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CHAPTER 1

INTRODUCTION

Rapid and accurate estimation of water holding capacity (WHC) of soil is a

key aspect of scientific irrigation scheduling, which aims to supply right quantity

of water at right time to crop plants to maximize production with minimal

environmental impacts (Campbell and Campbell, 1982). The WHC, being the total

amount of water that a soil hold is defined by field capacity (FC) and wilting point

(WP) as the upper and lower limits (Gupta et al., 2016; Salter and Williams, 1965a).

Thus, information on FC and WP forms a critical input to irrigation scheduling. An

optimized irrigation schedule aided by continuous monitoring of FC and WP

partakes multiple benefits; improves water conservation (Gupta et al., 2016),

reduce costs of pumping, reduce competition for water and reduce environmental

effects, among others. Over decades, several approaches have been devised for the

y  determination of these soil moisture indices (also referred as soil moisture

constants) directly and indirectly. They includes, field test plot (Salter and Williams

1965b), sunflower method (Taylor and Ashcroft, 1972), desiccator method (Lehane

and Staple, 1951), pressure plate apparatus (Richards and Fireman, 1943),

pedotransfer flmctions (Givi et al., 2004; Tietje and Tapkenhinrichs, 1993; Gupta

and Larson, 1979) and by means of saturation percentage of soil (Grewal et al.,

1990; Dahiya et al., 1988). The soil moisture constants being dynamic in nature

(Kirkham, 2014), their near-real time assessment via aforesaid conventional

methods remains a challenging task. Moreover, most of the conventional metliods

are laborious and time consuming and hence not advisable for the estimation of the

soil moisture constants at different spatial and temporal scales.

With advancements in past few decades, remote sensing technique appear to
-k.

have the potential to address the aforesaid challenges. Specifically, hyperspectral

sensors operating in the visible, near-infrared and shortwave-infrared wavelength

domain (400-2500 nm) has demonstrated their ability to characterize different soil

attributes using measurements in laboratory (Kinoshita et al., 2012; Viscarra Rossel

et al., 2006b), field (Lagacherie et al., 2008), airborne (Nouri et al., 2017; Vaudour

14



et al, 2016) and space borne (Nowkandeh et ai, 2018). In hyperspecU'al remote

sensing, spectral signature of target (soil) collected at very fine spectral bands is

used in conjunction with established retrieval algorithms to estimate the attribute of

interest. Thus, the major pre-requisite in hyperspectral remote sensing is to develop

retrieval algorithms (also referred as calibration functions) to translate spectral

signature to attribute values. Generally, such calibration functions are initially built

and evaluated using spectral signature measured under laboratory conditions by

means of spectroradiometers (Castaldi et ai, 2016). The approach is often referred

as diffuse reflectance spectroscopy (DRS) due to tire 'diffuse' nature of spectral

signature. In the past few decades, the DRS has been renowned as a prominent tool

for soil analysis and digital soil mapping with its inherent advantages; accurate,

simple, rapid, cost-effective (Pittaki-Chrysodonta et al., 2018), non-desti'uctive,

non-invasive (Ben-Dor et al., 2009), alternative to conventional techniques (Brown

et al., 2006a), estimation of multiple attributes simultaneously and amenable to

ir different modes of remote sensing (Viscarra Rossel et al., 2006b) after making

necessary corrections for abnospheric and other interferences.

Over years, several studies have demonstrated the ability of DRS to assess

different soil attributes. Some selected examples from recent literature includes the

assessment of soil organic carbon. (Li et al, 2015; Singh et al., 2013), nutrient

contents (Abdi et al., 2012; Mouazen et al., 2007), electrical conductivity (Farifteh

et al., 2010; Shrestha 2006), cation exchange capacity (Bilgili et al., 2010; Fox and

Metla 2005), soil mineralogy (Vendrame et al., 2012; Clark 1999), carbonates

(Lagacherie et al., 2008), moisture content (Fabre et al., 2015), texture (Gholizadeh

et al., 2016; Lacerda et al., 2016; Bilgili et al., 2010), parameters of aggregate size

distribution (Sarathjith et al., 2014), hydraulic properties (Sairtra et al., 2009),

among others. More details on DRS based soil assessment can be find in the review

of Ben-Dor et al. (2009) and Stenberg (2010). Although efforts were made to assess

the parameters of water retention function (Pittaki-Chrysodonta et al., 2018;

Babaeian et al, 2015; Santra et ai, 2009) using DRS, very limited studies have

attempted the estimation of FC and WP directly from spectral signature (Kinoshita



et al, 2012; Viscarra Rossel and Webster 2012; Janik et al., 2009) and hence

demand further investigation. .

y  The DRS rely on statistical algorithms that relate spectral signature and soil

attributes. Such methods may broadly be classified as spectral indices based

approach, fiill-spectrum based feature projection approach and variable (spectral

feature) selection based approach. The spectral indices based approach use either

single band relative reflectance (Weidong et al, 2002) or multi-band features

(suitably combined to form a ratio or normalized difference index) as predictors in

a simple linear regression framework to estimate soil attributes. The single band

relative reflectance depends on the accuracy of the reference spectrum

measurement and hence not appropriate for samples with high spatial variability. In

contrast, multi-band features are relatively stable across soil types (Haubrock et al,

2008). One major difficulty associated with spectral index based approach is to find

^  appropriate spectral features to be combined with regard to the heterogeneity of

samples in the database. However, the approach has not been tested for the

estimation of FC and WP. In the second approach (feature projection) comprise of

transforming the multi-collinear spectral data in the entire spectral range into

uneorrelated variables (usually by an orthogonal transformation). These

uncorrelated variables may be used to establish the desired linkage in a multivariate

regression framework. Some of the selected feature projection algoritlims used in

DRS of soils includes, principal component regression (PGR) (Chang et al, 2001),

partial least squares regression (PLSR) (Abdi et al, 2012; Mouazen et al, 2010),

boosted regression trees (Brown et al, 2006a) support vector machines (Sarathjith

et al, 2016b; Genot et al, 2011), multivariate adaptive regression splines (Nawar

and Mouazen 2017; Shepherd and Walsh 2002) and artificial neural networks

^  (Viscarra Rossel and Behrens 2010; Daniel et al, 2003). Among them, the PLSR

appeared to be the most versatile and popular technique in DRS of soils due to its

ability to account for multicollinearity issue, better interpretability and efficient

computation (Stenberg et al, 2010; Viscarra Rossel et al, 2006b). The third

approach namely, feature selection or spectral variable selection is an efficient way



to diminish complexity and improve robustness of DRS models (Xiaobo et al,

2010) with no compromise for prediction accuracy (Fernandez Piema et al, 2009).

Several variable selection approaches exists of which competitive adaptive

reweighted sampling (CARS) method (Li et al, 2009) was found to be satisfactory

in soil dataset (Vohland et al, 2014) subject to the limitation associated with the

use of random numbers in variable selection. Very recently, Sarathjith et al (2016a)

suggested an ordered predictor selection (OPS) approach which employed an

exponential decreasing function (EDF) to overcome tlie limitation in CARS

approach. The OPS approach was tested in soil datasets and found successful in

developing parsimonious DRS models with similar or improved accuracy.

However, the OPS approach has not been evaluated for the estimation of soil

moisture constants and hence warrant further investigation. To the best of my

knowledge, no studies have been attempted the comparative performance of the

aforesaid approaches in the DRS based estimation of soil moisture constants.

Hence, this study was undertaken with the following objectives.

1. To evaluate the use of spectral indices to characterize moisture content at FC

and WP

2. To develop DRS models for the estimation of soil moisture content at FC and

WP

3. To evaluate spectral variable selection on the performance of DRS models of

soil moisture content at FC and WP
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CHAPTER 2

REVIEW OF LITERATURE

2.1 Soil Moisture Indices

Soil water content is a key factor for scientific interventions related to

irrigation scheduling, agronomy and hydrology. Moreover it has a significant role

in defining the land productivity via the ability of soil to hold and release water

upon crop transpiration demand (Ritchie 1981). In general, water in soil is

categorized as gravitational, capillary and hygroscopic water based on its

occurrence in soil matrix. Gravitational water typically occurs in the macro-pores

and has insignificant contribution to water uptake by plants. It moves tlirough the

soil under the force of gravity and rapidly drains down to the water table. Capillary

water is held in the soil micro-pores due to surface tension and forms tlie plant

available water. Under soil drying conditions, capillary water becomes gi'avitational

water due to increase in soil pore size (lower surface tension). Hygroscopic water

is a thin layer of water tightly bound on soil particles (due to adhesion) and not

oecur in pores. It has no contribute to plant available water. Under given conditions,

both capillary and hygroscopic water is considered to be in equilibrium with soil.

Equilibrium points namely, maximum capillary capacity and hygroscopic

coefficient are defined at which soil has maximum amount of capillary and

hygroscopic water, respectively. The soil water content at equilibrium points is

referred as soil moisture constant

(http://ecoursesonline.iasri.res.in/mod/page/view.php?id=14178, last accessed on

June 14, 2019). The aforesaid soil water classification and related soil moisture

constants flaws to define the soil water uptake by plants under field conditions.

Because, part of the water at lower and upper limits of capillary water are not plant

available. To overcome the shortcomings, two additional soil moisture constants

have been defined namely, FC and WP.



The FC is defined as the capacity of soil to hold water against the force of

gravity. It is a state at which only capillary/micro-pores of soil are filled with water.

The FC is the upper limit of plant available water (Salter and Williams, 1965a) at

which plant start to use water in the soil for normal functions (Veihmeyer and

Henderickson, 1949). Several factors affect FC viz. previous soil water history, soil

texture, structure, type of clay, organic matter (OM) and temperature (Kirkham,

2014). Soil water content at FC is not an equilibrium value as there is no cessation

of water movement through soils (Veihmeyer and Henderickson, 1949). The

dynamic nature of soil water is affected by the constant influence of either or both

water addition (precipitation and irrigation) and removal (drainage and

evapotranspiration) processes. Thus, a range of soil water content values are

associated with FC (Kirkham, 2014) with matric potentials range between 0.10 atm

(sandy soil) and 0.33 atm (clay soil). However, in practice, soil water content at

0.33 atm (one-third bar) is widely used for the estimation of FC.

The WP, also referred as permanent wilting point (Kirkliam, 2014) indicates

the lower limit of plant available water (Salter and Williams, 1965a) below which

plant wilt. It is the state of soil at which it is incapable of water supply to the plant.

Indicator plants such as sunflower is often used to determine the WP. To avoid

practical difficulties of the approach, the WP may be approximated fi'om FC value

by dividing with a factor ranging between 2.0 and 2.4 for soils with low and high

silt contents, respectively (Israelsen and Hansen, 1962). Similar to FC, the WP is

also not an equilibrium value and considered to vary between matric suction from

7 to 40 atm as influenced by the crop, consumptive use, soil texture and salt content.

However, soil moisture tension at 15 atm is generally regarded for the estimation

WP.

Several conventional methods exists for the determination of FC and WP

which may be broadly classified as direct and indirect methods as briefly discussed

below. The direct methods includes field test plot (to determine FC), sunflower

method, desiccator method (to determine WP) and pressure plate apparatus (to

determine both FC and WP). Tlie methods namely, pedotransfer functions.

9^



parameterization of soil moisture characteristic curve, saturation percentage and

spectral reflectance based approach are indirect ways of estimating the soil moisture

constants.

2.1.1 Field Test Plot

This method is used for the field determination of PC. In this method, a test

plot (usually 2.5 m^) on a bare field is flooded until the desired soil layers gets

saturated. The plot can be covered using plastic sheets or mulches to evade

evaporation. The moisture content of the samples down the profile are measured at

specified intervals (12-24 hours) until the values of two sequential samples are

almost equal. The lowest influx value is regarded as the PC. This procedure depend

on soil texture and structure (Salter and Williams, 1965b).

2.1.2 Sunflower Method

This method WP determination make use of indicator plants such as

sunflower {Helianthus annuus) grown in containers with soil (about 500g) and

hence referred as sunflower method. In this method, the sunflower plant is watered

adequately only up to the emergence of third set of true leaves during which

evaporation from soil is limited using wax or by sealing the container. Thereafter,

the plant continue in the low evaporative environment without additional water

supply until it wilt. The ability of the plant to recover is examined by transferring it

to a humid and dark chamber. If the plant remain wilted and does not recover

overnight, the soil moisture content is considered to be at WP (Taylor and Ashcroft,

1972).

