IMPACT OF FARM BROADCAST ON THE ADOPTION OF AGRICULTURAL INNOVATIONS BY THE FARMERS OF NUWAKOT DISTRICT OF NEPAL

THESIS
SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENT FOR THE DEGREE
MASTER OF SCIENCE IN AGRICULTURE (AGRICULTURAL EXTENSION) FACULTY OF AGRICULTURE KERALA AGRICULTURAL UNIVERSITY

DEPARTMENT OF AGRICULTURAL EXTENSION COLLEGE OF AGRICULTURE VELLAYANI, TRIVANDRUM

I here by declere that this thasio antitled "Impact of farm aroadcast on the adoption of agricultural innovations by the Farmers of Imwakot District of tepal" is a bonafled record of research work done by me during the course of research and that the chesis has not previouely fomed the basis for the award to me of any degree, diploma, associateship, Eellowhip or other similar title of any other University or society.
vellayani
Date: 1512186

NARAYAN PRASAD MMMAL

CERTIfICATE

Abstract

Certified that this thesis entitled "Impact of Farm Broadcast on the adoption of agricultural innovations by the Farmers of Nuwakot District of nepal" is a record of research work done independently by sri. malayan prasad randal under my guidance and that It has not previously format the basis for the award of any degree, followship or associateship to him.

Prof. Dr. A.M. TAMPI

Vellayani,
Date: 24.3 .198$)$
(Head of the Department of Agricultural Extension)

APPROVED BY:

Chaifman :

prof. Dr. A.M. Tampt 24.34

Members :

Dr. p. sarashathy sananuatly

Dr. R.M. PRASAD Xind

ACKNOWLEDGEMENT

I owe deep sense of gratitude to Dr. A.M. Tampi Professor of Agricultural extension and chairman of the advisory comittee for his valuable guidance, constructive criticisms and constant encouragement throughout the study and in the preparation of this thesis.

I am gratefully indebted to the members of the advisory comitteo Dr. G.B. Pillai, Associate professor of Agricultural extension, Dr. P. Saraswathy Associate Professor of Statistics, Dr. RoM. Prasad, Assistant Frofessor of Agricultural extension for their useful suggestions and help rendered during the study.

I an thankful to those Agricultural officers of Nuwakot District of Nepal for their sincere help remered during my data collection.

I express my heart felt thanks to JT/JTA Devighat Tupche, Ranipauwa and Chaughada sub centre of Nawakot District for thair pains taking effort in helping me in my data collection process.

I wish to express my deep sense of gratitude to His Rajesty's Goverment of mepal for deputation to India for my study in M.SC. Ag, (Extn.) degree programan.

My profound thanks are due to Indian Council of Agricultural Research new Delhi for the allotment of seat In Kerala Agricultural University for my P.G. study.

I have great pleasure to exprese my sincere thanks to U.S.A.I.D. for awarding allowances for carrying out the P.G. Programe.

I am also thankful to the gesture of affection and good will shown and helps rendered by wy soniors am colleagues sarvashri sunay Philip, Viju.A., Subremonium, M. and sint. Seema, B.

I owe deep sense of gratitude to my vile and children for their moral support offered to me during the course of the study.

Helps remdered by the staff members of the department of Agricultural extension college of Agriculture, are worth mentioning and I express my sineere thanks to them also.
iny profound thanks are due to those farmers who formed the respondents of this study.

Abstract

I am also thankful to Kerala Agricultural University for giving admission and providing researeh facilities for my post graduate study.

Finally, thanks are due to Vijayan. R. PRINCIPAL. Institute of comerce, Punkulam, Vellayani, Trivandrum for typing the manuscript within a short period with utmost care.

Vollayani, Date : $1^{5} 1^{8.86}$

(Narayan Prasad Khanal)

CONTENRS

CHAPTER NO.	TTTES	PAGE NO.
I	INIRODUCTION	1
II	THEOREPICAL ORIENTATION	6
IIT	METHODOLOSX	43
IV	RESULIS	60
v	DISCUSSION	131
VI	SUCMMRY	150
	REFERENCES	i - sv
	APPENDICES	$\mathbf{I}-\mathbf{V}$
	ABSTRACI	

2. Distribution and size of sample from four sub-centres. 45
3. Distribution of listeners ard non-listenars according to their level of knomledge in agriculture. 69
4. Comparison of liatencrs and non- listenors according to their mean knowledga scores. 70
5. Diatribution of listenozs and nors ilstoners accoriling to their attitude towands fam broadcasts. 71
6. Comparison of listeners and non- Iistenero according to their mean attitude scores. 72
7. Distribution of 11steners and norm 1istoners acconilng to thear extent of edoption of recomended ageliculturel practices. 73
8. Comparison of listeners and nor- liateners according to their wean extont of adoption scores. 74
9. Distribution of listoners and non-listenars acconding to thole age groups 75

TABLE NO.	TITLE PAGE	PAGE NO.
9.	Comperison of listeners and non-listeners according to their mean age scores.	76
10.	Dustribution of listeners and nonlisteners according to thoir educational level.	77
11.	Comparison of 11 steners and nonilsteners according to their mean education scores.	78
12.	Distribution of listeners and nonw listeners according to their farm size.	$\text { 31ze. } 79$
13.	Comparison of ilsteners and noplisteners according to their mean farm size scores.	80
14.	Distribution of ilsteners and nonlisteners according to their subcentre contact.	81
15.	Comparison of listeners and nonlisteners according to their mean sub-centre contact scores.	32
16.	Disteribution of listeners and nonlisteners accoriang to their level of scientific orientation.	83
17.	Comparison of listeners and nonlisteners according to their mean scientific orientation scores.	84

18. Distribution of listeners and non listeners according to their level of innovation proneness. 85
19. Comparison of listeners and nom listeners according to their mean innovation proneness scores. 86
20. Distribution of listeness and non- ilsteners according to social participation. 87
21. Comparison of listeners and non- listensrs according to their mean social participation scores. 88
22. Inter correlation matrix of dependent variables of listeners (RO \& RA) and non-listeners. 89
23. Corcelation between knowleage and independent varlables ami intervening variable of listeners ($\mathrm{RO} \& \mathrm{RA}$) arch non-listensers. 90
24. Correlation between attitude and independent varlables and intervening variable of Ifsteners (RO \& RA) and non-listeners. 92
TABLE NO.TITLEPAGE MO.
25. Correlation between extent of adoption and independent variables and intervening veriable of listeners (RO \& RA) and non-listeners. 94
26. Relationship amongst independent and intervening veriables of l2steners (RO). 96
27. Relationship amongst independent and Intervening variables of listerers ($R A$). 99
28. Relationship amongst the independent variables of non-listeners (Nro). 102
29. Direct and indirect effects of independent variables on knowledge of instensers (RO). 105
30. Direct and indirect effects of independent variables on attitude of 11steners (RO). 107
31.32. Direct and indirect effects ofIndeperdent variables on knowledgeof listeners ($R A$).112
31. Direct and inalract efiecta of independent variables on attitude of listeners (RA). 115
32. Direct and indirect effects of independent variables on extent of adoption of listeners (RA) 117
33. Direct and indirect effects Of independent variables on knovledge of mon-listeners 120
34. Direct and indirect effects of independent variables on attitude of non-listeners. 122
35. Direct and indirect effects of irdependent variables on excent of adoption of non-1isteners. 124
36. Listoning behaviour of redio owners and radio accessors compared. 127.

LIST OF ILLUSTRARIONS

Figure

Titel
Between pages

1. Theoretical framework of impact of farm broadcast on the adoption of agricultural innovations by the samers. 41-42
2. Rap showing the location ofthe study in Nepal. $43-44$
3. Comparison of knowledge, attitude and extent of adoption of the listeners (RO \& RA) and nom-1isteners of farm broadcast. $73=74$
4. Peth analysis and correlation studies on knowledge of listeners (RO). 106 -107
5. Path analysis and corfelation studies on attitude of listeners (RO). 107 -108
6. Path analysis and correlation studies on oxtent of adoption of 11steners(ro) 111 -112
7. Path analysis and correlation studies on knowledge of listeners (RA). . 113 -114
8. Path analysis and correlation studies on attitude of listeners (RA). $115-116$
9. Path analysis and correlation studies on extent of adoption of listeners (RA). 118 -119

Figure mo.

Pitle

Between paces

10. Path analysis and corralation	
	studies on knowledge of non
	listeners.

11. Path analysis and correlation atudies on attitude of non1isteners. $122=123$
12. Path anelyeis and correlation studies on extent of adoption of non-listeners.
$125-126$

A B BreviAsIo

R 0		Radio Owner
R A		Radio accessor
NRO	\cdots	Non-Radio Ouner
$A I S$	-	Agriculture Information Section
HMG		His Mejesty Govermment
J 3		Junior Technician
$\boldsymbol{J T A}$		Junior Technical Assistant
N 5	\cdots	not signtifeant
S D	--	Standara Deviation
Rop.	\cdots	nopani
Fig.	\cdots	Figura

INTRODUCTION

Chapter I

IMTRODUCTION

All developing countries have now instituted one or the other kind of radio broadcasting system. The Radio Earm forums was first launched in Canada in 1939 (fAO-1984). The era of farm broadcasting as a means of solving many development problems started in India in 1959 when the largest and most thorougily researched media forum programme was launched as a result of a UNESCO- sponsored Investigation directed by Dr. Paul Neurath (Rogers 1969). In the 1950_{s} and 1960_{s}, the broadcasting medium was accepted in the ihird world as a potent instrument for development.

It was about this time that Radio Nepal came into being symbolising the prevailing nepalese mood Eor democracy. development and modernization. It was operated by the Goverment through its department of broadcasting. Ferm broadcast prograrme, as such, was also introduced in 1955 but the idea was to introduce a new programe relating to the farmers.

During 1960 , many innovative changes occurred glokially in the field of mass commaication. Certain significant - changes occurred in sepal as well. In 1966, establishment of Agriculture Information Service (AIS) within the department of
agriculture cook place with the idea of producing fam broadcast programes in order to modernize farming system in Nepal. In December 1966, ais took over the responsibility of planning and producing of farm broadcast programas from Radio Hopal.

This department of agriculture among other departments of His Majesty's Govermant play the vital role in the diffusion of modern agricultural practices and knowledge through its net work of Tr_{s} and $\mathrm{JTA}_{\mathrm{s}}$ as well as through its ingiculture Information section. This section runs its own studio and has its own stafe broadeasters and journalists to plan, prepare and produce farm broadeast programes in four Eormats; vide apponcise ir.

At present, excepting the chamel and the air time farm broadcasting is under the complete control of Als. The Broadcasting Department of the Ministry of Commication of Huc has nothing to do with the farm broadeasting programe management. Barring the problems of mechanical noise and quallty of reception the Department of broedcasting in Nepal cannot be held responsible for the quality of farn broadcast comunication.

Ferm broadcasting in Nepal has many problems. During the last twenty years of AIS farm broadeasting a lot
of messages on farm modernization has been disseminated through Radio Nepal. But there has hardly been any serious study of the 1mpact of these messages on the Nepalese farmers. Impact study of farm broadcast can be analysed only by the listener's record. All the same this study "Impact of Farn broadcasts on the adoption of ngricultural innovation by the Parmers of Nuakot District of Nepal" was selected to study the lmpact of mossages broadcasted with the following objectives.
(i) To assess the level of knowledge of the Yadio 1istening fermers in agriculture.
(1i) To study the attitude of the famer listeners towards farm broadcasts.
(iii) To measure the extent of adoption on recomendations given through farm broadcasts.
(iv) To analyse the 1istening behaviour of the farmers in respect to their personal characterlstics.

Need for the study

Hinety five percent of the Nepalese population live in more than 28,000 rural villages and 93 percent of the population have adopted agriculture as the chief
occupation. The audience of nepalese farm broadcasting is comprised of almost the whole of the Nepalese population of which the majority live in the hills and the mountaineons regions (approximately 66 percent). Because of above reason and undulating topography it became a need to select a district of mountaineous region for this study.

gactmochextastu $20 \times x$ arsxaf

scope of the study

This study can provide necessary and useful information to extension workers, communication specilists and the planners and producers of the farm broadcasts how far the radio is educative and useful medium andhow it is being utilized by fazing communities of Nepal. This study will also throw light on the important personal and situational factors influencing the listening and adoption behaviour of the farmers of hilly regions of nepal.

Limitations of the study

This study was limited to only four subcentres out of nine sub-centres of Nuwakot District of sepal. only 150 respondents could be interviewed out of 16957 population of the four sub-centres, due to the undulating topography, extremely broken terrain and other limited facility aVailable; This study also had its limitation pertaining
to singleness of the radio with that of ocher media in comanicating to farming community. More or less a combination of media is also likely to influence on adoption of the improved practices contained in the broadcasts.

THEORETICAL ORIENTATION

Chapter - II

THEORETICAL ORIEMAATION

This chapter is included to provide the theoretical base for this emprical study on a conceptual Eramework. It will lead to identification and selection of relevant variables for the study, The relevant ilteratures reviewed is presented under the following sections.

I FARM GROADCASTING

II DEPENDENT VARIABLES

III IRDEPENDENT VARTABLES

IV IMTERVENING VARIABLE

V THEORETICAL CONCEPTS AND OPERATIONAL DEEINITIONS OF THE SELECTED VARIABLES

I EARM ZRUADCASTILG:-

Radio:- According to Chamber's Dictpnary (1976)
'Radio' means a whireless receiving set.

Philip (1964) stated that radio as an educational tool had several advantages viz. low cost, immediate appeal and better combination with other instructional modes.

Rai (1994) described radio as the generally available media in the third world with less elite-bias though cuite unequally distributad across the sccial strata.

Earm Brosdeasting:

Hybels and ulloth (1978) reported that broadcasting was originally a farming torm that meant spreading seeds all over the field. In radio and felevision broadcasting means sending a programe through the air to every one within a reach of station. noy one who has the necessary equipment can listen to the programe sent out.

According to Encyclopedia 3ritanica (1974) radio broadcasting is radio transmission intended for general public reception. It is described as the systematic dizfusion of entertainment infermation, educetion and otber features individually or in groups with appropriate receiving apparatus.

Wehru (1980) reported that farm broadeasting means sending out programes related mainly to agriculture and its allied branches of activities.

II
DEPENDERT VABIABLES

Knowledge

Bhaskaran and Mahajan (1968) reported that yourg and middle aged farmers were slightly superior to the old
age group in retention of knowledge about the extension methods. Singh and Prasad (1974) also reported that age had no significent relationship with the knowledge guotient of communication sources of ycung fanmers. Behera and sahoo (1975) reported that young famers had better knowledge and information about ketional Demonstration than other farmers. Kaleel (1373), while studying the impact of Intensive paddy Dovelopaent unit in kerala, found that age had no significant relationship with the knowledge gained by farmers about tha subject matter.

Bhaskeran and Mahajan (1968) found that cducation of farmers in general had a close positive relationship with the response to extension teaching both in respect of retontion of knowleage and acceptence of the practice. Supe and salode (1975) reported that formel education was significantly related to the level of knowledge of farmers on the demonstrated cultivation practices. Behera and Sahoo (1975) reported that aducated farners had better knowledge and information than other farmers about the National Demonstration. Kaleel (1978) found that education was positively and significantly related to the gain in knowledge of the farmers of the experimental area.
supe and salode (1975) reported that fam size was not related to the level of knowledge of famers on the selected improved agricultural practices.

Copp. Weal and Gross (1969) reported that participation of famers in formal organizations improved the posibilities of increased social interaction which incurn helped in increasing the level of knowledge about the new fam practices by the famers. Singh ard Prasad (1974) reported that social participation was positively related to the knowledge of commnication sources of yourg Eamers. Kaleal (1972) found a positive and significant relationship between social participation and gain in knomledge of fammers of the Intensive paddy Develomaent Unit area.

Dhanokar (1970) reported that scientific attitudo helped the farmers in understanding the detalls of practices. supe and salodo (1975) reported that scientifically oriented participant famers had higher kmoledge on the cononstrated practices.
shate (1978) on studying the tribal Eamers reported the suibject matter areas of interest are high yielding varieties, plant protection techniques, and use of fertilizer in the order mentioned.

Chandrakandan (1982) found farmer listeners have gained knowledge considerably in all areas of subject matter, still they felt difficult in case of names of cbemicals, varieties, and practices with economic viability. practical feasibility and easiness were understood.

Tarapi. (1979) studied the influence of radio listaning on the knowledge and adoption of fanm precticess. He fourd exposure to radio broadcasts resulted in medium level of understanding and knowledge in majority of the rural radio forum convenors.

Chandakandan (1980) reported that the exposure to radio broadeast resulted in significant gain in knowledge. minety percent of farmers had medium or low level of knowledge with a mean score of 9.97 out of maximum possible 25, in the pre-broadeast phase. while 75% of the farmers had medium or high level of knowledge in the postibroadcast phase with a mean of 16.03 out of 25 .

Chandrakandan (1982) revealed that 28% of the 11stenors fanmers could acquire skills completely and 50% partially and 22% could not acquire an thing. Hence stmple sicills can be very well taught through radio.

Sharma and Dey (1970) observed that the extent of retention of knowledge after fifteen and thirteen days of broadcast was 16% and 10.88% respectively, among rural. radio forum members.

Chandrakaman (1982) four that two third of information was retained by the farmers listeners after 30 days of broadcast.

Subranoniyam (1975) found age and education Influenced retention. But Doraiswany (1977) found no correlation. Chandrakandan (1982) found that young farmers could retain more and significantly higher than middle aged ana old. fut middle aged am old listeners did not differ significantly between them. Pander and Roy (1978) reported that discussion mode has resulted better retention.
chandrakandan (1982) found all the four modes of delivery the farm broadcast namely discussion, question answer, interview and farm news were effective in connunieating the technology but with considerable difference in their effectiveness.' He also reported that age, education, farm size, urban contact ard attitude of farmer listeners have significant influence on their retention of knowledge.

Somasundaram and singh (1978) reported that the only variable asscciated with knowledge gain was marked.

Sreepal (1976) established a positive relationship between knowledge gain and education, mass media exposure and value orientation.
somesundaram and singh (2978) Found age, education, urban contact, extension contact. economic netivation. attitude towards HYV and scientific orientation as significantly correlated with knowledge gain in case of adopters.
selvanayagam (1980) found that young farmers gained more knowledge than mid-adult and latemadult groups. He also reported that farmers staled pto secondary level gained more information than those having only primary education.

Seivaraj (1981) stated that only witheducation and value orientation a significant difference was noticed with respect to knowledge gain and retention.

Misra and sinh (1981) concluded the formal education of farmers in general was important for knowledge gain.

Sekhar (1992) in a study of farm broadcast listening behaviour of extension presonnel found 75% of them had medium awareness of the programes. The 13% had low and 12\% high level of awereness. Education and experience wore found to have positive and signifteant correlation and age hed negative correlation. Chanirakandan (19a0) also reported that age, social participation, farm size, radio listening beheviour, urban contact, extension contact, secular orientation and attitude had significant influenced on knowledge gain of famer listeners.
sekher (1982) found education, experience am training significantly influnced the knowledge gain of farm broadcast liateners who were extension personnel of the state depariment.

Chamdrakandan (1982) reportea that significant increase in knowledge was resulted due to exposure to skill commnication. 72.2% of the listeners could gain edequate knowledge relating to skill, hence radio could be considered as an elfective media for disseninating knowledge dimonsion regarding skill practice.

Philip (1984) reported that knowledge had significant relationship with farm size and listening behaviour.

Attitude

Bose (1961) reported that people become better integrated and sone shat nore extrem in their ateltude as they grow oider. singh and singh (1960) found younger farmers have significantly favourable attitude towards fertilizers than the older farmers. cas and sarkar (1970) reported that there ues no significant relationship between age and attitude of people towards improved farm practices.

Das and Sarkar (1970) also reported that education was gignificantly related with farmer's attitude tomards the inproved farming prectices. while studing the differential attitude of farmers singh and singh (1971) reported level of education was positively and significantly related to the attitude of the farmers towards the cheaical Fertillizers, improved implements and green manuring.

Das am Sarkar (1970) while studying the economic motivation and adoption of farming practices, reported that social partictpation of farmers vas significantly correlated with the attitude of farmers towards improved agricultural practices.

Rajendran (1902) found all the 2lsteners of commanty radio sets had high level of favourable attitude towards the redio 113tening. Chandrakandan (1982) foum atEftude of 2 isteners had a profound inzluerce on their knowledge gain, retontion of knowlecige and symbolic adoption.

Vellaticheny (19%) ranted radio as the their credible source fior marginal fanters. Kuthiala (1900) complesned that radio could not furction as an exsective changa agent. The snfomation input providea by it was insdeguate, It was rathar a status symbl in rural areas. chardrakarman (1900) placed radio as the most important source of information, followed by letters from commication personnel and frionds, baighbuers and relatives. As a source of motivation radio was renited first if 69: Eamers ami Eriends-noighbours-relatives by 2st. Esealada (1981) Identicied radio as the nost effactive channel for comanicating rural dsvelepront information and extension technicians as the most prefered source. His respondents inciudua radio Listenari, beation managers am pronrame diractors. sekhar (1202) in a study anong the ortension workers in famil wadu foum that the listensors pleced fadio as the third best source of ingomation. It was
preceded by higher officials and far journals only. News paper scored the fifth rank in creaibility. Sunil Mishra (1983) placed radio as a highly credible source of information wth motivational and educational roles. He wrote people have implicit faith in it.

Chandrakaman (1980) reported 23% of the farmer listeners of farm school on air think it as highly useful and 70% moderately useful. while 7% considered it not at all useful. Sekhar (1982) seported that 86% of the listeners opined that the guality of farm broadcast was very high, 92% thought that $1 t$ had high usefulness and 74% considered it as timely and complete. philip (1984) reported no relationship between personal characterstics and attitudes of farmers listoners of the "Farm school on ais" programe because of the voluntary registration of farmer listeners under the same programe and their attitude towards the programe was quite in par.

Adoption

This is an importent variables studiea by many adoption regearchers. filkening (1952) found negative rolationship between age and adoption behaviour. Pardit (1964) reported that age was positively celated with
adoption. Kamalsen (1971) observed an increase in the rate of agricultural practices with increase in age as expressed by the trainees of the Farmers Training Camp. Anbalagan (1976) found that young farmers adopted more number of improved agriculturel practices of high yielding variety of paddy than older farmers. pillai (1378) while studying the impact of soil conservation programe, found that age was negatively and significantly related with adoption of soil conservation practices. Annamalai (1980) fourd thet there was no significant relationship batween age and adoption behaviour of farmors.

Several researchers have shown thet the educational level of farmers was positively related with their adoption behaviour. Notable among them are wilkening (1953), Van Den Ban (1957), Lionberger (1960), Reddy (1962). Pandit (1964), Rai (1975), Rajerdra (1968) and others. patel and singh (1970) observed that farmers With highar education accepted improved practices more readily than farmers with lower education. Grewal and sohal (2971) while studying the comparative role of two social systems in the speed of adoption of some farm practices founci greater level of adoption in the group
which had higher educational level, Subramanyam and Lakshmanna (1973) as well as Chandrakandan (1973) reported education of farmers as positively related to the extent of adoption of recomended farm practices. supe and salode (1975) reported that formal education had no significant relationship with adoption behaviour of famers. Chardrakandan and subramanyarn (1975) reported that education had positive and significant relationship with adoption behaviour. Sundaraswany and Duraiswamy (1975) reported that adoption of recomended practices increased with the increase in the level of education of farmers. Rajendran (1978) observed a poeitive and significant relationship botween education and general adoption of the selected agricultural practices.

