SEED PRODUCTION POTENTIAI Stylosanthes gracilis

BY
LEKHA SREEKANTAN

THESIS

SUBMITTED IN PARTIAL FULFILMENT OF
THE REQUIREMENT FOR THE DEGREE
MASTER OF SCIENCE IN AGRICULTURE
FACULTY OF AGRICULTURE
KERALA AGRICULTURAL UNIVERSITY

DEPARTMENT OF AGRONOMY COLLEGE OF AGRICULTURE VELLAYANI, TRIVANDRUM

SEED PRODUCTION POTENTIAL OF Stylosanthes gracilis

BY
LEKHA SREEKANTAN

THESIS
SUBMITTED IN PARTIAL FULFILMENT OF
the requirement for the degree MASTER OF SCIENCE IN AGRICULTURE

FACULTY OF AGRICULTURE
KERALA AGRICULTURAL UNIVERSITY

DEPARTMENT OF AGRONOMY COLLEGE OF AGRICULTURE VELLAYANI, TRIVANDRUM

DECLARATION

I hereby doclaro that this thesis entitled "seed production potential of Stylosanthes gracilis" La a bonafide record of research work done by me during the course of research and that the thesis has not previously formed the basis for the award to me of any degree, diploma, associateship, fellowship or other similar title at any other University or Society.

Vellayani,
 4-4-1981.

CERTIEIGATE

Certified that tinls thesis, entitled "Seed Production Potential of Stylosanthos gracilis" Is a record of research work done independently by Smt. LEKRA SREEKANTAN under my guidance and supervialon and that it has not previously formed the basis for the award of any cegres, fellowship or aseociateship to hor.

$$
\begin{aligned}
& \text { Ma havan-Naid/e } \\
& \text { K.P. HADHAVAN' NAIR } \\
& \text { Chalcman. } \\
& \text { Adivisory Comattee } \\
& \text { Assoclate Profesgor of Agronomy }
\end{aligned}
$$

iv

APPROVED BY:

CHATRMAN

Members

1. DE.C. EREEDHARAN
2. shri g. Ragiavan pilmai Geghavan Pilhai

I wish to express my deep gratitudo to my guide and Chairmen, sri K. Pemadhavan Nair, hosociate Professor of Agronony, College of Agriculture, Vellayani for his sincere guicance, tireless help and valuable constructive criticisms besides content encouragement which helped me to complete this study and to prepare this thesis.

I wish to place on rocord my heartfelt thanks to Dr.C.Sreedharan, Profestor of fyronomy for his kind encouragemont and for providing mo with the necessary facilities to conduct the study.

I am deaply Indebted to Sri.GoRaghavan Pillai, Associate proîessor of Agronomy who gave me inspiration and oncouragoment along with learned pancilling of the proof. Lste Professor, Sri E.J.Thomas, had helped me immensely in the process of statistical design and data analysis. With regret that he could not see the final outcone, I record my heartfelt thanks to him.

Sri Mop.Abdurazak. Ascistant Professor of Agricultural statistics had also helped ma in analysing the data. To him I owe my ceap gratitude.

Sri N. Puruehothamen Nair, Assistant Professor of Agronomy helped me in the preparation of tho thesis and I thank him sincerely. I am indebted to my friend Kumasi Chanalni 3. Junior Assistant Professor, Departmont of Agronomy for her encouragement and cooperation. ।

I also express my thanks to all the other otafy members of the Department of agronomy for their kind cooperation during the course of the study.

I an grateful to DroNe Gadanandan, Dean. Faculty of Agriculture, for providing all facilities for the study.

I am also grateful to the Kerala Agricultural University for awarding me a fellowship.
9.9-1903.

vis

vii1

LIST OF TABLES

No.
Title
Page No.
Table $1.1 \quad \begin{gathered}\text { Height of plants (om)at the time } \\ \text { of } 1 \text { ist cut }\end{gathered}$ 46
Table 1.2 Height of plants (cm) at the time 46 of 2nd cut
Table 1.3. Height of plants (cm) at the time 46 of 3rd cut
Table 1.4 Height of plants (cm) at the time 46 of 4 th cut
Table 1.5 Height of plants (cm) at the time
of flowering
Table $2.1 \begin{aligned} & \text { Spread of Plants. (cm) at the time } \\ & \text { of } 1 \text { st cut }\end{aligned}$
Table 2.2 Spread of plants (cm) at the time 49
Table 2.3 Spread of plants (cm) at the time of 49 3rd cut

Table $2.4 \begin{gathered}\text { spread of plants (cm) at the time of } \\ \text { 4th cut }\end{gathered} 49$
Table 2.5 Spread of plants (cm) at the time of 50 flowering
Table 3.1 Leaf istem ratio in the 1st cut 53
Table 3.2 Leaf:stem ratio in the and cut 53
Table 3.3 Leafistem ratio in the 3rd cut 53
Table 3. 4 Leafistem ratio in the 4 th cut 53
Table 4 Number of root nodules 54
Table 5 Weight of root nodules (mg) 56
Table 6.1 Greenmatter yield in the 1st cut ($\mathrm{kg} / \mathrm{ha}$) 58
Table 6.2 Greenmatter yield in the 2nd cut(kg/ha) 58
Table 6.3 Greenmatter yield in the 3 rd cut ($\mathrm{kg} / \mathrm{ha}$) 58
Table 6.4 Greenmatter yield in the 4 th cut (kg/ha) 58
Table 6.5 Total greenmatter yield ($\mathrm{kg} / \mathrm{ha}$) 59
Table 7.1 Drymatter yield in the 1st cut ($\mathrm{kg} / \mathrm{ha}$) 61
Table 7.2 Drymatter yield in the 2nd cut ($\mathrm{kg} / \mathrm{ha}$) 61
Table 7.3 Drymatter yield in the 3 rd cut $(\mathrm{kg} / \mathrm{ha}) 61$No.PitlePage No.
Table 7.4 Drymatter yield in the 4 th cut ($\mathrm{kg} / \mathrm{ha}$) 61
Table 7.5 Total drymatter yield ($\mathrm{kg} / \mathrm{ha}$) 62
Table 8 Seed yield (kg/ha) 65
Table 9.1 Protein content (\%) in .. drymatter 66in the 1st cut
Table 9:2 Protein content (\%) in drymatter in 66the 2nd cut
Table 9:3 Protein content (\%) in drymatter in 66the 3 rd cut
Table 9.4 Protein content (\%) in drymatter in 66the 4 th cut
Table 9.5 Total protein yield from drymatter 68
Table 10.1 Phosphorus content in drymatter (mg/g) 70in the 1st cut
Table 10.2 Phosphorus content in drymatter $(\mathrm{mg} / \mathrm{g})$ 70in the 2nd cut
Table 10.3 Phosphorus content in drymatter (mg/g) 70 in the 3rd cut
Table 10.4 Phosphorus content in drymatter (mg/g) 70In the 4 th cut
Table 11.1 potash content in drymatter (\%) in the 71 1st cut
Table 11. 2 Potash content in drymatter (\%) in the 712nd cutTable 11.3 Potash content in drymatter (\%) in the 713rd cut
Table 11. 4 , Potash content in drymatter (\%) in the 714th cut
Table 12 Nitrogen recovery from drymatter (kg/ha) 73Table 13 Phosphorus recovery from drymatter75($\mathrm{kg} / \mathrm{ha}$)
Table 14 . . Potash recovery from drymatter 76
Table 15 Protein content (\%) in the seed 78
x
No.
$24+1 e$
Page No.
Table 16 Phosphorus content (mg / g) in the seed 80
Table 17 Potash content (\%) in the seed 82
Table 18 Total nitrogen' content in the soll 84
Table 19 Available phosphorus content in the soil 86 ($\mathrm{kg} / \mathrm{ha}$)
Table 20 Available potash in the soil ($\mathrm{kg} / \mathrm{ha}) 87$
Table 21 Cation exchange capacity of the soil
(m,e./100 grams)
Table 22 Values of simple correlation coefficients 90
Table 23 Economics of levels and methods of 117 phosphorus application and number of cuts in Stylosanthes gracilis

LIST OF ILLUSTRATIONS

No.	Tltle
E4g. 1	Weather conditions during the crop scason end average for the last five years
Fig. 2	Layout plan
Fig. 3	Height of plants as influenced by levels of phosphorus application in goil
Fig. 4	spread of plants as influenced by levals of phosphorus application in 3011
F1g* 5	Groenmatter yield, drymatter ydeld and protein yiold as ineluenced by levels of phosphozus and number of cuts
Pig. 6	Seed yield as influenced by levels and mothods of phosphorus application and number of cuts.

$$
-\infty 0:-\infty
$$

INTRODUCTION

There are 34 lalchs of adult cattle in Kerala. The per capita milit availability in the state is 86 grams. which is much below the recommended level. To make DWhite $^{\text {Revolution" a reality, improving the genetic }}$ make-up or our livestock population should be supported and supplemented by the production of adequate good quality fodder.

Laguminous fodder crope provice high protein alet to the livestock and help to reduce the cost of feeding by concentrates. In adaition, the importance of symbiotic nitrogen fixation by legumes in improving soil fertility needs no omphabid. Howevar, lucarne, baraeem and such fouder legames rich in proteln cannot be cultivateá In the plains of Rerala bacause of their apecificity for climatic and soil requirements.

The', importance of stylo or Brazilian lucerne, a perennial leguminous fodder crop, no:i gains importance because of its suitability for cultivation under open field conditions and in pertially shaded coconut gardens In Kerala. Observational studies coniucted by the Kerala Livestock Dovelopment and Milk Marketing Boarc, in almost all the districts, showed that thin crop can be grown well

In Kerala. Preliminary studies at Vollayani under the All India Coorainated project Eor Research on Eorage crops hava shown that. It can yiald as muen as 34 t/ha of green fodder. Further gtudies by Herieppan (1970) threw. some light on the nutritional raquirements of this crop. Chamdini (1980) aiso recorded high forage yiclds when stylosanthes was grown mixed with other popular fodider grasoes and fertilizod with varying doses of $\mathrm{P}_{2} \mathrm{O}_{5}$.

Recently, this fodder crop 13 getting popularity among the dalry farmers of the State on a very large acale as ${ }^{\prime}$ pura crop as sell as in grass legume mixtures. The present production of sesd in our state is very meagre to moet the local roquirements. Increasing the production of seed has become very important in view of low yields and high cost of seed. Research work on the various aspects of seed production of 3 tylosanthes has not yot been attempled. The nutritional and management requifemonts for maximum seed production need to be investigated. However, production of aeed cannot be made at the cost of areen fodder yields when the acute shortage of the latter is to be kopt in mind. fience tho optimum number of cuts of green fodder that could be taken before tho crop is to bs left for seed setting is to be worked out.

3

Phosphorus application upto $120 \mathrm{~kg}_{2} \mathrm{O}_{5} /$ ha was found to tncrease green matter yield of Stylosenthes gracilis (Aarlappan, 1978). Incraasing livals of phosphorus application was found to increase seed yield in Stvlosanthes humilis (sholton and Humphreys, 1971). Spray fercilisation of phosphorus was found to boost barseen seed yield and net profit (singh and Pandey, 1963). The effect of levels and mathods of phoophorus application on saed production of Stylosanthas gracilis has not been assessed so far. Therefors an experiment was conducted at Vellayani, on Stylosanthes gracilis c.v. schofield with the following objectives.
(1), To find out the optimum stage of the crop or tise number of cuts after which it is to be left for seed setting.
(2) To assess the level and method of phosphorus application for increased seed production.
(3) To stualy the effect of levels of phosphorus on yield and quality of fodder.
(4) To work out the economics of aeed and fodder production.

REVIEH OF LTTERAIURE

The effect of graded coses of phosphoruse methods of Lto application and tim number of cuts of green fodder taken on the seed production of 3tylosenthes graci 115 was studicd. The intorature givan below refer to tho different aspacts of the study. Whorever aufficient 1iferature on gtylosanthes gracdits is not avatlabla simiaur wors on other legumas are revtewed.

1. 2ffect of phogohosus on growth choracters.
while studying the affect of phosphorns on the grovth and mineral composttion of four tropical pasture legumos viz. Controgena pubascens, Centrosoma plumeris puoraria phogeoloides and Styloganthog gracilis. Falace (1973) found that all the opecter except guerarta phasoolotcles rospondecit to phosphorus application and Centrosema pubssgens required more phosphorus Eor Optimum growth then Centrosome pluneris and stylosanthes gracilig. Tha phosphorus content in the species Stylosanthes gracilis for marimum growth was found to be 0.27 percent.

Experimonts under laboratory conditions rovealed that futh progressive improvement in the supply of phosphorus. large differences in growth doveloped botween cifferent groups

5

of Stylosanthes. One group in which nodulation was pertially or completely ineffective responded poorly in growth to additions of phosphorus. But tho other groups were effecively nodulated and appeared to differ constierably in their inherent growth rates (Jones. 1974).
steel and mumpeys (1974) observed positive quadratic responses to phosphorus addition on sityosanthes guyenengis. over the range of 10 to 80 kg phosphorus per hectare. But growth of the legune was independent of phosphomus application, presumably because of the high soil phosphorus availabillty at depths.

Studas at Kalyani, West Bengal, under the All India Coordinated Project for Research on Forage Crops revealed that hetght of legumes liko compea and ricebean increased with increase in the dose of phosphorus upto $120 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}$ (Mmon, 1976, a).

At Rahuri, exparimente under the AICPR on Forege Crops showed that height of Iucomo increased with incroase in the rate of phosphorus application from 0 to 120 kg $\mathrm{E}_{2} \mathrm{O}_{5}$ / he (Anon. 1976.b).
subramanfon et al. (1977) observed in cowpea that applicstion of different levels of phosphorus ranging from 12.5 to $37.5 \mathrm{~kg}_{2} \mathrm{O}_{5} / \mathrm{ha}$ in the soil and as soll plus foliar did not ineluence plant helght.

Mariappan (197B) observed that phosphorus levels upto $120 \mathrm{~kg} / \mathrm{ha}$ Increased the height of Stylosanthes gracilis. Effects of $N_{0} P$ and K Eertilizers on growth and drymatter production of Yicia hirsuta and Vicia gativa were studied by Shama and Lavania (1980) and, found that application of phosphorus as calcium superphosphate at the rate of $62.03 \mathrm{~g} / \mathrm{m}^{2}$ twice, increased the shoot length and spread, significantly in both the species.

2. Extect of phosmorus on leaf satem ratio.

Experimants in Tamsl Nadu under the AICPR on Forage Crops showed that the leafistem ratio increased whith increase in the dose of phosphorus in cowpea varieties EC-4216 and Local, while the variety co-1 did not exhibit any afiference in tho leaf istem ratio with changes in phosphorus application (Anon, 1974). Experiments at Rahuri also showed that phosphorus application increased the leafistem ratio in lucorne and the highost leafistern ratio was obtalned by the application of $200 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}$ (Anon, 1976, b).

7

Nariappan (197e) recorded an incroasing trend in the Leafactem ratio of stylogenthos qroctlis with incraase In the levels of phosphorus upto $120 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} /$ he at Which the higheat loaf stem ratio of 2.72 was obtainod,
3. Effect of phosphogus on nodulation anc nitrogen E1xation:

Wendt (1970) roportod thet nitrogen Eixation by Stylosanthes crrecilis was stimulatod by phosphorus application. Increase in the noculation oe Desmodium intortum. Medicogo setiva and Btylosanthes grecilis by the application of phosphorus was obtained by olsen and Moe (1971). whilo evalueting the offect of phosphorus on nodule and plamt develommant in Styloganthes humilis. Getes (1974)noted that phosphorus had a bonexicial affect on the initiation of noculeg. He Eusther observed thet nociula numbore, yolune and dry weights ware increasec by phosphozug applicetion. The welghes or nodules increased wth increasing rates of $\mathrm{g}_{2} \mathrm{O}_{5}$ applicetion Erom 40 to $60 \mathrm{~kg} \mathrm{E} \mathrm{E}_{5}$, 2 ka , as reportad by singh (1975) Who aseessed the asfect of various forms and levels of phosphorus on root developmont and nodulation of bsrseem.

The erfect of phosphorus in increasing the root nodules of Stylesanthes gracilie was significant and
maximum nodulation was noted at $120 \mathrm{~kg}_{2} \mathrm{O}_{5} / \mathrm{ha}$ as reportad by Mariappan (2978). The nodule weight showed an increasing trend with phosphorus application upto $120 \mathrm{~kg} / \mathrm{ha}$.

On comparing the effect of phosphorus at the rate of 0 to $315 \mathrm{~kg} / \mathrm{ha}$ on ghaseolus vulgaris cultivars inoculated with rhizobium and sown in soil low in available phosphorus, Graham and Rosas (1979) found that nodule weight increased algniricantly with increasing rates of phosphorus.

4. Effect of phogohorus on greanmatrer yteld.

Forage yield anc fresh weigit of lucerne per unit area increased with increase ta the application of phosphorus from 0 to $50 \mathrm{~kg} \cdot \mathrm{P}_{2} \mathrm{O}_{5} /$ ha and the percentago increase was 29.5 per cont. (Somer, 1970). Garg ot al. (1971) obtained signiflcant increase in green fodder yield of cowrea upto $37 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{\mathrm{S}}$ /ha while further additions did not accrue any significant advantage. Singh ot al (1972) reported that green fodier ylald of borseam at different cuts was higher under phosphate treated plots over untreated, with the maximum green fodaer baing obtained at the level of $120 \mathrm{~kg} \mathrm{E}_{2} \mathrm{O}_{5} / \mathrm{ha}$.

Erom two years" experiments conciucted by Sinha (1972) It was found that application of 90 lag $\mathrm{P}_{2} \mathrm{O}_{5}$ /he Gave significantly higher yield of berseem foddor over that due to $60 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}$. when the lovel of phosphorus was increased to $120 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} /$ ha the increase in the yleld reached the significant lovel in the trial casried out 1970-71 but not in 1969-70.

Green matter production of compea and clusterbeans increased significontly due to application of phosphorus upto $70 \mathrm{~kg} \mathrm{p}_{2} \mathrm{O}_{5}$ /ha as observed by Ehama and Garg (1973), who found thet furthor additions did not result in any aignificant advantage. srials at Rahuri snowed that phosphorus application irmprovod the groan forage production of tucarme aignificantly. Increasing phosphorus application from 0 to $200 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} /$ ha progreesively increased the green Eorage production in lucerno (Anon, 1976, b). Filf Mustafe tusain at al. (1976) noted that increase in tha dose of $\mathrm{p}_{2} \mathrm{O}_{5}$ from 40 to $160 \mathrm{~kg} / \mathrm{ha}$ correspondingly increased the yield of berbeen and a dose of 116 kg was found optimum.

Kolling et al. (1976) reported increasod foader Yields of Macroptilium atropurpuraum and Lesmodium intortum with the adaition of 180 to $360 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}$.

10

Increase in wotal yiela of berseem in 4 cuts was obtalned by Khokar and Eingh (1977) by the applicetion of phosphorus. By increasing the rates of $P_{2} O_{5}$ from 0 to $160 \mathrm{~kg} / \mathrm{ha}$ applied to three berooem cultivers, Dhar (1978) obtained Increased Eresh fodder izyelds.

In Btylosanthos gractilis Meriappan (1978) obtained marimum green fodder yield by applying phosphorus at $120 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}$.

Gingh (1979) carried out an experiment to study berseem fodder and seed protuction as infiluenced by number of cutc. sowing dates, phosphate fertilisation and micronutriant epplication, winich proved that phosphate application at $120 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}$ gave significiantly more fodder yield that $80 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}$

Yedav et al. (1979) conducted a Eield expariment involving four arop rotatlons carrying lucerna and berseem, four levels of phosphorus ($0,60,120$ and $180 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{hal}$ and two forns of phosphate (singleand triple): In the case

11

of green forago production during 1974-75, 120 and 180 kg $\mathrm{P}_{2} \mathrm{O}_{5}$ /ha proved significently superior to control while there was no signisicant difference between 60 and 220 lig . $\mathrm{P}_{2} \mathrm{O}_{5}$ /ha. However in $1975-76$ the level $120 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}$ recorded the maximum green forage yield winin was significantly more when compared with application of 0,60 and $100 \mathrm{~kg} \mathrm{Z}_{2} \mathrm{O}_{5} / \mathrm{ha}$.
5. Efect of phobehorus on deymattor yiolas.

Increaged drymotior yields of Stylogenthes humilis was recorded by shaw et al. (1966) by the application of superphosphate upto a cut/ac. From a trial conductad on Stylosanthos humilis. Fisher (2970) nevealed that increase In tho application of phosphorus increased the arymatter yields and from the extrapolation of yield curves it wes concluded that 75 percent, 90 porcent and 100 percent of maximun yield would be attained with 250,375 and 625 kg suparphosphate/ha respectively. Increase in the drymatter production of Dogmodium intortum. Hedicago sativa and stylosanthes gracilis by the application of phosphorus tas recorded by Olsen and Hoe (1971). Singh et al. (1972) reported significant incroase in drymatter yield of berscem with tho application of phosphorus upto 120 kg $\mathrm{P}_{2} \mathrm{O}_{5}$ /ha.

12

On applying phosphorus upto $70 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}$, shama and Garg (1973), noted that drymater production of compea and clusteribeans increased significantly and further additions did not result in any sigalficant advantage. From three trials conducted in North gueensland by oruce (1974) where Stylosnnthes guyanensis pasturas were top dressed with 0 to 625 kg supsrphosphate por hèctare, it was observed that applied phocphorus incroased arymater yields; but yield response decreased with increase in phosphorus rates.

Grials at kalyeni, showed that drymattor yialds of compa did not difier signiricantly due to difforont doses of phosphorus application (inon, 1976. e).

Khokar and Singh (1977) Found that incraasing, $\mathrm{F}_{2} \mathrm{O}_{5}$ rates Erom 0 to $320 \mathrm{~kg} / \mathrm{ha}$ incroased tho total yields of berseom in 4 cuts from 1.46 to 2.33 tons of drymater/ha.

Increasing tho rates of $\mathrm{p}_{2} \mathrm{o}_{5}$ from 0 to $160 \mathrm{~kg} / \mathrm{ha}$ applied to three berseem cultivars increased tha drymateor ytelds as reported by Dhar (1978). Marlappan (1970) obsarved that phosphorus at the rato of $120 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{he}$ gave masimum drymater production in StyIosanthes gracilis.

13

Abstract

Increase in the arymattor production of Vicia hirsuta and Vicia sativa with phosphorus application was obsarved by shama and Lavania (1980) who further noted that the effect of phosphorus in increasing the drymatter yield was more pronounced in Vicia hirauta.

