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INTRODUCTION



INTRODUCTION

Sugarcane is an important cash crop of India. It 
occupies about an area of 9800 hectares in Kerala with a 
cane production of 461000 tonnes per year. The complex 
factors governing sugar production are mainly the area 
under the crop, varieties, yield, recovery percentage, 
climate* pest-disease attack etc. A knowledge of the 
nature and magnitude of genetic diversity in morpholo­
gical and quality traits is important for careful selec­
tion of parents for better production. Correlation 
studies will help to got a Icnowledge of association among 
various traits of the crop.

Multivariate statistical methods are useful in 
plant breeding programmes to explain the influence of 
various characters on the phenomenon under study, When 
multi variables are measured fran each unit the analysis 
is collectively made through this method. The multi­
variate analysis of dispersion is helpful to find the 
variation among a number of variables taken together.

Mahalanobi* g d statistic is a measure of group 
distance based on multiple characters. The diverse geno­
types for hybridisation purposes are identified by this 
method. The genotypes within a cluster are less diver­
gent than those in other clusters, clusters separated
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by the largest statistical distance show the maximum 
divergence.

Factor analysis is a multivariate analysis used to 
explain the dependence structure of a set of variables 
interxns of certain Gomroon factors* The common factors 
generate covariances among the observable response's. In 
factor analysis a hypothesis about the covorlanca-eorre- 
lation structure helps to identify fundamental and 
meaningful dimensions of a multivariate domain* The 
common factors are necessary to account for the inter­
correlation among the variables, a unique factor repre­
senting that factor of a variable not ascribabie to its 
correlations with other variables in the set* Maximum 
likelihood method is found to be the most efficient method 
of extracting factors, though principal factor analysis 
is commonly used. Maximum likelihood method also provides 
tests of significance for the determination of the adequate 
nuubar of common factors. The present study is conducted 
with the following objectives3 . •

1* To identify the number of factors responsible for 
genetic divergence In sugarcane by. applying factor 
analysis method.
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2* Comparison of the number of factors of divergenco
obtained by principal factor analysis and factor analy­
sis by maximum likelihood method.

' ' ' , ' ■ ■ • . f 3, To group tho different clones of sugarcano by D -analy­
sis*
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REVIEW OF LITERATURE

Multivariate statistical analysis is very useful 
in biological research to explain the influence of various 
factors on th© phenomenon under study. Genetic variability 
is of considerable importance in any plant breading progra­
mme for crop iiqprovament, in plant breeding trials, os a 
largo msaber of variables ere involved* effective breeding 
calls for the knowledge of genetic variability among 
parents with regard to those characters which are sought 
to bo improved. Genetic divergence among parents is impor­
tant because s cross involving genetically diverse parents 
is likely to produce high hotorotie effect and also more 
variability could be expected in the segregating genera­
tions, In such situation* factor analytic methods will 
give an insight into the fewer causal influences respon­
sible for differentiation among genotypes or populations*

2,1 Theoretical studios 

2,1*1 Analysis of dispersion

The multivariate analysis of variance or MANOVA 
began with the derivation of the simultaneous sampling 
distribution of the variances and covariances in samples 
from a multivariate normal population (wishart, 1928).



Hotelling (1931) found the distribution of a random
O *variable T** which is the multivariate extension of student's 

t distribution In a multivariate normal population,

Wilks (1932) extended the test based on T2 stati­
stic known as Wilk's lambda criterion,

Bartlett (193*0 applied It for testing significance 
of treatments with regal'd to two variables in a varietal 
trial and indicated its general use in multivariate tests 
of significance, Wilks (1935) and Hotelling (1935) found 
it useful for testing the independence of several groups 
of varlates.

Bartlett (19^7) approximated the distribution of 
lambda statistic to a chi-square,

2,1,2 B2-Statlstics

Divergence analysis is performed to identify the 
diverse genotypes for hybridization purposes, clustering 
by D statistics is useful in tills context,

A measure for group distance based on multiple 
characters was given by Mahalanobis (1923).

Mahalanobis (1936) published a paper on 'generalized 
distance'» which has become the standard measure of dis­
tance between two populations, when all the observed
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characters are quantitative*

Reo (1948) in his classic work, attempted to gene- 
rails© the D statistic*

Rao (1952) described Tocher*s method of forming the 
clusters*

Sveritt (1979) discussed in detail the unresolved 
problems of cluster analysis*

Many methods for clustering objects into groups 
were suisnarised by Everett in I960*

Arunachalam (1981) made an exposition of the theo­
retical concepts behind the genetic distance.

Krzanowskl (1983) derived a unique measure of dis­
tance between populations on the basis of a mixed data - a 
mixture of quantitative and categorised data*

2*1.3 Factor analysis

The method of factor analysis is widely used as an 
exploratory tool to reduce the dimensionality of multi­
variate data. Factor analysis can explain tho causative 
forces responsible for inter and intra-spccific differen­
tiation. The method is potent enough to distinguish the 
forces of natural end human selection causing the divergence
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in a particular species.

The theory of factor analysis begins from Spearman's 
two factor theory, which assumes that the inter-relation­
ships of all the variables involved could be accounted 
for by a single underlying general factor and group factors 
which are common to some of the variables but not to all 
of them* In addition to this, a third type factor which 
are peculiar to single variables alone called specific 
factors v/as also differentiated (Spearman, 1904),

Thurston© (1931) generalized Spearman's approach 
to more than one causal factor*

Hoff 's suggestion of insertion of SMC (squared 
multiple correlation) in the principal diagonal of the 
correlation matrix has been largely advocated by Guttman 
(1936) because of the property of SMC that it is the lower 
bound for the comimmality, .

Holzinger and Harman (1941) presented the principal 
factor solution of factor loadings*

Thurstons (1947) traced the objective of the factor
pattern as follows: "The object of a factor problem is

•#

to account for their inter correlations, in terms of a
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email, number o£ derived variables, the smallest possible 
number that Is consistent with acceptable residual errors" •

Kendall <1950) mads a useful distinction between 
dependence and interdependence analysis in multivariate 
analysis* Analysis 6£ dependence is concerned with how a 
certain specified group depend on other and analysis of 
interdependence is concerned with how a group of variables 
are related among themselves. Factor analysis is latter 
type of multivariate analysis* .

Burt <1952) has given © full amount of tests of 
significance in factor analysis developed tmto that time*

ihe computation schemes of various factor analysis 
methods wore provided by Fruchter <1954),

Kao (1955) introduced the concept of *basis* of a
vector space for the characterisation of factor analysis, 
in the first Characterisation duo to him a factor variable 
ersplains as much of variation as possible of the data 
Which leading to principal factor analysis, in second 
characterisation, ho considered the factor variable as 
the one v̂ iicli is predictable from the original measure­
ments with the maximum possible precision, loading to 
canonical factor analysis, For this solution the squared 
canonical correlation between the linear function of
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hypothetical factor variable and the linear function of 
measurable variables is maximised.

Factor analysis as a branch of multivariate analysis 
is very useful in determining the number and nature of 
causative influences responsible for the intor-corrolaticn 
of variables in any population, Essentially, it aims at 
explaining a p x p correlation matrix (p variatec) by­
means of a fewer number k <k p) of meaningful factors 
(Hoxwoll, 1961; ijQwley and Maxwell, 1963),

In the two subsequent papers, Cattail <1965 a and b) 
attempted an excellent nonmathemafcical introduction to 
factor analysis, lie preferred to call the analysis with 
closed model which accounts for all variances of variables 
in terms of what is in the particular sample as component 
analysis and with the open model, which admits, besides 
the ccrremon factors, unexplained specific factors as factor 
analysis. The uses of factor analysis in modern research 
as hypothesis creating and tasting method were also dis­
cussed,

Hcmmavle (1965) in his paper considered the problem 
of computing estimates of factor loadings, specific 
variances, and conmunalitios for a factor analytic model, 
Iterative formulae wore developed to solve the maximum
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likelihood equations and a simple efficient method of its 
implementation on a digital computer was described*

A general description of the concepts, theories and 
technique© of factor analysis has been given, by Herman 
(1967),

Joreskog (1969) gave the relevant results for con­
firmatory factor analysis, where the matrix of factor load­
ings is uniquely identified by priori restrictions (usually 
by setting-particular loadings to zero),

He Donald (1970) made a purely1 theoretical compa­
rison among the three factor score construction methods 
namely principal factor analysis, canonical factor analysis 
and alpha factor analysis. According to him, in choosing 
a factor model, there are in fact, at least three separate 
choices to be made which are relatively independent. The 
first is the choice of basis in common factor space end 
it is the clearest defining characteristic of the three 
systems discussed. The second is the choice of an itera­
tive algorithm for the determination of communal!tics/ 
uniquenesses. The third is the decision rule for the 
number of common factor©.

joreskog (1971) has given estimation procedures 
for factor models involving several populations.
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Joreakog end Goldbergor £1972) havo dovQlopad a 
generalised leaat-squaros procedure. The estimates are 
scale free and aoymptotically equivalent to the maximum 
livelihood estimates when the distribution is multivariate 
normal.