Pathak and Dargen (1971) reported that adoption of improved practices was independent of the size of farm subramanyan and Lakshmana (1973) as well as Shama and Nair (1974) observed that size of farm had a positive and significant relationship with the adoption of recomended practices by farmers. Chandrakandan and Subramanyam (1975) reported that size of farm had positive relation with adoption. supe and salode (1975) found no relationship between size of holding and adoption beheviour of farmers. Kaleel (1978) also foum similar results. Rejendran (1978) also found a positive and significant
relationship between size of holding and adoption of selected agricultural practices by famers.

Several researchers have revealed that social partictpation of farmers positively influenced their adoption bohaviour. Notable amoung them are Rahim (1960), Reddy, (1962). Reddy and Kiviln (1963) and singh ot al. (1968). Chandrakandan (1973) Eound that better social participation were better adopters of farm practices. Salunke and Thorat (1975) reported that there was a significant relationship between organizational participation and adoption behaviour of small farmers. Sundaraswamy and Duraiswamy (1975) reported that adoption of recommended practices were more among the farmers who had more social participation. Supe and salode (1975) reported that the social participation was not rolated with the adoption of improved agricultural practices Rajendran (1978) found that social parifcipation of rarmers was positively and significantly related with the adoption behaviour of farmers.
beal and sibley (1967) found that the famers' favourable attitude towards science was positively related with the edoption of farm practices. Reddy and

Kivlin (1968) observed that scientific attitude was not related with the edoption of recomended practices by the farmors. supe and sqlode (1975) reported that the scientifically oriented farmers had high extent of adoption of the improved agricultural practices of Jowar cultivation.

Tampi (1979) studying the listening habit and adoption behaviour of rural radioforum convenors, found that a vast majority of the listeners gained knowledge and developed favourable attitude, Just 40% decided to practice what they learned.

Nehru (1980) found adoption behaviour of radio rural forum listeners was positively and significantly influenced by their education, radio ownership, social participation and listening behaviour.

Chandrakandan (1982) established correlation between use adoption and variables like creait behaviour, radio listening behaviour, meata participationo personal locallte exposure and urban contact.

Joknston (1982) reported that in an evaluation of effectiveness redio broadcasts in changing the food consumption habite fourd the exposure was very high. The results should that 94% of the listeners adopted at least practice recommenaed.

Philip (1984) reported that the significant relationship existed between listening behaviour and adoption and concludgd that increased listening helps aquiring more knowledge and results in higher rate of adoption by the farmer listoners.

III. INDEPGNDENT VARIABLES

a. Age

According to folmen (1973) age means the pertod of tive from birth to any given time in life or chronological age.

Sandhu (1970) reported that radio comaraled a universal audicule in terms of age. But majority of farmers who were decision makers in tibe family were in the age group of 31 to 50. Alamgeer (1970) concluded that farm broadcast listening was indopendent of age, singh

Q72) found that insteners and non-listeners differed significantly in age. Listeners were of lesser age group than non-1isteners. Shakya (1973) found no rolationship between age and farm broadcast listening behaviour. Knight and singh (1975) reported that majority of farm broadcast listeners ifstened to the agriculture programe at night irrespective of age. Sabarathanam and rajaram (1975) found that the age of the radio listening farmers ranged from the lowest of 20 years to the maximur 60 years with a mean 39.97 and standard deviation of 8.47 and majority belonged to middle age group. Chandra kandan (1980) revealed that the listeners of the farm school on air programme in Tamil Nadu were mostly by young preferably less than thirty years in age. nehru (1980) found that age was not significantly related to the listening behaviour of farmers. sekhar (1982) fourd age having negative relation was broadcast listening behaviour of village level vorisers.

Selvanayagan (1980) found that young farmers gained more knowledge than mid adult and late adult group. Prasad (1981) stated that age has significant influence on knowledge gain of listeners who were village level workers in his study.

Subramquyam (1975) found that age and education influencedretention of knowledge. Doraiswamy (1977) found no correlation between age and education. cnandrakandan (1982) stated that young farmers could gain and retaln more knowledge than middle aged and old. The later group shoved no significant difference between them. Use edoption also vas influenced by age.

Phillp (1984) reported that young famers were better listeners because of more innovative to adopt latest technology and there was a significant difference In the listening behoviour of the low and high aged groups of famers because of the lov understanding capacity and literacy levels of aged farmer listeners.

b. Education

According to chamber's Dictiomary (1976)
"Education" is the bringing up or training, instructing: strengthening the power of body or mird or culture.

Wolman (1973) meant education as the progressive changes of a person affecting knowledge, attitudes and behaviour as a result of former institution and study and he further stated that it may be a development of a person resulting from experience rather than from maturation.

Beal and sibley (1967) have pointed out that the individual's ability to read and write and the amount of formal education he possess will affect the manner in which the individual gathers data and relates himself to his environment. Alamgeer (1970). Samath (1970) singh (1972) and Jalthal and Srinivasamurthy (1974) found that education positively and significantly influenced farm radio listening behevicur. Sabarathnam and Rajaram (1975) observed that majority of radio listeners were educated up to primary level.

Subramanyam (1975) found that education and age influenced retension of knowledge. Doraiswamy (1977) got contradictory results. sreepal (1978) established a positive relationship between education and knowledge. Chandrakandan (1980) reported that listeners of the farm broadcast programe were mostly literate in Tamil Nadu. More than three fourth of them had formal schooling with 50% having school education and 30% college education. Nehru (2980) found education along with many other Independent variables influenced the ilstening behaviour. massmedia exposure behaviour, adoption behaviour and communication behaviour. According to Selvanayagem (1980) famers studied upto secondary level gained more information

than those having only primary education.

Abstract

Balasubramonium (1980) foum education along with many other personal characteristics contributed to innovativeness of adopter farmers.

Gonorkar (1980) foum higher educational level resulted increased rate of adoption of high yielding varieties.

Selvaray (1981) found that difference in education marked influence on knowledge gain.

Mishra and sinha (1981) concluded that formal education of farmers was important Eor knowledge gain.

Chandrakardan (1982) found Iiterate farmer listeners could retain more than illiterate listeners. But difference levels of literacy showed no significant difference. Education has found to tave significant effect on use adoption
sekhar (1982) Found education and experience to have positive and significant relation with farm broadcast listening bahaviour of village level workers. Knowledge gain also was significantly influenced by these variables.

Sunil Mishra (1983) reported that radio has cut across the literacy and economy barriers and the radio listeners comprised of all listeracy and economy classes. Thus according to h 1 m it is a media used by all categories of people. Chaturvedi and iErahomprakash (1983) reported that education was positively rolated to knowledge and attitude but ite impact on the adoption behaviour was not significant.

Philip (1984) found that the 11stening behaviour of the farmers of low and high ilteracy levels were in par, because of simple ranner of presentation to suit with Eamers having different levels of education.

c. Eazm size

patel and singh (1970) observed that with larger size of holding, the acceptance of new practices was greater than other wise.
subramaniyam and Lakshmana (1973) also observed, that famm size bad positive and highly significant relationship with adoption.

Sabarathnem and Rajaram (1975) found that a majority (67.78\%) of the radio listeners were small land holders only 19.33% of respondents had 5 to 10 acres of land and
14% of the listeners had more than 10 acres of land.

Chandrakandam (1980) reported all categories of famers were there among the radio 2isteners. 39\% had small holdings of 5 acres or less and 35% belonged to 5-10 class.

Nohru (1980) found that farm size was significantly stated to the listening behaviour, mass media exposure behaviour, source utilization behaviour and communication behaviour.

Rajendran (1982) in his study amongst commanty radio listening fourd that the listeners were mostly (89%) small farmers while the non-listeners owned medium to large farms.

Chandrakandan (1982) found farm size with other variables like age, education and attitude influenced retention of knowledge, gain of knowledge and symbolic adoption.

Rajendran (1982) while comparing the ilstoners and non-listeners of the comunity radio sets found that the listeners had mediurs to high cropping intensity while nonlisteners had low cropping Intensity.

Philip (1984) reported that Earn size showed no significant different with listening behavour. Every farmer was likely to listen the agricultural information irrespective of their holding size.

d. Subecentre contact

No related study could be reviewed in this context. However it was assumed that more the visits to sub-centre would effect the retention of knowledge about the improved agricultural practices and would create a favourable attitude towards the farm broadcast programme. Based on the above assumption it was decided to include this variable in this study.
e. Scientific orientation

Ready and Redial (1975) found farmers with high scientific orientation to be more innovative in farming.

Sandhi and Darbarilal (1976) found significant correlation between value orientacion and communication behaviour.

Kamarudeen (1981) found significant positive relationship between scientific orientation and attitude of farmers towards the demonstrated agricultural practices.
philip (1984) reported that the scientific orientation of the farmer listeners was not related to 1istening behavour.
E. Inmovation Proneness

Rogers (1961) defined the innovativeness as the degree to which an individual is earlior than other members in a social system to adopt now idea.

Abstract

(1978) pillai defingd innovation proneness interms of behaviour pattern of the farmers who have interest in and desire to seek changes in farming techniques and to introduce such changes into their oparations when practical and feasible.

Philip (1984) defined innovation proneness as one's readyness to accept and orient towards the new plant protection practices.

Reddy ard Reday (1975) established relationship between innovativenees of farmers and thelt scientific orientation. Balasubrampnium (1980), reported that mass media exposure behaviour, extension cotenct, nature of
family perception of loss and profit. education and social participation significantly contributed towards the innovativeness of farmers.

Moulik (1965) found positive association in the adoption of farm practices and innovation proneness of farmers. Bhilegaonkar (1976), reported positive association between adoption and innovation pronenesa of the farmers.

Philip (1984) reported that innovation proneness has no relation with listenimg behaviour.

g. Social participation

Rogers and shoemaker (1971) defined participation Is the degree to which members of a social systen are Involved in the decision making process.

Nehru (1980) defined social participation as the participation of Earmers in various organizations and institutions.
singh (1972) observed positive relationship botween social pacticipation and radio listening behaviour. thakya (1973) statedthat radio owning adult famers had a high level of social participation and listening behaviour.

Roy at. al. (1968) found no relationship between social participation and mass media use Jalithal and srinivasamurthy (1974) found that the radio owning farmers had medium educational standards and read news papers.

Rahim (1960), Reddy (1962). Gupte (1965) and Nair (1969) reported that social participation had significant positive association with adoption of tmproved fam practices. "ニn. :n on: Kasim and Mehbooh (1974) stated that social participation influenced the adoption of farming practices.

Nehru (1980) reported that mass media exposure behaviour, listening behaviour, source utilization behaviour and adoption behaviour wero positively and significantly associated with soctal participation. h. Radio ownership

Jalihal and srinivasamurthy (1974) found that majority of the radio owning farmors were exposed to news paper.

Dhaliwal and sohal (1965) observed that educational level was positively correlated with possession of radio.

Alamgeer (1970) found that radio ownership was significantly related with farm broadcast listening bohaviour.

Nehru (1980) reported that radio ownership was positively and aignificantly associated with listening behaviour and adoption behaviour of farm irgadeast Listaners.

1. Radio Accessibility

This variable was selected based on pilot study and no elosely related study could be reviewed in this context. It was assumed that access to radio mould influerce the listening behaviour of farmor listerners am would effect on the retention of knowledge about the improved agricultaral practices and would create favourable attitude towards the fam broadcast programme. Based on the above assumption in pilot study it was decided to include this variable in this study.

IV INRERVENING VARIABLE

Knight (1973) he considered two componsnts of the 1istening behaviour for his study. They were regularity and duration of listening. Tampi (1979) in a study of impact of farm broadeast with rural radio forum convenors as the respondents detailed their listening habits. A
good majority of them (63\%) listen the programme regularly, 44% of thet were active 2isteners'. In general listening was vory selective.

Sekhar (1982) found farm broedcast listening bahaviour of extension workers was influenced by education. He also fourd that significant relationsuip existed between three variables such as awareness, knowledge and farm broadeasting listening behaviour.

Chandrakanden (1982) found a profound relation between sedio listening behaviour and knowledge gain of listener farmers.

Rajamani and Slnhe (19e3) foum thet listentng beheviour along with many other personal variables infiuenced the knowledge gain and edoption behaviour of the farmer listeners.

Regularity of Listening

singh and sandhu (1971) reported that 40.77% of farmers were listening regularly, 28.85% several days a week, 8.46% once a week 16.15% less than once a week. while 5.77% had seldom or never ilstened to them.

SIngh (1972) found that 44% of listeners listened to farm programmes every day 39% listened to them in a week.

Shakya (1973) found that his responcents favoured have the frequency of thrice per weak in respect of farm broadcast. They favoured a duration of 10 minftues for agricultural broadeasts.

Philip (1984) reported that one forth of the listeners hear the programae every day, 40% most often and 36\% casually. He also reported that lower late in every day listening may be due to the inconvinent broadcast time.

Duration of Listoning

Singh (1972) reported that 68% of his listener respondents desired an increase of 10 to 30 minutes over the existing 30 minites duration.

Knight (1973) found that mafority of farm broadcast iisteners (45.64%) listened to the programe daily and also found that a great majority (93%) ilstened to agricultural progranme for 20 to 30 minutes in a day.

Badrinarayanan (1977), reported that 50% of his farm broadcast listeners listened to the entire farm broadcast at night. Anong the rest about 43\% Iistened to most part of programe, while a few (7\%) ilstened only for sometime. chandrakandan (1980) revealed that 47\% of farmer listeners prefered a duration of 20 minutes for broadcast lessone. wearly one forth of them, think that 1.5 minutes is sufficient.

Gekhar (1982) found that the most susted duration for radio broadcast progrenmes was 10 to 15 minutes. Sreedhar (1983) advocated 30 minutcs to one hour duration for farm telecast programes as it was desired by 69% of the viewers in his study.
philip (1984) reported that farmer listeners prefeřed 15 mirutes programmes broadcasted between $7 \pi 8$ pow.

Intenstty of Listening

Sekhar (19a2) estimated that only 10% were intensive Iisteners, though 61\% were full time listeners. The proportion of casual listeners was 29%.

Abstract

Rajendran (1982) found majority of group listeners heard redio programe in their leisure time and attain it chit-chatting.

Philip (1984) reported that a good majority of fommer Ilsteners ware involved as focussed listeners and intensity was much higher than any past reports. The bigh Intensity of iistening evidenced in that easo was expected from selective and specific category of listeners who volunteered to register under the progreme.

Purpose of Listening

Sekhar (1982) reported that anouncementa, question answers and discussion were the regularly. 11stened programes. Usefulness and timolymess kere the factors responsible for regularity of listening.

Srecahar (1983) found that the proggreselve farmors Wiere the most preferred source of information and persuation for the farm telecast viewers.

Philip (1984) reported 70\% of the listeners heard the progranme with educational objective. The stray Iisteners were only 30% of the total.

V THEORETICAL CONCEPTS AND OPERATIONAL DEETNITIONS OE SELECTED VARIABLES

Earm groadcasting

For the purpose of the study fam broadcasting may be operationally defined as the sending out the agricultural programes from Redio Nepal to rural aroas so as to persuade the rural people to adopt the information contained in the programas.

Impact of Farm Broadcasts:-

In this seudy dmpact of farm broadcasts was defined in terms of level of knowledge in Agriculture, attitude towards the fam broadcast and the extent of adoption of improved practices in meize cultivation amongst listeners and non-listeners as a control group.

Radio Owining Farmors/isisteners

Farmers who possess a radio recelving set who as well are listeners of farm broadcaste. Radio Accessors/Listeners

They are neighiouring Earmers of the redio ouning farmers within a radius of one kilometer who have access to
radio to listen to the farm broadcests.

Non-Iisteners

They are famers who are living out side the radius of one kilometer from radio o:vning farmers who netther own radio nor listen to farm broadcests.

Listening Behaviour

jeleer (1971) stated 'Ifstening' as the selective procegs of attending to hearing, understanding and remembering aural symbols.

Wehru (1980) operationlized the 1istening behaviour as a process of hearing with preparedness and expectation involving regular and attentive listening leading to make a decision about the programme.

Philip (1984) defined the listening behavious as consisting of four components viz. regularity, intensity, duration and purpose.

For the purpose of the study the definition by Philip (1984) was accopted.

Age:
Age was defined as the No. of chronological years the respondent has completed at the time of this study since his/her birch.

Equcation:

Education fes defined as the level of Iiteracy. the ability of respondents to read and urits including the extent of schooling.

Fann slize:

Fam size was defined as total area of land ownad and cultivated by famer listeners.

Sub-Cantre:

It is the service center for the farmers to meet their requiremente for farming services and famm inputso Sub-Centre Contact:

It was defined as the extent of contact with the subcentre by farmers for advice, service and inputs to meet their famaing needs.

Scientific orientation:
supe (1969) defined scientific orientation as the
degree to which a farmer is oriented to the use of scientific methods in fanming.
same definition was used for the purpose of this study.

Innovation Proneness:

In this study it was operationally defined as one's readiness to accept and orient towards the improved agricultural practices in maize cultivation.

Social Participation:

Defined as involvement of the respomients in Fomal and informal organizations and participation in meetings connected with the respeceive organization. Radio ownership:

It was defined as possession of radio receiving set by a farmer ilstener in this atudy.

Radio Accessibllity:

It was defined as the availability of radio receiving set within a radius of one kilometor from the respondent's house.

Knowledge:

English and English (1958) defined knowledge as a body of understood information possessed by an individual or by a culture.

Abdul mals (1983) defined knowledge as the degree to which an individual is acquainted with or aware of something new to him including technicalknow how.

For the purpose of this study knowledge was operationalised as the knowledge of listeners and nonlisteners on the content of farm broadcast programe. Attitude:

All port (1935) definsd attitude as a mental and neural state of readyness organized through experience exerting the directive or dynamic influence upon the individual's response to all the objecte and situations with which it is related.

Thurstone (1946) defined attitude as the degree of positive or negative affect associated with some psychological object towards which people can differ in varying degrees.

For the purpose of this study attitude was defined as the degree of favourable or unfavourable disposition

FIG.I. THEORETICAL FRAME-WORK OF IMPACT OF FARM BROADCASTS ON ADOPTION OF AGRICULTURAL INNOVATIONSBY THE FARMERS

as experienced by radio listening and non-listening fanmers towards the farm broadicast programme.

Extent of Adoption

Rogers (1962) defined adoption process as the mental processes through which an individual passes from first hearing about an innovation to its Einal adoption.

Chattopadhaya (1963) ~ defined adoption as the stage in the adoption process where decision making is complete regarding the use of a practice and action with regard to such a dectsion commences.

Rogers and shoemaker (1971) deflned adoption as a decision to continue full use of an innovation as the best course of action.

For the purpose of this stuay extent of adoption is defined as the extent of utilization of improved agricultural practices of maize culefvation on the content of the farm broadcasts by radio listening and non-listening farmers of Mwakot District of Nepal.

Accordingly the theoretical frame-woric of the study is appended herewith in figure-i.

METHODOLOGY

METHODOLOGY

The methodology adopted in this study is described $1 n$ the following sections:-

> I Location of study
> II sampling procedure
> III collection of data
> IV Measurement of dependent veriablos
> V Heasurement of independent variables
> VI Measurement of intervening veriables
> VII statistical technigues used

I. Location of gtudy

This study was confined to four subwcentres of Nuwakot District of Nepal. The sub-centres selected were Devighat. Tupche, Rani pauwa and Chaughede. From each sub-centres one panchayat was selected for study based on the higher number of farm family ard population of radio. The panchayats selected were Bldur from devighat submeentres, Trisuli from tupche sub-contre, chaughada from chaugheda sub-centre and Madarpur Erom Ranipauwa sub-centre.

FIG. 2. MAP SHOWING THE LOCATION OF STUDY IN NEPAL.

II Sompling procedure

Srow hivee: stage sampling procedure was adopted for the selection of rospondents. The firat stage being sub-centres of Muwakot District of which four sub-centres wore selected out of nine subweentres purposively based on feasibily and accessibility to farm femily. From the selected sub-centres one panchayat each was gelected for study. from the selected panchayats 75 respondents who listen the farm broadeast programes were selectod purposively based on the rumber of farm family. Among the 75 respondents 50 respondents were selected from radio ouners and 25 respondents were from rado accessors.
another 75 respondents who never $14 s t e n$ the fam broadcast programes were selected purcosively based on the numbers of farm family as the control group to study the impact. Sample size and distribution are presented in Table-1.

sub-centres.							
sub-	pan-	Famm	Popa	Redio	Sam	plo siz	
31. cen- No. tre	che yat	$\begin{gathered} \text { Eami- } \\ I_{y} \end{gathered}$	ula tion	popi-1atIon	$\begin{aligned} & \text { diste } \\ & \text { Radio } \\ & \text { ers } \end{aligned}$	Rers acee ssors	$\begin{aligned} & \text { Hon } \\ & \text { liste- } \\ & \text { ners } \end{aligned}$
1. Devigh at	Bidur	506	4336	57	15	7	15
2. RaniPauwa	Madanpur	636	5015	40	10	5	20
3. Tupche	$\begin{aligned} & \text { Trise } \\ & \text { uli } \end{aligned}$	512	4093	61	15	8	25
4. Chaughada	Chau ghada	386	3513	48	10	5	15

III Collection of data

A pilot study using a dumy interview schedule fas conducted with 15 famers who were Earm broadcast listeners as well as non-listeners. Based on the results of the pilot study the final Interviet schedule was prepared. The data was collected from the respondents by personal interview.

Knowledge

shankariah and singh (1967) measured knowledge of the respondents about improved methoda of vegetable cultivation based on teacher made test.

Singh and singh (1974) measured knowledge of the respondents using selected questions. Totel knowledge score of each respondents was calculated as follows.

$$
\text { Knowleage score }=\frac{X 1}{n} \times 100
$$

rhere, $x i=$ no of guestions answered correct

$$
n=\text { total no. of question asked }
$$

singh and Fresad (1974) measured knowledge by working at knowledge guotient, calculetod as follows.

$$
\mathrm{Ko}=\frac{\text { obtained knowledge score }}{\text { Actual Total score }} \mathrm{x} 100
$$

Chandrakandan (1980) measured knowledge gain of famer listeners by categorizing them into 5 classes.

| score | class |
| ---: | :--- | :--- |
| $0-5$ | poor |
| 5. $1-10$ | low |
| $10.1-15$ | Mediun |
| $15.1-20$ | High |
| $20.1-25$ | Very high |

Pre-broadcast and post-broedcast knowlodge : ir scores wore compared for significant difforence ugimg Roimogorovemirvove test.

Paired 't' teat was used to confirm aignificance of the difference of tho mean scores. Ne Nemar test was aleo appliod.
Chandrakandan (1982) operationalized knowledge
gain as the quantom of Information nowly loarnt by an
individual due to the exposure to the broadcast. Ife used
"difeicult" and "discrinination" inalces for selcetion
of items to measure it. The scale had a score range of
0-25.
Difficulty infex $=\frac{\text { No of corract megponses Eor the ith tem }}{\text { Hotal no. of respondents }}$
Diacrimination indes on No of correct reaponses in the
high group - No. of correct
zesponses in low group
Ho. of responses in ceiterian group

In this study it was measured using standardizad Knowledge test with iteras selected fyom the content of the programe on agricultural practicen. vide apperaix-I.