6. Exfect of phosphorus on seed yiela.

Mata and Sanches (1970) observed the ofsect of 80, 100 or $120 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5}$ /ha as rock phosphate. single or triple superphosphate, applied in a band below the seed, in a band on the surfece or incorporatod in the soil in cowpoa. The results reveeled that soed yislds increased with increased rate of phosphorus for stingle and triple suporphosphate upto 1.95 and 2.2 tons seed/ha, respectively from the application of $120 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}$. Shalton and Fiumphreys (1971) studied the effect of variation in detugity and phosphate supply on seed ptoduction of teriosanthes humilis and sbserved that seed yield was increased from $46.2 \mathrm{~g} / \mathrm{m}^{2}$ to $55.6 \mathrm{~g} / \mathrm{m}^{2}$ when the rate of phosphorus applied was increased from 0 to $50 \mathrm{~kg} / \mathrm{ha}$.

Fron trials conducted in sumer (April-June) and sumer monsoon (Julymseptember) Burinder Singh and Lamba (1971) arrived at the conclusion that cowpoa given 0.20 and $40 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5}$ /ho gava linoer incronge in grain ytolds from 800 to $997 \mathrm{~kg} /$ he in the sumer season and 1.07 to 2.25 tons/he in the mongoon saason with Increase in the ratos of applied $\mathrm{R}_{2} \mathrm{O}_{5}$ - Similarly a triai on soybeans by Chattarjee ot al. (1972) rovealed thet application of 40 to $80 \mathrm{~kg} \mathrm{e}_{2} \mathrm{O}_{5} / \mathrm{ha}$ incroased the seed yield.

Wthal Singh and Khatry (1972) observed that tho seed yield of berseem was not influenced by the lovels or phosphorue.

Triala during 3 yoare on Phasoolve yulgarig showed that phomphorts application of 60 and $120 \mathrm{~kg} \mathrm{i}_{2} \mathrm{O}_{5}$ /ha increased seed yields upto 1.7 and 2.6 timss over tho yield Erom control plots respectively (Braga et alo.1973)

Nicholls ot al. (1973) worked out the phosphorus sesponse of Desmodium uncinetum on seed prociuction and stated that high rates of phocpizorus increased seed yteld, mainly bacause of increased inflocescence density.

Studios by ovsyannikov (1973) brought out tivet goed yiald of Iucerne increased with incraase in tho

15

rate of phosphorus applied with the maximum yiold being obtalned at the maximun lovel of phosphorud applied.
guinlivan et al. (1973) found that seed production of subtorrancan clover was greatly influenced by tho sate of applied phosphorus. Bield trials concucted by Albinat (1976) to stuay the effect of irrigation, nitrogen. phosphorus, potessium and trace eloments on ased production of lucorne showed that application of phosphorus. potassium, boron and molybdenum Increased seed production.

Subramanijan ot al. (1977) cerried out an exporiment on cowpea in a clay loan soil with medium phosphorus status, which revealad that the application of $25 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}$ recorded tho maximum grain yield and was on par with $50 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}$.

Seed production of Stylosanthes humilis under experimental and tiold conditions, was moasured by wickham ot al. (1977) and found that seed yield increased significantly by phosphorus appllcation.

In a trial on cowpea conducted at Kalyani and Pentnagar, it was seen that phosphate application asd not Incresse the seed yield of compea significantly (Anon, 197e.b)

16

The reaponse to four lovels of phosphorus (0, 20.40 and $60 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5}$) and two lovels of njtrogen (0 and 20 kg N/ha) vas stucised on soed prociuction of stylogenthes gunilis in red grevolly soll at Jhansi during 1977 end 1978. The results shosed that application of phosphorus at the rate of 20,40 and $60 \mathrm{~kg} \mathrm{p}_{2} \mathrm{O}_{5}$ /ha significancly Increased the geod procuction by 34.7. 39.3 and 44.3 paroent Eospectively over control (2 ai and Konodia. 2980).
7. Efgeci of phosphomis on chemical conposition of fodcer. a. Nitrogen and crude protein content
singh and Vema (1953) reported that on application of 0. 66. 132, 293 ance 264 2bs $\mathrm{p}_{2} \mathrm{O}_{5}$ /ac. the crude protein contonts in the arymatter of borscem were 20.19. 29.38, 10.94, 29.94 and 21 percent respoctively.

In tho presence of applied molybdenum, suporphosphate upto is cut/ac. incroased the crude protein content of gtylosenthes humilis as reported by shav et al. (1966).
riter sudying the effect of variation in density and phosphate application on growth and composition of Stylosanthos humilis. Rickert and Humphreys (2970) drew the conclusion that phosphorus application did not afiect the ceucde proteln contont.

From trials on red loan ooll. Sasichar and George (2972) Feported that Increasing rates of $\mathrm{P}_{2} \mathrm{O}_{5}$ application increased the nitrogen content in lablab.

Salade (1973) reported that phomphorus had no effect on the nitrogen content in stylosanthes gracilis.

Keys and kalangi (1973) observed that application of superphosphate incressed the crude protein yields of Desmodium uncinatum and a dose of 500 kg per hoctare was found optimum. on increasing the dose of $\mathrm{P}_{2} \mathrm{O}_{5}$ from 40 to $160 \mathrm{~kg} / \mathrm{ha}$ His Mugtafa Fusain et al. (1976) founci that crude proteln content of berseem increased mith increase In the doae of $\mathrm{P}_{2} \mathrm{O}_{5}$. Phoophate fertilization showad significant effact on inproving the quallty of the Eorage. No gigniEicant difference was observed in the crude protain contont in perennial lucerne due to application of phosphorus in an exporimant conducted at Anand under the All India Coordinated Project for Research on Forage Crops (Anon, 1978, a).

On Increasing the rates of $\mathrm{P}_{2} \mathrm{O}_{5}$ from 0 to $160 \mathrm{~kg} / \mathrm{ha}$ applied to boraeam, Dhar (1978) observed that the crude protein content also increased.

18

A significant increase in protein content in Stylosentios gracilis was recorded by Mariappan (1979) When phosphorus was applied at tho rate or $120 \mathrm{~kg} / \mathrm{ha}$.

From an experiment on blackgrame Annama George (1980) found that protein yield of bhuse was increased by increasing the level of phosphorus from 30 to 45 kg $\mathrm{P}_{2} \mathrm{O}_{5}$ /ha but a Euxthor Increase declined it.
b. Phosphorus content

Singh and Jain (1969) Eron erials with cowpea reported thet phosphorls content of plant perts increased markedly with increase in the rate of applied $\mathrm{P}_{2} \mathrm{O}_{5}$, upto $67 \mathrm{~kg} / \mathrm{ha}$ and slightly with Eurther increase to $100.5 \mathrm{~kg} / \mathrm{ha}$.

1
Increasing the rate of $\mathrm{P}_{2} \mathrm{O}_{5}$ applied upto $75 \mathrm{~kg} / \mathrm{ha}$ Increased the phosphorus content of lablab(Sasichar and George, 1972). Dou et al. (1973) obsexved that concentration of phosphorus in irrigated bean plants increased with incraose in phosphorus application.

Jones (1974) studied the offect of a wide range of phosphorus levels on the growth and uptake of phosphorus by 30 accessions of the genus styiosanthes and found that with progressive improvement in the supply of phosphorus, large difforences developed between the groups in phosphorus uptako.

M1r thatafa inucain et al. (1076) observed that increasm Ing the $\mathrm{P}_{2} \mathrm{O}_{5}$ rates from 40 to $160 \mathrm{kgy} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}$ incraased the phosphorus content in bersoen. Santos and Cabral (1976) conducted pot trials with bsrseem. given various combinations of 0.25 g of nitrogen, 1.2 or 3 g of $\mathrm{D}_{2} \mathrm{O}_{5}$ and 1,2 or 3 g of $\mathrm{k}_{2} \mathrm{O}$ par pot containing 5 kg goil with or without application of lime. They inferrod that fodder phosphorus content increased with high rates of phosphorus application.

From trials conducted on lucorne in the years 1974-76 Botorac and Vasilj (2978) found that phospiorus treatments had Inconsistent effects on the phosphorus content of the herbage which was $0.43-0.92 \%$ in the first year, $0.47-0.06 \%$ in the second yoer and $0.44-0.79 \%$ in the third year.

While incraasing the rates of $\mathrm{E}_{2} \mathrm{O}_{5}$ from 0 to $160 \mathrm{~kg} / \mathrm{ha}$ applied to tiree berseem cultivars. Dhar (1978) found

20

that the phosphorus content of the heriage also increased with incremontal doses of phosphorue.

Merlappan (197日) reveaded that phosphorus at the rate of $120 \mathrm{lgg} / \mathrm{ha}$ with lime ineluenced to give a maximum phosphorus percentage of 0.532 in Stvlogenthes gracilis.
c. Potassium content

Falace (1973) noted that potassiun concentration seemad to incraase with the application of phosphorus in Controseme pubescens, Controsoma plumoris and Eueraria phoaseololces thile in the case of geylosenthep gracilis the potassium concentration appeared to be lowered by phosphoris application.

Eantos and Cabral (1976) observed that potassium content of berseen fodder Increased with high rates of phosphorus and potash application. From fiold trials on goybans. Eogeria (1977) reporien that fincreasing the rete of phosphorus from 0 to $125 \mathrm{~kg} / \mathrm{ha}$ increased plant

21

potessium content. On incraasing the phosphorus levels, significant increase in the potassium content of Stylosanthes gracilis was obtained by dariappan (1978).
8. Effect of phosphome on chemical composition os seed.
a. Crude protein content

Singh et al. (1969) carried out an exporimont on pea varieties at Nev Delhi and reported thet application of phosphoric acid at 0 to $90 \mathrm{~kg} / \mathrm{he}$ did not Induence the protaln content in grain.

George et al. (2571) roported that in poas protein content in grains incroasea duo to phosphorus epplication at 20 and $40 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5}$ hae singh ot al. (2971) noted that in soybeane tho protein conceni oz seed tanded to increase vith increaso in levels of phospiorus te. 0.40 .90 and $260 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5}$ per hactare.

From a trial on cowpoa. Malik et al. (1972) reported that application of phosphorus had no effect on seed protein content.

On studying the response of soybeans to graded doses of nitrogen and phosphorus, kesavan and Morachan (1973) found that protein content increasod with increase In the rate of phosphorus upto $150 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}$.

In trials with phageolug aureus Panvar and Gingh (1975) reported that seed protein contents increased with Lncreasing phosimorus rates from 0 to 20 and $40 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}$. Appiication or $30 \mathrm{~kg}_{2} \mathrm{O}_{5} / \mathrm{ha}$ to yicma zadjata and soyboans and $320 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} /$ ha to Vigna migo increased the seed protetn concents (Ravankar and Badhe, 19\%5).

Anamua George (1980) observed that tho efzect of phosphorus in increasing the grain protein content in blackgram was not ajgnisicant. However there was a slight increase in the protein contents with increase in the level of phosphorus.

Savithri (19e0) reported that increasing the levels of phosphorus from 0 to $60 \mathrm{~kg} \mathrm{p}_{2} \mathrm{O}_{5} / \mathrm{ha}$ increased tho grain protein yicld in greengran although there wes no signiEicant dsfference.
b. Phosphoras content

Barte (1959) studiod the effect of phosphorus nutrition on Alaska peas and obsorved that folsar application
of phosphorus increased the phoophorus content of pees.

Mascarenhes et al. (1969) reported from a trial on
 that phosphofus appilcation increased the content of phosphorus in the seeds. Omueti and ogenuge (1970) observed that in groundnut and cowpea applied phosphorus increaged the phosphorus content in grain.

Robinson and Jones (1972) notad chat Stylosanthes humilis showod a very marisod abjlity to transiocato natrients to the seed. Tho seeds of adequately fertilized plants contained 0.36 percent phosphorus.
©. Detaosiun content

From a trial on Phegcolug vilgaris Haccerenhas at al. (1969) roported that increasa in phosphorus application Erom 0 to $150 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5}$,ha increased tho potassium content In the seeds. Georgoiev (1977) In trials with groundnut reported that applidud phospionus pronoted more intansive accumalation of potassium in pods.
9. EEEECt of foliar ppolication of phoghorus on seed yiela.
an the 1965-66 and 1966-67 expersments concucted at Jhansi, Singh and Pandoy (1969) roported that apraying borseem with phosphate solution boocted tho soed yield
enabling a profit of fe. $1.038 / \mathrm{m}$ Em an acre. in 1965-66 application of phosphate as apray Increased tho secd yiold from 2.1 q to $5.2 \mathrm{~d} /$ ha when the crop was left for seed after the second cut. In the second year the treatnont increased the seed yield from 6.1 q to $0.5 \mathrm{~g} / \mathrm{ha}$. When the effect of spray fartilization was studied under two sets of conditiono namely (1) with a basal aressing of phosphete at sowing and (2) without any basal dressinge It was observed that increase in seed yield was more pronounced with tho basal dressing of phosphate, because the soll application of phoaphato provided more leaf area for tho absorption and offective utilization of tho sprayed nutrient at seed production. Gill et al. (1971) seported that phosphate apolication ofther to soil or follar apray incroased the seed yiold or cowpea and $25 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}$ given as foliar spray applied at flowering Was statistically on par with $50 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5}$, he applied to 3011 at sowing. The highest seed yield was obtained dith $50 \mathrm{~kg} P_{2} \mathrm{O}_{5} /$ ha applied to soil at sowing followed by $25 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} /$ ha follar application at first flush of floworing, while from econome point of view, the best treatment combination was $25 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5}$ ha sotl applicetion Eollowod by $25 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}$ foliar application.

25

While geudying the offect of follar and soll application of phosphatic ferthlizors (0,20 or 40 3b. $\mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ac}$) on phaseolus aureus. corde and kibo (1973) found that in general the foliar application of 20 1tu $\mathrm{P}_{2} \mathrm{O}_{5} / a c$ in one dove on 25 th day after sowing was found to bo the best as Indicated by higinest grain yield when compared with soil and other follar applications of phosphorus. Tho nest bost treatment was the lovel of 20 1bs $\mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ac}$ as folias opray in threa equal split doses on 25 th, 35 th and 40 th day after sowing.

Subramaniyan et al. (1977) roported that applicam tion of $25 \mathrm{~kg} \mathrm{~B}_{2} \mathrm{O}_{5} / \mathrm{ha}$ in goil rocorded the maximun grein yicld in cowpea and it was on par with $50 \mathrm{~kg} \mathrm{E}_{2} \mathrm{O}_{5}$ /ha as well as $25 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha:}$ soil applled plus $12.5 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}$ as foliar.

In trials conducted at Rahuri, significant differencos In seed yiela of lucome was obtained due to application of phosphorus as follar apray whece 2 per cent of $\mathrm{E}_{2} \mathrm{O}_{5}$ sprey increascd the yiela significantly ovor no spray and 2 percent and 4 peacent $\mathrm{D}_{2} \mathrm{O}_{5}$ spray gave the wane seed yield (anon, 2579, c).

Foliar application of phosphozus dad not show any aignificant effect on seed production of luceme at Anand.
as seen from an orperiment concucted undor tho All Indua Coordjnated Project for Research on Eorage Crops (Anon, 1970, d). Similar trials at illsaar and Hyderabad showed that seed yields of lucerme were not affectod signisicantly by the spray treatmonts of phosphorus, but it ghowed improvement in the yield at Hissar as compared to control (Anon, 1979).

Singi (1979) reported that foliar Eaciing of phosphorus improved neither forage yield nor seed production in beracem.
10. Effoct of number of cuts teinon on sged yield.

The highest seed yluld of luceme was ointained by Batra and Gill (1967) from plots left uncut, followed by those cut for 1,2 and 3 times bofore leaving the crop for seed production.

Singh and pandey (1969) concucted axperimenta to assess the efficacy of spray fertilisation of borseom in reletion to the number of cuttings tekon for green fodder, besore leaving the crop for beed procuction and found thet when tho orop was left for seed after the third cutting, the seed yield docroasod as compared to that after second cutting.

Overall highost seed yiolds of luceme were obtelned When luceme was utilized for seed only without taking any cut for herbarge (Konstantinova and Danilov, 1973).
pacute (1973) sound out that seed yields of luceme tended to be highor when the crop was allowed to set seed on presmary growth rather than fhen it was cut at the bud stege or at early flowering for green foddor before a second cut was taken for seed. Seed yield of borseom ciechined whon the number of cuts of green zodder taken was xaised from one to two as revealed by an axperiment concucted kalyani. West Bongal under the all India Coordinated Project for research on forage crops (Anon, 1976, c).

A single gracing followed by cuting at the early Elowering atage increased seed yield from $221 \mathrm{~kg} / \mathrm{ha}$ in the uncefollated control to $355 \mathrm{~kg} / \mathrm{ha}$, fn the case of Bbylosenthes hanota while intemstcent grazing and mouing at later stages decreased seed yiolds (Wilaipon and Humphreys, 1976).

Experiment to study the offect of cutting managemont and phosphorus application on seed production of lucerne at Amend under the AICPR for research on forage crops showed that significantly, more seed yicla was obtained won the

28

crop was left for sead production after threa cuts were teken rather than aftor two cuts or four cuts (Anon, 1978, d).

A trial was conducted at Biscar undor AICPR on Forage Crops with the objective of stuaying the comparative poriomance of cowpea undor different dates of planting. cutting and phosphate levels for grain. Ths data revealed that seed yield was higher when tho crop was not cut for fodder before leaving for seed setting when comparad to taking one cut before leaving the crop for seed production. However, statistically both the treatments were of the same order (Anon 1973, e).
singh (1979) seported that seed ydeld of berscem dic not differ significantly when the crop was left for sead production after 3 or 4 cuts of greon fodder were taken. Thus aifforential time length available for seed production did not help in the roproductive activity of the plant.
11. Effect of applied phosphorus on soll ferthly status.

From an oxperiment on lablab. Sasidhar (1969) reported that soil tested on 50th day after sowing indicated thet incremental doses of phospinorus ($0,25,50$ and $75 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}$)
ahowed highly significant progressive incroese in avallable phomphorus content of the soll. However at the time of harwast when the soil was tasted it was found that dififerent levels of phosphorus effected significant increase in boil phosphorus content oxcopt $75 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} /$ ha wich recorded a significant reduction In the available phosphorus content over $50 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}$. Available potassium content was reduced by application of phosphorus. signiricant increuse in the nitrogen content of soil was brought about by application of 25, 50 or $75 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} /$ ha over no phosphorus application to the crop of lablab eventhough the difrerence batween the leveles was not significant when ooil was tested 50 days after powing. At harvest when soil was tosted it was found that phosphorus had no significant effect on soil nitrogen content.

Garg et al. (3970) observed that nitrogon and availiable phosphorus content of soil grotm with cowpa were improved by the application of phosphorus at the rate of 37,74 ox $1.11 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}$. A trial conducted by Chatterje et al. (1972) on soybean revealed that increasing the rate of phosphorus application from 40 to $80 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5}$ 'ha increased the soil nittrogen contont.

Abstract

Ninal Singh and Khatri (1972) carriod out a Eield trial to study the effect of phosphate fortilization of legumes on goil fertility and they came to the conclusion that there was an increase in the aitrogen content of the soll with increase in the cose of phosphorus. There was also an incroase in all the three forms vize total, organic and available phosphorus along thith the increase in the dose of applied superphosphate.

Inoculation and application of piosphate (22.4 kg/ha) was found to increase tho soil nitroyen content by 50^{2}. 29 and 26 por cent over control $4 n$ orops of cowpoa, groundnut anc greengram respectively as observed by Bahu and Behera (1972). It was Eeportea by Latts (1973) that the available phosphorus in the soll wes significantily higher where phosphorus was appllod in Elelds cultivated with Luceme. Sahu (1973) oboorved that application of $22.4 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5}$ /ha incroased the nitrogen content of soll from 20 to 30 per cent in the case of blackgram and from 7 to 19 per cent in the case of horsegram.

Bruce (1976) found that with tho increase in successtve dose of phosphorus upto 625 kg superphosphate
per hactare, significant increases for the organic carbono. available nitrogen, availoble phosphorus anci available potessium as well as cation exchenge eapacity of the soxl occurred when Styiobenthes guyanonsis was topdrosoed with superphosphate.

A study conducted in a typical upland soil of Ranchi. on Stylosanthes humilis treated wht five levels of phogphorus viz. $0,40,80,120$ and $160 \mathrm{~kg} P_{2} \mathrm{O}_{5} / \mathrm{ha}$ applied as superphoophate at the time of sowing, revealda that there was a trend townids increase in the phyolco-chamical propere ties of soil with the increase in successive doses of $\mathrm{P}_{2} \mathrm{O}_{5}$. Significant troatment difforences vere obtainod for available nitrogen, phosphozus and potassium as well as cation exchange capacity of the soil. In the case of available nitrogen and catiton exchange cepacity of the sotl, the alfierences upto $40 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5}$ /he were not signtficant. Application of phosphorus beyond $40 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5}$ /he appearac to have increased tine sildca sheet resul.ting in signisicant Increase in the cation exchange capactty of the soil Erom $6.25 \mathrm{~m} . e$. under control plot to 20.43 moe . at 120 kg $\mathrm{P}_{2} \mathrm{O}_{5}$ /ha (singh and singh 1975).

Theriappan (1978) observed that phosphorus application had no significent afiect on the total nitrogen content in the soil cultivated with Stylosanthoa qracilis but application of $120 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} /$ he gave the highost available nitrogen content in tho soil which was olgnificantiy superior to tho other levels triod. He also reported that phosphorus at the rate of $120 \mathrm{~kg} /$ ha gave maximum avallable phosphorus in tho soll.

Annampe George (1980) raporteci that in fielde cultivated with bleckgrem the cotal nitrogen contert of the poll was not influenced by the levels of phosphorus but availeble potassium contentes in tho soil tended to increase with increase in tho level of applied phosphorus from 30 to $60 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5}$ /ha though the offect was not significent.

From an expertmont on greengram, Savithri (1980) found that the medium level of $45 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5}$ /ha gave the maximum total nitrogen in the soll. she elso reported that the available phosphorus content of the soil increased with incraasing ratos of $\mathrm{P}_{2} \mathrm{O}_{5}$ from 30 to $60 \mathrm{~kg} / \mathrm{ha}$ winle available potasgium was not incluenced by the Levels of phosphorus.