A non-motric approach to factor analysis has been 
considered by Kruskal and Shepard (1974). Although this 
technique has some attractive theoretical properties, it 
appears to ba very sensitive to random variation in the 
date.

Swain (1975) considered a class of asymptotically 
efficient estimators including both generalised lanot 
square and maximum likelihood as special cases end derived 
their large-sample properties*

Joreskog (1977) presents a general, oll-oncoinpaoing 
series of methods for orthogonal factor analysis by the 
least squares and maximum likelihood methods. Many varia­
bles in the social sciences involve latent and structural 
variables and Joroskog (1977) developed estimation proce­
dures for several ouch methods, working blractly from the 
covariance matrix.

A few of the many methods developed for factor 
extraction aro centroid method (Thurctones, 1947), principal
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factor method (Karl Pa arson, 1901)* maximum likelihood 
method (bawley, 1940) etc* Hero wo era considering prin­
cipal factor and maximum-1lkelihood methods*

2.1*3.1 Principal Factor Method (PF method)

The literature on factor analysis contain a number 
of alternative methods and procedures for computation*
Among these, principal factor method has several attrac­
tive features* Each factor extracts maximum amount of 
variance and gives the smallest possible residuals* How­
ever* this method is preferred in the present study mainly 
owing to computational facilities*

Hotelling (1933 a) developed the principal axes 
method which provides an optimal solution at the suggestion 
of Kelley (1935)*

Hotelling (1933 b) suggested the use of this method 
with either unities in the principal diagonal* The result­
ing factors are called "principal components” and are used 
to reproduce the score matrix rather than the correlation 
matrix* The numbar of principal components extracted is 
equal to the number of variables in the study.

Hotelling (1935) developed an iterative method of 
obtaining the loadings which can be carried to any degrees 
of accuracy.
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Principal component analysis is sometimes modified 
by the insertion of communal 1 ties in the diagonal of the 
correlation matrix and Rao (195S) called this method as 
principal factor analysis* .

Harman (1967) exhibited an outline form of the 
numerical calculations of the method with an illustrative 
example. The first requirement in applying the principal 
factor method is to determine seme suitable estimates of 
communality* According to him PF method can bo considered 
as an excellent reduction of the correlation matrix which 
provides a basis for rotation to sane other form of solu­
tion. The method also has the advantage of giving a 
mathematically unique solution for a given correlation 
matrix.

Schilderinck (1976) has given a complete picture 
of the geometric and algebraic approaches of principal 
factor analysis.

2*1*3.2 Maximum—hikelihood Method (ML method)

The distinction between the solutions obtained by 
using the principal factor method and maximum likelihood 
method is that former corresponds to a priori choice of 
caumunaliti.es and the latter, the numbar of cartnon factors. 
The ML solution is based on fundamental statistical
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considerations* it considers explicitly the differences 
between the correlations among the observed variables 
and the hypothetical values in the universe from vihich 
they ware sampled*

The efforts to provide a sound statistical basis 
for .factor analysis were made first by Lawloy (1940, 1942) 
who suggested the use of “meodLmun likelihood method", due 
to Fisher (1922# 1925), in order to estimate the universe 
values of tho factor loadings from the given empirical 
data* Lawley1© ML method is possible only when the variatos 
are normally distributed* It requires a hypothesis regard­
ing the number of common factors*

Lawloy (1940) and Reo (1952) had shown that “ML 
solution" goes to and fro botween coomunalities and number 
of factors until it hits on the combination Which yields 
the smallest residual* .

Kaiser (1960) recommended (after considering stati­
stical significance, algebraically necessary conditions) 
the number of common factors as the number of oigen values 
greater than or equal to one in the correlation matrix.
He found this number to bo about one-sixth or one-third 
of the total number of variables. The expression of ML 
method in factor analysis becomes more meaningful and 
clear with this foundation*



15

A moro condensed derivation of ML method ware 
appeared in a book by Laviey and Maxwell (1963)#

Hssxnerlo (1965) found that MaoJ g procedure convargos 
more rapidly than Lavley* s procedure, Hemmorle (1965) in 
his paper considered the problem of computing estimates of 
factor loadings, specific variances and communallties for 
a factor analysis modal,, Iterative formulae wore developed 
to solve the ML oquations and a simple and efficient method 
of implementation of this method on a digital computer was 
developed by him.

Too ML procedure remained impractical for all but 
for the smallest problems until the worJe of Jorcskog (1967, 
1969), as the process converge very slowly.

In Joroshog's (1967) ML method ho proceeds syste­
matically, fitting one, two, factors and testing at
each stage by a chi-square toot to see whether further 
factors are required. It also carries a vcrimax rotation 
at each stage, Ho also pro son to an example to compare the 
ML factor estimates with those given by principal compo­
nents.

Kendall at al. (1983) reported that the ML solution 
remain ecale-freo if restrictions are imposed upon the 
paramo tors.



2.1.3.3 Factor rotation

Kaiser (1956) proposed the 1 varimax' method as a 
modification of the quartiman method which nearly appro­
ximates simple structure, Ha found that a variable with 
ccmmunalitiGe twico that of another will influence the 
rotations by four times as much,

Ac a last stop in factor analysis Cattail (1965 a) 
explained the rotational technique like 1G Simple struc­
ture and 2, Conf actor rotation. 4 in simplo structure each 
factor affects only a few variables. But in conf actor 
rotation real factor does happen to operate on all or most 
of the variables in the sample.

Cattoll and Khanna (1977) described different 
approaches to factor rotation in which ho Introduced one 
kind of rotation criterion ie, confactor rotation* v&iich 
arises when a second factorisation on the same variables 
with another group is involved,

2.2 Applied Studies

t Lawloy (1943) applied the ML method to factor analy­
sis of data collected for rasearch in education. This is 
a satisfactory method and deciding the number of factors 
required to account for the scores obtained whan the number 
of individuals tested is reasonably large. In this case
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two general factors are needed to explain eight tests,

Murty and Qudri (1966) studied ganatic divergence
In a collection of forty self-compatible types of Brassica

2campestrics varieties using Mahalanobls D statistic. The 
forty varieties were grouped into nine clusters.

Arunachalam and Jawahar (1967) studied the diversity
in a population consisting of eighty genetic stocks of
sorghum from 16 countries utilising ten characters by

omultivariate analysis using D -statistic. The population 
was divided into three physiological groups.

Murty and Arunachalam (1967) have conducted a multi­
variate analysis of genetic divergence in the genus Sorghum 
(wild and cultivated types) using quantitative characters 
related to fitness under natural and human selection for 
the diversity found in this genus. The factors were 
obtained by the centroid method. Factor analysis revealed 
the adequacy of the three factors for differentiation.

Singh and Gupta (1968) assessed genetic divergence, 
using Mahalanobls D statistic for yield and its components 
in thirty three strains of upland cotton evolved from seven 
diverse crosses. The thirty three strains were grouped 
into nine clusters.
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Singh end 3ains (1968) estimated ganotic divergence
in tvjonty vorictios o£ upland cotton using Mahalanobis ■
2D statistic. The varieties were grouped into five clu­

sters,.

S’netty (1969) determined the factors affecting the 
use of fertilizers among the farmers by using principal 
component method of factor analysis. The study revealed 
that the first four factors are sufficient for the expla­
nation of the observed inter—farm variations in the use of 
fertilisers.

Ram and Panvar (1970) used Mahalanobis D and cano­
nical analysis to assess the nature of divergence and its 
relationship with the components of genetic variation in 
rice for four characters. The first two canonical roots 
accounts for 45 per cent of the total variability. .

Gupta and 2ingh (1970) studied genetic divergence
for yield and its components in green gram using Mahalanobis 
2D technique. The varieties differed significantly for the

nine characters considered. The 36 strains ware grouped in
?10 clusters depending on similarities of their D values.

Upadhyay and Mur thy (1970) estimated genetic diver­
gence in seventy varieties of pearl millet using Mahalanobis 
2D statistic.



teehndiratta et al. (1971) studied genetic divergence
2in thirty varieties of sorghum using Mahalanobis D -stati­

stics* The varieties were grouped into seven clusters.

Walton (1972) used factor analysis in identifying 
the morphological characters related to yield in spring
wheats.

Singh (1973) used centroid method of factor analysis 
in upland cotton to study the evolutionary pattern of this 
often cross pollinated crop. Thirteen characters wore 
included in the study* The first three factors accounted 
for 75 per cent or more of the total conrounolity.