The following procedure was adopted Eor selecting the knowledge test items and framing the "Knowledge Test".

1. Item collection:

The content of knowledge test in composed of questions called items. A number of itens on the aspects of agriculture dealt within the fasin broadcast were collected in consultation with the chief of the Agricultural Information Division, Department of Agriculture Kathnandu Nepal, who is familiar with the concent of programe. All together 40 itens were collected. Ihe items were converted with objective type of quastions vide apperdix-III.

2. Item analysis:

item analysis was done to get the following factors.
(i) index of iten difficulty and
(11) index of item descrimination

The collected items wore administered to 30 farmers. score of 1 and 0 were given for correct and wrong answers respectively. The total score of each individual was then collected and erranged in ascending order vide appenilr-IV.

As suggested by Anasthasi (1961) all the 30 respondents were grouped into three on the basis of thoir scores. 33.33\% of lowest, 33.33% of highest and 33.33\% medium scores were taken for calculating the Indices ox item difficulty and item discrimination. 33.33% with highest seores, 33.33% with medium scores and 33.33% with lowest scores were termed as high, medium and low groups respectively.

(i) Index of ftem difiticulty

The difficulty index of each item vas calculated by averaging the percentages of correct ansuers in high, medium and low groups.

$$
\begin{aligned}
& P_{i}=\frac{n i}{N^{2}} \times 100 \\
& \text { where } \quad \mathrm{Pi}=\text { Difficulty index in percentage of ith } \\
& \text { item } \\
& n i=\text { No of fammers giving correct answers } \\
& \text { of ith item by low, medium and high } \\
& \text { groups } \\
& \text { NI = Total no. of respondents to whom the } \\
& \text { ith item was administered. }
\end{aligned}
$$

(ii) Index of item duscrimination

The discrimination index of each item 'that $1 s^{\prime}$ its capacity to discriminate the well informed from the poorly informed was catculated by the formula.

$$
\begin{aligned}
& E=\frac{S 1-52}{V / 3} \\
& \text { Where } E= \text { discrimination indes } \\
& S 1 \text { and } s 2= \text { Frequencies of correct answers in high } \\
& \text { and low group respectively. } \\
& N= \text { Total no. of respondents in the item } \\
& \text { analysis semple. }
\end{aligned}
$$

(iii) Einal selection of items

Those items which had a difficulty index of between 20 and 30 percent and discrimination index of above 0.30 were solected for inclusion in knowledge test. vith this presumption 20 items were selected for the final knowledge test vide appendix-IV.

(iv) Mothod of scoring:

A score of 1 was given for correct answers and 0 for wrong answers. The total score for eech respondent was calculated by surming up the scores obtained for each ttem. Thus the maximum knowledge score could be obtained by a respondent was 20 and mintmum was 0 . The respomients were categosized with following statistical method.

$$
\begin{aligned}
\text { Figh } & =-7\left(\text { Mean }+\frac{S D}{\sqrt{n}}\right) \\
\text { Medium } & =\text { Between Mean } \pm \frac{\text { SD }}{\sqrt{n}} \\
\text { Low } & =\left\langle\left(\text { Mean }-\frac{3 D}{\sqrt{n}}\right)\right.
\end{aligned}
$$

attitude

Sekhar (1902) reported that selected programne preference, mode of delivary, ducation and time as the criterie. to study the opinion of the listeners about the Aacm broadcast progranmes.

Chandrakandan (1982) defined attituce towards Earin broadcast as the degree of positive or negative disposition associated with fam broadcast. He developed a scale to measure using the method of equal appearing intervals by thurstone and chave (1929). This scale consists of 6 statements (given in appendix v). Halt of the six statements are positive and half of are negative.

In this study attitude was measured by using the scale developed by chandrakandan (1982). The scale was subjected to all the three groups ie. Radio owners. Radio accessors and Non-listeners, in a three point continuum and scoring was followed as given below:

Disagree	$=0$
Weutral	$=1$
Agree	$=2$

In case of negative statements the scoring system was reversed. Then each respondent hed a oppertunity to secure a score of maximun 12 and minfrom 0 . The following statiscical technique was used for grouping the respondents in all the three groups.

High	$=7\left(\right.$ Mean $\left.+\frac{S D}{\sqrt{n}}\right)$
Modium	$=$ Betweon Mean $\frac{5 n}{\sqrt{n}}$
LOW	$=\angle\left(\right.$ Mean $-\frac{S D}{\sqrt{n}}$

Extent of Adoption

Hilkening (1952) measured the adoption by using an index. The index was the percentage adopted to the

total numbsr of practices applicable. He suggested differential welghts in the adoption indes.

Marsh and Coleman (1955) used a practice adoption score computed as the percentage of applicable practices.
chattopadhyaya (1963) considered potentiality. extont of adoption, weightage of each practice and time taken in developing an adoption quotient.

Supe (1969) used an unveighted practice adoption score. He selected 10 practices of cotton and for each practice the total score for complete adoption was 6. The practices were divisible and were assigned partial acores for partial adoption.

Jaiswal and Dave (1972) developed an adoption guotient with the components such as extent of adoption and potentiality of each practices.

Nehru (1980) modified the formula developed by Jaiswal and pave (1972) and used in his study.

$$
\text { Adoption guotient }=\frac{e / p \times 100}{N}
$$

$$
\text { Where } \begin{aligned}
a & =\text { extent of adoption of each practice } \\
p & =\text { potentiality of adoption of ach } \\
& \text { practice } \\
& =\text { total number of practices. }
\end{aligned}
$$

In this study for the measurement of extent of adoption 13 recommended practices given through farm broadcast about the improved agricultural practices in maize cultivation were selected. As maize was the most common and stable crop of Nuwakot District and all respondents in all the three groups were from maize growers.

For the purpose of scoring one score for cach recommended practices was given to each respondent if it was adopted completely and zero was given for no adoption. There would be a maximum score of 13 and minimum of 0 that a respondent could have secured.

On the basis of score obtained by the respondents, they were categorised by using following confidence limits.

$$
\begin{aligned}
\text { High } & =7\left(\text { Mean }+\frac{5 D}{\sqrt{n}}\right. \\
\text { Medium } & =\text { Detween Mean } \pm \frac{5 D}{\sqrt{n}} \\
\text { Low } & =L\left(\text { Mean }-\frac{5 D}{\sqrt{n}}\right)
\end{aligned}
$$

V heasurement of Independent Variables

a. Age

In this study age was calculated as the number of chronological years the respondent has completed at the time of this study since his birth. The famers were classified as fallows:

Young famers	$=$ Less than 30 years
Midde aged famers	$=30-50$ years
Old aged famers	$=$ greater than 50 years

b. Education

Trivedi (1963) used the following scoring system to measure the level of education.
IIliterate - 0
Can read only $=1$
Can read and write $=2$
Primary school level $=3$
Mddale school level $=4$
High school level $=5$
Graduate level $=6$
Above $=7$
philip (1984) modified this scale and used the following scoring system.

Illiterate	$=0$
Cen read and write	$=2$
Primary school level	$=2$
High school level	$=3$
Collegiate	$=4$

In this study education was measured by moatfying the scale developed by Trivedi (1963) ard scoring system was followed

Illiterate	$=0$
Can read only	$=1$
Can read and write	$=2$
Primary school level	$=3$
Middle schcol level	$=4$
High school and above	$=5$

The respondents were categorised into following four groupg on the basis of distribution of Literacy.

Illiterate group

Cand read only

Can read and wite
Primary school and above

C. Farm gize

In this study farm slze was measured as number of ropenies of cultivated land possessed by the sespondent. It includes both upland and lowland. The scoring system for the measurement of farmsize was as follows s-
so land $=0$
tess than 20 ropanies $=1$
$20-60$ ropanies $\quad=2$
Above 40 ropanies $=3$
(* Ropanies is the Nepalese texms for land measuremsnt20 ropandes $=1$ hectare)

The fammers were grouped into three as

Marginal farmer (Less than 20 ropenies)
small farmer ($20-40$)
BIg Earmer (Above 40 ")

d. Sub-Centre Contact

Abstract

In this study it was measured in terms of number of visite by the respondent to sub-centre in a week. The scoring aystern acopted was as follows:


```
Not at all/never
\(=0\)
```

Rarely/once in a week $\quad=1$
Frequently/2 times a week 2
Regularly/ 3 times a week and above $=3$

e. Selentific orientation

supe (1969) and Kemarudeen (1981) operationalized Scientific orientation as the degree to which a femer is oriented to the use of scientieic methods in decision maiking in Eaming.

PhIlip (1984) defined scientifle orientation es the extent and degrees of scientism in the positive operational behaviour of the farmers.

In this study definition given by supe (1969) was followed. For the measuremont of this variable seale developed by supe (1969) was used. This scale consists of six statementa (given in the appendix-V) reganiling the use of scientific methods in fartaim in which five statements are positive and one is negative.

These statements were subjected to respordents in the following scoring continuum.

Strongly	$=7$
Agree	$=5$
Undecided	$=4$
Disagree	$=3$
Strongly Disegree	$=1$

In case of negative statements the scoring systam is reversed. Then there will be a total score of 42 and minimum of six. The respondents were grouped as follow:

$$
\begin{aligned}
& \text { High } \left.=7 \text { (Mean }+\frac{g D}{\sqrt{n}}\right) \\
& \text { Medium }=\text { Between Mean } \pm \frac{5 D}{\sqrt{n}} \\
& \text { LNw }=\angle\left(\text { Hean }-\frac{5 D}{\sqrt{n}}\right.
\end{aligned}
$$

f. Innovation proneness

Rogers (1960) defined Innovativeness as the degree to which an individual is earlier then in his social system to edopt nev ideas.
shailaja (1981) measured innovativeness with respect to adoption of high yielding varisties, she used a set of statements on a three point continuan as alvays. sometimes and never to which the scores assigned were 2. 2 and 0 respectively.

Moulik (1965) developed a self rating scale to measure the innovation proneness of farmers. The scale consists of three set of statements each set again containing three seperate statements with weights 3, 2, 1 indicating high, medium and low degree of innovation proneness. Afier obtaining the most to least choices for each of three sets of statements, the scoring was done by summing up the ratio of the weight of the "most like' statements to the weight of the (least like" statements.

In this study it was defined as readyness to accept and orient towards the new agricultural practices in maize cultivation and it was measured by using the self rating scale developed by Moulik (1965). The respondents were categorized with the following statistical method.

$$
\begin{array}{ll}
\text { High } & =7\left(\text { Mean }+\frac{S D}{\sqrt{n}}\right) \\
\text { Medium } & =\text { Between Mean } \pm \frac{\text { SD }}{\sqrt{n}} \\
\text { Low } & =\angle\left(\text { Mean }-\frac{S D}{\sqrt{n}}\right)
\end{array}
$$

g. Social participation

Nehru (1980) calculated the participation scores as per the scoring system followed in the socioeconomic status scale of Trivedi (1963) which was also used by Murthy and singh (1974), Naidu (1978) and Rajendran (1978). The scoring was as follows:

Membership in one organization $=1$
" more than one organization $=2$
Office holder $\quad=3$
Distinctive feature $=6$

In this study scoring system was modified and it was as follows:

Non-member $\quad=0$
Membership in one organization $\quad \therefore \quad 1$
Membership in more than one organization $=2$

Office holder $\quad a 3$

h. Radio ownership

In this study, radio ownership was measured by following scoring system.
wo possegsion of radio receiving set a 0
possession of each radio recelving set a 1

1. Radio accessibility:

In this study it was measured with the following scoring system.

For each radio receiving set within a radius of one Kilometre in neighbourhood from the respondent's house 1

No radio recelving set within a radius of one
Kilometre in neighbourhood from the respondent's house $=0$
vI Mgasurement of Intervening Vaziable.

Singh and sanahu (1971) defined listening behaviour as the regularity with which the farmors hear the selected farm programnes together with the extent of attention paid to the programe. He used a five point scoring to measure it.

Knight and singh (1975) measured listening behaviour in terms of regularity and duration of ilstening. Responses to regularity were categorized as daily (5) more than twice a weels (4), twice a weel (3), once a week (2), rarely (1) and not at all (0) with the scores given along atth.

Badrinarayanan (1977) measured tha listening behaviour in terms of regularity, duration and intensity. A four point scozing pattern was used by him.

Philip (1984) measured the listening behaviour interms of regularity, intensity, duration and purpose. It was measured with respect to three selected daily agricultural broadcasts of AIR namely "Gramakshema Varthakal, Vayalum veedum and Kampola Nilavaram". He used two way mixed matrix for the purpose of scoring

Programmes	Regularityt	Intensityt	Durationt	Eurpose
Gramakshema Varthakal	Every day-3 most often-2	Involved-4 Eocussed-3	Completely-2 Partially-1	Eluca- tional -3
Veyalurn veedum	Casually-1	Full time-2 Engaged-1		Enter- tain-ment-2
Kampola Wilavaram	-			nccide-ntal-2

In this study, ilotening behaviour wes measured in terms of reguiarity, intonsity, duration am purpose of listening of the famm broadcast programes. it was measured with respect to four selected once-in-a week seasonal agricultural bsoadcasts of radio Nepal nenaly Agricultural Magazine, guestion and answers. Discussion botween famers ard JSA and JTh and Budhi mma.

The followitg scoring systera developed by phinip (1)94) was used for the purpose of this 3twiy.

Programmos	Regularity	Intensityt	Ducatio	Puppose
Agricultural Mageaines	Every week - 3	Involved-A	$\begin{aligned} & \text { comple- } \\ & \text { tely-2 } \end{aligned}$	Educat-Lonal-3
Guestions and Answers	Host oftenms	rocussede 3 Lelsurely-2	Parti= $e 2 I_{Y=1}$	Enter-tain-mont-2
Discussion between JTA and famere	$\begin{aligned} & \text { cast } \\ & \operatorname{al2y}-1 \end{aligned}$	Engaged-1		$\begin{aligned} & \text { Accidon- } \\ & \text { talmi } \end{aligned}$
Jha and Buchin Mma	Nevor-0			

Rotal seone

VII Statistical techaiqueo used

a. Student 't' test

It was enployed to sind out the signtaicant difference between the moan scores of dependent and
independent variables in all the three groups of respondents (Radio owners, and Radio accessors and non-11steners). The following formula: ways used for the purpose of analysis.

$$
t_{\left(n_{1}+n_{2}-2\right)}=\frac{\bar{x}_{1}-\bar{x}_{2}}{\sqrt{\frac{n_{1} s_{1}^{2}+n_{2} s_{2}^{2}}{n_{1}+n_{2}-2}}\left\langle\frac{1}{\left.n_{1}+\frac{1}{n_{2}}\right)}\right.}
$$

Where

$$
\begin{aligned}
\bar{x}_{1} & =\text { mean of } x_{1} \text { series } \\
\bar{x}_{2} & =\text { mean of } x_{2} \text { series } \\
s_{1}^{2} & =\text { variance of } x_{1} \text { series } \\
s_{2}^{2} & =\text { variance of } x_{2} \text { series } \\
n_{1} & =\text { no of observations in } X_{1} \text { series } \\
n_{2} & =\text { no. of observations in } x_{2} \text { series }
\end{aligned}
$$

b. Correlation

Simple correlation coefficient was worked out to test the relationship between the independent and dependent variables of all the three groups.

Inter correlation analysis was carried out to find out the correlation among the depondent variables of all the three groups.

Inter correlation analysis was also carried out to find out the relationship among the imdependent variables of all the three groups.

The significance of correlation was tested at 5 percent level of probability.

The formula used to compute the simple correlation
was $r_{X Y}$
Where.

$=\frac{P_{X Y}}{\sigma_{X} \sigma_{Y}}$
\Rightarrow correlation between x and y
$=$ Product moment or̃ x and y
$=$ standard deviation of the distribution of x and y

c. Path analysis

In this study solutionsof path comefficients were worked out to find out the direct and indirect effects of the selected independent variables on knowledge, attitude and extent of adoption by the farmer listeners and non-listeners.

The analysis of data was done by using the electronic computer of the Department of Agricultural Statistics, College of Agriculture, vellayani.

RESULTS

Chapter IV

RESULTS

The resulte of the study in accordance with the objectives set earlier are presented in this chapter under the following sections.

I Distribution and comparison of listeners ($R O$ and $R A$) and rion-listeners according to dependent variables.

II Distribution and comparison of listeners (RO and $R A$) and non-listoners accozding to their pergonal cheractoristics.

III Inter correlation of dependent varlables.

IV Correlation between dependent variables, and independent variables and intervening variable.

V Relationship amongst the indeperdent variables and the intervening variable.

VI Path analysis of dependent variables with correlated indeperdent variablea and intervening variable.

VII Comparative analysis of listening behaviour of radio owners and redio accessors.

I Distribution and comparison of listeners (ro and RA) and non-listeners according to dependent variablea.
A. Distribution and comparison of listeners (RO and RA) and non-1istermss according to level of knowledge in agriculture.

Data pertaining to level of knowledge in agriculture are presented in rable-2 and rablem.

Table-2. Distribution of listeners and non-listeners according to their level of knowledge in agriculture.

frevel of Knowledge	$\begin{gathered} \text { Listeners } \\ (\mathrm{n}=50) \end{gathered}$		$\begin{gathered} \text { Listeners (RA) } \\ (\mathrm{AE} 25) \end{gathered}$		$\begin{gathered} \text { Non-1istenars(ia) } \\ (\mathrm{N}=75) \end{gathered}$	
	Ereguency	$\begin{aligned} & \text { Percen- } \\ & \text { cage } \end{aligned}$	Freguency	percentage	Frequ: ency	Percentage
LOW	13	26.00	8	32.00	30	40.00
Medium	21	42.00	6	24.00	20	26.67
iligh	16	32.00	1.1	44.00	25	33.33
Total	50	100.00	25	100.00	75	100.00

It is seen from Table-2 that 26% of radio owners, 32% of radio accessor and 40\% of non-listeners had $10 w$ level of knowledge. In the case of famers having medium
level of knowledge, the percentage of respondents were 42% radio owpers, $24 \% \mathrm{Ra}$ and 26.67% non listeners.

It is noted that 32% of $R O$, and 44% of RA possess higher knowledge amongst the listoners with practically 1ittle aifference between that of the control group (33.33\%). Tablem. Comparison of listeners (RO and RA) and non-1isteners according to their mean knowledge scores.

Categories	$\begin{aligned} & \text { Mean } \\ & \text { scores } \end{aligned}$	standard deviations	t-value
Listeners (ro)	13.80	2.61	$\begin{gathered} (R O-R A) \\ 2.34 \end{gathered}$
Listeners (RA)	11.98	2.52	$\begin{gathered} (\mathrm{RC}:-\mathrm{MRO}) \\ 11.23 * \end{gathered}$
Non-1isteners (NRO)	8.24	2.77	$\begin{gathered} (\mathrm{RA}-\mathrm{HRO}) \\ 5.93 * \end{gathered}$

*Significant at 5 percent level of probability
Table-3, evidences a significantly wide gap between the mean knowledge scores of listeners (po and RA) and that of the non-11steners. The computed t values indicated a significance difference botween RO and NRO \& RA and NRO.

A significance in the mean knowledge scores has been noted between the $R O \& R A$ of the listener group wherein the level of knowledge of the RA was found to be lower than that of the knowledge gained by ro.

B. Diseribution and comparison of listenerg (RO and RA) and non-1isteners according to their attitude Eowaxis farm broadcastes.

Data regarding the diatribution and comparison on the besis of their attitude ecore are presented in Table-4 and Table-5.

Table-4. Distribution of ifatanors and non-listencrs according to thair attitude towards farm broadcasts

Level of attitude						
	$\begin{aligned} & \text { Freg- } \\ & \text { uency } \end{aligned}$	$\begin{aligned} & \text { Perce- } \\ & \text { ntage } \end{aligned}$	$\begin{aligned} & \text { Frog- } \\ & \text { uency } \end{aligned}$	$\begin{aligned} & \text { parci- } \\ & \text { ntage } \end{aligned}$	Ereg-	$\begin{aligned} & \text { Perce- } \\ & \text { ntage } \end{aligned}$
Low	8	16.00	8	32.00	31	41.34
teadum	30	60.00	7	28.00	24	32.00
High	12	24.00	10	40.00	20	26.66
Total	50	100.00	25	100.00	75	100.00

Table-4 revealea that 60% RO. $2 B$ is RA and 32% nonlisteners belonged to medium leval of attitude category, while 16\% RO, 32\% RA \& 41.34% of non-11stotera wore having only Low level of attitude. But it is interesting to nots that 40% of the Rn had high attitude towards fazm broadeast as against only 24% of the radio owner 11 istaners.

* significent at 5 percent level of probability.

The mean attitude score of Ro was 9.44 and that of $R A$ was 7.52. The lowest score was that of nom-7isteners (1, 30) as shown in Tablew . The difference was substantiated by tvalue revealing the significance difforence between each groups. Naturaliy the non zadio owner had the least attitude towards farm broadcast for want of radio sets.
C. Distribution and comparison of listerare (RO and RA)
and non-listeners according to extent of adoption of
recomended agricultural prectices.
Data are presented in Table-6 and Table-7.

Table-6. Distribution of 11 stenerg and non-11steners

 according to their extent of adoption of recommended agricultural practices.| Extent of Adoption | $\begin{gathered} \text { Listeners (RO) } \\ (1250) \end{gathered}$ | | $\begin{gathered} \text { Listeners (RA) } \\ (N=25) \end{gathered}$ | | $\begin{gathered} \text { Non-1 1steners (NRO) } \\ (\mathrm{N}=75) \end{gathered}$ | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Frequency | percentage | Erequency | perc. ntage | Freguency | Percentage |
| Low | 9 | 18.00 | 8 | 32.00 | 18 | 24.00 |
| medium | 21 | 42.00 | 12 | 48.00 | 33 | 44.00 |
| High | 20 | 40.00 | 5 | 20.00 | 24 | 32.00 |
| Total | 50 | 100.00 | 25 | 100.00 | 75 | 100.00 |

The data in Tablew revealed that majority of 1isteners ($\mathrm{RO}, 42 \%$) 1 istemars (RA. 48\%) and non listeners (44%) were medium adopters, while 18% of RO, 32% of RA and 2A\% non-listeners were low adopters.

It is interesting to note that only 20% RA belonged to high adoption category whereas 40% RO and 32% non-1isteners belonged to the same category.

FIG. З, COMPARISON OF KNOWLEDGE, ATTITUDE AND EXTENT OF ADOFTIONOF LISTENERS (RO \&FA) AND NON-LISTENEFS OF FARM ERRAD CASTS (TABL区 3,5 MNOT)

KNOWLEDGE

ATTITUDE

FRADIO OWNEAG (FiO)
 RADIO ACCESSORS (RA)

NON-LISTENERS (NiRO)

EXTENT OFADOPTION
Tablem. Comparison of ilsteners and non listeners

Categories	prean scores	Standard deviation	t - value
Listeners (RO)	10.04	1.69	($\mathrm{NO}-\mathrm{RA}$) $4.77{ }^{\text {* }}$
Listeners (RA)	0.00	1.64	(RO-NRO)17.01**
Non-listeners (MRO)	4.65	1.76	(RA - HRO) $\mathrm{O}_{6} 52$ *

* a significant at 5 porcent level of probability.

Table-7 showed that the mean adoption acore of the listoners (RO) and (RA) and non-1istoners were 10.04. 8.00, 4.65 respectively. It clearly indicated the mean adoption score of RO was higher than inat of RA and Nonmilsteners. The adoption score of RA was also higher than that of (Nro).

