP to 12 MAP, length of primary and secondary branches from 4 MAP to 12 MAP, number of leaves and leaf area from 8 MAP to 12 MAP. Among the interaction between potting media and inorganic fertilizers treatment combination, p₂i₄ (potting media- soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1 and inorganic fertilizers 25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) recorded the significantly superior growth characters like number of primary branches at 12 MAP, number of secondary branches from 6 MAP to 12 MAP, length of primary branches from 6 MAP to 12 MAP, number of leaves and leaf area from 8 MAP to 12 MAP. Significant difference in growth characters like plant height, leaf area from 2 MAP to 12 MAP, number of secondary branches, length of primary branches and number of leaves was noticed between treatment and control from 4 MAP to 12 MAP.

Yield parameters differed significantly among different potting media. Potting media, P₂ (soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1) produced significantly superior number of spikes plant⁻¹, length of spikes, number of berries spike⁻¹, fresh and dry weight of berries plant⁻¹, hundred berry weight and hundred berry volume. Application of inorganic fertilizers showed significant variation in yield attributes and plants applied with inorganic fertilizer, I₄ (25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) produced significantly higher yield attributes like number of spikes plant⁻¹. In interaction treatment combination, p₂i₄ recorded significantly higher number of spikes plant⁻¹ (32.67), length of spikes (12.38 cm), number of berries spike⁻¹(61.12), fresh and dry weight of berries plant⁻¹ (199.49 and 70.92 g plant⁻¹ respectively), hundred berry weight (13.03 g) and hundred berry volume (12.53 cm³). Significant variation in yield parameters like number of spikes, number of spikes plant⁻¹, fresh and dry weight of berries spike⁻¹, fresh and dry weight of berries spikes plant⁻¹ hundred berry weight (13.03 g) and hundred berry volume (12.53 cm³). Significant variation in yield parameters like number of spikes plant⁻¹, length of spikes number of spikes plant⁻¹, hundred berry weight of berries plant⁻¹.

plant⁻¹ were recorded between control and treatment while hundred berry weight and hundred berry volume was noticed non significant between treatment and control.

Root parameters like fresh weight, dry weight and volume of roots differed significantly among potting media, inorganic fertilizers and their interaction. Plants grown in potting media, P_2 (soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1) produced the significantly superior value. Among the inorganic fertilizers, I₄ (25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) recorded the significantly higher value and was on par with I₂ (37.5: 37.5: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) for all root parameters. Among the interaction, treatment combination, p_{2i4} produced significantly higher fresh weight (41.52 g plant⁻¹), dry weight (18.05 g plant⁻¹) and volume of roots (44.52 cm³ plant⁻¹). A significant variation in fresh weight, dry weight and volume of roots was noticed between treatment and control.

The physiological parameters like specific leaf weight, moisture percentage and drying percentage were non significant among the potting media, inorganic fertilizers and their interaction. Plants raised in potting media, P₂ (soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1) recorded the significantly higher dry matter production at 12 MAP as well as chlorophyll content at 6 MAP and P₁ (soil + FYM + neem cake + coir pith compost in the ratio 3:3:1:1) recorded the highest harvest index. Plants treated with inorganic fertilizer, I₄ (25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) produced significantly higher dry matter production and fertilizers I₁ (37.5: 37.5: 50.0 g of NPK plant⁻¹ year⁻¹ at monthly splits) reported the highest harvest index. Significantly higher chlorophyll content at 6 MAP was noticed in I₃ and was on par with I₄. Among the interaction, treatment combination, p₂i₄ produced significantly higher dry matter production (150.92 g plant⁻¹) and chlorophyll content at 6 MAP while p₁i₃ and p₁i₅ recorded higher harvest index (0.49). A significant variation in dry matter production and harvest index was noticed among the treatment and control while specific leaf weight, moisture percentage and drying percentage were non significant between treatment and control.

Quality parameters like starch, essential oil, oleoresin and piperine content of berries were significant among potting media, inorganic fertilizers and their interaction whereas total ash was non significant. Potting media, P_2 (soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1) registered the significantly higher essential oil, oleoresin and piperine. Potting media, P_1 (soil + FYM + neem cake + coir pith compost in the ratio 3:3:1:1) recorded the highest starch content. Inorganic fertilizer, I₄ (25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) produced the significantly higher essential oil, oleoresin and piperine content while the starch content was significantly higher in inorganic fertilizers, I₅. Among the interaction, p_{214} produced the significantly higher quality parameters like essential oil (3.59 %), oleoresin (11.59 %) and piperine (5.70 %). Treatment combination, p_{115} produced the highest starch content of (36.82 %) in berries. The essential oil and oleoresin content of berries were significant among the treatment and control while the starch, total ash and piperine content were non significant.

Analysis of potting media after the experiment revealed that pH, EC, organic carbon, primary (N, P and K) and secondary nutrients (Ca and Mg) varied significantly among the treatment combination. Available S was non significant between the treatment combination. The treatment combination, p_{2i4} registered the highest pH. EC and organic carbon value was found to be significantly higher in the treatment combination, p_{3i1} . The available N and P values were significantly higher in the treatment combination, p_{1i1} whereas available K found to be significantly superior in p_{2i1} . Available Ca and Mg were significantly superior in the treatment combination in organic carbon and primary nutrients was noticed among the treatment and control while pH, EC and secondary nutrient were non significant.

Uptake of primary and secondary nutrient significantly varied among potting media, inorganic fertilizers and their interaction. Potting media, P₂ (soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1) indicated the significantly higher total uptake of primary and secondary nutrients. Among the inorganic fertilizers, I₄ (25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) produced the significantly higher value for the total uptake of primary and secondary nutrients. Treatment combination, p₂i₄ recorded significantly superior total uptake of nitrogen (2.159 g plant⁻¹), phosphorus (155.17 mg plant⁻¹), potassium (2.367 g plant⁻¹), calcium (1.577 g plant⁻¹), magnesium (296.64 mg plant⁻¹) and sulphur (253.34 mg plant⁻¹). The uptake of N, P, K, Ca, Mg and S of roots, leaves, stem, berries and spike were significantly different between treatments and control. Total uptake of primary and secondary nutrients by control was significantly lower than the treatment combinations.

Potting media, P_2 (soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1) registered the significantly higher phosphorus, potassium, calcium, magnesium and sulphur harvest index while the nitrogen harvest index was maximum for potting media, P_1 (soil + FYM + neem cake + coir pith compost in the ratio 3:3:1:1). Among the inorganic fertilizers, I_4 (25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) registered significantly higher nitrogen, potassium, calcium while phosphorus harvest index was found to be maximum for the I_5 . Magnesium and sulphur harvest index were non significant among inorganic fertilizers. Treatment combination, p_{2i4} recorded significantly superior nitrogen (33.58 %), phosphorus (41.03 %), potassium (31.41 %), calcium (24.97 %) and magnesium (21.50 %) harvest index while sulphur harvest index (31.58 %) was maximum for p_2i_1 . A significant variation in N, P, K and S harvest index was noticed between treatment and control.

The treatment combination of potting media (soil + FYM + vermicompost + coir pith compost in the ratio 3:3:1:1) and inorganic fertilizer (25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits) generated the highest discounted benefit cost ratio of 2.51 with net present worth of ₹ 696.97 and Internal rate of return of 67 %. All the treatment combinations resulted in higher discounted benefit cost ratio than the control (1.12).

The results of the study indicated that growing bush pepper in potting medium containing soil + FYM + vermicompost + coir pith compost (3:3:1:1) with the application of inorganic fertilizers (a) 25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ scheduled at quarterly intervals improved growth, yield and quality parameters of bush pepper through higher N, P, K, Ca and Mg harvest index resulting in higher economic returns.

146

REFERENCES

7. REFERENCES

- Abhimannue, T.R. 2016. Source Efficacy of nutrients and fertigation in long pepper (*Piper longum* L.). M.Sc. (Ag) thesis, Kerala Agricultural University, Mannuthy, Thrissur. 166p.
- Akshay, K.R., Swamy, M.N., Anjali, K.B., and Sreekanth, H.S. 2014. Efficacy of media and growth regulators on biochemical components of black pepper (*Piper nigrum* L.) cuttings. *Plant Archives.* 14 (1): 59-63.
- Albanell, E., Plaixats, J., and Cabrero, T. 1988. Chemical changes during vermicomposting (*Eisenia fetida*) of sheep manure mixed with cotton industrial wastes. *Biol. Fertil. Soils*. 6:266–269.
- Amanullah. 2015. Specific leaf area and specific leaf weight in small grain crops wheat, rye, barley, and oats differ at various growth stages and NPK source. J. Plant Nutr. 38(11): 1694-1708.
- Anandaraj, M. and Sarma, Y.R. 1995. Diseases of black pepper (*Piper nigrum* L) and their Management. J. Spices Aromat. Crops 4 (1): 17-23.
- Ann. Y.C. 2012. Determination of nutrient uptake characteristics of black pepper (*Piper nigrum* L. J. Agric. Sci. Technol. 2: 1091-1099.
- Anwar, M., Patra, D.D., Chand, S., Alpesh, K., Nagvi, A.A and Kkanuja, S.P.S. 2005. Effect of organic manures and inorganic fertilizer on growth, herb and oil yield, nutrient accumulation, and oil quality of french basil. *J. Commun. Soil Sci. Plant Anal.* 36: 13-14.
- Arancon, N.Q., Edwards, C.A., Bierman, P., Welch, C., and Metzer, J.D. 2004. Influence of vermicomposts on field strawberries: effect on growth and yields. *Bioresour. Technol.* 93:145–153.

Araujo, A.P. and Teixeira, M.G. 2003. Nitrogen and phosphorus harvest indices of common bean cultivars: Implications for yield quantity and quality. *Plant and Soil.* 257: 425–433.

- Asghar, A., Ali, A., Syed, W.H., Asif, M., Khaliq, T., and Abid, A.A. 2010. Growth and yield of maize (*Zea mays* 1.) cultivars affected by NPK application in different proportion. *Pakistan J. Sci.* 62(4): 211-216.
- Atiyeh, R.M., Dominguez, J., Subler, S., and Edwards, C.A. 2000. Change in biochemical properties of cow manure during processing by earthworms (*Eisenia anderi*, *Bouche*) and effects on seedling growth. *Pedobiologia*. 44: 709-724.
- Azmil, I.A.R. and Yau, P.Y. 1993. Improvements in agronomic practices for pepper cultivation in Johore. In: Ibrahim, M.Y., Bong, C.F.J., and Ipor, I.B. (eds). *The Pepper Industry: Problems and Prospects*, University Pertanian Malaysia, Sarawak, Malaysia, pp. 15-23.
- Bachman, G.R and Metzger, J.D. 2007. Growth of bedding plants in commercial potting substrate amended with vermicompost. *Bioresour. Technol.* 99: 3155-3161
- Basker, A., Mac Gregor, A.N., and Kirkman, J.H. 1992. Influence of soil ingestion by earthworms on the availability of K in soil - an incubation experiment. *Biol. Fertil. Soils.* 14: 300-303.
- Bavappa, K.V.A. and Gurusinghe, P.D.S. 1978. Rapid multiplication of black pepper for commercial planting. J. Plant. Crops. 6: 92-95.

- Bruns, H.A. and L.I. Croy, 1985. Root volume and root dry weight measuring system for wheat cultivars. *Cereal Res. Commun*. 13: 177-183.
- Bulman, P., and Smith, D.L. 1994. Post-heading nitrogen uptake, retranslocation, and partitioning in spring barley. *Crop Sci.* 34: 977-984.
- Bunt, A.C. 1988. Media and Mixes for Container-grown Plants: A manual on the preparation and use of growing media for pot plants (2nd Ed.). Unwin Hyman Ltd. Broadwick Street, London, 301p.
- Capasso, R., Izzo, A.A., Borrelli, F., Russo, A., Sautebin, L., Pinto, A., Capasso, F., and Mascolo, N. 2002. Effect of piperine reactive ingredients of black pepper on intestinal secretion in mice. *Life Sci.* 71: 2311-2317.
- Chand, S., Pandey, A., Anwar, M., and Patra, D.D. 2011. Influence of integrated supply of vermicompost, biofertilizer and inorganic fertilizer on productivity and quality of rose scented geranium (Pelargonium species). *Indian J.Nat.Product Resour.* 2(3): 375-382.
- Chao, Z., Zhigang, L., Jianfeng, Y., Huan, Y., Yan, S., Hongliang, T., Russell, Y., and Huasong, W. 2014. Acid soil is associated with reduced yield, root growth and nutrient uptake in black pepper (*Piper nigrum L.*). Agric. Sci. 5: 466-473.
- Chaurasia, S. N., Singh, K. P. and Rai, M. 2005. Effect of the foliar application of water soluble fertilizers on growth, yield and quality of tomato (*Lycopersicum esculentum* L.). Sri Lankan J. Agri. Sci. 42: 66-70.

Chesnin, L. and Yien, C.R. 1950. Turbidimetric determination of available sulphate. Proc. Am. Soc. Soil Sci. 15: 149-151.

- Chung, R.S., Wang, C.H., Wang, C.W., and Wang, Y.P. 2000. Influence of organic matter and inorganic fertilizer on the growth and nitrogen accumulation of corn plants. J. Plant Nutr. 23(3): 297-311.
- Coir Board, 2016. Coir pith wealth from waste: a reference. India International Coir Fair 2016, Coimbatore. 110p.
- Dahiphale, A.V., Giri, D.G., Thakre G.V., and Gin, M.D. 2003. Effect of integrated nutrient management on yield and yield contributing parameters of the scented rice. *Annal. Pl. Physiol.*, 17: 24-26.
- Dass, A., Baiswar, E.P., Patel, D.P., Munda, G.C., Ghosh, P.K., and Chandra, S. 2010. Productivity, nutrient harvest index, nutrient balance sheet, and economics of low land rice (*Oryza sativa*) as influenced by compost made from locally available plant biomass. *Indian J. Agric. Sci.* 80: 686-90.
- Devadas, M. 1997. Nutritional requirement of bush pepper under different light intensities. M.Sc. (Ag) thesis, Kerala Agricultural University, Mannuthy, Thrissur. 123p.
- Devadas, M. and Chandini. S. 2000. Growth of as influenced by light and nutrients. J. Spices Aromat. Crops. 9(2): 105-109.
- Diby, P., Sarma, Y.R., Srinivasan, V., and Anandaraj, M. 2005. Pseudomonas fluorescens mediated vigor in black pepper (Piper nigrum L.) under green house cultivation. An. Microbiol. 55: 171-174.
- Dominguez, J., Edwards, C.A. and Subler, S.A. 1997. Comparison of vermicomposting and composting. *Bio Cycle*. 38: 57–59.

- Doube, B.M and Brown, G.G. 1998. Life in a complex community: functional interactions between earthworms, organic matter, microorganisms and plants. In: Edwards, C.A. (ed.) *Earthworm Ecology*. Lucie Press, Boca Raton, FL, pp. 179–212.
- Dr. Swaminathan, 2000. Performance of bush pepper under high rainfall zone of Tamilnadu. Spice India. 13(8): 70-99
- Edwards, C.A. and Burrows, I. 1988. The potential of earthworm composts as plant growth media. In: Neuhauser, C.A. (ed.), *Earthworms in Environmental and Waste Management*. SPB Academic Publishing, Netherlands, pp 211-220
- Elnasikh M.H., Osman A.G., and Sherif A.M. 2011. Impact of neem seed cake on soil microflora and some soil properties. J. Sc. Tech. 12 (1): 144-150.
- Evans, J.R. 1989. Photosynthesis and nitrogen relationships in leaves of C₃ plants. *Oecologia*. 78(1): 9-19.
- Evans, M.R., Konduru, S., and Stamps, R.H. 1996. Source variation in physical and chemical properties of coconut coir dust. *Hort. Sci.* 31: 965-967.
- Fageria, N. K., and Baligar, V.C. 2003. Fertility management of tropical acid soils for sustainable crop production. In: Rengel, Z. (ed.), *Handbook of Soil Acidity*. New York, pp. 359-385.
- Fageria, N.K. 2014. Nitrogen harvest index and its Association with crop yields. J. plant Nutr.. 37: 795-810.
- FSSAI [Food Saftey and Standard Authority of India]. 2015. Manual of Method of Analysis of Food: Spices and Condiments, Food Saftey and Standard Authority of India, New Delhi, 50p.

Geetha, C. K. and Aravindakshan, M. 1992. A comparison of growth and dry matter production in bush pepper and vine pepper as influenced by applied N, P, K. Indian Cocoa Arecanut Spices J. 15: 95-98.

- Geetha, C.K. and Nair, P.C.S. 1990. Effect of plant growth regulators and zinc on spike shedding and quality of pepper. *Pepper News*. 14 (10): 5-7.
- Gopal, M., Gupta, A., Arunachalam, V., and Magu, S.P. 2007. Impact of azadirachtin, an insecticidal allelochemical from neem on soil microflora, enzyme and respiratory activities. *Bioresource Technol.* 98: 3154 -3158.
- Hamza ,S., Sadanandan, A.K. and Srinivasan, V. 2004. Influence of soil physicochemical properties on black pepper yield. J. Spices Aromat. Crops 13: 6-9.
- Hamza, S. and Sadanandan, A,K. 2005. Effect of source and method of application of zinc on yield and quality of black pepper (*Piper nigrum* L.). J. of Spices Aromat. Crops. 14(2): 117–121.
- Hamza, S., Srinivasan, V., and Dinesh, R. 2007. Nutrient diagnosis of black pepper (*Piper nigrum* L.) gardens in Kerala and Karnataka. J. Spices Aromat. Crops. 16(2): 77-81.
- Harberger, A. 1972. *Project Evaluation*, Collected Papers, The University of Chicago Press, Chicago, 120p.
- Hesse, P.R. 1971. A Textbook of Soil Chemical Analysis. William Clowes and Sons, London, 153p.
- Ibrahim, K.K., Pillay, V.S., and Sasikumaran, S. 1985. Correlated response in yield and component characters in pepper (*Piper nigrum L.*). Agric. Res. J. Kerala. 25: 263-264.

IPC [International Pepper Community]. 2016. Statistics on world pepper production contrywise 2015-16. [Online].Available.http://www.ipcnet.org/n/map/index.php?path=map&p=aps15-046&page=stat&c=in [10 June. 2018].