Abraham and Hoobakht (1974) applied the technique 
of factor analysis to extract basis factors underlying 
the observed soil variables. Scores based on four under­
lying factors could be used for comparison of inter soil 
variables*

Chaudhary and Singh (1975) estimated genetic diver­
gence in sixty four barley varieties using Mahalanobis 
statistic. The varieties were grouped into ton clusters.

Peter and Rai (1976) studied genetic divergence 
in twenty five varieties of tomato. The study revealed
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that there is no apparent parallelism between genetic .and 
geographic divergence. The component characters loculoo 
per fruit and plant height were found to be important for 
the oppression of genetic divergence,

Martin and Saves (1977) adapted the analysis of 
covariance structures to the simultaneous majtitoisn likeli­
hood estimation of gsnotlcal and environmental factor 
loadings end specific variances. The goodness of fit is 
tested by chl«*8quaro and standard errors of parameter 
estimates can to obtained,

Nair end Gupta (1977) assessed the nature and magni­
tude of genetic diversity of 32 varieties of oats by multi-

2veriate analysis using D statistics. The 32 varieties 
could ho clustered into fourteen groups. Out of these* 
five clusters were found to be more divergent than the 
others,

Denis and Adams (1978) performed a principal factor 
analysis on 22 morphological and yield-determining traits 
of 16 cultivaro and strains of dry beans* There were 
at least two or three principal factors to be examined 
for biological meaning and from which to seek Insight into 
the basic structural design of bean plants,

Gaur et al, (1978) studied genetic divergence in 
potato. Sixty seven potato varieties were grouped in IS



clusters on the basis of D values. The characters least 
influenced by the selection were mainly responsible for 
adding divergence to the population.

Tikka and Asawa (1978) used correlation in 28 geno­
types of lentil for factor analysis through the principal 
component method as suggested by Herman. More than 90 per 
cent of the variability tsaa extracted by two factors, 
within each factor* traits were ranked according to the 
relative magnitude of factor loadings.

Kutigar and Singh <i979) measured the nature and
- ' 2 magnitude of genetic diversity using Mahalanobis D -stati­

stic for a set of eight characters related to yield and fit­
ness in forty indigenous end exotic strains of chickpea.
The population was grouped into ton different clusters.

Dixit (1980) conducted "a study on genetic divergence
for yield and its components in lentil using Mahalanobis d
technique. The 21 varieties ware grouped into eight clusters 

2depending on B estimates.

Sun&aram at al« (1980) used centroid method of 
factor analysis in cowpoa to study its evolutionary pattern* 
The analysis divided the nine characters into three groups 
of factors which accounted for 93 per cent of total varia­
tion.

2i

2



, Singh ot al. (1930) studied genetic divergence in.'
o30 varieties of tomato using Mahalanobis D technique for 

yield and its components* The varieties were grouped in 
eight clusters*

Savant et al. (1932) utilised phenotypic correla­
tions among seven traits in 90 diversified strains of 
triticale for factor analysis using principal component 
method* The factor analysis grouped the seven variables 
into two main factors which together accounted for about 
46 per cent of total diversity

Singh et al* (1982) estimated genetic divergence .
among 48 exotic and 27 indigenous strains of chickpea

2using Mahalanobis D statistic and 14 homogeneous genetic 
groups were formed.

Jatasra and Psrcda (1983) studied genotic divergence 
in 28 hybrids of wheat using Mahalanobis D2 statistic* All 
the hybrids got grouped into nine clusters.

Kendall et al* (1983) compared the Mi. factor esti­
mates with those given by principal components by applying 
it to fifteen characteristics of 48 applicants for a post* ,

Anand and Rawat (1984) studied genetic divergence
in fifty varieties of brown mustard using Mahalanobis 
2D -statistic* The varieties were grouped into nine clu­

sters.
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Kukadia et al, (1934) conducted a study to determine 
the* Importance of various traits for yield improvement in 
forage sorghum* Genotypic correlations were* subjected to 
factor analysis through the principal component method* 
Factors accounting for at least 10 par cent variability 
were retained and arranged in order of variance*

Singh and Gill (1984) assessed genetic divergence
among sixty two varieties of upland cotton using Mahalanobis 

2D statistic. The varieties were grouped into twelve clu­
sters.

Bartual et ©1. (1985) used factor analysis* principal 
component analysis and cluster analysis to identify sets 
of varieties better adaptable to the specific environmental 
conditions. Results obtained from ML factor analysis and 
principal component analysis were found to be similar.

Dobhal and Harihar Ram (1985) estimated genetic
divergence in thirty two varieties of pea using Mahalanobis 
2D -statistic, Tha varieties were grouped into eleven 

clusters.

Jindal and Gupta (1985) studied genetic divergence
in thirty nine strains of fodder cowpea using Mahalanobis 
2D -statistic. The strains were grouped into five clusters.
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On the basis, of multivariate analysis* Valsalafcumeri 
et al* (19B5) grouped. 62 culfcivars of banana into 8 clusters 
considering 22 characters simultaneously* The characters 
pulp/peel ratio on volune basis followed by weight of 
fruit contributed the masdxwsn towards divergence*

Morey and George (1987) studied genetic divergence
2In 30 culinary varieties of banana by using D analysis

and canonical analysis. The varieties were grouped into
2twelve clusters U3ing d analysis.

Singh et al. (1981) conducted a study on the selec­
tion parameters in sugarcane. In 48 varieties of sugarcane 
there was a wide range of phenotypic variation for six of 
the eight traits studied* the exceptions being stallc weight 
and top weight. The phenotypic coefficient of variation 
%/ab higher than the genotypic coefficient of variation.

suteumaron et al* (1982) conducted a study to esti­
mate the loss in weight and recovery of sugar in the lodged 
crop of sugarcane* The length of canes* number of mill able 
canes* weight and recovery of sugar were found to be reduced 
as the canes lodge.

Hair et al. (1982) conducted a study on the perfor­
mance of sugarcane varieties in Kerala*



Punia et al, .(1983) studied genetic divergence in
2sugarcane using MahalenoMa D technique and showed that

genetic divergeiK© to be high for all the twslv© characters
studied in 41 genotypes of sugarcane* The 41 genotypes

2were grouped into 10 clusters depending upon D estimates*

singh et al* (1983) conducted a study on variability 
for yield and quality in sugarcane and indicated a wide 
rang© of variability for number o£ tillers, number of 
millable canes, sucrose percentage in juice and cane yield* 
The number of tillers and number of ndllabla canes were 
positively and significantly correlated with cane yield*

Gill ot al* (1983) conducted a character association 
analysis in 28 foreign varieties and two Indian varieties 
of sugarcane* . The study revealed that percentage bonsaar- 
cial can© sugar had a positive correlation with cane yield, 
juice purity, sucrose percentage and number of millable 
canes*

Uageswara Rao et al, (1983) studied ganetic varia­
bility end Character associations in 19 crosses of sugar­
cane progenies* Variance was high for stalk length While 
coefficient of variation was higher for clirro? weight end 
millable sfcalks/clisnp.



Punla et al* (1983) conducted correlation and. path 
analysis on 41 genotypes of sugarcane, Cana yield/clump 
was significantly associated with the number of tillers/ 
clump* the number of millable canee/clump, cane thickness 
and cane weight.
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.. '• JMATERIALS AND METHODS \  ^

4/fiRA^V
3.1 Materials

The morphological and quality traits In the material 
used for the study consists of 48 clones of sugarcane 
(Eacharm offlelnarum t,) collected from the germplasm 
maintained at the Sugarcane Research station, Thiruvalla,
The clones were planted in a randomised block design with 
thrae replications, during January 1981. This experiment 
was the project work of sreekumar (1986) for his Ph.D. 
programme* Data on the following characters ware collected 
from the plant crop.

Germination counts The percentage of sprouts in each 
plot on the 45th day, ,

shoot counts The number of shoots per plot on the 
100th day.

1*2 m one litre of juice was taken and the brix read­
ing recorded using a standard brix spindle. This was 
estimated at the 12th month.

»4t Pol percentages Estimated lay Horner9o dry lead method.

Purity percentages Purity of the juice was expressed 
as the percentage of pol to brix at the 12th month.
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Xg Number of millable canes: Number of fully mature,
healthy canes per plot at the time of harvest#

Ky Juiciness: estimated at the 12th month# A sample of
two healthy canes was cut from each plot# crushed in a 
power crusher and the juice extracted. Juiciness was 
estimated as the volume of juice (ml) obtained from 
one Kilogram of cane#

Xq Length of intemodo: Mean length of the middle most
, intornode, from the randan sample of 5 canes.