It was further proved that by the computed value of 't' revealing significant difference batween each 3 groups in respect to their mean scores on astent of adoption of recomended practices in maize cultivation.

Mean scores of knowledge, attitude and extent of adoption of listensrs ($R O$ and $R A$) and non-listeners has been compared and presented in bar diagrames (Fig.-3) vide Tables-3, 5 and 7.

II Distribution and comparison of listengers (RO and RA) and non-11steners according to their personal cheracteristics.
A.

Distribution and comparison of listeners (RO and RA) and non-listonors according to thoir age.

The data for distribution and comparison of RO, RA and NRO are presented in Table-8 and Table-9.

Table-8. Distribution of listemers ($R O$ and RA) and non1isteners according to their age groups.

age groups	$\begin{gathered} \text { Listeners } \\ (\text { n: } \mathrm{F} 50 \mathrm{SO}) \end{gathered}$		$\begin{aligned} & \text { Listeners (RA) } \\ & (\mathrm{N}=25) \end{aligned}$		$\begin{aligned} & \text { ion-listeners (MR) } \\ & \text { (Na75) } \end{aligned}$	
	Frecuency	Fercentage	$\begin{aligned} & \text { Frequ- } \\ & \text { ency } \end{aligned}$	Percentage	$\begin{aligned} & \text { Freg- } \\ & \text { uency } \end{aligned}$	percentage
Young	13	26.00	5	20.00	1	2.34
Midale	37	74.00	20	80.00	41	54.66
old	0	0.00	0	0.00	33	44.00
Total	50	100.00	25	100.00	75	100.00

The data presented in Table-8 relating to the distribution of listeners and non-listensis according to their age clearly shows that majority of fermers belong to middle aged in all the three groups. But no response was there from old farners in listeners (RO and RA) while 44\% was there from non-listeners. Xoung farmers were evenly distributed in RO and RA but only 1.34% was there in nonlisteners group.

Table-9. Comparison of listeners (RO and RA) and non-
listeners according to their mean age scores.

* significant at 5 percent level
$\mathrm{N} . \mathrm{S}=$ not algniEicant

Though a significant difference was noticed between RO and NRO and between RA and NRO from the results presented in Tablem regamding their meen age scores, there was no significant difference between the mean age scores of RO and RA.
B. Distribution and comparison of insteners (ro and RA) and non-listeners according to thoir level of education.

The data for distribution and comparison of listeners (RO and RA) and non-ilstemers according to their mean scores for education are presented in Table-10 and Table-11.

Table-10 Distribution of listeners (20 and $R A$) and non-

1staners accoraing to their educational level.

Level of education	Listeners (RO)		$\begin{gathered} \text { Listemers (RA) } \\ (\mathrm{N}=25) \end{gathered}$		$\begin{gathered} \text { Non-1isteners (NRO) } \\ (\mathrm{N}=75) \end{gathered}$	
	Freguency	percentage	Freguency	perce-	$\begin{aligned} & \text { Frect } \\ & \text { uency } \end{aligned}$	percentage
Illiterate	4	8.00	3	12.00	29	38.67
can read only	4	8.00	4	16.00	10	13.33
Can read and urite	18	36.00	12	48.00	20	26.66
primary school and above	24	48.00	6	24.00	16	21.34
Total	50	100.00	25	100.00	75	100.00

It is evidenced from an observation of Table-10 that majority of non-listoners were illiterate (38.67\%) in contrast to RO (8%) and RA (12\%)

In the listeners (ro) 48% were from priraary school and above while in RA only 24% and 21.34% in non-1isteners. Majority of listeners ($\mathrm{R}-43 \mathrm{~S}$) were from can read and write.

Tabie-11. Comparison of listeners (RO and RA) and nonIistoners according to their mean education scores.

$\hbar=$ significant at 5 percent level of probability N.S. \quad Not significant.

According to Table-11 it was noticed that there was a significant difference batween $R O$ and $R A$, and between $R O$ and WRO with respect to their mean education scores, but no significant difference was there between RA and NRO. Thus from the Table-11 it is cleared that 1isteners (ro) belonged to higher educational level than RA andMRO.
C. Distribution and Comparison of listieners (no and RA) and non-iisteners according to their farm size.

For the distribution and comparison of listeners (RO and RA) and non-listeners on the bosis of farm size. data are presented in Table-12 am Table-13.

Table-12 Distribution of listengers (RO and RA) and non11steners according to thair fanm size.

Farm gize	$\begin{gathered} \text { Listenors (RO) } \\ (\mathrm{ne50}) \end{gathered}$		$\begin{aligned} & \text { Listeners (RA) Non-11steners (NRO) } \\ & (\text { (Na75) } \end{aligned}$			
	Freq- uency	Earcentage	$\begin{aligned} & \text { Freq } \\ & \text { wency } \end{aligned}$	$\begin{aligned} & \text { Ferce } \\ & \text { ntage } \end{aligned}$	$\begin{aligned} & \text { Freg- } \\ & \text { uency } \end{aligned}$	percen tage
Marginal Famers	26	52,00	13	52.00	44	58.67
Small Farmers	20	40.00	4	16.00	31	41.33
31g Farmers	4	8.00	8	92,00	0	0.00
Total	50	100.00	25	(100.00	75	100,00

A Cursery view of the rable-12 shons that majority of 11steners ($\mathrm{R} 0-52 \%$), ($R A-52 \%$) and non-1isterers (58.67%) belonged to marginal famer categories. of the remaining 40% radio owners, 16% radio accessors and 41.33% of non-listeners belonged to small farmer categorles.

In the big farmer categories therevere only 8% (RO) and 32\% (RA).

Categories	Mean scores	standard deviation	t- value
Listeners (RO)	1.56	0.64	(RO-RA) $1.32 \mathrm{~N} \cdot \mathrm{~S}$.
Listeners (RA)	1.80	0.89	(RO-NRO) 1.972^{*}
Non-listeners (NRO)	1.34	0.59	(RA-NRO)2.92*

$*=$ significant at 5 por cent level.
N. S. $=$ not significant.

A glance at Table-13 revealed that the Iistoners (RA) and (rO) possessed higher mean scores than non-listerers (wRO). The difference was found to be significant and hence it is evident that the listeners possessed more holdings than non-listeners.

But no significance difference was obseryed between ko and, Rn and hence land ownership between them was in par.
D. Distribution and comparison of listeners (RO and RA) and non-11steners according to their sub-centre contact.

Data for the purpose of distribution and comparison of 1 isteners ($R O$ and $R A$) and non-listeners according to their sub-centre contact are presented in Table-14 and Table-15.

Table-14 Distribution of 1 isteners and non-listeners according to their sub-centre contact.

sub-centre contact	$\begin{gathered} \text { Listemers (RD) } \\ (N=50) \end{gathered}$		$\begin{gathered} \text { Listeners (RA) } \\ (\mathrm{R}=25) \end{gathered}$		$\begin{gathered} \text { Non-listeners (NRO) } \\ (\mathrm{N}=75) \end{gathered}$	
	Frequency	percentage	Frequency	Fercentege	Freg:ency	$\begin{aligned} & \text { Perce- } \\ & \text { ntage } \end{aligned}$
Regular	8	16.00	0	0.00	0	0.00
Frequently	10	20.00	9	36.00	11	14.67
Rately	24	48.00	16	64.00	38	50.66
Never	8	16.00	0	0.00	26	34.67
Total	50	100.00	25	100.00	75	100.00

an examination of the Table- 14 shows ehat majority of RO (48%), RA (64%) \& NRO (50.66%) had rarely exposure to sub-centre. Only 16% of RO were regular in sub-centre contact. while 20% of $\mathrm{RO}, 36 \% \mathrm{RA}$ and 14.67% NRO wero from frequent contact to sub-centre. Only 16% of $R O$ and 34.67% of Nap never visited to sub-centre.
listeners according to their mean sub-centre
sontect scozes.

| Categories | Nean
 scores | standard
 deviation | $t-v a l u e$ |
| :--- | :---: | :---: | :---: | :---: |

$$
\begin{aligned}
* & =\text { significant at } 5 \text { percent level } \\
\text { N.S. } & =\text { Not significant. }
\end{aligned}
$$

As seen in table-15, evidenced a wide gap between the mean scores for sub-centre contact of listeners (RO and RA) and non-listeners. The computed t - value also indicated a significant difference between them with respect to their sub-centre contact.

Hence it is clear that iisteners have more contact to sub-centre than non-1isteners.
E. Distribution and comparison of listenrs (Ro and RA) and non-1isteners according to scientific orientation.

The distribution and mean scores for scientitic orientation of inateners and non-iisteners are presented in Table-16 and Table-17.

Table-16 Distribution of 11 steners ($\mathrm{BO} \& \mathrm{QA}$) and non-
Listeners accordsng to their levol of scientisic

prientation.

Scientific orientation	$\begin{gathered} \text { Listenners (RO) } \\ (\mathrm{n}=50 \mathrm{~S}) \end{gathered}$		$\begin{gathered} \text { Listeners (RA) } \\ \text { (HE25) } \end{gathered}$		$\begin{gathered} \text { non-1 isteners (NRO) } \\ (\text { N:75) } \end{gathered}$	
	Frequency	percentage	Frequency	Percentage	Freguency	$\begin{aligned} & \text { percen } \\ & \text { tage } \end{aligned}$
L.OW	10	20.00	10	40.00	25	33.34
Madium	25	50.00	4	16.00	26	34.66
High	15	30.00	11	48.00	24	32.00
Total	50	100.00	25	100.00	75	100.00

It is evident from Table-16 that 30% of RO 44% of RA and 32\% of NRO had high scientific orientation. While 50% RO, $16 \% \mathrm{RA}$ and 34.66% NRO had medium scientific orientation. Only $20 \% \mathrm{RO}, 40 \% \mathrm{RA}$ and 33.34% NRO had low scientific orientation.

Table-17 Comparison of listenors and non-listeners according to their maan scientific orientation scores.

| Categories | Mean
 gcores | standard
 deviation | t - value |
| :--- | :---: | :---: | :---: | :---: |

* = significant at 5 per cent level of probability N.S. $=$ Not significant.

The data in Table-17 revealed that the mean ecores Eor scientific orientation of listeners (RO) was (28.30), of listeners (RA) was 29.24 and of non-listeners was 20-84. The table clearly indicates that the mean scores for scientific orientation of listeners (RO and RA) were significently higher than that of non-listener group. The difference was substantlated by t- value revealing significant difference between listeners (RO \& RA) and non-listeners.

But no significant difference was observed with in the listeners (RO and RA) with respect to their mean scores for scientific orientation. The results made it clear that listeners (RO and RA) are more scientific oriented than non-1isteners.

F. Disteibution and Comparison of listeners (RO\& RA) and non-listeners according to innovation pronensss.

The distribution and the mean scores of listeners and non-listeners according to innovation proneness are presented In Table-18 and Table-19.

Table-18. Distribution of listeners and non 11steners according to their level of innovation proneness.

Level of innovacion proneness	$\begin{gathered} \begin{array}{c} \text { Listeners (RO) } \\ (\mathrm{NaSO}) \end{array} \\ \hline \end{gathered}$		$\begin{gathered} \text { Listeners (RA) } \\ (\mathrm{s}=25) \end{gathered}$		$\begin{gathered} \text { Non-listenors (NRO) } \\ (N=75) \end{gathered}$	
	$\begin{aligned} & \overline{\text { Freq- }} \\ & \text { uency } \end{aligned}$	$\begin{aligned} & \text { parce- } \\ & \text { ntage } \end{aligned}$	$\begin{aligned} & \text { Freq- } \\ & \text { uency } \end{aligned}$	$\begin{aligned} & \text { Perce- } \\ & \text { ntago } \end{aligned}$	$\begin{aligned} & \text { Freq- } \\ & \text { uency } \end{aligned}$	Perce- ntage
Low	17	34.00	8	32,00	41	54.67
Medium	12	24.00	7	28.00	11	14.66
High	21	42.00	10	40.00	23	30.67
Total	50	100.00	25	100.00	75	100.00

An examination of Table-18 shows that listeners and non-listeners were more or less equally distributed with their level of innovation proneness. In cese of listeners (ro) and (RA) there was not so difference in the distribution in their innovation proneness, However 24% RO and $32 \% \mathrm{RA}$ belonged to low level, $24 \% \mathrm{RO}$, and $28 \% \mathrm{RA}$ to medium level and the remaining 42% RO, and 40% RA to high level.

But 54.67% low level, 14.66% medium and only 30.67% high level were noticed in nonmisteners.

Table-19 Comparison of 11 staners (RO and RA) and non1isteners accoraing to their meen innovation proneness scores.

Categorles	Mean scores	Standard deviation	$t-$ value
bisteners (RO)	1.83	0.49	(RO-RA) 0.416^{*}
Lusteners (RA)	1.18	0.48	(RO-NRO) 7.39^{*}
Non-1istenars (NRO)	0.63	0.28	(RA-NRO) 6.935*

* $=$ Significant at 5 per cent level of probability

The data in rable-19 indicates that the 11steners (RO) were significantly higher in innovation proneness followed by listeners (RA) and non-listeners. The diEference was substantiated by t - value.
o. Distribution and comparison of listeness (RO \& RA) and non-listeners accosding to social participation.

The data regarding the membership in organization are presented in Table-20.
Table-20 Distribution listeners (RO and RA) and non-

social perticipation	Listenors (RO) Listeners (RA) Non-2isteners(NRO) $(\mathrm{N}=50) \quad \mathrm{N}=25 \quad \mathrm{~N}=75$					
	$\begin{aligned} & \text { Fregu } \\ & \text { ency } \end{aligned}$	Percntage	$\begin{aligned} & e q- \\ & n c y \end{aligned}$	2erc ntage	$\begin{aligned} & \text { Frod- } \\ & \text { uency } \end{aligned}$	percentage
Nonmmember	20	40.00	8	32.00	27	36.00
Membership in one organization	17	34.00	12	48.00	22	29.34
Membership in more than one organization	13	26.00	5	20.00	26	34.66
Total	50	100.00	25	100.00	75	100.00

Data in the Table-20 revealed that only 40% RO. $32 \% \mathrm{RA}$ end 36% non-listerers were nonmember in social. organization whereas $34 \% \mathrm{RO}, 48 \% \mathrm{RA}$ and 29.34% nonlisteners possessed membership in one organization.

Remaining 26% Ro, $20 \% \mathrm{RA}$ and 34.66% non-listeners participated in more than one social organization as a member.

listeners according to their mean social participation scores.			
Categories	$\begin{aligned} & \text { Mean } \\ & \text { scoves } \end{aligned}$	standard deviation	t - value
Listeners (RO)	0.86	0.80	(RORA) $104 \mathrm{M} \cdot \mathrm{S}$.
Listeners (RA)	0.88	0.71	(RO-NRO). $795 \mathrm{~N} . \mathrm{S}$.
Non-11steners (NRO)	0.98	0.84	(RA-NRO). 531 N .5.

N.S. = Not significant

The above taiole revealed that there was no significance difference botweon the cumulative scores of listeners (RO) and (RA) and non-listeners, and no significance difference was also noticed within the $1 i s t e n e r s$ groups.

Hence it is cvidenced that all the three groups equally participated in social organizations.
III. Inter-correletion of dependent variables.

In order to find out the inter relationship of the three dependent variables included in the study. intercorrelation analysis was employed. Inter-relationship of the dependent variables are presenfed in Tablem-22.

Table-22 Inter correlation matrix of dependent variables of 11steners (RO E RA) and non-ilsteners.

Variables	Listeners (RO)			Listenors (RA)			Non-1.1steners (Ne3)		
	Y_{2}	Y_{2}	X_{3}	Y_{1}	Y_{2}	Y_{3}	Y_{1}	Y_{2}	v_{3}
Knowledge (Ψ_{1})	2	.276	.411 ${ }^{*}$	1	. 662^{*}	- 313	1	$.360 *$.580*
Attitude (Y_{2})		1	-. 176		1	. 114		1	. 221
Adoption (Y_{3})			1			1			1

$*=$ significant at 5 percent level of probability

Table-22 shows that inter melationship between knowledge and extent of adoption in Listeners (RO) was positive and signiEicant.

In case of listeners (RA), knowledge and attitude was positively and significantly correlated while knowladge ard adoption showed only positive relation.

In non-listeners knowledge was positively and significantly correlated with attitude and adoption but attitude showed only positive relationship with adoption.
IV. Correlation between dependent variables and independent and intervening varíables of 1 isteners (RO \& RA) and non-11steners.
A. Corfelation between knowledge and independent variables and intervening vaziable of listeners (RO\& RA) and non-11steners.

The relationship between knowledge of listeners and non-listeners with other characteristics are presented in Table-23.

Table-23 Corxelation between knowledge and independent
Yariables and intervening variable of ilstenars
(RO \& RA) and non listeners.

Variables	Correlation comefficient ('r'Value)		
	RO	RA	NRO
Age	-.0924	. 0968	-. 2007
Education	. 2379	-. 1373	. $6071{ }^{\text {* }}$
Faral size	. 0856	. 3466^{*}	. 1852
Sub-centre contact	. 3045^{*}	. 0237	. 2906 *
scientific Orientation	. $3846{ }^{*}$.6600*	. 5864 *
Innovation proneness	.4918**	-.0074	$.2756^{*}$
social pazticipation	. 1331	. 5508 *	. 1454
Radio ownership	- 0630	-	-
Radio accessibility	-	-. 0998	-
Listening behaviour	. $4170{ }^{*}$	$.3623{ }^{*}$	-

Table-23 reveals that in the case of listeners (RO), the correlation comefficlents 't" showed significant and positive correlation for sub centre contact. scientific orientation. innovation proneness ami listening behaviour with knowledge.

In case of listeners (RA), scientific orientation, social participation and listening behaviour were significsantly and positively correlated with knowledge.

But it is interesting to note that in case of nonlisteners, education, subwcentre contact, scientific orientation and innovation proneness were significantly and positively correlated with knowledge.

Where as in the case of listeners (RA) their scientific orientation, social participation and listening behaviour seems to influence them to go to their neighbouring FO and listen the fan broadcasts. Though not significant radio ownership seems to have negative relationship with regard to their listening of farm broadcasts. B. Correlation between attitude and independent variables ard intervening variable of listeners (RO \& RA) and non-1isteners.

The relationship between the attitude and cheracteristics of listeners and non-11steners was worked out by computing the correlation co-efficient. The results of correlation analyais are presented in Table-24.

Table-24 Correlation between attitude and independent
Yariables, and intervening varjables of inteners (120 \& fA) and non-1isteners.

Variables	comrrelation comefficient (rvalue)		
	RO	Rn	NRO
Age	. 2127	-. 2151	-. 1782
Education	-. 2939 *	. 3114	. 0408
Famt size	. 2291	. 0501	-. 0945
Sub-centre contact	.1978	. 2632	-. 1216
Scientific orientation	. 1342	. 6307^{*}	. 2244
Innovation proneness	. 2866 *	. 1951	. 2625 *
Social participation	. 2634	. 3291	.1915
Racilo ownership	$\infty .1215$	\cdots	-
Radio accessibility	-	-. 1683	-
Listening behavious	. 0855	. 1227	-

* $=$ significant at 5 percent level of probability

The computed ' r ' value as per Table-24 revealed that In case of listeners (RO) education was negatively and
significently correlated with their ettitude whereas innovation proneness wes positively and significantly correlated with their attitude. Among the other variables though not significant radio ownership showed negative relation with their attitude towazds farm broadcasts.
similerly though not significant, age and radio accessibility showed negative relation with attitude of RA. rheir scientific orientation was significantly and positively related with their attitude.

In the case of non-listenors only their innovation proneness was positively and significantly correlated with their attitude whereas though not significant age, farm size and sub-contre contact showed negative relation with their attitude towards farm broadcast.

It is interesting to mote that innovation proneness of both listeners (RO) and non-1isteners were proved to be equally related in terms of their attitude towards farm broadcast.
C. Correlation between extent of adoption ard indepemant variables and intervening variable of ilsteners (RO and RA) and non-IIsteners.

The relationship of extent of adoption with independent and intervening vertables of listeners (RO \& RA) and nonlisteners are presented in Table-25.

Table-25 Correlation betreen extent of adoption and
independent variables, and intervening variable of
1isteners (RO \& RA) and non-i istoners.

Variables	Comrrelation coneficient ('r'value)		
	RO	RA	NRO
Age	-. $419{ }^{*}$	-. 2461	-. $2342{ }^{*}$
Education	. $3434{ }^{*}$	-2107	. 4877^{*}
Farm sizo	$.3230 *$	$.5266^{\star}$. $2421{ }^{*}$
Sub-centre contact	.4078*	. 1659	. $2854{ }^{\text {* }}$
Scientific orientation	. 1956	.4802*	.6326*
Innovation proneness	. 3800 *	. 0553	. $4161{ }^{*}$
social participation	. 4755^{*}	.2472	-. 0768
Radio ommership	. 3289 *	*	-
Radio accessibility	-	-. 0818	-
Listening behaviour	. 3147	-. 1123	-

* a signiEicant at 5 per cent level of probability.

The computed 'r' values in Table-24 revealed that all the characteristics except age and scientific orientation were having positive and significant relationship with extent of adoption by listeners (RO). But their age was found to be negatively and significantly correleted with their extent of adoption.

In the case of listeners ($R A$) oniy two characters namely farm size, and scientific orientation were positively and significancly correlated with their extent of adoption. A negative relation was also observed between their age. radio accessibility, and listening behaviour with their extent of adoption.

In non-listeners (NRO), all characters except social participation were significantly correlated with extent of adoption while age showed negative significant relation with adoption.

V. Relationship amongst the independent vartables and the intervening variable:

To finch out the relationship between the indeperdent variables included in the study, inter correlation analysis was done. Inter relationship of the indepandent variables amongst the listeners (ro and ra) and non-listeners are presented in Table-26, Table-27, and Table-28 reapectively.

Tablew26. Relationship amongst the independent and intervening yariables of listenars (RO).

A glance at Table-26 revealed that in case of listeners, (RO) though not significant age had negative relationship with all the characteristics except sccial participation. The relationship between age and education was significantly negative. The reletionship with sub-centre contact. scientific orientation and listening behaviour was sigmificent with the Iisteners' (RO) educational status.

It was also seen that farm size though not signdficane had positive relation with all the independent characters studied but the relationship of listeners with subwcentre contact, social participation and radio ownership was significant.

The relationship of sub-centre contect with all the independent characters namely scientific orientation, innovation pronsness, social participation, radio ownership and listening behaviour was significant and positive amongst the listeners owning the radio.

Scientific orientation of owner listeners was positively and significantly related with their innovation proneness and listening behaviour. Though not significant, scientific orientation was negatively related to social participation and redio ownership.

Innovation proneness was positively and significantly related with social participation and listening behaviour. Though not signifieant, innovation proneness showed positive relation with sadio ownership.
social participation had positive and significant relation with radio ounership.

Ownership of radio had positive relation with the
listening behaviour of famer listeners.