MATERIALS AND METHODS

The present study was undertaken with a view to find out the effect of different levels as well as methods of application of phosphorus and schedules of cutting of green fodder on the seed production potential of stylosanthes gracilisa perennial leguminous fodder:

Materials

I. Experimental site

The trial was conducted in the Instructional Farm, College of Agriculture, Vellayani.
II. SOII

The soil of the experimental site was red loam with the following characteristics.
pH - 5.4 (1:2 soll solution ratio using pif meter)

Total nitrogen - $2280 \mathrm{~kg} / \mathrm{ha}$ (microkjeldahl method)
Available ,
Phosphorus) $-96 \mathrm{Kg} / \mathrm{ha}$ (Bray's method)
Available potashr $24 \mathrm{Kg} / \mathrm{ha}$ (amnonlum acetate method)
Cation exchange
capacity - $3.42 \mathrm{~m} . \mathrm{e} / 100 \mathrm{git}$. of soll.

methods

1. 2reacmants

Factorial combinations involving five lovels and mathons of application of phosphotus and theee schodules of cutting vere used.
A. Phosphorus levels and mathods of application

$$
\begin{aligned}
& P_{1}-40 \mathrm{Kg} \mathrm{P}_{2} \mathrm{O}_{5} / \text { ha (bosal applicationm 5) } \\
& P_{2}-80 \mathrm{Kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha} \text { (basal application- } \mathrm{S} \text {) } \\
& P_{3}-120 \mathrm{~kg} \sum_{2} 0_{5} / \text { ha (basal application- s) } \\
& \mathrm{P}_{4}-40 \mathrm{Kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}(\mathrm{~S})+40 \mathrm{~kg} \mathrm{E} \mathrm{E}_{2} \mathrm{O}_{5} / \mathrm{ha} \text { (EOLlas-F) } \\
& \mathrm{B}_{5}-30 \mathrm{Kg} \mathrm{P}_{2} \mathrm{~g}_{5} / \text { ha }(5)+40 \mathrm{Kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}(\text { foliar- } \mathrm{E})
\end{aligned}
$$

D. Cutting scheculus
c_{1} - Crop to bo left. For seod sething after taising 2 cuta of green fodder.
C_{2} - Crop to be loft for sose sotting after taking 3 cuts of grean fodder.
C_{3} - Crop to bo left for seed setting after taking 4 cuts of greon zodder.

Tho firgt cut was takon 75 days afeer planting and
subsequent ones at 30 days' interval.
C.Treatment combinations
$P_{1} C_{1}-40 \mathrm{~kg} P_{2} O_{5} / \mathrm{ha}$ (5) and two cuts.
$P_{2} C_{2}-40 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}(\mathrm{s})$ and three cuts.
$\mathrm{P}_{1} \mathrm{C}_{3}-40 \mathrm{Kg} \mathrm{B}_{2} \mathrm{O}_{5} / \mathrm{ha}(\mathrm{s})$ and four cuts.
$\mathrm{P}_{2} \mathrm{C}_{1}-80 \mathrm{Kg} \mathrm{P}_{2} \mathrm{O}_{5}$ /ha (S) and two cuts.
$P_{2} C_{2}-30 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}(\mathrm{S})$ and incee cuts.
$\mathrm{P}_{2} \mathrm{C}_{3}-90 \mathrm{Kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}(\mathrm{s})$ and four cuts.
$P_{3} C_{1}-120 \quad \mathrm{KO}_{2} \mathrm{O}_{5} / \mathrm{ha}$ (3) and two cuts.
$p_{3} C_{2}-120 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}(\mathrm{s})$ and three cuts.
$g_{3} C_{3}-220 \mathrm{~kg} p_{2} \mathrm{O}_{5} / \mathrm{ha}(\mathrm{S})$ and four cuts.
$\mathrm{P}_{4} \mathrm{C}_{1}-40 \mathrm{Kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}(\mathrm{S})+40 \mathrm{Kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}(\mathrm{F})$ and two cuts.
$\mathrm{P}_{4} \mathrm{C}_{2}:-40 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}(\mathrm{S})+40 \mathrm{Kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}(\mathrm{F})$ and three cuts.

$P_{5} C_{1}-80 \mathrm{~kg} P_{2} \mathrm{O}_{5} / \mathrm{ha}(\mathrm{S})+40 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{he}(\mathrm{F})$ and two cuts.
$\mathrm{P}_{5} \mathrm{C}_{2}-80 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}(\mathrm{G})+40 \mathrm{Kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}(\mathrm{F})$ and three cuts.
$\mathrm{P}_{5} \mathrm{C}_{3}-\mathrm{BO} \mathrm{kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}(\mathrm{s})+40 \mathrm{Kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}(\mathrm{F})$ and four cuts.

II. Layout and degiga

The exporiment was lata out as a factorial oxperiment. In paricomizod Block Design with three replications. The layout plan $2 s$ given in E1g. 2 .

Eeplications	-3
Treatmant combinations	-15
Gotal plots	-45
Gross plot gize	$-4.0 \mathrm{~m} \times 3.0 \mathrm{~m}$
Net plot size	$-3.4 \mathrm{~m} \times 1.0 \mathrm{~m}$
Not araa of a plot	$-6.22 \mathrm{~m}^{2}$
Spacing	-30 cm 220 cm

```
FIG.2. LAY OUT PLAN
```

FACTORIAL EXPERIMENT IN RANDOMISED BLOCK DESIGN.

$P_{4} C_{3}$	$P_{5} C_{2}$	$P_{1} C_{1}$
$P_{1} C_{3}$	$P_{2} C_{2}$	$P_{2} C_{1}$
$P_{2} C_{3}$	$P_{4} C_{2}$	$P_{1} C_{2}$
$P_{4} C_{1}$	$P_{3} c_{2}$	$P_{3} C_{3}$
$P_{5} C_{1}$	$P_{3} C_{1}$	$P_{5} C_{3}$

$P_{5} C_{4}$	$P_{4} C_{3}$	$P_{5} C_{2}$
$P_{2} C_{3}$	$P_{5} C_{3}$	$P_{4} C_{2}$
$P_{1} C_{3}$	$P_{2} C_{1}$	$P_{3} C_{2}$
$P_{2} C_{2}$	$P_{1} c_{2}$	$P_{4} C_{1}$
$P_{3} C_{1}$	$P_{3} C_{3}$	$P_{1} C_{1}$

$P_{3} c_{2}$	$P_{3} c_{1}$	$P_{2} c_{3}$
$P_{1} c_{1}$	$P_{5} c_{1}$	$P_{4} c_{3}$
$P_{1} c_{3}$	$P_{5} c_{3}$	$P_{1} c_{2}$
$P_{2} c_{1}$	$P_{4} C_{1}$	$P_{4} c_{2}$
$P_{5} C_{2}$	$P_{3} c_{3}$	$P_{2} c_{2}$

```
LEVELS AND METHODS OF
PHOSPHORUS APPLICATION
\(P_{1}-40 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}\) SOIL APPLICATION
\(\mathrm{P}_{2}-80 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} /\) ha SOIL APPLICATION
\(P_{3}-120 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}\) SOIL APPLICATION
\(\mathrm{P}_{4}-40 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}\) SOIL \(+40 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}\) FOLIAR APPLICATION
\(\mathrm{P}_{5}=80 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} /\) ha \(501 \mathrm{~L}+40 \mathrm{~kg} \mathrm{~F}_{2} \mathrm{O}_{5} / \mathrm{ha}\) FOLIAR APPLICATION
```

NUMBER OF CUTS
$c_{1}-2$ cuts
$c_{2}-3$ cuts
$c_{3}-4 \mathrm{cuTs}$

GROSS PLOT SIZE - $4 \times 3 \mathrm{M}$.

Two rows all around were lezt as bordar rowe one row has left as destruative sow and the rois adjacent to it also gas left as horier row tinformy in all plotg. V. Detaila of oultivation

With the onset of monsoon tho exporimental area was duy twlce, stubbles romoved, clods plohen and the field laid out into blocks and plots. She plots were again thoroughly dug and lovalled.

3. Fertilizer appincation

A uniform doce of $20 \mathrm{~kg} \mathrm{iv} / \mathrm{ha}$ as urea and 40 kg $\mathrm{E}_{2} \mathrm{O} / \mathrm{ha}$ as muriate of potashe was given to all plots Tho basal application of phosphorus wes given as per treatments ie. $30,60,220,40$ and $30 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}$ for $P_{1}, P_{2}, P_{3}, P_{4}$ and P_{5} treatmente respectively.
2. Seed treatnent
since the soeds of stylosanthes have hard seadcoat and are difficult to gemmate, they were scarified by treating with concentrated sulphuric acic. One hundred and fifty grens of the seeds vere treatod with sulphuric acid just surficiont enough to completely inmorse tine seedse The secds were kept in tho acid for 1 minute. The time was stansuaized to one minute so as to provide
masimum parcentage of gemination. The acta was decanted and the seeds wore Fopeaterdly washed with water till the water showed no acidity as sossect with ittmus paper. The scartizied aeeds were then treated with thizobino culture.

3. sowing

The seeds wore dibbled in rous 30 cm apart and covered with a thin layer of soll. Sowing was done on 11.-7-1979. The germinaticn tas unform. minning and gepfilling ware done 20 cays after sowing and a uniform population was matntained by kesping a spacirig of 10 cm batween plants in the rows.
4. Intercultivetion and veeding

Weding was first carried out 35 days after sowing. A second weeding was given inmedjately after tho Eirsit harvest of green Eodeter.
5.'2lant protection
plent protection measures were adopted as a prow phylactic moasure against mites.
6. Harvast of green fodder

The first cut was taken uniformiy from all the plote on the 76th day of sowing and tho geconce cut was taken 30 days after the first cut. The thind and fourth cute
at 30 days interval were taken as per tho schodulo fixed in the programme. The detaile of the dates of cuts are fumished below:

7. Foliar application of phosphorus

A dose of 300 gio of aingle superpiosphato por plot at the rate of $250 \mathrm{~kg} / \mathrm{ha}$ was taken for making a solution for spraying. this quantity was soaked in equivalent guantity of water (300 ml) for fivo days. The matarial was stirred twice every day, on the sixth day more water was added and the supornatent solution was soparated. Tha process was repeated by adding small quantities of wator, stirring and decanting the solution, Einally the solution thus collected was made upto 2400 ml , witin wator
to provide 2% concentration of $\mathrm{P}_{2} \mathrm{O}_{5}$ for spraying in each plot (singh and Pendey, 1069). Foliar application of phosphorus, as par treatments P_{4} and P_{5} wae given 20 days after the lase cut in the respectiva cutting treatmont plots.
8. Seed harreat

Since no spectific method to fix the time of maturity for seed harveet has been evolved for the crop in Kerala it has been stenderdized with the obsorvations taken from a previous crop and the procedure folloved is detailed belou, Ten plants at random were selected from which five branches were haryostod and the seads wore collectea from these branches and separated into mature and inmature seeds based on the collour of the segdcoat. Black seeds were considered as mature and green as imature for this obsorvation. The percentages of bleck seeds to the total were worked out. This observation was taken at twodays' Interval. The Eirst observation was takon on the 30th day after the first flower appeared and continued for a period of 20 days. A maximum of 40 percent maturity was noted on 45 th day of flowering. so 40 percent maturity was kept as a standard for the harvest since there was a continuous sheading of seeds. if the hervest was delayed.

41

The harvast was done in the eariy morning by cutting the branches plotwise. These branches were dried, threshod and sead nere collected and clemed. The top soll with the leaf mulch was carefully romoved from plots ond beacis were separated and dried.

> Observations recorded.

A. Growth charecters:

For assessing the pariodical grouth, 20 plents were rendomly selected from each plot and the following growth characters were recorded.
(a) Height

Tho height of the plant was moasured ifrom tho base to the growing tip of the tallest branch.
(b) Spread

The spread was measured as the mextrum lateral Clanater from the main stom of each plant.
(c). Number and weight of root nodules

The root nodules of five plants at flowering, selected randomly from the destructive row left for the purpose in each plot, were counted and the average number of nodulea por plant and thair waighte worked out.
(d) Greenmatcer yield

After each harvest of green foddar, tho yiold Erom each net plot was recorded and converted to per hectare yleld.
(e) Drymatter yiole

Samplo plents cut into small pleces were dried in shade and then dried to conotant maight in an air oven. Drymattor content for each treatment was computed and the arymatier yields caloulated from the respective greenmater yields.
(E) Loaf setem ratio

Plant samplos Emon cach plot weno soparated into loak and stem and Erom their dry weights, the loasistem ratios vere computed at each harveat.
(g) Total seed yiela pser plot

The seads soparated from tho harvested crop and tho $\operatorname{shed} d e d$ seods collected from soll surface vore cleaned, mixed, dried and fimal weights recorded after adjusting the molsture content to 14 pescent.

B. Quadity cheractors.

The ovendriad plant and seed samples were powdered In a filley grinder and uced for chemical analysis. The plant and seed samples vere separately analysad for total Ne E and K 。

43

(a) Nitrogen

Total nitrogen content of the samples were detexminod by modified microkjeldahl method (Jeckson, 1967) and crude proteln percentage worked out by multiplying the nstrogen content by the factor 6. 25 (eirnpson et ai. 2965).
(b) Phosphorus

Phosphorus was determined by Vanadomolybatate ghosphoric yellois colour meti:od (Jackson, 1967).
(c) potassium

Potessium was astimacod by using a Elane photometer. C. Soil anolysis.

Tho composite soil semple collected prior to the experiment and soil samples colleceed from individual. plots after the experiment were analysed for total nitrogen, available phoophorus, avallable potash... and cation exchenge capacity.

Total nitrogen was datermined by modinied microkjeldahl method (Jackson, 2967). Aveilable phosphorus was detemined by Bray's merhod (Jackson, 1967). Available potash Was deteminea by amonium acetate method (Juackson, 1967). The cation exchange capacity of the soil was estimated by displacement tecinique using neutral normal amonfum acatate.

44

D. Statistlcal anazads.

Data relating to difforant observations were analysed by applying the technique of analysis of variance and significance was tested by 'F' test (Snedecor and Cochran, 1967). Important correlations wore also worked out.

RESULTS

RESULis

The observatlons recorded were statistically analysed and the mean values and correlation coefficients are presented in the text in Sables 1 to 22. The abstracts of the analysis of varlance tailes are presonted in Appendix I to SXI.

1. Growth charectorse
1.1 Hoight

Tho maen haights of the plants at the time of first cut, second cut, thirc cut and fourth cut are presented in Tables 1.1 to 1.4 and the maan helghts at flowering in Table 2.5. The related aontracts of Analysos of variancet are prosented in Appondix I (a) to I (e).

The mean values of plant holght as influenced by tho phosphorus treatmont Indicated that increasing the rate of phospionus application in the sold from 40 to 120. kg $P_{2} O_{5} /$ ha increased the height of stylosanthes gracilis significantly at the time of all four cutse

At flowering the mean hoight increased significently on increasing tho rate of phosphorus applied in the soil from 40 to $120 \mathrm{~kg} \mathrm{P} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}$. Combinod application of

Table 1. 1 height of plants (cm) at the time of lat cut

Table 1.2 Holght of plante (Cm) at the time of 2nd cut

Table 2.3 Height of plants (cm) at the time of 3ra cut

Table 2.4 Helght of plants (an) at the time of 4 th cut

Rank	Levels of in the	ingan values	C.D. 0.05)
2	120	60.03	1.912尔
2	30	44.03	1-479**
3	40	31.48	

* CuD. for comparisons Involving $120 \mathrm{~kg} \mathrm{E}_{2} \mathrm{O}_{5} / \mathrm{ha}$, * C.D. for comparisons between 80 \& $40 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}$.

Table 1.5 Height of plents $(\mathrm{cm}$) at the time of flowering

Levels and methots of phosphorus application				
$40 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} \mathrm{gha}$ in soil	100.20	56.77	53.63	70.20
$80 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}$ in 80.1	120.93	65.47	67.33	88.58
$120 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}$ in soil	148.07	02.23	84.77	105.02
$40 \mathrm{~kg} \mathrm{E}_{2} \mathrm{O}_{5}$ /he in soLd +				
$40 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}$ Eoliar	112.40	59.37	53.37	76.54
$30 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} /$ ha in soil +	127.23	71.00	73.23	95.49
$40 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}$ foliar				

Hean
121.57
67.57
66.97

$$
\begin{aligned}
& \text { C.D. }(0.05) \text { for } p=2.866 \\
& \text { G.D. }(0.05) \text { for } C=2.221 \\
& C_{0 . D}(0.05) \text { Eor } E x C=4.965 .
\end{aligned}
$$

48

phosphorug in soll and by Eollar $\left\langle\mathrm{P}_{4} \varepsilon_{5} \mathrm{P}_{5}\right.$) was Eound to give ofgnsficantly lover man plant hoights when compared to the same amount of phosphorus applied completa as basal boil application $\left(P_{2}{ }^{\alpha} P_{3}\right)$. Application of 40 kg $\mathrm{P}_{2} \mathrm{O}_{5} /$ ha in the soll gave the least man plant heights.

As Ear as cutting treatments waze concemed, the minimum number of cuttinge (2) recorded the masimum noan plant heights at flowering which was significantly suparior to the othor two cutting treatnents (3 and 4) which wore on per.

The interaction effect baeseen phosphorus application anc cutting troatnant was. algo Eound signisicant. The meximum mean height of 143.07 cm uas recorded by $\mathrm{P}_{3} \mathrm{C}_{1}$ (120 ing $P_{2} O_{5} / h a$ soil application and tro cuts combination) and the miniman mean height of 53.63 ca by $\mathrm{P}_{1} \mathrm{C}_{3}(60 \mathrm{~kg}$ $\mathrm{P}_{2} \mathrm{O}_{5}$ /an so土1 application and four cuts combinationa) 2.2 sproad

The "Oan gproad of the plants at tho time of 2st, 2nd 3 ra and 4 th cuts are presented in Tables 2.1 to 2.4 and the mean apread at . filowering in Tuble 2.5. The costesponding abstracts of the Analyaes of Variance are givon in Appendix II (a) to IT (e).

Table 2.1 Spread of plants (cm) at tho timo of 1 st cut

Rant	Levels of $\mathrm{E}_{2} \mathrm{O}_{5}$ applied in soil ($\mathrm{kg} / \mathrm{ha}$)	Nean values	C.0. (\$.05)
1	120	43.98	1.788*
2	80	32.20	2.189**
3	40	23.83	

Table 2.2 spread of plants (ca) at the time of 2 nd cut

Renk	Levals of $\mathrm{E}_{2} \mathrm{O}_{5}$ epplied in the ${ }^{2}$ sinl $(\mathrm{kg} / \mathrm{ha})$	Mean values	C.D. (0.05)
1	120	46.62	1.931*
2	80	33.19	2.365**
3	40	24.66	

Table 2.3 Epread of plants (cm) at the time of 3ra cut

Rank	Levels of $\mathrm{P}_{2} \mathrm{O}_{5}$ applied in the wEil (kg/ha)	Mean Values	C.D. (0.05)
1	120	87.52	2.824*
2	80	34.08	
3	40	25.83	2.306**

Table 2.4 Spread of plants (cm) at the the of 4th cut.

Rank	Levels of $\mathrm{P}_{2} \mathrm{O}_{5}$ applied in the suil (kg/ha)	Mean volues	C.D.(0.05)
1	120	42.93	2352
2	00	31.90	. 352
3	40	21.47	1.920 ${ }^{\text {\% }}$

*C.D. For comparisons involving $120 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}$.

* *. D. for comparisons between 80 and $40 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}$.

Table 2.5 Spread of plants (cm) at the time of flowering

$5 i$

At the time os all \& cuts the man spread was meximum wen $120 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} /$ ha vas applied in the soil. This was significantly superior to the lower lavels of $\mathrm{p}_{2} \mathrm{O}_{5}$ applied in tio soid. The level e0 kg $\mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}$ applied in the soil gave signizicantly higher plant spreads than $40 \mathrm{jg} \mathrm{p}_{2} \mathrm{O}_{5} /$ ha appliod in the soil.

At Elowering tha moan plant spread recorcled significant increase with the increase in soll phosphorus application Eion 40 to 00 and from 30 to $120 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}$. As in the case of plant height, combined soll and folian application of phosphorus gave ulgnizicantly lower mean plent spread as compared to tha same amount of phoephorus appifed in tho soil.

A porisal of the marginal maens of cutting treatments revealed that tho mintmum number of cuttings (2) resulted In the maximum maan spread of plants at flowortng than the other two cutting treatments (3 and 4). The treatmont, cutting 3 tines reconded significantiy higher man plant gpread than a cuts.

Intaractional offects Detween P end C were also found oignificant and the maximum apread of ${ }^{102 \cdot 93}$ wes recorded by combination $120 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5}$ ha soil appilcation and two cuta
(51.27 cm)
and the minimura by $40 \mathrm{~kg} \mathrm{P} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}$ aoil application and four cuts.
2.3 Loaf:sten ratio

The mean leas sitem ration at the time of each cut are presented in Tebles 3.3 to 3.4 and tho relovant abotracts of Analysed of Veriance in Appendits ilf (a) to III (d).

Breatmente were found to have significant influence On moan lear :stem ratios at all four stages of observation. At the time of $1 s t^{2}$ 2nd and 3ra cuts, application of $120 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5}$ /ha in the soil gave aignificantiy higher leaf satem ratios than $80 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} /$ he and $40 \mathrm{~kg} \mathrm{D}_{2} \mathrm{O}_{5} / \mathrm{ha}$ while $80 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5}$ /ha in turn gave oigniEicantly higher lean sitem ratiog than $40 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}$. In the 4 th cut application of $120 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5}$ ha in the soth, gave tho ulghost leaf sotem ratio aignificently more than the other two levels which vere statistlcally on par.
1.4 Number of root nodules

The mean number of root nodulos are presented in Table 4 anci tho abstract of Analysts of Variance in Appendix IV.