Xg Girth of cane* Mean girth of the middle most intemodo 
from the random sample of 5 canes#

Number of intornodes: Mean number of internodes per
cane from the random sample of S cane3.

weight of cane: Moan weight of cane from a sample of
5 canes selected at random from each plot*

cane: weight of mi 11 able canes per plot at
the 12th month.

Length of cane* Mean length of cane from the random 
Sample of 5 canes.

Commercial cane sugar percentage* C.C.S. was determined 
as per the following formula suggested by Mathur# at 
the 12th month.
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c.c.s.
where B 

S 
P

S - (]0.4 (B-S)l] F 
Brix
Pol percentage
0*73 - Factor relative to fibre percen­

tage of cane

Yield of sugars Sugar yield per hectare was calculated 
by multiplying C.C.S, percentage by cane yield per hec­
tare and dividing by 100.

* i

The varieties taken for the study are listed in Table 3*1.1. 

Table 3.1*1 Sugarcane varieties taken for the study

Code
Number

Name of 
variety

Code
Number

Name of 
variety

Code
Number

Name of . 
variety

1 Coc.774 17 Coc.777 33 Co.7704
2 F.l-2 18 S—105 34 CoA.7601
3 T.67172 19 S—33 35 Co.62198
4 Co.658 20 M.S.6847 36 Co.62101
5 Co.62174 21 Co.740 37 Co.6806
6 Co.997 22 Xc.225 38 Coc.778
7 , Co.6807 23 Co.6907 39 B. 37172
8 Co.1340 . 24 Co.6304 40 Co,1305
9 Co.1307 25 CoA.7602 41 Co.785

10 Co.7717 26 S—99 42 Co.453
11 Co.62175 27 Coc.775 43 Co m .7114
12 S—87 . 28 KHS 3296 44 S—77
13 Co.419 29 Coc,671 45 Co.995
14 Coc.779 30 Coc.771 46 Co.449
15 Co.7219 31 Coc.773 47 CoM.7125



3.2 Methodology

3,2*1 Structure of multivariate observations

Multivariate analysis is concerned with analysing 
multiple measurements that have been made on one or several 
samples of individuals, and as ouch it deals with the 
jointness of p measures on n subjects.

The mathematical model on which most of tho multi­
variate procedures are based is on the assumption of multi­
variate normal distribution (m*n,d.)* This assumption of 
m.n.d. for multiple measures can be justified by the sarrea 
central limit theorem argument that leads to tho assumption 
of normality for a univariate measurement* "The multi* 
varieto normal distribution often occurs because the 
multiple measurements are sums of small independent 
effects*1 (Anderson, 1958)*

Measurements on biometrical characters for n varie­
ties replicated g times were denoted by whore 
(i 10 1|2| **«• ps j o 1,2, gs k ® 1,2, •••* ri)*
Suppose til© random variables x^ of interest have a multi­
variate normal distribution with mean ^pxl *= ( ^  ^  ^p )
and covariance matrix ^  PKP = ( qr± j). if the measurements 
of interest are in widely different units, a more accurate 
picture of dependence pattern be obtained by standardising



variable as ® Ki — ^i» i ® 1#2# .... p. Then analysis
' tTi

of the dependence structure of Z. 2 which is given<!r
by the correlation matrix of is done. Thus the
observed Correlation among variables constitute the original 
data.

3.2*2 Preliminary statistical analysis

The data were subjected to multivariate analysis of 
a randomised block design with the AKOVA model as

x
th

ijk * Hi + 'kLj * bik + Qi jk* 1 ra 1#2# **'* p 
where [Â  is the general mean* is the of feet of j

treatment* b ^  is the k block effect and ©ijj. is the 

error component, with respect to the i ^  character and 

eijk ar$ normally distributed with mean aero end constant 
variance*

The least square estimates of the constants of the 
model are



Table 3.2,1 Af-!OVA for RSD

Source d.£ M.S.

Blocks q-i
Treatments n-i S2
Drror (n-1) (q-l) SnQ

Total nq-i

3,2.3 Analysis of dispersion

Multivariate analysis of variance was first dave- 
loped by wilks (1932 a). Analysis of dispersion is the 
process which involves the technique of analysing the 
variances and covariances of variables in multivariate 
case (Rao* 1952}. The total dispersion ie split up into 
various components as follows.

Table 3.2,2 MANOVA of p variables

Source

Deviation from 
hypothesis
Brror '

Total np-i

The criterion arrived at by Wilks (1932 a) through the 
generalised likelihood ratio principle is given byA « \ w(

1 i» b )

d.f. Dispersion matrix

n-1 b

n (p-1) n
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Where w is the within dispersion matrix .
. . ,B is the between dispersion matrix

The statistic used for testing the homogeneity of treatment 
means for all the characters taken together Is given by

V o "mlogQ A

where V is distributed as X  with (n«*l) p degrees of 
freedom. end m » nq—t + (?>vn) (Bartlett* 1947).

3.2*4 Estimation of correlation matrix

The phenotypicc environment and genotypic correla­
tions were estimated from the following analysis of variance— 
covariance of the data.

Table 3.2*3 Analysis of covariance of RBD

Source d.f ^3(xi) HS(Xj) MSP (XjXy

Replication q-i
Treatment n-l -Hsvi
Error (q-l) (n-l) MSE^ ' MSSj HS3ij
Total qn-1 mspa MSPj HEPij

Phenotypic correlation coefficient

r- « MSPj j
plpj ---^ ------r i t j(MSP^ MSP^P
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The environment correlation coefficient

Genotypic correlation coefficient

MSB .)*2* *

Hie environment correlation matrix was found to be 
appropriate for factor analytical studies as it leads to 
stable factor pattern .(Huralidharan, 1986; Tos P.Mafchow, 
1987)* Phenotypic and genotypic correlation matrices 
failed to give stable factor pattern. So the environment 
correlation matrix was taken here for the present study*

3*2*5 Tp — .analysis

■ A measure for group distance based on multiple 
characters was given by Mahalanobis (1928), with x, x« .*.*if z
Xp as the multiple measurements available as each indivi­
dual and dt, d2, .... dp as x* - x ^  x| - x|^ x* -

respectively, being the difference in the means of two 
populations, Mahalanobis* d -statistics is defined as 
follows*

character in the first

(1)



population and x2 is the mean value of the l^1 character 
in the second population# Here, the bi values are to be 
estimated such that the ratio of variance between the 
populations to the variance within the population is maxi­
mised* In terms of variances and covariances, the Q2 value 
is obtained as follows#

D2 ^vv1  ̂ Cx| - x|) (Xj - Xj) —  (2)

Where, J *  is the inverse of estimated variance covariance 
matrix*

. oEstimation of D values by the formula given in 
equation (2) is very complicated whan the number of charac­
ters being studied bacoraas large* The computation is vary 
much simplified When the characters under study are indepen­
dent and are expressed in terms of their respective standard 
errors* in this case, computation of D value reduces to 
simple summation of the differences in mean values of 
various characters of the two populations ie# d2* There­
fore, first transformed the correlated variables to un­
correlated ones and then worked out the D2 values* Trans­
formation was done by using pivotal condensation method# 
bet Y ^  Yg **** Yp be the transformed variatos* For each 
combination the mean deviation, ie, Y* - Y2 with i « 1,2, 
was computed and the Jp was calculated as sura of the squares 
of these deviations# ie, Y2)2.



3* 2*3*1 Test of. significance of D2 values 
2The D value obtained for. a pair of population was 

taken as the calculated value of X 2 and was tested against 
the tabulated value of X 2 for p degrees of freedom* where p 
is the number of characters considered.

3*2.5*2 Grouping of varieties into various clusters

Tocher method '

The first step in grouping the varieties into dis­
tinct clusters was to arrange the populations in order of 
their relative distances from, each other* The two popula­
tions having smallest distance from each other were con­
sidered first to which a third population having smallest 

2'average D value from the first two populations was added* 
Then the nearest fourth population and so it goos on* At 
certain stago it was felt that after adding a particular 
population* there was abrupt increase in the average d2* 
this population was not added to that cluster* similarly*
a second cluster was formed. The process was continued

/

till all the populations were included into one or the , 
other cluster, .