- Jackson, M. L. 1973. Soil Chemical Analysis. (2nd Ed.) Prenyice Hall of India (Pvt) Ltd. New Delhi, 498 p.
- Jacobs, S.F.D and Timmer, R.V. 2005. Fertilizer induced changes in rhizosphere EC in relation to forest tree seedlings root system, growth and function. *New Forest.* 13(3): 147-166.
- Kala, D. 2017. Potting media composition for pot mum chrysanthemum production (*Dendranthema grandiflora* L.). M.Sc. (Ag) thesis, Maharana Pratap University of Agriculture and Technology, Udaipur, Rajasthan. 83p.
- Kandiannan, K. and Srinivasan, V. 2007. Evaluation of Sulphate of Potash (SOP) as potassium source on growth, yield and quality of black pepper. Proforma for submission of annual progress report of research projects. Indian Institute of Spices Research, Calicut. 23p.
- Karon, A., Sajini, K. K., and Shivashankar, S. 1999. Embryo culture of coconut. Indian J. Hort. 56: 348-353.
- KAU [Kerala Agricultural University]. 2016. Package of Practices Recommendations : Crops 2016 (15th Ed.). Kerala Agricultural University, Thrissur, 360p.
- Kayalvizhi, K., Arulmozhiyan, R., Sankari, A., and Anand, M. 2013. Influence of potting media on growth of *Asparagus densiflorus* 'Meyersii'. *J. Hortl. Sci.* 8(2):278-281.

Kerketta, N.S., Sumer, R., and Khare, N. 2015. Influence of phosphorus application on the growth of poplar cuttings (*Populus deltoids*) under nursery condition. *J. Int. Acad. Res. Multidisciplinary.* 3(2): 378-381.

- Khan, N.I., Malik, A.U., Umer, F., and Bodla, M.I. 2010. Effect of tillage and farm yard manure on physical properties of soil. *Int. Res. J. Plant Sci.* 1(4): 75-82.
- Khan, N.I., Malik, A.U., Umer, F., and Bodla, M.I. 2010. Effect of tillage and farm yard manure on physical properties of soil. *Int. Res. J. Plant Sci.* 1(4): 75-82.
- Krishnamurthy, K.S., Ankegowda, S.J., Srinivasan, V., and Hamza, S. 2013. Alternate bearing in black pepper (*Piper nigrum* L.) cv. Panniyur -1. Role of carbohydrates, mineral nutrients and plant hormones. Available: http://spices.res.in/mail/downloads/study_circle_review/alternate.pdf. [04 June. 2016].
- Kumar, A. S. P., Halepyati, B. T., Pujari and Desai, B.K. 2007. Effect of Integrated Nutrient Management on Productivity, Nutrient Uptake and Economics of Maize (*Zea mays* L.) Under Rainfed Condition. *Karnataka J. Agric. Sci.* 20(3): 462-465.
- Kumar, A., Suri, V.K., Choudhary, A.K., Yadav, A., Kapoor, R., Sandal, S and Dass, A. 2015. Growth behavior, nutrient harvest index, and soil fertility in okra-pea cropping system as influenced by am fungi, applied phosphorus, and irrigation regimes in himalayan acidic alfisol. *Commun. Soil Sci. Plant Anal.* 46: 2212– 2233.
- Lakshmana, M., Hanumanthappa, M., and Sunil, C. 2016. Effect of propagation method on successful growth performance of pepper plants. In: Malhothra, S.K., Kandiannan, K., Raj, K.M., Neema, V.P., Prasath, D., Srinivasan, V.,

Cheriyan, H., and Femina (eds), Proceedings - National seminar on planting material production in spices, , Directorate of Arecanut and Spices Development, Kohzikode, Kerala, India, pp. 24-129.

- Landis T.D., Tinus R.W., McDonald S.E., and Barnett J.P. 1989. The Container Tree Nursery Manual: Seedling Nutrition and Irrigation. USDA Forest Serv. Agric. Handb. 674, pp. 119.
- Lokanadhan, S., Muthukrishnan, P., and Jeyaraman, S. 2012. Neem products and their agricultural applications. J. Biopest. 5: 72-76.
- Mackey, A.D., Syres, J.A., and Greeg, P.E.H. 1982. Plant availability ofphosphorus in superphosphate and phosphate rock as influenced by earthworms. *Soil Biochem.* 14: 281-287.
- Manasa, V., Hebsur, N. S., Malligawad L. H., Kumar, L. S. and Ramakrishna, B. 2015. Effect of water soluble fertilizers on uptake of major and micro nutrients by groundnut and post harvest nutrient status in a vertisol of northern transition zone of Karnataka. *The Ecoscan.* 9(2): 1-5.
- Manjunatha, H.M., Sreeramu, B.S., Shetty, G.R., Vasundhara, M., and Gowda, M.C., 2008. Impact of irrigation regimes and fertility levels on quality of long pepper (*Piper longum* L.). *Biomed.* 2(4): 350-354.
- Mapa, R. B. and Kumara, G. K. K. P. 1995. Potential of coir dust for agricultural use. Sri Lankan J. agric. Sci. 32: 161-164.
- Mengel, K. 2002. Alternative or complementary role of foliar supply in mineral nutrition. *Acta Hortic*. 594: 33-47.
- Menon, R. and Nair, P.C.S. 1987. Studies on spike shedding in black pepper var panniyur-1. South Indian Hort. 35:438-441.

- Metzger, J. 1998. Growing plants with worm poop. Vermicompost as an Amendment for Soilless Media; Ohio State University Floriculture Research Update; Ohio State University: Columbus, OH, 1998; Vol. 5(3).6.
- Mohammed, A., Bekele, A., and Bazie, M. Cost benefit analysis of black pepper production in ethiopia: evidence from commercial production system. *Int. J. Recent Res. Commerce Econ. Manag.* 4(4): 364-370
- Mohankumaran, B. and Cheeran, A. 1981. Nutritional requirement of pepper vine trailed on living and dead standards. *Agric. Res. J. Kerala*. 19: 3-5.
- Mol, K.R., Harsha, K.N., Saju, K.A., and Pradip Kumar, K. 2017. Evaluation of potting mixtures and humidity conditions for rooting and establishment of plagiotropic branches of black pepper (*Piper nigrum* L.). Ann. Plant Sci. 6(5): 1622-1624.
- Muthumanickam, D. 2003. Influence of different phosphorus sources and zinc spray on yield and quality of black pepper under acid soils. J. Spices Aromat. Crops. 12: 15-18.
- Mycin, T.R., Lenin, M., Selvakumar, G., and Thangadurai, R. 2010. Growth and nutrient content variation of groundnut (*Arachis hypogaea* L.) under vermicompost application. J. Exp. Sci. 1(8):12-16.
- Nagarajan, M. and Pillai, N.G. 1975. A note on the nutrient composition of fruiting branches of black pepper (*Piper nigrum* L.). *Madras Agric. J.* 62(2): 87-89.
- Neumann, G. and Rombeld, V. 2001. Root induced changes in the availability of nutrients in the rhizosphere. In: Waisel, Y., Eshel, A., and Kafkafi, U. (eds), Plant Roots: The Hidden Half (3rd ed.) Marcel Dekker, New York, pp. 617-649.

Nwokocha, A.G., Asawalam, D.O., Akinboye., O. E., and Ade Oluwa., O.O. 2016. Effects of organic ammendments on some soil properties and nutrient uptake of *Zea mays* in soils of different parent materials. *Int. J. Agron. Agric. Res.* 4: 89-93.

157

- Nybe, E.V. and Nair, P.C.S. 1986. Nutrient deficiency in black pepper (*Piper nigrum* L.) Nitrogen, phosphorus and potassium. *Agric. Res. J. Kerala*. 24: 132-150.
- Ofosu, A.K.B., Ofosu, G.K.B., Norman, J.C., and Amoah, P. 2018. Growth, dry matter yield and nutrient uptake of oil palm seedlings (*Elaies guineensis* Jacq.) as affected by different soil amendments. *Adv. Crop. Sci. Tech.* 6: 345-349.
- Orozco, F.H., Cegarra, J., Trujillo, L.M., and Roig, A. 1996. Vermicomposting of coffee pulp using the earthworm *Eisenia fetida*: effects on C and N contents and the availability of nutrients. *Biol. Fertil. Soils*. 22: 162-166.
- Otitoju, O. and Onwurah, I.N.E. 2010. Chlorophyll contents of oil palm (*Elaeis guineensis*) leaves harvested from crude oil polluted soil: a shift in productivity dynamic. *Ann. Biol. Res.* 1 (4): 20-27.
- Pillai, V.S. and Sasikumaran, S. 1976. A note on the chemical composition of pepper plant (*Piper nigrum* L.). Arecanut Cocoa and Spices bullet. 1: 13-18.
- Pillai, V.S., Chandy, K.C., Sasikumaran, S., and Nambiar, P.K.V. 1979. Response of Panniyur 1 variety to nitrogen and lime application. *Indian Cocoa Arecanut Spices J.* 3(2): 35-38.

Piper, 1966. Aging of crystalline precipitates. Analyst. 77: 1000-1011.

- Poole, H.A. and Seeley, J.G. 1978. Nitrogen, potassium and magnesium nutrition of three orchid genera. Am. Orchid Soc. Bull. 104: 485-488.
- Prakash, K.M., Manoj, P.S., and Radhakrishnan, P. 2016. Bush pepper- A profitable venture by an innovative farmer. In: Malhothra, S.K., Kandiannan, K., Raj, K.M. Neema, V.P., Prasath, D., Srinivasan, V., Cheriyan, H., and Femina (eds), *Proceedings- National Seminar on Planting Material Production in Spices*, Directorate of Arecanut and Spices Development, Kohzikode, Kerala, India, pp. 233-234.
- Prasath, D., Vinitha, K.B., Srinivasan, V., Kandiannan, K., and Anandaraj, M. 2014. Standardization of soil-less nursery mixture for black pepper (*Piper nigrum* L.) multiplication using plug-trays. J. Spices Aromat. Crops. 23(1): 1-9.
- Pruthi, J. S. (ed.). 1999. *Quality Assurance in Spices and Spice Products-Modern Method of Analysis*. Allied Publishers Ltd, New Delhi, 576p.
- Radwanksi, S. A. and Wickens, G. E. 1981. Vegetative fallows and potential value of the neem tree in the tropics. Econ. Botany. 35: 398-414.
- Raj, H.G. 1978. A comparison of the system of cultivation of black pepper (*Piper nigrum* L) in Malaysia and Indonesia In: *silver Jubilee Souvenir*. Pepper Research Station, Panniyur, Kerala agricultural university, Trissur, pp 65-74
- Rajkhowa, D.J., Saikia, M., and Rajkhowa. K.M. 2003. Effect of vermicompost and levels of fertilizer on green gram. *Legume Res.* 26: 63-65.
- Raju, B., Rao, P.C., Reddy, A.P.K., and Rajesh, K. 2013. Effect of INM practices on nutrient uptake and seed yield in safflower. Ann. Biol. Res. 4 (7): 222-226.

- Rao, G.G.E., Reddy, G.S.K., Vasundhara, D.M., and Nuthan, K. 2010. Integrated nutrient management (INM) in long pepper (*Piper longum* L.). J. Hortic. 5(2): 359-363.
- Rao, K.S.V. 1999. Application of coco peat (pith) to horticulture. Coir News 28 (5): 33-35.
- Rao, S. C., and Dao, T.H. 1996. Nitrogen placement and tillage effects on dry matter and nitrogen accumulation and redistribution in winter wheat. *Agron. J.* 88: 365-371.
- Rattunde, H. F., and Frey, K.J. 1986. Nitrogen harvest index in oats: Its repeatability and association with adaptation. *Crop Sci.* 26: 606-610.
- Renuka, K., Chandrasekhar, R., and Pratap, M. 2015. Effect of different media treatments on rooting of carnation (*Dainathus cryophyllus* L.) cuttings of cv. BALTICO under poly house conditions. *Asian J. Hortic.* 10(1): 118-121.
- Sadanandan, A. K. 2000. Agronomy and nutrition of black pepper. In: Ravindran, P.N. (ed.), *Black Pepper*. Harwood Academic Publishers, Amsterdam, pp. 163-203.
- Sadanandan, A.K. 1993. Sustainable pepper production in India. In: Sarma, Y.R., Devasahayam, S., and Anandaraj, M. (eds). National Seminar on Pepper and Cardamom. Indian society of spices, Calicut, Kerala, pp. 1-5.
- Sadanandan, A.K. and Hamza, S. 1998. Studies on nutrient requirement of bush pepper for yield and Quality. In: Mathew, N.M., Jacob, K. (eds), *Developments in Plantation Crop Research*. Allied Publishers and Rubber Research Institute of India, Kottayam, Kerala, India. pp. 223-227.

- Sainamole, K.P., Backiyarani, S., Josephrajkumar, A., and Murugan, M. 2002. Varietal evaluation of black pepper (*Piper nigrum* LJ for yield, quality and anthracnose disease resistance in Idukki District, Kerala. J. Spices Aromat. Crops. 11 (2): 122-124
- Sharangi, A.B. 2011. Performance of rooted cuttings of black pepper (piper nigrum L.) With organic substitution of nitrogen. *Int. J. Agric. Res.* 6(9): 673-681.
- Sheela, N. 1996. Response of *Piper longum* in coconut gardens to differential spacing and manurial regimes. M.Sc. (Ag) thesis, Kerala Agricultural University, Mannuthy, Thrissur. 130p.
- Sim, E.S. 1971. Dry matter production and major nutrient contents of black pepper (*Piper nigrum* L.). *Malaysian Agric. J.* 48: 73-76.
- Sinha, K.R., Agarwal, S., Chauhan, K., and Valani, D. 2010. The wonders of earthworms and its vermicompost in farm production: Charles Darwin's 'friends of farmers' with potential to replace destructive chemical fertilizers. *Agric. Sci.* 1(2):
- Sivaraman, K., Sadanandan, A.K., and Abraham, J. 1987. Effect of NPK on nutrient availability and yield response of black pepper in an ultisol [Abtract]. In: *National Seminar on Recent Advances in Soil Research*, Pune, p. 46.
- Sowbhagya, H. B., Sampathu, S. R., Krishnamurthy, N., and Shankaranarayana, M. L. 1990. Stability of piperine in different solvents and its spectrophotometric estimation. *Ind. Spices*. 27: 21-23.
- Spice Board. 2016. Major spice or state wise area and production of spices 2015-16. [on- line].

Available.http://indianspices.com/sites/default/files/Major%20spice%20state %20wise%20area%20productionweb%200517.pdf [5 July 2017].

- Srinivasan, V. and Hamza, S. 2000. Use of coir compost as a component of nursery mixture for spices. In: Ramana, K.V., Eapen, S.J., Babu, N.K., and Kumar, A. (eds), Spices and Aromatic Plants, Challenges and Opportunities in the New Century. Contributory Papers, Centennial Conference on Spices and Aromatic Plants, 20–23 September 2000, Kozhikode, Indian Society for Spices, Kozhikode. pp. 91-96.
- Srinivasan, V., Hamza, S., and Sadanandan, A.K. 2005. Evaluation of composted coir pith with chemical and biofertilizers on nutrient availability, yield and quality of black pepper (*Piper nigrum* L.). J. Spices Aromat. Crops. 14 (1): 15-20.
- Srinivasan, V., Hamza, S., Dinesh, R., and Parthasarathy, V. A. 2007. Nutrient management in black pepper (*Piper nigrum L.*). CAB Reviews: Perspectives in Agriculture, Veternary Science, Nutr. Nat. Resources 2: 53-67.
- Srinivasan, V., Kandiannan, K., and Hamza, S. 2016. Efficiency of sulphate of potash (SOP) as an alternate source of potassium for black pepper (*Piper nigrum* L.). *J. Spices Aromat. Crops.* 22 (2): 120-126.
- Sruthi, D., Zachariah, T.J., Leela, N.K., and Jayarajan, K. 2013. Correlation between chemical profiles of black pepper (*Piper nigrum* L.) var. Panniyur-1 collected from different locations. *J. Med. Plants Res.* 7(31): 2349-2357.
- Starnes, W.J. and Hadley, H.H. 1965. Chlorophyll content of various strains of soybeans, *Glycine max* L. Crop Sci. 5: 9-11.

- Stephen, F. and Nybe, E.V. 2003. Organic manures and biofertilizers on nutrient availability and yield in black pepper. J. Tropic. Agric. 41: 52-55.
- Subbaiah, B.V. and Asija, G.L.A. 1956. A rapid procedure for the estimation of available nitrogen in soil. *Curr. Sci.* 25: 259-360.
- Sujatha, R. and Namboothiri, K.M.N. 1995. Influence of plant characters on yield of black pepper (*Piper nigrum* L.). J. Tropical Agric. 33: 11-15.
- Sushama, P. K., Jose, A.I., and Pillai, V.S. 1989. Standardization of period of sampling for foliar diagnosis in pepper in relation of nitrogen, phosphorus and potassium. *Agric. Res. J. Kerala*. 22: 31-36.
- Suthar, S. 2009. Impact of vermicompost and composted farmyard manure on growth and yield of garlic (*Allium sativum* L.) field crop. *Int. J. Plant Prod.* 3(1): 27–38.
- Taleshi, K., Shokoh-far, A., Rafiee, M., Noormahamadi, G., and Sakinejhad, T. 2011. Effect of vermicompost and nitrogen levels on yield and yield component of safflower (*Carthamus tinctorius* L.) Under late season drought stress. *Int. J* Agron. Plant Prod. 2(1): 15–22.
- Thankamani, C.K. 2000. Influence of soil moiosture regimes on growth and yield in bush pepper (*Piper nigrum L.*). Ph. D. (Horti.) thesis, Kerala Agricultural University, Trissur, 249p.
- Thankamani, C.K., Madan, M.S., Srinivasan, V., Krishnamurthy, K.S., and Kandiannan, K. 2014. Application of Azospirillum and nutrients on yield, quality parameters and economics of black pepper. *Indian J. Hort.* 71(2): 292-294.