$x_{1} 1-.4692^{*}-.4028^{*}-.6759^{*}-.4566^{*}-.1603-.0684 .4116^{*} .5910^{*}$
$x_{2} \quad 1 \quad .1101 \quad .3727 .2600-.2362 \quad .2537-0023 \quad .0014$
$\mathrm{X}_{3} \quad 1^{.} .3540 \quad .3877-.3150 \quad .5912^{*} .0419-.1347$
$\mathrm{X}_{\mathrm{A}} \quad 1$. 2936.3816 . $0093-4322^{*}-.5665^{*}$
$\mathrm{x}_{5} \quad 1 \quad .1324 \quad .4141^{\star} .2495$. 0977
$1-3205 \sim 0996-.3501$
$\mathrm{X}_{7} \quad 1 \quad .3902 \quad .4571^{\text {* }}$
x_{6}
1.2532
x_{9}
1

* $=$ Significant at 5 par cent level of probability
$x_{1}=$ Age $\quad x_{5}=$ Scientific orientation
$x_{2}=$ Education $\quad x_{6}=$ Innovation proneness
$x_{3}=$ fam size $\quad x_{7}=$ social parcicipation
$x_{4}=$ Sub centre contact $\quad x_{8}=$ Radio aceessibility
x_{9} Listening beheviour

Pablew 27 revealed that oducation fam size, sub-centre contact and scientific orientation had negetively significant relationship with age of the Iisteners (RA) whereas radio ownership and listening behaviour were positively significant in their relationship with age of ilsteners (RA). But the relation of innovation proneness and social participation though not significant ovidenced negative trend with age of Iistorers (RA).

No characteristics were significantly correlated with education yet though not significant innovation proneness and radio aceessibility showed negative relation with the level of education of listeners (RA).

Table revealed that farm size had positive and significant relation with social participation but though not significant, innovation proneness. radio accessibility and listening behaviour showed negative relation with farm size.

Sub-centre contact had significantly negative influence with radio accessibility and listening behaviour of the listeners (RA). Eut though not gignificant, it had positive relation with regerd to scientific orientation and innovation proneness.

Seientific orientation of the listeners (RA) had significantly positive relation with social participation but insignificant negative relation with radio accessibility.

Innovation proneness had negative but not significant relationship with social participation, radio accessibility and listening behaviour of listeners (RA).

Social participation had positive and significant correlation with listening behaviour and positive trend of relationship but insignificant with radio accessibility.

Though not significant, positive relation was observed batween radio accessibility and listening behaviour of the listeners (RA).

Table-28 Relationship amongst the independent variables of non-11steners (NRO).

	$\mathrm{x}_{2} \quad \mathrm{X}_{2}$	χ_{3}	x_{4}	X_{5}	x_{6}	X_{7}
x_{1}	$1.0 .3283^{*}$. 2912 *	. .0154	-. $4346^{\text {\% }}$	-. 4852^{*}	. 0320
X_{2}	1	.1073	. $4058{ }^{*}$. $4976{ }^{*}$. $3402 *$.0975
X_{3}		1	$.3367^{*}$.1816	. 1112	-. 0437
X_{4}	-		1	. 2933 *	. 1551	. $3251{ }^{*}$
X_{5}				1	$.4345^{*}$.1160
x_{6}					1	.0575
X_{7}						1

$$
\begin{aligned}
& \text { * }=\text { Significant at } 5 \text { per cent level of probability } \\
& X_{1}=\text { Age } \quad X_{4} \Rightarrow \text { Submentre contact } \\
& X_{3}=\text { Farta size } X_{6}=\text { Innovation proneness } \\
& X_{7}=\text { social participation } \\
& \text { Table-28 gives clear infication that the age of } \\
& \text { non-1isteners had positive and significant relation with } \\
& \text { famm size. but had negative and gignificant correlation with } \\
& \text { education, seientific orientation, and innovation proneness. }
\end{aligned}
$$

Though not significant, a negative influence was observed between age and social participation as well as sub-centre contact of non-listenens.

Sub-centre contact, innovation proneness, scientific oriontation wero positively and significantly correlated with education of non-1ssteners. Jut the association of farm size and social paricipation with afucation was not significant.

Result evidenced positive and significant relationship between fam size and sub=centre contact, but scientific orientation and innovation proneness had mos gignificant relation with farm size.

Scientific orientation and listening behaviour had positive and significant relationship with submcentre contact of the non-listeners.

A positive and significant relation was also observed between innovation proneness and scientific orientation of non-listeners.
significant relationship ald not exist between innovation proneness and social participation of the nonlisteners.
VI. Path analysis of dependent vartables ifith correlated independent variables and intervening variable of

1isteners (RO \& RA) and non-listeners.

Sirce certain indeperdent variables were fourd to be significantly correlated with knosledge, attitude ard extent of adoption of listeners (AO ह AR) and mon-istenera. Path comeficicient analysis has been taken up to understand the contribution of these independent variables diractly and indirectly on the dopendent variables.

Eor working out the path co-efficient analysis following 9 independent variables and one interventing variable were aelected.

1. Age
2. Elucation
3. Farm size
4. Sub-centre contact
S. Scientific oriantation
5. Innovation proneness
6. Social participation
7. Radio ownership
8. Radio accossibility
9. Listening behaviour (Intervening variable)
A. Path analysis of knowledge, attitude and catent of adoption of listoners (RO) .
10. Path comeficieut aralyste or kpowledge of instenoss (RO)

Path analysis of knowledge of listeners (RO) has performed by taking the independent variables $X_{2}, \dot{x_{A}}, X_{5}$. X_{6} and X_{7} and intervening variable X_{10}. The path analysis helped to analyse the factors which directly and indirectly influenced the knowledge. The results are presented in Taiole-29.

Table-29. Direct and indirect effects of indeperdent variebles on knowledge of listeners (RO).

	X_{2}	$\mathrm{X}_{\underline{1}}$	X_{5}	$\mathrm{X}_{6} \quad \mathrm{X}_{7}$	X_{10}	correlation with knowledge
x_{2}	. 0204	. 0096	. 0884	$.0573-.0091$. 0995	. 2379
X_{4}	.0098	. 0200	. 0832	.1134 .0812	. 0320	. $3085^{\text {* }}$
X_{5}	. 0078	. 0072	.2296	$.0985=.0259$.0919	. $3846^{\text {* }}$
x_{6}	. 0035	. 0086	. 0679	. 3330.0351	. 0608	.4918*
X_{7}	.0017	. 0104	-. 0557	.1095 .1069	-. 0153	.1331
X_{10}	. 0133	. 0046	.1353	. $1458-.0118$	0.1399	. $4170{ }^{*}$

N. 8:- The under lined Eigures show direct effect, others show indirect effect.

* \Rightarrow Gignificent at 5 per cent level
$X_{2}=$ Education $\quad X_{6}=$ Innovation pronaness
$X_{A}=$ sub-centre contact X_{7} m social participation
$x_{5}=$ seientific $\quad X_{10}=$ Listening behaviour orientation

From rable-29 it could be sean that the maximum direct affect was observed for innovation proneness (.33) followed by scientific orientation (.22). The correlation of innovation proneness with knowledge was o49, though its direct effects was .33. Tinis increase in corselation wes due to the indisect effect of innovation proneness through education, sub-centre contact. scientific orientation, social participation and listening behaviour. The indirect effects of education ard sub-centre contact were negligible while scientitic orientation and listening behaviour contributed equally.

Maximum Indirect effects were observed for innovation proneness followed by listening behaviour while social participation influened knowledge through negative indirect effects and sub-centre contact influenced with positive indirect effect.

The correlation of scientific orientation with knowledge of RO was .36 and its direct effect was only .22. This increase in correlation was due the positive indirect efrect of scientific orienation through listening behaviour and innovation proneness.

FIG. 4. PATH ANALYSIS AND CORRELATION STUDIES ON KNOWLEDEE OF LISTENERS (RO).

The dircect effect of ilstening behaviour was only 0.13. Beventy per cent positive indirect effect was contributed through seientific orientation and innovation proneness.

Eath diegram is presented herewith in Figu.
2. Path comefficient aralysis of attitude of 11stengrs (RO)

Path analysis of atticude of 31steners (ro) was done by taking independent variables x_{2}, x_{5} and x_{6}. The results are presented in reblem30.

Table-30. Direct and indirect effects of indeperdent variables on attitude of 11steners (RO).

	X_{2}	X_{5}	X_{6}	correlation wteh attitwie
x_{2}	$\underline{-.4263}$. 0810	.0513	-. 2939 *
X_{5}	-. 1642	. 2103	. 0981	.1342
X_{6}	-. 0734	. 0622	$\xrightarrow{2978}$. 2066^{*}

Nog:- The undes lined figures show direct effect, others show indirect effect.

* $=$ significant at 5 per cent level
$x_{2}=$ Elucation, $x_{5}=$ scientific orientation
$x_{6}=$ Innovation promeness.

FIG. 戶. PATH ANALYSIS AND CORRELATION STIDIES ON ATTITUDE OF LISTENERS (RO).

From Table-30, it could bs seen that maximum negative direct effect was observed for education (-.42) and positive direct effect for innovation proneness (.29). The correlation of education with attitude was (-.29). The decreese In negative correlation was due to the positive indirect effect of education through scientific orientation and innovation proneness. scientific orientation and innovation proneness influenced the attitude of listeners (ro) directly and substantially.

Path diagram is presented herewith in fig.5.
3. Path comefficient analysis of extent of adoption by Earmers 1 istenars (RO).

Path comefficient analysis of extent of adoption by the famers listeners (RO) was porformed by taling the variables $X_{1}, X_{2}, X_{3}, x_{4}, X_{5}, X_{6}, x_{7}, x_{8}$ and X_{10}, The results are presented in rable-31.

Table-31. Direct and indrect effects of independent variables on extent of adoption by 21 steners (RO).

X_{1}	x_{2}	$\mathrm{x}_{3} \quad \mathrm{X}_{6}$	X_{5}	x_{6}	X_{7}	x_{8}		Corre- lation w土th adoption
$x_{1}-2933$	-. 2162	- 00017.3396	-. 0331	-. 0618	. 0259	-. 0211	. 0079	-. 4192 *
$x_{2} .1773$. 6014	. 0938.5803	. 1208	.0507	.0677	. 0185	-. 0742	. $3434{ }^{*}$
$x_{3} .0013$. 0841	$\xrightarrow{.6705}-8709$. 0710	. 0223	. 4052	. 0603	-. 0009	. 3230 *
$\mathrm{X}_{3} \cdot 1461$. 2910	. $5135-2.2371$. 1137	. 1518	A123	. 0574	-. 0262	. $4078{ }^{*}$
$\mathrm{x}_{5} .0599$. 2317	.151e - 4124	. 3137	${ }^{1} 1042$	-. 1914	-. 0082	-. 0671	. 1986
$\mathrm{X}_{6} .0865$. 1036	.0i35-. 4899	. 0728	. 3524	. 2593	. 0186	.0498	. $3800{ }^{*}$
$\mathrm{X}_{7}-0162$	-. 0516	. 3445 -. 5946	-. 0751	. 1159	. 7885	. 0474	. 0126	. 4755^{*}
$\mathrm{x}_{8} \cdot 1129$. 1208	.4300-.7085	-.0273,	. 0704	. 4063	. 0922	. 0079	. $3288{ }^{*}$
$\mathrm{x}_{10} .0346$. 3920	. $0355-.2619$. 1849	. 1543	-.0872	-. 0064	-. 1139	. 3147^{*}

N. 日:- The under lined figures show direct effect others figures show indirect effect

* = Significant at 5 per cent level
$x_{1}=$ Age $\quad x_{6}=$ Innovation proneness
$x_{2}=$ Education $\quad x_{7}=$ social participation
$x_{3}=$ Famm size $\quad X_{B}=$ Radio ownership
$x_{4}=$ sub-centre $\quad X_{10}=$ Listening behaviour contact
Scientific
$X_{e}=$ orientation

From Table-31 it was clear that meximum negative direct effects was observed for sub-centre contact behaviour (-1.13) and positlve for social participation (.78). Tho correlation of sub-centre contact with extent of adoption was .40. The increase in correlation was due the positive indirect effect of sub-contre contact through age. education. farm size, scientific orientation, innovation proneness and social participation.

The direct effects of social participation was . 78 but the correlation with adoption was .47. The decrease in correlation was due to negative indirect effects of social participation through age, educatione sub-centre contact and scientific orientation. The indirect effect through Earm size and innovation proneness were positive.

The direct effect of age was -.48 but the correlation With adoption was $\mathbf{- . 4 1 9 2 \text { . Le age Incluenced edoption with }}$ negative indirect effect.

The direct effect of education was . 60 but the correlation with adoption .34. The dicrease in correlation was due to the negative indirect effect vide sub-centre contact, social pacticipation and listening behaviour. Tho indirect effects vide age and innovation proneness were 0.17 and 0.12 respectively.

The direct effect of farm size was . 60 but the correlation with adoption was .34. The reduction in correlation was due to negative Indlrect effects vide sub-centre contact. The indirect effect vide gocial participation was .40. The indirect effect through other characters under study were negligible.

A negative indirect effect (-1.137) was observed for sub-centre contact and the correlation with adoption was 40. The drastic increase in correlation was due to its positive indirect effect through all the characters except listening behavicur.

Innovation proneness influenced adoption directly as its direct effect was .35 and correlation with adoption was. 38. The slight increase in correlation was due to the negative indirect effect via sub centre contact and listening behaviour.

The direct effect of radiocmership negligible while its correlation with adoption was (e32) significant. The increase in correlation was due to its positive indiroct effect through farm size and social participation.

Ligtening behaviour influenced adoption gith negative direct effect (-11) while its correlation with adoption was significant (.31). The increase in corselation may be due to the negative indirect effects viz sub-centre contact and

FIG. 6. PATH ANALYSIS AND CORRELATION STUDIES ON EXTENT OF ADOPTION OF LISTENERS (RO).

oocial partesipation. Tho inairect effects through other characters wore positive ancopt radio ownership which wan negilgibla. Path diagram is presented herewith in fig. 6.
D. Path anazyas of knowledog attitude and ortont of aropetion
> of 21日tenorg (ma).

1. Pach co-efelcient analysis of trowleage of 11stoners (RA).

Yath comefficiont anslyais of moulctge of listoners (m) was performed by toking the charactors $x_{2}, x_{4}, x_{5}, x_{6}, x_{7}$ and x_{10}. The results are presented in Tablem 32 .

Tablem32. Dicect and indrect offecto of Indopemont ard
intorvening variabieg on frovicdge of I1stonegs (mA).

X_{2}	x_{4}	x_{5}	X_{6}	x_{7}	X_{10}	$\begin{gathered} \text { Comolation } \\ \text { mith } \\ \text { mowledge } \end{gathered}$
$x_{2}=4638$. 0792	-2547	- 0226	.0668	. 0031	- -1371
$x_{6}=.1720$.2122	. 2747	.0365	. 0024	-. 2561	.0237
$X_{5}-2.206$.0623	0.5950	.0126	.1090	. 2503	$.6600^{*}$
$\mathrm{X}_{6} \quad .1095$. 0020	. 0767	. 0959	-.0049	-. 0965	-.0074
$\mathrm{K}_{7} \quad-.1176$.0019	. 2464	-.0307	$\underline{-2632}$.1261	. $550{ }^{*}$
$\mathrm{X}_{10}-.0052$	-. 1202	. 05131	.0335	-1203	-2758	. 3623^{*}

N. E: The under Iinod figures ohow direct effeet others show indirect effect.

* Significant at 5 per cent levol
$x_{2}=$ education
$x_{4}=$ Submentre contact $x_{5}=$ scientifie orienation
$X_{6}=$ Innovation pronenoss $\quad x_{7}$ osocial participation
$x_{10}=$ Liatoning behaviour.

Tablem32 rovealed that the marimum direct ofeect was observed for eotentsele ortentation (.59) follured by 11geoning behaviour (.27). The direct affect of aducetion was negative (-46). The direet effects of innovation prononoss and social participation wen fourd to be positive (.09. 26). Eut the dircet effect of atb-conber contect Eas 0.2湤。

Tho correlation of adopetion with scientisic orderation was 66. Tho gilght increase in correlation comeficiont was dua to the positivo indirect offoct through 11atening behavioux (.25). The indirect aflect through education was negative (-.12), but through aocial participation wad positive.

The cosielation of ilstening bohaviour with adoption was (.36), while its direct offect was (.27) , the slightly increase in conrelation wa aue to the indrect effect of 21atening bohaviour through accial pateleipation. The indirect offects through education and gub-centre contact wore rogative while through aciontific orientation and Innovation prononage were negilgible.

FIG.7. PATH ANALYSIS AND CORRELATION STUDIES ON KNOWLEDGE OF "LISTENERS(RA).

The corralation of social partictpation with adoption vae (.55) and its asrect effect wes .26. The increase Incorrebation vas due to ita poaleive inalrect effect through seientific orientation (.24) and 1 istening bohaviour (a12). The indiroct effoct theougin ocher characterz tore nogilgible except age will influenced adoption with regative indiract effoct.

The correlation of subpentre contact with adoption was . 02 and ita direct offect wan .21. The eeduction in correlation comeftelone was due to the negative indiroce effect through education (-17) and 1istoning bohaviour (-15). Tha indirect affece through scientific orientation was positive (.17) but through innovation promamess and soctel partictpacion were nogisgible.

The corralation of age with eloption was -. 23 and Its direct effect was -.066. The increase in negative direct offect was due to its pooltivo indirect offects through scientific oriontation (.15) subwcentre contact (.08) and social participation (.07). The inalrect effects through instening bohaviour ans inmevation pronomess were nagligible.

Fath Alagram is prosonted horewith in fig. 7.
2. gath comefliciont analyols of attifute of 2istonars (BA).

Path comeficient analyais of attituate of ilatonars
(AA) was carcled out by taling tha ixiependent variables X_{2} 。 X_{5} and X_{6}. The resulto are presented $1 n$ sable-33. Table-33, Direct and indirect effecta or indeperdent yariables on aftitude of listengers (RA).

	X_{2}	X_{5}	X_{6}	$\begin{aligned} & \text { Corraiation } \\ & \text { iftith } \\ & \text { attituade } \end{aligned}$
x_{2}	$\underline{.2076}$.1442	-. 0403	. 3124
x_{5}	. 0550	.554x	. 0226	. $6307{ }^{*}$
x_{6}	-.0490	.0733	.27099	. 2951

H.Bt The unferlirod figures ohow airect effect others show indirect affect. * * signdifteant at 5 per cont leval
$x_{2}=$ Education
$x_{5}=$ Selentific orientation
$\%_{6}=$ Innovation proneness
Tablom33 roveala that maximum airest offect was observed for seimenific orientation (.55) Eollowed by education (.20). The directerfect of inncuation pronemoas

FIG. B. PATH ANALYSIS AND CORRELATION STUDIES ON ATTITUDE

was also positive (.17). The correlation of ectentific orientation with attitude was . 63 and its direct effect was .55. The slight increase in correlation was due to its indrect effect through education (.05) and innovation proneness (.02). The correlation of education with attitude was . 31 and its direct effeet was .20. The increase in correlation was influenced by indirect effect through seientific orientation (.18) and innovation proneness (-.04).

Path diagram is presented horewth in fig.8.
3. Path co-efficiont analyals of extent of adoption of 11gtensis (RA).

Path comsticient analysis of extent of adoption of listeners (RA) was performed by taking the indepordent variables $x_{2}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{9}$ and one intervening variable X_{10}. The resuits are presented in Tabie-34.

Tablea34. pifect and indirect effects of indepemient
and intervening variableg on extent of adoption of
11stener (RA)。

From the Table-34 it is evidenced that the maximm direct effect wes observed for farn slize (1.29) followed by aducation (1.18). The direct effects of Lnonotion proneness and age on extent of adoption were 1.12 and 0.92 respectively. Nagative direct effects were observed for subecentre contact ($-1,29$), radio accessibility (-.76) and listening behaviour $(-, 72)$. The direct effects of scientific orientation and social participation were positive.

The correlation of farm slze with extent of adopetion was . 52 while lits direct effect was 2.29 . The reduction in correlation was aue to its nagative indirect effect through age (-.37), sub-centre contact (-.45), and Innovation proneness (-.35). The indirect effects through education, scientific oricntation, social participation, redio accessibility and listening behaviour were positive.

The correlation of education with extent of adoption was . 21 and lits direct effect was 1.18. The reduction in correlation co-efficient was due to ite negative indirect effect through age (-oA3), sub-centre contact (-.48) and innovation proneness (-.26). The indirect effect through fam size was positive while through

FIG.9. PATH ANALYSIS AND CORRELATION STUDIES ON EXTENT OFADOPTION OF LISTENERS (RA).

scientific orientation, sectal parthetivation radio acessibility enil listentrg bohvifutivere pegligible.

The atroet effect of seidthtefertentation was (.078) while fies comrelation withertent of adoption

 observed throughegen eub-centreqonthes "undipening behavilour

 negative arect effect.

The correlathon of age with adartion wempegtive (-.24) while its direct effect was positive (.92); thes Is because of negetive Andrect effect of age through all. the charactors except subrepritre coneact

Path diagram io presented herevith in fig:9.
C. Path analysis of knowlegge, attitude and extent of adoption of non listeners (NRD).
2. Path co-etficient analysis of knowledge of nor-listoners.

Path co-efficient analysis of knowledge of nonm 1isteners was carcied out by taking the independent characters $X_{2}, X_{4}, X_{5}, X_{6} \% X_{7}$, The regults are presented in table-35.

Tablem35. Direct and indiract effects of independent varieblas on knowladge of non-11ateners.

	X_{2}	X_{4}	X_{5}	X_{6}	X_{7}	$\begin{array}{r} \text { Correlat } \\ \text { with } \\ \text { knowle } \end{array}$
X_{2}	. 4264	-. 0049	. 1928	-.0134	0063	. $6071{ }^{*}$
X_{4}	. 1730	$\underline{-0122}$.1136	-. 0061	.0219	.2906*
X_{5}	-2122	-. 0035	. 3874	-. 0172	. 0075	.5864*
${ }^{6} 6$. 1451	-. 00018	.1683	$\underline{-20396}$. 0037	. 2756^{*}
X_{7}	. 0415	-. 0039	. 0449	-. 0023	. 0651	. 1854

FIG.IO. PATH ANALYSIS AND CORRELATION STUDIES ON KNOWLEDEE OF NON-LISTENERS (NRO).

FIG.10. PATH ANALYSIS AND CORRELATION STUDIES ON KNOWLEDGE OF NON-LISTENERS (NRO).

The maximum direct effect was obsenved for education (0.42) Eollowed by scientific orientation (.38). The direct effects of subecentre contact and innovation proneness were negative.

The correlation of education with knowledge of NRO was (0.61) and its direct effect was only 0.42 . The increase in correlation was due to apecially the positive indirect effects of education vide scientific orientation.

A substantial indirect effect was noticed in case of sub-centre contact through education and scientific orientation.

The direct effect of scientific orientation was (0.39) and its correlation with knowledge was. 0.59 . The increase in correlation was due to its positive indirect effect through education. The indirect influence of other characters was nagligible.

Innovation proneness and social participation influenced the knowledge of non-listeners with positive indirect effect through education and scientific orientation.

Innovation proneness influenced negatively, both directly and indirectly the education.

Path diagram is presented herewith in Eig. 10.
2. Path comefficient amalysis of attitude of non-listeners.

Path co-efficient analysis of attitude of nonInteners was cone by taking the indoperdent variables $X_{2}, X_{5} \& X_{6}$ The results are presented in Table-36. Table-36. Direct and indirect effectis of independent yariableg on attitude of non-ingtoners (NRO).