3*2.6 Factor analysis

Factor analysis is the common tern for a number of 
statistical techniques for the resolution of a set of
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variables in terms of a small mrabar of hypothetical 
variables* called factors# it reduces the multiplicity 
of toots and measures to greater simplicity* The funda­
mental step in the analysis of a body of observed data is 
the formulation of a theoretical statistical model# a 
linear modal is used in order to explain observed phenomena 
in' terms of simple theories#

The basic factor analysis modal can be written in matrix 
notation as

s C3 af + e • (x)

where Z is the p x  1 vector of standardised variables 

A is the p x k matrix of factor coefficients 

f is the k x 1 vector of (k<L. p) canmon factors 

e is the p x 1 vector of specific (unique) factors*
i -

This equation states that the observed variables 
are weighted combinations of the common factors and the

‘ s

unique factors. The consiiGn factors account for the corre­
lations among the variables and the unique factor account 
for the remaining variance including error of that variable* 
The total unit variance of a standardised variable Si is 
made -up of the communality attributable to the common factor 
and the uniqueness, which io the contribution of the unique 
factor (Hannan, 1967)* .
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In factor analysis It is usual to discard the
sample moan vector and to make use of the covariance
matrix or correlation matrix alone# Tho dispersion matrix 
of tho v&niates in 2, is defined as !{ss> and is symmetric 
and positive definite of order p« The assumptions are

E (Fe ) =» 0 -** (S)
E \WW' ) a Ifc — - (3)

It E Cue' ) a op . —  (4)

where op is a diagonal matrix with diagonal elements as gpi

Since E (22 ) «  E (AE *  e) (AF ❖ a)~|
We have R » flX * ep _ — (3)

where H is the correlation matrix

In practice* A and op are unknown parameters which, 
are to be estimated from experimental data# ,.

Principal factor analysis method* centroid method* 
maximum likelihood method* minimum residual method etc* are 
some of the methods for estimating the parameters A and̂ t-* • 
Among these methods .some require estimates of communal!** 
ties while others raquirs estimates of the number of common 
factors*
3.2*6*1, Exploratory versus confirmatory factor analysis

A particular application of factor analysis in 
exploratory or confirmatory according aa the number of 
parameters prespecified In the model equation of factor
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analysis (Joreskog# 1969) , in this study exploratory 
factor analysis Is dona by the principal factor analysis 
and maximum likelihood methods*

3* 2*6* 2 Estimation of communality

Ccmmunality Is the amount of variance of the charac­
ters accounted for by the common factors (Fruchter* 1954)*

There ere various methods of estimating communality. 
But the squared multiple correlation (SMC) of each variable 
with all other variables of the set seems to be the 4 Beat 
Possible* systematic estimate of communality (Guttman, 1956).

The BMC of variable zi is given by zvc±

R2i* 1*2* *•»* (i — l)i (1 + l) * * * * p o

1 - r|j- — W m

11 ■ v̂ iero r is the diagonal element of R “ corresponding to
the variable zi* The SMC has another important property
that it is the lower bound of the caranunality {Harman, 1967)*

The maximum correlations in corresponding row or 
column may also be taken as initial estimates of comsmma- 
llty (Cattell, 1965 a)*

3*2*6*3 Principal factor analysis (PFA)

The application of the principal components to the
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reduced correlation matrix with estimates o£ ccsnmunolities 
in the diagonal Instead of unity leads to the principal 
factor analysis. This method yields a mathematically 
unique solution of component correlations.

From the classical factor analysis modal (1) tho 
relevant portion of tl*3 determination of tho cairoon factor

i '

coefficients may bo

z - A,F   (7)

o r Zj -  h l  F j + F2 4 . . . .  4 Pfc

     (0)

“p " apl P1 + V  p2 + *” • + eplc \

The sum of squares of factor coefficients gives the 
communality of a particular variable while indicates 
the contribution of the factor Fm to tho cocnmunality of

The principal factor method involves the selection of 
the first factor coefficients so as to make tho sum of 
the contribution of that factor to tho total caranunallty 
a maximum.

2 2 io„ a .+ •><•. * + — —  (9)

is maximum. Tho coefficients must bo chosen 
such that is maxlmun under conditions
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rij = <i aim ajm ~  tl0) i>:i = la2* p
m«l

where and is the communal ity of the itlri
variable. '

This condition implies that the observed correla­
tions are to be replaced by the reproduced correlations, 
implying the assumption of zero residuals. is maxi­
mised by applying the method of hagrangian multipliers 
under the conditions (10).

«■ * * i

The maximisation of leads to the system of p equations
in p unknown a,*, . , «LJL *
lfl. (Bj-zj, D q 1 = 0 - - - (jl)

*where is the reduced correlation matrix 

ie, t»J = Rx - r-fj

q- is the latent vector corresponding to the latent root A *A * 1.
I a p 2 \ & 0/11 a. 1 and y\ = £_ a * a n d  so on.i-1 A i=i

The linear homogeneous equation system (11) has only a 
non-trivial solution if its determinant is equal to zero.

  (12)ia’ I R1 - 4 ,  I \ = 0

The criterion regarding the number of common factors to 
retain in the factor model is equal to the number of



principal components whosa eigen values are greater than 
ono. The investigator will usually bo satisfied with an 
even smaller number of factors*

Tho characteristic equation (12) gives latent roots 
AI Az “ *' * Alz « 0 ancl fcnG associated orthogonal 
characteristic vectors *, 0 * cjj,

Jacobi method is used to find out the ©igon values 
and vectors of tho matrix A. The idcja of the Jacobi• b 
method is to pick up the largest off-diagonal element of 
the matrix and to annihilate it to aero by applying a 
proper orthogonal transformation* Then the largest remain­
ing off-diagonal element found out and that is annihilated* 
The procedure is repeated until the off-diagonal elements 
were sufficiently close to sera or negligible* iha diagonal 
elements of the matrix is a close approximation to the 
eigen values. If the successive transformation matrices 
were multiplied together * they would produce an accurate 
approximation to tho matrix of eigan vectors (Mulaik, 1972)*

substituting the largest charactoristic root /\ ̂  
in (11) wo got corresponding characteristic vector*

cr̂  E3 £q^i  ̂^£2. *“•* ) — «» €13)

Tho normalised characteristic vector which fulfil tho 
conditions (9) and (10) is
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(14)

thon the first column vector of factor loading matrix is

The second column vector of A is a2 » and so on.
This shows that a2 •. •« are scaled normalised charec-
toristic vectors*

The sum of the squares of factor loadings of the 
variable gives the corresponding communality iet the 
squared factor coefficients can be considered as the par* 
cent age variance components of the corrmon factor (Harman, 
1967), The iteration process is continued with the new 
estimates of cocmunalitios until a specified degree of 
convergence is occurred. The controlling equation to 
ensure that no vital information is lost le

* I

There er© many equivalent matrices which all satisfy

choice among the many possibilities to perform a final 
Matrix A* which contains a suitable Interpretation of the 
relation under research. This results in the rotation of 
the factors of feh© initial matrix A,

(IS)

a AA

* t ra AA * it implies also tho making of a reasonable
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3«2*6*4 Factor rotation

After extraction* the matrix of factor loadings 
are submitted to variraax orthogonal rotation» tho affect 1 
of which ie to accentuate the larger loadings in each 
factor and suppress the minor loading coefficients# and 
in this way improve the opportunity of achieving a mean­
ingful biological interpretation of each factor (Denis and 
Adams* 1978)*

Kaiser's (19S8) varlmax rotation is one in vinlch 
factors are rotated in such a way that the new loadings 
tend bo be either relatively largo or relatively small in 
absolute magnitude compared with the original ones* Tho 
simplicity of a factor in defined as the variance of its 
squared loadings* ' ,

where is tho new factor loading for variable i on 
factor m* where i => 1*2 *••• p and m a 1,2# #«.» &
For entire factor matrix the normalised varimax criterion

(17)
1*1

P2
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rationale for attempting to establish tb© normal v&ritoox 
criterion is that the noma! varimax criterion is that tho 
normal v&rimax solution is invariant under changes in the 
composition of tho variables*

3 *2*6.9 Efesimuta likelihood factor analysis

Alternate methods that circumvent many of tho 
problems of principal factor analysis have been suggested. 
One such method is saximtM-likelihood factor analysis pro­
posed-by Lsswley (19&Q) and later which provides maximum 
likelihood estimates for the factor loadings. Kaximum 
likelihood solution requires an estimate of the number of 
common factors* A ML solution has the sane general appea­
rance as a Is? solution* but it does not have tho latter*s 
property of accounting for a maximum amount of variance 
for a  specified cosher of factors* Also* while a EF solu-. 
tien is unique for a given body of data* a HI solution 
differs from another by a rotation (Harman, 1967)#. ^hen 
estimating a population parameter* if a sufficient stati­
stic exists maximum likelihood estimates are functions 
of sufficient statistic. Moreover, tho ML estimator is 
a consistent estimator as well as frequently a minimum 
variance estimator (Mul&ik* 1972). ‘A well known property 
of HL method of factor analysis is that it is indepen­
dent of the units of measurement in the characters.



'The modal to 'be used in this method is (1). Also x
follows multivariate normal distribution with moan vector
and covariance matrix „ .