- Thankamani, C.K., Srinivasan, V., and Kandiannan, K. 1996. Response of clove (Syzygium aromaticum (L.) Merr.& Perry) seedlings and black pepper (Piper nigrum L.). J. Spices Aromat. Crops. 5(2): 99-104.
- Thankamani, C.K., Srinivasan, V., Hamza, S., Kandiannan, K., and Mathew, P.A. 2007. Evaluation of nursery mixture for planting material production in black pepper (*Piper nigrum* L.). J. Spices and Aromat. Crops. 16 (2): 111– 114.
- Thankamani, K., Srinivasan, V., Krishnamurthy, K.S., and Kandiannan, K. 2011. Effect of Azospirillum sp. and nutrients on yield of black pepper (*Piper nigrum* L.). C. J. Spices Aromat. Crops. 20 (1): 9-13.
- Thanuja, T.V. and Rajendran, P.C. 2003. Influence of plant characters on dry yield in black pepper (*Piper nigrum* L.). In: XII Swadeshi Science Congress 2003, Urbana-Champaign [On- line]. Available: https://www.researchgate.net/publication/312165560_Influence_of_plant_cha racters_on_dry_yield_of_black_pepper_Piper_nigrum_L [29 July 2018].
- Theunissen, J., Ndakidemi, P.A., and Laubscher, C.P. 2010. Potential of vermicompost produced from plant waste on the growth and nutrient status in vegetable production. *Int. J. Phys. Sci.* 5(13): 1964-1973.
- Thiraporn, R., Feil, B., and Stamp, P. 1992. Effect of nitrogen fertilization on grain yield and accumulation of nitrogen, phosphorus and potassium in the grains of tropical maize. J. Agron. Crop Sci. 169(2): 9-16.
- Thompson, J.A., Schweitzer, L.E., Nelson, R.L. 1996. Association of specific leaf weight, an estimate of chlorophyll, and chlorophyll concentration with apparent photosynthesis in soybean. *Photosynth. Res.* 49(1): 1-10.

- Timmer, V.R. and Teng, Y. 2004. Pre- transplant fertilization of containerized *Picea* mariana seedlings: Calibration and bioassay growth response. Can. J. For. Res. 34: 2089-2098.
- Tisdale, S.L., Nelson, N.L., Beaton, J.D., and Havlin, J.L. 1995. Soil Fertility and Fertilizers. 4th edition. 606p.
- TNAU [Tamil Nadu Agricultural University]. 2016. TNAU Agriportal organic farming [on-line]. Organic farming- organic inputs and techniques. Available: http://agritech.tnau.ac.in/org_farm/orgfarm_manure.html [14 sept,2017].
- Tomati, U., Grappelli, A., and Galli, E. 1987. The presence of growth regulators in earthworm-worked wastes. In: Paglioi, A.M.B., Omodeo, P.(eds) On earthworms. *Proceedings of International Symposium on Earthworms: Selected Symposia and Monographs*, Unione Zoologica Italiana, Mucchi, Modena, Italy, pp 423-435.
- Truong, H.D. 2018. Effect of Vermicompost in Media on Growth, Yield and Fruit Quality of Cherry Tomato (*Lycopersicon esculentun* Mill.) Under Net House Conditions. *Compost Sci. Utilis.* 26(1): 52-58.
- Usha, K. and Patra, D.D. 2003. Medicinal and aromatic plant materials as nitrification inhibitors for augmenting yield and nitrogen uptake of Japanese mint (*Mentha arvensis* L.). *Bioresource Technol.* 86: 267-277.
- Vadiraj, B.A., Krishnakumar, M., and Naidu R.J. 1992. Studies on vermicompost and its effect on cardamom nursery seedlings. In : Proc. IV Natl. Symp. Soil Biol Eco, pp 53-57.
- Verhagen, J.B.G.M. and Papadopoulos, A.P. 1997. CEC and the saturation of the adsorption complex of coir dust. Acta Horticulturae. 481: 151-155.

Waard, P.W.F. 1964. Pepper cultivation in Sarawak. Wold crops. 16: 24-30

- Waard, P.W.F. 1969. Foliar diagnosis, nutrition and yield stability of black pepper (Piper nigrum L.) in Sarawak. Comm. No. 58, Royal Tropical Institute, Amsterdam, The Netherlands, p. 150.
- Waard, P.W.F. and Sutton, C.D. 1960. Toxicity of aluminium to black pepper in Sarawak. *Nature*. 195: 11-29.
- Waard, P.W.F. and Sutton, C.D. 1960. Toxicity of aluminium to black pepper in Sarawak. *Nature*. 195: 1129-1134
- Walkey, A.J. and Black, C.A. 1934. Estimation of soil organic carbon by the chromic acid titration method. *Soil Sci.* 37: 29-38.
- Winsome, T. and McColl, J.G. 1998. Changes in chemistry and aggregation of California forest soil worked by the earthworm Argilophilus Popillifer Eisen (Megascolecidae). Soil Bio. Biochem. 30 (13): 1677-1687.
- Zaman, M.M., Chowdhury, M.A.H., Islam, M.R., and Uddin, M.R. 2015. Effects of vermicompost on growth and leaf biomass yield of stevia and post harvest fertility status of soil . J. Bangladesh Agric. Univ. 13(2): 169-174.

ABSTRACT

NUTRIENT SCHEDULING IN BUSH PEPPER (Piper nigrum L.)

by

FARHANA C.

(2016-12-016)

ABSTRACT

Submitted in partial fulfilment of the

requirement for the degree of

MASTER OF SCIENCE IN HORTICULTURE

Faculty of Agriculture

Kerala Agricultural University

DEPARTMENT OF PLANTATION CROPS AND SPICES COLLEGE OF AGRICULTURE VELLAYANI, THIRUVANANTHAPURAM-695 522 KERALA, INDIA

ABSTRACT

The present study entitled "Nutrient scheduling in bush pepper (*Piper nigrum* L.) was taken up with the specific objective to standardize potting media and nutrient level in bush pepper for yield.

The pot culture experiment on bush pepper was carried in the Department of Plantation Crops and Spices, College of Agriculture, Vellayani during the period 2017-18 using variety Panniyur 1. The efficacy of different combinations of organic manures and different levels and intervals of inorganic fertilizers were evaluated. The experiment was laid out in completely randomized design with three different types of potting media (P₁, P₂, P₃), five inorganic fertilizer treatments (I₁, I₂, I₃, I₄, I₅) and a control. The different types of potting media used were soil + FYM + neem cake + coir pith compost (P1), soil + FYM + vermicompost + coir pith compost (P2) and soil + FYM + leaf compost + coir pith compost (P₃) in the ratio 3:3:1:1 Inorganic fertilizers applied at different levels and intervals were I1- 37.5: 37.5: 50.0 g of NPK plant⁻¹ year⁻¹at monthly splits, I₂ - 37.5: 37.5: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits, $I_3 - 25.0$: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at monthly splits, $I_4 - 25.0$: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ at quarterly splits and I₅ - 12.5:12.5:25.0 g of NPK plant⁻¹ year⁻¹ as soil application at equal monthly splits up to 3 MAP and foliar application of 13:0:45 (0.5 %) at fortnightly intervals from 4th MAP. The control treatment contained soil + sand+ FYM, (1:1:1) as potting mixture and inorganic fertilizer applied as per package of practices recommendations of KAU (1.0, 0.5, 2 g NPK plant⁻¹ at bimonthly interval). Trichoderma @ 1 g kg⁻¹ of potting medium and lime @ 50 g plant⁻¹ were applied to all the treatments.

The results of the study revealed that potting media containing soil + FYM + vermicompost + coir pith compost (3:3:1:1) and inorganic fertilizers applied at the rate of 25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹at quarterly splits (p_{2i4}) recorded significantly higher plant growth characters like number of secondary branches,

length of primary branches, length of secondary branches, number of leaves and leaf area from 8MAP to 12 MAP. Fresh weight, dry weight and volume of roots at 12 MAP were also significantly higher for the treatment combination, p_{2i4}

Significantly higher dry matter production (150.92 g plant⁻¹) at 12 MAP and chlorophyll content at 6 MAP was noticed in p_{2i4} while dry matter production was the least in control (72.42 g plant⁻¹). The yield attributes like number of spikes plant⁻¹, length of spike, number of berries spike⁻¹, hundred berry weight, hundred berry volume, fresh and dry weight of berries were significantly higher for p_{2i4} recording a dry yield increase of 98 per cent over the control. Quality parameters of berries revealed that essential oil, oleoresin and piperine were highest in p_{2i4} while highest starch content was obtained in p_{1i5} .

. The total uptake of nitrogen, phosphorus and potassium by bush pepper was significantly superior with a higher uptake of N (2.159 g plant⁻¹), P (155.17 mg plant⁻¹), K (2.367 g plant⁻¹), Ca (1.577 g plant⁻¹), Mg (296.64 mg plant⁻¹) and S (253.34 mg plant⁻¹) in p_{2i4} Higher nitrogen harvest index (33.58 %), phosphorous harvest index (41.03 %) and potassium harvest index (31.41 %) were recorded from p_{2i4} indicating that nutrient removal in bush pepper was proportional to the yield. The discounted benefit-cost ratio was 2.51 with 67 % of Internal Rate of Return (IRR) for p_{2i4} implied that investments made in bush pepper following the above treatment was highly profitable.

The results of the study indicated that growing bush pepper in potting medium containing soil + FYM + vermicompost + coir pith compost (3:3:1:1) with the application of inorganic fertilizers @ 25.0: 25.0: 50.0 g of NPK plant⁻¹ year⁻¹ scheduled at quarterly intervals produced better growth characters like number of secondary branches, length of primary and secondary branches, number of leaves, total leaf area , root dry weight and yield parameters like number of spikes and number of berries spike⁻¹ which ultimately doubled the yield compared to the package of practices recommendations of KAU.

APPENDICES

12 MAP	Urea: 6.79 g Mussoorie phos: 15.62 g Murate of potash: 6.94 g	Urea :20.38 g Mussoorie phos: 46.87 g Murate of potash: 0.83 g	U rea :4.52 g Mussoorie phos: 10.41 g Murate of potash:6.94 g
11 MAP 12	Urea: 6.79 g Ur Mussoorie M phos: 15.62 g ph Murate of M potash: 6.94 po g	<u>77476</u>	U rea :4.52 g U Mussoorie Mt phos: 10.41 g ph Murate of Mt potash:6.94 g pol
10 MAP 1	Urea: 6.79 g U Mussoorie M phos: 15.62 g pl Murate of M potash: 6.94 p g g g		U rea :4.52 g U Mussoorie M phos: 10.41 g ph Murate of M potash:6.94 g po
9 MAP	Urea: 6.79 g Mussoorie phos: 15.62 g Murate of potash: 6.94 g	Urea:20.38 g Mussoorie phos:46.87 g Murate of potash: 0.83 g	U rea :4.52 g 1 Mussoorie 1 phos: 10.41 g 1 Murate of 1 potash:6.94 g 1
8 MAP	Urea: 6.79 g Mussoorie phos: 15.62 g Murate of potash: 6.94 g		U rea :4.52 g Mussoorie phos: 10.41 g Murate of potash:6.94 g
7 MAP	Urea: 6.79 g Mussoorie phos: 15.62 g Murate of potash: 6.94 g		U rea :4.52 g Mussoorie phos: 10.41 g Murate of potash:6.94 g
6 MAP	Urea: 6.79 g Mussoorie phos: 15.62 g Murate of potash: 6.94 g	Urea :20.38 g Mussoorie phos: 46.87 g Murate of potash: 0.83 g	U rea :4.52 g Mussoorie phos: 10.41 g Murate of potash:6.94 g
5 MAP	Urea: 6.79 g Mussoorie phos: 15.62 g Murate of potash: 6.94 g		U rea :4.52 g Mussoorie phos: 10.41 g Murate of potash:6.94 g
4 MAP	Urea: 6.79 g Mussoorie phos: 15.62 g Murate of potash: 6.94 g		U rea :4.52 g Mussoorie phos: 10.41 g Murate of potash:6.94 g
3 MAP	Urca: 6.79 g Mussoorie phos: 15.62 g Murate of potash: 6.94 g	Urea :20.38 g Mussoorie phos: 46.87 g Murate of potash: 0.83 g	U rea :4.52 g Mussoorie phos: 10.41 g Murate of potash:6.94 g
2 MAP	Urea: 6.79 g Mussoorie phos: 15.62 g Murate of potash: 6.94 g		U rea :4.52 g Mussoorie phos: 10.41 g Murate of potash:6.94 g
1 MAP	Urea: 6.79 g Mussoorie phos: 15.62 g Murate of potash: 6.94 g		U rea :4.52 g Mussoorie phos: 10.41 g Murate of potash:6.94 g
Basal	Urea: 6.79 g Mussoorie phos: 15.62 g Murate of potash:6.94 g	Urea :20.38 g Mussoorie phos: 46.87 g Murate of potash:0.83 g	U rea :4.52 g Mussoorie phos: 10.41 g Murate of potash.6.94 g
Inorgan ic rs (I)	ľ	J 2	ñ

APPENDIX I. FERTILIZER SCHEDULE

APPENDIX II. ECONOMICS OF CULTIVATION OF BUSH PEPEPR FOR 15 YEARS FOR THE CALCULATION OF DISCOUNTED BENEFIT COST RATIO, NET PRESENT WORTH AND INTERNAL RATE OF RETURNS

First year

4	-	-	6	6	0	9	~	2	+			-			1.0	
Net income (₹)	-183.541	-183.361	-181.553	-180.093	-179.970	-159.826	-159.623	-161.522	-151.454	-157.100	-161.832	-161.193	-162.766	-159.604	-156.645	-184.595
Gross income (₹)	14.548	14.727	14.956	16.416	15.056	19.592	19.795	16.238	26.384	19.176	17.586	18.224	14.994	18.235	19.632	13.300
Price of 1 g black peppe r (₹)	0.372	0.372	0.372	0.372	0.372	0.372	0.372	0.372	0.372	0.372	0.372	0.372	0.372	0.372	0.372	0.372
Dry yield (g)	39.11	39.59	40.21	44.13	40.47	52.67	53.21	43.65	70.93	51.55	47.27	48.99	40.31	49.02	52.77	35.75
Total cost of cultivat ion (₹)	198.089	198.089	196.509	196.509	195.026	179.418	179.418	177.759	177.838	176.276	179.418	179.418	177.759	177.838	176.276	197.894
Labo ur charg c fertili zer applic ation (₹)	25.4	8.46	25.04	8.34	69.9	25.4	8.46	25.04	8.34	69.9	25.4	8.46	25.04	8.34	69.9	4.23
Labour charge (planting +weedin g+irrigat ion+harv est) (₹)	9.086	9.086	9.086	9.086	9.165	9.165	9.165	9.086	9.165	9.165	9.165	9.165	9.086	9.165	9.165	7.84
Foliar fertiliz er 45) (₹)					09.0					09.0					0.60	
MOP (₹)	1.166	1.166	1.166	1.166	0.583	1.166	1.166	1.166	1.166	0.583	1.166	1.166	1.166	1.166	0.583	0.28
Musso orieph os (₹)	4.166	4.166	2.777	2.777	1.388	4.166	4.166	2.777	2.777	1.388	4.166	4.166	2.777	2.777	1.388	0.333
Urca (₹)	0.571	0.571	0.380	0.380	0.190	0.571	0.571	0.380	0.380	0.190	0.571	0.571	0.380	0.380	0.190	0.091
Lime (₹)	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8
Tricho derma (₹)	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05
Coir pith post (₹)	18.75	18.75	18.75	18.75	18.75	18.75	18.75	18.75	18.75	18.75	18.75	18.75	18.75	18.75	18.75	
Leaf comp ost (3)											25	25	25	25	25	
Verm icom (3)						25	25	25	25	25						
Neem cake (₹)	43.75	43.75	43.75	43.75	43.75											
Na Maria Sa																70
(¥)	18.75	18.75	18.75	18.75	18.75	18.75	18.75	18.75	18.75	18.75	18.75	18.75	18.75	18.75	18.75	17.5
rlant ing rial (₹)	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
Ircatme nts	llid	piiz	pila	pıi4	piis	rizq	p ₂ i ₂	p2i3	p2i4	p2is	pii	piiz	eied	p.it	pis	Control

175

	L
	yea
,	second

[-								
Net income (₹)	25.805	26.344	28.610	32.990	30.033	40.859	41.466	32.453	62.815	42.391	34.840	36.755	28.722	38.366	43.759	28.504
Gross income (₹)	43.644	44.182	44.869	49.249	45.169	58.776	59.384	48.713	79.153	57.527	52.757	54.672	44.981	54.704	58.895	39.899
Price of 1 g blac k pepp er (₹)	0.372	0.372	0.372	0.372	0.372	0.372	0.372	0.372	0.372	0.372	0.372	0.372	0.372	0.372	0.372	0.372
Dry yield (g)	117.32	118.77	120.62	132.39	121.42	158.00	159.63	130.95	212.78	154.64	141.82	146.97	120.92	147.05	158.32	107.25
Total cost of cultivati on (₹)	17.839	17.839	16.259	16.259	15.136	17.918	17.918	16.259	16.338	15.136	17.918	17.918	16.259	16.338	15.136	11.394
Labo ur charg c fertili zer appli catio n	25.4	8.46	25.04	8.34	6.69	25.4	8.46	25.04	8.34	69.9	25.4	8.46	25.04	8.34	69.9	4.23
Labour charge (planting +weedin g+irrigat ion+harv est) $(\tilde{\tau})$	9.086	9.086	9.086	9.086	9.165	9.165	9.165	9.086	9.165	9.165	9.165	9.165	9.086	9.165	9.165	7.84
Foliar fertiliz er 45) (₹)					96.0					96.0					0.96	
MOP (3)	1.166	1.166	1.166	1.166	0.583	1.166	1.166	1.166	1.166	0.583	1.166	1.166	1.166	1.166	0.583	0.28
Musso orieph os (₹)	4.166	4.166	2.777	2.777	1.388	4.166	4.166	2.777	2.777	1.388	4.166	4.166	2.777	2.777	1.388	0.333
Urea (₹)	0.571	0.571	0.380	0.380	0.190	0.571	0.571	0.380	0.380	0.190	0.571	0.571	0.380	0.380	0.190	0.091
Lime (₹)	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8
Trich oder (3)	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05
Coirpi th st (3)																
Lcaf comp ost (₹)																
Verm icom post (₹)																
Neem cake (?)																
Ra (T)																
(£) ·	-	-	-	-	-	-	1	1	1	1	1	1	1	-	1	1
Plant ing mate (₹)																
Ireatme	llid	pii2	eitq	pil4	siid	pzi	p2i2	pzis	p214	pzis	rird	p _{siz}	p ₃ i ₃	p3i4	pais	Control