From the toble it is observed thet phosphorus applicetion had significant exiect on the numbor of root nodulos

Table 3.1 LanE:stern ratio in the 3st cut

Rank	Levele of $\mathrm{P}_{2} \mathrm{O}_{5}$ applied in soll (kg/ha)	Reans value	C.Da 10.0
1	120	1.63	0.061*
2	80	1.65	
3	80.	1.20	0.049*

Table 3.2 Leaf: stem ratio in the and cut

Table 3.3 Leaf: stam ratio in the 3rd cut

Table 3.4 Leat: atem ratio in the sth cut

Table 4. number of moot nodules (per plant)

$\begin{gathered} \text { Number } \\ \text { of } \\ \text { cues } \end{gathered}$	Levels and methods of phosphorus application					
2 cuts	171.0	199.0	396.0	174.0	197.7	227.5
3 cuts	152.7	206.0	391.0	167.0	210.7	225.5
4 cuts	168.3	204.0	392.3	1.70 .0	203.3	227.6
mean	164.0	203.0	393.1	170.3	20.33	

C.D. (0.05) EOE $p=12.76$

In stylosanthes gracilis. Application of $120 \mathrm{~kg} \mathrm{p}_{2} \mathrm{O}_{5} / \mathrm{ha}$ $\left(E_{3}\right)$ as noil application, gave tho maximum moan number of root nodules and wes significantly superior to all other phosphorus treatments. P_{2} and P_{5} wore on par and In turn geve significantly more number of root nodules then $40 \mathrm{~kg} \mathrm{p}_{2} \mathrm{O}_{5} / \mathrm{ha}$ application in soil $\left(\mathrm{p}_{2}\right)$ and 40 kg $\mathrm{P}_{2} \mathrm{O}_{5}$ /ha as soll plus $40 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5}$ /he foliar application $\left(\mathrm{P}_{4}\right)$. P_{1} and P_{4} wera on par.

Cutting treatments as well as interactional effects betwen p and C were found to be not significant.

1. 5 Weight of root nodules

Table 5 presents the mean values of the waight of root nodules and the corresponding abstract of the Analysis of Variance is given in Appendix V.

Among the creatmonts, phosphorus treatments alone were found to be significant. Phosphorus treatment P_{3} (120 $\mathrm{kg} \mathrm{P}_{2} \mathrm{O}_{5} /$ ha in tho soil) produced the maximum man weight of root nodules and was significantly superior to all other treatments. $\mathrm{P}_{5}\left(80 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{he}\right.$ in the sofl + $40 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}$ follac) and P_{2} ($80 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}$ in the soil) wore on par and significantly suparior to $P_{4}\left(40 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}\right.$ In the soil $+40 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}$ foliar) and $\mathrm{P}_{2}\left(40 \mathrm{~kg} \mathrm{p}_{2} \mathrm{O}_{5} / \mathrm{ha}\right.$ in the soll) which in turn tere on par.

56

Table 5. Weight of root nodules (mg) perplant.

Cutting treatmonts and interactions between P and C were found to ba not significent.

2. Xeld.

2.1 Greennatiter yield

The moan groonmatter yields at oach cut are presented In rables 6.1 to. 6.4 and the mean total greannatter yield fron all tho cuts in rable 6.5. Tho accompanying abstrects of tho inalysos of Variance are incorporated in Appendices VI (a) to VI (0).

The affect of phosphosus application on maan grean mattor yield at each cut wes gignificant. npplication of $220 \mathrm{~kg} \mathrm{E}_{2} \mathrm{O}_{5} /$ ha in soll gave tha highest greenmatter yield in 'all four cuts. It was superior to $80 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}$ and $40 \mathrm{~kg} \mathrm{p}_{2} \mathrm{O}_{5}$ ha soil applications in all cute orcept 4th cut, where it wag on par with $80 \mathrm{~kg}_{2} \mathrm{O}_{5} /$ ha soil application. In all ceses $80 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}$ applied in the soil was found to bo signiatcently superior to $40 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}$ soil application.

The result of tha analysis of varianco rolating to the total greenmattor yield revealed that the treatmants had significent influence on total greenmatter yield. soil application of $120 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} /$ ha gave significantly

Table 6.1 Greenmatter yiela in the lst cut ($\mathrm{kg} / \mathrm{ha}$)

Rank	Levals of $\mathrm{P}_{2} \mathrm{O}_{5}$ applied in Mea		C, D. (005)
	9012	yalugs	
1	120	5319.58	137.063*"
2	80 40	$\begin{aligned} & 4075.92 \\ & 3395.09 \end{aligned}$	111.912**

Table 6.2 Greennattor yield in the 2 na cut ($\mathrm{kg} / \mathrm{ha}$)

Table 6.3 Greenmattor fiold in the 3 nd out ($\mathrm{kg} / \mathrm{ha}$)

Rank	Levels of $\mathrm{P}_{2} \mathrm{O}_{5}$ applied ${ }^{\text {c }}$	Hean valuas	C.D. (0.05)
1	120	8142.76	439.243*
2	80	6654.30	358.641**
3	40	4316.49	

Table 6.4 Graenmatior yieid in tha 4 th cut ($k g / \mathrm{ha}$)

Qani:	Levals of $\mathrm{P}_{2} \mathrm{O}_{5}$ applied In the goil ${ }^{2} \mathrm{~kg} / \mathrm{ha}$	Moant values	Cibe (0.05)
1	120	6100.26	
2	80	5174.34	1184.634*
3	40	3349.70	967.263**

*C. D. Eor comparisons Involving $120 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5}$ /ha
** C.D. Eor comparisons between 90 and $40 \mathrm{~kg} \mathrm{p}_{2} \mathrm{O}_{5}$ /ha.

Table 6.5 Jotal greenmatter yield ($\mathrm{kg} / \mathrm{ha}$)

hlgher greanmatter yiela over $80 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} /$ ha and 40 kg $P_{2} \mathrm{O}_{5} /$ ha soll applications. zoll aprilcation of 80 kg $\mathrm{P}_{2} \mathrm{O}_{5}$ /ha gave aignificantly higher yield over 40 kg $\mathrm{p}_{2} \mathrm{O}_{5}$ /ha soi2 applicetion.
do Ear as cutcing treainonts wero concerned the maximum number of cuto (1) gave the maximun groenmateor yield which was stetistleally higher then that obtained Erom 3 cuts and 2 cuts. The troatnent 3 cuts agaln gave significantly more greenmater yiold tion 2 cuts.

Interactions betwean phosphorus and cutting treatmonts were also significant. The treatment combination $120 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} /$ ha soil application and four cuts recordea the highest greenmatcer yield of $27614.60 \mathrm{~kg} / \mathrm{ha}$ while the lowest value of $9905.30 \mathrm{~kg} / \mathrm{he}$ was obtained in the caso of $40 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5}$ ha soil applicetion and two cuts. 2.2 Drymatter yiela

The mean values for arymotter yielas in the four cuts are incluced in feble 7.1 to 7.4 and the moan cotal arymatzer yields from all the four cuts is given in Table 7.5. The corresponding abstracts of Analyses of Variance are presented in Appondit VII (a) to VII (e).

61

Table 7.1 Drymatter yield in the 1 st cut ($\mathrm{kg} / \mathrm{ha}$)

Rank	Levels of $\mathrm{P}_{2} \mathrm{O}_{5}$ applied In the soil ${ }^{2}$ ($\mathrm{kg} / \mathrm{ha}$)	Moan values	C.D. (0.05)
1	120	1022.72	$29.412 *$$27.778^{* *}$
2	80	767.98	
3	40	637.42	
Taile 7.2 Drymatter yield in the 2nd cut (kg/ha)			
Rank	Levels of $\mathrm{P}_{2} \mathrm{O}_{5}$ applied in the soil ${ }^{2}$ ($\mathrm{kg} / \mathrm{ha}$)	Mean values	C. $\mathrm{D}_{\text {(}}(0.05)$
2	120	1519.62	112.746*
2	80	1274. 52	
3	40	1045.76	91.504**
Table 7.3 Drymatter yield in the 3 ca cut ($\mathrm{kg} / \mathrm{ha}$)			
Rank	Levols of $\mathrm{P}_{2} \mathrm{O}_{5}$ appliod in the soin ${ }^{2}$ (kg/ha)	fiean values	C.D. (0.05)
1	120	1565.86	78.432*
2	80	1238.74	
3	40	632. 37	62.092 ${ }^{\text {\% }}$

Table 7.4 Drymatter yiela in the 4 th out ($\mathrm{kg} / \mathrm{ha}$)

Rank	Levels of $\mathrm{P}_{2} \mathrm{O}_{5}$ applied In the soil ${ }^{2}$ ($\mathrm{kg} / \mathrm{ha}$)	Itgan valuos	C.D. (0.05)
1	120	1247.23	200.000*
2	80	1037.26	170.000**
3	40	675.17	

rable 7.5
Total drymatter yield ($\mathrm{kg} / \mathrm{ha}$)

C. $\mathrm{D}_{\mathrm{i}}(0.05)$ for comparisons involving $120 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}=176.472$
C. $\mathbf{B} \cdot(0.05)$ for' comparisons batween 80 and 40 kg$\}=143.792$
C.D.(0.05) EOr cutting treatments $\quad=250.498$
C.D. (0.05) Eur comparisons botweon $P_{1} c$ and $\left.P_{2} C\right)=248.360$
C.D. (0.05) Eor comparisons botween $\mathrm{P}_{3} \mathrm{C}$ combinam) $=351.31$ tlons
C.D. (0.05) for comparisons of $p_{1} C, p_{2} C$ Vs $p_{3} C$) $=303.924$ combinations)

In all four cuts, phosphores treatment hed significant effect on drymatter ydelds. The troatment $120 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} /$ ha as soil application produced significantiy more drymatter yields than $80 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}$ and $40 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}$. as soll applications. The troatment $80 \mathrm{~kg} \mathrm{p}_{2} \mathrm{O}_{5} / \mathrm{ha}$ applicd in soil again gave aignificantly more arymatter yialds than $40 \mathrm{~kg} \mathrm{P} \mathrm{P}_{5} / \mathrm{ha}$ soil applicationo

Conatdering tho total drymattor yiclas. it could be seen that $120 \mathrm{JEg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}$ soll application produced the maximun drymatter yield and it was significantly superior to $80 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5}$ /ha soil application and $40 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}$ soil application. $00 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5}$ ha soll application in turn geve significantily more arymatter yiolas than $40 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}$ basal sold apolication.

The mextmun number of cute (4) resulted in the maximum arymatter yioldo which was significantly more than that obtained from 3 cuts and 2 cuts. Drymatter yiold from 3 cuts was algnificantly more than that from 2 cuts. P x C interaction wos also found algnisicant. $120 \mathrm{~kg} \mathrm{p}_{2} \mathrm{O}_{5} / \mathrm{ha}$ Doil application and four cuts recorded the highest drymateer yield ($5133.54 \mathrm{~kg} / \mathrm{he}$) while $40 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}$ soil application and two cuts tailod wth the lowest ($1606.29 \mathrm{~kg} / \mathrm{ha}$).
2.3 seed yield

Wable 6 gives the moan data on seed yields obtalned and tho ebstract of the Mnalysis of Variance is shown in apponais VIII.

It is seen that lovels and mathods of phoophorus application had significant effect on seed yield. The treatment $P_{5}\left(80 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{he}\right.$ in soil $+40 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}$ as folfar) recorded the massmum seed yield and wes superior over all other treatmenta. p_{4} and P_{3} were on par and superior over P_{2} and P_{2} while P_{2} in turn was suporios over P_{1}

With regard to the number of cutes tried c_{3} treatment (4 guts) did not produce any seed. the treate ment C_{1} (a cuts) was found to be gignietcently superior in seed production ovor $G_{2}(3$ cuts).

Intaractional effect eas found to bo not significant.
3. Chamical analysis.
3.2 Plant analyols
3.2.2 Protain contont

Tho man values of protein content of tho plente In each cut are presented in Tables 9.1 to 9.4 and the aivatroctef the Analyoes of veriance in Appendicos IX (a) to IX (d).

Table 8. Seed yield (kg/ ha)

C.D. (0.05) for $P=12.42$
C.D. (0.05) for $C=7.86$

66

Eank	Levela of $\mathrm{P}_{2} \mathrm{O}_{5}$ in the soil	applied (ig/ha)	Hean values	C.D. 10.05)
2	120		17.7708	
2	80		14.6770	0.74353*
3	40		11.0645	0.60709**

Tajle 9.2 Protein content (8) in arymatter in the and cut

Rents	Levels of $\mathrm{P}_{2} \mathrm{O}_{5}$ applied in the soif ($\mathrm{Kg} / \mathrm{ha}$)	Mon values	C. ${ }_{\text {¢ }}(0.05)$
1	120	18.5833	$0.72380 *$
2	80	16.0402	0.57575**
3	40	13.3958	

Tabla 9.3. Protein contant (\%) In drymatear in tha 3ra cut

Rank	Lovela in the	Mann values	C. D. (0.05)
1	120	18.0625	$\begin{aligned} & 0.41042^{*} \\ & 0.33509^{* *} \end{aligned}$
2	80	15.4167	
3	40	13.0833	

Table 9.4 Protein content (\%) In arymatter in the 4th cut

Rank Levels of $\mathrm{P}_{2} \mathrm{O}_{5}$ applied Kean C.D.(0.05) in the soi ${ }^{5} 5$ (kg/ha) values

1	120	16.75	0.08725*
2	80	14.52	0.56114**
. 3	40	12.18	

*C.D. for comparisons invoiving $120 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}$ ** C.D. for comparisons between 80 and $40 \mathrm{~kg} \mathrm{[} \mathrm{D}_{\mathrm{G}} \mathrm{O}_{\mathrm{g}}$ ha

67

In all the four cuts, Ancrease in the duse of phosphorus application increased tho plant protein content afgnificantly, the level $120 \mathrm{~kg} \mathrm{~F}_{2} \mathrm{O}_{5} / \mathrm{ha}$ applied in soil gave gigntitantly more protein content in tha planics than $80 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5}$ /ha and $40 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{he}$ boll applications. $80 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5}$ f ha was significantly suparior to $40 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}$ applied in the goth.
3.1.2 Totel proteln yiele

Sablo 9.5 ghow the mean values of total protein Yield from all cuts and tho corrospondilng abstrect of the Analyols of variance is given in Appendix IX (o).

It could' bo seen that increasing the dose of phosphorus application fisom 40 to $80 \mathrm{~kg} \mathrm{p}_{2} \mathrm{O}_{5} / \mathrm{ha}$ anc Exom 80 leg to $120 \mathrm{Fag} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}$ sigmificantly incroased tho total protein yiold in both cases.

Increasing the numbor of cuta from 2 to 3 and Erom 3 to '4 also aignificantly increased the total protein yiold in both casos.

P X C interacilon was oignificant and tho combination of $120 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} /$ ha soll application and four cuts recordod tino masimum total protein yiold ($909.97 \mathrm{~kg} / \mathrm{ha}$) While $40 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} /$ ha soil application and two cuts gava the minimam (212. $19 \mathrm{~kg} / \mathrm{ha}$).

Table 0.5 Total protein yleld from drymater $(\mathrm{kg} / \mathrm{ha})$

Number of cute	Levals of $\mathrm{P}_{2} \mathrm{O}_{5}$ applied in soil ($\mathrm{kg} / \mathrm{ha}$) 			
2 cuts	211.19	321.54	485.03	310.11
3 cute	325.90	497.49	758.67	481.13
4 cuts	405.89	678.20	909.97	625.63
Koan	314.35	499.09	717.91	

C. D. (0.05) for comparisons involving $320 \mathrm{~kg} \mathrm{P}_{2} \mathrm{o}_{5} / \mathrm{ha}=29.730$ C.D. (0.05)for compartsons between 30 and 40 kg) $=24.296$ $\mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}$
C.D. (0.05) for cuteing treatments .. $=26.610$
C.D. (0.05) for comparisons betweon $P_{1} C, P_{2} C_{\text {eions }}$ combina $)=.42 .100$

Cop. (0.05) for comparisons betweonP ${ }_{3}$ C coubinations $=59.505$
C.D. (0.05)for comparisons of $\left.R_{1} C, R_{2} C V V_{3} C,\right\}=52.533$

69

3.1.3 Phoophorus content

Tables 10.1 to 10.3 show the meen values of phosphorus content in the plent at each cutting while Appendicos $X(a)$ to $X(d)$ give tho corresponding abotracts of Analyses of Variance. Soil application of phosphorus at the rate of $120 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} /$ ha recorded tho maximum piose phorus content in the plants and it was significantiy more than that of 80 kg and $40 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}$ applied in the soil. Ehosphorus at the rate of $80 \mathrm{Kg} \mathrm{P}_{2} \mathrm{O}_{5}$ /ha in tum geve significantiy higher phosphorus content valueg in the plants than that of $30 \mathrm{~kg} P_{2} \mathrm{O}_{5} / \mathrm{ha}$ as so11 applitation. Tho results wore the same in all four cuts.
3.1.4 potash. . content

The mean valuog of potash ...: content in plants at each cut are shom in Table 11.1 to 11.4 and the abstracts of the Analyees of Variance in Appendis XI (a) to XI (d).

It can be scen that phosphorus application had Inconsistent effect on the potash: $\begin{aligned} & \text { contant of plants }\end{aligned}$ at different stages of observation. Phosphorus treatment had no exsect on tho potash. \therefore contont in tho plants in the firct three cuts. Howover in the fourth cut application of $120 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} /$ ha was found to give significontly

70

Pable 10．1 Phosphorus contont in drymatere（mg／gri）in the 1st cut．

Renls	Levels of $\mathrm{P}_{2} \mathrm{O}_{5}$ appled In the soll（ $\mathrm{kg} / \mathrm{ha}$ ）	Mean values	C．D．（0．05）
2	120	3.64	$\begin{aligned} & 0.252^{*} \\ & 0.206^{* *} \end{aligned}$
2	80	3.14	
3	40	2.68	
－ロニー			－
Table 10．2 Phosphorus content in drymatter（ mg／gi．in the 2nd cut			
Rank	Levels of $\mathrm{P}_{2} \mathrm{O}_{5}$ applied An the sotl（ $\mathrm{kg} / \mathrm{ha}$ ）	Hoan values	C．D．（0．05）
1	120	4.44	0．280＊
2	80	3.51	0．147\％
3	40	3.02	

Table 20．3 Phosphorus content in arymetter（mg／gn）in the 3ra cut

Rank	Levels of $\mathrm{D}_{2} \mathrm{O}_{5}$ appliea in soil（ $\mathrm{kg} / \mathrm{ha}$ ）	Msan values	C．D．（0．05）
1	120	5.51	0．239＊＊
2	00	4.81	0．171＊＊
3	40	3.77	

Table 10．4 Phosphorus contont in drymattar（ mg / g ）in the 4th cut

Rank	Levels of $\mathrm{P}_{2} \mathrm{O}_{5}$ applilea In aoll（ $\mathrm{kg} / \mathrm{ha}$ ）	Wean values	C．D．（0．05）
1	120	5.14	0．308＊
2	80	4.28	0．256＊＊
3	40	3.58	

＊C．D．for comparioons involving $120 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} /$ ha． ＊＊C．D．For comparisono between 90 and $40 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}$ ．

Table 11．1．Potash content in drymatter（\％）in the $18 t$ cut．

Rank	Levela of $\mathrm{P}_{2} \mathrm{O}_{5}$ applied in soil（ $\mathrm{kg} / \mathrm{ha}$ ）	Mean valuos	C．D．（0．05）
2	80	2.08	＊2．${ }^{\text {d }}$ S
2	40	1.99	＊＊NeS
3	120	． 1.89	

Table 11．2 Potam content in drymatear（\％）in the 2nd cut．

Rank	Levols of $\mathrm{P}_{2} \mathrm{O}_{5}$ applica in the soll（ $\mathrm{kg} / \mathrm{ha}$ ）	Hean values	C．D．（0．05）
1	120	2．38	＊N．S
2	80	$\underline{2.23}$	由たN。3．
3	40	2.22	

Table 11， 3 Potash contont in orgatter（\％）in the 3rd cut．

Renk	Levels of $\mathrm{P}_{2} \mathrm{O}_{5}$ applied in soil（ ${ }^{2} 5_{\mathrm{lkg} / \mathrm{ha}}$	Kan values	C．D．（0．05）
1	40	2.48	献。S
2	120	2．37	
3	80	2.29	＊＊＊．3．

Taple 11.4 Potash content in arymaticer（it）in the 4 th cut．

Rank	Lovels of $\mathrm{p}_{2} \mathrm{O}_{5}$ applied in soil（ $\mathrm{kg} / \mathrm{ha}$ ）	Hean yelues	C． $\mathrm{D},(0.05)$
1	120	2.35	0．091＊
2	80	2.53	0．074＊＊
3	40	2.47	

＊C．D．for comparisons involving $120 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}$ ．
＊＊C．D．for comparisons between 80 and $40 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}$ ．
mose potash...; content in stylosanthes gracilis than $80 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}$ or $90 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}$ applied in soil which viere in tuen on par.

3.3.5 Nitrogen recovery from arymatter

Mean values of nitrogen recovery from cumulative drymatter are presented in Table 12 and the abotract of the Analysis of Variance in Appendix XII.

Application of phosphorus had algnificant effect on tho nitrogen recovery from the drymatter yield. Increasing the dose of phosphoxus application in soil from 40 to $80 \mathrm{~kg} \mathrm{p}_{2} \mathrm{o}_{5}$ he and from 80 to $120 \mathrm{~kg} \mathrm{p}_{2} \mathrm{O}_{5} / \mathrm{ha}$ asmificantly increased tho nitrogen rocovery from thedrynatter yield at both stages.

Increasing the number of cuts from 2 to 3 and from 3 to 4 also increased the nitrogen recovery in both cases.

Intoractions botweon phosphorus and cutting treatmonts wero found to bo atgnificent. while 120 kg $\mathrm{P}_{2} \mathrm{O}_{5}$ /he soll application and fous cuts gave the maximum nitrogen recovery ($145.60 \mathrm{~kg} / \mathrm{ha}$) $40 \mathrm{~kg} \mathrm{D}_{2} \mathrm{O}_{5} / \mathrm{ha}$ soil application and two cuts gave the minimum ($33.79 \mathrm{~kg} / \mathrm{ha}$).

75

Table 12. Nitrogen recovery from drymatter ($\mathrm{kg} / \mathrm{ha}$)

number of cuttings	Lavals of $\mathrm{P}_{2} \mathrm{O}_{5}$ applied in soll			
	40, (P1)	$80 \quad\left(p_{2}\right)$	120 (p_{3})	Mean
2 cats	33.79	51.45	77.61	49.62
3 cuts	52.76	79.60	121.39	76.98
4 cuts	64.98	108.57	145.60	98.50
Mean	50.30	79.85	114.86	

C.D. (0.05) for comparisons involving $120 \mathrm{~kg}_{2} \mathrm{O}_{5} / \mathrm{ha}=4.758$
C.D. (0.05) for comparioons between 80 and 40 kg) $=3.887$ $\mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}$-)
G.D. (0.05) For cutting treatmonts $=0.262$

C.D. (0.05) for comparisons boeween $P_{3}^{\prime} c$ combinations $=9.520$
C.D. (O.05) for comparisons for $p_{2} C, p_{2} C$ vs $P_{3} C ;=8.245$ comblnations
3.1.6 Phosphorus recovory from drymatter

The mean values of phosphorus rocovery from cumalative arymateor are prosented in Tablo 13 and the abotract of Analyads of Variance in apendix KIII.