2.1.3 Desiccator Method

In desiccator method (Lehane and Staple, 1951), vapor equilibrium between

soil sample and known concentrations of H2SO4 in the desiccator is examined. In

this method, duplicates of air-dried and sieved (2 mm) soil sample and standard soil

sample of known WP taken in open, wide-mouth and shallow weigliing bottles are



kept in desiccator containing H2SO4 (1.25% by weight). The desiccator is evacuated

and kept in a dark room for 14 days during which the pressure is monitored at

regular interval. Once the equilibrium is reached, the weighing bottles are subjected

to gravimetric estimation of moisture content. The WP of the soil sample is then

related to that of standard soil by considering the ratio of WP to moisture content

are equal between them.

2.1.4 Pressure Plate Apparatus

The pressure plate apparatus (Richards and Fireman, 1943) can be used to

determine both PC and WP in the laboratory. In this method, soil samples are

saturated and a suction (moisture tension) is applied using a pressure plate. As a

result, a part of the soil water is removed while the other is retained in the sample

depending on the applied soil moisture tension. Once the water outflow is ceased,

the soil sample is subjected to gravimetric moisture content estimation. Similarly,

soil water content variation at different matric suctions can be recorded (water

retention curve). The moisture content of soil at matric suction of 0.33 and 15 atm

are most commonly used to represent PC and WP (Richards and Weaver, 1943),

respectively.

2.1.5 Pedotransfer Functions

Pedotransfer functions relate soil water retention (hydraulic data) with other

soil attributes (Tietje and Tapkenhinrichs, 1993). Thus, soil proxy data (soil survey

data, physical, structural or compositional attributes) can be suitably translated into

soil hydraulic characteristics (Schaap et al., 2001). They can be categorized into

three groups (Comelis et al., 2001). The first group estimate soil water content at

specific matric potentials, the second group estimate the parameters of analytical

equation (eg. Brooks and Corey model, van Genuchten equation) characterizing soil

moisture relationship and the third group consists of physical-conceptual models.

In group 1 & 2, the multiple linear regression (Gupta and Larson, 1979) and neural

network (Pachepsky et at., 1996) are the most commonly used techniques to build



pedotransfer functions while the last group rely on scaling and fractal mathematics

(Tyler and Wheatcrafl 1989). The empirical nature, specific data requirement and

modest accuracy are the main reasons that confront the use of pedotransfer

functions (Givi et al., 2004).

2.1.6 Saturation Percentage

The saturation percentage is the ratio of amount of water required to saturate

a soil to its dry weight. The use of saturation percentage as a predictor variable is a

simple approach to estimate of FC and WP. Both linear (Karkanis, 1983) and log-

linear (Dahiya et al., 1988) relationship between predictor (saturation percentage)

and response (FC or WP) variables have been reported for undisturbed soil samples.

In undisturbed soil, the relationship with saturation percentage was noted to be

linear for both FC (R^=0.94) and WP (R^=0.91) (Grewal etai, 1990).

^  As discussed above, several methods have been used to determine soil
constants. However, the selection of most appropriate method depends on several

factors including time, labor, data availability, spatial coverage, accuracy, cost etc.

Although accurate, the field methods to determine FC (field test plot) and WP

(sunflower method) are labor intensive and time consuming and not appropriate for

its application over different spatial scales. The pressure plate apparatus allows

laboratory scale determination of both disturbed and undisturbed soil samples.

Moreover, it allows determination of both FC and WP in one sample setting.

However, the method is laborious and time-consuming (Salter, 1967). The

pedotransfer function approach has gained much relevance as it enable the

prediction of soil moisture contents given the proxy soil data such as soil survey

data, structural, physical and compositional attributes. But, generation of surrogate

data itself is time consuming (Givi et al., 2004). The method of parameterization of

soil water characterization curve have similar limitations as that of pressure plate

apparatus as the water retention characteristics of soil (generated by pressure plate

apparatus) is a primary input. Thus, an alternative method is needed to overcome

the aforesaid shortcomings of the conventional techniques. Remote Sensing in the
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solar domain (400-2500 nm) has the potential to be a comprehensive solution to

these issues with its ability for non-destructive and rapid measurements witli good

spatial and temporal coverage. The fundamental requirement for remote sensing

approach is the generation of calibration functions to translate spectral reflectance

values into reasonable estimates of soil moisture constants. Such calibration

functions can be derived using DRS. The following sections covers several aspects

of DRS including fundamentals, data analysis, calibration function development

and evaluation.

2.2 Basics of Infrared Reflectance Spectroscopy

The discovery of infrared radiation via HerscheTs experiment and the two

associated conclusions (water absorbs radiation and the absorption is wavelength

dependent) paved the way for infrared reflectance spectroscopy. Tlie tenu

reflectance spectroscopy refers to a technique of measurement, analysis and

inference of interaction of infrared radiation of the electromagnetic spectrum (750-

100000 nm) with the target of interest. As the target interacts with infrared

radiation, its internal energy increases and consequently lead to vibrational

transitions at molecular level (Stuart, 2004). This result in absorption of the

incoming radiation depending on the composition of the target. Two criteria are to

be met for the absorption of infrared radiation to happen, 1) dipole moment of the

molecule changes due to vibrational transitions; 2) frequency of both the vibrational

mode and incoming radiation matches (Bokobza, 2002; Johnston and Aoclii, 1996).

The dipole moment indicates the difference in absolute charge of atoms in a

molecule with respect to the distance between them. The induced dipole moment

change defines the degree of infrared absorption; higher the change in dipole

moment result in stronger absorption and vice versa. Hence, no absorption of

infrared radiation takes place in case of homo-nuclear molecules as no dipole

moment change is induced due to vibration mode. The vibrational modes are

resultant of either stretching or bending vibrations. The former alters the

interatomic bond distance symmetrically or asymmetrically in a continuous
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manner. The latter cause changes in the bond angle by rocking, scissoring, twisting

and wagging. The induced dipole moment change in the molecule is higher in case

of stretching than that of bending. Also, asymmetric vibrations are stronger than

symmetric vibrations within stretching category (Stuart, 2004). Those vibrations

that induce dipole moment change in the target are regarded as active vibrations

and the subjected molecules or functional groups are referred as 'spectrally active'

in the infrared range.

2.3 Infrared Wavelengths for Soil Analysis

Infrared-active vibrations suitable for soil analyses typically occurs in the

near-infrared (NIR, 700-2500 nm) and mid-infrared (MIR, 2500-25000 nm)

wavelength range. The NIR and MIR spectroscopy differ in the nature of energy

interaction. The MIR region is characterized by the fundamental absorptions while

the NIR region embodies the overtones and combinations of fundamental vibrations

in the MIR frequencies (Williams and Norris, 1987). The energy required for

fundamental vibration is low and the absorptions are generally sharp and frequency

specific. In contrast, energy required for overtones is high which result in broad

(less specific) and weak absorption features in the NIR spectrum (Brown, 2007).

Several studies have compared the performance of NIR and MIR

spectroscopy in soil analysis (Soriano-Disla et ai, 2014; Gholizadeh et al, 2013;

Reeves III 2010; Viscarra Rossel et ai, 2006b). In many cases, the MIR

outperformed NIR despite opposite result reported in the literature (Soriano-Disla

et ai, 2014). The reason for inferior performance of NIR might be attributed to less

specificity of wavelengths (Viscarra Rossel et al, 2006b) and diffusion of light

associated with soil physical structure and moisture content (Bellon-Maurel and

McBratney 2011; Williams and Norris, 1987). However, NIR spectroscopy is more

convenient in practice than MIR as the former enable non-destructive and non-

invasive analysis both in-situ and laboratory conditions. The other benefits of NIR

includes, rapid measurement, less sample preparation, estimation of multiple

attributes from single spectrum (Viscarra Rossel et al, 2006b). Moreover, NIR
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wavelengths are amenable to different mode of remote sensing. AH these

advantages collectively resulted in wide acceptance of NIR spectroscopy as a

prominent tool for soil analysis and digital soil mapping. In this study, the utility of

NIR spectroscopy to estimate soil moisture constants is examined and hence the

following discussion is limited to the same. As the spectral signature of soil

obtained from non-destructive measurement is 'diffuse' in nature (due to its

inherent composition and physical structure), NIR spectroscopy is commonly

known as diffuse reflectance spectroscopy (DRS).

2.4 Spectral Signature of Soil

The spectral signature is a unique characteristic of soil (Ben-Dor et al, 2009).

It may be regarded as an integi-ated response of type of parent rock, extend of

weathering, physical, chemical, biological, mineralogy and structure and hence

differs across soils. The NIR spectral signature of soil is defined by the overtones

and combinations of fundamental vibrations in the MIR wavenumbers (Santra et

a/., 2015; Ladoni et al., 2010; Ben-Dor et al., 1999) associated with the covalent

bonds of C-H, N-H and 0-H functional groups (Workman and Shenk 2004;

Malley and Martin, 2003). A typical soil spectrum consists of three noticeable

absorptions around 1400, 1900 and 2200 nm. The first two absorptions (1400 and

1900 nm) are designated as water absorption peaks as they are resultant of first

overtone of hydroxyl (0-H) stretching vibrations and combination of the same with

H-O-H bending modes (Clark, 1999). The 0-H stretch in combination with metal-

OH bending vibrations (related to clay mineral) cause characteristic absorptions

within 2200-2300 nm (Stenberg, 2010; Chabrillat et al., 2002). Apart from water

absorption features, the spectral signature of soil is mainly influenced by iron oxides

in the near-infrared (870-1000 nm) and carbonates in short wave infrared region,

specifically in 1850-1870 nm, 1970-2000 nm and 2120-2160 mn (weak

combination bands) and in 2300-2350 nm due to overtone (Chang and Laird, 2002;

Clark, 1999; Clark etal., 1990).
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All the aforementioned spectral features are associated with absorption of

incident electromagnetic energy due to the presence of spectrally active soil

constituents or chemical chromophores. It mostly consists of soil organic matter,

iron oxides, moisture and clay content. There are also other factors known as

physical chromophores that affect the whole spectrum (Hill et al., 2010) ratlier than

absorption at specific wavelengths; such as azimuth angle of the source, incident

angle, intensity of radiation, viewing angle, particle size and sample geometry

(Ben-Dor, 2011). Thus, any spectrum is a combined response of the interaction of

physical and chemical chromophores with the energy of incident electromagnetic

radiation.

2.5 Spectral Data Analysis

Calibration function development involved several step-by-step procedure

including mathematical treatments on raw spectral signature (pre-processing), data

partitioning into calibration and validation subsets and regression modeling as

briefly discussed below.

2.5.1 Data Pre-processing

Spectral reflectance (R), or absorbance (A) (Equation 2.1) of soil can be

regarded as an integration of information about its constituents (absorptions) and

scattering of electromagnetic radiation at the irregular soil surface. The scattering

component may result in extraneous spectral variations; non-linearity and baseline

shifts (Rinnan et al., 2009) and hence its negative effects on the reflectance signal

has to be substantially diminished. Spectral pre-processing techniques are usually

employed to serve the purpose with a view to improve tlie performance of

calibration functions (Barnes etal., 1989).

^(i?) = ln
/ 1 N

[2.1]
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Rinnan et al. (2009) has classified all the pre-processing methods under two

broad categories; derivatives and scatter correction methods. The former category

comprised of first derivative (FD) (Equation 2.2) and second derivative (SD)

(Equation 2.3) techniques while standard normal variate (SNV), de-trending (DT)

and multiplicative scatter correction (MSC) constituted the latter category. The

derivative methods remove background effects on the spectra and also enliance

spectral features. The SD eliminates both baseline shift and linear trend in the

spectra while FD accounts for only baseline shift.

=  [2.2]

'^,+1 ~

FD -FD

The SNV and DT (Barnes et al, 1989) remove particle size and scattering

A  effects and thereby address curvilinearity euid baseline shift issues in the spectra

(Buddenbaum and Steffens, 2012). The SNV (Equation 2.4) computes the ratio of

mean (p^) centered reflectance to its standard deviation (cr^) while DT fits a second

order polynomial to the spectrum transformed by SNV and the difference (due to

scattering) at each wavelength is corrected.

SNV{R) = [2.4]

The MSC (Martens et al, 1983) accoimts for baseline shift in the reflectance

spectra. Least square method (Equation 2.5) is used to fit each spectrum {R) and a

reference spectrum (Rref) and MSC is computed using scattering (a), offset {b) and

soil constituent (e) information as given in Equation 2.6. Usually, the average of all

spectrum is preferred for Rk(.

R = a + bR,.^f+e [2.5]
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A

R—a
MSC = [2.6]

2.5.2 Data Partition

One basic requirement for reliable judgement on the performance calibration

functions is that it has to be trained (calibration) and tested (validation) in similar

datasets. Otherwise, it may result it either over-fitting or over-fitting of calibration

functions depending on the distribution of samples and mislead evaluation of

calibration functions (Rajer-Kanduc et ai, 2003). In this regard, data

partitioning/subsetting methods are critical in DRS studies.