Third year

																	115
Net income (₹)	-10.801	-9.724	-6.771	1.988	-5.048	38.135	39.350	19.666	80.468	38.418	26.097	29.927	12.203	31.570	41.154	-18.097	
Gross income (₹)	87.288	88.365	89.739	98.498	90.338	117.552	118.767	97.426	158.307	115.054	105.515	109.345	89.963	109.408	117.790	79.797	
Price of 1 g blac k pepp er er	0.372	0.372	0.372	0.372	0.372	0.372	0.372	0.372	0.372	0.372	0.372	0.372	0.372	0.372	0.372	0.372	1
Dry yield (g)	234.64	237.54	241.23	264.78	242.84	316.00	319.27	261.90	425.56	309.29	283.64	293.94	241.84	294.11	316.64	214.51	
Total cost of cultivati on (₹)	98.089	98.089	96.509	96.509	95.386	79.418	79.418	77.759	77.838	76.636	79.418	79.418	77.759	77.838	76.636	97.894	
Labo ur charg charg fertili zer appli catio n	25.4	8.46	25.04	8.34	69.9	25.4	8.46	25.04	8.34	69.9	25.4	8.46	25.04	8.34	69.9	4.23	1
Labour charge (planting +weedin g+irrigat ion+harv est) $(\overline{\mathfrak{Z}})$	9.086	9.086	9.086	9.086	9.165	9.165	9.165	9.086	9.165	9.165	9.165	9.165	9.086	9.165	9.165	7.84	
Foliar fertiliz er (13:0: 45) (₹)					96.0					. 96.0					0.96		
MOP (₹)	1.166	1.166	1.166	1.166	0.583	1.166	1.166	1.166	1.166	0.583	1.166	1.166	1.166	1.166	0.583	0.28	1
Musso orieph os (₹)	4.166	4.166	2.777	2.777	1.388	4.166	4.166	2.777	2.777	1.388	4.166	4.166	2.777	2.777	1.388	0.333	
Urea (₹)	0.571	0.571	0.380	0.380	0.190	0.571	0.571	0.380	0.380	0.190	0.571	0.571	0.380	0.380	0.190	0.091	
Lime (₹)	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	
Trich oder (₹)	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	
Coirpi th compo st (₹)	18.75	18.75	18.75	18.75	18.75	18.75	18.75	18.75	18.75	18.75	18.75	18.75	18.75	18.75	18.75		
Leaf comp ost (₹)											25	25	25	25	25]
Verm icom post (₹)						25	25	25	25	25							
Neem cake (₹)	43.75	43.75	43.75	43.75	43.75												
Sa (₹)																90	1
FYM (3)	18.75	18.75	18.75	18.75	18.75	18.75	18.75	18.75	18.75	18.75	18.75	18.75	18.75	18.75	18.75	17.5	
Plant ing mate rial (₹)																	
Treatme nts	pili	piiz	eitq	p1i4	pıİs	p₂iı	p2i2	۶İ2	p2i4	p2İs	piir	psiz	paia	p3i4	psis	Control	

Fourth year

Foliar fertilize r (13:0:4 (3) (7)	6.95	6.095	6.695	6666	1.05 10.082	10.082	10.082	566.6	10.082	1.05 10.082	10.082	10.082	9.995	10.082	1.05 10.082	8.624
Muss oorie (3)	5.041		3.360 1.411	3.360 1.411	0 1.679 0.705	5.041 1.411	5.041 1.411	3.360 1.411	3.360 1.411	1.679 0.705	5.041 1.411	5.041 1.411	3.360 1.411	3.360 1.411	1.679 0.705	0.403 0.339
(₹)	0.88	0.88	-	0.88 0.418	0.88 0.209	0.88 0.628	0.88 0.628	0.88 0.418	0.88 0.418	0.88 0.209	0.88 0.628	0.88 0.628	0.88 0.418	0.88 0.418	0.88 0.209	0.88 0.100
comp th oder ost compo ma (₹) st (₹) (₹)	CL.1	1.15	1.15	1.15	1.15	1.15	1.15	1.15	1.15	1.15	1.15	1.15	1.15	1.15	1.15	1.15
(3) post (3) (3)																
ing (₹) nd mate (₹) (₹)	1	1 1	11	: :	1.1		1.1	1.1	1.1	1.1	11	1.1	11	11	1.1	1.1

Net income (₹)	3.486	4.867	8.520	19.755	10.746	62.844	64.403	39.004	117.010	63.075	47.404	52.316	29.432	54.287	66.584	-5.389
Gross income (₹)	111.965	113.346	115.109	126.344	115.877	150.785	152.343	124.969	203.061	147.581	135.344	140.257	115.396	140.338	151.090	102.357
Price of 1 g blac k pepp er	0.409	0.409	0.409	0.409	0.409	0.409	0.409	0.409	0.409	0.409	0.409	0.409	0.409	0.409	0.409	0.409
Dry yield (g)	273.75	277.13	281.44	308.91	283.32	368.67	372.48	305.55	496.48	360.83	330.91	342.93	282.14	343.13	369.41	250.26
Total cost of cultivat ion (₹)	108.479	108.479	106.589	106.589	105.131	87.941	87.941	85.964	86.051	84.506	87.941	87.941	85.964	86.051	84.506	107.746
Labou r charge fertiliz er applica tion	27.94	9.306	27.544	9.174	7.359	27.94	9.306	27.544	9.174	7.359	27.94	9.306	27.544	9.174	7.359	4.653
Labour charge (planting +weedin g+irrigat ion+harv (₹)	9.995	9.995	9.995	9.995	10.082	10.082	10.082	9.995	10.082	10.082	10.082	10.082	9.995	10.082	10.082	8.624
Foliar fertiliz er (13:0: 45) (₹)					1.05					1.05					1.05	
MOP (₹)	1.411	1.411	1.411	1.411	0.705	1.411	1.411	1.411	1.411	0.705	1.411	1.411	1.411	1.411	0.705	0.339
Muss oorie (₹)	5.041	5.041	3.360	3.360	1.679	5.041	5.041	3.360	3.360	1.679	5.041	5.041	3.360	3.360	1.679	0.403
Urca (₹)	5.041	5.041	3.360	3.360	1.679	5.041	5.041	3.360	3.360	1.679	5.041	5.041	3.360	3.360	1.679	0.403
Lime (₹)	0.628	0.628	0.418	0.418	0.209	0.628	0.628	0.418	0.418	0.209	0.628	0.628	0.418	0.418	0.209	0.100
Irich oder (₹)	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88
Courpi th st (₹)	1.15	1.15	1.15	1.15	1.15	1.15	1.15	1.15	1.15	1.15	1.15	1.15	1.15	1.15	1.15	1.15
Lcaf compo st (₹)	20.625	20.625	20.625	20.625	20.625	20.625	20.625	20.625	20.625	20.625	20.625	20.625	20.625	20.625	20.625	0
ver mic omp ost (₹)											27.5	27.5	27.5	27.5	27.5	0
nee mca (₹)						27.5	27.5	27.5	27.5	27.5						
	48.13	48.13	48.13	48.13	48.13											
₩ W																66
g materi al (₹)	20.625	20.625	20.625	20.625	20.625	20.625	20.625	20.625	20.625	20.625	20.625	20.625	20.625	20.625	20.625	19.25
uts	hin	p ₁ i2	pıis	p114	pıİs	p2i1	p2i2	p2i3	p2i4	p2is	paiı	paiz	rited	pai4	pais	Control

Fifth year

4	1			-												
Net income (₹)	90.661	92.042	95.695	106.930	97.921	129.394	130.953	105.554	183.560	129.625	113.954	118.866	95.982	120.837	133.134	88.661
Gross income (₹)	111.965	113.346	115.109	126.344	115.877	150.785	152.343	124.969	203.061	147.581	135.344	140.257	115.396	140.338	151.090	102.357
Price of 1g blac k pepp er cr	0.409	0.409	0.409	0.409	0.409	0.409	0.409	0.409	0.409	0.409	0.409	0.409	0.409	0.409	0.409	0.409
Dry yield (g)	273.75	277.13	281.44	308.91	283.32	368.67	372.48	305.55	496.48	360.83	330.91	342.93	282.14	343.13	369.41	250.26
Total cost of cultiva tion (₹)	21.304	21.304	19.414	19.414	17.956	21.391	21.391	19.414	19.501	17.956	21.391	21.391	19.414	19.501	17.956	13.696
Labou r charge fertiliz er applica tion	27.94	9.306	27.544	9.174	7.359	27.94	9.306	27.544	9.174	7.359	27.94	9.306	27.544	9.174	7.359	4.653
Labour charge (planting +weedin g+irrigat ion+harv est) (₹)	9.995	9.995	9.995	9.995	10.082	10.082	10.082	9.995	10.082	10.082	10.082	10.082	9.995	10.082	10.082	8.624
Foliar fertilize r (13:0:4 5) $(\vec{\tau})$					1.05					1.05					1.05	
MOP (₹)	1.411	1.411	1.411	1.411	0.705	1.411	1.411	1.411	1.411	0.705	1.411	1.411	1.411	1.411	0.705	0.339
Musso orieph os (₹)	5.041	5.041	3.360	3.360	1.679	5.041	5.041	3.360	3.360	1.679	5.041	5.041	3.360	3.360	1.679	0.403
Urea (₹)	0.628	0.628	0.418	0.418	0.209	0.628	0.628	0.418	0.418	0.209	0.628	0.628	0.418	0.418	0.209	0.100
Lime (₹)	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88
Trich oder (₹)	1.15	1.15	1.15	1.15	1.15	1.15	1.15	1.15	1.15	1.15	1.15	1.15	1.15	1.15	1.15	1.15
Coir pith com (₹)																
Lcaf compo (₹)																
Ver mic onp ost (₹)																
Nce mca (3)																
Sand (₹)																
¥. ₩¥	1.1	1.1	1.1	1.1	1.1	1.1	Ξ	1.1	1.1	1.1	1.1	1.1	Ξ	11	1.1	11
7.01 (₹)	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	I.I	1.1	1.1	1.1	1.1
I reatme nts	hi	p1i2	eird	pil4	pıİs	pziı	p ₂ i ₂	p2i3	p2i4	p2i5	litd	paiz	rird	p3i4	psis	Control

year	
venth	
Se	

	-		_		_					_						
Net income (₹)	3.486	4.867	8.520	19.755	10.746	62.844	64.403	39.004	117.010	63.075	47.404	52.316	29.432	54.287	66.584	-5.389
Gross income (₹)	111.965	113.346	115.109	126.344	115.877	150.785	152.343	124.969	203.061	147.581	135.344	140.257	115.396	140.338	151.090	102.357
Price of 1 g black peppe r (₹)	0.409	0.409	0.409	0.409	0.409	0.409	0.409	0.409	0.409	0.409	0.409	0.409	0.409	0.409	0.409	0.409
Dry yield (g)	273.75	277.13	281.44	308.91	283.32	368.67	372.48	305.55	496.48	360.83	330.91	342.93	282.14	343.13	369.41	250.26
Total cost of cultivati (₹)	108.479	108.479	106.589	106.589	105.131	87.941	87.941	85.964	86.051	84.506	87.941	87.941	85.964	86.051	84.506	107.746
Labou r charge fertiliz er applica tion	27.94	9.306	27.544	9.174	7.359	27.94	9.306	27.544	9.174	7.359	27.94	9.306	27.544	9.174	7.359	4.653
Labour charge (planting +weedin g+irrigat ion+harv est) (3)	9.995	9.995	9.995	9.995	10.082	10.082	10.082	9.995	10.082	10.082	10.082	10.082	9.995	10.082	10.082	8.624
Foliar fertilize r (13:0:4 5) (₹)					1.05					1.05					1.05	+
MOP (₹)	1.411	1.411	1.411	1.411	0.705	1.411	1.411	1.411	1.411	0.705	1.411	1.411	1.411	1.411	0.705	0.339
Musso orieph os (₹)	5.041	5.041	3.360	3.360	1.679	5.041	5.041	3.360	3.360	1.679	5.041	5.041	3.360	3.360	1.679	0.403
Urca (₹)	0.628	0.628	0.418	0.418	0.209	0.628	0.628	0.418	0.418	0.209	0.628	0.628	0.418	0.418	0.209	0.100
Lime (₹)	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88
Lric hod erm a (₹)	1.15	1.15	1.15	1.15	1.15	1.15	1.15	1.15	1.15	1.15	1.15	1.15	1.15	1.15	1.15	1.15
Conrput h st (₹)	20.625	20.625	20.625	20.625	20.625	20.625	20.625	20.625	20.625	20.625	20.625	20.625	20.625	20.625	20.625	
com post (₹)											27.5	27.5	27.5	27.5	27.5	
omp ost ost						27.5	27.5	27.5	27.5	27.5						
ake (₹)	48.125	48.125	48.125	48.125	48.125											
nd €																66
<u> </u>	20.625	20.625	20.625	20.625	20.625	20.625	20.625	20.625	20.625	20.625	20.625	20.625	20.625	20.625	20.625	19.25
ting mat crial (?)																
nts	llid	p1i2	rit	pılı	pıİs	pziı	p2i2	p2İ3	p2i4	p2is	pil	paiz	eied	p3i4	pais	Control

Eighth year

																	140
Net income (₹)	100.964	102.484	106.502	118.864	108.952	143.580	145.295	117.350	203.176	143.834	126.592	131.997	106.818	134.165	147.695	98.762	
Gross income (7)	123.188	124.708	126.648	139.009	127.493	165.900	167.615	137.496	223.417	162.375	148.912	154.317	126.964	154.406	166.236	112.617	
Price of 1 g black peppe r (₹)	0.450	0.450	0.450	0.450	0.450	0.450	0.450	0.450	0.450	0.450	0.450	0.450	0.450	0.450	0.450	0.450	
Dry yield (g)	273.75	277.13	281.44	308.91	283.32	368.67	372.48	305.55	496.48	360.83	330.91	342.93	282.14	343.13	369.41	250.26	
Total cost of cultiva tion (₹)	22.224	22.224	20.145	20.145	18.541	22.320	22.320	20.145	20.241	18.541	22.320	22.320	20.145	20.241	18.541	13.856	1
Labou r charge fertiliz er applica tion (₹)	30.734	10.237	30.298	10.091	8.095	30.734	10.237	30.298	10.091	8.095	30.734	10.237	30.298	10.091	8.095	5.118	1
Labour charge (plantin g+weedi ng+irrig ation+h arvest) (₹)	10.994	10.994	10.994	10.994	11.090	11.090	11.090	10.994	11.090	11.090	11.090	11.090	10.994	11.090	11.090	9.486	
Foliar fertilize r (13:0:45) (₹)					1.155					1.155					1.155		
MOP (F)	1.552	1.552	1.552	1.552	0.776	1.552	1.552	1.552	1.552	0.776	1.552	1.552	1.552	1.552	0.776	0.373	
Muss oorie (₹)	5.545	5.545	3.696	3.696	1.847	5.545	5.545	3.696	3.696	1.847	5.545	5.545	3.696	3.696	1.847	0.443	1
Urea (₹)	0.690	0.690	0.460	0.460	0.230	069.0	0690	0.460	0.460	0.230	0.690	0.690	0.460	0.460	0.230	0.110	1
Lime (₹)	0.968	0.968	0.968	0.968	0.968	0.968	0.968	0.968	0.968	0.968	0.968	0.968	0.968	0.968	0.968	0.968	1
Trich oder (₹)	1.265	1.265	1.265	1.265	1.265	1.265	1.265	1.265	1.265	1.265	1.265	1.265	1.265	1.265	1.265	1.265	1
Star star Co]
Leaf com post (₹)																	
Verm icom post (₹)																	
Neem cake (₹)																	1
Sa (₹)]
FYM (₹)	1.21	1.21	1.21	1.21	1.21	1.21	1.21	1.21	1.21	1.21	1.21	1.21	1.21	1.21	1.21	1.21	
Plan ting mat erial (₹)																	1
Treatme nts	riıd	piiz	pija	pila	pıİs	p ₂ i1	p ₂ i ₂	pzİ3	p214	p2is	paiı	paiz	p3i3	p3i4	pais	Control	

	IL
	õ
	5
2	Ŧ
	Ξ
1	1
1	

[-	-		1			-							-	-
Net income (₹)	3.862	5.382	9.400	21.761	11.849	69.165	70.880	42.935	128.761	69.419	52.177	57.582	32.403	59.750	73.280	-5.903
Gross income (₹)	123.188	124.708	126.648	139.009	127.493	165.900	167.615	137.496	223.417	162.375	148.912	154.317	126.964	154.406	166.236	112.617
Price of 1 g black peppe r $(\overline{\mathfrak{F}})$	0.450	0.450	0.450	0.450	0.450	0.450	0.450	0.450	0.450	0.450	0.450	0.450	0.450	0.450	0.450	0.450
Dry yield (g)	273.75	277.13	281.44	308.91	283.32	368.67	372.48	305.55	496.48	360.83	330.91	342.93	282.14	343.13	369.41	250.26
Total cost of cultivati on (₹)	119.327	119.327	117.248	117.248	115.644	96.735	96.735	94.560	94.656	92.956	96.735	96.735	94.560	94.656	92.956	118.521
Labour charge fertilize r applica fion (₹)	30.734	10.237	30.298	10.091	8.095	30.734	10.237	30.298	10.091	8.095	30.734	10.237	30.298	10.091	8.095	5.118
Labour charge (plantin g+weedi ng+irrig ation+ha rvest) (₹)	10.994	10.994	10.994	10.994	11.090	11.090	11.090	10.994	11.090	11.090	11.090	11.090	10.994	11.090	11.090	9.486
Foliar fertilizer (13:0:45) (₹)					1.155					1.155					1.155	
MOP (5)	1.552	1.552	1.552	1.552	0.776	1.552	1.552	1.552	1.552	0.776	1.552	1.552	1.552	1.552	0.776	0.373
Musso orieph (₹)	5.545	5.545	3.696	3.696	1.847	5.545	5.545	3.696	3.696	1.847	5.545	5.545	3.696	3.696	1.847	0.443
Urea (₹)	0.690	0.690	0.460	0.460	0.230	0.690	0.690	0.460	0.460	0.230	0.690	0690	0.460	0.460	0.230	0.110
Lime (₹)	0.968	0.968	0.968	0.968	0.968	0.968	0.968	0.968	0.968	0.968	0.968	0.968	0.968	0.968	0.968	0.968
Irich oderm (₹)	1.265	1.265	1.265	1.265	1.265	1.265	1.265	1.265	1.265	1.265	1.265	1.265	1.265	1.265	1.265	1.265
Courpi comp ost ost	22.69	22.69	22.69	22.69	22.69	22.69	22.69	22.69	22.69	22.69	22.69	22.69	22.69	22.69	22.69	
Lcal comp ost (₹)											30.25	30.25	30.25	30.25	30.25	
verm icomp ost (₹)						30.25	30.25	30.25	30.25	30.25						
Cake (3) (3)	52.94	52.94	52.94	52.94	52.94											
																108.9
(X) (X)	60.77	22.69	22.69	22.69	22.69	22.69	22.69	22.69	22.69	22.69	22.69	22.69	22.69	22.69	22.69	21.18
ting mat erial (3)																
ments	litd	pıİz	did	pii4	pils	p2i1	p2i2	pzia	p2i4	pzis	pil	psiz	psis	p3i4	pais	Control