Phosphorus treatment had significant effect on phosphorue recovery. npplication of $120 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} /$ ha in soil. gave sigmificantly more phosphoras recovery valuea than 30 kg and $40 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}$ soti applications. Phosphorus at the rato of $00 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}$ recorded significantly higher recovery valuos than $40 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}$ applied in tho soil.

Incroasing the number of cuts from 2 to 3 and from 3 to 4 significantly increased the phosphorus recovery in each case.

Interactions bstuecn phosphorus treatments and cutting treatmonts wore also significant, the maximura phoaphorus recovery value $124.26 \mathrm{~kg} / \mathrm{ha}$) betng given by the combsnation of $120 \mathrm{~kg} \mathrm{E}_{2} \mathrm{O}_{5}$ ha soil application and Four cuts and the mindman ($4.90 \mathrm{~kg} / \mathrm{ha}$) by $40 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}$ soll application and two cuts.
3.1.7 Potash wi recovery from drymatter

Table 14 gives the moan potasti.\therefore recovery valuos from cumulative arymotter yields while tho abstract of the Analyais of Vartance is ohom in Appendiz rive

75

2able 13. Phosphofus recovery Eromarymater (ka/ ha)

Aunber of cuttings.	Lovels of $\mathrm{P}_{2} \mathrm{O}_{5}$ appliad in soil ($\mathrm{kg} / \mathrm{ha}$			
		00	120	mean
2 cute	4.90	6.09	10.72	6.86
3 cuts	7,80	12.52	20.38	12.20
4 cuts	10.64	16.68	24.26	25.79
Mean	7.78	12.03	10.46	

C.D. (0.05) for comparisons involving $220 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}=0.779$ C.D. (0.05) Eor comparibons botweon 00 and $40 \mathrm{~kg}, \quad \mathrm{p}_{2} \mathrm{O}_{5} / \mathrm{ha}, 0.616$
C.D.(0.05) EOr cutting treatments .. 0.675
C.D. (0.05) for comparisons between $p_{1} C, P_{2} C$ combinationse 1.065
C.D(0.05) for comparisono between $P_{3} C$ combinations $=1.500$
C.D. (0.05) for comparions of $p_{1} C, p_{2} C$ Vn $P_{3} C$ combinom $\}=1.320$

Table-14. : . Potash recovary from drymater ($\mathrm{kg} / \mathrm{ha}$)

Number OE: cucs.	Level -20 $40\left(P_{1}\right)$	$\mathrm{P}_{2} \mathrm{O}_{5} \mathrm{a}^{2}$ -20 80	$\begin{aligned} & \text { in sot } \\ & -\infty \end{aligned}$	ha) - - - Mean
2 cuts	35.10	42.85	57.37	42.65
3 cuts	58.96	74.39	92.08	71.76
4 cuts	78.66	98.60	123.34	95.57
Maan	57.57.	71.95	90.93	

G.D. (0.05) for comparisons involving $120 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}=7.074$
C.D.(0.05)for comprisoas between 80 and 40 kg,) 6.429 $\mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha} \quad$)
C.D.(0.05) for cutting treatments
$=7.097$
c. D. (0.05)for comparisons between $p_{1} C_{4} p_{2} 6$ combit.) nations $)=11.135$
C.D. (0.05)for conprisons batwaen $P_{3} C$ combinations a15.747

7%

phosphorus application at tho rate of 120 kg $\mathrm{P}_{2} \mathrm{O}_{5}$ tha in the soli, gave oignificantly higher potesthi: recovery values than $30 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}$ and $60 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5}$ /ha applied in the soil. The lovel $80 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5}$ /ha gave significently more potash: : recovery valuos than $40 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{lra}$.

Qrogresulve increase in the number of cuttings Erom 2 to 3 and Erom 3 to 4 increased the potash recovery values signdficantly at each stage.

Phosphozus x cutting interaction was significant with $120 \mathrm{~kg} \mathrm{p}_{2} \mathrm{O}_{5} / \mathrm{ha}$ soil application and four cuts giving the masimum potach. 2 . recovery values ($123.34 \mathrm{~kg} / \mathrm{ha}$) while $40 \mathrm{~kg} \mathrm{p}_{2} \mathrm{O}_{5} /$ ha soil application and two cuts ranked the lowest ($35.10 \mathrm{~kg} / \mathrm{ha}$).
3.2 Seed analysis
3.2.2 Protein content

Mean valueg of protein concent in seeds are given in Table 15 and the abseract of Analysis of Variance in Appenaix XV.

It could bo seen that troatments hed significant effoct on the proteln content of the seeds. Whosphorus application aignificantly influonced the seed protain contont recording the meximum protein content by anil

Table 15 Protein content (\%) in the seed

$$
\text { C.D. (0.05) Eor } P=3.421
$$

application of $120 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}\left(\mathrm{O}_{3}\right)$ which tras on par with application of $30 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5}$ ha in coti $+40 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}$ as Eolies (p_{5}) and $40 \mathrm{~kg} P_{2} O_{5} / \mathrm{ha}$ as sotl application +40 kg $\mathrm{P}_{2} \mathrm{O}_{5} /$ ha as foliar $\left(\mathrm{P}_{8}\right)$. P_{3} and p_{5} wera aignificantiy superior to R_{2} and P_{1}. P_{4} gave higher protein contents but wes on par with application of $80 \mathrm{~kg} \mathrm{i}_{2} \mathrm{O}_{5} / \mathrm{ha}$ an soil application $\left(P_{2}\right)$. These two treatments again recorded significantly higher valucs of seed protoin content then P_{1} (application of $40 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} /$ ha in tho soil alone). Tho troatmont, number of cuta had no signditcant effect on the seed proteln contont.

Phosphome x cutting Interaction was also not algnificant.
3.2.2 phoophorus content

Table 16 gives the mean phosphorus content in tho soeds of Stylogenthes cracilite while Aprendix XVI gives the corrasponding abstract of the daelyste of Varianco.

From the moan table it could be seen, that phosphorus treatments signiEicantly influenced tho seed phosphorus contents to give gignificantly higher values at $30 \mathrm{~kg} \mathrm{p}_{2} \mathrm{O}_{5} / \mathrm{ha}$ soil application $+40 \mathrm{~kg} \mathrm{p}_{2} \mathrm{O}_{5} / \mathrm{has}$ as foller (P_{5}), over $40 \mathrm{~kg} \mathrm{p}_{2} \mathrm{O}_{5} / \mathrm{ha}$ as eoil epplication +40 kg $\mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}$ as Foller (P_{4}) and $80 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{he}$ as soll application

Table 16. Phosphorus content (mg / g) in the seed.

Number of cuts	Level $40 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}$ in sol	$\begin{gathered} \text { nethods } 0 \\ \text { 80kg } \mathrm{B}_{2} 0 \\ \text { In } 80 \end{gathered}$	horus app 120 kg P 2 in so	n 40 kg p in soil $40 \mathrm{~kg} \mathrm{P}_{2}$ foller	$\begin{aligned} & \mathrm{Kg} \mathrm{P}_{2} \\ & \mathrm{SoL1}_{2} \\ & \mathrm{~kg} \mathrm{P}_{2} \\ & \mathrm{P}^{2} \end{aligned}$	
2 cuts	3.88	4.15	6.50	4.30	4.58	4.29
3 cuts	3.79	4.00	4.20	4.22	4.30	4.10

$\left(P_{2}\right)$ and $40 \mathrm{~kg} P_{2} \mathrm{O}_{5} / \mathrm{ha}$ as soil application $\left(P_{1}\right)$. P_{5} was on por with P_{3} which in turn was on par with P_{4}. P_{3} and P_{4} ware aignificantly suparior to P_{2} and P_{1}. Tha level $80 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} /$ ha $\left(\mathrm{D}_{2}\right)$ in tha soil gave alynificantiy highor velues for phosphorus contonts than application of 40 jsg $\mathrm{P}_{2} \mathrm{O}_{5}$ /ha in the soil (p_{1})

Reducing the number of cute from 3 to 2 signdficantly lncreased the phosphoms content in the seeds. Intoraction $P x$ c was aleo significant with $P_{5} C_{1}$ recording the maseimum sead phosphorus content and $P_{1} \mathrm{C}_{2}$ the 2east.
3.2 .3 Potech ... contont

The mean poteoh.... contente in the seeds are given in Tablo 17 anc the dostract of the malysis of varlance in ipgendix zVIT. mreatnants had no significant exfeet on the potask: in contont in the seeds. Fowover an increasing trend could be obuerved in the potesh: : content of seeds with the increasing levels of phosphorus appica soil. As for cutting troatment, although leaving the crop for saed setting after three cuts gave slightly more potesh..w content in the seeds then when it tas left for seed setting after two cuts, nut tho effect was not sigaificant. Interactions were also not significant.

Taiole 17 Fotash content (\%) in the seed

4. Goil stualog.

4.2 Total nitrogen

The man values for total nitrogen content in the Boil aster the experiment aro given in Table 18 and the abstracts of the Analyseg of variance in Appendix XVIIT.

Phosphorus at $220 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5}$ /ha soll application gave the maximura total aitrogen content in tho soil winch wes signtelcantly suparlor to other phosphorus treatmonts. The Level $80 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5}$ /ha in aoil $+40 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5}$ /ha as foliar $\left(D_{5}\right)$ and appiscation of $00 \mathrm{~kg} \mathrm{P}_{2} \mathrm{D}_{5}$ /he in the soil (P_{2}) wore on par and gave significantly higher totel nitrogen content in the soil than application of $40 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{\mathrm{g}} / \mathrm{ha}$ in the goil (P_{1}) anc $40 \mathrm{~kg} \mathrm{E}_{2} \mathrm{O}_{5}$ /ha in tho soil $+40 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}$ as Eozar (P_{4}). The latter two tradements were on pax.

Cutting treatinent hed no significant effect on the total nitrogen contont in the soil. Howover an incream sing trend in the total nttrogen contont in the soil could De observed with incroase in the number of cuts.

Intoraction $p \times C$ was significant and $P_{3} C_{3}$ geve the marimum value ($2553.33 \mathrm{~kg} /$ ha) Eor totel nitrogen content in the soil winle $\mathrm{P}_{4} \mathrm{C}_{3}$ gavo the least ($2366.67 \mathrm{~kJ} / \mathrm{ha}$)

Taile 18 Total nitrogen content in the soil ($\mathrm{kg} / \mathrm{ha}$)

4.2.Avallable phosphorus

Table 29 gives the available phosphorus content In the soil after tho experimont and Appendix XIX gives the abstract of the Analyois of variance.

Application of $120 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}\left(\mathrm{P}_{3}\right)$ in the solit. gave significantly highor phoophorus content in the soil than othor phosphorus treatments. The lovel $80 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}$ applied in the soil $+40 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5}$ /ha as follar (P_{5}) wes found to be on par with $80 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}$ applied in the soll alone $\left(P_{2}\right), P_{5}$ and p_{2} were superior to appliation of $40 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}$ in the soil $+40 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5}$ /ha as foliar (E_{4}) and $40 \mathrm{~kg} P_{2} \mathrm{O}_{5} /$ ha in the soil alone $\left(P_{1}\right) . P_{4}$ and D_{2} were on par.

Number of cuts taken had no significant offect on the available phosphorus content in the soll.

Interaction $P \times 0$ was found significant and when $P_{3} C_{3}$ gave tho maximum available phosphomis contont in the soil ($63.33 \mathrm{~kg} / \mathrm{ha}$) $\mathrm{P}_{1} \mathrm{C}_{2}$ gave the least ($46.67 \mathrm{~kg} / \mathrm{ha}$). 4.3. Available potashis. content

The mean values for avallable K_{2} O content in tho soll are given in Table 20 and the malysis of vasiance abstract in Mppendis X.

Table 19 Available Phosphorus content in the soil ($\mathrm{kg} / \mathrm{ha}$)

Number of cuts	Levels and methods of phosphorus application					
	$40 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5}$ /ha $80 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha} \quad 320 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}$ 40kg $\mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}$. $80 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5}$ /ha bean					
	in soil	in soil	in 2013	an $3011+$	n $3011+$	
				$40 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O} 5$ /ha	$40 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}$	
				foliar	foller	

2 cuts	51.33	60.67	61.33	47.33	58.66	55.86
3 cuts	66.67	56.00	63.31	48.67	55.33	54.01
4 cuts	50.00	53.33	63.33	52.67	59.67	55.00

Mean	49.33	56.67	62.68	49.56	57.22

Table 20 Available potactimin the soil ($\mathrm{kg} / \mathrm{ha}$)

Phosphorus treatmonts hed no olgnificant offect on the availabie potash: : : content in the so11.

Number oi cuts taten also had no signieicant effect on tho available potash': i content of tho soli and the seme held good for tho intoraction E. C also. 4.4 Cation oxchango capacity

The mean cation exchange capacitios of the 3011 after the experiment are given in rable 21 and the obstract of the Rnalysit of variance in Appendix dxu.

Phosphorus treatments had sigmificant effoct ou cation exchange capacity of the soin. Application of $220 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5}$ /ha in the coil (P_{3}) gavo significantly higher cation eschange capacity of soil than all othor phosphorus troatments. Application of $80 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{an}$ in tho soil + $40 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} /$ ha as Eoliar (P_{5}) was on par with application of $80 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}$ in the 0011 alone $\left(\mathrm{P}_{2}\right) \cdot \mathrm{E}_{5}$ and E_{2} gave Elgnificantly highor cation oxchenge capactty values than application of $40 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}$ in tho soil (P_{2}) and $40 \mathrm{~kg} \mathrm{P} \mathrm{P}_{2}$ /ha in the $5041+40 \mathrm{lag} \mathrm{P}_{2} \mathrm{O}_{5}$ /ha as follar (P_{4}). P_{2} end P_{4} were on par.

Table 21. Cation excinange capacity of the soil (moe./100 grams)

G.D. (O.OE) EOR $\vec{E}=0.170$.

The number of cuts of green fodder taken before the crop was left for ssed setting had no Influence on tina cation exchange capacity of the soil. Interactional effect was aloo not significant. 5. Correlation otuaies

The valuos of simple corraletion coefficients are presented in Table 22. It was found that seod yteld was eignificantly and positively correlated ith holght and spread of plants at flowering and protein contont In the seed and the respective corralation coofficients were 0.66752, 0.73016 and 0.71169 . Seed yis1d mas bignificantly and negatively correhated with greenmatter yield, the cosrelation coefficient belng -6.68970. Total nitrogen content in the soil was gigniricantiy and positively correlated with totel protein yield from arymatter, the correlation coekinasont beirg 0.64210.

DISCUSSION

DISCUESION

An experiment was conducted in the Instructional farm attached to the College of Agriculture, Veldayant during the poriod from July 1979 to April 1980 to Eind out the effect of levels as woll as the methods of application of phoophorus and number of cuts of green fodder on the seed production of Stylosantheg gracilis. uncier ralnfed conditions. The effects of the treatments on growth, yiold of greenmatter, quality and nutrients recovery from the crop were al.30 studied. The resulte of the experiment are discussed below.

1 Growth charactors

2.1 Helght
(Tables 1.1 to 1.5. Fig. 3 and Appendices $I(a)$ to $I(e)$)

From tha resulte, it was found that the height of Stylosentheg gracilis was increased by the higher levels Of phosphorus applied in the soil. in all the four stageg of cuts as well as at the time of flowering. This may be due to the influence of phosphorus on meristomatic activity (Black, 2968) and also because, phosphorus was utilised for synthesis of higher molecular compounds

93

for growth (Tamaki and Haka, 1971). Similar increase in plant height due to phosphorus application was observed by Jones (1974) on stylosanthes species. (Anon (1976, 引) on Lucerne and mariappen (1978) on Stylosantheggracills.

Combined application of phosphorus as soil + follar was found to give lower man values of plant heights at flowering when compared to the same amount of phosphorus applied completely as basal. Thus 40 kg $p_{2} O_{5}$ ha as soll $+40 \mathrm{~kg} \mathrm{~K}_{2} \mathrm{O}_{5}$ /ha through follar appileation and $00 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5}$ /ha as soil $+40 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}$ as foliar application gave lower heighte than $80 \mathrm{jg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}$ as soll application and $120 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5}$ /ha as soil application respectively. It $4 s$ obvious that this was another regult to show that the plant heighte increased with increase in tho cose of phosphorus epplied in the soil. Foliar application of phosphorus did not ahow any adaltional effect on plant haights probebly bocause the treatment was given at a later stage anci could not give any benoficial effect on nodulation and root growth.

It wos found that increase in tine number of cuts significencly seducod the plant helght at flowering.

This may be because as the number of cuts increased. the interval between the last cut and flowering was reduced which in turn roaulted in less period of timo Eor the plants to grow. Again as the number of cuts increased more number of secondary and tertiery buds developed and thus dus to the activity of more number of meristematic tissue the height of the plants was reduced.

The interactional effect between phosphorus application and cutting treatments at flowering was found gignificant. Perhaps increased levels of phosphorus application might have increased the meristematic activity of the larger number of meristens functioning as a result of more number of cuts and thus reduced the effect of increesing number of cuts on hoighte:

1.2 3pread

(Tables 2.1 to 2.5 . FIG .4 and Appendices II(a) to II(e) $)$

Spread of plants at the time of all four cuts and at Elowaring, significantly increased with increase in the rate of phosphorus applied in the soil. As in the Case of haight this may bsecause of increased meristematic activity. At Flowering the apraad resulting Erom

FIG. 3 HEIGHT OF PLANTS AS INFLUENCED BYLEVELS OF PHOSPHORUS APPLICATION IN SOIL.

FIG. 4
SPREAD OF PLANTS AS INFLLENCED BY LEVELS OF PHOSPHORUS APPLICATION IN SOIL.

95

combined application of phosphorus as soil + follar was algnificently lower than that obteined when the same quantity was given completely as soil application. This again ililustrates that increase in the dose of phosphorus applied in the soil significantly increased plant spread. Foliar application did not give any additional effect on plant spread since lit vas given at a later stage and could not influence nodulation and soot growth. Increased plant ipread due to application of phosphorus has been reported by Sharma and Lavanda (1980) in vicia hirsuta and vicia pative.

As in the case of height, with increase in the number of cuts. plant spread reduced significantiy, probably because of the lese amount of tima interval avallable for growth between the last cut and flowering and also because of more number of secondary and terthary buds doveloping resulting in larger numbar of total functional meristens.

Interactional effect betwoen phosphorus and cutting treatmente was found to be oignificant. The increased meristemacic activity brought about bythe application of phosphorus might have lessened the reduction in spread
resulting from more number of cuts and more number of functional meristems.
1.3 Leaf : sten ratio
(Tables 3.1 to 3.4 and Appendices III (a) to III (a))

Increasing the dose of phosphorus applied in the soil significently increased the leaf a stem ratio in stylosanthes aracilis. In all four cute application of $120 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5}$ ha gave significantly highar values of leaf : stem ratio than the otiser two levels. The level $80 \mathrm{~kg} P_{2} O_{5}$ tha applied in the soil gave significantly higher values of loaf: stem ratio than $40 \mathrm{~kg} \mathrm{P} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}$ as soll application in the first thres cuts, but they wore on par in the lest cut. This mey be because during the last otagos of crup growth the difference might have diminiahed. Increase tin the leas istem ratio due to phosphorus application has bacn reported in compea varioties E.C. 4216 and local (anon 1974) and in luceme (Anon 1976. b) whare application of $200 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}$. recovered the mastrum leass otem ratio. sariappan (197a) also obtained an increashag trenc whin increase in the Levels of phosphorus application; upto $120 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}$ in stylosenthos gracilis. Incroasea leaf astem ratio

resulting from phosphorus applicetion migint be due to incroased nitrogen availability joceuse of botter nociule development (5ables 4 and 5).

1.4 Nodulation
(Tables 4 and 5 and Appondices IV and V)
Increasting the dose of phosphorus applied in the gotl significently lncroased nodulo number and nodule weight in Stylosanthos gracilis. It is well know that phoephorus has tremendous influence on nodulation in legunes because of its role in increasing microbial activity by enhancing the avallability of molybolehum, Increased nitrogen firation cue to phosphorus application has been reported by wendt (1970) in stylosenthos gracilis. Olsen and too (1971) in Desmodiun intostume Mecicago sativa and Stylosanthes grecilis. Gates (1974) in Stylosanthas humilis. singh (1975) in Trifolium aloxandrinura, Mariappan (1978) in stylosanthes gracilis. hai all reported increased nodulation with increase in tho dose of phosphorus applied. Foliar application of phosphorus lad no effect on nodulation because it was given at a later stage when nodules had already been formed.

The cutting schedules were found to have no signsficant influence on the nodule number and weight
and it mayie presumed that there was no direct selation between the top removal of the plants and the activity of the microorganisms. However an increesing trend was observed in the weight of root nodulos with increase in the number of cuts.

2. y yela

2.1. Greematter yiela
(Tables 6.1 to 6.5. Fig.5 and Appendices VI (a) to VI (e))
Greenmatcer yields Erom each cut as veli as the cumulative yield were significantly increased with Increase in the level of phosphorus applied in the soil. Thus application of $120 \mathrm{~kg} \mathrm{R}_{2} \mathrm{O}_{5} /$ ha produced the maximum cunulative greenmatter yiela which was 29 per cent more than thet procuced by applying $80 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} /$ ha in the noil which again gave 25 per cent more yiela than that obteined from application of $40 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5}$ /ha \ln the soil.

Increase in greenmatter yield due to phosphorus application might be due to tho increase fin height and oprend of plants with increase in the dose of phosphorus applied (Tables 1.1 to 2.5 and 2.1 to 2.5 .

Increase in greenmatter yield of legumes with phosphorus applleation has been reported by singh et al. (1972). Anon (1976.b) Dhar (1979). Nactappan (1979) and Singh (1979).

Cutting echedules had significant effect on total or cumulative greemateer yiela. Increasing the number of cuts signiticantly increased greonmatter yiala. As the number of cuts was increased from 2 to 3 there was 56 per cent increase in greenmatear yiela mhile there was 23.7 per cont Ancrease when the number of cuts was ancreased from 3 to 4.