Several methods are available for data partitioning among which random

selection is commonly used (Morellos et ai, 2016; Islam et ai, 2006; Ludwig et

ai, 2002). The approach is simple and independent of both spectra and attribute

values. In addition, both the samples selected and whole dataset is expected to have

similar distribution. But the approach is incapable to account the extrapolation issue

(Rajer-Kanduc et al., 2003) and do not always ensure similarity between the subsets

although efforts were taken to address the same (Vasques et ai, 2009a). In other

approach referred as 'sorting algorithm' make use of attribute values for subset

selection. In this approach, attribute values are sorted and samples at pre-defined

intervals are chosen for validation while the remaining samples constitute the

calibration subset (Sarathjith et al., 2016a; Viscarra Rossel and Lark, 2009; Martin

et al., 2002). This approach demand pre-hand information of soil attribute values

and not suitable if there are small number of samples in the dataset with extreme

attribute values. There are other methods that rely only on spectral data. For

instance, the method implemented by Chang et al. (2001) examine the similarity of

FD spectra in terms of Euclidean distance for subletting. In contrast, the Kennard-

Stone method (Kennard and Stone, 1969) examine the spectral dissimilarity

between samples. Data partitioning method based on both predictor and response

variables together are also in practice; sample set partitioning based on jomt x-y

9^
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distances proposed by Galvao et al. (2005) is an example. A comparison between

different data partitioning algorithm has been rarely attempted in soil DRS studies

and hence warrant further analysis.

2.5.3 Data Modelling Algorithms

With the advent of hyperspectral sensors, spectral signature of target can be

generated at a very high spectral resolution as in case of DRS. Although such

signature provide detailed spectral information about the target, it result in the

'curse of dimensionality'. Moreover, hyperspectral data are generally high

redundant, multi-collinear and often subject to Hughes phenomenon. All these

factors collectively influence data handling and modelling. Hence, the selection of

an appropriate algorithm has gained much relevance in hyperspectral data

modelling. Usually, the performance of such algorithms are expressed in tenns of

coefficient of determination (R^) and root mean squared error (RMSE) of the

observed and model predicted values. Different algorithms were evaluated to

account for these challenges, among them the most widely accepted and commonly

used approaches include the use of a) spectral indices, b) feature projection and c)

feature selection.

2.5.3.1 Spectral Indices

In general, spectral index represent the combination of spectral reflectance

values at two or more wavelengths although in some cases individual wavelengths

are also used as spectral index (Weidong et al., 2002). It helps to enhance spectral

feature (relative to selected wavelengths) relevant to target attribute. The spectral

index based calibration functions are build using it as predictor in simple linear or

nonlinear regression with target attribute. The approach is computationally fast and

simple.

Spectral indices typically used in reflectance studies of soil are relative

reflectance, ratio index, derivative index, difference index and normalized

2)°
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difference index. Relative reflectance index is the ratio of spectral reflectance of

wet soil to that in its dry state (Weidong et al., 2002). The ratio index represents the

^  ratio reflectance values at two discrete wavelengths. The water index SOIL
(WISOIL) based on wavelengths 1300 and 1450 nm (Fabre et al., 2015; Bryant et

al, 2003) is an example of ratio index. The derivative index approximate the finite

difference between two successive wavelengths instead of arithmetic difference in

case of difference index (Weidong et al, 2003). The normalized difference index

is the ratio of difference to the sum of reflectance values at two different

wavelengths. The normalized soil moisture index (NSMI) based on 1800 and 2119

nm (Haubrock et al, 2008) is an example of this type. Weidong et al (2003)

compared the performance of relative reflectance, derivative and difference

approaches and noted that first derivative absorbance index (R-=0.88;

RMSE=0.064) outperform others (R2=0.63-0.88; RMSE=0.064-0.083) in the

estimation of soil moisture content. Recently, Fabre et al (2015) compared

WISOIL, NSMI and two other new normalized difference indices developed in

their study, namely normalized index of near and shortwave infrared domain for

soil moisture content estimation from linear (NINSOL) and non-linear regression

(NINSON). The NINSOL use 2076 and 2230 nm wavelengths while NINSON is

based on wavelengths at 2122 and 2230 nm. They noted better results for NINSOL

(R^=0.87; RMSE=4.4) than others R^O.74—0.85; RMSE=4.8-6.2). It may be noted

that all the aforesaid indices were used in conjunction with specti'a of wet soil to

estimate soil moisture content. However, their suitability to assess soil moisture

constants from spectra of dry soils has been rarely investigated.

2.5.3,2 Feature Projection

Feature projection (also referred as feature extraction) transform high

dimensional spectral data to low dimensional space by an appropriate

transformation (linear or non-linear). The most popular feature projection teclinique

in DRS is principal component analysis (PCA). In PCA, the multi-collinear spectral

variables are subjected to an orthogonal transformation into a set uncorrelated



18

principal components or scores. Singular value decomposition of spectral data or

Eigen value decomposition of the covariance of spectral data may be used for

orthogonal transformation. Those scores that describe the maximum variance in the

data can be subsequently used as predictors in regression; the approach is

commonly known as PGR. The PGR has been widely used in DRS studies of soil

(Mouazen et al, 2010; Ghang et al., 2001). The PLSR proposed by Wold et al.

(2001) is another approach similar to PGR. In PGR, only spectra data (predictor) is

used to build scores while PLSR consider both spectra (predictor) and attribute

(response) data. The PLSR is an integration of dimension reduction and regi'ession

and the selection of successive scores depend on the maximum covariance between

the spectra and attribute values (Viscarra Rossel and Behrens, 2010). Hence, PLSR

is expected to give better results than PGR as noted in some studies (Mouazen et

al., 2010; Vasques et al, 2008). In addition to the aforesaid prominent methods,

other techniques such as regression tree (Brown et al, 2006b), committee trees

(Vasques et al, 2009b), multivariate adaptive regression splines (Shepherd and

Walsh, 2002), support vector machines (Sarathjith et al, 2016b; Genot et al,20\\)

and artificial neural networks (Viscarra Rossel and Behrens, 2010; Daniel et al,

2003) were also tested in DRS studies of soil.

Although, several methods exists for feature projection and regression

analysis, the PLSR is the most widely and frequently used algorithm in practice due

to its characteristics; fast computation, statistically efficient, execute variable

selection automatically and enable classification (Boulesteix and Strimmer, 2007).

However, the PLSR seem to be inferior to multivariate adaptive regression splines

and artificial neural networks in the estimation of pH, organic carbon and clay

content of soil (Viscarra Rossel and Behrens, 2010). Similar result was reported in

the assessment of infiltration rate of water into soil (Goldshleger et al, 2012). The

reason for the inferior performance of PLSR in these studies may be due to its

inability to characterize the non-linear relationship that existed between spectra and

soil attribute. However, in practice, the difference in perfonnance of PLSR and

iC
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other non-linear approaches can be endured with its inherent advantages mentioned

above.

2.5.3.3 Feature Selection

The spectral signature in the operational range of DRS is usually weak and

complex due to the overlapping of overtones and combination of fundamental

absorption bands mainly associated with N-H, 0-H and C-H functional groups.

This may impose redundant and irrelevant information in the spectra and thereby

confound the relevant information related to any attribute under concern. Thus, the

use of such spectra would result in calibration functions of inferior performance. In

contrast, selection of appropriate number of useful wavelengtlis is capable to yield

simple, accurate and robust calibration functions (Xiaobo et al, 2010; Nadler and

Coiffnan, 2005). In this context, feature selection (also referred as variable

selection) has gained significance in DRS.

Several methods of feature selection has been discussed in DRS literature.

They include non-linear methods such as simulated amiealing (Kirkpatrick et al.,

1983), successive projections algorithm (Araiijo et al, 2001), wavelet

transformation (Ge and Thomasson, 2006), genetic algorithm (Leardi et al, 1992),

PLSR based methods, among others. The PLSR based variable selection methods

are superior to others in terms of-computational efficiency and simplicity. The

PLSR methods are broadly categorized as filter, wrapper and embedded methods

(Mehmood et al, 2012). The filter methods simply select variables based on the

rank assigned to output vectors of PLSR. The wrapper methods perform model

fitting and feature selection at every iteration. Embedded methods constitute those

methods incorporated to PLSR algorithm. As both the wrapper and embedded

methods are complex and computationally slow, filter methods may be the most

suitable option for feature selection. Nonetheless, their reliability depends on

desired threshold value for ranking variables. To avoid use of the threshold value,

Li et al. (2009) has proposed CARS approach which involved Monte Carlo scheme

and random selection of variables. Due to the randomized selection, the approach

5^
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fail to give unique result. This shortcoming can be addressed by OPS approach

(Teofilo et al, 2009) which employed variable indicators as a measure of ranking

variables. Recently, Sarathjith et al. (2016) successfully implemented the OPS

approach in soil datasets by incorporating an exponential decreasing function to

select the number of variables. This approach was found to be simple and enable

parsimonious variable selection. Table 2.1 lists the regression statistics of feature

projection (using PLSR) and selection (OPS or CARS) methods for selected soil

attributes commonly estimated via DRS. This table may be used to appraise the

consistent improvement in the perfonuance of feature selection compared to

projection approach.

Table 2.1 Regression statistics in the validation of feature projection and selection
methods in the estimation of selected soil attributes

Feature projection

Attribute

Feature selection

(OPS or CARS) Reference

R2 RMSE R- RMSE

0.74 0.33 0.60' 0.41 [1]
Organic carbon

0.57 0.24 0.61 0.23 [2]

0.51 0.77 0.64 1.72 [3]
Total carbon

0.79 0.43 0.78 0.45 [4]

0.78 0.21 0.81 0.19 [2]

pH 0.72 0.46 0.81 0.37 [1]

0.66 0.57 0.66 0.57 [4]

0.01 9.81 0.05 10.82 [3]

Clay content 0.47 0.22 0.48 0.22 [2]

0.77 7.83 0.77 7.80 [4]

0.06 6.97 0.10 6.40 [3]

Sand content 0.55 5.61 0.58 5.45 [2]

0.69 9.11 0.69 9.40 [4]

'Values in italics represents CARS approach; R^: coefficient of determination; RMSE:
root mean square error; PLSR: partial least square regression; OPS: ordered predictor
selection; CARS: competitive adaptive reweighted sampling; [1] Vohland et al. (2014);
[2] Sarathjith et al. (2016a); [3] Raj et al. (2018); [4] Wartini et al. (2019).
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2.5.4 Evaluation of Calibration Functions

The performance of DRS based calibration functions are usually expressed in

terms of (Equation 2.7) and RMSE (Equation 2.8) between observed (T) and

predicted (T) values. The R^ describes the variance of observed values explained

by the calibration function. It has no unit and range between 0 and 1. The RMSE is

a measure of error and hence bear same unit as the attribute values. Both these

statistics are reliant on the attribute range (Bellon-Maurel and McBratney, 2011).

Z^y-tY
^  [2.7]

<=l

RMSE = - X(r,-Y:f [2.8]
« V /=!

where, V indicates the average of V and n represents the number of soil samples.

Another statistic namely, residual prediction deviation (RPD) is commonly used in

DRS to account for the range effect on RMSE. It is defined as the ratio of standard

deviation of observed values in validation to the respective RMSE (Equation 2.9).