The sample covariance matrix of x is denoted by s 
vfcere s * (x^- x) (x̂ .- x)

i

» X x,, 
teal

#iaro Xp is the column vector of random sample of n { p) 
observations of x. k « 1»2« n* m «> n-ls The distri­
bution of s is vishart with m d«F» ie, mS ^  w (£ # m)

KOTO 2(5) *1 £  1

The logarithm o£ the likelihood function for the sample, 
emitting a function of the observations, is given by

' logeL = 3} loge j£_I + tr (S<L_1) '   (19)

This is regarded as a function of h and ̂  « Considering 
these as mathematical variable© we seek values of A and

A a

denoted eventually by A and r\j ’that maximise the value of 
XogeL'* it is more convenient to minimise the function,

<&# "V ) 13 + ftr (s E."*1) - log 111 « p —  (20)
For the purpose of minimising the function P the partial 
derivatives with respect to the ©laments of h and the dia­
gonal elements of vhich is given by
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2 <lrE) I " 1 A ' ' ««- (21)

B F a diaci f r "l ( r ~3) l*1"! ~  (22)
M ,  - ■ ■ ■
are required.

'ip "bEquating and to siero and solving the resulting
a *1 oq>

equations to gat the estimates of h and o)j (Lewicy &

Maxwell, 1971). the estimation equations are independent
of the scale of measurement of the x*o and consequently 
the estimation equations for the a‘s can be expressed in 
terms of the correlations rather than the covariances 
(hewXoy, X970)•

ie, R • M  + ~  (23)
and =j x « diag AA ««• (24)

A R°“̂ A is diagonal •— -* (25)

Premultiplying both ©Idas of (23) by A rp yields
i i i i(A ojj A + 1) A a A r̂ i A R — » (26)

This equation can be simplified to ,

JA » A - A —  (27)

where J ^ A rp “^A — —  (2S)
which is amenable to an iterative method of solution 
(Lawley, 1942)
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Starting with an arbitrary factor matrix 
A - (a^ a,^ • «.. a^} (usually loadings obtained from
principal factor analysis) and corresponding

« I - diag a ;J   (29)
the factor loadings B - Co. b0 b ) are derived“i t —z,
from the iterative process, where

b, = <R - V
a,

b2 . (R ^ ~ la2 ~ *2 " blbj

a2 rV  <R ” s2 ” blbl ^  *a2^ ^

-m *’ (R ^  "lam  ~ ^  bm-lbL l  ___________

4  -1 <R cS--1^  - ^ .........V l bi U  r+ ‘lara>%

2 ■» I - diag B3*

The iterative process is repeated again and again until
the convergence is obtained to the desired degree of accu­
racy o In standardised variates, the convergence criterion 
has usually be taken as 0*005* The final matrix A contains 
the MB estimates of factor loadings for the assumed number 
of common factors. In this iterative method it is tacitly 
assumed that none of the uniquenesses vanish, in seme



cases the maximisation of the likelihood function leads 
to one or more of the variables with uniqueness essen­
tially zero. In the literature of factor analysis this 
type of improper solutions have usually been known as 
Heywood case. Joreskog (1967) has made a provision for 
the Heywood case.

It is assumed that a maximum likelihood factor 
analysis with a certain value of k has been performed
resulting in an improper solution with m ( <̂ -k) of the 
unique variances zero. Assuming that this has occurred 
for the first m variables, the dispersion matrix may be 
partitioned as

m x (k-m), (p-m) x m and (p-m) x (k-m) respectively. Then

(30)

where Matrices s.ll, S12, S21 and S2 2 r̂e of orders m x m,

A A A

the estimates A., A^„ and a „„ are defined as
9

(31)

(32)
A

311(1 *12 - 0 --- (33
where T~ is an orthogonal matrix of order m x m that
reduces to diagonal form and A is a diagonal matrix

(33)
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containing latent roots of Tho matrices A ^  and 2
are obtained by applying the maximum livelihood method to 
tho conditional dispersion matrix.

S21 S11 S12 (34)"22 a  22
In the analysis of ^22.1 fĉ e number of varieties is 
decreased by m and also the number of factors is decreased 
by m. Then

11 * w l  A
e n d ^

21
/\
A,221

aro the maximum livelihood estimates o£ A and r\|j ,

3,2.6,5.1 Test of significance for the nuenbar of factors

One of the main advantages of using the maximum 
likelihood method of estimation is that it enables uo to 
test the hypothesis that, for specified K* there are K 
common factors. After obtaining a proper solution the 
hypothesis is tested by

\  m [to-1 - .(2r»5) - 2k
3

p

where -k
A

(Ofj ) -a 1L
i-b j T “ ---!— -

k

2

C ^ >

'ti

\i represents the residual covariance of X^ and
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after eliminating K common factors* The criterion lo
actually a measure of how much the residual covariances
differ from zero. Under for moderately large n* ii,

9 2is vary nearly distributed as X  with d*F* where \  * 
ii «' (pj*k)j ■' '

This exactly imposes an upper limit on m for given p. ie» 
I3ie number of common factors cannot exceed tho largest 
intagos satisfying m <. h < 2pfl - J Sp+1) for a fixed number 
of p variables*

The non significance of X  means that there would 
bo no point in fitting further factors to the data*

Tho computations were carried out on the Visrsa IfcfS 
system in tho Statistics Department of tho KAU*



RESULTS AND DISCUSSION



RESULTS M D  DISCUSSION

The results of the present study are given in 
sections 4*1 to 4 ,3 under the headings
4.1 I’reliminary statistical analysis
4.2 Analysis of dispersion
4.2 rstiBiated correlation matrices

■̂ i4*4 - /ms lysis
4.3 Factor analysis

4.1 Prelitainary statistical analysis

The analysis of variance was dons for each character 
under study. Significant differences were otxjcrvod asong 
the genotypes with respect to each character*, The csaara 
values of the various characters are presented along with 
their test of significance in Tab-le 4.1*1,

4.2 Analysis of dispersion

Multivariate analysis -of variance was performed and 
tho total dispersion matrix was split up into * between1 and 
•within1 dispersion osii'icos and the results are given in 
Appendices I and 11 respectively. Tho valua obtained for 

' Vilk*e lambda statistic was « 4*9 x 10^. So that 
V » 1565.9 which In distributed an a chi-anunro with 703 
degrees of froedon and this was significant at one per ecmt 
level.



Table 4.1.1 Mean values of various characters and their test of significance
with reference to 40 clones of sugarcane

*1 *2 X3 x4 3% *6 *7 *8
1# 45.06 93.33 17.73 14.55 82.26 73.33 444.08 13.01
2. 38.89 74.67 18.99 17.23 90.62 68.00 432.79 11.08
3. 42.90 61.00 14.07 11.47 80.95 70.00 469.91 12.73
4. 53.09 109.33 17.43 15.42 87.86 99.33 443.45 11.50
5. 30.86 49.33 17.20 14.88 86.05 45.67 452.38 10.65
6. 39.20 113.00 20.33 18.63 91.54 99.33 424.38 9.53
7. 37.04 93.33 14.58 11.17 75.75 75.67 450.98 11.72
s* 35.19 96.67 15.65 11.80 75.25 84.00 423.41 12.10
9. 41. 98 75.33 15.13 12.86 64.43 69.33 453.22 13.90

10. 61.42 94.67 14.83 12.01 . 80.76 76.00 458.72 12.98
11. 51.54 89.67 18.53 16.75 90.31 80.67 508.92 11.23
12. 42.59 68.00 19.73 17.64 89.27 59.00 472.71 10.57
13. 49.69 84 *00 17.77 15.50 87.14 73.67 431.62 12.19
14* 45.99 90.00 14.69 11.55 78.50 84.00 490.29 12.51
15. 41.36 78.67 13.71 16*03 85.64 66.33 424.42 12.90
16* 28.70 91.67 15.35 12.53 81.65 66.33 453.96 10.85



*1 X2 5E3

17. 42.90 99.67 17.24
18. 50.31 77.00 16.26
19.,. 34.26 94.00 18,20
20., 39.81 70.33 12.12
21. 52.78 84.00 19.19
22., 47.22 96.33 16.62
23. 44*14 82.33 19,87
24. 47.22 77,33 14.96
25. 39*20 87.00 16.97
26 o 39.81 96.32 19.08
27. 44.14 86.00 16.63
28. 38.27 64.33 18.55
29. 29.01 54.00 19.05
30. 62.35 107.33 17.10
31. 43.21 66.33 17.27
32. 49. 3B 72.67 16.03