	X_{2}	X_{5}	X_{6}	$\begin{aligned} & \text { corrclation } \\ & \text { with } \\ & \text { mtitude } \end{aligned}$
x_{2}	2.1310	. 0958	. 0760	. 0408
X_{5}	-. 0652	. 1925	. 0971	. 2244
X_{6}	-. 0445	. 0836	. 2234	. 2625 *

N. B:- Underifned figures show direct effect other Eigurea show indirect effect. * $=$ significant at 5 per cent level
$x_{2}=$ Education $\quad x_{5}=$ scientific orientation
$x_{6}=$ Innovation proneness

FIG.:11. PATH ANALYSIS AND CORRELATION STUDIES ON ATTITUDE OF NON-LISTENERS.

The ruaximu airect effect was observed for innveation proneness (.22) followed by scientific orientation (.19) and education of non-1isteners influenced attitude with negative direct effect (.13).

The correlation of scientific orientation with attitude was 23 and its direct offect was 19 which is marly equal as seen in Tablem36.

The correlation of innovaition proneness wien attitude was .26 and its direct effect was .22. The slight increase in correlation was duo to its indirect effect through scientific orientation and education.

Eath diegram is presented herewith in figoll.
3. Path couefficient analysis of extent of adoption of non1isteners.

Path comefficient analysis of extent of adoption of non-1isteners was carried out by taking the independent characters $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}{ }^{5} x_{7}$. The results are presented in Wable-37.

Tablew37. Direct and indirect effects of independont
vartables on extent of anoption of non-1istoners.

x_{1}	x_{2}	x_{3}	${ }_{4}$	x_{5}	x_{6}	x_{7}	correl- ation with extent of adoption
$\mathrm{x}_{1} \quad .1204$	-. 0665	. 0127	-. 0010	-. 2160	-. 0897	. 0058	-. 2342^{*}
$\mathrm{x}_{2}-.0395$	$\underline{2025}$.0046	. 0274	. 2473	. 0628	-. 0176	. $4877{ }^{*}$
$\mathrm{x}_{3} \quad .0350$. 0217	. 0437	. 0228	. 0903	. 0205	. 0079	. 2421 *
$x_{4}-.0018$. 0822	. 0147	. 0677	. 1458	. 0286	-. 0589	.2854*
$\mathrm{x}_{5}-.0523$. 1008	. 0079	. 0198	-4970	.0802	-. 0210	.6326*
$x_{6}-.0584$. 0689	. 0048	. 0105	. 2160	. 1847	-. 0104	. 4161 *
$\mathrm{x}_{7}-.0038$. 0197	-. 0019	. 0220	. 0576	. 0106	$\underline{-.1812}$... 0768

NoB:- Under inned figures are direct effect and other figures are indirect effect.
$n=$ significant at 5 per cent level
$x_{1}=$ Age, $x_{2}=$ Education, $x_{3}=$ Fanim gize
$x_{4}=$ sub-centre contact, $x_{5}=$ scientific orientation
$x_{6}=$ Innovation proneness, $x_{7}=$ Social participation.

Table-37 revealed that in case of mon-listerars the extent of adoption was influenced with the maximum direct effect (.49) of scientific orientation followed by education (.20). The direct effects of innovation proneness and age were 0.18 and 012 respectively. The direct effecte of farm size and sub centre contact were minimum.

The corrolation of scientific orientation with adoption was 0.63 though its direct effect was only 0.49 . The increase in correlation was due to the positive indirect effect through ediucation and innovation proneness.

The direct effect of education to the adoption of non-1isteners was 0.20 but its correlation with adoption was -88. The increase in correlation may be due to the positive indirect effect through scientific orientation, innovation proneness and sub-centre contact.

The correlation of innovation proneness with adoption Was 62% Innovation proneness influenced the adoption of non-iistoners by 19% directly. The remaining 23% was Influenced with positive indirect effect through scientific orientation and education.

FIG. 12. PATH ANALYSIS AND CORRELATION STUDIES ON EXTENT OF ADOPTION OF NON-LISTENERS (NRO).

It is interesting to note that the age of NRO influenced positively and directly to the extent of adoption by fifty two percent though it had negative correlation with adoption (-.23). The age also influenced with negative Indirect effect through all the characters ercept farm size and social participation.

The correlation of farm size with the extent of adoption of non-listeners was 0.24 but its direct effect vas only 0.04 (17%). The Increase In correlation was due to its positive in direct affect through all the characters selected for this purpose.

The direct effect of sub-centre contact to the extent of adoption of NRO was 0.05 and its significant correlation with extent of adoption was 0.28. The increase In correlation is due to the positive indirect effect of sub-centre contact through scientific orientation (.14) and education (.OB). The indirect effects of other characters were negligible.

Path diagram is presented herowith in fig.12.
VII. Comparative analysis of listening behsviour of radio
ouners and radio accessors of the two programes.
The listening behaviour of radio owners and radio aceessors are presented in Table-38.

Tablew38. Listening behaviour of Radio oumers and Radio secessors compared.

Listening behaviour	Radio owners (1050)			Radio accesaore$(N=25)$		
	JTA anda Buabiamma	Dis-cussion	Mean sc* Ore	JTA aná Buahi* amma	$\begin{aligned} & \text { Dis- } \\ & \text { cus- } \\ & \text { slon } \end{aligned}$	$\begin{aligned} & \text { Me- to } \\ & \text { an va- } \\ & \text { sco lue } \\ & \text { ro } \end{aligned}$
	$F \quad P$	P		F P	F P	

Regularity

Every week	29	58	4	8	14	56	1	4
Most often	15	30	8	16	7	28	2	8
Casuel	2	4	15	30	1	4	9	36

Intonsity

Involved	22	64	2	4	7	28	0	0	2.69
Focussed	22	44	12	24	2	8	5	20	
Lejsure	2	4	8	16	13	52	4	16	
Engaged	0	0	5	10	0	0	3	12	

Duration
13.74
11.04

Complete	49	68	15	30	15	60	4	16
Partial	2	4	12	24	7	28	0	32

Pugpose

Education	22	44	2	4	8	32	0	0
Entertalmont	24	46	19	38	11	44	4	16
Accidental	0	0	6	12	3	12	8	32
Non-11steners	4	8	23	46	3	12	13	52

* m Significant at 5\% level
$F=$ Prequency $\quad P$ a percentage

The data in Table-38 revealed that 92% of radio owners enrolled under the "JIA and Budhlema" programe. where as 54\% enrolled under the "plscussion" progremme. While 88% of radio accessors liatened the "UTA and Budhiama" and 48\% 1istened the "Discussion" programmes.

Among the radio owners majority (58\%) 1istened the "JTA and budhlama" programe every week and 30% listened most often. 30% listened the "Digeussion" programe casually and only 8% enrollea in every week 11stenars.

44\% of radio owners were focussed as well as involved listenars of the "YRA and Budhiom" programe where as only 24% were focussed listeners of the "Discusston" programe and 4% were involved listencrs.
88% and 30% of ro listened the "JTA and Budhiame" programe and the "Discussion" programe respectively, and remaining 24% were partial 1istenors. 44% of RO 11 stened the "JTA and gudhiams" progranme with educational purpose, 48% with entertainment purpose, while only 4% listened the "Discussion" programe with educational purpose and 36% as entertairment and remaining 12% as accidential listeners.

Among the radio accessors, majority (56%) listened the "TFA and Budhiame" programme every week, 28\% most often and only 4 zh wre casual ilsteners, While in the "Discussion" progremne 36% were casual 11steners and only 4% 11stened every week.

28\% and 8% of Rn were involved and focussed listeners and 52\% Iistenad leasurely of the "JTA and Budhiama" programe. ifhile 20% were focussad ilsteneng and 16% 11stened the "piscussion" progranme leasurely.
60% of RA listened the "JTA and Budtseme" programma completely and. 28% as partial listeners where 16% 1istened the $2 n d$ programe completely and 32% listened parcially.

44\% of RA 11stened the Ist programme with entertainment purpose and only 32% listered as educational purpose where es 32\% listened the "Diacussion progremme" accidentally and 26\% as entertainoent.
8% of RO and 12% of $R A$ were not entolled in the "JTA and Eudhiama" programe, where as 86% of 30 and 52% of RA of the total sampled respondenten never listened the "Discussion" programe.

A Cursory view on Pable-38 on total listening score of RO and RA also evidenced a significant difference between them and the moan listening score of ro was higher than the mean listening score of $R A_{\text {. }}$ The test made it clear that radio omers were better listerar than radio accessors.

DISCUSSION

Chaptar v

DISCUSSION

The discussion of the results is presented under the following sections.

I Distribution and comparison of listaners (RO and RA) and non-listeners accondimy to dependent variables.

II Distribution and comparison of listomers (RO and RA) and nom-listeners according to their,personal characteristics.

III Correlation between dependent variables and independant variables, and intervening variable.

IV Relationship amonget the independent variables and intervening variable。
V Path analygis of depencient variables with other correlated Indeperdent variables.

VI comparative analysis of listen1ng beheviour of radio owners and radio accessors.

I Distribution ama comparison of 21steners (RO and RA) and non-listenors according to deperdent variables.

Discussion on tables 2. 4, and 6. the results evidenced that nearly half of the ro (42%) who form the part of listeners have medium level of knowledge and attitude (60%)
as compared to 44% of the radio accessors who have high level of knowledge in agriculture and attitude (40\%) towards farm broadcasts. At the same time it is interesting to note that even with high knowledge and high attitude both ro and RA have only medium level of adoption as indicated in Table-6. This Einding is in agreement with that of singh and singh (1974). supe anl salode (1975). Behera ama sahoo (1975), Pathak et al. (1979). Kamarudeen (1981) and chandrakandan (1980) who reported siroilar findings.

Though the high level of knowledge and attitude is found to exist in a sizable number of facmers, the adoption remains to be mediocre due to the lack of accessibility and availability of inputs for practicing improved agricultural practices. This reasoning is very well correlated with the terrain of the country. In facts 32% of RA exhibited $10 n$ knowledge, attitude and level of adoption which shall be reasoned to the same accessibllity factors. Even then the 't' value of the mean scores of these categories of famer listehers is found to be significant which strengthen the reason for non-adoption.

Comparing the listeners and non-listeners the Tables 2 and 4 exhibit a sizable percentage of non-listeners farmers to have low levels of knowledge, attitude towards the
improved 3gricultural practices. still vide Table-6 a sizable number of non-listeners still can be grouped under medium level of adoption. In case of adoption it 13 interesting to note that both listeners and non-listeners are medum adopters. This finding is likely to be in line with that of Alamgeer (1970) and Chandrakandan (1980). The above fiming also confirms the difficultien are more for adoption which implies that the programmes broadcested in agriculture do not seem to give any impact interms of adoption of improved agricultural practices.

II Dlatribution am Comparison of ligteners (go and RA) and non-listeners according to thelr personal characteristics.

viscussiag on the personal characteristice of the listeners it is interesting to note that more than seventy five per cent of listerers are middle aged famers namely farmars between the age of 30 and 50 years. This firaing is in agreement with that of sandhu (1970) and singh (1972). Of these above finding about fifty per cent of then cen read and write and remaining izve education of primary school end above. This fact is evidenced by a higher education score. nmongse the listeners it is seen that ro secms to be
more educated than $R A$ as depicted by a sizable marginal difference betiveen their mean education scores. Referring to now 11 stenors about fifty five percent of farmers were also midale aged. With in this group it is interesting to see that about forty per cent of them are found to be 11licorate. shakya (1973) also reported similar finding.

Discussing on the educational level of famers under study it is interesting to note that level of education does not seen to Influence higher level of adoption amongst Eamors as evidenced by the non significant "t" value on the level of education on non-1isteners. This finding was supported by supe and salode (1975).

Referring to the porsonal characteristles of farmers namely tho Eam size and sub-centre contact, Tables 12 and 14 depict that more than half of both listeners and nonlistansers are marginal farmers heving areas of less then 20 rapanies. At the same time 40% of radio owners are small fammers as compared to 16% famers as RA. It is also Interesting to note that 32% of RA are big farmers having a farm holding of more than 40 ropanies. About fifty per cent and more of the ilsteners rarely contact
the sub-centre for technical advice and inputs for improved agricultural practices. probably 36% and 70% of RA and RO respectively who frequently contact tho sub-centre may be the farmers who have higher farm size. Discussing in this fact the reason for such difforential contacts in the gubcentre shall be due to the difference in farmholdings. It is likely to prove that the marginal Eamers who hold a farm size less than 20 ropanies might not ba taking pains to contact the sub-centre for technical advices ard inputs services on improved faming. Comparing listeners and noninsteners it is interesting to note that the total sample of non-listoners studied happened to be all marginal and small famers. This is evidenced vide Table 16 that 34.67\% of non-listeners never contacted the suo-centre and almost the remaining rarely contacted the sub-centre, Reasoning for this shall be due to lack of comanication through the media. Any how the Tables 12 and 14 depict mor very little regularity amonget the marginal and small farmers in their practice of contacting sub-centre for technical advice ard imputs for improved agricultural practices.

It is very interesting to note that about forty per cent of listeners have a high level of innovation proneness as well as high level of scientific orientation. This finding is supported by Shakya (1973) and Ral (1984).

This shall be due to the reason of they being influenced by their radio listening behaviour wherein the farm broadcast programes which usually of a higher scientific and technology oriented. It is interesting to see in Tables 16 and 18 that a sizable percentago of RA have 10 percentage of innovation proneness and selemific orientation when compared to $R O$. The reason shall be the ownership of the radio to influence the radio owning famers to listen farm broadcast frequently.

About sixty percent of the non-listeners have evidenced low or medium level of innovation proneness and scientific orientation but it is interesting to note that about on thira of them belonged to high group. This might be due to their personal interest towards faxm technology without prejudice to thelr lack of ownership of radio for listening the programe. This Einding also supported the medium level of knowledge, attitude and adoption prevaililng among the both listeners and nom-1isteners.

Lrooking to the social participation of the listeners and non-listeners it is seen from the Table-20 that almost one third and above of both listeners and non-listeners do not have any membership in eny organization. At the sarne time one third and above of the ilsteners have membership in
one organization. This shall be due to the reason of their ilstening behaviour as well as the extent of larger holdings and their frequent contact with the sub-centre of their locality.

III Correlation between dependent variables and
 independent variables and intervening variable.

Discussing on the relationship of knowledge with other dependent and independent variables it is seen from Tables 22. 2324 and 25 that the lenorledge of the listeners and the non-listeners has been significantly related to adoption. Incfdently the knowledge of the listeners namely radio accessors has found to be related only to thelr attitude towards farm broadcast as in the case of the attitude of the non-1isteners also. Kamarudeen (1981) also reported similar finding. In this case it is interesting to comuent on that the extent of adoption probably equal of the ilsteners who owned radio lnplying very littie difference in adoption between listeners and nonoligteners. This shall be due to the lack of influence of the programe content of the radio broadcast put across through radio. In Table-23 the knowledge of the listeness and the nonIisteners seems to be influenced by thedr scientific
orientation which is in agreement with the Eindings of Dhanokar (1970), supe and salode (1975) and Kamarudeen (1901). This is evidenced by the above fact that the contribution of knowledge specially amongst the listeners seems to be more through their sub-centre contact. It is also seen in Table 23 that the relationship existed between listeners and their listening behaviour but the knowledge of the radio owners seems to be influenced mace by their sub-centre contact, and innovation proneness for itaproving the knowledge in scientific farming.

It is very interesting to note that education of the non listeners is significantly related to their knowledge which is supported by supe and salode (1975). and kaleel (1978) as against though not aignificant a negative relation anongst radio accessors. It is also interesting to note that the sub-centre contact, scientific orientation, and inmovation proneness of non-1isteners do Influence thelr knowledge on sclentific faming.

Regarding the listeners' attitude as seid in above para though relationship existed in their knowledge. Table 24 shows a negative relation with their level or education specially in case of radio owning famers. Incidently their
attitude is found to be positively signiticant to their innovation proneness, the only variable which 26 asmilarly comparable with regard to that of their inmovation prononess of the non-ileteners where as scientific orientation is only variable fourd to be significane in tams of fes relationstaip with the knowledge of radio accessors which is in agreement with the findings of supe and salode (1975) and kanarudesn (2э81) who reported signtficant relation between knowledge and seientific orientation of the farmers. In the above bable it is interesting to noto that though not significant segative relation eristed beween tho attitude and age as well as radio accessibility of the farmers who are accessible to radio. This mey imply to the fact that they naight be listening the radio not essentialiy to acguire the knowledge in scientific agricuiture but ney aiso be for the gake of entertaimento similarly though not sigrieteant negative relation seems to exist beween the attitude of non-inisteners and their age, farm size and sub-centre contact. This nay imply that non-listeners" acuisition ofirnowleage does not seem to be purposive during their visit to sub-centre.

Reforring to extent of adoption and independent variables anonget the listeners its relationship existed only in the knowledge gained by radio owners and not ofth the radio
accessors vide Table 22. Kemarudeen (1981) and nas (1984) reported similar findings. This is in support of the finding in Table 25 where in the relation of adoption of RO is almost significant with all their indeperdent variables except scientific orientation where as on the reverse only farm size and scientific orientation wes found to be significantly related to adopetion behavour of RA which is supported by Kamarudeen (1901) who reported similar finiling. The above finding implies the significant listening behaviour of RO as against non significant negative relationship of the listening behaviour of RA with the extent of adoption. Rajamani and sinha (1983) reported similar findinge. The reason for the above finding shall be due to the potentialities of adopting improved agricultural practices among the radio owners as compared to that of radio accessors. In this context it shall also be that the radio ouners belong to medium and big farm size groups.

It is interesting to note that in Table 25 all the indeperdont variables other than social participation of iNRO foum to be significantly related to thel.r ertent of adoption though they are natther ounars nor accessible to radio. which implies parity in adoption between iisteners and non-listeners. Supe and salode (1975) also reported that no relation existed between social participation and adoption behaviour of farmers.

IV Relationship amongst the independent variables and

intoryening variable。

Refering to the relationship ofthe independent variables of the non-listeners and the listensr groups of farmers 1t is evidenced from Table 26, 27 ami 28 that significant negative relation existed between the age and level of education of the non-listeners and the listeners which is in agreement with the finding of Kamarudeen (1981) who reported negetive relation between age and education of control farmers. The implies that education does not seem to influonce the age of the listeners am non-listeners. similarly significant relationship exiated between the level of education and sub-centre contact of the non-iisteners and that of radio omers as ovidenced by the tables is guite relovant as the Eammens ifrospective of listening their radio gets equal share of knowledge on improved farning practices. The relationship of farm holding and sub-centre contact of the non-listeners and that of radio ownars has also been found to be significant. This has been ovidenced by the aignificant relationship batween theis scientific orientation as well as innovation proneness and subacsntere contact.

This finding is likely to be in line with that of peddy and Reddy (1975) and Kamarudeen (1981). It is also interesting to note that significance differance oxisted between the age of radio owners as woll as that of non-listeners with regard to their seientific orientation, Rajeniran (19e2) also reported similar finding. The reason mey be due to different level of educetion achiaved by the marginal and small Eamers. Tables also ovidenced signtficant relationship Between non-1istenera and redio owners with regard to their submcentre contacts and social pareicipation. The reason shall be the nonavailability of radio and their non accessible to scientific infomation given through the media.

In case of radio accessors and non-listeners as in the case of their age and education significant relationship also existed jetween their scientific orientation amongst different age groups of farmers. This is nomally found true in many atudies where scientific ortentation increases with age as Kemarudeen (1981) also reported similar finding.

V Eath analygis of dependent variableg with other correlated indopandent variables.

Path analysis showed (Table 29) that innovation proneness had maximum direct effect on level of knowledge of radio owners followed by scientific orientation, listening behaviour and sub-centre contact. Comparatively
higher direct effect was contributed by inmovetion proneness and scientitic onientation, serce innovation pronenoss showed the maximum positive ditece efsect and also highest positive correlation value with knouledge of radio ounses, this variable should be a criterion fn understanding the frowhedge hevel of radio owners in scientific agricuiture. secause of comporitively higher contribution of escionelific oriantation this variable is also to be considered for conceptulizing the knouledge level of recio owners.

Regarding the Inowisdge of listenexs (RA) Table 32 ghowed that seientific orientotion had mesilmam dircet effect followed by listentng bahavious and soclal participation. Comparatively highes direct affect was contributed by ilstening benavioux abd social participation. Since scientific orientation showed the maximum positive alrect effect and also highest positive correlation value with knowleage, this variable should te a criterion in understanding the knowleage level of radio accessors in scienicixic agriculture. Bedause of comparatively higher contribition of listaning behaviour this variabla is also to be considered for conceptuliatng the knowleage of radio accessors.

Table 35 ghowed that education had maxtmum direct effect followed by scientific orientation on knowledge of non-ligteress. These two variables shoula be talsen into consideration for understanding and conceptulizing the Knowledge level of non-listeners in scientific agriculture.

Regarding the attitude towards farm broadcast Tables 30 and 33 indeate the results of path analysis showed that innovation proneness of llsteners (ro) and sclentific orientation of listeners (RA) hed maximua positive direct effect and also highest positive correlation value with attitude of zadio ouners and redio acceseors respectively. These two variables should be a criterion in understanding the attitude of listeners towards farm broadeasta.

In case of non-listeners Table 36 showed that only imnovation proneness had maximum direct effect on attitude of non-listeners. Due to the contribution of more and positive direct effect this variable is taken as a criterion in understanding the attitude of non-listeners.

Results of path analysis in Table 31 showed that social particlpation had maximum direct effect on adoption of trproved agricultural practices by listeners (RO) followed by farm size, educsíion and inmovation proneness.
since social participation showed the marimum positive direct effect and also highest positive correlation value with adoption, this variable should ba a criterion in understanding the adoption of improved agricultural practices. Because of the comparative higher contribution of farm siae which $1 a$ also to be conslased for finding out the adoption of improved agricultural practices by 11 steners (RO).

But in case of listeners ($R A$) farm size had maximum direct effect (Table-34) on adoption of improved agricultural practices followed by scientific ozientation. since Farm size showed maximun positive direct effect with highest correlation value with adoption, this variable should be a criterion in understanding the adoption of modern improved agricultural practices of ligteners (AA).

Table-37 showed that scientific orientation exhibit maximun direct effect followed by education and innovation proneness on adoption of improved agricultural practices by non-listeners. Since scientific orientation showed maximum direct effect with highest correlation value with adoption behaviour of non-1istenars; this variable should be a criterion in understanding the adoption of improved
agricultural practices by non-listeners. Because of comparative higher contribution education should also be considered for finding out the adoption of improved agricultural practices of nor-listeners.

VI Comparative analysis of listening bohaviour of radio owners and radio accessors.

Resulta (Table-38) indicates that more than half (58%) of the 1 isteners (RO) and 56% (RA) hear the JTA and Budhiama" programe every week, 30% and 28% most often and 4\% each casually.

Thile nearly one third of listeners (30% RO and $36 \% \mathrm{Ra}$) hear the "Discussion" prograrme casurliy. 8% and 4% every week, and 16% and 8% most often respectively.

Singh and Samatu (1971) reported regular listening by 41% of farmers. Singh (1972) foum that 44% of 11 steners are regular every day listeners. Knight (1973) also gave a similar report (46\%).

Higher rate in every week listening of "JTA and Budhiama" programe evidenced by this study may be due to

Abstract

unprefered mode of presentation and lack of improved technology in the programe content.