RPD^
n-\ ,

[2.9]

It may be noted that no fixed standard is followed in DRS literature to

appraise the performance of calibration functions. Some of the accuracy

classification scheme typically used in DRS of soil are listed in Table 2.2, among

which that suggested by Chang et al. (2001) has been most frequently used in soil

DRS studies.
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A

2.5.5 Estimation of Soil Moisture Constants using Diffuse Reflectance

Spectroscopy

Although numerous studies have been conducted to estimate basic soil

properties and nutrient contents via DRS, very limited studies investigated its

ability to assess soil moisture constants. Recently, Viscarra Rossel and Webster

(2012) examined the DRS performance in the estimation of FC and WP (among

other selected soil properties) using an Australian database consisting of about

21,500 archived soil samples. They used a model tree-based approach to separate

data into homogeneous groups. An ordinary least-squares regression was

implemented to relate soil attribute and spectral signature within each group. They

observed a moderate level of prediction for both FC (RPD=1.68) and WP

(RPD=1.95). Similar result was also observed by both Kinoshita et al. (2012) and

Babaeian etal. (2015). The former study employed PLSR to assess FC (RPD=1.81)

and WP (RPD=1.97) of Ultisols in western Kenya. Babaeian et al. (2015) made use

of spectra transfer functions to estimate soil moisture content at different matric

potentials varying from 0 to -15000 cm. The implemented approach was found to

yield relatively better results at low and intemiediate soil moisture contents

(R^>0.50; RMSE< 0.018 cm^ cm"^) compared to that towards saturation. The R-

noted in their study for the estimation of FC (soil moisture content at -330 cm) and

WP (soil moisture content at -15000 cm) was 0.52 and 0.63, respectively. Instead

of focusing on specific soil moisture constants, some studies linked spectral

reflectance and parameters of water retention functions (Pittaki-Chrysodonta et al.,

2018; Santra et al, 2009). Apart from these studies, very limited attempts were

made to relate soil moisture constants directly with the spectral reflectance of dry

soil and thus warrant further investigation.
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CHAPTER 3

MATERIALS AND METHODS

3.1 Soil Database

This study was conducted using an available soil database (7^=302) consisted

of values of moisture content at -0.33 bar (FC) and -15 bar (WP) matric suction

measured using pressure plate apparatus, texture (Gee and Bauder, 1986), organic

matter (Walkley and Black, 1934), spectral absorbance (12489-3594 cm"' or 801-

2782 run), among others. It may be noted that the texture and organic matter values

were not available for 11 and 17 number of samples, respectively while the values

of soil moisture indices and spectra were available for all the soil samples. The

spectral data acquisition of air dried soil samples (< 2 nun) taken in glass petri

dishes were performed using a Fourier transform based multipurpose analyzer

(MPA) (Bruker Optik GmbH, Germany) at a resolution of 16 cm'^ using

'integrating sphere' as the measurement chaimel. The OPUS software associated

with the instrument was used for spectra acquisition. For each sample, spectral

measurements were made at each quadrant of the petri dish and thus yielded four

replicated spectra. Each spectrum was set to be an average of 64 intemal spectra.

The average of replicated spectra was used for the subsequent analyses after

transforming into reflectance units. Several preliminary analyses identified that the

spectral data in 1100-2500 nm (Vendrame et al., 2012) yielded better results and

hence this wavelength range was used for all the analyses in this study.

3.2 Data Analysis

Data analysis in this study comprises of outlier removal, data partitioning,
w

data preprocessing, regression modeling and variable selection approaches

implemented to develop calibration functions which link soil spectra and the

attributes of interest. All the analyses were performed using MATLAB (R2017a,

Mathworks) software.

3^1
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The calibration function development scheme implemented in the study is

depicted in Fig. 3.1. Initially, the outliers in the soil database were identified and

removed. Let us consider {X,Y) and (x,y) as the spectral and attribute data in ordered

pair of all samples before and after outlier removal, respectively. After outlier

removal, the dataset was divided into calibration {xc, yc) and validation (xv, yi)

subsets for which the spectra and attribute data were represented using suffixes c

and V, respectively. The calibration functions linking soil spectra and attribute

values were developed by a threefold approach as defined by the objectives of the

study. In the first approach, indices generated from the spectral data (x^', x^') were

linked with the attribute of interest by simple linear regression while tlie second and

third approaches used the full-spectrum (x^^, x^^) and selected spectral variables

(Xc^, Xy^) to establish the linkage using PLSR. A detailed description of the data

analysis procedure is given below.

3.2.1 Outlier Removal

Outlier detection and removal was based on the residuals (difference between

observed and predicted values) of the PGR relationship between soil spectra

(predictor variable) and attribute of interest (response variable). In this approach,

principal components of soil spectra were initially estimated and later related with

the attribute by means of multiple linear regression. Then, tlie residuals with error

bars (corresponding to 95% confidence interval) of each observation were plotted

using rcoplot function in MATLAB. The observation for which the error bar not

intersecting the zero residual line was regarded as an outlier and subsequently

removed from the dataset (Sarathjith et al, 2014).

3.2.2 Data Partitioning

The dataset was divided into calibration and validation subsets in the ratio 3:1

using 'sorting' algorithm (Sarathjith et al., 2016a; Viscarra Rossel and Lark, 2009)

to train and test regression models, respectively. In this approach, soil samples were

set in ascending order of attribute values and every third sample starting from

1,0
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second were used for validation and all the remaining samples constituted the

calibration subset. A two sample Student's r-test for equal means and Levene's F-

test for equal variances were performed at 5% level of significance to examine the

similarity in the distribution of attribute values between calibration and validation

subsets. The descriptive statistics in terms of measures of central tendency and

measures of dispersion of soil attributes were computed separately for calibration

and validation subsets. The frequency distribution and the quartiles of soil attributes

were examined graphically by means of histograms and box-whisker plots.

3.2.3 Development of Spectral Indices based Calibration Functions

Spectral indices combine spectral reflectance values at two or more

wavelengths to enhance spectral feature related to the attribute of interest. While

there exists numerous spectral indices, this study examined the most commonly

used index namely, normalized difference reflectance index (NDRI) obtained as the

ratio of difference in reflectance values at two different wavelengths to tlie value

obtained by their addition (Equation 3.1). As the spectra generated using MPA has

uneven number of data points within a specific wavelength interval and also many

of them were not at integer wavelengths. Thus, tlie spectra were subjected to

Piecewise Cubic Hermite Interpolation (Alamar et al, 2007) to 1 nm sampling

interval at discrete wavelengths in the desired wavelength range prior to NDRI

calculation. The NDRI values were generated all the pairwise combination

(Haubrock et al, 2008) of reflectance at two interpolated wavelengths {Ri and Rj)

in 1100-2500 nm range.

=  [3.1]

Calibration functions relating the generated spectral index values and the soil

attributes were developed using simple linear regression. They were trained using

the calibration subset and tested on validation subset. The performance of the

developed calibration functions were evaluated in terms of R^, RMSE and RPD.

1^(
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3.2.4 Development of Full-spectrum based Calibration Functions

Spectral pre-processing aimed to remove physical phenomena (scattering

effects and other undesired variations) in the spectra (Rinnan et a/., 2009) and hence

regarded as an essential pre-requisite for the development of calibration functions.

In this study, different spectral pre-processing techniques generally used in

spectroscopic studies were evaluated which included, scatter correction methods

viz. SNV (Equation 2.6), MSC (Equation 2.7), DT (Equation 2.8) and derivatives

namely, FD (Equation 2.9) and SD (Equation 2.10). Other spectral transformations

used in this study included the pairwise combinations of scatter correction methods

with derivatives. Both R and A spectra were subjected to the aforesaid

transformations. In addition, the untransformed reflectance and absorbance were

also included in the analysis. Thus, a total of 24 spectra transformations (12 based

on reflectance + 12 based on absorbance) were examined in the study.

Calibration functions that link pre-processed spectra (1100-2500 nm) with

the soil attribute (PC or WP) were established using the calibration subset via PLSR

algorithm (Wold et al., 2001) and their performance was evaluated with the

validation subset. In PLSR, both the predictor (spectra) and response variables (soil

attribute) were considered to build uncorrelated latent variables (LV) from possibly

correlated spectral variables by orthogonal transformation. The LV (also known as

scores, factors or components) were then used as predictor variables in regression.

However, the use of more or less number of Z.F than a defined optimum would

either over-fit or under-fit PLSR model. To avoid such behaviors, tlie optimum

number of LF was selected based on leave-one-out cross-validation approach

(Viscarra Rossel 2007) in this study. In this strategy, PLSR models were built for

specific number of Z, Fusing calibration dataset with one sample left for testing. The

procedure continued until each sample in the calibration dataset became a test

sample exactly once. At each iteration, the square of difference between observed

and predicted value of test sample (squared-error) was recorded. The squared-error

when divided by the number of iterations yielded the mean-squared-error (MSE)
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corresponding to number of LVused. Similarly, the MSE for different number of

LV varying from 1 to 20 were recorded. Then, minimum MSE criterion was

followed to select optimum number of LF to develop PLSR based calibration

functions.

The regression statistics, namely (Equation 2.10) and RMSE (Equation

2.11) in the calibration and validation of PLSR models were computed. In addition,

RPD (Equation 2.13) and Akaike Information Criterion (AIC) (Viscarra Rossel,

2008; Akaike, 1973) of validation were examined. Among the PLSR based

calibration frinctions developed using different spectra pre-processing techniques,

the best one was chosen based on minimum value of AIC of validation (Equation

3.2).

AIC = nx\niRMSE) + 2xLV [3.2]

where, n indicates the sample size while LV and RMSE represents the number of

latent variables and root mean squared error in the validation of a PLSR model,

respectively. The main reason to use AIC as a selection criterion lies on its ability

to consider together both the accuracy (in terms of RMSEI) and complexity (in terms

of LF) of calibration functions.

Identification of most relevant functional groups and their absorption modes

are important to elucidate the prediction performance of calibration functions. For

the purpose, initially, the most significant wavelengths were identified based on a

variable indicator namely, P-VIP\ product of absolute values of regression

coefficient 0?) (Vasques et ai, 2009a) and variable importance for projection {VIP)

(Viscarra Rossel 2008) after normalization. TlieP-VIP was also used by Sarathjith

et al. (2014a) for feature identification. The higher and lower values of P-VIP

represents the most significant and least significant wavelengths in prediction,

respectively. Then, the most relevant wavelengtlis so identified were assigned to

the spectrally active functional groups and their absorption modes as compiled from

Bayer eta/. (2012), Ben-Dor etal. (1997) and Viscarra Rossel and Behrens (2010).
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3.2.5 Development of Variable Selection based Calibration Functions

The OPS approach suggested by Sarathjith et al. (2016) was implemented in

^  this study. Variable indicators being the descriptors of predictor-response

relationship form the basis of OPS approach. The approach involved the

arrangement of variable indicator values in the decreasing order of their absolute

magnitude after normalization. Further, wavelengths with low absolute magnitude

were forcefully excluded iteratively using an EDF as computed in Equation 3.3 in

which I = 1,2,3,...,m denotes the iteration number, m andp represents an integer set

to 50 (Li et al, 2009) and total number of spectral variables (NSV), respectively.

The EDF strategy facilitated a rapid selection of spectral variables during initial

iterations and very refined selection thereafter (Li et al, 2009).

r.=a'x exp(-A: x (z -i-1)) [3.3]

m — l

£7 = (0.5x;j)"("'-'^ [3.5]

At each iteration a calibration function was generated (hereinafter referred as

'subset model') with NSV equal to the product of r\ and p (Li et al, 2009). This

resulted in m number of subset models with different NSV. The PLSR was used as

the regression algorithm to relate subset of spectral variables and soil attribute. The

optimum number of latent variables to be used in subset models was selected based

on the leave-one-out cross-validation approach similar to that mentioned in the

Section 3.2.4. The number of latent variables corresponding to the first local

minimum of MSE values was regarded as the optimum. For each attribute, the

maximum number of latent variables to be used in the cross-validation was limited

to its optimum number found for its full-spectrum counterpart (Vohland et al,

2014). The same calibration and validation samples identified as described in the

Section 3.2.2 were used for the evaluation of subset models. The regression

statistics of subset models were computed. The selection of the optimum subset
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model was based on the minimum RMSE of validation and the corresponding NSV

was chosen as the optimum. For each soil attribute, the aforesaid procedure was

executed using different variable indicators which may be classified as PLSR-

dependent and PLSR-independent categories. The PLSR-dependent variable

indicators comprised of P (Equation 3.9), VIP (Equation 3.10) and squared residual

(SqRes) (Equation 3.11) while, Pearson correlation coefficient (r) (Equation 3.12),

biweightmidcorrelation vector (bicor) (Equation 3.13), adjacency values of mutual

information (AMI) (Equation 3.20), signal-to-noise vector (StN) (Equation 3.21)

and covariance procedures vector (CovProc) (Equation 3.22) constituted the PLSR-

independent category. All the variable indicators were normalized and their

absolute magnitude values were used. In general, the absolute magnitude value of

variable indicator (except SqRes) at each wavelength describe the significance of

linkage between respective spectral feature and soil attribute. In case of SqRes, the

elemental values with low absolute magnitude are more important (Teofilo et ai,

2009) to describe spectra-attribute linkage. Hence, the reciprocal of SqRes

(hereinafter referred as SqRes) was used as a variable indicator (Sarathjith et ai,

2016a) in this study. As different variable indicators can be combined (Teofilo et

al, 2009), pair-wise combinations (element wise product value) of aforesaid

indicators were also treated as variable indicators. Thus, the utility of 36 variable

indicators altogether (8 individual + 28 combinations) in conjunction with OPS

approach were tested in this study.