Interaction between phosphorus and cutting treatnents was also significant. The additional quantity of greenmatter thet could ba harvested by increasing the number of cuts must have been enhanced by the incrase in the dose of phosphorus application.
2.2 Drymater yiele
(Tables 7.1 to 7.5, Fig. 5 and Appendices VII(a) to VII (e))

Drymatter yield showed tho same trend as in the case of greenmatter yield. Significant increase was obtained With increase in the cose of phosphorus applied in the soil. Thus application of $2.20 \mathrm{~kg} \mathrm{p}_{2} \mathrm{O}_{5}$ /he in the goil gave the maximum values Eor drymatter yield obtained in all the cuts as well as cumulative drymetter yiela. Increase in the hoight and spread of plants on application of highor dose of phosphozus might have contributed to the increase in deymateer. Increased drymater yielas on

application of phoophorus has been reported by shaw et al. (1966) and Fisher (2970) in Stylosanthes humilis, Olsen and moe (2971) in pesmodium intortum, tedicado sativa and Stylomanthes aracilits and by Bruce (1974) anc. Mariappan (1978) in stylopanthes aracilis.

Significant increase in the totel drymatter yiold was noted with increase in the number of cuts presumably because of the more amount of greenmatter harvested.

As in tha casa of total greonmattor yiald, the intoraction betwean phosphorus and cutting troatments was aignificant. Tho highex values of arymatter obtained due to the Increased number of cuts might have been Incraased by the increase in the rate of phosphorus applied in the soil.

2.3 seed yiela

(Table 8. Flg. 6 anc Appendix VIII)
Phosphorus application which plays a major role in flowaring and seed setting of plantes gave significant increase in the sigd yield of stylosenthos gracilis. Combined application of $30 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}$ in soil +40 kg $\mathrm{p}_{2} \mathrm{O}_{5}$ /ha as foldar gave the maximum yield which ves followad by $40 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}$ in soil $+40 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}$ as follar application. Thun it could be seen that as far as

101

seed procuction was concerned Eollar application of phosphorus gave the best results. This might be bocause the phosphorus ${ }^{-}$) sprayed at the lator atages of crop growth was botter utilised for Rlowering and seed production due to its quicker and better avallability in the period of ita necessity. This is very explicit in the fact that $120 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} /$ ha given in the soil was on par with $40 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}$ soil application $+40 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} /$ har as Eoliar. Considering the difference in sead yleld obtained from $80 \mathrm{~kg}_{2} \mathrm{O}_{5} /$ ha soil application $+40 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} /$ ha as follar and $40 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}$ soil application $+40 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5}$ / ha as follar it can bs presumed that increase in tha basal dose of phosphorus given in the soll might hove increased the total Eoliage (Tables 3.1 to 3.4) and thus facilltated bstter absorption of phosphorus applied as follar. Incrase in the dose of ploosphorus applied in ths soll alone has also been found. to Increase the sead yield.

Increased seed yiela due to increase in phosphorus application in the soil has been reported in stylosanthas hundils by shelton and Humphreys (1971), wickham ot al.(1977)

Rai and Kenodia (1980)
similarly, Increase in seed yield due to follar application of phosphorus in berseem has been reported by

102

Singh and Pandey (1969) who observed that spray Eertilization increased the seed yiede wen the crop was left for seedsetting aster the second cut. Gill ot al. (1971), Gorde and ribe (1973). Anon (1979, c) all reported increased seed yield with foliar application of phosphorus

In the present stuay significant reduction in saed yield was noted with increase in the number of cuts. Two cuta gave the maximum mean sead yield Eollowed by 3 cuts, while 4 cuts yielded no seed. Increasing the number of cuts to as much as four cuts had left the crop, little time to accumulate enough food material for productng enough Elowors. The plants which vere left for seedsetting after two cuts had onough time to putforth more Eresh branches and. set more flowers compared to the short time that was available to those plants which were allowed ; to set seod only after chree cuts and four cuts. Batra and G1ll (1967). singh and Pandey (1969) Konstantinova and Dandlov (1973), Pacuta (1973) fnon (1976, c), Anon (1978, c) all provided evidences to show that seed yield decreased with increase in the number of cuts.

Conrelation studies showed that seed yield was oignificantly and positively correlated with height and spread of tha plants at flowering. This can be attributed due to the betwer vegeidative growth of the plants which might have

FIG.6. SEED YIELD AS INFLUENCED BY LEVELSAND METHODS OF PHOSFHORUS APPLICATION $A N D$ NUMBER OF CUTS.

105.

enabled them to produce nore flowers and seeds. Seed yiold was signisicantiy and negatively correlated with greenmatter yiold. Increasing the number of cuts increased the greanmatter yield, which in tum decreased the seed yiela. This was because of the less amount of time available between the last cut and flowering due to the increase in numbar of cuts which resulted in leas flower production and seedset.
3. Chemical comnonition of the drymatter:
3. 1. Crude protein in arymattor
(Tables 9.1 to 9.5, Fig.5 and Appendices IX (a) to IX(c))

The crude protein content of the dryfodder at each cut as well as the total protein yield from all the cuts were found to increese significantly with increase in the dose of phosphorus applied in the soil. Application of phosphorus might have increased the availability of nitrogen for assimilation by tha plante which in turn might have enhonced the protein content. phosphorus application might also have promoted the activity of nodule bacteria (Tables 4 and 5) resulting in higher nitrogen Eixation. Increase in the protein content or nitrogen content of legume plante with increase in the cose of phosphorus applied has been reportad by unnwustaria tusain et al (1978) and Dhar (2978) in berseem.

Shaw et al (1966) in stylosanthes humilis, Kaya and Kalangi (1973) In Desmodium uncinatum and harjappan (1978) in Stylosanthos gracilis.

Increasing the number of cuts, significantly increased the total protein yiald. Win fncracee in the number of cute the drymatcer yideld alno incroaed which lad to higher total protein yiela.

Interaction between phosphorus and cutting treatmonto also was significant in the case of total proteln yield. Total protein recovery Erom drymatter wao positively corralatod with total greennateor yield and total nitrogen content in the soil gignificantly.
3. 2. Phosphorus, in arymatter
(Tables 10.1 to 10.4 and Appenaicos $x(a)$ to $X(d))$.
In all the four cuts tho phosphorus content in the plants aignizicantly Increabed with incroase in the dose of phosphorus applied in the soil from 40 to 80 and fron 80 to $120 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}$. Increasing the rata of phosphorus applied In tho soil migint have incruased its availability and consequent assimilation by the plante which resulted in ligher phosphorus values of the plant. Sasidhar and George (1972). Hic hustafa husain ot al. (1976). Dhar (1978) and

Maxiappen (1978) have gil obtained similar results in the case of various logumes they tried.
3. 3. Potash:...: in drymatter
(Tables 11.1 to 11.4 and apponalees KI (a) to .. KI (a))
only in the fourth cut phosphorus application had significant effect on the potassh: content of the plant. In the fourtin cut application of $120 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} /$ ha in the soll was found to be significantly superior to the lower levels with wore all on par although an increasing trend was found in the potach \therefore content with incroase in the leval of phosphorus applied in tho soil from 40 kg to $80 \mathrm{~kg} \mathrm{p}_{2} \mathrm{O}_{5} / \mathrm{ha}$. In the early stages soil potassium was sufficiently available to the crop. Eut with time the potassiun availeble in the soil might have diminished because of the continuous removal by the crop. The role of phosphorus in incroasing the potash - uptake by the plants migint have now come into play and there was no much aifference botween 40 kg and 80 kg $P_{2} O_{5}$ ha applied in the 3011 but the highest level of 120 kg $\mathrm{P}_{2} \mathrm{O}_{5} /$ he applied 11 tin soll could being significant effect In potash. a content in the curymatter in tho fourth cut. Increase in the potassium content of heroage with increase in the dose of phosphorus applied has been noted by Fogeria (1977) and Na=iappan (1978).

106

4. Nutriont recovery Erom drymatter.
5. 6. Nitrogen.
(Table 12 and Appendix XII)
The total nitrogen recovery from cumulative drymattor incraesed oignificantly with increase in tha dose of phosphorus applied in the soll. Rhosphorus application must have increased the nitrogen asoinilation by the plants due to better nitrogen fisation resulting in higher nitrogen contents per unit drymatter. Increased nitrogen content In plants with increase in the dose of phosphorus applied has been reported by Mir fugtafa Husain et al. (1976):
and Dher (1970) in borseam, shaw et al. (1966) In gtylosanthos humilis and Mariappan (1978) in Styloganthes gracilig. Phosphorus also increased the arymetter yieldin all four cuts significontly witi increase In its rate of application. Thus by both those waye it might have enhanced the total nitrogen recovery.

Number of cutings alac showed significant efiect on total nitrogen recovery. With increase in the number of cuts the total drymatter yield increased and thus the total nitrogen recovery also incroased.

Interaction of phosphorus and number of cuts wes also significant: increase in the dose of phosphorus might have increased the amount of drymatter and cotal nitrogen that could be obtained by increasea number of cuts.
4. 2 Sotal phosphorus
(Table 23 and Appondly XIII)
is in the case of nitrogen recovary, increage in the dose of phosphorus significantily increased the total phosphorus recovery. Again, phopphozus might have acted in two vays. The Eirst role was to increase the phosphorus content per unit drymatter which was discussed earlier and the second role tas to Increase the arymatter yields in all four cuts. The net rosult was. Increased phosphorus secovery with increase in the rate of phosphorus applicetion.

Invariably. increasing the number of cuts significantiy increased the total drymatter yield which in tum resulted in incroased phogphorus recovory.

Intoraction between phosphorus and cutting troatments was aleo found to be significent. The incraaged doses of phosphorus application resulted in increading the amount of drymatcer as well as phosphorus content of the plants resuiting in higher phosphorus recovery.
4. 3 iotal potesh
(Table 14 and Appendiz $x T V$).
Eignificant increase in potash. recovery values was obtained with incroase in the dose of phosphorus applied in the sosl. in the firet three cuts, Increabe in the dose of

108

phosphorus application might have contributed to increase tho potash recovery by meraly increasing the arymatter yiolds. In the fourth cut increase in the level of phosphorus was found to increase the potash: content in the plants besides increasing tho drymatter yields. Thus in theae two ways it might heve increased the total potesh. recovery in the fourth cut.

Increasing the number of cuts increased the potash. recovery values significantly because of the increase in total drymattar obtained as in the case of aitrogen and phomphorus recoveries.

Hore again the gigniEicant interaction Datween phosphorus and cutting troatments migite be accounted for by the incrase in total drymattor due to increase in phosphorus application and the increase in number of cuts.

5: Chemical compopition of seed.
5. 1 Crude protoin
(Table 25 and Apponciix XV)
The results show that mpplication of $120 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}$ In the soll was as good as applying $80 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}$ in tho soll $+40 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}$ as follar or $40 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}$ in the soil +

109

$40 \mathrm{~kg} \mathrm{p}_{2} \mathrm{o}_{5} / \mathrm{ha}$ as foliar with regard to the cructe protein content in the sead. This shows that Eoliar application of $40 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}$ was found to be helpful in increasing the procein content irrespective of the quantity applied in the soll. May be phosphorus has been better absorbed through the follege thereby resulting in increased crude protein content in the seeds. Whosphorus at the rate of $40 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}$ applied in the soll $+40 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}$ as follar was on par with $80 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} /$ ha applied in the soll alone, because at the lower levels of phosphate application in the soil, nodulation tas adversely affected. This resulted in reduced nitrogen assimilation and hence less protein content in the seed. Phosphorus at the rate of $80 \mathrm{~kg} / \mathrm{ha}$ applied in the soil gave higher protein content than 40 kg $p_{2} \mathrm{O}_{5} /$ ha soil application because of better nodulation and . nitrogen assimilation.

Incraase in the proteln content of legums seeds with increase in the cose of phosphorus application has been roported by Singh et al (1971). Kesavan and Morachan (1973) and Pantar and stngh (1975).

Cutting treatraents had no significant effect on the protein content in the seed as number of cuts taken had no direct offact on the protein cointent of the seed.

110

Interaction between phosphorus and cutting treatments was also not significant.
seed protein content was positively correlated with sead yicld oignificantly. The high levels of phosphorus which brought about increased seed yield was also responsible Eor increased seed protein contonts.
5. 2 Phosphorus
(Table 16 and Appencitr XVI)

Increase in the dose of phosphorus applied, whether as combined application in the soil + foliar or as soil application elone, resulted in increase in the phosphorus content of the seeds. In the case of $30 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} /$ ha soil application $30 \mathrm{~kg} \mathrm{p}_{2} \mathrm{O}_{5} / \mathrm{ha}$ as Follar $\left(\mathrm{P}_{5}\right)$ and $220 \mathrm{~kg} \mathrm{E}_{2} \mathrm{O}_{5} / \mathrm{ha}$ applied In the soll alone $\left(D_{3}\right)$. .. the phosphorus content in the seed was almost the same in both the treatments may be because the total phosphorus applied was the same. Similarly phosphorus content of the seed was also enhanced by the application of $40 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5}$ /ha in soil $+40 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} /$ ha as foliar which was on par with $220 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} /$ ha appliod in tho soll alone. This shows that the increase was wue to the follar application though the total guantity applied was less than when the

111

phosphorus was completaly applied in the sotl. Comparison betwoen the application of $80 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}$ in $\operatorname{soin}+40 \mathrm{~kg}$ $\mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}\left(\mathrm{P}_{5}\right.$) as follam and $40 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}$ soll $+40 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{he}$ $\left(P_{G}\right)$ as Eoliar showed thats P_{5} was significantly superior to P_{A}. may be due to the combined offect of the increase in total quantity and the follar application. Increase in the phosphorus contontor the seed was noted by the increase in the dose of phosphorus applied in the soll.

Increase in the ghosphorus content of seeds witin Increase in the ciose of phosphorus applied has been observed by Mascarenhas et al. (1969). Robinson and Jones (1972) found thot Stylosanthes humilie showed a very mariced ability to translocate nutaionts to the seed. Bartz (1959) has given evidence of zollar application of phosphorus giving increased phosphorus content in peas.

Reducing the number of cute from 3 to 2 significantly Increased the phosphorus content in tho seeds. The phosphorus content in the plants was found to be highor in the lattor stages of crop growth than in the aarly stages. Thus large guantity of phosphorus absoribed was prevented from being translocatod to the seeds by the third cut.

Interaction between phosphorus and cutting treatmonts tas also significent, the positive effect of increased phosphorus application in increasing the phoophorus content
of the seeds was reduced by the edverse effect brought about when the number of cuts was ralsed Erom two to three.
5. 3 Potach.
(Table 17 and Appendis XVII)
Phosphorus treatments had no significant effect on the potash.: content of seads. But an increasing trend In the potash: content of seeds was observed with increase In the dose of basal soll application of phosphoruse Mascarennas et al. (1969) aná Georgelev (1977) gave evidences of phosphorus application increasing the potassium content in seads.

Number of cuts taken had no significant effect on the potashiun content of the seeds which indicated that number of cuts had no direct offect on the potash content in the seeds.

Intaraction botween phosphorus and cutting treatments was also not significant as both treatinentes together had no effect to exert on tha potash a content in the seeds.
6. Soil studies.
6. 1 Total nitrogen
(Teble 18 and Appendix XVIII)
From the resulte it may be noted that as the level of
whosphorus applied in the soil was increased Erom 40 to 120 kg $\mathrm{P}_{2} \mathrm{O}_{5}$ /he by any method (soil alone or soil + follar applicetions) the total nitrogen content in the soil increased oignieicently, Thue foliar application of phosphorus had no edaitional offect on the total aitrogen contont in the soll beyond that resulting from the soil applications. This may be bacause that the nodulation was effective only when phoophorus was givon th the soil. carly. the significant increase in nitrogen contert of the goil with increase in the dose of phosphorus applied in the soil might be due to higher ratas of symbiotic nitrogen firetion and ascretion of the Elxed ndtrogen into the soll by the leguminous crop. Incroase in the nitrogen contont of goil with increase in the dose of phosphorus applied, had been observed by Sasiahar (1969). Garg et al. (1970). Chattorjee ot al. (1972). Whal Bingh and Khatri (1972). Sahu and Behara (1972). Eahu (1973). Singh and Singh (1975). Eruce (1974) and dariappan (1973).

Cutting treatmente had no gignificant effect on nitrogen content in the soll. However, an increasing trend in tha nitrogen content of the soil was observed with incroase in tho number or cute. This might be accounted for by the similar increasing trend obeerved in the weight of root nodules.

114

Interaction between phosphorus and cutting traatments was aloo significant. Increase in the dose of phosphorus applied in the soll resulting in incroased symbiotic nitrogen fisation and the increasing trend in nodule weight get by the increase in number of cuts togetiner might have incroased the total nitrogen contont in the soil.
6. 2 Avallable phogphorus
(Table 19 and Appendix XIX)
As in the case of total nitrogen content application of $120 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}$ in the soil gave the maximum phosphorus content in the soil which wes significantly euperior to all other leveld. P_{5} and \dot{E}_{2} vare on par and superior to P_{A} and P_{1} which again were on par. This shows that follar applicam tion of phosphorus had no additional erxect on the phosphorus content of the soil beyond that procuced by the soil application. Thus only the incrgase in phosphorus lovels applied to the goil, gave significant increase in available phosphorus content of the soil. Increase in available phosphosus content of the soil with increase in the dose of phosphorus applied has been obtained by Garg ot al. (1970); Nihal Singh and Khatri. (1972). Lutz (1973), ingin and singh (1975). Byuco (1974) and hactappan (2978).

115

Cutting treatmenta had no significant effact on the avaliable phosphorus content of the soil.

Interaction between phogiphorus and cutting treatments wes significant may be cue to the high doeses of phosphorus application which might have Influenced to give this effect. 6. 3 available potashi
(Table 20 and appandis KX)
Neither the phosphorus levels nor cutting treatmentis had any oignificant effect on the available potashili: content in the soil. Since phosphorus and cutting treetments had little effect on the plant or seed content of potashini, $i t$ coula be understood why the potaehill, content in the soll did not very gignificantly Savithri. (1980) has given evidence of available potasaium content gig the soil as not inflicenced by the levels of phosphorus appliea.
6. 4 Cation exchange capacity
(Table 21 and Appendis XXI)
Phosphorus troatmonts alone had significant effect on cation exchange capacity of the soil. Phosphorus at the rate of $120 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5}$ /ha appliad in the soil gave the highost C.E.C. valuos and it was significantly superior to all other

116

phosphorus treatments. P_{5} and P_{2} wore on par and suporior. to P_{1} and P_{4} which again vece on par. Thus here again only tho phosphorus applied in the soil influenced the cation erchange capactity of the soil and foliar application of phosphorus did not give any additional effect beyond that producer by the soil dressing. Increase in the cation oxchange capaeity values uith increase in the dose of phosphorus apolied in the soll tas oioserved by Singh and singh (1975) in Stylosanthes humilis and Bruce (1974) in strilosanthes guvanenequ.

Economics.
The economics of:, levels and methods of phosphorup application and number of cuts In styhosanthes gracilis prosented in Table 23 ravealed that the treatment combination of $80 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5}$ /ha soil application $+40 \mathrm{~kg} \mathrm{p}_{2} \mathrm{O}_{5}$ /ha foliar application and two cute gavo the maximun net profit oit es. 5921.36 per hactere while $40 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{he}$ soil application $+40 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5}$ /ha Eoliax application and four cuts gave the lowest net profit of n. 582.45 per heotare. Treatment combination of $120 \mathrm{~kg} \mathrm{p}_{2} \mathrm{O}_{5} / \mathrm{ha}$ soll application t $40 \mathrm{~kg} \mathrm{P} \mathrm{P}_{5} / \mathrm{ha}$ follar application and two cuto gave the seeond highest nat prosit of 8.4996 .7 par hectaro.

Table 23 Economiciof levels and mathods of phosphorus application and number of cuts in Stylosanthes grecilis.

Treat ments	cost of prociuction excluding treatment \&	Adel. cost of treat s ments B_{3}	Total cost OE pro duction ${ }_{3}$	Yaeld of seed sg/iza	Yield OE green mattor kg/ha	Value of seed	Velus of green matter is	Total revenue B	Net profit 8
$P_{1} C_{1}$	1793.40	800	2593.40	38.67	8823.60	2320.20	2205.90	4526.10	1932.70
$\mathrm{P}_{2} \mathrm{C}_{2}$	1793.40	1200	2893.40	29.64	13121.02	1176.60	3280.26	4456.86	1563.46
$\mathrm{P}_{2} \mathrm{C}_{3}$	1793.40	1400	3193.40	0.00	16503.40	0.00	4125.85	4125.85	932.45
$p_{2} C_{1}$	1793.40	1000	2793.40	46.84	10506.62	2310.40	2626.66	5437.06	2643.66
$\mathrm{P}_{2} \mathrm{C}_{2}$	1793.40	1300	3093. 40	41.40	16944.58	2434.00	4236.15	6720.15	3626.75
$\mathrm{P}_{2} \mathrm{C}_{3}$	1793.40	1600	3393.40	0.00	22500.18	0.00	5625.05	5625.05	2231.65
$P_{3} C_{1}$	1793.40	1200	2993.40	77.34	13398.80	4640.40	3349.70	7990. 10	4996.70
$\mathrm{P}_{3} \mathrm{C}_{2}$	1793.40	1500	3293.40	44.65	21609.52	2679.60	5424.88	8104.48	4811.08
$\mathrm{P}_{3} \mathrm{C}_{3}$	1793.40	2800	3593.40	0.00	27614.60	0.00	6903.65	6903.65	3310. 25
$P_{4} C_{1}$	1793.40	1150	2963.40	83.33	6987.00	4999.80	2246.75	7246.55	4303.15
$\mathrm{P}_{4} \mathrm{C}_{2}$	1793.40	1450	3243.40	50.65	13072.00	3039.00	3268.00	6307.00	3063.60
$\mathrm{P}_{4} \mathrm{C}_{3}$	1793.40	1750	3543-40	0.00	16503.40	0.00	4125.85	4125.85	592.45
$P_{5} C_{1}$	1793.40	1350	3143.40	107.30	10506.62	6438.00	2626.66	9064.66	5921.36
$P_{5} C_{2}$	1793.40	1650	3443.40	55.56	17107.98	3333.60	4277.00	7610.60	4167.20
$\mathrm{P}_{5} \mathrm{C}_{3}$	2793.40	1950	3743.40	0.00	22336.78	0.00	5584:00	5584.00	1840.60

Value of $\mathrm{P}_{2} \mathrm{O}_{5}=1 \mathrm{~B} .5 / \mathrm{kg}$. Value of greenmatter $=\hat{s} .250 /$ ton.
Value of seed $=6.60 / \mathrm{kg}$.