Table-38 also indicates that a good majority of farmer listeners ($24 \% \mathrm{RO}, 28 \% \mathrm{RA}$) are involved as well at focussed listeness ($44 \% \mathrm{RO}, 8 \% \mathrm{RA}$) of "JTA and Budhlama" programe and nearly one Eourth of 11 staners ($24 \% \mathrm{RO}, 20 \%$ RA) were focussed ilsteners of "Discussion" programe. The Intensity was much higher than many past reports (from India) by sekhar. (1982) who maported only 10\% were intense 11staners and Rajendran (1982) who found majority are lelsure time listeners.
filgh intensity of listening of redio owning listeners than the radio accessors may be due to the ownership of radio. The high intensity of listening of the listeners In this otudy may also evidenced due to technology and scientific oriented fam hroadcant programe and the prefered mode of presentation.

It is indicated in table 38 that 88% of no and 60% RA were complete Iistenars of "JTA and Budhiana" progremme as compared to $30 \% \mathrm{RO}$ and 16% RA of the "Discussion" programme.

This finding is likely to be in line with those of Badrinarayan (1g77) who reported that 50% were complete listeners and sekhar (1992) who found that 61% wore full time listeners.

The higher rate of complete listeners in case of "JTA and Buahi sma" programme is also may be due to prefered mode of presentation. It is found (Table-38) that nearly half of the listenars (40% RO, $44 \% \mathrm{NA}$) heard the "JPA and Budhiara" programe with entertairment purpose as compared to 8% of RO and 16% of RA listened the "Discussion" programas with the same purpose, still it is seen in the table that 44% RO and 32% of RA listenad the first programme with the education objective, Chandrakandan (1980) also reported a high rate (87%) of purposive listening by the listerers of the farm broadcast programe.

In this study high rate of purposive listening with entertaiment than with the educational purpose is may be due to prefered mode of presentation with lack of improved technology in the programe content.

Table-38 Indicates that there was a signifieant different between the radio owners and radio accessors with respect to their listening behaviour as indicated by 't'
value. The mean 1istening scores showed that redio ouners are better listeners than radio accessors. The reason may be due to ownership of radio which is nomaly found in many studies.

Chapter VI

SUMRARY

The farm broadcasting in Nopal was started in 1955 with a new programe relating to the farmers in order to modernize faming system in ivepal. which is running down at present under the control of Agricultural Information section within the Department of Agriculture. This section runs its own studio and produce farm broadcast programmes in four Earmats each of 15 minutes in a week

During the last twenty rears a 10 t of messages on fam moderaization has flowed over Redic Nepal but no lapact study had been undertaken on these messages so far. The audience of Nepalese farm broadcasting ilve in hilly regions (Approximately 66 per cent). Eecause of the above reason and extremely broken terrain a hilly district was selected for this study entitled "Impact of farm broadcasts on the adoption of agricultural innovations by the farmers of Ruwakot Districi of Nepal" with tho Eollowing objectives.
(1) To assess the level of krowledge of the radio Ifstening fammers in agztalturo.
(2) To study the attitude of the farmer 11steners towardis famm broadcast.
(3) To measure the extent of adoption on recommendations given through farm broadcasts.
(4) To analyse the listening behaviour of the farmers with respect to personal characteristics.

Age, education, fam size, sub-centre contact, innovation proneness, scientific orientation, social participation, radio ownership. radio accessibility, were the independent variables. Listening behaviour was considered as the intervening variable for this study. Knowledge, ettitude and adoption were the clapandent variables.

Age was measured in number of years, education using Trivedi's scale modified, farm size, In number of ropanies, sub-centre contact intorns of mo of visits to sub-cantre in a week, innovation pronanoss using the scale of Moulik (1965). scientific oflantation using the scale developed by supe (1969), social participation using Trivedt's scale modified, radio ownership interms of posgession of muber of radio receiving sets, and radio accossibility was measured in torms of availability of
sadio receiving sete within a radius of one Kilometer from the respondent's house

Among the dependent variables knovledge in agriculture was measured by standardized knowledge test. Twenty test items were selected using difficulty and discrimination indices. Attitude was measurea using the scale doveloped by Chamdrakandan (1982). Extent of adoption was measured using 13 selected recommended practices in maize cultivation.

The listening behaviour was measured in tems of regularity, intensity, duration and purpose of ilstening. Each of these components were measured in different continum and scored accordingly.

A pilot study was undertaken to finalize the materials and methods of the study and the interview schedule was finalized accordingly. Seventy five listeners (Fifty radio owners and twenty five radio accessorg) and seventy five non-listeners were selected purposively from four sub-centres of Nuwakot District of Nepal by purposive sampling methoci.

Data was collected through personal interview. student 't' test, correlation, and path analysis wers the various statistical technigues used in this study.

The silient findings of this study are the following:
(1) The results of tegt of significance revealed that the mean scores for knowledge, attitude and adoption of listeners (Ro \& RA) were found to be signdficantly higher then that of non-1isteners.
(2) Within the 1isteners radio owners possessed higher knowleage, favourable attitude and high adoption than that of radio accessors as indicated by significant t-value.
(3) The mean scores of age, education, farm size, sube centre conbact, scientiric orientation, innovation proneness and listening behaviour, of listeners (ro) were significantly higher than that of non-listeners.
(4) No significant difference was noticed betwaen radio owners and non-listeners on their social participation.
(5) Listeners (Radio accessors) and non-listerers were compared based on their personal characteristics ege, fam size, sub-centre contact, scientific origntation, Innovation pronenoss showed significant difference between the: but no significant difference was noticed on the their level of education and social participation. (6) Listeners (Radio owners and radio accessors) were compared based on their personal characteristics age, education, innovation proneness and listening behaviour showed significant difference between them and no significant difference was noticed between then with respect to their farm size, sub-centre contact, scientific orientation, and sacial participation.
(7) Results of correlation analysis revealed that knowledge of (ro) wes positively and significantly correlated with adoption, sub-centre contact. acientific orientation, innovation proneness and listening behaviour.
(8) Attitude of listeners (80) was significantly and positively correlated with innovation proneness but negatively and significantly correlated with education.
9. Extent of adoption of ilsteners (RO) was positively and significantly correlated with education, farm size, sub-centre contact, innovation proneness, social participation, redio ownorship and listening behaviour vhile age was negatively correlated.
10. Thowledge of listemers (RA) was positively and significantiy correlated with attitude, scientific orientation. social participation and listening behaviour.
11. Attitude of listeners (rA) was positively and significantiy correlated with scientific orientation.
12. Extent of adoption of listeners (RA) was positively and significantly correlated with fam size and scientific orientation.
13. In case of nom-1Isteners edueation, sub-centre contact, scientific orientation and innovation pronenass were significantly and positively corralated with their level of knowledge.
14. Only innovation proneness was sigatiflcantly correlated with attitude of non-1isteners.

Abstract

15. The extent of adoption of nor-11steners was positively and significantly correlated with their age, education. farm oize, sub-centre contact, sciontific orientation and innovation pronemess. 16. Result of path analysis showed that level of knowledge of $11 s t e n e r s$ (RO \& RA) and non-listeners was infiuenced with a maximum direct effect of innovation proneness and social participation reapectively.

17. The attitude of 1isteners (RO \& RA) wás influenced with a positive maximum dicect effect of innovation proneness and scientific orientation while the attitude of non-listeners kes influenced only by innovation proneness.
18. The adoption of 11 gtenors ($R O$ \& $R A$) was influenced by gocail participation and fam size while the adoption of non-listeners was influenced by scientific orientation.
19. Uhile ecmparing radio ouners and radio accessors with respect to theif listening behaviour, a significant difference was noticed with reepect to their Ilstening behaviour.
20. . Ninety two per cent of listeners (RO) and eighty two per cent of listenars (RA) were found to 1isten "JHA and Eudhiama" programe regularlye intensively, completely and purposely.
21. The enrollment of listeners in "Discussion" progranne was about half of the total respondents.
22. No respondents were found to listen the "Hagazins" and "Question answer" programes.

REFERENCE

Balasubramanden, U.i. (1980). A study on Inmovativaness in relation to adoption of HYV rice technology and consequentsal changes in farming comanity of ramil Nadu. Rhop. theass (unpublishec) IARI, Bov Delht.

Bartar, harcy Le (1971) Listening bohaviour Engle wood clifis. NeJ. prentice hall.

Beal, Gei.e and sibley. D_{4} iV. (2967). Adoption of Agricula tural technology by the Imitans of Gautemala. Rusal sociology Repost wo.62. Amer. Loway Dapartanat of asciology and anthropology. Iowa state University.

Bahere, C., and gahoo, MoS. (1975). Impact of national Demonstration as maption of agricultural practices. Indien J. Eten. Qiun. 21 (182): 32-35.

Bhaskarane K., and Mahajan, Bolv. (296B). Effectiveness of Extension mathods in gaining knowledge am Acceptance of agrosan soed treatment to cotton. Indn. Jo Extn. Eln. $\{$: $28-33$.

Bhilegaontar (1975). A study of fertilizer utilization nehaviour of famers and communieation patterns under constraint. Unpubl. Rh. Do Thesig. IARI. LKOW DELHI.

Bose. S.p. (1961). Charactoristies of Farmers who edopt Agricultural practicos in Incian viliagos. Rural sociologx 26 : $138-145$.

Chember's Tuentiety Century Dictionary. (1976). Macdonald. AoM. Ed.) Allied Publishers Led. . Bombay.

Chandrakandan. K. (1973). A study on Farm practice Attributen and socto personal factors of Famers in relation to foloption of practices. MoSc. (Ag) thosis (unpubl,) Ta $\mathrm{Ha}_{\mathrm{A}} \mathrm{U}_{\mathrm{o}}$. Coimbatorg.

Chandrakandan, K, and Subramanyam, V.S. (1975). Note on Socio persomal factors of Farmers in relation to Adoption Medras Agric.工. $62(10 \& 22)$ 2 $835-857$

Chandrakandan. K. (1980). A study on the Impact of 'Farm School on air on scientific farming. Final report of research project, twaU, colmbatore.

Chandmakendan, K. (1382). Effectiveness of Farm Broad casts on listeners. Affective cognitive and psychomoter behavioura, ph. D. Thesis (unpublished) TixAU, Coimbatore.

Chattopadiyaya, s.N. (1963). A study on some psychological correlations of adoptions of innovations in Fanming. Ph.D. thesis (unpublishea) IARI, New Delhi.
Chaturvedi. V., Erabern prakash. (1983). Impact of functional literacy programe in Rural areas near Delhi Ind. J. of Acult gane 49 (3): 33-35.

Copp, Neal, and Gcoss (1969). The Dffferential characteristics of an approved Agricultural Technological practice. . Rurel sociology. 14

Des. K.Ko, and Sarkar. R.D. (1970). Economde Motivation and Adopeion of Farm proctices. Ind. Io Ettn. EAung (6 (162) : 103-107

Dhalival, A.S.S., and Sohal. T.S. (1965). Preferance of Radio programm by Rurel Eisteners. Ind. J. Exting Edun. I (3): 164-169

D̆̀nanotar. T.S. (1970). Differential perception of fartocrs about. the Attributes of Farn Innovations. Mose. (Ag) Thesis (Unpubli.) college of Agriculture, Nagpure

Doraiswany (1977). Psycholinguistic Analysis of Farm broadcast. Mesce Ag. Thesis (Unpublished) man, Colmbatore.

Eavord. A. L. (1957). Zechnigues of Attitude seale Construction. Appleton Century Crafts, Tne.. New york.

Encyclopedia Eritannica (1974). Ashmore, Hary s. (Ean.) Encyclopedia Eritamnica Lta. . London.

English, H.B., and English, A.C. (1958). A. Comprehensive Dictionary of Psychological and Peychom analytieal terms. Longmans areen and Co.. New York.

Escalade. MoM. (1981). Rural Develoment coverage of Reaio stations serying Easters Visyar. Amals of Tropical gesearch: 3 (4) $250-257$.

Ganorkar, PoI. (1980). High yielding varieties of crops. Rural Inala.: 43 (1):

Grewal. I.So, and sohal, T.S. (1971). Comparative role of two social systems in the speed of Adoption ofsome Fam practices. Ind. I. Extn. Ean. 7 (1\&2) : 1-6.

Gupta, D.D. (1965). Adoption of Agricultural practices by Indian Fermars. MoSc. (Agrl) thesis (ünpubl.) in singh. K.No, RaO, C.Sos. and sahay. B. N. (Eds.) Research in Extension Eaucation 1 35/\%

Hybels am Ulioth (197a). Introduction to Beoadcasting. D. Van inostrand company, new york.

Jaiemal, Nu: . . and Dave, AoR. (1972). Measurement of progressivenoss in ramaing. Studios in Extension glucation. Sinha, Por.R. (Ed.) NoI.C.D., Hyágrabad.

Knight, A.J., and singh, K, N. (1975), Listening and post11stening Sehavious of Fam Broadcast Listeners. The Madras. Agri. Journal. Caimbatore. 62. (10-12): 673-677.

Rnlght. AoJ. (1973). A study of Relative Effectiveness of three modes of presentation, preferences Ifistening and postolistening behaviour of Fam Eroadcast listeners Pho D_{o} thegis (tmpubl.) IAA.R.I., New Delhi.

Kuthlala. $\mathrm{Bo}_{\mathrm{K}} \mathrm{K}$. (19日0), Village study shows Recilo is status symbol. Not Agent of Change. Communicatos, 15 (1):28-31.

Lionberger. H.F. (1960). Adoption of naw Lieas and practices. Icwa state University press. Iowa, America.

Darshe C.P.s and Coleman. A.tes (1955). the relation of Farmer Characteristics to the Adoption of Recommended Farm prectices. Rural Sociology 20 (289-6̈96.

M4.sra and simha (1981). 'scelo economic correletes of Technological knownow of farm enterprem nuere Indo. Extn. Ean 18 (152) 54.

Moul4k, T.K. (1965). A stuay of the predictive valuemy some Pactors of Adoytion of Nitrogenous Fertilizers and the Influence of sources of information on Adoption Behaviour. Unoubl. Ph.D. Thesis. I.A.R.I. . New Delhi.

Murthy, A.S. and Singh. S.N. (1974). commanication Behavious of Eamere How Heights publishers ard Distributors, Nov Dolhi.

Naidu, S. Roteswarama. (1978). To investigate the entent of Adoption of the package of practices recommended by ceneral robacco Reseanch Institute Rajarcundry by the tobacco growers in East godavari District of Andra predesh. M.Sc. (Agis) thesis (Un publ.) College of Agriculture, Vellayani, Trivendrum.

Nait. G.T. (1969). A multivariable study on Aloption of High rielding paidy varieties by the Famers af Kerala state Eho $\mathrm{D}_{\text {, thosis (unpubl.) }}$ I.A.R.I. New Delh1.

Nohru, 3.M. (1980) To stury the effectiveness of Fam Broadcast through Railo in disseminating Agricultural information to the fanmers of Trivanirum District. MoSc. (Aga) theais (unpuble) College of Agriculture vellayant, Trivanirun.

Pandey, SoN. and Roy, N.R. (1978). Factore Asgociated with effectiveness of Eam broadcasting Ind. I. Extno Edn. 18 (18:2) : 68-91.

Pendit. 5 . (1964). study of the Role of Age. ERAucation and size of Farm in melation to Adoption of improved Agricultural practices, Res:

Patel. PoM., and singh. K. W. (1970). Differential characteristies of Adopesrs and Non-adopters of Larm planning. Ind. J. Extn. gin. $\underset{\sim}{6}$ (182) : 96-102.
pathak, B. and Daxgam. K.S. (1971). Impact of packace progromme work on Jute growers and their zelation to Different Improved practioes of Jute cultivation. Indian I* Exthe Eda. 7 (1\&2).
pa1lip. S. (1984). study on the agricultwral information support provided tiazough radio to Earmere by KAU. M.Sc. (Ags) thoois(4epubl.) College of Agricultuxe. Vollayant.
plikai. G.B. (1978). A etugy on acoption of eoil conoervation Moasures by taxmers in acheme areas of trivanelum Dist.e M.Sc. (Agri.) thesis (Unpubl.) College of Agriculture Vellayani, Trivandrum.
fragad. R. (1981) Correlates of kncwledge of VLW about high Yiolatag varlotios. Ind. I. Exta. Ean. 17 (162)s88m91.

Rahin, $S A$. (1960). piffugion and Adoption of Agxicultural practices in two villages of Eagt palistan. Rural Sociology 25.

Rei. D.L. (1984) Effectivenegs of Nepali Mas Media, unpublishod rasearch report. Tribhuvan University. P. 21 and Appendix B.

Rai. HoN. (1965). DLEFusion of Information and Farmers" Response in Relation to an Imgeoved Farf Eractice (Eybrid Maize). Ind. I. Estri EGn** 1 (2) : 140.

Rajamani. M. and stnha, B.R. (1983). Knowledge gained Exom a rarm echool on the alr: A relational Analysis. Interaction, 1(2) : 151-157.

Rejendra. (1968). Distanco concopt in Adoption pateern. Inc. I. Extig Edn. $4(162)$: $83=88$.

Rajendran (1978). A study of factors affecting the adoption of selected Agricuitural practices. MoSc. (Agrio) thesis (un publ.) College of Agriculture, Vellayani. Trivandrum.

Rajendran, C. (1982). Inpact of Broadcast through commanity radio sets. MoSc. (Agri.) thesis (unpublished) Agricultural college $\&$ Research Institute, Coimbatore.

Ramsey, C.H. Polson, R.A., and Spencer, G.H. (1959). values and Adoption of practices. Rural Sociology. 24.

Reddy, M.S. K. (1962). A study of Improved Agricultural practices as a function of some socioEconomic Factors and sources of Information. Mesc. (Ag.) Thesis (unpubl_) I.A.R.I., New Delhi.

Reddy, MoS.K., and Kivin, J.F. (1968). Adoption of High yielding varieties in three Indian villages. N:I.C.Do, Hycierabad.

Rededy, Penala, V. and Reddy, Venku, S. (1975). The motivational $\therefore: \quad \therefore$ patterns of farmers in the adoption of hich yiclaing varieties of rico. En Tresegreh geuches in Ektongion Education 1971-90. E:tension Edueation Institute Andhra pradeah Agricultural University, Eydembed.
 Applotionmentury-Gofte. Ince. how York.
意加ere. E.N. and Havons. A.E. (1962) The Impact of Denonstretion of Fazmare' Attitude towards Fertilirors. wooter plig. Agtil Espto. Stat. Feg. Bull. 891.

Rogers, F.M. (1962). Diffussion of innovations. The Free press, New York.

Rogers, Fverett M. (1969) Modernization Among peasants. The Impact of Commatcation. Hole Rinchart and. Winston, New York p. 137.

Rogers, E'M., and Shoemaker, F.F. (1971). Communication of innovations: A cross*cultural approach, The Free press, New York.

Roy, P., Fliegel. F.C.., Klvin, J.E., and Sen, L. K. (1968) Agricultural Innovation Among Indian Farmers: N.I.C.D., Ayderabad.

Sabarathnam, V.E. and Rajaram, J. (1975). Characteristics of Radio Listening Farmers in Meourai District. The Madras Agri. Journa1 62. (10-12) : 695-697.

Salunke, G.N., and Thorat, S.S. (1975). Adoption Behaviour of small Fermers in Relation to their personal charactertstics. Indian. J. Extn. Edn. 11 (1\&8):67-69.

Sandhu, A.s. (1970). Characteristics, and programme preferences of the Radio owning Farmers in Punjab. ph. D. thesis (unpubl.) I.A.R.I., New Delhi.

Sandhu, A.S. and Darbarilal (1976). Some correlates of comunication Behaviour of the punjab Farmers. Indian. I. Extm. Edno 12 ($3 \& 4$) 6-13.
Sandhu, A.S.. and singh. K.N. (1972). Listening babits of radio owning farmers in respect of farm programmes. Ind. I. Extn.. 8 (1) : 50-56.

Sekhar, V. (1982). Farm Broadcast listening behaviour of Extension personnel. M.Sc.(Agri.) thesis (Unpublished) Agricultural College and Research Institute, Coimbatore.

Selvanayagar. (1990). An experimental study of Relativo effectiveness of selected tenching aids in educating small farmers. MoSc. Agri. Thesis (unpublished) TraU, Colmbatore.
selvaraj. (1981). Mono, di and poly perceptory engagers in dissemination - An experimental approach. M.SC. (Agrie) Thesis (un publ Ished) Trav. Colmbatoze.

Shailaja. S. (1981). Influence of leaders in the developnent of rural areas. Mesc. Ag. thesis (Un published) Dept. of Agricultural Ertension college of Agriculture, Vellayani.
shakya, S.K. (1973). A study of Farn Radio Listening Characteristics of Radio ouning young and adult farmers in Nepal. Hosc. (agri.) thogis. (umpublishea) I.A.R.I., Wew Delhi.
shankariah. Ch. and singh. K. H. (1967). Predictive analysis of factors associated with fnowledge of Improved practices of vegetable cultivation. Indian J. Edn $31,1-2$.
sharme, Sok, and Dey. F.K. (1970). Relative effectiveness of Redio and T v as kass Communication media in Dissenination of Agricultural Infomation. Ind. J. Extn. Edn. G (2\&2) : 62~67.

Shete, N.B. (1979). Agricultural Training Needs of Tribal Fanmera of waharashtra. Ind. I. Extn. Ean. 14 (354) : 65-67.

Singh (1968). Characteristics of Eam Innovations assogiated with the rato of adoption malan J. AgEs. Econ. 21 (1) :71-70.

Singh. AoN. (1972). A atudy of charactoristice expectation and $115 t e n i n g$ beheyiour of the Liatorese ami non-ligconors of Easm radio programmes and Its impact on aquisition of linruledge. phe D. thesis (urpublighed) I.A.N.I., Nuw Dellad.

Singh, K. N. ara Senalu, A.s. (2971). Laistening habit of rodio ountry fomars in reapect of famm programos. Compe of extension zepearch on Easm redio progenmos, Punjob Agricultural University, Guahiana.

SHngh, Ropo. and singh. R.N. (2963). Attitude of Fam people toward chomacal Fertilizoss. Indian S. 已xtne 2an. 4 (162) : 49-54.

Singh. R.t. (1971). An Investigation into Difforential Attitudea of Famers Toward Improved Agricultural practices. Indian J. Extn. Ein. 7 (162) : 22-20.
singh. K. H. ans prasad. R. (1978). Commaleation behaviour ard sousce credibility perception of young famors. Indian. J. Eten. Ean. 19 (2G22) 8 53-56.

Singli, som, ama singh. K.N. (1976), A matimiariato Anazyois of edoption behaviour of famers.

Somagundaram, D, and G1ngh. S.N. (1978) commanication gap betwen extension workers and pasay growing small famexe Eme I. Extn. Edn. 14 (3¢4): 26-33.
sroedhas, VoR. (1903). Farm Telecast: An Analysis of its 2mpact and thr viovero prozerencos. MoEce (AgEio) Thagis (un pubio) Agricultural College and pegearch Instituta. colmbatore.
steopal, $K_{0} B_{o}(1978)$. An orperimental study of tho relative eflectivenoss of thzer solected combination of extension tethode in educatimg tha tribal farmets. Mosco (Ageta) Thesis (unpublishod) ThaU. coimbotore.

Subranoniyam. Vos. and intistrama. C. (1973). Impact of socie-cenomic ractore on the Adoption of Itrproved Fam practicad. The Naspes Agri. Journal. Colmbatore. 60 (3): 287-191.