For the computation of variable indicators, let (/ x J) be the spectral data

matrix (7 observations and J spectral variables) and T (7 x 1) be the soil attribute

values. Initially, the PLSR model found the scores of A' (J) as

A

T = XW [3.6]

where, fV (J x K) is the weight matrix with K number of factors (latent variables).

Then, the matrix oi T (I x K) values were used as predictors to reconstruct X

(Equation 3.7) and estimated Y (Equation 3.8) using loading matrices P(Jx K) and

C (1 X K), respectively.

Uh



32

X = TP^^E = X''+E

^  F=rc'+F

The X^ J) represents the reconstructed X matrix while E (1 x J) and F (7 x 1)

indicates residuals and 'T denotes transpose of a matrix. Substituting T in Equation

3.8 yielded the standard form of multivariate regression model to estimate Y from

X using P = WC^ as the regression coefficient vector with J x l dimension

(Equation 3.9).

Y= XWC'+F = XP + F [3.9]

The VIPj represents the importance of the predictor variable {j=\,2,7>,...P)

based on a model with k factors, wkj denotes the loading weight of the variable in

the PLSR factor, SSYk and SSYt represent the explained and total sum of squares

of Y, respectively.

k

SSYk
[3.10]

Let xyand xO'represents spectral variable (/ = 1, 2, 3,...,J) in X and X"",

respectively, xy denotes element (z-1,2,3,...,7) in xj while , x"""' and Y,

ym ̂ ymad jj^jji^ates the mean, median and median absolute deviations of xj and Y,

respectively. Then, SqRes was computed as.

The r indicates a linear measure of dependency between 27 and T based \on

their mean values (Equation 3.12). It vary in the range between -1 (strong

u9-
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negative correlation) and +1 (strong positive correlation). The linear relationship

between X and Y reduces as r tends to zero.

rUiJ) = -n^ -n— [3.12]

The bicor is a correlation measure based on median. It was reported to be

more robust to outliers than r (Wilcox 2005).

Ui:or(Xj,r)= , p [3 13]

where, wY S3mibolizes the weight (between 0 and 1) given for Xij by assigning the

indicator L(1 — |ui|) a value of I if L(1 — |uj|) > 0 or 0 otherwise. The weight

decreases as Xy moves away from the median and becomes 0 when it exceeds 9x/"™'

(Wilcox 2005).

f =(l-i/,.-)L(l-|w,|) [3.14]w;

Xy-xJ
[3.15]

9x,

The mutual infonnation (MT) enumerate the information content that one

random variable holds about the other and capable to account for the nonlinear

relationships between variables (Battiti, 1994)

MI{x^, Y) = H(x^) + HiY) -H{XjJ) [3.16]

ffiXj) = -^Pix)\np(x) rg ^y.|
jceX ^ ^
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H{Y) = - p{y) In p{y) 1-3 ^ g-.
.veV

x^X y^Y

where, H{xj) and H{Y) represent the marginal entropy ofxj and Y, respectively while

H{xj, Y) indicates their joint entropy, j9(x) and p{y) are the probability mass functions

of xj and Y, respectively, and p{x,y) represents their joint distribution. The MI-

toolbox of MATLAB developed by Hanchuan Peng

(http://www.mathworks.in/matlabcentral/fileexchange/14888-mutual-information-

computation, last accessed on May 18, 2019) was used for MI calculation.. Then,

the AMI was computed as suggested by Song et al. (2012) as,

IMIix.J)

h(x,):h(y)

The slope (6^.) and residual (e^) parameters of simple linear regression

between Y and xj was used to compute StN.

A

b<
StN^=^ [3.21]

ejBj

The CovProc was computed as

CovProc = diag(X'YY'X) [3.22]

3.2.5 Accuracy Evaluation of Calibration Functions

All the calibration functions generated in tliis study were evaluated in terms

of (Equation 2.8), RMSE (Equation 2.9), and the RPD of validation (Equation

2.10). The accuracy criteria based on RPD of validation as suggested by Chang et

al. (2001) was used in this study to classify the calibration functions into accurate

(RPD > 2), moderate (1.4 < RPD < 2) and poor (RPD < 1.4) classes.
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CHAPTER 4

RESULTS AND DISCUSSION

The DRS is a promising tool for soil analysis and digital soil mapping.

Several spectral libraries at varying spatial scales were already developed with a

view to develop 'global' calibration functions of soil attributes. Almost all the

spectral libraries are based on the spectral signature of dry soil and are satisfactory

in establishing linkage with several soil attributes. However, limited studies have

examined its utility to explain water retention behavior from dry spectral reflectance

of soil and thus warrant further investigation. In this chapter, the results of three

data modeling approaches and their comparison in the estimation of soil moisture

constants (FC and WP) from dry spectral reflectance of about 302 soil samples ai'e

presented.

4.1. Exploratory Analysis of Soil Attributes

As part of exploratory analyses, the descriptive statistics, histograms, box

plots and correlation structure of soil attributes were examined.

4.1.1 Descriptive Statistics, Histograms and Box Plots

The dataset consisted of soil samples covering all the 12 textural classes as

per the United States Department of Agriculture (USDA) textural classification

system (Fig. A1 of Appendix A). Among them, sandy loam was the dominant class

contributing 35.1% of total soils {N - 291) in the dataset (with textural values

available) followed by loam (19.2%), loamy sand (18.6%) and silty loam (15.8%)

classes. The histograms and boxplots of soil texture, organic matter and pH of soil

samples examined in this study are shown in Fig. A2 of Appendix A. The range of

OM content was found to be 0.02-3.39% with an average value 0.43%. The pH

range (4.25-8.03) revealed that the dataset consisted of soil samples with reaction

classes varying between very strongly acidic and moderately alkaline as defined by

the USDA soil pH classification scheme.
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The range and average value of FC in the dataset was observed as 4.24-

48.23% and 17.64%, respectively while their values were noted to be 1.12-24.65%

and 7.52% in case of WP. Both the FC (skewness = 0.78; kurtosis = 3.12) and WP

(skewness = 0.99; kurtosis = 3.11) appeared to have a skewed distribution as

depicted in their histogram and boxplots (Fig. 4.1).

70
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U
c 40
V

g* 30
a.

20
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n = 302, mean = 1 l.(A%

10 20 30

FC (%)

40 50

n - 301, mean = 7.52%
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CT

k.

u.

Fig. 4.1 Histogram and box plot of field capacity (FC) and wilting point (WP) of

soil samples

4.1.2 Correlation Structure

Table 4.1 lists the Pearson correlation coefficients as a measure of linear

dependency among soil attributes. The soil moisture constants (FC and WP)

appeared to have excellent correlation among themselves. They have no significant

correlation with OM and only FC was significantly correlated with pH. The FC and

WP exhibited a strong correlation with sand (negative) and clay (positive) contents

as indicative of the major influence of texture on water retention behavior of soils.

The aforesaid correlation underlined the fact that the finer the texture, the higher is

the soil moisture constant and vice versa (Kirkham 2014).
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Table 4.1 Pearson correlation coefficient between soil attributes

Attribute FC WP pH OM Sand Clay

FC 1.00

WP 0.89^^ 1.00

pH 0.24^^ 0.16 1.00

OM 0.12 0.06 -0.08 1.00

Sand -0.35^^ -0.21 ♦ -0.29^^ 0.02 1.00

Clay 0.53^^ 0.43^^ 0.12 -0.03 -0.59^^ 1.00

♦Significant at/? < 0.001
♦♦Significant at/>< 0.0001

4.2 Soil Spectral Signature

The spectral reflectance of soil (Fig. 4.2) consisted of three prominent

absorption peaks centered on 1400, 1900 and 2200 nm which are linked with clay

minerals (Wetterlind and Stenberg 2010). The spectral features around 1400 and

1900 nm can be assigned to the hydroxyl (0-H) group associated with water while

metal-hydroxyl stretching characterize the absorption around 2200 nm

(Bricklemyer and Brown, 2010; Chang and Laird, 2002; He et al., 2005; Post and

Noble, 1993).

0.34

_ 0.32

800 1000 1200 1400 1600 1800 2000 2200 2400 2600

Wavelength (nm)

Fig. 4.2 Average spectral reflectance of soil
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Figure 4.3 shows the number of data points in the spectrum for every 100 nm

interval starting from 800 nm for the entire operational range of the instrument

(MPA). The spectra generated by MPA has more number of data points at shorter

wavelengths and gradually decrease towards longer wavelengths. The inclusion of

larger number of data points with very fine sampling interval in shorter wavelengths

appeared to incur poor calibration performance during preliminary data analysis.

Hence, spectral data points in 800-1099 nm wavelength range were not considered

for data analysis and modelling involved in tliis study.
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Fig. 4.3 Number of wavelengths in soil reflectance spectrum

4.3 Data Analysis

4.3.1 Outlier Detection and Removal

For a more reliable data analysis and calibration firnction development, the

dataset was inspected for outliers using a combination of PGR and rcoplot. This

method considered both the spectral and attribute information for outlier detection.

In this, the principal components of the soil spectra were computed and the selected

5if
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ones (based on their explained variance) were used as predictor variables in a

multiple linear regression framework to estimate specific soil attribute values.

Then, the residuals obtained using PGR approach were examined with their error

bars (corresponding to 95% confidence interval) by means of rcoplot for the

detection and removal of outliers (Fig. 4.4). Accordingly, number of outliers

detected in the analysis of PC and WP were 9 and 11, respectively. The outlier

samples so detected for each attribute were excluded from subsequent analyses.

•3 -30
3

100 150 200

Case number

250 300

Fig. 4.4 Residual case order plot of residuals of field capacity (FC) and wilting point

(WP) for detection of outliers (cross markers)
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4.3.2 Data Partitioning

The descriptive statistics of FC and WP in the calibration and validation

subsets were examined separately (Table 4.2) as a check for the ability of data

partition algorithm used to yield similar subsets. It was noted that the data partition

algorithm was capable to ensure the range of attribute values of validation subset

within that of calibration. Moreover, the mean and coefficient of variation values

were found to be similar across calibration and validation subsets. The similarity of

the subsets was further endorsed by the results of two sample Student's t-test for

equal means and Levene's F-test for equal variances at 5% significance level for

FC {Ho = 0; p = 0.87) and WP {Ho = 0; p - 0.75).

Table 4.2 Descriptive statistics of soil attributes in calibration and validation subsets

Attribute
Calibration Validation

n Range Mean CV n Range Mean CV

FC (%) 220 4.24-48.23 17;55 54.31 73 4.24-45.67 17.47 54.66

WP (%) 218 1.12-24.65 7.48 67.62 72 1.53- 19.98 7.49 67.60

n\ number of samples

CV: coefficient of variation in percentage

4.3.3 Development of Calibration Functions

The study has examined the utility of tliree different approaches typically

used in spectral data modeling of soil. The first approach used normalized

difference spectral indices generated from reflectance spectra as predictor variable

in simple linear regression with soil attributes. In the second approach, the full-

spectrum was used in conjunction with PLSR to develop the desired calibration

functions. The third approach evaluated the potential of OPS method of spectral

variable selection on the performance of PLSR model. The results of these

implemented approaches are discussed below.
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4.3.3.1 Spectral Index based Calibration Functions

In this approach, NDRI values were generated for all pairwise combinations

of wavelengths and performed simple linear regression to establish linkage with

soil attribute of interest. The map of values in the calibration (upper triangle)

and validation of simple linear regression of NDRI with FC and WP are shown in

Fig. 4.5 and Fig. 4.6, respectively. It may be noted that the map appear to be visually

symmetric with respect to the diagonal. The reason for the similarity may be

attributed to similar performance of simple linear regression model in both

calibration and validation.

<

o 1700

1100
1100 1300 1500 1700 1900 2100

Wavelength (nm)

2300 2500

Fig. 4.5 Coefficient of determination of calibration (upper triangle) and validation

(lower triangle) of simple linear regression between normalized difference

reflectance indices and field capacity

In both FC and WP cases, the NDRI values generated using combination of

wavelengths near or around the water absorption features (1400 and 1900 nm) were

found to yield relatively better performance (R^>0.45) values in both calibration

and validation. In addition, the combination of wavelengths in 1900-2100 mn range
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Fig. 4.6 Coefficient of determination of calibration (upper triangle) and validation

(lower triangle) of simple linear regression between nonnalized difference

reflectance indices and wilting point

were found to be relevant in case of WP. Relatively better results were obtained for

the combination of reflectance values at 1844 and 1845 nm in case of PC while

those at 1844 and 1856 for WP estimation (Table 4.3).