	-	-	_	_	_	-	_	_		_						
Net income (₹)	100.964	102.484	106.502	118.864	108.952	143.580	145.295	117.350	203.176	143.834	126.592	131.997	106.818	134.165	147.695	98.762
Gross income (₹)	123.188	124.708	126.648	139.009	127.493	165.900	167.615	137.496	223.417	162.375	148.912	154.317	126.964	154.406	166.236	112.617
Price of 1 g black peppe ₹	0.450	0.450	0.450	0.450	0.450	0.450	0.450	0.450	0.450	0.450	0.450	0.450	0.450	0.450	0.450	0.450
Dry yield (g)	273.75	277.13	281.44	308.91	283.32	368.67	372.48	305.55	496.48	360.83	330.91	342.93	282.14	343.13	369.41	250.26
Total cost of cultiva tion (₹)	22.224	22.224	20.145	20.145	18.541	22.320	22.320	20.145	20.241	18.541	22.320	22.320	20.145	20.241	18.541	13.856
Labou r charge fertiliz er applica tion	30.734	10.237	30.298	10.091	8.095	30.734	10.237	30.298	10.091	8.095	30.734	10.237	30.298	10.091	8.095	5.118
Labour charge (plantin g+weedi ng+irrig ation+h arvest) (₹)	10.994	10.994	10.994	10.994	11.090	11.090	11.090	10.994	11.090	11.090	11.090	11.090	10.994	11.090	11.090	9.486
Foliar fertilize r (13:0:45) (₹)					1.155					1.155					1.155	
(₹)	1.552	1.552	1.552	1.552	0.776	1.552	1.552	1.552	1.552	0.776	1.552	1.552	1.552	1.552	0.776	0.373
Muss oorie phos (₹)	5.545	5.545	3.696	3.696	1.847	5.545	5.545	3.696	3.696	1.847	5.545	5.545	3.696	3.696	1.847	0.443
Urea (₹)	0.690	0.690	0.460	0.460	0.230	0690	0.690	0.460	0.460	0.230	0.690	0.690	0.460	0.460	0.230	0.110
Lime (₹)	0.968	0.968	0.968	0.968	0.968	0.968	0.968	0.968	0.968	0.968	0.968	0.968	0.968	0.968	0.968	0.968
Trich oder (₹)	1.265	1.265	1.265	1.265	1.265	1.265	1.265	1.265	1.265	1.265	1.265	1.265	1.265	1.265	1.265	1.265
Co irp ost a co irp ost																
Leaf com post (₹)																
Verm icom post (₹)																
Neem cake (₹)																
Ra (A)																
FYM(<	1.21	1.21	121	1.21	1.21	1.21	1.21	1.21	1.21	1.21	1.21	1.21	1.21	121	1.21	1.21
Plan ting mat (₹)																
I reatme nts	pili	pıi2	eird	p1i4	p ₁ i5	p2i1	p ₂ i ₂	p2i3	p2i4	p ₂ is	litd	p.i.	p.i.ed	p ₃ i4	p _{sis}	Control
																-

Tenth year

Net income (₹)	3.862	5.382	9.400	21.761	11.849	69.165	70.880	42.935	128.761	69.419	52.177
Gross income (7)	123.188	124.708	126.648	139.009	127.493	165.900	167.615	137.496	223.417	162.375	148.912
Price of 1 g blac k pepp er cr	0.450	0.450	0.450	0.450	0.450	0.450	0.450	0.450	0.450	0.450	0.450
Dry yield (g)	273.75	277.13	281.44	308.91	283.32	368.67	372.48	305.55	496.48	360.83	330.91
Total cost of cultivat ion (₹)	119.327	119.327	117.248	117.248	115.644	96.735	96.735	94.560	94.656	92.956	96.735
Labou r charg c fertili zer applic ation (₹)	30.734	10.237	30.298	10.091	8.095	30.734	10.237	30.298	10.091	8.095	30.734
Labour charge (planti ng+wee ding+ir rigatio n+harv est) (₹)	10.994	10.994	10.994	10.994	11.090	11.090	11.090	10.994	11.090	11.090	11.090
Foliar fertilize r (13:0:4 (5) $(\vec{\epsilon})$					1.155					1.155	
MO F (₹)	1.552	1.552	1.552	1.552	0.776	1.552	1.552	1.552	1.552	0.776	1.552
Musso orieph os (₹)	5.545	5.545	3.696	3.696	1.847	5.545	5.545	3.696	3.696	1.847	5.545
Urea (₹)	0.690	0.690	0.460	0.460	0.230	0.690	0.690	0.460	0.460	0.230	0.690
Lime (₹)	0.968	0.968	0.968	0.968	0.968	0.968	0.968	0.968	0.968	0.968	0.968
	1.265	1.265	1.265	1.265	1.265	1.265	1.265	1.265	1.265	1.265	1.265
Coirpit h compos t (₹)	22.688	22.688	22.688	22.688	22.688	22.688	22.688	22.688	22.688	22.688	22.688
Leaf comp ost (₹)											30.25
Vermi comp ost (₹)						30.25	30.25	30.25	30.25	30.25	
Neem cake (₹)	52.94	52.94	52.94	52.94	52.94						
Sand (₹)											
M M (F)	69.22	22.69	22.69	22.69	22.69	22.69	60.77	22.69	22.69	22.69	22.69
Pla ntin g eria (₹)											
L reatm ents	l1id	p112	rlıd .	p114	pils	p211	p212	p2I3	p214	P215	p.it.

185

57.582

154.317

0.450

342.93

96.735

10.237

11.090

1.552

5.545

0.690

0.968

1.265

22.688

30.25

32.403

126.964

0.450

282.14

94.560

30.298

10.994

1.552

3.696

0.460

0.968

1.265

22.688

30.25

22.69

pairs

22.69

p₃**i**₄

22.69

p312

59.750

154.406

0.450

343.13

94.656

10.091

11.090

1.552

3.696

0.460

0.968

1.265

22.688

30.25

143

73.280

166.236

0.450

369.41

92.956

8.095

11.090

1.155

0.776

1.847

0.230

0.968

1.265

22.688

30.25

-5.903

112.617

0.450

250.26

118.521

5.118

9.486

0.373

0.443

0.110

0.968

1.265

108.90

21.18

Control

22.69

pais

	-			_		_	_	1				_				
Net income (₹)	109.851	111.523	115.942	129.540	118.637	156.728	158.615	127.876	222.283	157.008	138.041	143.987	116.290	146.372	161.255	107.428
Gross income (₹)	135.507	137.179	139.312	152.910	140.242	182.490	184.377	151.246	245.759	178.613	163.803	169.749	139.660	169.847	182.859	123.879
Price of 1 g blac k pepp er er	0.495	0.495	0.495	0.495	0.495	0.495	0.495	0.495	0.495	0.495	0.495	0.495	0.495	0.495	0.495	0.495
Dry yield (g)	273.75	277.13	281.44	308.91	283.32	368.67	372.48	305.55	496.48	360.83	330.91	342.93	282.14	343.13	369.41	250.26
Total cost of cultiva tion (₹)	25.657	25.657	23.370	23.370	21.605	25.762	25.762	23.370	23.475	21.605	25.762	25.762	23.370	23.475	21.605	16.451
Labou r charge fertiliz er applica tion (₹)	33.807	11.260	33.328	11.101	8.904	33.807	11.260	33.328	11.101	8.904	33.807	11.260	33.328	11.101	8.904	5.630
Labour charge (planting +weedin g+irrigat ion+harv est) (₹)	12.093	12.093	12.093	12.093	12.199	12.199	12.199	12.093	12.199	12.199	12.199	12.199	12.093	12.199	12.199	10.435
Foliar fertilize r (13:0:4 5) (₹)					1.270					1.270					1.270	
MOP (₹)	1.707	1.707	1.707	1.707	0.854	1.707	1.707	1.707	1.707	0.854	1.707	1.707	1.707	1.707	0.854	0.410
Musso orieph os (₹)	6.099	660.9	4.066	4.066	2.032	660.9	660.9	4.066	4.066	2.032	6.099	6.099	4.066	4.066	2.032	0.488
Urca (₹)	0.759	0.759	0.506	0.506	0.253	0.759	0.759	0.506	0.506	0.253	0.759	0.759	0.506	0.506	0.253	0.121
Lime (₹)	1.065	1.065	1.065	1.065	1.065	1.065	1.065	1.065	1.065	1.065	1.065	1.065	1.065	1.065	1.065	1.065
Irich oder (₹)	1.392	1.392	1.392	1.392	1.392	1.392	1.392	1.392	1.392	1.392	1.392	1.392	1.392	1.392	1.392	1.392
Conr pith post (₹)																
tcompo st (₹)																
ver mic ost ost																
mca ke (₹)																
d (F)																
₩(¥)	1.33	1.33	1.33	1.33	1.33	1.33	1.33	1.33	1.33	1.33	1.33	1.33	1.33	1.33	1.33	1.33
	1.21	1.21	1.21	1.21	1.21	1.21	1.21	1.21	1.21	1.21	1.21	1.21	1.21	1.21	1.21	1.21
nts	ıııd	pıi2	pija	p1i4	pıis	pziı	p2i2	p2i3	p2i4	p2i5	litd	paiz	ejed	p.i4	p ₃ is	Control

Twelfth year

184

Thirteenth year

		1	1	1			1							T	T	
Net income (₹)	14.079	15.751	20.171	33.769	22.866	83.644	85.531	54.792	149.199	83.924	64.957	70.903	43.206	73.288	88.171	4.094
Gross income (7)	135.507	137.179	139.312	152.910	140.242	182.490	184.377	151.246	245.759	178.613	163.803	169.749	139.660	169.847	182.859	123.879
Price of 1 g blac k pepp er (₹)	0.495	0.495	0.495	0.495	0.495	0.495	0.495	0.495	0.495	0.495	0.495	0.495	0.495	0.495	0.495	0.495
Dry yield (g)	273.75	277.13	281.44	308.91	283.32	368.67	372.48	305.55	496.48	360.83	330.91	342.93	282.14	343.13	369.41	250.26
Total cost of cultivat ion (₹)	121.428	121.428	119.141	119.141	117.376	98.846	98.846	96.454	96.559	94.689	98.846	98.846	96.454	96.559	94.689	119.785
Labou r charg c fertili zer applic ation (₹)	33.807	11.260	33.328	11.101	8.904	33.807	11.260	33.328	11.101	8.904	33.807	11.260	33.328	11.101	8.904	5.630
Labour charge (planti ng+wec ding+ir rigatio n+harv est) $(\overline{\mathfrak{Z}})$	12.093	12.093	12.093	12.093	12.199	12.199	12.199	12.093	12.199	12.199	12.199	12.199	12.093	12.199	12.199	10.435
Foliar fertilize r (13:0:4 5) (₹)					1.270					1.270					1.270	
MO ₹€	1.707	1.707	1.707	1.707	0.854	1.707	1.707	1.707	1.707	0.854	1.707	1.707	1.707	1.707	0.854	0.410
Musso orieph os (₹)	660.9	660.9	4.066	4.066	2.032	660.9	660.9	4.066	4.066	2.032	660.9	660.9	4.066	4.066	2.032	0.488
Urea (₹)	0.759	0.759	0.506	0.506	0.253	0.759	0.759	0.506	0.506	0.253	0.759	0.759	0.506	0.506	0.253	0.121
Lime (₹)	1.065	1.065	1.065	1.065	1.065	1.065	1.065	1.065	1.065	1.065	1.065	1.065	1.065	1.065	1.065	1.065
Trich oderm a (₹)	1.392	1.392	1.392	1.392	1.392	1.392	1.392	1.392	1.392	1.392	1.392	1.392	1.392	1.392	1.392	1.392
Coirpit h compos t (₹)	22.688	22.688	22.688	22.688	22.688	22.688	22.688	22.688	22.688	22.688	22.688	22.688	22.688	22.688	22.688	0.000
Leaf comp ost (₹)			7								30.25	30.25	30.25	30.25	30.25	2
Vermi comp ost (₹)						30.25	30.25	30.25	30.25	30.25						
Neem cake (₹)	52.94	52.94	52.94	52.94	52.94											
Sand (₹)																108.90
FY M (3)	22.69	22.69	22.69	22.69	22.69	22.69	22.69	22.69	22.69	22.69	22.69	22.69	22.69	22.69	22.69	21.18
Pla ntin g cria cria (₹)																
Treatm ents	liid	pıiz	piis	pit4	pıis	p2i1	p2i2	p2i3	P214	p2is	psiı	p3i2	eied	p3i4	psis	Control

185

	-	-	_		-	_	_	_			-	_	_	_		
Net income (₹)	111.061	112.733	117.152	130.750	119.847	157.938	159.825	129.086	223.493	158.218	139.251	145.197	117.500	147.582	162.465	108.638
Gross income (₹)	135.507	137.179	139.312	152.910	140.242	182.490	184.377	151.246	245.759	178.613	163.803	169.749	139.660	169.847	182.859	123.879
Price of 1 g black peppe (₹)	0.495	0.495	0.495	0.495	0.495	0.495	0.495	0.495	0.495	0.495	0.495	0.495	0.495	0.495	0.495	0.495
Dry yield (g)	273.75	277.13	281.44	308.91	283.32	368.67	372.48	305.55	496.48	360.83	330.91	342.93	282.14	343.13	369.41	250.26
Total cost of cultiva tion (₹)	24.447	24.447	22.160	22.160	20.395	24.552	24.552	22.160	22.265	20.395	24.552	24.552	22.160	22.265	20.395	15.241
Labou r ccharge fertiliz er tion (₹)	33.807	11.260	33.328	11.101	8.904	33.807	11.260	33.328	11.101	8.904	33.807	11.260	33.328	11.101	8.904	5.630
Labou r charge (planti ng+we eding+ irrigati on+har vest) (₹)	12.093	12.093	12.093	12.093	12.199	12.199	12.199	12.093	12.199	12.199	12.199	12.199	12.093	12.199	12.199	10.435
Foliar fertilizer (13:0:45) (₹)					1.270					1.270					1.270	
dOM (₹)	1.707	1.707	1.707	1.707	0.854	1.707	1.707	1.707	1.707	0.854	1.707	1.707	1.707	1.707	0.854	0.410
Muss ooric phos (₹)	660.9	660.9	4.066	4.066	2.032	660.9	6.099	4.066	4.066	2.032	6.099	660.9	4.066	4.066	2.032	0.488
Urea (₹)	0.759	0.759	0.506	0.506	0.253	0.759	0.759	0.506	0.506	0.253	0.759	0.759	0.506	0.506	0.253	0.121
Lime (₹)	1.065	1.065	1.065	1.065	1.065	1.065	1.065	1.065	1.065	1.065	1.065	1.065	1.065	1.065	1.065	1.065
Trich oder ma (₹)	1.392	1.392	1.392	1.392	1.392	1.392	1.392	1.392	1.392	1.392	1.392	1.392	1.392	1.392	1.392	1.392
Co irp ost ost																
Leaf com post (₹)																
Verm icom post (₹)																
Neem cake (₹)																
Sa nd (₹)																
FYM (3)	1.33	1.33	1.33	1.33	1.33	1.33	1.33	1.33	1.33	1.33	1.33	1.33	1.33	1.33	1.33	1.33
Plan ting mat crial (₹)																
Treatme	liid	pıİz	eird	pile	pıis	p2i1	p ₂ i ₂	pzija	p2i4	p2is	paiı	p.i.2	eied	p3i4	pais	Control
									-						-	