SUMMARY

An investigation was conducted to study the effect of different lovels as well as mothods of phosphorus application ($40 \mathrm{~kg}, 80 \mathrm{~kg}$ and $120 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}$ as soil applicetions, $40 \mathrm{~kg} \mathrm{p}_{2} \mathrm{O}_{5}$ he as soll t 40 kg $\mathrm{p}_{2} \mathrm{O}_{5}$ /ha as foliar applications and $80 \mathrm{~kg} \mathrm{p}_{2} \mathrm{O}_{5} / \mathrm{ha}$ as soll $4.40 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}$ as follar application) and cchedules of cutting of green fodicer (cyop to be loft for seed setting aster two cuts, three cuts and four cuts) on the aeed production potential of Stylooenthes gracilis.

It was lafd out as a.factorial experiment in Rendomised Block Design with thres replications. The important results of the study aro sumarised below:-

1. Plant height and spread increased significently with increase in the dose of phosphorus applied in the soil from 40 kg to $120 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}$ at the time of all cuts as woll as at Elowering. Foliar application of phosphorus dia not give any adaitional effect on plant haight and spread at flowering.

Increasing the number of cuts significantly reduced plant height and opread at flowering.
2. Highost level of phosphorus (120 $\mathrm{kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}$) applied in the soil gave significantly higher leakistem ratio than loter doses applied in the soil in all the cuta while $80 \mathrm{jgg} P_{2} \mathrm{O}_{5}$ /ha as aoll application gave significantly higher Leedistem ratio upto the thirc cut taken, than $40 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} /$ ha goll application but was on par with it in tho lest cut (fourth cut).
3. Number and weight of root nodules per plant increased significantly utth increage in tho level of phosphorus applied in the so11.

Cutting treatments hed no significant effect on the number and weight of root nodules although an increasing trend was observed in nodule weight with incroase in the number of cuts.
4. Increase in the level of phosphorus applied in the soil gicmificantly increased the greenmatter and drymatter yielas in eech cut as well as the total greenmatter and drymettor yields from all the cuts.

Increasing the number of cuto from two to four aignificantiy increaged total greenmatter and total drymatter yialds. Application of 120 kg $\mathrm{p}_{2} \mathrm{O}_{5} / \mathrm{ha}$ in the soil and taking four cute before leaving the crop

Eor seed setting gave a maximum total greenmattor yield of $27.6 \mathrm{t} / \mathrm{ha}$ which resulted in providing 5.1 tha of drymattor.
5. Application of $80 \mathrm{~kg} \mathrm{p}_{2} \mathrm{O}_{5} / \mathrm{he}$ in the soll supplemented by $40 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{\mathrm{G}} / \mathrm{ha}$ foliar application gave the highest seed yield significantly more than the othor phosphorus troatrents. This was followad by $40 \mathrm{~kg} \mathrm{p}_{2} \mathrm{O}_{5} / \mathrm{ha}$ soil application $+40 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5}$ /ha follar application which was on par with $120 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}$ applied in the soll and superior to other levels of phosphorus tried. Increasing the soil application of phosphorus from 40 to $80 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} /$ ha significantly increased the seed yiola.

Cutting two times and then leaving the crop for sead setting gave the highost seed yield, significantly more than taking three cuts. whila cutting four times yielded no seed. The maximum geed yield of $107.3 \mathrm{~kg} / \mathrm{ha}$ was given by application of $00 \mathrm{~kg}{ }_{2} \mathrm{O}_{\mathrm{g}} / \mathrm{ha}$ in the soll + $40 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}$ as follar application and taking two cues of green Eodder.
6. Increasing the close of phosphorus applied in the soil significantly increased the crucde protein content In the drymatter in all four cutes as well as the total
protein yield. Increasing the number of cuts signieicently increased the total protein yield.
7. Nitrogen, phosphorus and potash ..tn recovaries from cumulative drymatter were significantly increased with increase in the aose of phosphorus applied in the sotil and also with incraase in tho number of cuts.
a. Increase in the dose of phosphorus applied whether as combined applicacton as soil + follar or as soil application alone enhanced the crude protein content or the seede while cutting treatinents hed no effect on the same.
9. As tho level of phosphorus applied in the coil Was increased from 40 to $120 \mathrm{~kg} \mathrm{p}_{2} \mathrm{O}_{5} / \mathrm{ha}$ the total nitrogen content, available phosphosus content and cation exchenge capacity increased significantly while there was no effect on avatlable potaph. content in the soil.

Cutting troatments had no effect on the total nitfogen, available phosphorus, available potash: and cation exchange capacity of the soll.
10. Significant and positive correlations were observed between seed yield and helght and spread of plants at

122

flowering, seed yiald and proteln content in tho seed, greennateor yifold and total protoln yield fron drymeter, and total. nitrogen content in the soil and total proteln yield from drymattar. A significant and negative correlation was observed between seed yield and greenmatter yield.
11. $90 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}$ soli application $+40 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}$ as foliar in combination with two cuts of grean fodder gave the maximum net profit of ks.5921. 36 per hectare.

Future $21 n e$ of woris

The optimum timo to apply phosphorus through foliage to the crop, after the last cut, is to bo investigated. similarly the optimum time for cutting the crop to bo left for seed setting to get higher seed procuction also needs further investigetion.

REFERENCES

REEERENCES

Albinot. E. (1976). The influence of irrigation and fertilisers applied at the vegetative stage on the production of lucerne seed. sfronomie-ilorticulture. 3: 41-42.

Annemal George (1980). Nutritional cequirement of blackgram (Vigna mungo (i) Hepper) M.EC. (Ag) Zhesis, Kerala Agricultural Univerelty.

Anonymoung (1974). Comparative performence of aifferent varieties of cowpea under different phoophate and potash manuring. Roport presented at the IV Annual maeting hald at Jhangi. SubcentremCoimbatore. AIcp for Research on rorage Crops: 65-66.

Anonymous (1976, a). Comparetive performance of cowpea, ricabean, totrakolai and soybean under different coses of phosphates Annual progrese Report, Subcentrom Kalyani. AICP for iamearch on Forage Crope: 24-25.

Anonymoles (1976, b). Phoaphate application in annual lucerno (sirsam) and 1 th restaual effect on cowpea (varioty EC-42i6). Annuel Progress Report, Sub centre Rahuri. AICP For Research on Forage Cropes 14.

Anonymons (1976, c). Performance of cowpea variety ec-4216 undsr different phosphate and potash manuring. Annual Erogress Report, AICP for Recearch on Forage crops, Subeontre-Kalyani, West Bongal: 3

Anonymous (1973, a) Ehosphate application in perennial Luceme. Annual Progrees Roport, AICD for Research on zorage Crops, Subcentre- Anand: 10-13.

Anonymous (1978, b). EEFect of phosphate as basal and follar application on the aeed production of cowpea under varying seed rates with and without stacking. Annual Rrogress Reporte AICP Eor Renearch on Forage Crope. IGRRI. Jhangi: 120-121.

Anonymous. (1978, c). Effect of irrigation and foliar spray of phosphate on seed production of lucorne. Annual Progress Report, AICP Eor Research on Eorage Crops. IGFRI, Jhanst: 118

Anonymous. (1970, a). Effect of cu-tting management and phosphorus application on seed production of lucerne. Annual Progrese Report, AICP for Roscarch on forage Crops; Subcentre, Anand: 14-17.

Anonymous. (1978, e). Comparative performance of compea under different datos of planting, cutting and phosphate levels for grain. Annuel Progress Roport. AICP for heseazch on Eoraga Crope, IGRRI, Jhansi: 111-112.

Anonymous. (1979). Effect of irrigation intorval and foliar spray of phoophate on Deed production of lucerne. Annual Progress Roport, AICP EOr Recearch on Forage Crops, IGERI, Jhansi: 30-31.
*Barta. J.F. (1959). Yield and ovule development of Alaska peas as influenced by nutrition and noil moisture. D19a. Abstr 20 (3): 934-335.

Batra, P, Ce and Gill. GeS. (1967). Seed setting Investigathons with luceme (ifedicago sativa) 2. Effect of cutting frequencies and spacings. J. Reg. Punjab. garies Univ. 4 (2): 25-29.

Black, C.A. (1968). Eoil plant Feletionshipe. John Wiley and Sons. Inc. Now York, and Ed. pp 792.
 (1973). Twenty trials of Nex appilcation to bean crop in Zona demata, Mines Gerais. Revigta Cereg. 2g(ili): 370-380.

ce.	R.C. (1974). Growth response. critical percentago of P and seasonal variation of P percentage in Btylosanthes guyanensis C.V. Schovield topdressed with superphosphate. Trop. Grass L . 8 (3): 137-144.
*Botorac. A. and Vastij. D. (1978). ExEect of incraasing	
	rates of phosphorus and application depths on
contents of phosphorus in stems and laves of	
lucerne grow on hypogley solls in the midale	
Drava valley. Rolionrivredna Znanstvena smotra. 45 (55): 67-82.	
Chattarjee, B.N., Roguib, A. and Maiti, S. (1972), Phosphate menuring of soybean and its effect on wheat yield.工. Indian Soc. soil. ©i. 2g (4): 375-373.	
Chandini. S* (2980). Fodder Production Potential of grass-	
legume mittures. M, Sc. (Ag) Thesis. Kerala Agricultural	
University.	
*Dhar, S.N. (197日). Studies on the effect of different levels of phosphorus on the yield and quality of berseen (Trifolium allosandrinum) Fodder. Thesis.	
Abster 4 (1):18-19.	
*Wow, A. I., Roberts, S., Hintze, R. (1973). 1970 Eertilizer trials on irrigated beans in Contral veshington. Circular, washington agel Expt. station. (56A) pp 14.	
*Falade, J.A., (1973). EEfects of phosphorus on the growth and mineral compouttion of four tropical forage	
Legumes. £. Sci. Eood. Agric. Abstr. 2g (7): 795-302.	
HELsher, MoJ. (1970). The exfect of superphosphate on the growth and develoment of towneville styio	
(Styloganthes humilis) in pure ungrazed swards at	
Kathorine, N. Te Auste J. expoidicic. Anime Husb. 10: (47): 716-724.	

*Fogeria. N.K. (1977). EEfect of phogphate fertilization on growth and mineral composition of pea plants (Pisum sativum. L_{0}) Agrochimia $21(1 / 2)$: 75-78.

Garg. KePe. Eharme, A*Ke and Thalkur, BeS. (1970). Manuring of cowpoa, studics on the effect of different rates of P and rio on the growth, yield of cowpea fodder and residual effect on wheat. Indian J.Arron. $15(2): 112-118$.

Garg, K.P., Sharma, A*K. and Thakur, B.S. (1971). Studies on the effect of different rates of phosphorus and molybdenum on the growti and yield of cowpea fodder and residual effect on whoat. Indian s. agrone 16 (2) 185-188.
*Gates, C.T. (1974). Nodule and plent development in Stylosanthes humile HBK - Symbiotic response to F and S . Musto Jo Eot 22 (1):45-55.

Gil1, Aosi. Pandey, R.K., Singh, Muthtar and Nbichanciant, C.T. (1971). Efiect of 3011 and foliar application of Phosphoris on seed yield of cowpea(4ikna sinensig) Inctan. I. Agron. 16 (3): 303-304.
*Gorgiefv. S. (1977). Effect of nitrogen and phosphorus application on tho intensity of nitzogen, phosphorus and potassium accurmulation in groundinut. pochvoznanie 1s Agrofhimiya 12 (1): 81-92.

Graham, P.H. and Rosas, J.C. (1979). Phosphorus fertilization and symbiotic nitrogen fixation in common beane Aaron. J. 71 (6): 925-26.

Jackson, $\hat{M}_{i} L_{\text {. (1967) . Soll }}$ Chemical analyois. Prentice Hall of India Private Lid. Zac Ld. Nev Nolhi: 1-498.

Jones. E.K. (1974). A study of phosphorus responses of a wide range of accessions from the genus itylosanthes. Aust Je Agrice Rese 25 : 847-862.

Kegavan, Ge and Morachan, Y.B. (1973). Response of aoybean Varieties to graded coses of nitrogen and phosphorus. Madres acric. J. gg (1): 23~26.

Keya, N. C.O and Kalangi. D.W. (1973). Seeding and buperphosphate ratos for the establishinent of Dosmodium uncinatum (Jacq). D.C. by oversowing in uncultivated gresslande of Western Kenya. Trop. Grass Le 7 (3): 319-325.

Khokar. J. S. and Singh, S.D. (1977). Effect of P and ko on yield performance of bergeen. Indian I. Agron. 22 (1):
*Kolilng, Jo, Stammol, JiGe Komelius. E. (1976). Effect of iLme and P Eertilieers on D.M. production in troplical legumos and on soil conservation (1976). Ann. 25 th Braz. Congresa of Soil Science, Campinas, Brazil: 254-260.
*Konstentinova. A. and Danilov. So (1973). Utilication for herbage of lucerne grown for seed. Korma (5): 21-22.

Lute. J. A. Jr. (2973). Alfalfa rosponse to p and K fortilization. J. Indian. Soc. Soll sci. 2 (1): 63-69.
 compea grem to varying levels of nitrogen and phosphorus, Haryane agrice Univ. J. Res. ? (2): 114-118.

Mariappan, H. (1978). Phosphorus nutrition, in stylosanthes gracilis Swartic. Ms Ec. (igg) Thesis. Kerala Agricultiral univeralty.
 and Di sordi. G. (1969). Responses of soybeans to lime phosphorus and potassium application on a red latisol. Eragantis 2B(1-2): 17-21.
 epplication, source and rate of P on the yield of cowpea (yigna ginengis) grown on a savanna sandy Loan soll in Monages State, Veneruela orienter agro. pecurario. 2 (1): 27-39.

KIr Mustafa Husaine. Balng. SeS. and Dé. Rajat (1976). Studies on the effect of phosphate fertilimation, cutting interval and varietieg on forage yield and chemecal composition in borscem. Incisan J. Agson. $21(4): 375-378$.
 and Bahnisch. Leth (1973). Phosphorus responise of Desmodium unclnatim on seed production at ita. Cotton, Jouth eastern Dueansland. Trop GressL. (1973) 7(2): 243-248.

Nhal Singh and thatri. P. B (1972). Effect of phosphato fertilization of legumes on soil fereilityin Indien I. Agron. 17 : $50-54$.

Olsen. Fs $\dot{J}_{,}$and noe, PeG. (2972). The effect of phosphate and lims on the gatablishinent, productivity, nodulation and peraistance of Degmodium intortum Medicago gativa and Stylosanthog graciliso East ifcl. Agric. and EOE S. 37 (1) 29-37.
*onueti. J.O. and Oyenuga, $V_{p} A_{0}(1970)$. Exfect of phogphorus Eertilizer on the protain and essential components of the ash of groundnut and cowpeas. Hest. AEr J. Bioh. Appl Chom. 13: 14-19.
*Oveyannikov. N. $\{1973$. Mathode of increasing seed yielde of lucerne in the Rostov Rrovince. Koxma (3): 28-29.

HPačuta. M. (1973). Eeffect of mothod of utilization and Ferthlizer appileation on aeed quality in lucerne. Acte Eyto technica univergitatis. Agriculturae. M1tra 27 :51-63.

Panwar, R.S. and Singh, Kanwaz. (1975). Befect of difeorent gpacings and phoophorus levels on tho growth, yield and chomical composition of moong (phaseolus aureus roxb.) variety Puse Baisakhi under early swmer conditions. Earyane agric. Untye Jo Res. 5 (1): 91-93.
*Quinlivan, E, J. Hevitt, A. C. and Erancis, CiM. (1973). Seeding rate, then of dowing and fertilizers for gubterranean clover saed production. Aust. Je Expe

Rai. P. and Kanodie, K.C. (1980). Lead procuction of Towneville stylo (StyLosenthes humilis $H_{+} \mathcal{F}_{*} K_{0}$) as influenced by nitrogen and phosphorus application. Eorage Ragaarch G (2) 187-191.

vis

Ravenicare H, N. and badne, N.N (1975). iffect of phosphate on yield, uptake of nitrogen and phosphate and quality of urid. mung and soybean. The puriab Krisht Vicyapegth Research Journed. 3 (2): 145-106.

WRickert. K.G. and Humphreys, wi. (2970). Exfect of varlation in density and phosphate application on growth and composition of rownsvilie gtylo (So humiligil Aust. J. Expe Agrice Anim Husb 20 (45): 442-649.

Robinson, P.J. and Jones. R. K_{A} (1972). The effect of phosm phorus and sulphur Eertilization on the growth and alatribution of drymatter N, Po S in Towsivilie stylo (Stylosanthos humilis). Auste J. igrice Res. 23 (4):

Sahu, S.K.'and Dehora, B. (1972). Note on offect of rhizobium inoculation on compea grounanut and greengram. Indian J. Agron. 17 (4): 359-360.

Sahu, Sek. (2973). Effect of rhizobium inoculation and phosphate application on blackgrem (Phaseolus mungo) and horsegram (Dolichos biflorus) Mectras acifice 3.60 (8) : 9a9-994.
(Santos. J. D. Dos and Cabral. F.M.M. (1976). EEfect of lime and fertiliser on growth of berseem. Anats do Instituto guneriox de Agronomia 36 (4): 71. 82.

Sasidhar. V. K. (1969). Studies on the performance of com Labmisb (Othu mochai) under graded doses of phosphorus and potash at different spacings. Mosc. (Ag) Thesis. University of Korala.

Sesidhari VoK, and George. GsM. (1972). Studios on the role of applied phosphorus and potash on tho uptake of nutrients by a leguns crop (com labolab) plonted at different spacings. Acris

Savithri. K.E. (1980). Nutritional recuirement of geeongram
 mgricultural Untversity:
Sharma, $A_{4} K_{0}$ and Gerge $K_{0} p_{\#}$ (1973). EEEect of phosphorus and. molyodenum on growth and foddes yield of legumes. Indien. J. Agron $\frac{2}{4} \mathbf{R}_{3}(1): 1-5$.
 Eertilizers on growth and arymateter prociuction of Vicia infruia gray and Vicia gativa binme Indian Je Agrioscien (3):249m251。
 chonical composition of Towneville lucerne (s-humilis) 1. Drymatter yiela and nitrogen content in response to superphosphate. Augt. J. Enp. Agtic. Animogusb. g (21): 250-156.

Sholtone lie in. and Fumphreyse Lu Re (1971). Effect of variation in density and phosphate supply on seed production of Stylosanthes humilise J. agife. scie 76 (3): 325-328.
 Kester $F_{0} B$ and silicke J_{0} T. (296S). quality evaluation studies of Eoreign and domestic rices. 'roch. Duli. No. 331

singh, Amarjit (2979). Berseem foddes and soed procuction as influenced by number of cute. sowing datos. phosphate fertilization and micronutitent application. Indian J. Agron. 24 (2) : 221-222.
Singh, G. and Verme, P.S. (1953). EEfect of phosphate manuring of berseem on its yiold and guality Anredunived. Ros. (Sci.) 2 (1): 45-5i.

Gingh, ifok and singh A. P. (2975). Physicomchemical propertieg of soll under phosphato application in Stylosenthes humilis. Znclan I. ighon. 20 : 197-190.

Singh; J*R*, Nogi. P.S. and Tripathy, S.K. (1971). Response ox inosulated soyabean varteties to levels of nitrogen and phosphorus in Taral region of U.P. Indian J. Agron. 19 (3): 303-308.

Singh, K.in. (1975). Effect of various foms and lovels of p on root development and nodulation of berceem. Mysore J. Acrece Ees. $\mathrm{g}^{(1)}$ 49-53.

SIngh, Mukhtar and Pancioy $4 . \mathrm{K}_{\mathrm{e}}$ (1969). Spray Eertilization with phosphete boostes yield of bersean sead. Indian Fag- 19(4): 2-22.
*G1ngh, R.M. and Jain, T.C. (1968). EEfect of phosphate and molybdate on the uptake of N and P by Russian giant cowpee. Ann. Arsi. Zone. 7 (1): 142-146.

Singh, R. P., Dubey, Soke. Mahobir, Parshad and Khokhar, N. S. (1969). Stuales on the effect of aitrogen, phosphorus. potesh and F.Y.Ne on the yield of peas under irrigated conditions. Indian I. Agron. 19(2): 112-117.

Singh, S*P* Singh. R.P and Giri, -*R.P. (1972). Performance of barseem under varying molsture regimes, cutting management and phosphorus lovels. Indian $\underset{\sim}{\text {. Agron. }}$ 17 (4) :314-316.

Ginghe Surinder and Lamba, pes. (1971). Agronomic studies on cowpea $5.5-68.1$. EEfect of soil moisture regimes. seed rate and levels uf P on growth characters and yield. Haryane fgri. Unive J. Rese 1 (3): 1-7

Sinha, ReNe (1972). Effect of levels and methods of appilcation of piosphate fertiliser on the yield of borseem. Indian J. Agron. $17(4)$: 92-94.
sncdecor, George, Wi, and Cochran, William Ge (1967). Statistical methodg. Oxford and IaH Pubilshing Co. 17. Paxk street, Calcutta-16. 6th Edr.: 1- 593.

Steel. $R_{4} J_{0} H$ and Humphreys, LeR. (1974). Growth and 'p' response of somepasture legumes sown under coconute in Bali. Trop. Graggite 8 (3): 171-179.

Subramenian, As, Balasubramanian, A "O Venkatachalam, C." Jagenathan. N. T. and Thirunavukirara Su) D.Re (1977). Effect of phosphorus application and apacing on the yield of cowpee. Pharan agric. J. 69 (9): 589m590.

HTamaki, K and Naka, J (1971). Physiological studias of the growing process of broad bean plante. IV. sfeects of $N_{0} P$ and K nutrient elements on tho growth and the chemical componento in the various organs. Gahuzyuter Hokoku (Hoch. Euli. Eai AgE. Kagawa Univa) 23 (1) $82 m 10$.

Tomar, P.S. (1970). A note on the effect of inoculation and levels of nitrogen and phosphorus on luceme forage. Incian J. Agron 15 (2) 199-200.
*Wendt, W.E. (1970). Responges of pasture species in eastern Uganda to P, S and K East Afy Agric. Fore J. 36 (2): 21\%-219.

Hickham, Be. thalton, Et.M., Hare, M. Do, De Boex. A.J. (1977). Tomsville stylo geod production in North eastorn Thailand. Trop. Grase Le 11 (2): 177~187.

Wilatpon, P and fumphreys, $L_{0} R$. (1976). Grazing ana mowing offects on the sead production or Stylosanthes hamata cV. Verano Trop. Grasen 19 (2) 107-111.