Table 4.3 Statistics of simple linear regression between the best normalized

Details Field capacity Wilting point

Wavelengths used in NDRI 1844, 1845 1844, 1856

Intercept 21.33 5.84

Coefficient 470510.25 11236.69

F-value 204.9 116.18

/?-value 3.30x10'" 5.90x10-22

R2 0.49 0.40

RMSE 6.27 3.56

RPD 1.40 1.30

R^: coefficient of determination; RMSE: root mean squared error; RPD: residual
prediction deviation of validation.
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The parameters of simple linear regression model between best NDRI and soil

attributes together with its statistics are included in the table. When compared, the

NDRI based model performance was found to be higher in case of FC than WP.

The plot of observed and predicted values (using NDRI) of soil attributes is shown

in Fig. 4.7.
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Fig. 4.7 Observed versus predicted value plots in the validation of field capacity

(FC) and wilting point (WP) using the best normalized difference reflectance index.

Dotted line represents the 1:1 line.

In Table 4.3, the lowp-value (p<0.05) obtained for simple linear regression models

suggest the rejection of null hypothesis that the coefficient of regression is zero.

Further, the high F-value (F>2.28 at a==0.05) recognized the statistical significance

of predictor variable in the regression model. Although statistically significant, the

regression statistics of prediction merely comply with the accuracy level (RPD<1.4)

expected from laboratory based DRS. Recently, Nocita et al. (2013) reported that

NSMI based on wavelengths 1800 and 2119 nm (Haubrock et al, 2008) can be used

to estimate soil moisture content (R^=0.60). In their study, spectral measurements

were made fi"om soil samples wetted to pre-defined moisture levels. The moisture

content being a primary chromophore, its variation significantly affects the water

absorption feature around 1900 nm with shoulders near 1800 and 2119 nm. This

would have enabled NSMI based estimation of soil moisture content in their study.

In contrast, this study was based on NDRI computed from spectral reflectance of
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dried soil alone. Even then, a significant correlation was noted between the best

NDRI with soil moisture constants examined in this study. This relationship so

noted for both FC and WP and moderate prediction of PC (RPD=1.40) favor the

investigation on the utility of identified NDRI indices as proxy for soil moisture

constants in future studies.

4.3.3.2 Full-spectrum based Calibration Functions

In general, any soil spectra would be considered to be an integi'ation of

absorption characteristics (spectrally active chromophores), scattering effects (due

to orientation and packing of particles in the soil matrix effects) and undesired

variations (due to measurement and operational conditions of the instrument). Both

the scattering and undesired variations in the spectra be effectively removed by pre

processing to improve the reliability and robustness of calibration functions (Casa

et ai, 2013). For the purpose, both the reflectance and absorbance spectra of soils

were subjected to different transformations generally used in soil specti-oscopic

literature namely, SNV, MSC (Ji et al., 2016; Shi et ai, 2016; Li et ai, 2015), DT

(Buddenbaum and Steffens, 2012), FD (Raj et ai, 2018; Sarathjith et al., 2014;

Waiser et al, 2007) and SD (Hong-Yan et al, 2009; Ben-Dor et al, 1997) and their

selected pairwise combinations yielding a total of 24 spectra pre-treatments. The

pre-processed spectra obtained by transforming reflectance and absorbance of a soil

sample are shown as an example in Fig. 4.8 and 4.9, respectively. It can be seen

that scatter correction techniques {SNV, MSC and DT) individually transformed tlie

spectrum into appropriate units while the spectral pattern remain least affected as

that of the untransformed counterpart. Although, the spectral pattern was not

preserved in case of derivatives transformations, they were appropriate to well-

portray the absorption features in the spectrum. Even visually obscured absorption

features (for example, 2300-2450 nm) in the untransformed spectrum were

'amplified' by pre-processing using derivatives. The combined treatments of

derivatives after scatter correction methods benefitted the advantages of each

technique (when used individually) and hence expected to yield better results.

Q>o
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The pre-processed spectra (1100-2500 nm) obtained by aforesaid mathematical

treatments of samples used for calibration were then linked with respective soil

attribute (FC and WP) by means of PLSR algorithm. The performance of calibration

functions so developed were later tested using the validation subset.

A prerequisite to implement PLSR was to detemiine an appropriate number

of LV to optimize and validate calibration functions (Gbolizadeb et al., 2016). It

also help to avoid under-fitting or over-fitting of calibration functions (Kawamura

et al., 2017; Viscarra Rossel, 2008).. Among different approaches for the selection

of number of LV, leave-one-out cross validation appeared to be the most effective

and hence widely used in soil spectroscopic studies (Chakraborty et al., 2015; Ji et

at., 2015; Vohland et al, 2014; Kuang and Mouazen, 2011). Figure 4.10 illustrates

an example of the plot (MSE versus number oiLV) generated as an output of leave-

one-out cross validation of FC and WP using FD of reflectance spectra which

served in the selection of optimum number of LV. Based on minimum MSE

criterion, 8 and 10 number of LF were found to be optimum to develop PLSR based

calibration functions of FC and WP using FD of reflectance. In the same manner,

optimum number of LV required to build calibration functions of the soil attributes

using different pre-processed spectra was detennined.

T able B1 and B2 of Appendix B lists the regression statistics of the calibration

and validation of FC and WP using different spectral pretreatments. In case of FC,

the R^ and RMSE of calibration varied in the range 0.72-0.81 and 3.87-4.74,

respectively while they were noted to be 0.68-0.76 and 4.30-4.98 in case of

validation across different spectral pretreatments. The RPD of validation was found

to be in 1.77-2.05 range of which the spectral pretreatments R (reflectance) and

R+DT+FD yielded the lowest and highest values, respectively. In case of WP, the

performance of calibration functions in terms of R^ and RMSE of calibration and

validation were in the tune of 0.74-0.80 & 2.12-2.42 and 0.61-0.73 & 2.36-2.85,

respectively. The RPD of validation varied between 1.62 {R+MSC) and 1.96 (A)

across different spectral pretreatment based calibration functions. The calibration

63
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Fig. 4.10 Selection of optimum number of latent variables for PLSR based

calibration functions to estimate field capacity (PC) and wilting point (WP) using

first derivative of reflectance. Minimum MSE is represented as black filled marker.

functions based on R+DT+FD and A (absorbance) can be chosen as the best for the

estimation of PC and WP, respectively if the selection criteria was merely based on

accuracy criteria (RPD of validation). However, in this study, the selection of best

spectral preprocessing considered both accuracy and complexity of calibration

functions together using AIC as a combined indicator. The AIC being an estimate

of information loss of a statistical model, its lower value represent a good quality

model and vice versa. Thus, minimum AIC criterion was followed in the study to

identify the best spectral preprocessing based calibration function of soil attributes.

Accordingly, R+SD was found to be the best for both PC and WP among different

spectral pretreatments examined in this study (Pig. 4.11). It was also noted that both

6^
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R+SD and R+DT+SD yielded same transformed spectra and hence the use of latter

preprocessing may be replaced by the former in future studies.
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The regression statistics of the best calibration functions in calibration and

validation of FC and WP are given in Table 4.4 and the respective plots of observed

versus predicted values are shown in Fig. 4.12.

Table 4.4 Regression statistics of prediction of field capacity (FC) and wilting point

Attribute Preprocess
Calibration Validation

LV n  R2 RMSE n R2 RMSE RPD

FC R+SD 6 220 0.77 4.30 73 0.75 4.38 2.01

WP R+SD 6 218 0.76 2.34 72 0.67 2.65 1.74

n: number of soils, LV\ number of latent variables, R^: coefficient of
determination, RMSE: root mean squared error, RPD: residual prediction
deviation, R+SD: pairwise combination of reflectance and second derivative
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Fig. 4.12 Observed versus predicted value plots of field capacity (FC) and wilting

point (WP) using full-spectrum. Dotted line represents the 1:1 line.

Based on the model accuracy criteria suggested by Chang e( al. (2001), the

best calibration function was found to be accurate (RPD>2) in the estimation of FC

while moderate performance (1.4<RPD<2) was noted for WP. The regression

statistics obtained in this study for FC and WP are comparable or even better to that

reported in soil spectroscopic literature (Kinoshita et al., 2012; Janik et al., 2009).

For instance, Janik et al. (2009) used PLSR with 18 number of LVto validate the

£6
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prediction of FC and WP of 249 number of soils. The accuracy of PLSR models

examined in their study are relatively lower for both FC (RMSE=5.5) and WP

(RMSE=3.4) than that obtained in this study (Table 4.4). Also, the regression

statistics reported by Kinoshita et al. (2012) in the estimation of FC (R^=0.66;

RPD=1.81) and WP (R-=0.76; RPD=1.97) are analogous to the results of this study.

The best calibration function or regression coefficient (y9) that describe the

linkage between R+SD of spectra and soil attributes are shown in Fig 4.13. To have

better visual distinction on the significance of different wavelengths, a variable

indicator described by the product of absolute values of P and VIP after

normalization {fi-VlP) was used for feature identification (Fig. 4.13).
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Fig. 4.13 Variable indicators describing significant wavelengths for the prediction

of field capacity (FC) and wilting point (WP). P and P-VIP indicates the regression

coefficient and its combination with variable importance of projection,

respectively.

The magnitude of P-VIP values describe the relevance of spectral feature at

respective wavelengths in prediction of soil attributes. Accordingly, water

absorption features located around 1400, 1900 and 2200 nm appeared to have

significant contribution in the estimation of both the soil attributes. Among them,
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spectral features around 1900 nm was noted to be most prominent in both soil

attributes followed by 1400 nm and 2200 nm in case of FC and WP, respectively.

Apart from these wavelengths, spectral features in 1100—1400 nm range and around

2300 nm also have evident contribution in the estimation both FC and WP. The

spectral characteristics around 2400 nm has noticeable contribution in the

prediction of WP but not in case of FC. The most relevant wavelengths in the

prediction of soil attributes based on the magnitude of regression coefficient are

presented in Table 4.5. In addition, the possible functional groups related to organic

carbon, clay content and iron oxides compiled from Bayer et al. (2012); Ben-Dor

et al. (1997); Clark (1999) and Viscarra Rossel and Belirens (2010) which may be

related with the significant wavelengths identified in this study are also included in

the table. Some significant wavelengths identified viz. 1116, 1120, 1157, 1244,

1255, 1391, 1395, 1407, 1414, 1417, 1881, 1892 and 2216 nm appeared to be

common in the estimation of both FC and WP. The reason for similar wavelengths

in prediction may be attributed to the inherent correlation between FC and WP

values. In contrast, the spectral features at 1330, 1370, 1439, 2290 and 2387 nm

appeared to be most prominent in case of WP while no relevant wavelengths were

found near to them for the estimation of FC. Similarly, the wavelengths at 1862,

1901, 2208 and 2302 nm were most significant for the estimation of FC but have

less relevance in case of WP.

4.3.3.3 Variable Selection based Calibration Functions

This study deployed the utility of the variable indicators based OPS approach

for spectral variable selection. In this approach, absolute magnitude of variable

indicators (after normalization) were used in conjunction with EDF to select

spectral variables for subset models. Among the subset models (with different

NSV) generated using a particular variable indicator, the optimum subset model

and respective optimum NSV were identified based on the minimum RMSE

criteria. An illustrative example of OPS plot that aid the optimum subset model

selection is shown in Fig. 4.14 for the case of FC using r as the variable indicator.
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Fig. 4.14 OPS plot based on regression coefficient for the case of field capacity

(PC)

The figure depicts the plot of RMSE values in the validation of subset models

together with the NSV which were used as predictors of PLSR model. The trend in

RMSE values obtained in this study appeared to be similar to that reported by

Sarathjith et al. (2016). It may be noted that the RMSE values of subset models

generated during initial iterations (1 to 14) were comparable to that of full-spectrum

counterpart (Table 4.4). Among them, subset models at iteration 1 and 11 yielded

better performance (lower RMSE value) than full-spectrum model. The EDF

assisted removal of irrelevant/noisy wavelengths from data modeling might have

resulted in better performance of these subset models. In case of other subset

models (up to iteration 14), the wavelength removal has marginally affected their

performance as indicated by slight high RMSE values than that of full-spectrum
model. After iteration 14, all the subset models generated appeared to have

considerable reduction in performance for tlie cause being the elimination of

relevant and informative wavelengths. It may be noted that all the subset models

=?t>
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with most significant wavelengths (iteration 29 to 50) were not satisfactory. This

revealed the importance of combination of most significant wavelengths with others

for better model performance (Yun et al., 2014).