Subramonyan. (1975). Earnery retontlon of hronledge gainod through combination of Extancton mothods. Hove lottos 11 (2): 2. Tinu Coimbaeore.

Sumararajan, Re, Chardratandan, K. and seetharaman, Reve (1970). A stidy on the mara school on ade" Ind. J. Extn. Eaucation 28 (1\&2). $31-43$.

Sumdaraswamy, B. ans Duratswamy. X. W. (1975). Characteristies of Famers in reation to Adopting neconnended peactices of hybrid sorghum. tadrae agmic. J. 62 (10-12) :721-725.
Sunil mishra. (1983). Rodio as a vohiclo fos soctal dovelopment. Soctol change 13 (4): 19-22.

Supe. S.V. (1969). Factors melated to different degreos of satiomality indecision-moking among famers in Euldana distertct PhoDe theste (unpublished) Indian Agricultural Beseach Ingtitute. Now Delhi.

Supe. S.Vo and salocio. M.S. (1975). rmpact of Natlonal Demongtration on frocklodge and Aoption Iovel of Farmer pazelcipants. Ing. Jo ketn- Ean.. 9 (252) $36-39$.

Tompl. Aot. (1979). The Impact of Fom Eroadcant among Farmera in Kerala. Acrit Res. J. Ferale. 17 (1) : 71-75.

Thurstone. L. Le. ard Chave. F. nttitude. Chicago Dalversiby preas. Chicagos 62-63. $79^{\text {. }}$

Thurstom, Lot. (1966). Compent. noer J. Sectel. 52. 39-50
Trivedi. G. (1963). Measurement and Mnalyeto of gociocconomic atatus of Rural Familiee. Ened. thesis (umoubs.) IARI. Now Dolh2.

Van Den Ban, AoH. (1957). Eone chasacterietics of progressive Gamers in wetherlands. mural sectology 23 (1) : 5
 morginal rarmera growirg paddy. Mace (Ags) Thegin (unpubl.) TANU Colrobatore.
filiteming. E.A. (1952). Informal leaders ama innovators in Eam practice. Rural sociology 17: 272-375.

Wilkening, E.A. (1953). ndoption of mproved Earm bractices as related to Eamily Eactors. Aget. Research. Bulletin. 183. wis Consin, Madisor.

Folman. Benyamin, B. (1973). (Eds.) plocionaty of Pehavicural solences. The Mac idillan press Ltd. . London.

* original not seen

APPENDICES

Appendix I

Agricut tural Programass Erosucasted from pedio

Mopat curing the Elrot guazter of the year
(Badsakh Jesthe and Asedh) ie: 1965 (mid Apeit to mada July)

1. Pert control of malue crop
2. Temperats frutto and thetr maragemont
3. Tobacco cultivation
4. Imgostant Eungicidea and their proper utiligation
5. Raising of mango geedilng
6. heed management in Rice crop
7. Redish Earming
B. Diseases of mango and then control noamuzes
8. storege of wheat.
9. High yielding variaty of maize for hiliy arees
10. Bordeaux masture for apple garden
11. Mumuang ani water management in maize crop
12. Fingernillot cultivation-d bedof neview.
13. Conteol of storca grain pests
14. potato cultivation
15. Dee lsooping
16. Inportance of soil for firutt groning
17. Grourdmut as a oil aeod crop
18. Important sumer vegetables and their cultivation -an introduction
19. Poultry farming
20. Important Breeds of goat for hilly regions
21. inivestock production and management -a brief discussion
22. Raising of Nursery bads in rice crop
23. Control of some important dipsease of cattle
24. Importance diseases of rice and their control-a brief a1scussion.
25. Rearing of silk worms
26. Rearing of pigs
27. Different methods of rat control-a bries discussion.
28. Fish famming in paddy figld
29. Artificial inseminetion in cattle and its advantage

Appendix II

programe format and Sohedule of broad cast

S1.NO. Format day
gime

1. Agricultural magasine which includes several items of $3-5$ minutes duration on various agricultural subjects in Sundey $6: 35 \mathrm{pm}$ to 7 pm the form of stralght talk and somen times discussion between two perssons.
2. duestion-andmanswer. in which questions received in the form of letter. Erom the listeners are answered by a Monday 6345pm to 7pm technique of dialogue between two persons.
3. Discussion between a group of farmors (acted by AIS Stafis members) and Junior Technical Tuesday 6i45pm to 7pm

Asslistant (JNA), acted by a staff member-on seasonal topies of fanming interest.
4. JTA and Buahi Ame which is a discussion format in a typical
village settirg between a zorldiym Gise old faming lady and JrAma young extension worker.

Appendux III

Iter selected from the concent of the broadcasts to

dovelop the knowledge togt in Agriculture.

1. Sevin is a insecticide for controlling army worm of maize
$\frac{\text { Yes (1) }}{120}$
2. Which is the herbicide that is best Correct (1) suited for killing grass weed.

Incorrect
3. Loose smut of wheat is due to fungal attack.
$\frac{\text { yes }}{10}$ (1)
4. Bordeauk mixture is used for controlling apple scab.
$\begin{array}{ll}\text { Yes } & \text { (1) } \\ \text { No } & (0)\end{array}$
5. Give the dose of complex fertilizer per ropani in maize crop.

Correct (1) Incorrect (0)
6. Name tho chemical that can bo used for the treatment of maize seed.
correct (1) Incorrect (0)

7. Give the dose of urea per ropani in
Correct (1)
rice crop.
8. The nit size for Mango seedilng is $3 \times 3 \times 3$ £t.
$\frac{\text { Yes }}{\text { H }}$
9. Give the proper spacing in matize crop.

Correct (1) ineorrect (0)
10. It is not fair to mix nerbicide and $\quad \frac{\text { Yes }}{\text { po }} \frac{(1)}{(0)}$
pesticide together:
11. Give one reason for mango malformation.

Correct (1) Incorrect (0)

S	No. Items	Score
	How will you protect the tobacco seedling in nursery?	Correct (1)
	Weed control is not necessary in radish field.	$\frac{\text { Yes }}{\text { No }} \quad$ (1)
	Name one resistant variety of paddy against fungal disease.	$\begin{gathered} \text { Correct (1) } \\ \text { Incorrect } \end{gathered}$
15.	Khumal yellow is the high yielding variety of maize.	$\begin{array}{ll} \text { Yes } & (1) \\ \hline \text { No } & (0) \end{array}$
16.	Irrigation is urgently needed at knee height stage of maize.	$\text { Incorrect } \frac{\text { Correct }}{(0)}$
17	Name one symptom of rust disease of wheat.	$\begin{array}{cc} \text { Correct } \\ \text { Incorrect } & \text { (1) } \\ \hline \end{array}$
18.	Selphos is used to control stored grain posts.	$\begin{array}{ll} \text { Yes } & (1) \\ \text { No } & (0) \end{array}$
19.	Name one delicious variety of apple	Incorrect (1) (1)
20.	Walnut can be grown only above 4000 ft. from mean sea level	Correct (1)
21	Peach leaf curl is a disease caused by fungus.	$\frac{\text { Correct }}{\text { Incorrect }}(1)$
22	Lucknow 49 is a variety of guava.	$\begin{array}{ll} \text { Yes } & (1) \\ \text { No } & \text { (0) } \end{array}$
23.	Finger milket requires more chemical fertilizer.	Yes (1) No (0)
24	Soil with a hard pan in sub soil layer is not suited for any fruit crop.	Yes (1) No (0)
	sandy loam soil is best suited for potato crop.	$\frac{\text { Yes - (1) }}{\text { No }}$

5l. HO . Items Score
26. Wame one fungal disease of groundmut Correct (1) Incorrect (0)
Correct (1)
Incorrect (0)
Yes (1)
130 (0)
28. zine phosphide is used for contro- liing rats.
29. Name one chomicel whtch is used for Corract (1)controlling of leaf spot disease of rice Incorrect(o)
30. shannan is widely adopted goat varietyFor tilly region.
$\underset{ }{X O s}$ (1) 10 (0)
31. Name one best breed of buffalo.
Correct (1)incorrece (0)
32. Late bilght is a serious disease of potato.$\frac{\text { Yes (2) }}{\text { No }}$
33. Name one variety of brinjo1. Correct (1) incorrect (0)
34. The main advantage of artificial Yes (1) insemination is to obtain good self No (0)

35. Detol is used to control ticks in cattle.	Yes (1)
N (0)	
36. Rerifket disease in poultry oan becontrolled only by vaccination.$\frac{\text { Yes }}{10} \frac{(1)}{(0)}$
37. Hame one symptons of anthrac diseaseof cattleCorzect (1)
Incorrect (0)
38. What is the Il . 0 or space requirement for one cattle Correct (1)
Incorrect (0)
39. Rame the agency which suppliesCorrect (1)agricultural inputs
Incorrect (0)
40. Gontour sygten of planting shouldEdcptad while planting the fruit inhilly areas.

Appendix IV

Item analysis for knowledge test in agriculture

Respondents	scores	scores $2 n$ atcending order	High group	Medium group	LOW group
1	9	3	26	15	3
2	5	5	27	17	5
3	3	6	26	17	6
4	11	8	30	19	8
5	19	9	31	20	9
6	21	10	32	21	10
7	32	11	33	23	11
8	17	12	33	24	12
9	15	13	35	24	13
10	23	14	38	25	14
11	38	15			
12	31	17			
13	25	17			
14	24	19			
15	28	20			
16	10	21			
17	$\therefore 6$	23			
18	30	24			
19	26	24			
20	12	25			

Resporn dents	scores	scores in ascending order	$\begin{aligned} & \text { Ligh } \\ & \text { group } \end{aligned}$	Medium group	$\begin{aligned} & \text { Low } \\ & \text { group } \end{aligned}$
21	32	26			
22	24	27			
23	35	28			
28	27	30			
25	20	31			
26	17	32			
27	13	33			
29	8	33			
29	33	35			
30	14	38			

Items	Correct answer in ($\mathrm{N}=30$)			$\begin{aligned} & \text { Dlffi- } \\ & \text { eulty } \\ & \text { index } \\ & \frac{\min }{N} \times 100 \end{aligned}$	Discrimination index $\frac{\mathrm{EHfoL}}{\frac{\mathrm{N}}{3}}$
	Mign group (10)	Hedium group (20)	Low group (10)		
23	9	4	9	73.83	0.0
26*	8	6	5	63.33	0.3
25	7	6	5	60.00	0.2
26*	B	7	4	63.33	0.4
27	3	2	0	16.66	0.3
28 $=$	7	4	2	83.33	0.5
29	4	6	5	50.00	-0.1
30*	5	6	1	40.00	0.4
31	5	4	2	36.66	0.3
32*	9	10	5	80.00	0.4
33**	8	9	2	63.33	0.6
34	4	8	3	50.00	0.2
35*	9	9	4	73.33	0.5
36*	6	5	2	43.33	0.4
37*	4	6	0	33.33	0.4
38*	7	0	1	26.66	0.6
39	5	1	4	33.33	0.1
40*	20	7	2	63.33	0.8

Appendix v

Interview Schedule

Respondent Mo.
Date
Farm broadcast listenea (RO \& RA)
Farm broadcast Non-listener (NRO)

1. Genaral
2. Name of the respondent :
3. Address 2
4. Age :

Young
Midale
(30-50)
old age (less than
years (greater
30 years) than 50 years)
4. District
5. Sub-centre
6. Village panchayat.
2. Education
please indicate the level of education

I211terate
(0)

Can read only
Can read and writa
Primary school level
Midale school Lovel.
High school and above

3. Bana giac

Please give land measurenent in ropanies.

Elease irdicate your visits to gub centre

Visies
score

Not at all/nevor
(0)

Racely/once a wesk(1)
Fropurnely/ 2 tineg a veek (2)
Regularly / 3 tines a ueok and abova (3)
5. Scientific ortentation (supe 1959)

(+1) 14 now recthods of
fioming give
better zoguzes to
a Eamer than oid
method.

No.	Itens	Most like	least Most like like least like
	a. Ezom time to time I have heard of several now farm practices and I have tried out most of them in the last few years. (3)		
	b: I usually wait to see tine results of my noighbours obtain before I try out the new farm practices.		
	c. Some how I believe that the traditional way of farming are the best. (1)		
	a. I am cautious about trying a new practice. (2)		
	b. after eil our forafathers were wise in their farming practices and I do not see amy reason for changing these old methods. (1)		
	c. Often new farm practices are not auccessfu, however, if they are promising. I woula surely like to adopt then. (3)		

Total score
7. Social participation (modified - mrivedi 1963)

Please indicate whether you are a member or office bearer in the following organisations.

10. Extent of knowledge in agriculture (on progreme broadcasted.)

Below are given a set of questions to test the knowledge of the listeners and non-listeners of farm broadcasts. Please answers them (for correct answers give 1 mark and for in correct answers give zero mark).

$\begin{aligned} & \text { Sl. } \\ & \text { NO. } \end{aligned}$	Items	Scoring
	Sevin is a insecticide for controlling army worm of maize.	$\frac{\text { Yes }}{\text { wo }} \quad \frac{(1)}{(0)}$
2.	Loose smut of wheat is due to fungal attack.	$\frac{\text { Yes }}{\text { No }} \quad(1)$
3.	Name of the chemical that can be used for the treatment of maize seed.	$\text { In } \frac{\text { Correct (1) }}{\text { correct (0) }}$
	The pit size for Mango seediling is 3×3x3 ft.	$\frac{\text { Yes }}{\text { No }}-\frac{(1)}{(0)}$
5	How will you protect the tobacto seedling in nursery.	$\frac{\text { Correct (1) }}{\text { Incorrect }(0)}$
	Name one resistant variety of paday against fungal disease.	$\frac{\text { correct (1) }}{\text { Incorrect }(0)}$
	Name one symptom of rust disease of wheat.	$\frac{\text { correct }}{\text { Incorrect (1) }}$
8.	Name one delicious variety of apple.	$\frac{\text { correct }}{\text { Incorrect }(1)}$
9	walnut can be grown only above 4000 ft . from mean sea level.	$\frac{\text { Correct }}{\text { Incorrect (1) }}$
10.	Soil with a hard pan in subsoil layer is not suited for any fruit crop.	$\frac{\text { Yes }}{\text { No (1) }}$
	Name one fungal disease of groundnut.	$\frac{\text { Correct }}{\text { Incorrect }(1)}$

S1. Iteras
12. Zine phosphide is used for controlifng rats.

Yes	(1)
10	(0)

13. Shaman $4 s$ widely adopted goat variety for hilly region.
$\frac{\text { Yos }}{\text { No (1) }}$
14. Late blight is a serious disease Yes (1)
15. Name one variety of Brinjol. correct (2) Incorrect (0)
16. Detol. is usea to control ticks in cattle. No (0)
17. Ranikhet disease In poultry can be controlled only by vaccination.
Yes (1) No (0)
18. Name one symptom of anthrac diseaseof cattle.
Correct (1)
Incorrect (0)
19. What is the floor space requirement for one cattle?
20. Contour syster of planting should be adopted while planting che fruit trees in hilly areas.Yes(1)

11. Ateteude towards fam broadcaseg (Chandrakandan 1902)

1709.	Items	Agree routral Disagroo
$+1$	ay liatening to the fam programe in radio it is useful to Earmers.	
-2	It is waste of timg to hase these programes.	
$+3$.	Regularity in listening of these programes will holp the famers in incroasing yicla an3 income.	
$-8 .$	The practices recommerded in these programmes are sulted only ror high incomb famers.	
+ 5 。	If farmers make use of the recommendations given in theso progratame they would surely get more yiela.	
	There is a doubt in the credibillty of these fama brodeast programmos.	

12. Extont of adoption of recomemations given through fam brodicaste about the frproved practices of maize cultivation.

$\begin{aligned} & 51 \\ & \text { No. } \end{aligned}$	neas	Recomerndations glvers through tarm broed casts.	
1.	Variety	a. thumal yollow b. Hetauda composite c. Ramur yellow d. Janaki	

$\begin{array}{ll} \text { sl. } \\ \text { No. } \end{array}$	Azeas	Recommendations given through Earm broad casts.	adopter (0)
	Insects a.	out woms - ByC dust © $1 \mathrm{~kg} /$ ropani	
	b.	Borers - Sevin granmules (0.4-7 grannules/plant	
	c.	Army worm - Metacid/1 mil. in 1 lit. of the spray.	
11.	Diseases a. control	Stem rot - increase spacing, donot increabe the dose of fertilizer and provide drainage.	
	b.	Mildew - use resistant variety	
	c.	Cob got - Diethanema at is days interval.	
12.	Hazvesting	130-140 days after sowing	
13.	storage	Store in air tight dxum and put 1 -2 selphos tablet per metric tonne of grain.	
	Total	scores	

13. Listening Behaviour (Philip 1984)

Delow are given 4 radio programmes. How do you liaten to then? make tiek marks in the appropriate colums in each of the 4 programmes.

11. attitude towards farm broadcaste (Chardrakamian 1992)

11809.	Items	Agree Routral (2) (1) Dligagreo
$+1$	By listening to the fazm programe in radio it is useful to farmers.	
-2	It ls waste of time to hear these programes.	
$+3$.	Regularity in listening of those programmes will help the fambers in increasing yield ani income.	
$=4$	The practices recommendea in these prograranes are suited only for high incomo famars.	
+5.	If famers mate use of the recoumendations given in these programes they would surely got more yield.	
	There is a doubt in the credibllity of these farm broadcast programes.	

12. Extent of adoption of recomendations given through farm brodeasts about the improved practices of malze cultivation.

13. Varlety a. Khumal yellow
b. Hetauda composito
c. Ramur yellow
d. Janalei

$\begin{aligned} & \text { Sl. } \\ & \text { No. } \end{aligned}$	Areas	Recomendations given through fam broadcasts.	$\begin{aligned} & \text { Extent } \\ & \text { Adope } \\ & \text { ted } \\ & \text { (i) } \end{aligned}$	factoption Not sopted (0)
2.	seed rate $15-20 \mathrm{~kg} / \mathrm{he}$ or $3 . \mathrm{kg} /$ ropand.			
3 \%	Sowing time April - Ray			
4.	Mamuring F.Y.M. $500 \mathrm{~kg} /$ ropand betore sowing the seed			
5	Eortilizer 2. Cumplex (2030, 20) © $7.5 \mathrm{~kg} /$ ropani.			
	b. Muriate of potash E $2.5 \mathrm{~kg} /$ ropani.			
	c. Urea © $3 \mathrm{~kg} /$ ropand, apply before sowing of seeds.			
6.	seed treatmart captan e $2 \mathrm{grm} / \mathrm{kg}$			
\%	Spacing s. Plant to plant $m 25 \mathrm{~cm}$			
		- SCu to Res mi75ctu		
8.	Ircigation from cowing to grain zomaticn at 15 days intervela.			
9.	weed control a. First weading within one month b. second weeding and earthing up at 55-60 days after sowing.			

$\begin{aligned} & \text { Sl. } \\ & \text { NO. } \end{aligned}$	Areas	Recommendations given through fanm broed casts.	$\frac{\text { Entent }}{\frac{\text { Adopen }}{}}$ (2)	$\begin{aligned} & \frac{\text { adopt }}{\text { Not }} \\ & \text { adopter } \\ & (0) \end{aligned}$
10.	Insects	Cut womas - bic dust $01 \mathrm{~kg} / \mathrm{ropani}$		
		Eorers - Sevin grannul 04-7 grannules/plant		
		ALmy worm - Metecia/1 in 1 lit. of the spray		
11.	Diseases control	Stem rot - Increase spacing, donot increase the dose of fertilizer and provide drainage.		
		Mildew - use resistant variety		
		Cob rot - Diethame-M5 at 16 days intexval.		
12.	Hazvesting	130-140 daya after sowd		
13.	storage	store in air tight drum ard put 1-2 selphos tablet per metric tonn of grain。		
	Total	seores		

13. Listaning Eehaviour (Philip 1984)

Below are given 4 radio programes. How do you listen to them make tick marks in the appropriate colums in each of the 4 programmes.

IMPACT OF FARM BROADCAST ON THE ADOPTION OF AGRICULTURAL iNNOVATIONS BY THE FARMERS OF NUWAKOT DISTRICT OF NEPAL

BY
NARAYAN PRASAD KHANAL

ABSTRACT OF THE THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENT FOR THE DEGREE MASTER OF SCIENCE IN AGRICULTURE
(AGRICULTURAL EXTENSION)
FACULTY OF AGRICULTURE
KERALA AGRICULTURAL UNIVERSITY

```
DEPARTMENT OF AGRICULTURAL EXTENSION
COLLEGE OF AGRICULTURE
VELLAYANI, TRIVANDRUM

\section*{ABSTRACT}

This study titled "Impact of farm broadcast on the edoption of agricultural innovations by the Farmers of Nuwakot District of Napal" was carried out with following objectives.

To assess the level of knowledge of the radio listening farmers in agriculture.
(2) To study the attitude of the farmer listeners towards farm broadcasts.
(3) To measure the extent of adoption on recomendations given through farm broadcasts.
(4) To analyse the listening behaviour of the famers with respect to personal characteristics.

The selected characteristics were age, education, farm size, acientific orientation, innovation proneness, social participation, radio ownership, radio accessibility and Ilstening bohaviour.

The available measurement techniques and scoring sygtems were used for independent variables such as education and social participation (Trivedi-1963), scientific orientacion (Supe-1969), innovation proneness (Moulik-1965). Age was measured in terms of number of years the respondent
had completed, and number of ropanies cultivated was taken as the measure of farm size. Radio ownership was measured In terms of possession of number of radio receiving set and radio accessibllity was measured in terms of availability of radio receiving set within a radius of one kilometer from respondents' house, sub centre contact in terms of number of visit to sub-centre for technical advice and inouts. Listening behaviour was measured in terms of regularity, intensity, duration and purpose of listening.

Instruments measuring attitude scale developed by Chandrakandan (1982) was used. For the measurement of level of knowledge a test including twenty items was developed. based on difficulty and discrimination indices. Extent of adoption was measured with thirtesn recomended practices for maize cultivation.

Data was collected from 75 11steners and 75 nonlisteners using a pretested valid interview scheduie. Data was statistically analysed using appropriate parametric techriques.

The sillient findings of this gtudy are the following.

Knowledge, attitude and exten of adoption of listenerg were significantly higher than that of nonlisteners. Listeners differed with non-listeners with
respect to age, education, farm size, sub-centra contact. scientific orientation, innovation proneness except sceial participation. Radio omers diffared with radio accessors In age, education, inncvation pronoress and listening behaviour but no difference was noticed botween them with their fam size, submentre contact, scientific orientation and pocial participation. Knowledge and attitude and extont of adoption of listoners (ho) were significantiy correlated with highest correlation value and influencod with maximam positive direct effect by innovation pronenoss and social participation respectivaly. While in case of ilateners (RA) knowledge \& attitude and extont of adoption were influenced with maximum direct affect and highest correlation value with scientific orientation and fam aize respectively.

In mon-11stonors education, innovation pronaneas and scientific orientation had influenced on knowledge, attitude and extont of edoption respectively with a highest significe ant corcelation value and masimum positivo airect effect.
"Wha and Buahiama" programe was the most prefered programe by almost all tho respondents in tome of their listoning bohaviour as compared to miscuseion" programo and no respondonts were found to 11 sten the "hagaaine" and "Cuestion-Answer" programmes.```