Fourteenth year

	01	
	۲	
•	2	
	ī	
	ā	Ì
	٩	
ć	t	
ì	5	

-

			_													
Net income (₹)	14.079	15.751	20.171	33.769	22.866	83.644	85.531	54.792	149.199	83.924	64.957	70.903	43.206	73.288	88.171	4.094
Gross income (₹)	135.507	137.179	139.312	152.910	140.242	182.490	184.377	151.246	245.759	178.613	163.803	169.749	139.660	169.847	182.859	123.879
Price of 1 g blac k pepp er er	0.495	0.495	0.495	0.495	0.495	0.495	0.495	0.495	0.495	0.495	0.495	0.495	0.495	0.495	0.495	0.495
Dry yield (g)	273.75	277.13	281.44	308.91	283.32	368.67	372.48	305.55	496.48	360.83	330.91	342.93	282.14	343.13	369.41	250.26
Total cost of cultivat ion (₹)	121.428	121.428	119.141	119.141	117.376	98.846	98.846	96.454	96.559	94.689	98.846	98.846	96.454	96.559	94.689	119.785
Labou r charg c fertili zer applic ation (₹)	33.807	11.260	33.328	11.101	8.904	33.807	11.260	33.328	11.101	8.904	33.807	11.260	33.328	11.101	8.904	5.630
Labour charge (planti ng+wee ding+ir rigatio n+harv est) (₹)	12.093	12.093	12.093	12.093	12.199	12.199	12.199	12.093	12.199	12.199	12.199	12.199	12.093	12.199	12.199	10.435
Foliar fertilize r (13:0:4 5) (₹)					1.270					1.270					1.270	
P F (f)	1.707	1.707	1.707	1.707	0.854	1.707	1.707	1.707	1.707	0.854	1.707	1.707	1.707	1.707	0.854	0.410
Musso orieph os (₹)	660.9	660.9	4.066	4.066	2.032	6.099	6.099	4.066	4.066	2.032	6.099	660.9	4.066	4.066	2.032	0.488
Urca (₹)	0.759	0.759	0.506	0.506	0.253	0.759	0.759	0.506	0.506	0.253	0.759	0.759	0.506	0.506	0.253	0.121
Lime (₹)	1.065	1.065	1.065	1.065	1.065	1.065	1.065	1.065	1.065	1.065	1.065	1.065	1.065	1.065	1.065	1.065
lrich oderm a (₹)	1.392	1.392	1.392	1.392	1.392	1.392	1.392	1.392	1.392	1.392	1.392	1.392	1.392	1.392	1.392	1.392
courput h t (3)	22.688	22.688	22.688	22.688	22.688	22.688	22.688	22.688	22.688	22.688	22.688	22.688	22.688	22.688	22.688	
comp ost (₹)											30.25	30.25	30.25	30.25	30.25	
comp ost (₹)						30.25	30.25	30.25	30.25	30.25				9		
cake (₹)	52.94	52.94	52.94	52.94	52.94						8					
(L)																108.90
W (F)	60.77	22.69	22.69	22.69	22.69	22.69	22.69	22.69	22.69	22.69	22.69	22.69	22.69	22.69	22.69	21.18
a mat a cria																
ents	Intd .	2112	p113	p114	piis	pziı	p2i2	pzis	p2i4	pzis	pii	psiz	ried	p.ie	psis	Control

AND INTERNAL RATE OF RETURNS FOR VARIOUS TREATMENTS OF BUSH PEPPER FOR 15 YEARS APPENDIX III. DISCOUNTED BENEFIT COST RATIO, NET PRESENT WORTH

Treatment combination, p_{1i1}

		Tr	reatment co	Treatment combination, p ₁ i ₁		
Year	Total cost of cultivation	Gross	Net	Discounted factor at	Discounted	Discounted
lst	198.08	14.55	-183.53	0.8929	176 8571	12 0802
2nd	17.84	43.64	25.81	0.7972	14.2207	34.7926
3rd	98.09	87.29	-10.80	0.7118	69.8175	62.1297
4th	20.20	111.96	91.76	0.6355	12.8399	71.1555
5th	108.48	111.96	3.49	0.5674	61.5538	63.5317
6th	21.30	111.96	90.66	0.5066	10.7932	56.7247
7th	108.48	111.96	3.49	0.4523	49.0703	50.6471
8th	22.22	123.19	100.96	0.4039	8.9760	49.7537
9th	119.33	123.19	3.86	0.3606	43.0304	44.4229
10th	22.22	123.19	100.96	0.3220	7.1556	39.6633
11th	119.33	123.19	3.86	0.2875	34.3036	35.4137
12th	25.66	135.51	109.85	0.2567	6.5854	34.7813
13th	121.43	135.51	14.08	0.2292	27.8282	31.0547
14th	24.45	135.51	111.06	0.2046	5.0023	27.7275
15th	121.43	135.51	14.08	0.1827	22.1845	24.7567
_					550.2184	639.5443
4						
BCK	1.16		NPW	89.32	IRR	20%

144

Treatment combination, p₁i₂

Year cultivation Total cost of income Gross income Net loc Discounted loc Discounted cost Discounted benefit Discounted loc Discounted benefit Discounted loc Discounted benefit Discounted loc Discounted benefit Discounted loc Discounted benefit Discounted loc Discounted benefit Discounted loc Discounted benefit Discounted loc Discounted loc Discounted benefit Discounted loc Discou				Freatment co	Treatment combination, p1i2		
cultivation income income 12 % cost benef 198.08 14.73 -183.35 0.8929 176.8571 13.14 17.84 44.18 26.34 0.7972 14.2207 35.22 98.09 88.36 -9.72 0.7118 69.8175 62.899 20.20 113.35 93.14 0.5674 61.5538 64.31 20.20 113.35 4.87 0.5666 10.7932 57.42 21.30 113.35 4.87 0.5666 10.7932 57.42 21.30 113.35 4.87 0.5666 10.7932 57.42 21.30 113.35 4.87 0.5666 10.7932 57.42 21.30 113.35 4.87 0.5666 10.7932 50.367 22.22 124.71 102.48 0.3166 43.0304 44.97 22.22 124.71 5.38 0.3200 71.556 40.152 19.33 124.71 5.38 0.2567 <t< td=""><td>Year</td><td>Total cost of</td><td></td><td>Net</td><td>Discounted factor at</td><td>Discounted</td><td>Discounted</td></t<>	Year	Total cost of		Net	Discounted factor at	Discounted	Discounted
198.08 14.73 -183.35 0.8929 176.8571 13.14 17.84 44.18 26.34 0.7972 14.2207 35.22 98.09 88.36 -9.72 0.7118 69.8175 62.890 72.03 113.35 93.14 0.6355 12.8399 72.03 108.48 113.35 4.87 0.5574 61.5538 64.31 21.30 113.35 4.87 0.5666 10.7932 57.42 21.30 113.35 4.87 0.5666 10.7932 57.42 21.30 113.35 4.87 0.5666 10.7932 57.42 21.30 113.35 4.87 0.5666 10.7932 57.42 21.31 113.35 4.87 0.5666 43.0703 51.27 22.22 124.71 102.48 0.3606 43.0703 51.27 22.22 124.71 102.48 0.3506 71.556 40.152 219.33 124.71 5.38 0.3606 <t< td=""><td></td><td>cultivation</td><td>income</td><td>income</td><td>12 %</td><td>cost</td><td>benefit</td></t<>		cultivation	income	income	12 %	cost	benefit
17.84 44.18 26.34 0.7972 14.2207 35.22 98.09 88.36 -9.72 0.7118 69.8175 62.890 20.20 113.35 93.14 0.6355 12.8399 72.03 108.48 113.35 93.14 0.5674 61.5538 64.315 21.30 113.35 92.04 0.5666 10.7932 57.42 21.30 113.35 4.87 0.5666 10.7932 57.42 21.30 113.35 4.87 0.5666 10.7932 57.42 21.30 113.35 4.87 0.5666 10.7932 57.42 21.31 113.35 4.87 0.5666 10.7932 51.27 22.22 124.71 102.48 0.3606 43.0304 44.971 22.22 124.71 5.38 0.3606 43.0304 44.971 22.22 124.71 5.38 0.3520 7.1556 40.152 119.33 124.71 5.38 0.3606 43.0304 44.971 22.22 124.71 5.38 0.3520 7.1556 40.152 119.33 124.71 5.38 0.2875 34.3036 35.860 25.66 137.18	lst	198.08	14.73	-183.35	0.8929	176.8571	13.1495
98.09 88.36 -9.72 0.7118 69.8175 62.89 20.20 113.35 93.14 0.6355 12.8399 72.03 108.48 113.35 93.14 0.5674 61.5538 64.315 21.30 113.35 4.87 0.5666 10.7932 57.42 21.30 113.35 4.87 0.5666 10.7932 51.272 21.30 113.35 4.87 0.5666 10.7932 51.272 22.22 124.71 102.48 0.4039 8.9760 50.367 22.22 124.71 5.38 0.3606 43.0304 44.971 22.22 124.71 5.38 0.3606 43.0304 44.971 22.22 124.71 5.38 0.3666 7.1556 40.152 119.33 124.71 5.38 0.3657 5.1376 35.850 22.143 117.52 0.2567 6.5854 35.850 25.66 137.18 111.52 0.2567 6.5854	2nd	17.84	44.18	26.34	0.7972	14.2207	35.2219
20.20 113.35 93.14 0.6355 12.8399 72.03 108.48 113.35 4.87 0.5674 61.5538 64.315 21.30 113.35 4.87 0.5666 10.7932 57.42 21.30 113.35 4.87 0.5066 10.7932 57.42 108.48 113.35 4.87 0.5066 10.7932 51.272 21.30 113.35 4.87 0.5066 49.0703 51.272 22.22 124.71 102.48 0.4039 8.9760 50.367 119.33 124.71 5.38 0.3606 43.0304 44.971 22.22 124.71 102.48 0.3220 7.1556 40.152 119.33 124.71 5.38 0.2875 34.3036 35.816 22.124 111.52 0.2267 6.5854 35.210 119.33 124.71 5.38 0.2282 31.437 25.66 111.52 0.2875 34.3036 35.816	3rd	98.09	88.36	-9.72	0.7118	69.8175	62.8963
108.48 113.35 4.87 0.5674 61.5538 64.31 21.30 113.35 92.04 0.5066 10.7932 57.422 21.30 113.35 92.04 0.5066 10.7932 57.422 108.48 113.35 4.87 0.4523 49.0703 51.272 22.22 124.71 102.48 0.4039 8.9760 50.367 119.33 124.71 5.38 0.3606 43.0304 44.971 22.22 124.71 5.38 0.3606 43.0304 44.971 22.22 124.71 102.48 0.3220 7.1556 40.152 119.33 124.71 5.38 0.3606 34.3036 35.850 22.22 137.18 111.52 0.2567 6.5854 35.210 121.43 137.18 111.52 0.2292 27.8282 31.437 24.45 137.18 112.73 0.2246 5.0023 28.069 121.43 137.18 15.75 0.2046 </td <td>4th</td> <td>20.20</td> <td>113.35</td> <td>93.14</td> <td>0.6355</td> <td>12.8399</td> <td>72.0335</td>	4th	20.20	113.35	93.14	0.6355	12.8399	72.0335
21.30 113.35 92.04 0.5066 10.7932 57.42 108.48 113.35 4.87 0.4523 49.0703 51.272 22.22 124.71 102.48 0.4039 8.9760 50.367 119.33 124.71 5.38 0.3606 43.0304 44.971 22.22 124.71 5.38 0.3506 43.0304 44.971 22.22 124.71 5.38 0.3506 43.0304 44.971 22.22 124.71 5.38 0.3220 7.1556 40.152 22.10 22.22 124.71 5.38 0.32875 34.3036 35.850 22.22 137.18 111.52 0.2567 6.5854 35.200 25.66 137.18 111.52 0.2567 6.5854 35.069 121.43 137.18 115.75 0.2292 27.8282 31.437 24.45 137.18 112.73 0.2046 5.0023 28.069 121.43 137.18 15.75 0.21845 5.0023 28.069 121.43 137.18 15	Sth	108.48	113.35	4.87	0.5674	61.5538	64.3156
108.48 113.35 4.87 0.4523 49.0703 51.272 22.22 124.71 102.48 0.4039 8.9760 50.367 22.22 124.71 5.38 0.3606 43.0304 44.971 22.22 124.71 5.38 0.3506 43.0304 44.971 22.22 124.71 5.38 0.3220 7.1556 40.152 119.33 124.71 5.38 0.3267 34.3036 35.850 22.22 137.18 111.52 0.2875 34.3036 35.850 25.66 137.18 111.52 0.2267 6.5854 35.210 121.43 137.18 15.75 0.2292 27.8282 31.437 24.45 137.18 15.75 0.2046 5.0023 28.069 121.43 137.18 15.75 0.2877 27.8282 31.437 24.45 137.18 15.75 0.2046 5.0023 28.069 121.43 137.18 15.75 0.2877	6th	21.30	113.35	92.04	0.5066	10.7932	57.4246
22.22 124.71 102.48 0.4039 8.9760 50.367 119.33 124.71 5.38 0.3606 43.0304 44.971 22.22 124.71 5.38 0.3220 7.1556 40.152 119.33 124.71 5.38 0.3220 7.1556 40.152 22.22 124.71 5.38 0.3220 7.1556 40.152 119.33 124.71 5.38 0.2875 34.3036 35.850 25.66 137.18 111.52 0.2567 6.5854 35.210 25.66 137.18 111.52 0.2046 5.023 28.069 121.43 137.18 112.73 0.2046 5.0023 28.069 121.43 137.18 112.73 0.2046 5.0023 28.069 121.43 137.18 15.75 0.21845 5.0023 28.069 121.43 137.18 15.75 0.21845 5.0023 28.069 121.43 137.18 15.75 0.21845 5.0023 28.069 121.43 137.18 15.75 0	7th	108.48	113.35	4.87	0.4523	49.0703	51.2720
119.33 124.71 5.38 0.3606 43.0304 44.971 22.22 124.71 102.48 0.3220 7.1556 40.155 119.33 124.71 5.38 0.3220 7.1556 40.155 119.33 124.71 5.38 0.2875 34.3036 35.850 119.33 137.18 111.52 0.2875 34.3036 35.850 25.66 137.18 111.52 0.2267 6.5854 35.210 121.43 137.18 111.52 0.2292 27.8282 31.437 24.45 137.18 112.73 0.2046 5.0023 28.069 121.43 137.18 112.73 0.2046 5.0023 28.069 121.43 137.18 15.75 0.2184 5.0023 28.069 121.43 137.18 15.75 0.21845 25.062 121.43 15.75 0.1827 22.1845 25.062 121.43 15.75 0.1827 22.1845 647.43	8th	22.22	124.71	102.48	0.4039	8.9760	50.3676
22.22 124.71 102.48 0.3220 7.1556 40.152 119.33 124.71 5.38 0.3220 7.1556 40.153 119.33 124.71 5.38 0.2875 34.3036 35.850 25.66 137.18 111.52 0.2567 6.5854 35.210 121.43 137.18 15.75 0.2292 27.8282 31.437 24.45 137.18 112.73 0.2046 5.0023 28.069 121.43 137.18 112.73 0.2046 5.0023 28.069 121.43 137.18 112.73 0.2046 5.0023 28.069 121.43 137.18 15.75 0.1827 22.1845 25.062 121.43 137.18 15.75 0.1827 22.1845 25.062 121.43 15.75 0.1827 22.1845 647.43 1.18 NPW 97.21 IRR 647.43	9th	119.33	124.71	5.38	0.3606	43.0304	44.9711
119.33 124.71 5.38 0.2875 34.3036 35.850 25.66 137.18 111.52 0.2567 6.5854 35.210 121.43 137.18 111.52 0.2292 27.8282 31.437 24.45 137.18 15.75 0.2046 5.0023 28.069 121.43 137.18 112.73 0.2046 5.0023 28.069 121.43 137.18 15.75 0.1827 22.1845 25.062 121.43 137.18 15.75 0.1827 22.1845 25.062 121.43 137.18 15.75 0.1827 22.1845 25.062 121.43 137.18 15.75 0.1827 22.1845 25.062 121.43 137.18 15.75 0.1827 22.1845 647.43 1.18 NPW 97.21 IRR 647.43	10th	22.22	124.71	102.48	0.3220	7.1556	40.1528
25.66 137.18 111.52 0.2567 6.5854 35.210 121.43 137.18 15.75 0.2292 27.8282 31.437 24.45 137.18 112.73 0.2046 5.0023 28.069 121.43 137.18 15.75 0.1827 22.1845 25.062 121.43 137.18 15.75 0.1827 22.1845 25.062 121.43 137.18 15.75 0.1827 22.1845 25.062 121.43 137.18 15.75 0.1827 22.1845 25.062 121.43 137.18 NPW 97.21 IRR	11th	119.33	124.71	5.38	0.2875	34.3036	35.8507
121.43 137.18 15.75 0.2292 27.8282 31.437 24.45 137.18 112.73 0.2046 5.0023 28.069 121.43 137.18 15.75 0.1827 22.1845 25.062 121.43 137.18 15.75 0.1827 22.1845 25.062 121.43 137.18 15.75 0.1827 22.1845 25.062 121.43 137.18 NPW 97.21 IRR 647.43	12th	25.66	137.18	111.52	0.2567	6.5854	35.2105
24.45 137.18 112.73 0.2046 5.0023 28.069 121.43 137.18 15.75 0.1827 22.1845 25.062 121.43 137.18 15.75 0.1827 22.1845 25.062 121.43 137.18 NPW 97.21 IRR 647.43	13th	121.43	137.18	15.75	0.2292	27.8282	31.4379
121.43 137.18 15.75 0.1827 22.1845 25.062 1 <t< td=""><td>14th</td><td>24.45</td><td>137.18</td><td>112.73</td><td>0.2046</td><td>5.0023</td><td>28.0696</td></t<>	14th	24.45	137.18	112.73	0.2046	5.0023	28.0696
1.18 NPW 97.21 IRR	15th	121.43	137.18	15.75	0.1827	22.1845	25.0621
1.18 NPW 97.21 IRR						550.2184	647.4358
1.18 NPW 97.21 IRR	F						
	3CR	1.18		NPW	97.21	IRR	21%