In the example shown in Fig. 4.14, subset model generated at iteration 11

appeared to have lowest RMSE among others and hence chosen as the optimum

subset model (NSV=180; R^=0.76; RMSE=4.28; RPD=2.06). In the same mamier,

the optimum subset model and optimum NSV for all variable indicators were

identified. Later, the regression statistics of optimum subset models of botli PC

(Table C1 of Appendix C) and WP (Table C2 of Appendix C) were compiled to be

used to identify the best subset model and variable indicator for each soil attribute

separately.

Figure 4.15 depicts the percent difference in RMSE of validation values of

optimum subset models with respect to that of full-spectrum models (represented

as zero reference line) of FC and WP. The NSV used to build optimum subset

models are also indicated in the figure. The positive and negative bars represents

optimum subset models of inferior (high RMSE) and superior (low RMSE)

performanee as that of full-spectrum counterpart, respectively. From the figure, the

following remarks may be made, a) the variable indicators namely, P-CovProc, P-r,

pStN, bicor-CovProc, SqRes-StN, StN, StN-CovProc and VIP-StN were capable to

yield optimum subset models with better performance than full-spectrum model in

case of both FC and WP, b) none of the PLSR-dependent variable indicators yielded

satisfaetory results when used individually in both soil attributes while the

performance of StN (PLSR-independent) was suecessful, c) pairwise eombination

of variable indicators appeared to be more reliable than they used individually, d)

among the successful optimum subset models in both soil attributes, pairwise

combinations of PLSR-dependent with PLSR-independent variable indicators

appeared to yield better results in most cases (except CovProc and bicor-CovProc),

e) the variable indicator based OPS approach appeared to be successful in both soil

attributes as at least one variable indicator among others yielded optimum subset

models with improved perfonnance.
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values (negative bars in Fig. 4.15) were considered. Then, the one among the

selected optimum subset models with lowest NSV value was regarded as the best

subset model. Also, the variable indicator associated with the best subset model was

considered to the best variable indicator for the soil attribute of interest.

Accordingly, optimum subset model based on ̂ -r (NSV=126; RMSE=4.27) was

found to be the best subset model for the estimation of PC and AMI-StN {H^'V=2TI\

RMSE=2.56) appeared to be appropriate for WP.

Further, we inspected whether the performance noted for optimum subset

models (increase, decrease or similar) were statistically significant with respect to

respective full-spectrum model. For the purpose, a distribution of RMSE of

validation was generated for each optimum subset model and also for full-spectrum

model by means of bootstrapping with replacement for 500 times. Then, the

distributions of optimum subset models and full-spectrum model were examined

for their similarity with respect to mean value via the implementation of both right-

tail and left-tail Student's f-tests at 5% level of significance (a=0.05). The equality

of mean values of these distributions formed the null hypothesis of the tests. The

generated distributions to be compared were assumed to be nornial with unknown

and equal variances. The results of both the tests were used conjunctively to

examine the similarity/dissimilarity in prediction performance between full

spectrum and optimum subset models.

An illustrative example to depict the nature of generated distributions (in

terms of kernel smoothing density estimates) and the results of Student's /-tests is

shown in Fig. 4.16. Based on the ̂9-value of right-tailed {pr) and left-tailed (pi) tests,

the following interpretations were made, a) ifpr>a and pi<a, then optimum subset

model outperform full-spectrum model. In other words, the mean value of RMSE

distribution of optimum subset model is less than that of full-spectrum model (eg.

Fig. 4.16a), b) pr>o. and pi>a imply that both full-spectrum and optimum subset

model have similar perfonuance (eg. Fig. 4.16b), c) pr<a. and pi>a indicate the

inferior performance of optimum subset model with regard to full-spectrum model

(eg. Fig. 4.16c).The pr and pi values of all optimum subset models were generated

^3
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and examined for their similarity/dissimilarity with full-spectrum models (Fig.

4.17). Based on the three criteria discussed above, the optimum subset models were

classified as better, similar or poor in perfonnance compared to full spectrum

models. Accordingly, optimum subset models of PC based on variable indicators

namely, r, r-StN, SqRes-r, SqRes-bicor, ̂-r, P-bicor and pStN were found to be

better than fiill-spectrum model. In case of WP, StN, CovProc, pStN, P-CovProc,

SqRes-StN, AMI-StN and StN-CovProc yielded optimum subset models of better

performance. Several variable indicators yielded optimum subset models with

similar performance as that of fiill-spectrum model which include, bicor, bicor-

CovProc, bicor-StN, r-bicor, r-CovProc, SqRes, SqRes-CovProc, SqRes-StN, StN,

StN-CovProc, VIP-bicor, VIP-r, VlP-StN, P, P-AMI, P-CovProc, pSqRes in case of

FCand;5, VIP,P-VIP,P-SqRes,p-r, p-bicor,p-AMI, VIP-StN, VIP-CovProc, r-StN,

bicor-AMI, bicor-StN, bicor-CovProc in case of WP. All the remaining variable

indicators in each soil attribute yielded poor optimum subset models. According to

Fernandez Piema et al. (2009), the basic objective of variable selection strategy is

to generate models with better/similar performance using less NSV (optimum

subset model) than the original set of spectral variables (flill-spectrum model). The

results of the variable selection approach implemented in this study is in agreement

with the argument supported by the number of satisfactory optimum subset models

of FC (24 out of 36 cases) and WP (20 out of 36 cases). Among them, optimum

subset model generated using spectral variables identified based on P-r and AMI-

StN was found to the best for the estimation of FC and WP, respectively as endorsed

by the results of statistical analysis.

Figure 4.18 depicts the wavelengths identified by P-r and AMI-StN to build the best

subset models of FC and WP, respectively. A few remarkable observations may be

made from the figure, a) the spectral infonnation content in four broad wavelength

bands, roughly 1570-1670, 1730-1825, 2030-2160 and 2300-2500 nm was found

to be irrelevant for the estimation of FC, b) wavelengths firom all the spectral

regions were found to be important for the estimation of WP, c) water absorption

features related to clay mineral around 2200 nm appeared to relevant in case of FC

IS'
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while the spectral region was discarded in case of WP to attain the noted level of

accuracy. It may also be noted that the best subset models used only 19.09%

(NSV=126 in case of FC) and 34.39% (NSV=227 in case of WP) of the total NSV

to yield performance better than full-spectrum model. This demonstrated the ability

of variable indicator based OPS approach implemented in this study to develop

parsimonious models for reliable estimation of FC and WP of soil.
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Fig. 4.17 Result of comparison (p-value) between generated distributions of root

mean squared error of optimum subset and full-spectrum models upon validation

for field capacity (FC) and wilting point (WP). pi and pr denotes the p-value

obtained for left-and right-tailed Student's Mests, respectively.
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Fig. 4.18 Spectral variables associated with best subset models of field capacity

(FC) and wilting point (WP). P-r (pairwise combination of coefficients of

regression and correlation), (pairwise combination of adjacency values of

mutual information with signal-to-noise vector) are the best variable indicators

identified.

4,3.3.4 Comparison of Data Modelling Approaches

The present study evaluated the utility of three main approaches typically

used in DRS of soils viz. spectral index (NDRl), full-spectrum based PLSR and

variable selection (OPS). Under each approach, several calibration functions were

evaluated and the best among others was identified as discussed in sections 4.3.3.1,

4.3.3.2 and 4.3.3.3. The performance of the best calibration functions were then

compared. For the purpose, distribution of RPD values in the validation of the best

calibration functions were generated by bootstrapping with replacement for 500

iterations. Figure 4.19 depicts the Kernel smoothing density estimates of the

generated RPD distributions of FC and WP. The accuracy classification scheme
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suggested by Chang et al. (2001) is also provided in the figure to aid model

performance evaluation.
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Fig. 4.19 Kernel smoothing density estimates of the distribution of residual

prediction deviation of validation of field capacity (PC) and wilting point (WP)

obtained using the best calibration function of spectral index, full-spectrum and

variable selection approaches.

The mean value of RED distribution in case of EC and WP in ordered pairs

was found to be (1.4, 1.3), (2.0, 1.7) and (2.1, 1.8) as obtained using NDRI, full-

spectrum and OPS approaches, respectively. Accordingly, calibration functions

developed using NDRI were found to have poor estimation of soil moisture

constants. In contrast, both full-spectrum and OPS based calibration functions were

regarded as accurate in case of PC while they yielded moderate estimation of WP.

Among them, OPS based calibration functions yielded better RPD value invariably

across both the soil moisture constants. Moreover, the OPS based calibration

functions has fewer NSV (less complex) than that of full-spectrum. Hence, the OPS

approach was regarded as the best in this study to estimate the soil moisture

constants from spectral reflectance of dry soil.

if
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CHAPTER 5

SUMMARY AND CONCLUSIONS

Rapid and accurate assessment of soil moisture constants namely, FC and WP

as descriptors of WHC is a major pre-requisite to scientific irrigation scheduling.

Although several conventional methods exists for their estimation, majority of tliem

are cumbersome and time-consuming and not appropriate for their use at varying

space and time scales. Over the past few decades, DRS has gained popularity as an

effective tool for soil analysis and digital soil mapping. However, many studies

have revealed that the approach is not always satisfactory. Despite this shortcoming,

the approach retained its relevance by its ability to rapidly and cost-effectively

assess multiple soil attributes, in both non-destructive and non-invasive manner.

This study investigated the utility of DRS approach in estimating both FC and WP

directly from spectral signature of dry soil. This study was performed using an

ji- available soil database comprised of spectral signature and moisture content values

at 0.33 bar (FC) and 15 bar (WP) of about 300 soil samples.

Calibration functions describing the linkage between soil spectra (1100-2500

nm) and soil moisture constants were developed via three different statistical

approaches typically employed in DRS studies of soil. In the first approach based

on spectral indices, NDRI were computed for all the pairwise combinations of

wavelengths and subsequently related to soil moisture constant values by means of

simple linear regression. The NDRI which combined the spectral features at 1844

and 1845 nm (in case of FC) and at 1844 and 1856 nm (in case of WP) yielded

statistically significant relationship between spectra and soil attributes. However,

the results do not comply with the minimum accuracy level needed for DRS models

of soils.

- ■ In the second approach based on full-spectrum, PLSR was employed to

develop the desired calibrations. The spectra was subjected to various pre-

processing techniques and the best one was identified based on AIC values.

H  Accordingly, R+SD was found to be the more appropriate pre-processing method
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and hence respective calibration functions were treated as the best for both FC and

WP. The performance of the full-spectrum calibration function was found to be

accurate in case of FC (RPD=2.01) while moderate performance was noted in case

of WP (RPD=1.74) based on the accuracy classification suggested by Chang et al.

(2001).

In the third approach, spectral variable selection was performed as a way to

develop simple, reliable and parsimonious calibration functions. An OPS approach

based on variable indicators was implemented for the purpose. A variety of PLSR-

dependent and -independent variable indicators and their pairwise combinations

were tested. The OPS approach made use of an EDF in an iterative manner to select

different NSV based on the absolute values of variable indicator. At each iteration,

the selected NSV were related to soil attribute via PLSR (subset model). Later, the

optimum model among the subset models was identified based on mimimum-

RMSE criteria of validation. Later, distributions of RMSE in the validation of

optimum subset and full-spectrum models were generated and compared for their

similarity with respect to mean value using both left and riglit tailed Student's t-

tests. Based on the p-value of the test, optimum models that yielded either similar

or better performance to that of full-spectrum were selected and the one among

them with lowest NSV was regarded as the best. Accordingly, best subset model of

FC and WP was based on P-r (NSV=126; RMSE=4.27) and (NSV=227;

RMSE=2.56), respectively.

Among the different approaches compared, variable indicator based OPS

approach outperformed both spectral indices and flill-spectrum counterparts with

regard to accuracy, simplicity and parsimony together of the developed calibration

functions of FC and WP. Hence, the overall results of this study suggest OPS

approach to develop simple, effective and parsimonious calibration functions that

directly translate spectral information into soil moisture constant values.
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Research Perspectives

This study has demonstrated the utility of DRS approach to estimate soil moisture

constants namely, FC and WP from spectral signature of dry soil. Among the

different approaches compared, OPS based, calibration functions outperfonned

those developed using spectral indices and full-spectrum. Thus, the OPS approach

implemented in this study may be advocated in conjunction with existing or future

spectral libraries to have relatively simple and parsimonious DRS models to

estimate soil moisture constants. Nevertheless, the efficacy of other calibration

algorithms not implemented in this study may also be examined for improved

results. To generate more robust DRS calibration functions of FC and WP, the

approach implemented in the study may be extended using large spectral database

of different soils. For more practical utility of the DRS technique, the feasibility of

transferring the developed laboratory based calibration functions for their use in

conjunction with ground, airborne and space borne hyperspectral measurements

may be investigated in future studies.
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APPENDIX A

Clay 1% Silt [%]

Sand [%]

Fig. A! USDA textural class of soil samples in the database

0



82

A

Sand (%) n = 291; Mean = 55.38

n = 297; Mean = 5.46

100

n =29 ; Mean = 10.75Clay (%)

20 30

Organic matter (%) " = 285; Mean = 0.43

■jUi^

4 0
u

60
c
o

cr

P
U.