X4 5 X6 *8
14.73 85.23 81.67 467.97 12.71
13.37 81.68 66.67 457.64 10.69
16.26 89.13 87.33 402.97 12.31
8.S3 66.05 54.33 438.89 14,32
15.50 80.56 70.67 433.88 11. 90
14.71 37.92 76,33 438.09 11.07
16.43 92.66 79.00 470.17 12.42
11.95 80.04 58.67 429.91 12.49
14,18 83.36 79.33 458.95 15.45
16.79 87.77 82.67 441.14 13.25
14.29 05.01 77.00 377.22 15.79
16*91 91.19 53.67 446*39 10.80
17.85 93.80 46.33 475.40 13.08
14.31 82. SS 95.33 378.43 15.81
15.10 87.34 61.00 415.03 12*48
13.49 64.04 66.67 407.99 12.13

nn



*1 X2 X3 X4 X5 X6 *7 XS
33* 39.51 66.67 20.19 18.62 92.20 59.33 433.55 11.65 .
34. 25.31 46.67 15.26 12.99 84.95 45.00 461.81 12.35
35. 43.83 74.67 16.63 14.37 86.31 61.00 409.18 13.39
36. 28.09 62.67 15.46 12.12 75.34 62.67 447.46 12.51
37. 36*11 95.67 18.03 15.15 84.16 78.33 407.68 12.71
38. 47.22 83.67 13.68 10.99 79.49 60.67 462.42 11.98
39. 50.62 107.33 19.47 17.60 90.27 91.00 434.31 12.02
40. 47.53 76.33 17.12 15.04 87.87 69.67 386eB4 11.37
41. 54.32 100.00 18.74 15.75 84.16 90.67 428.92 16.66
42. 53.40 91.67 13.50 10.30 75.13 69.33 425.61 14.83
43. 50.93 86.33 16.03 13.25 82.13 68*33 382.64 10* 50'
44. 47.53 89.00 17.06 14.72 86*12 71.33 376.84 11. 21
45. 50.00 101.67 17.89 15.46 86*41 96.67 458.33 11.31
46. 45.91 115.67 14.57 11. 44 78.49 102.33 355*04 12.84
47. 35.80 73.00 18.94 16.46 86.86 53.00 454.17 12.10
48. 48.77 96.67 18.09 15.68 86.29 82.00 383.03 11.97

P—values _ *45.01 6.94** 3.66 3.42** 1.91* 4.81** 1.72* 6.89
* Significant at S& level ** significant at 1% level



*9 *10 *11 *12

1. S.85 20.53 1.48 103.17
2. 6.91 24.80 1.36 89.87
3. 7.72 22.33 1.60 104.10
4. 7.41 24.33 1.42 ' 144.97
5. 8.61 22.40 1.43 72.22
6. 6.92 , 24.20 1.07 111.72
7. 7.31 23.67 1.38 ' 108.10
8. 6.94 22.27 1.03 97.61
9. 8.19 23.60 1.64 122.13
10. 8.27 22.53 1.63 111.72
11. 8.82 30.13 ’ 1.86 143.57
12. 8.25 29.47 ' 1.83 1 114.19
13. 8.32 25.13 1.73 ' 133.53
14. 7.99 24.93 ‘ 1.60 ’ 133.12
IS. , 7.45 22.80 1.36 93.98
16. 6.64 19.73 1.06 56.42

*13 *14 . ' X1S
2.43 9.70 8.13
2.75 12.07 ‘ 8.87
2.61 7.61 ' 6.54
2.65 10.67 12.53
2.34 10.19 6.30
2.45 12.81 ' 11.33
2.59 7.16 5.61
2.47 7.49 6.01
3.17 ' 8*71 ‘ 8.83
2.66 7.94 ' 7.24
3.03 11.71 13.58
3.12 12.25 r 11.32
2.83 ’ 10.66 ' 11.36
2.76 7.52 ' 7.98
2,84 10.92 S.30
2.26 8,36 3.82



X9 10
V
"11

17. 7.93 24. 53 1.4-7
18. 8.01 26.73 1.44
19. 6.49 22.33 1.21

20. 9.46 22.80 1.99
21. 7.40 25.00 1.47
22. 7.26 26.20 1.44
23. 7.73 25.80 1.56
24. 7.47 23.40 1.48
25. 7.96 19.53 1.58
26. 8.09 23.73 1.61
27. 7.18 20.47 1.25
28. . 7.98 24.40 1.69
29. 8.19 21.40 1.66

30. 8.11 21.07 1.57
31. 7.64 22.53 1.39
32. 7.78 24.53 1.65

X12 *13 v14 :cis
145.92 2.90 10.02 11.87
101.85 2.76 8.92 7.44
90.86 2.70 11.31 8.23
108.55 2.98 5.18 4.29
107.40 2.7 S 10. 23 8.49
115.71 2.76 10.19 9.77
110.03 2.86 13.03 11.53
83.82 2.64 7.85 5.34

106.87 2.Q4 9.54 Q.23
125.39 2.71 11.59 11.52
94.97 2.87 9.74 7.34
92.13 2.38 II086 8.91
79.99 2.59 12.69 8.21

156.00 3.12 9.63 12.02

81.97 2.72 10.39 G. 83
102.99 2.87 9.11 7.57



J '9
's f 
^10 •'12

V
“ 13

■V

*>- ’ X- r

33. 8 ,95 22.93 1 .74 101.19 2.77 13 .13 10.  G2

. 34. 7 .4 8 22 .73 1.71 70 .82 2 .74 8 ,8 7 5 .16

35. 6 .84 20 .13 1 .41 72,71 2 .42 9 .83 5 .75

36. 7 .49 22,47 1 .45 93 .24 2,65 7 .88 6.09

37. 6 .17 20.47 1 .09 71 .48 2.47 10 .2 2 7 .98

38. 7 .4 9 21 .67 1 .57 103.29 2.53 7 .24 5 .75

39. 5 .98 23 .60 1.01 07 .32 2.69 12 .2 0 10 .75

40. 6 .47 18 .53 0 .9 5 71 .64 2.27 10 .37 7 .43

41. 7 .2 7 22 .40 1 .45 120 .83 3.14 10.  63 12 .79

42. 7 .3 7 19 ,07 1 .4 0 90 .14 % 2 .7 0 6 .58 6.55

43. 7 .8 7 27 .20 1 .63 125.46 3 .16 8,86 10.81

44. 7 .97 21 .07 1 .3 6 108 .39 2 o 24 10 .05 10 .9 5

45. 7 .18 28.27 1 .47 141,04 2 . GO 10 .57 14 .99

46. 5 .65 17 .07 0 .9 0 84.15 2 .47 7 .43 6 .26

47. 7 .9 8 23 ,67 1 .4 7 73 ,7 0 2 .59 11 .29 B. 32

48. 7 .27 1 9 .4 0 1 .36 05 .46 2.39 10,74 9.1C

F—values <r -ft
5.59

■* *
5 .75

i t *
7 .52

* *
7 .19

•it it
4^91

■ft A
3,19

*
4 .49

** Significant at l.i level
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4.3 Estimated correlation matrices

The analysis of covariance was done for all the pairs 
of 15 characters. The phenotypic, genotypic and environment 
correlation coefficients were estimated and are given res­
pectively in Tables 4,3.1, 4.3.2 and 4.3.3.

24.4 D — Analysis

The genetic distances between the populations were 
estimated based on 15 variable dimension and the values 
are presented in Appendix III. Most of these values are 
significant at 5 per cant level.

The populations were arranged in increasing order 
of their relative distances from each other. The forty eight 
varieties were grouped into thirteen clusters. There ware 
fifteen varieties in the first cluster, five in second, nine 
in third, seven in fourth and four varieties In the fifth 
cluster. The varieties Coc.774, Co.997, M.S.6347, Co.740, 
Coc.771, CoA.7601, Co.1305, Co,449 could not ha grouped.
The varieties belonging to different clusters and tho cluster 
means are given in Table 4.4.1. Coc.771 had the maximum
sugar yield (12.02 kg/plot), germination count (62.35), 
length of internode (15,81 cm), cane yield (XSC kg/plot) 
and length of cane (3.12 m). Genotypes of Cluster II 
showed high juiciness (467,70 ml), more number of inter­
nodes (27.05) and sugar yield (12.01 kg/plot). The maximum



T a b le  4 .3 .1  Ph enotyp ic  c o r r e l a t i o n  m a t r ix

X2 X3 X4 X5

r ■

X6 *7 X8 X9 X10 *11 *12 X13 X14

X1

X2

0.5247 -0 .0 4 6 0 -0 .0757 -0 .0731 0.4485 -0 .1 33 2 0.1825 0.0409 0.1683 0.0815 0.5389 0.3208 -0 .0 9 0 6 0.3107

0.0Q17 0.0338 -0 .0 3 8 8 0.8156 -0 .2851 0.0842 -0 .3 55 7 -0 .0113 -0 .3 42 0 0.5011 0.0812 -0 .0004 0.3592

X3 0.9665 0.7471 0.1152 -0 .0 4 8 6 -0 .1 12 2 -0 .0206 0.2309 -0 .0217 0.0605 ' 0.0453 0.9429 0.6872

X4
0.9719- 0.0648 -0 .0 1 1 0 -0 .1426 -0 .0 2 1 0 0.2349 0.0154 0.0414 0.0305 0.9915 0.7111

X5

X6

*7

X8

Xq

-0 .0155 0.0218 -0 .1 74 0 -0 .0 72 6 0.1714 0.0476 -0 .0 2 4 0 -0 .0285 0.89B9 0.6200

-0 .1765 0.0960 -0 .3709 0.0428 -0 .3243 0.5004 0.1327 0.0279 0.3762

-0 .1326 0.2885 0.2931 0.3240 0.0917 0.0720 -0 .0 00 6 0.0645

0,0777 -0 .3631 0.0701 . 0.1059 0.2698 -0 .1 51 2 -0 .0 5 6 9

0.2644 0.6549 0.3092 0.2350 -0 .0 2 1 0 0.1930
y

X10

* ! !