Yadav. G.Le: Singh, Ved and Trivedi. C.P. (1979). EEEect of levels and carriers of phosphate on prociuction potential of rotations carrying lucerne and barseem foreges Indian I. igron. 24(2): 203-207.

APPENDIX

Appendix IA
Weather data during the crop period and its variation fron the past five years

standard neeks	Temperatura ${ }^{\circ} \mathrm{C}$				$\begin{gathered} \text { Relative Rumicity } \\ (\underset{6}{6}) \end{gathered}$		Rainfall (ma)	
	$\begin{aligned} & \text { hastmum } \\ & 1979-80 \end{aligned}$	Variation	$\begin{aligned} & \text { Minnum } \\ & 1979-80 \\ & \hline \end{aligned}$	Variation	1979-30	Variatica	1979-80	Variation
20	29.36	-1.71	22.53	-1.61	24.43	+10.23	15.29	+14.59
29	29.79	± 0.36	23.47	+2.11	87.29	- 2.00	0.00	- 9.79
30	29.66	-0.93	23.04	-1.67	93.00	$+5.14$	5.43	$+1.93$
31	29.07	-2.14	22.34	-1.45	95.43	$+7.64$	7.71	$+7.57$
32	29.93	+1.22	22.50	+0.36	95.72	$+8.64$	5.43	$+5.43$
33	30.64	-0.57	22.73	-0.91	90.43	$+8.43$	0.36	$+0.36$
34	29.93	0.00	23.29	-0.07	90.71	$+4.07$	4.00	- 5.86
35	30.71	+0.64	22.70	-0.30	93.43	$+6.22$	0.00	- 9.68
36	31.63	+2.50	23.06	-0.89	92.00	$\div 2.14$	0.00	- 0.86
37	31.43	+1.07	22.87	-0.40	39.57	$+2.20$	9.57	$+8.35$
39	30.00	-0.79	22.59	-0.70	92.14	+10.90	17.71	+17.61
39	29.00	-1.93	22.53	-1.14	96.00	+11.71	5.00	$+2.28$
40	30.14	-0.43	23.49	$+0.20$	89.14	$+0.71$	0.00	- 2.24
41	30.64	+0.33	23.31	-0.20	07.43	- 1.52	0.00	- 1.31
42	31.36	+1.38	22.17	-1.11	90.36	$+1.62$	1.29	-21.61
43	30.57	+0.81	22.67	-1.08	94.36	+ 7.29	5.72	-10.91
44	30.00	-0.33	22.86	-0.37	95.71	+8.09	1.57	-23.43
45	28.71	-1.27	22.29	-0.47	95.71	+ 4.65	7.86	-11.95
46	29.50	-1.07	21.94	-1.16	95.29	$+5.40$	31.14	+21.01

```
    -2-
Appendixila (conta.)
```

Standard weoke	Temparature ${ }^{\circ} \mathrm{C}$			Relative Humdaty\qquad (\%)			Rainfall (mm)	
	$\begin{aligned} & \text { Maximum } \\ & 1979-80 \end{aligned}$	Varlation	$\begin{aligned} & \text { sininmun } \\ & 1979-30 \end{aligned}$	Variation	1979-30	Variation	1979-30	Varlation
47	30.36	0.00	22.40	-0.31	95.43	$+7.33$	4.86 -	- 5.52
48	30.93	-0.05	22.32	-0.63	91.29	+6.34	1.00	- 0.71
49	30.29	-0.78	22.20	-0.49	95.43	+9.99	5.57	$+2.67$
50	31.50	+0.17	22.40	-0.38	95.43	+14.33	0.00	- 0.90
51	31.21	-0.48	21.74	-1.43	93.86	+12.53	0.43	- 1.09
52	31,00	-1.43	21.26	- 2.53	91.50	+10. 21	0.00	- 2.54
2	31.07	-0.14	20.33	-0.96	87.86	$+8.38$	0.00	0.00
2	32.43	+0.07	20.25	-1.95	87.16	+10.57	0.00	0.00
3	31.50	+0.08	19.74	-1.86	83.86	$+5.72$	0.00	0.00
4	31.71	-0.11	19.43	-2.45	79.00	- 0.43	0.00	$=1.19$
5	31.71	+0.49	20.23	-2.23	81.43	$+0.86$	0.00	- 0.48
6	31.79	+0.20	20.96	-1.51	92.71	+ 7.81	0.00	- 0.76
7	31.36	+0.26	19.76	-2.81	87.14	+ 2.09	0.00	- 7.24
3	31.29	-0.21	21.34	-2.01	80.71	-4.39	0.00	0.00
9	$32.19{ }^{\circ}$	+0.23	21.46	-1.38	35.00	$+0.57$	0.00	0.00
10	31.79	-0. 25	21.90	-0.99	87.00	+ 4.38	0.00	- 2.10
11	32.36	+0. 23	21.86	-1.5A	83.57	- 1.29	2.43	+2.00

$$
\text { AppendixIA }(\text { contd.. })
$$

Standerd weeks	Temperature ${ }^{\circ} \mathrm{C}$				Relative fumidity (\%)		Rainfall (mm)	
	$\begin{aligned} & \text { Meximum } \\ & 1979 m 80 \end{aligned}$	Variation	$\begin{aligned} & \text { yinimum } \\ & 1979-80 \end{aligned}$	Variataion	1979-80	Vastation	1979-80	Variation
12	32.07	~0.60	21.76	-2.34	87.86	+ 2.81	0.00	- 0.71
13	32.93	-0.15	21.04	-3.47	89.14	$+4.33$	0.86	$+0.85$
14	31.60	-1.08	22.69	-2.85	92.14	$+7.43$	14.86	+13.91
15	32.79^{\prime}	--. 56	23.97	-1.19.	89.86	$+6.86$	0.00	- 1.67
16	33.71	+0.53	24.30	-0.45	88.71	$+4.66$	0.00	- 0.62
17	33.64	+1.04	24.84	+0.14	89.85	$+6.34$	7.86	$+7.76$
18	31.86	$\therefore 1.00$	23.76	-0.83	91.00	+ 4.05	5.86	+1.91

Appendix I
Abstracts of Analysis of varlance Tables for mean plant height $C \mathrm{c}$

Appendix I (a) Height at the time of 1st cut

Appendix I (b) Height at the time of 2nd cut

Si.No. Source of variation df Mean squares f value

1	Block	2	3.728	0.5824
2	Treatments	2	2513.378	$392.6170 \star \%$
3	Error	40	6.402	
	Total.	44		

Appendix I (c) Height at the time of 3rd cut

Appencix I (e) Height at the time of flowering (cm)

Sl.No.	Source of variation	df	Mean squares	E value
1	Block	2	24.460	2.7742
2	Troatments	14	2600.374	294.9240**
3	P	4	1622.385	184.0044**
4	c	2	14743.800	1672.1825**
5	$\mathrm{P} \times \mathrm{C}$	8	53.513	6.0692**
6	Error	28	8.817	
	Total	4.4		

** Significant at 1% level.

Appendix II (e) Spread at the time of flowering (cm)

$\begin{aligned} & \text { SI } \\ & \text { NO. } \end{aligned}$	Sources of	dE	Mean squa	F. Value
1	Block	2	10.74	0.98442
2	Treatments	14	5333. 11	488.82768**
3	P	4	2034.00	184.60129**
4	C	2	32272.68	2958.08249**
5	$\mathrm{p} \times \mathrm{C}$	8	257.77	23.62695**
6	Error	28	10.91	
	Total	44		

Appendix III

Abstracts of Analysis of Variance Pables showing the effect of phosphorus application on Leas/Stem (I/S) ratio

Appendix III (a) Leaf: stem ratio at the tims of lst cut唯

Sl.NO.	Source of varia. tion	de	Mean scuuares	F value
1	Block	2	0.145	26.85000**
2	Ireatments	2	0.620	114.81400**
3	Error	40	0.005	
	Tocal	44		

Appendix III (b) Leaf: $\mathrm{m}_{\mathrm{tem}}$ ratio at the time of $2 n d$ cut

Sl.No. Source of varia- df Meen F value tion squeres

1	Block	2	0.060	12.24490**
2	Treatments	2	0.750	253.06000**
3	Error	40	0.005	
	Total	64		

Appendix III (c) Leafistem ratio at the time of 3 rd cut

S2.	Sources of varia: tion	dis	Nean squares	F value
1	Block	2	0.00257	0.15953
2	Treatments	2	0.22354	13.87585**
3	Erroz	25	0.02611	
Totel		29		

Appendix III (d) Leafsstem ratio at the time of 4 th cut

Sl.No.	Source of Varlation	df	Mean sauares	F value
1	Block	2	0.00159	0.22489
2	Treatments	2	0.17160	24.27157**
3	Error	10	0.00707	
Total 14				

Appendix IV

Abstract of Analysis of variance Pable for number of root nodules

Appendix V

Abstract of Analysis of Variance table for weight of root nodules (mg)

Appendix VI

Abstracts of the Analysis of Variance Pables for Greenmatter yield (g. plot)

Appendix VI (a) Greenmatter yield at the time of 1st cut

Appendix VI (b) Greenmatter yield at the time of 2nd cut

S1.NO.	- Sources of variation	df	Mean squares	F value
1 E	Block	2	17390888.88	880.05628**
2 I	Treatments	2	9032111.11	406.40052**
3 E	Error	40	19761.11	
	Total	44		

Appendix YI (c) Greenmatter yield at the time of 3 rd cut

sl.No. Sources of variation		dif	Mean squares	F value
1 Block		2	6932333.33	101.77646**
2	Treatments	2	11969583.33	175.73091**
3	Error	25	68113.33	
		29		
Appencix VI (d) Gremmatter yiele at the time of 4 th cut				
Sl.No.	No. Sources of variation	de	Mean squares	F value
$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	Block	2	130 ¢бб6.67	$6.17976 *$
	Treatments	2	3389166.67	16.00425**
	Error	10	211766.67	
	Total	11		
* Significant at 5% level ** Significant at 1% level				

Appendix VI (a) Total Greenmatter yield (k/plot)				
S1.No.	Sources of variation	dy	Mean squares	F value
1	Block	2	51.80	120.47**
. 2	Treatments	8	61.33	142.63**
3	P	2	75.69	176.00**
4	C	2	159.80	371.63*
5	PX C	4	4.92	11.44**
6	Error	34	0.43	
	Total	44		

Appendix VII

Abstracts of Analysis of Variance Iables for drymatter yields (kg / p.
Appendix VII (a) Drymatter yield in the 1st cut

sl.No.	sources of variation	df	Mean squares	F Value
1	Block	2	0.0078	11.1429**
2	Treatments	2	0.1678	239.7143**
3	Error	40	0.0007	
	Total	44		

Appendix VII (b) Drymatter yield in the 2nd cut

Sl.No.	Sources of variation	dif	Mean squares	E Value
1	Block	2	0.72	$72 * *$
2	Freatments	2	0.27	27**
3	Error	40	0.01	

Total
44

Appendix VII (c) Drymatter yield in the 3 ra cut

s1.No.	Sources of variation	$d f$	Mean Squares	F Value
1	Block	2	0.2728	90.933**
2	Treatments	2	0.4391	146.367**
3	Error	25	0.0030	
	Total	29		

Appendix VII (u) Drymatter yield in the ath cut

sl.No. sources of varia- df \begin{tabular}{c}
Mean

tion

Squares
\end{tabular}\quad Value

$=$ Significant at 5% level
** significant at 1% level

Sl.NO.	Sources of varia+30n	df	Mean Squares	F Value
1	Block	2	2.1702	88.9426**
2	Treatments	8	2.2504	92.2295**
3	P	2	2.7861	114.1848**
4	c	2	5.8918	241.4672**
5	$\mathrm{p} \times \mathrm{c}$	4	0.1618	6.6311**
6	Erior	34.	0.0244	
	Total	4.4		

Appendix VIII

Abstract of Analysis of Varience Table for seed yield ($\mathrm{kg} / \mathrm{ha}$)

Sl.No.	Source of variation	af	Mean squares	E value
1	Block	2	2295.04	14.921**
2	Treatments	9	1970.22	12.809**
3	P	4	2480.44	16.126**
台	C	1	6016.87	39.118**
5	PXC	4	448.32	2.915
6	Error	13	153.81	

Appendix IX

Abstracts of Analysis of Variance Tables for Protein content in drymatter ($\%$)

Appendix IX (a) Protein content in the 1st cut

Sl.No.	Sources of variation	de	Mean scuares	F Value
1	Elock	2	5.58	4.5517
2	Sreatments	2	108.49	88.5099**
3	Error	40	1.23	
	Total	44		

Appendix IX (b) Protein content in the 2nd cut

Sl.NO.	Sources of variation	df	Mear. squares	E Value
1	Block	2	1.42	1.28
2	Treatments	2	96.62	87.05**
3	Error	40	1.11	
	Total	44		

Appendix IX (c) potein content in the 3rd cut

Sl.No.	Sources of variation	dx	Mean squares	F Value
1	Elock	2	18.82	81.49**
2	Treatments	2	51.22	221.77**
3	grror	25	0.23	
	Tocal	29		

Appendix IX (d) Protedn content in the 4 th cut

	Sources of variation	df	Maen Squares	$1{ }^{1}$ Value
1	Blocks	2	1.59	4.58
2	Treatments	2	22.12	63.37**
3	Error	10	0.35	
	Total	14		

Appendix IX (e) Aostract of Analysis of Variance Table for Total Protein Field ($\mathrm{kg} / \mathrm{plot}$)

Sl.NO.	Sources of variation	$d \pm$	Mean Squares	F Value
1	Block	2	330.7450	47.1496**
2	Preatments	8	832.9935	138.7480**
3	P	2	1880.8573	268.1270**
4	c	2	1317.2955	187.7880**
5	P X 6	s	66.9107	9.5385
6	Error	34	7.0148	
	Total	44		

in signisicant at 1% level

Appendix x

Abstracts of Analysis of Variance Tables for Phoophorus content in drymatter (mg / g)

Appendix \dot{X} (a) Ehosphorus content in the 1st cut

Sl.NO.	Sources of - tion	d	Mean squ	F Value
1	glock	2	0.90600	9.67491**
2	Ireatments	2	2.86146	30.5567\%**
3	Error	40	0.09364	
	Total	44		

Appendix x (b) Dhosphorus content in the 2nd cut

Sl.No. Sources of varla- df Hean squarea a Value tion

1	Block	2	0.08935	1.87255
2	qreatments	2	6.04692	126.72809%
3	Error	40	0.0477	
	gotai	44		

Appendix X (c) Phosphorus content in the 3 rd cut

Slaivo. Sources of varia- df Mean squares F Value tion

1	Block	2	0.28000	4.00000
2	Treatrents	2	6.79000	$97.00000 * *$
3	Error	25	0.07000	
	Total	29		

Appendix X (a) Phosphorus content in the fth cut

51.No. Sources of varia- dif kean Squares g^{2} value tion
1 Block 20.50500 8.61628**

2 Treatmencs . 2 3.48250 59.41989**
3 3rror 100.05861
Total 14
-

Appendix XI

Abstracts of Analysis of Variance Tables for Potash content in drymatter (\%)

Appendix XI (a) Potash content In the 1st cut

S1.No.	$\begin{gathered} \text { Sources os varia- } \\ \text { tion } \end{gathered}$	dr	Mean Squares	9 Value
1	Block	2	0.05427	0.51121
2	Treatments	2	0.10993	1.03556
3	Error	40	0.10615	

Appendix XI (b) Potash content in the 2nd cut

Appendix XI (d) Potash content in the 1 th cut

Sl.No.	$\begin{gathered} \text { Sources of } \\ \text { tion } \end{gathered}$	$d x$	Mean Squares	F Value
3	Block	2	0.48474	95.95012**
2	freatments	2	0.15333	30.35036**
3	arror	10	0.00505	
Total 14				

APPENDIX XII
Abstract of Analysis of Variance fable for Nitrogen recovery ($\mathrm{kg} / \mathrm{plot}$)

51 $\mathrm{NO} \cdot$	Sources of variations	df	Mean squares	F value
2	Elock	2	330.745	47.1496古出
2	Treatments	6	832.993	118.9480*
3	p	2	1880.857	268.1270**
4	C	2	1317.295	187.7880**
5	P \times	4	G6.911	9.5385**
6	Error	44.	7.015	
7	Total	44		

** significant at 1% level.

Appencix XIII

Abstract of Anelygis of Variance Table for Phosphorus recovery ($\mathrm{kg} / \mathrm{\rho}$ lot)

S1.NO. Sources of $\begin{aligned} & \text { variation }\end{aligned}$			an F value	
			guarea	- - - -
1	Black	2	0.1961	43.5778**
2	Treatments		0.6410	142.4440**
3	P	2	1.2909	286.8667**
4	c		1.1316	251.4667**
5	P \times C	4	0.0708	15.7333**
6	Error	34	0.0045	
	Total	44		

Appendix XIV
Abstract of Analysie of Variance Table for Potash recovery ($\mathrm{Kg} / \mathrm{plot}$)

$\begin{aligned} & \text { SI } \\ & \text { No. } \end{aligned}$	Source of variation	dx	Mean squares	F. Value
1	Block	2	13.4283	27.3322**
2	Ireatments	8	13.3015	27.0741**
3	P	2	12.7160	25.8824**
4	C	2	39.4606	80.3187**
5	P \times C	4	0.5147	1.0476
6	Error	34	0.4913	

Total
44
** Significant at 1\% level.

Appendlx KV
Abstract of Analygis of Variance Rable for Protein content in the seed (\%)

Total
29

Appendix XVI

Abstract of Analysis of Variance Pable for Phosphorus content in the seed (mg / g)

$\mathrm{Sl} . \mathrm{NO} .$	Sources of variation	df Mean \quad F Value		
1	Block	2	0.0403	2.2768
2	Ireatments	9	0.1905	10.7627**
3	P	4	0.3286	19.6949**
4	C	1	0.2521	14.2429**
5	$\mathrm{P} \times \mathrm{C}$	4	0.1690	9.5480**
6	Error	18	0.0177	
7	ciotal	29		

** SigniEicant at 1% Level

Appendix XVII

Abstract of Analysis of Variance Table for potash content in the seed ($\%$)

Sl. NO	Sources of veriam tion	df	Mean squeres	F Value
1	3lock			- - - -
1	Block	2	0.00641	3.54144
2	Treatments	9	0.00185	1.02210
3	P	4	0.00189	1.04420
4	c	1	0.00056	0.30939
5	P X C	\leq	0.00215	1.18785
6	Error	18	0.00181	
7	Totel	29		

Appendix XVIII

Abstract of Analysis of Variance Table for Total Nitrogen content of the soil ($\mathrm{Kg} / \mathrm{ha}$)

it: Significant at 1% level.

Appendix XIX
Abstract of Analysis of Variance Table for Available phosphorus content in the soil. ($\mathrm{Kg} / \mathrm{ha}$)

sl.No. Sources of varia de Mean value				
1	Block	2	27.29	5.16*
2	Treatments	14	101.04	19.10**
3	P	4	299.87	56.69**
4	C	2	18.76	3.55
5	$\mathrm{p} \times \mathrm{c}$	8	22.20	4.20**
6	Error	28	5.29	
	Total	41		

* Significant at 5% level.
** Significant at 1\% level.

Appencix $X x$
Abstract of Analysis of Variance rable for available potash content in the soil ($\mathrm{kg} / \mathrm{ha}$)

Total

Appendix XXI
Abstract of Analysis of Variance Table for C.E.C. of the soil (ra.e (ioog in

Total
44
** Signizicant at 1% level

SEED PRODUCTION POTENTIAL OF Stylosanthes gracilis

BY
LEKHA SREEKANTAN

ABSTRACT OF A THESIS
SUBMITTED IN PARTIAL FULFILMENT OF
the requirement for the degree: MASTER OF SCIENCE IN AGRICULTURE
FACULTY OF AGRICULTURE
KERALA AGRICULTURAL UNIVERSITY.

DEPARTMENT OF AGRONOMY
COLLEGE OF AGRICULTURE
VELLAYANI, TRIVANDRUM

ADCTRACT

Eactorial mperiment in Randomised miock Deolem With three replications was conducted in tho coilege of Hgetculture, Vollayani to atuay tine oftoct of levels and mathods of phoephorus applicstion and nunbar of cuts of graen fodier taren, on the sead procuction potential of stulosanthas geccilis. the phosphorus treatmente wore 40. 60 and $120 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5}$ /ha an soil applications. 40 kg $P_{2} O_{5} / \mathrm{ha}$ as soll application $+40 \mathrm{~kg} \mathrm{p}_{2} \mathrm{O}_{5} / \mathrm{ha}$ as rollar and $80 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}$ doil appligation $+40 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}$ Eollax. The cutting treatments were two, thres or four cuts.

Encroastan the lavol of aoli applicd phosphorue significantly incressed height, apread, leafisten rotio, nodular welght and number, greenmeter and drymatear yiolds In each cut and tho comulative greonmattor and deymeter y1olds.

Increasing tha mabor of cuts aignificantly lacroased cunulative graennottor ond arymatter yielas while it reduced tho plant halghe and sproad at floworing.

Application of $60 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5}$ /ha in tho soil +40 kg $\mathrm{P}_{2} \mathrm{O}_{5} /$ ha as Eoliar gova oigniEicantly highar seed ytalas ($207.3 \mathrm{~kg} / \mathrm{he}$) than other phosphorus treatments.

Applleation of $40 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}$ in the soil $+40 \mathrm{hg} \mathrm{E}_{2} \mathrm{O}_{5} / \mathrm{ha}$ as Eoller tog on par whil $120 \mathrm{kf} \mathrm{R}_{2} \mathrm{O}_{5} /$ ha soll application and suparior to 00 kg and $40 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{\mathrm{j}} / \mathrm{ha}$ soll applications winle $80 \mathrm{~kJ} \mathrm{p}_{2} \mathrm{O}_{5} /$ ha soil application gave aignificantly highar need ytukd than $40 \mathrm{rog}_{2} \mathrm{O}_{\mathrm{g}}$ /ha aoil application.

Taking two cuto gavo aignigicontily higher deeñ yiela than three cute while four cute yielaced no ceed.

Increosing the level of phosphorus applled in the goil and the number of cuts significantiy increased nitrogen, phosptiones and potesh..... recovery values and total protoin yicla.

Foliar applicatian of $40 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}$ gave highor seed protein content ifrospective of the quantity apgliod in tha ooll kinila cuteing treatmonts had no carect on the bams.