-  180

-  150

-  120

■ 90

■ 60

• 30

-• 0

9  0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Soil attribute value

Fig. A2 Histograms and box plots of soil texture, pH and organic matter



83

APPENDIX B

Table B1 Regression statistics of the prediction of field capacity using different

spectral pre-processing methods

Pre-process
Calibration (n=220) Validation («=■13)

LV R2 RMSE R2 RMSE RPD

R 12 0.72 *4.74 0.68 4.98 1.77

R+SNV 16 0.80 4.03 0.74 4.43 1.99

R+MSC 15 0.78 4.18 0.75 4.38 2.02

R+DT 17 0.81 3.87 0.75 4.40 2.00

R+FD 8 0.77 .4.29 0.74 4.44 1.99

R+SD 6 0.77 4.30 0.75 4.38 2.01

R+SNV+FD 9 0.77 4.27 0.73 4.59 1.92

R+MSC+FD 10 0.78 4.21 0.72 4.61 1.91

R+DT+FD 9 0.78 4.22 0.76 4.30 2.05

R+SNV+SD 7 0.78 4.20 0.73 4.55 1.94

R+MSC+SD 7 0.76 4.32 0.69 4.91 1.80

R+DT+SD 6 0.77 4.30 0.75 4.38 2.01

A 13 0.73 4.61 0.72 4.66 1.89

A+SNV 16 0.79 4.12 0.75 4.38 2.01

A+MSC 15 0.79 4.13 0.75 4.34 2.03

A+DT 12 0.72 4.74 0.68 4.98 1.77

A+FD 9 0.78 4.21 0.74 4.50 1.96

A+SD 6 0.75 4.41 0.73 4.59 1.92

A+SNV+FD 9 0.77 4.23 0.74 4.51 1.96

A+MSC+FD 10 0.78 4.18 0.73 4.52 1.95

A+DT+FD 9 0.79 4.04 0.74 4.49 1.96

A+SNV+SD 7 0.78 4.14 0.74 4.45 1.98

A+MSC+SD 7 0.77 4.28 0.70 4.81 1.84

A+DT+SD 6 0.75 4.41 0.73 4.59 1.92

n: number of soils, LV\ number of latent variables, R^: coefficient of
determination, RMSE: root mean squared error, RPD: residual prediction
deviation, R-. reflectance, SNV\ standard normal variate, MSC: multiplicative
scatter correction, DT\ detrending, FD'. first derivative, SD: second derivative
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Table B2 Regression statistics of the prediction of wilting point using different

spectral pre-processing methods

Pre-process
LV

Calibration (n=218) Validation (n=72)

R2 , RMSE R2 RMSE RPD

R 18 0.80 2.15 0.71 2.48 1.86

R+SNV 18 0.80 2.15 0.65 2.70 1.71

R+MSC 17 0.79 2.20 0.61 2.85 1.62

R+DT 16 0.79 . 2.21 0.69 2.55 1.81

R+FD 10 0.80 2.13 0.69 2.56 1.80

R+SD 6 0.76 2.34 0.67 2.65 1.74

R+SNV+FD 11 0.80 2.12 0.71 2.45 1.88

R+MSC+FD 11 0.79 2.16 0.69 2.54 1.82

R+DT+FD 10 0.80 2.13 0.70 2.52 1.83

R+SNV+SD 8 0.79 2.20 0.64 2.74 1.68

R+MSC+SD 7 0.74 2.42 0.63 2.79 1.65

R+DT+SD 6 0.76 2.34 0.67 2.65 1.74

A 18 0.80' 2.12 0.73 2.36 1.96

A+SNV 18 0.80 2.13 0.64 2.75 1.68

A+MSC 17 0.79 2.17 0.64 2.76 1.67

A+DT 18 0.80 2.15 0.71 2.48 1.86

A+FD 10 0.79 2.17 0.71 2.46 1.87

A+SD 7 0.79 2.19 0.66 2.67 1.73

A+SNV+FD 11 0.80 2.12 0.72 2.41 1.92

A+MSC+FD 11 0.80 2.15 0.70 2.49 1.85

A+DT+FD 10 0.80 2.13 0.73 2.39 1.93

A+SNV+SD 7 0.77 2.30 0.65 2.69 1.71

A+MSC+SD 7 0.75 2.37 0.65 2.70 1.71

A+DT+SD 7 0.79 2.19 0.66 2.67 1.73

n: number of soils, LV: number of latent variables, R^: coefficient of
determination, RMSE: root mean squared error, RPD: residual prediction
deviation, R: reflectance, SNV: standard normal variate, MSC: multiplicative
scatter correction, DT: detrending, FD: first derivative, SD: second derivative

\
a
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APPENDIX C

Table C1 Optimum subset models of field capacity identified using ordered
predictor selection approach
Variable

NSV
Calibration (/2=220, LV=6) Validation («=73)

indicator RMSE R^ RMSE RPD

P 586 0.77 4.26 0.75 4.39 2.01

VIP 521 0.76 4.37 0.75 4.42 2.00

SqRes 521 0.75 4.50 0.75 4.36 2.02

r 180 0.76 4.35 0.76 4.28 2.06

bicor 586 0.77 4.31 0.75 4.36 2.02

AMI 586 0.77 4.30 0.74 4.43 1.99

StN 586 0.76 4.34 0.75 4.38 2.01

CovProc 586 0.76 4.33 0.74 4.43 1.99

P-VIP 586 0.77 4.29 0.75 4.40 2.01

pSqRes 521 0.77 4.29 0.75 4.37 2.02

VIP-SqRes 586 0.76 4.34 0.74 4.43 1.99

P-r 126 0.76 4.37 0.76 4.27 2.06

P-bicor 180 0.77 4.26 0.76 4.32 2.04

pAMI 521 0.77 4.28 0.75 4.38 2.01

P-StN 256 0.78 4.17 0.76 4.28 2.06

P-CovProc 227 0.77 4.31 0.75 4.35 2.03

VIP-r 288 0.75 4.43 0.75 4.36 2.02

VIP-bicor 324 0.75 4.43 0.75 4.37 2.02

YIP-AMI 586 0.77 4.32 0.74 4.44 1.99

VIP-StN 288 0.77 4.32 0.75 4.38 2.01

VIP-CovProc 586 0.76 4.34 0.74 4.44 1.98

SqRes-r 463 0.76 4.39 0.76 4.31 2.05

SqRes-bicor 411 0.75 4.42 0.76 4.31 2.05

SqRes-AMI 586 0.76 4.34 0.75 4.38 2.01

SqRes-StN 463 0.75 4.46 0.75 4.35 2.03

SqRes-
CovProc

586 0.76 4.37 0.75 4.36 2.02

r-bicor 586 0.77 4.24 0.75 4.35 2.03

rAMI 586 0.77 4.31 0.74 4.44 1.99

r-StN 288 0.78 4.15 0.76 4.31 2.05

r-CovProc 586 0.76 4.33 0.75 4.39 2.01

bicor-AMI 586 0.76 4.34 0.74 4.46 1.98

bicor-StN 586 0.76 4.34 0.75 4.38 2.01

bicor-CovProc 586 0.76 4.34 0.75 4.37 2.02

AMI-StN 288 0.79 4.07 0.75 4.42 2.00

AMI-CovProc 586 0.77 4.29 0.75 4.41 2.00

StN-CovProc 463 0.75 ■ 4.49 0.75 4.39 2.01

w: number of samples; LV: number of latent variables; NSV: number of spectral variables, R^:
coefficient of determination; RMSE; root mean squared error; RPD: residual prediction deviation

iX
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Table C2 Optimum subset models of wilting point identified using ordered

Variable

indicator
NSV

Calibration

LV=6)

(«=218,
Validation {n=72)

RMSE R} RMSE RPD

586 0.76 2.32 0.67 2.64 1.75

VIP 586 0.76 2.35 0.66 2.66 1.73

SqRes 586 0.75 2.40 0.64 2.75 1.68

r 586 0.75 2.38 0.65 2.72 1.69

bicor 521 0.76 2.34 0.66 2.67 1.73

AMI 586 0.74 2.41 0.64 2.74 1.68

StN 586 0.75 2.38 0.69 2.54 1.82

CovProc 586 0.77 2.29 0.68 2.60 1.77

P-VIP 586 0.76 2.34 0.66 2.66 1.73

pSqRes 521 0.76 2.35 0.66 2.66 1.73

VIP-SqRes 586 0.75 2.37 0.65 2.69 1.71

P-r 586 0.76 2.33 0.67 2.63 1.75

P-bicor 586 0.76 2.33 0.66 2.65 1.74

B-AMI 586 0.76 2.34 0.66 2.66 1.73

P-StN 324 0.77 2.30 0.69 2.56 1.80

P-CovProc 411 0.77 2.28 0.67 2.62 1.76

VIP-r 463 0.74 2.42 0.65 2.70 1.71

VIP-bicor 586 0.75 2.39 0.65 2.71 1.70

VIP-AMI 586 0.75 2.37 0.65 2.70 1.71

VIP^tN 411 0.75 2.37 0.67 2.64 1.75

VIP-CovProc 586 0.76 2.34 0.66 2.66 1.74

SqRes-r 586 0.75 2.38 0.65 2.72 1.69

SqRes-bicor 586 0.75 2.40 0.65 2.71 1.70

SqRes-AMI 586 0.75 2.39 0.65 2.72 1.70

SqRes-StN 324 0.71 2.57 0.68 2.58 1.79

SqRes-CovProc 586 0.75 2.39 0.65 2.69 1.71

r-bicor 521 0.76 2.34 0.66 2.68 1.72

r-AMI 202 0.73 2.48 0.65 2.69 1.71

r-StN 586 0.76 2.36 0.66 2.66 1.73

r-CovProc 521 0.75 2.38 0.66 2.68 1.72

bicorAMI 324 0.74 2.45 0.66 2.66 1.74

bicor-StN 521 0.76 2.34 0.66 2.67 1.73

Bicor-CovProc 324 0.75 2.39 0.67 2.64 1.75

AMI-StN* 227 0.72 2.51 0.69 2.56 1.80

AMI-CovProc 463 0.75 2.39 0.66 2.67 1.73

StN-CovProc 463 0.75 2.38 0.70 2.53 1.82

n: number of samples; LV: number of latent variables; NSV
coefficient of determination; RMSE: root mean squared error;
' LV=5.

: number of spectral variables, R^;
RPD: residual prediction deviation
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ABSTRACT

Rapid and reliable estimation of soil moisture constants namely, field

capacity (FC) and wilting point (WP) is significant for scientific irrigation

scheduling. The conventional methods for their estimation are cumbersome, time

consuming and not suitable for their estimation at different space and time domains.

An alternative would be the use of diffuse reflectance spectroscopy (DRS) for

which the development of calibration functions that link the soil attributes with

spectral signature is a major pre-requisite. In this study, the utility of spectral index,

feature projection of full-spectrum and variable selection approaches namely,

normalized difference reflectance index (NDRI), partial least squares regression

(PLSR) and ordered predictor, selection (OPS), respectively to build accurate and

less complex calibration functions was evaluated. The performance of calibration

functions were judged in terms residual prediction deviation (RPD) criteria. The

NDRI based calibration functions developed in this study do not comply witli the

minimum accuracy level (RPD<1.4) expected from DRS analysis. In contrast, both

full-spectrum based PLSR and OPS approaches yielded calibration functions which

were capable for accurate (RPD>2.0) and moderate (1.4<RPD>2.0) estimation of

FC and WP, respectively. Specifically, the full-spectrum based calibration function

developed using second derivative of reflectance was found to be the best for both

FC (RPD=2.01) and WP (RPD=1.74). The OPS approach in conjunction with

variable indicators namely, combination of regression & correlation coefficient (/?-

r) and combination of adjacency values of mutual information & signal-to-noise

vector (AMl-StN) yielded best calibration functions in case of FC and WP,

respectively. The calibration functions so developed consisted of only 19.09% (FC)

and 34.39% (WP) of total number of spectral vaiiables as that in full-spectrum.

Thus, the result of the study advocate the use of OPS approach to develop simple

and parsimonious calibration functions to estimate FC and WP from spectral

signature of soil.
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