Treatment combination, p_{1i3}

44.87 28.61 0.7972 12.9619 89.74 -6.77 0.7118 68.6935 6 89.74 -6.77 0.7118 68.6935 6 115.11 96.79 0.6355 11.6389 2 115.11 95.69 0.5674 60.4815 6 115.11 8.52 0.5066 9.8358 2 115.11 8.52 0.4039 8.1364 2 115.11 8.52 0.4039 8.1364 2 126.65 9.40 0.3606 42.2808 2 126.65 9.40 0.3220 6.4863 2 126.65 9.40 0.2567 5.9985 3 126.65 9.40 0.2267 5.9985 3 139.31 115.94 0.2567 5.9985 3 139.31 115.94 0.2567 5.9985 3 139.31 115.94 0.2567 5.9985 3 139.31 115.94 0.2567 5.9985 3 139.31 115.94 0.2567 <t< th=""><th>Total cost of cultivation 196.50</th><th>Gross income 14.96</th><th>Net income -181.54</th><th>Treatment combination, p₁i₃ Net Discounted factor at income 12 %</th><th>Discounted cost</th><th>Discounted benefit</th></t<>	Total cost of cultivation 196.50	Gross income 14.96	Net income -181.54	Treatment combination, p ₁ i ₃ Net Discounted factor at income 12 %	Discounted cost	Discounted benefit
89.74 -6.77 0.7118 68.6935 115.11 96.79 0.6355 11.6389 115.11 8.52 0.5674 60.4815 115.11 8.52 0.5674 60.4815 115.11 8.52 0.5066 9.8358 115.11 8.52 0.5066 9.8358 115.11 8.52 0.4039 8.1364 126.65 9.40 0.3606 42.2808 126.65 9.40 0.3606 42.2808 126.65 9.40 0.3220 6.4863 126.65 9.40 0.2875 33.7060 126.65 9.40 0.2292 27.3042 139.31 115.94 0.2292 27.3042 139.31 117.15 0.2292 27.3042 21.7667 139.31 117.15 0.2046 4.5344 21.7667 139.31 20.17 0.1827 21.7667 21.7667 139.31 171.15 0.2046 4.5344 21.7667 139.31 20.17 0.1827 21.7667 21.7667 <t< td=""><td>9</td><td>44.87</td><td>28.61</td><td>0.7972</td><td>12.9619</td><td>35.7696</td></t<>	9	44.87	28.61	0.7972	12.9619	35.7696
115.11 96.79 0.6355 11.6389 115.11 8.52 0.5674 60.4815 115.11 8.52 0.5066 9.8358 115.11 95.69 0.5066 9.8358 115.11 8.52 0.4523 48.2155 115.11 8.52 0.4039 8.1364 126.65 9.40 0.3606 42.2808 126.65 9.40 0.3606 42.2808 126.65 9.40 0.3220 6.4863 126.65 9.40 0.2875 33.7060 139.31 115.94 0.2875 33.7060 139.31 115.94 0.2292 27.3042 139.31 117.15 0.2292 27.3042 139.31 117.15 0.2292 27.3042 139.31 20.17 0.2046 4.5344 139.31 117.15 0.2046 4.5344 139.31 20.17 0.1827 21.7667 139.31 20.17 0.2046 4.5344 21.7667 139.31 20.17 0.1827 21.7667 <td>1</td> <td>89.74</td> <td>-6.77</td> <td>0.7118</td> <td>68.6935</td> <td>63.8743</td>	1	89.74	-6.77	0.7118	68.6935	63.8743
115.11 8.52 0.5674 60.4815 115.11 95.69 0.5066 9.8358 115.11 95.69 0.5066 9.8358 115.11 8.52 0.4523 48.2155 126.65 106.50 0.4039 8.1364 126.65 9.40 0.3606 42.2808 126.65 9.40 0.3200 6.4863 126.65 9.40 0.3200 6.4863 126.65 9.40 0.2875 33.7060 126.65 9.40 0.2875 33.7060 139.31 115.94 0.2567 5.9985 139.31 117.15 0.2292 27.3042 139.31 20.17 0.2046 4.5344 139.31 20.17 0.1827 21.7667 139.31 20.17 0.1827 27.3042 139.31 20.17 0.2046 4.5344 139.31 20.17 0.1827 21.7667 139.31 20.17 0.1827 21.7667 139.31 20.17 0.1827 21.7667	_	115.11	96.79	0.6355	11.6389	73.1536
115.11 95.69 0.5066 9.8358 115.11 8.52 0.4523 48.2155 115.11 8.52 0.4039 8.1364 126.65 9.40 0.3066 42.2808 126.65 9.40 0.3220 6.4863 126.65 9.40 0.3220 6.4863 126.65 9.40 0.2875 33.7060 126.65 9.40 0.2875 33.7060 126.65 9.40 0.2267 5.9985 139.31 115.94 0.2567 5.9985 139.31 115.15 0.2046 4.5344 139.31 20.17 0.2046 4.5346 139.31 20.17 0.2046 4.5346 139.31 20.17 0.2046 4.5346 139.31 20.17 0.2046 4.5346 139.31 20.17 0.2046 4.5346 139.31 20.17 0.1827 21.7667 139.31 20.17 0.1827 237.4866	59	115.11	8.52	0.5674	60.4815	65.3157
115.11 8.52 0.4523 48.2155 126.65 106.50 0.4039 8.1364 126.65 9.40 0.3606 42.2808 126.65 9.40 0.3506 42.2808 126.65 9.40 0.3220 6.4863 126.65 9.40 0.3220 6.4863 126.65 9.40 0.2875 33.7060 139.31 115.94 0.2875 33.7060 139.31 115.94 0.2292 27.3042 139.31 20.17 0.2292 27.3042 139.31 117.15 0.2046 4.5344 139.31 20.17 0.1827 21.7667 139.31 20.17 0.1827 21.7667 139.31 20.17 0.1827 21.7667 139.31 20.17 0.1827 21.7667 139.31 20.17 0.1827 21.7667 139.31 NPW 120.01 S37.4866		115.11	95.69	0.5066	9.8358	58.3176
126.65 106.50 0.4039 8.1364 126.65 9.40 0.3606 42.2808 126.65 9.40 0.3520 6.4863 126.65 9.40 0.3220 6.4863 126.65 9.40 0.3220 5.9985 126.65 9.40 0.2875 33.7060 126.51 115.94 0.2875 33.7060 139.31 115.94 0.2267 5.9985 139.31 20.17 0.2292 27.3042 139.31 20.17 0.2046 4.5344 139.31 20.17 0.2046 4.5346 139.31 20.17 0.1827 21.7667 139.31 20.17 0.1827 21.7667 139.31 20.17 0.1827 21.7667 139.31 20.18 0.1827 21.7667 139.31 NPW 120.01 537.4866	59	115.11	8.52	0.4523	48.2155	52.0693
126.65 9.40 0.3606 42.2808 126.65 106.50 0.3220 6.4863 126.65 9.40 0.32875 5.9085 126.65 9.40 0.2875 33.7060 139.31 115.94 0.2867 5.9985 139.31 115.94 0.2567 5.9985 139.31 20.17 0.2292 27.3042 139.31 20.17 0.2046 4.5344 139.31 20.17 0.1827 21.7667 139.31 20.17 0.1827 21.7667 139.31 20.17 0.1827 21.7667 NPW NPW 120.01 IRR	15	126.65	106.50	0.4039	8.1364	51.1508
126.65 106.50 0.3220 6.4863 126.65 9.40 0.32875 33.7060 126.65 9.40 0.2875 33.7060 139.31 115.94 0.2567 5.9985 139.31 20.17 0.2567 5.9985 139.31 20.17 0.2292 27.3042 139.31 117.15 0.2046 4.5344 139.31 20.17 0.1827 21.7667 139.31 20.17 0.1827 21.7667 NPW NPW 120.01 IRR	.25	126.65	9.40	0.3606	42.2808	45.6704
126.65 9.40 0.2875 33.7060 139.31 115.94 0.2567 5.9985 139.31 20.17 0.2592 27.3042 139.31 20.17 0.2046 4.5344 139.31 20.17 0.2046 4.5346 139.31 20.17 0.1827 21.7667 139.31 20.17 0.1827 237.4866 NPW NPW 120.01 IRR	15	126.65	106.50	0.3220	6.4863	40.7771
139.31 115.94 0.2567 5.9985 139.31 20.17 0.2292 27.3042 139.31 117.15 0.2046 4.5344 139.31 20.17 0.1827 21.7667 139.31 20.17 0.1827 21.7667 NPW NPW 120.01 IRR	.25	126.65	9.40	0.2875	33.7060	36.4082
139.31 20.17 0.2292 27.3042 139.31 117.15 0.2046 4.5344 139.31 20.17 0.1827 21.7667 139.31 20.17 0.1827 21.7667 NPW 120.01 130.31 130.31	37	139.31	115.94	0.2567	5.9985	35.7580
139.31 117.15 0.2046 4.5344 139.31 20.17 0.1827 21.7667 139.31 20.17 0.1827 21.7667 NPW 120.01 1RR	.14	139.31	20.17	0.2292	27.3042	31.9268
139.31 20.17 0.1827 21.7667 NPW 0.1827 21.7667	16	139.31	117.15	0.2046	4.5344	28.5061
537.4866 NPW 120.01 IRR	14	139.31	20.17	0.1827	21.7667	25.4518
NPW 120.01 IRR					537.4866	657.5034
NPW 120.01 IRR		-				
	2		MdN	120.01	IRR	23%

Treatment combination, p1i4

YearTotal cost of incomeGross incomeNetDisconnted factor at 12% Disconnted cost1st196.5016.42-180.080.8929175.44642nd16.2649.2532.990.797212.96193rd96.5198.501.990.711868.69353rd96.5118.31126.3419.750.635511.63895th106.59126.3419.750.635511.63896th19.41126.3419.750.635511.63897th106.59126.3419.750.635511.63897th19.41126.3419.750.635511.63897th106.59126.3419.750.635511.63897th106.59126.3419.750.50669.83587th106.59126.3419.750.50669.83587th106.59126.3419.750.50669.83587th106.59126.3419.750.50669.83587th106.59126.3419.750.50669.83589th117.25139.01118.860.32206.486310th20.15139.01118.860.32205.998510th20.15139.0121.760.22675.998511th117.25139.01118.860.2202227.304212th23.37152.9133.770.20464.534415th119.14152.91 <td< th=""><th>ŀ</th><th></th><th></th><th>l reatment co</th><th>Treatment combination, p_{1i4}</th><th></th><th></th></td<>	ŀ			l reatment co	Treatment combination, p _{1i4}		
cultivation income income 12 % 196.50 16.42 -180.08 0.8929 16.26 49.25 32.99 0.7972 96.51 98.50 1.99 0.7972 96.51 98.50 1.99 0.7118 16.26 49.25 32.99 0.7972 96.51 98.50 1.99 0.7118 18.31 12.6.34 19.75 0.6355 106.59 126.34 19.75 0.6356 19.41 126.34 19.75 0.6356 19.41 126.34 19.75 0.63566 19.41 126.34 19.75 0.63566 19.659 126.34 19.75 0.3606 117.25 139.01 118.86 0.3606 117.25 139.01 21.76 0.3270 117.25 139.01 21.76 0.2375 20.15 139.01 21.76 0.2295 21.17.25 139.01 21.76 0.2297		Total cost of	Gross	Net	Discounted factor at	Discounted	Discounted
16.42 -180.08 0.8929 49.25 32.99 0.7972 98.50 1.99 0.7118 98.50 1.99 0.7118 126.34 19.75 0.5674 126.34 19.75 0.5674 126.34 19.75 0.5674 126.34 19.75 0.5674 126.34 19.75 0.5674 126.34 19.75 0.5674 126.34 19.75 0.5674 139.01 118.86 0.4039 139.01 118.86 0.3606 139.01 118.86 0.3220 139.01 118.86 0.3220 139.01 118.86 0.3220 139.01 118.86 0.3220 139.01 118.86 0.3200 152.91 139.77 0.2875 152.91 33.77 0.2292 152.91 33.77 0.1827 152.91 33.77 0.1827 152.91 33.77	-	cultivation	income	income	12 %	cost	benefit
49.25 32.99 0.7972 98.50 1.99 0.7118 98.50 1.99 0.7118 126.34 108.03 0.6355 126.34 19.75 0.5674 126.34 19.75 0.5666 126.34 19.75 0.5066 126.34 19.75 0.5066 139.01 118.86 0.4039 139.01 21.76 0.3606 139.01 21.76 0.3606 139.01 21.76 0.3220 139.01 21.76 0.3606 139.01 21.76 0.3267 139.01 21.76 0.2875 139.01 21.76 0.2875 152.91 33.77 0.2292 152.91 33.77 0.22946 152.91 33.77 0.1827 152.91 33.77 0.1827 152.91 33.77 0.1827	-	196.50	16.42	-180.08	0.8929	175.4464	14.6574
96.51 98.50 1.99 0.7118 18.31 126.34 108.03 0.6355 18.31 126.34 108.03 0.6355 19.41 126.34 19.75 0.5674 19.41 126.34 19.75 0.5066 19.41 126.34 19.75 0.5066 19.41 126.34 19.75 0.4523 20.15 139.01 118.86 0.4039 117.25 139.01 21.76 0.3606 117.25 139.01 21.76 0.3220 20.15 139.01 21.76 0.32567 20.15 139.01 21.76 0.2875 21.17.25 139.01 21.76 0.2267 21.19.14 152.91 33.77 0.2292 22.16 152.91 33.77 0.2046 119.14 152.91 33.77 0.1827 2 219.14 152.91 33.77 0.1827 2		16.26	49.25	32.99	0.7972	12.9619	39.2610
18.31 126.34 108.03 0.6355 106.59 126.34 19.75 0.5674 19.41 126.34 19.75 0.5066 19.41 126.34 19.75 0.5066 106.59 126.34 19.75 0.4523 106.59 126.34 19.75 0.4039 106.59 126.34 19.75 0.4039 106.59 139.01 118.86 0.4039 117.25 139.01 21.76 0.3606 117.25 139.01 21.76 0.3606 20.15 139.01 21.76 0.3675 21.75 139.01 21.76 0.2875 23.37 152.91 21.76 0.2875 23.37 152.91 129.54 0.2267 119.14 152.91 33.77 0.2046 119.14 152.91 33.77 0.1827 119.14 152.91 33.77 0.1827 119.14 152.91 33.77 0.1827 </td <td></td> <td>96.51</td> <td>98.50</td> <td>1.99</td> <td>0.7118</td> <td>68.6935</td> <td>70.1089</td>		96.51	98.50	1.99	0.7118	68.6935	70.1089
106.59 126.34 19.75 0.5674 19.41 126.34 19.75 0.5674 19.41 126.34 106.93 0.5066 10.6.59 126.34 19.75 0.5066 10.6.59 126.34 19.75 0.4523 20.15 139.01 118.86 0.4039 117.25 139.01 21.76 0.3606 20.15 139.01 21.76 0.3606 117.25 139.01 21.76 0.3606 20.15 139.01 21.76 0.3606 117.25 139.01 21.76 0.3675 117.25 139.01 21.76 0.2875 23.37 152.91 21.76 0.2875 23.37 152.91 33.77 0.2292 119.14 152.91 33.77 0.2292 22.16 152.91 33.77 0.1827 119.14 152.91 33.77 0.1827	-	18.31	126.34	108.03	0.6355	11.6389	80.2938
19.41 126.34 106.93 0.5066 106.59 126.34 19.75 0.4523 106.59 126.34 19.75 0.4523 20.15 139.01 118.86 0.4039 117.25 139.01 21.76 0.3606 20.15 139.01 21.76 0.3606 117.25 139.01 118.86 0.3220 20.15 139.01 21.76 0.3675 21.76 139.01 21.76 0.2875 23.37 152.91 129.54 0.2567 119.14 152.91 129.54 0.2267 22.16 152.91 130.75 0.2046 119.14 152.91 33.77 0.1827 119.14 152.91 33.77 0.1827 119.14 152.91 33.77 0.1827	-	106.59	126.34	19.75	0.5674	60.4815	71.6909
106.59126.3419.750.452320.15139.01118.860.403920.15139.01118.860.360620.15139.0121.760.360620.15139.0121.760.360620.15139.0121.760.3606117.25139.0121.760.322023.37152.9121.760.2875119.14152.91129.540.229222.16152.91130.750.2046119.14152.9133.770.2046119.14152.9133.770.1827119.14152.9133.770.1827		19.41	126.34	106.93	0.5066	9.8358	64.0097
20.15 139.01 118.86 0.4039 117.25 139.01 21.76 0.3606 20.15 139.01 21.76 0.3220 20.15 139.01 118.86 0.3220 20.15 139.01 118.86 0.3220 117.25 139.01 21.76 0.2875 20.15 139.01 21.76 0.2267 117.25 152.91 129.54 0.2267 23.37 152.91 129.54 0.2267 20.19.14 152.91 33.77 0.2292 22.16 152.91 130.75 0.2046 119.14 152.91 33.77 0.1827 119.14 152.91 33.77 0.1827	-	106.59	126.34	19.75	0.4523	48.2155	57.1515
117.25 139.01 21.76 0.3606 20.15 139.01 118.86 0.3220 20.15 139.01 118.86 0.3220 117.25 139.01 21.76 0.3875 23.37 152.91 21.76 0.2875 23.37 152.91 129.54 0.2875 119.14 152.91 33.77 0.2567 22.16 152.91 33.77 0.2292 119.14 152.91 33.77 0.2046 119.14 152.91 33.77 0.1827 119.14 152.91 33.77 0.1827	-	20.15	139.01	118.86	0.4039	8.1364	56.1435
20.15 139.01 118.86 0.3220 117.25 139.01 21.76 0.3275 23.37 152.91 21.76 0.2875 23.37 152.91 129.54 0.2567 119.14 152.91 33.77 0.2292 22.16 152.91 130.75 0.2046 119.14 152.91 33.77 0.2046 119.14 152.91 33.77 0.1827	-	117.25	139.01	21.76	0.3606	42.2808	50.1281
117.25 139.01 21.76 0.2875 23.37 152.91 129.54 0.2867 119.14 152.91 33.77 0.2292 22.16 152.91 130.75 0.2046 119.14 152.91 130.75 0.2046 119.14 152.91 33.77 0.1827	-	20.15	139.01	118.86	0.3220	6.4863	44.7572
23.37 152.91 129.54 0.2567 119.14 152.91 33.77 0.2292 22.16 152.91 130.75 0.2046 119.14 152.91 33.77 0.1827		117.25	139.01	21.76	0.2875	33.7060	39.9618
119.14 152.91 33.77 0.2292 22.16 152.91 130.75 0.2046 119.14 152.91 33.77 0.1827	-	23.37	152.91	129.54	0.2567	5.9985	39.2482
22.16 152.91 130.75 0.2046 119.14 152.91 33.77 0.1827	-	119.14	152.91	33.77	0.2292	27.3042	35.0430
119.14 152.91 33.77 0.1827	+	22.16	152.91	130.75	0.2046	4.5344	31.2884
537.4866	-	119.14	152.91	33.77	0.1827	21.7667	27.9361
	_					537.4866	721.6795
RCP 1.34 NINIU 1.0.1.0		1 3.4		MAN	0, 10,		

1a/

Treatment combination, p₁i₅

		L	reatment co	Treatment combination, p ₁ i ₅		
Vear	Total cost of	Gross	Net	Discounted factor at	Discounted	Discounted
I VUI	cultivation	income	income	12 %	cost	benefit
lst	195.02	15.06	-179.96	0.8929	174.1250	13.4431
2nd	15.14	45.17	30.03	0.7972	12.0663	36.0083
3rd	95.39	90.34	-5.05	0.7118	67.8939	64.3006
4th	16.86	115.88	99.02	0.6355	10.7123	73.6418
5th	105.13	115.88	10.75	0.5674	59.6542	65.7516
6th	17.96	115.88	97.92	0.5066	9.0971	58.7068
7th	105.13	115.88	10.75	0.4523	47.5559	52.4168
8th	18.54	127.49	108.95	0.4039	7.4884	51.4922
9th	115.64	127.49	11.85	0.3606	41.7024	45.9752
10th	18.54	127.49	108.95	0.3220	5.9697	41.0493
11th	115.64	127.49	11.85	0.2875	33.2449	36.6511
12th	21.61	140.24	118.64	0.2567	5.5455	35.9966
13th	117.38	140.24	22.87	0.2292	26.8995	32.1399
14th	20.40	140.24	119.85	0.2046	4.1732	28.6963
15th	117.38	140.24	22.87	0.1827	21.4442	25.6217
					527.5724	661.8912
BCR	1.25		NPW	134.31	IRR	24%

Treatment combination, p₂i₁

Г

	d Discounted				0129 28	71/0.00	4070.02 05 5502	CCCC.C0 CCCC.27	68 2073	67 0042	50 8757	53 4154	47 6073	46.8406	41.8220	37.3411	33.3402	861.2861	
	Discounted	cost	160.1875	14 2837	8662.78	12 2051	0008 00	10.8377	39.7799	9.0146	34 8835	7 1864	27.8089	6.6124	22.6529	5.0238	18.0588	475.6525	
Treatment combination, p ₂ i ₁	Discounted factor at	12 %	0.8929	0.7972	0.7118	0 6355	0 5674	0.5066	0.4523	0.4039	0.3606	0.3220	0.2875	0.2567	0.2292	0.2046	0.1827		
reatment co	Net	income	-159.82	40.86	38.13	130.49	62.84	129.39	62.84	143.58	69.17	143.58	69.17	156.73	83.64	157.94	83.64		
Τ		income	19.59	58.78	117.55	150.78	150.78	150.78	150.78	165.90	165.90	165.90	165.90	182.49	182.49	182.49	182.49		
	Total cost of	cultivation	179.41	17.92	79.42	20.29	87.94	21.39	87.94	22.32	96.73	22.32	96.73	25.76	98.85	24.55	98.85		
	Year		lst	2nd	3rd	4th	Sth	6th	7th	8th	9th	10th	11th	12th	13th	14th	15th		

Q3

Treatment combination, p₂i₂

			Freatment co	Treatment combination, p ₂ i ₂		
Year	Total cost of	Gross	Net	Discounted factor at	Discounted	Discounted
	cultivation	income	income	12 %	cost	benefit
lst	179.41	19.79	-159.62	0.8929	160.1875	17.6737
2nd	17.92	59.38	41.47	0.7972	14.2837	47.3403
3rd	79.42	118.77	39.35	0.7118	56.5278	84.5362
4th	20.29	152.34	132.05	0.6355	12.8951	96.8170
5th	87.94	152.34	64.40	0.5674	49.8999	86.4438
6th	21.39	152.34	130.95	0.5066	10.8372	77.1819
7th	87.94	152.34	64.40	0.4523	39.7799	68.9125
8th	22.32	167.62	145.30	0.4039	9.0146	62.6969
9th	96.73	167.62	70.88	0.3606	34.8835	60.4437
10th	22.32	167.62	145.30	0.3220	7.1864	53.9676
11th	96.73	167.62	70.88	0.2875	27.8089	48.1853
12th	25.76	184.38	158.61	0.2567	6.6124	47.3249
13th	98.85	184.38	85.53	0.2292	22.6529	42.2544
14th	24.55	184.38	159.82	0.2046	5.0238	37.7271
15th	98.85	184.38	85.53	0.1827	18.0588	33.6849
					475.6525	870.1901
BCR	1.83		NPW	394.53	IRR	45%
						1000 Day -

Treatment combination, p2i3

	Discounted	benefit	14.4979	38.8336	69.3457	79.4198	70.9105	63.3129	56.5294	55.5323	49.5824	44.2700	39.5268	38.8210	34.6616	30.9478	27.6320	713.8236	34%
	Discounted	cost	158.7054	12.9619	55.3476	11.6389	48.7783	9.8358	38.8858	8.1364	34.0994	6.4863	27.1839	5.9985	22.1048	4.5344	17.6218	462.319	IRR
Treatment combination, p ₂ i ₃	Discounted factor at	12 %	0.8929	0.7972	0.7118	0.6355	0.5674	0.5066	0.4523	0.4039	0.3606	0.3220	0.2875	0.2567	0.2292	0.2046	0.1827		251.5
reatment co	Net	income	-161.51	32.45	19.67	106.65	39.00	105.55	39.00	117.35	42.94	117.35	42.94	127.88	54.79	129.09	54.79		WdN
T	Gross	income	16.24	48.71	97.43	124.97	124.97	124.97	124.97	137.50	137.50	137.50	137.50	151.25	151.25	151.25	151.25		
	Total cost of	cultivation	177.75	16.26	77.76	18.31	85.96	19.41	85.96	20.15	94.56	20.15	94.56	23.37	96.45	22.16	96.45		1.54
	Уеаг		lst	2nd	3rd	4th	Sth	6th	7th	8th	9th	10th	11th	12th	13th	14th	15th		BCR

رمن

Treatment combination, p2i4

Total cost of cultivation Gross income Net income Disconce 177.83 26.38 -151.45 Disconce 177.83 26.38 -151.45 Disconce 177.84 79.15 62.82 Disconce 77.84 158.31 80.47 E 77.84 158.31 80.47 E 77.84 158.31 80.47 E 18.40 203.06 117.01 E 86.05 203.06 117.01 E 86.05 203.06 117.01 E 96.05 203.06 117.01 E 94.66 223.42 203.18 E 94.66 223.42 128.76 E 94.66 223.42 128.76 E 94.66 223.42 128.76 E 94.66 223.42 128.76 E 94.66 223.42 128.76 E 96.56 245.76 149.20 E 96.56	Discounted factor at 12% Discuted factor at 15% 0.8929 158 0.8929 158 0.7972 13 0.7118 55 0.7118 55 0.7118 55 0.7118 55 0.7118 55 0.6355 11 0.6355 11 0.5674 48 0.5666 93 0.5066 93 0.4039 8:3 0.3606 34.	Discounted cost 158.7768 13.0249 55.4038 11.6941 11.6941 48.8276 9.8798 9.8798	Discounted benefit 23.5576 63.1006 112.6797 112.6797 129.0490 115.2223 102.8771 91.8545 90.7343
26.38 79.15 158.31 158.31 203.06 203.06 203.06 203.06 203.42 223.56 223.57 223.56 223.57 223.56 223.57 225.57 225.57 255.57 555.57 555.57 555.57 555.57 555.57 5555		8.7768 8.7768 1.0249 1.4038 6941 1.8276 8798 8798 8798	Denetit 23.5576 63.1006 112.6797 129.0490 115.2223 102.8771 91.8545 90.7343
			63.1006 63.1006 112.6797 129.0490 115.2223 102.8771 91.8545 90.7343
		.4038 .6941 .8276 8798 .9251	112.6797 129.0490 115.2223 102.8771 91.8545 90.7343
		.6941 .8276 8798 .9251	129.0490 115.2223 102.8771 91.8545 00 7342
		.8276 8798 .9251	115.2223 102.8771 91.8545 90.7343
		8798 .9251	102.8771 91.8545 90.2343
		.9251	91.8545
			00 72/2
		8.1750	C+C7.02
		34.1339	80.5664
	0.3220 6.5	6.5171	71.9343
	0.2875 27.	27.2113	64.2270
	0.2567 6.(6.0255	63.0801
	0.2292 22.	22.1289	56.3215
	0.2046 4.5	4.5559	50.2871
	0.1827 17.	17.6410	44.8992
	462	462.9206	1159.891
-			
MMN	II 696.97	IRR	67%

in

Treatment combination, p2i5

		L	Freatment co	Treatment combination, p ₂ i ₅		
Year	Total cost of	Gross	Net	Discounted factor at	Discounted	Discounted
	cultivation	income	income	12 %	cost	benefit
lst	176.27	19.18	-157.09	0.8929	157.3839	17.1212
2nd	15.14	57.53	42.39	0.7972	12.0663	45.8603
3rd	76.64	115.05	38.42	0.7118	54.5480	81.8934
4th	16.86	147.58	130.72	0.6355	10.7123	93.7904
5th	84.51	147.58	63.07	0.5674	47.9510	83.7414
6th	17.96	147.58	129.62	0.5066	9.0971	74.7691
7th	84.51	147.58	63.07	0.4523	38.2262	66.7581
8th	18.54	162.38	143.83	0.4039	7.4884	65.5806
9th	92.96	162.38	69.42	0.3606	33.5209	58.5541
10th	18.54	162.38	143.83	0.3220	5.9697	52.2805
1 1th	92.96	162.38	69.42	0.2875	26.7226	46.6790
12th	21.61	178.61	157.01	0.2567	5.5455	45.8454
13th	94.69	178.61	83.92	0.2292	21.7003	40.9334
14th	20.40	178.61	158.22	0.2046	4.1732	36.5477
15th	94.69	178.61	83.92	0.1827	17.2993	32.6319
					452.4047	842.9865
av	701				-	
BCK	1.86		NPW	390.58	IRR	45%

ſ

		L	Freatment co	Treatment combination, p _i		
;	Total cost of		Net	Discounted factor at	Discounted	Discounted
Year	cultivation	income	income	12 %	cost	benefit
lst	179.41	17.59	-161.82	0.8929	160.1875	15.7016
2nd	17.92	52.76	34.84	0.7972	14.2837	42.0578
3rd	79.42	105.51	26.10	0.7118	56.5278	75 1032
4th	20.29	135.34	115.05	0.6355	12.8951	86.0137
5th	87.94	135.34	47.40	0.5674	49.8999	76 7979
6th	21.39	135.34	113.95	0.5066	10.8372	68 5696
7th	87.94	135.34	47.40	0.4523	39.7799	61 2229
8th	22.32	148.91	126.59	0.4039	9.0146	60 1430
9th	96.73	148.91	52.18	0.3606	34.8835	53 6991
10th	22.32	148.91	126.59	0.3220	7.1864	47 9456
11th	96.73	148.91	52.18	0.2875	27.8089	42 8086
12th	25.76	163.80	138.04	0.2567	6.6124	42 0441
13th	98.85	163.80	64.96	0.2292	22.6529	37.5394
14th	24.55	163.80	139.25	0.2046	5.0238	33.5173
15th	98.85	163.80	64.96	0.1827	18.0588	29.9262
					475.652473	773.089876
BCR	1.63		NPW	297.43	IRR	45%

		L	Freatment co	Treatment combination, p ₃ i ₂		
Year	Total cost of	Gross	Net	Discounted factor at	Discounted	Discounted
-	cultivation	income	income	12 %	cost	benefit
lst	179.41	18.22	-161.19	0.8929	160.1875	16.2715
2nd	17.92	54.67	36.75	0.7972	14.2837	43.5844
3rd	79.42	109.34	29.93	0.7118	56.5278	77.8293
4th	20.29	140.26	119.97	0.6355	12.8951	89.1358
5th	87.94	140.26	52.32	0.5674	49.8999	79.5855
6th	21.39	140.26	118.87	0.5066	10.8372	71.0585
7th	87.94	140.26	52.32	0.4523	39.7799	63.4451
8th	22.32	154.32	132.00	0.4039	9.0146	62.3260
9th	96.73	154.32	57.58	0.3606	34.8835	55.6482
10th	22.32	154.32	132.00	0.3220	7.1864	49.6859
1 lth	96.73	154.32	57.58	0.2875	27.8089	44.3624
12th	25.76	169.75	143.99	0.2567	6.6124	43.5702
13th	98.85	169.75	70.90	0.2292	22.6529	38.9020
14th	24.55	169.75	145.20	0.2046	5.0238	34.7339
15th	98.85	169.75	70.90	0.1827	18.0588	31.0124
					475.652473	801.151341
BCR	1.68		NPW	325.49	IRR	40%

Treatment combination, p₃i₃

		L	reatment co	Treatment combination, p _{3i3}			
Vear	Total cost of	Gross	Net	Discounted factor at	Discounted	Discounted	
1 441	cultivation	income	income	12 %	cost	benefit	
lst	177.75	14.99	-162.76	0.8929	158.7054	13.3873	
2nd	16.26	44.98	28.72	0.7972	12.9619	35.8589	
3rd	77.76	89.96	12.20	0.7118	55.3476	64.0338	
4th	18.31	115.40	97.08	0.6355	11.6389	73.3362	
5th	85.96	115.40	29.43	0.5674	48.7783	65.4788	
6th	19.41	115.40	95.98	0.5066	9.8358	58.4632	
7th	85.96	115.40	29.43	0.4523	38.8858	52.1993	
8th	20.15	126.96	106.82	0.4039	8.1364	51.2785	
9th	94.56	126.96	32.40	0.3606	34.0994	45.7844	
10th	20.15	126.96	106.82	0.3220	6.4863	40.8789	
1 l th	94.56	126.96	32.40	0.2875	27.1839	36.4990	
12th	23.37	139.66	116.29	0.2567	5.9985	35.8473	
13th	96.45	139.66	43.21	0.2292	22.1048	32.0065	
14th	22.16	139.66	117.50	0.2046	4.5344	28.5772	
15th	96.45	139.66	43.21	0.1827	17.6218	25.5154	
					462.319	659.1448	
BCR	1.43		WPW	196.82	IRR	30%	

Treatment combination, p₃i₄

		L	reatment co	Treatment combination, p _{3i4}		
Year	Total cost of	Gross	Net	Discounted factor at	Discounted	Discounted
-	cultivation	income	income	12 %	cost	benefit
lst	177.83	18.23	-159.60	0.8929	158.7768	16.2809
2nd	16.34	54.70	38.37	0.7972	13.0249	43.6097
3rd	77.84	109.41	31.57	0.7118	55.4038	77.8744
4th	18.40	140.34	121.94	0.6355	11.6941	89.1875
Sth	86.05	140.34	54.29	0.5674	48.8276	79.6317
6th	19.50	140.34	120.84	0.5066	9.8798	71.0997
7th	86.05	140.34	54.29	0.4523	38.9251	63.4819
8th	20.24	154.41	134.17	0.4039	8.1750	62.3622
9th	94.66	154.41	59.75	0.3606	34.1339	55.6805
10th	20.24	154.41	134.17	0.3220	6.5171	49.7147
1 1 th	94.66	154.41	59.75	0.2875	27.2113	44.3882
12th	23.48	169.85	146.37	0.2567	6.0255	43.5955
13th	96.56	169.85	73.29	0.2292	22.1289	38.9246
14th	22.27	169.85	147.58	0.2046	4.5559	34.7541
15th	96.56	169.85	73.29	0.1827	17.6410	31.0304
					462.9206	801.616
BCR	1.73		WdN	338.69	IRR	41%

Treatment combination, p₃i₅

		L	reatment co	Treatment combination, p ₃ i ₅		
Vear	Total cost of	Gross	Net	Discounted factor at	Discounted	Discounted
I COL	cultivation	income	income	12 %	cost	benefit
lst	176.27	19.63	-156.64	0.8929	157.3839	17.5283
2nd	15.14	58.90	43.76	0.7972	12.0663	46.9507
3rd	76.64	117.79	41.15	0.7118	54.5480	83.8406
4th	16.86	151.09	134.23	0.6355	10.7123	96.0204
Sth	84.51	151.09	66.58	0.5674	47.9510	85.7325
6th	17.96	151.09	133.13	0.5066	9.0971	76.5469
7th	84.51	151.09	66.58	0.4523	38.2262	68.3454
8th	18.54	166.24	147.69	0.4039	7.4884	67.1399
9th	92.96	166.24	73.28	0.3606	33.5209	59.9463
10th	18.54	166.24	147.69	0.3220	5.9697	53.5235
1 1 th	92.96	166.24	73.28	0.2875	26.7226	47.7888
12th	21.61	182.86	161.25	0.2567	5.5455	46.9355
13th	94.68	182.86	88.18	0.2292	21.6982	41.9067
14th	20.39	182.86	162.47	0.2046	4.1722	37.4167
15th	94.68	182.86	88.18	0.1827	17.2977	33.4077
					452.4	863.03
BCR	1.91		NPW	410.63	IRR	47%

202

2.....

Control

Control	Discounted	benefit	11.8746	31.8070	56.7982	65.0495	58.0799	51.8571	46.3009	45.4843	40.6109	36.2598	32.3748	31.7967	28.3899	25.3481	22.6322	584.6639		18%
	Discounted	cost	176.6875	9.0800	69.6762	8.0012	61.1346	6.9358	48.7361	5.5938	42.7395	4.4612	34.0717	4.2226	27.4505	3.1187	21.8834	523.7926		IRR
	Discounted factor at	12 %	0.8929	0.7972	0.7118	0.6355	0.5674	0.5066	0.4523	0.4039	0.3606	0.3220	0.2875	0.2567	0.2292	0.2046	0.1827			60.87
	Net	income	-184.59	28.51	-18.09	89.77	-5.38	88.67	-5.38	98.77	-5.90	98.76	-5.90	107.43	4.10	108.64	4.10			WdN
	Gross	income	13.30	39.90	79.80	102.36	102.36	102.36	102.36	112.62	112.62	112.62	112.62	123.88	123.88	123.88	123.88			
	Total cost of	cultivation	197.89	11.39	97.89	12.59	107.74	13.69	107.74	13.85	118.52	13.86	118.52	16.45	119.78	15.24	119.78			1.12
	Year		lst	2nd	3rd	4th	Sth	6th	7th	8th	9th	10th	1 lth	12th	13th	14th	15th	_	aba	BUK