^ 2

X13

0.4609 0.5071

0.3845

0.5658

0.4765

0.2362

0.0291

0.5172

0.2782

0.5538 0.0212

0.0256

0.7077

0.4007

0.7015

CiO



T ab le  4 .3 .2  Gen otyp ic  c o r r e l a t i o n  m atr ix

X2 X3 X4 X5' X6 X7 X8 X9 x io X11 X12 X13 X14 X15

X1
0.4980 -0 .0401 -0 .0 6 5 7 -0 .0329 0.4869 -0 .3019 0.2179 0.0762 0.1413 0.1090 0.5867 0.3651 -0 .1 01 9 0.4193

X2
0.0052 -0 .0 5 3 4 -0 .1692 1.0007 -0 .2 96 5 0.1043 -0 .4527 -0 .1345 -0 .5409 0.4019 -0 .0 6 9 0 -0 .1225 0.2763

X3
0.9928 0.9843 0.1858 0.1711 -0 .3669 -0 .0 4 1 8 0.3644 -0 .1177 0.0447 0.0472 0.9813 0.6125

X4
1.0008 0.1508 0.1947 -0 .3991 -0 .0 1 1 4 0.3711 -0 .0 7 8 0  - 0.0409 0.0333 0.9979 0.6151

X5
0.0941 0.2075 -0 .4 93 2 -0 .0 41 5 0.3822 -0 .1 16 0 -0 .0 0 7 6 -0 .0135 1.0007 0.5876

X6
-0 .3 8 6 4 0.1491 -0 .4 7 0 6 -0 .0223 -0 .5049 0.5380 0.0960 0.1040 0.5229

' -0 .2460 0.7831 0.9259 0.9068 0.4960 0.4219 0.2304 0.5467

X8
0.0505 -0 .5655 0.1377 0.1145 0.4422 -0 .4 1 3 4 -0 .1 6 0 5

X9
0.4150 1.0017 - 0.4696 0.4626 -0 .0 0 0 9 0.3505

^ 0

X11 

Y _

0.5271 0.5591

0.4917

0.5096

0.6166

0.6697

0.3861

-0 .0 41 7

0.0190

0.6826

0.3337

0.811412



T a b le  4 .3 .3  Environment c o r r e l a t i o n  m at r ix

X2 X3 ' X4 X5 X6 X7 X8 X9 X10 ^ 1 X12
V
“ 13 X14 X15

*1
0.5744 -0 .0 52 9 -0 .0 8 7 4 -0 .1 06 7 0.3967 -0 .0556 0.1274 -0 .0095 0.2080 0.0363 0.4676 0.2622 -0 .0 81 5 0.1756

X2 0.1860 0.1460 0.0549 0.5186 -0 .3434 0.0446 -0 .1 88 8 0.2070 0.0703 0.7020 0.3236 0.1464 0.4929

X3 0.9449 0.6505- 0.0413 -0 .1 53 5 0.2187 0.0038 0.0780 0.1102 0.0851 0.0437 0.9140 0.7664

X4 0.0424 -0 .0213 -0 .1 0 2 3 0.1722 -0 .0323 0.0880 0.1401 0.0447 0.0281 0.9872 0.8102

X5 -0 .0853 -0 .0285 0.0393 -0 .1 03 5 0.0491 0.1912 -0 .0 4 2 0 -0 .0409 0.8695 0.6921

X6 -0 .0825 0.0155 -0 .2 32 8 0.1353 -0 .0315 0.4486 0.1800 -0 .0449 0.1978

*7 -0 .0851 0.0358 -0 .0471 -0 .0133 -0 .1711 -0 .1147 -0 .0 9 7 6 -0 .1 84 0

x e 0.1253 -0 .0073 -0 .0695 0.0886 -0 .0024 0.1526 0.0989

X9 0.0300 0.0108 0.0263 -0 .0859 -0 .0429 -0 .0164

X10 0.3419 0.4158 0.6482 0.0842 0.2958

X11 0.1576 0.2506 0.1207 0.1982

X12 0.3726 0.0256 0.5643

*13 0.0068 0.2359

X14 0.8050



Tables 4.4.1 Cluster means■of various clones of sugarcane for genetic divergence

C lu ­ No.
1
Germi­ Shoot S r i x  P o l P u r i t y No. o f J u i c i ­ Len­ G i r t h No. W eigh t Cane L en - C .C .S .  Sugar

s t e r o f C lones n a t io n count % % p e r ­ n u l l a ­ ness gth o f o f o f y i e l d  gth p e r -  y i e l d
num­ c lu ­ count cen ­ b l e (m l ) o f cane i n t e r ­ cane p e r o f c e n -  p e r

b e r s t e r s tage canes i n t e r - (cm) node (k g ) p l o t cane t a g e  p lo t
node
(cm)

(k g ) (m) (k g )

I 15 T . 6 7 U 2 ,  C o .7717. 
C o .419, Coc .779,  
C o .7219. Coc .777 ,  
l c .2 2 5 ,  C o . 6304,
S . 99, Coc .773 ,  
Coc.772, C o . 62198, 
C o .62101, Coc .778,  
S . 77

45.18 83.13 16.27 13.70 83.51 70.18 441.40 12.44 7.71 23.20 1 .52 107.33 2.68 9 .25 8 .19

I I  i 5 C o .668, C o . 62175, 
S . 105, C o . 6907, 
C o .995

4 9 .8 2 ' 92 .0 18 .0 15.89 87.78 84.47 467.70 11.43 7.83 27.05 1.55 128.45 2.82 10.98 12.01

I I I 9 F . l - 2 .  C o .62174, 
0.87 ,  KHS.3296, 
C o c .671, C o .7704, 
C o .785, CoH .7114, 
CoM.7125

40 .02 70.7 18.60 16.51 88.48 60.44 442.11 11.90 8 .0 24.30 1 .50 96.63 2.76 11.44 9 .57

IV 7 C o .6807, C o . 1340, 
C o .527, S . 33.
C o . 6806, B . 37172. 
Co.527-M -10

38.67 96.48 17.05 14.31* 83.21 80.67 422.33 11.95 6.69 21.64 1.16 85.32 2.51 9.64 7 .37

V 4 C o .1307, CoA.7602,  
C o c .775, C o . 453

44.68 85 .0 15.57 12.91 02.00 73.75 428.75 14.99 7.68 20.67 1.47 105.53 2.90 8 .64 7.74

VI 1 C o c .774 ■ 45 .06 98.33 17.73 14.55 82.26 73.33 444.08 13.01 8.85 20.53 1 .48 103.17 2.43 9 .7 8.13

V I I 1 C o .997 39.2 113.0 20.33 18.63 91.54 99.33 424.88 9.53 6.92 24.2 1.07 111.72 2.45 12.81 11.33

V I I I 1 M .S .6847 39.81 70.33 12.12 8.53 66.05 54.33 438.89 14.32 9.46 22.8 1.99 108.55 2.98 5.18 4.29

IX 1 C o .740 52.78 84 .0 19.19 15.50 80.56 70.67 433.88 11.9 7 .4 25.00 1.47 107.4 2.78 10.23 8 .49

X 1 Coc.771 1 62.35 107.33 17,10 14.31 82.55 95.33 378.43 15.81 8.11 21.07 1.57 156.0 3.12 9.63 12.02

XI 1 CoA.7601 25.31 46.67 15.26 12.99 84.95 45 .0 461.81 12.85 7 .48 22.73 1.71 70.82 2.74 8 .87 5.16

X I I 1 C o .1305 47.53 76.33 17.12 15.04 87.87 69.67 386,84 11.87 6.47 18.53 -0 .95 71.64 2.27 10.37 7 .43

X I I I 1 C o . 449 46.91 115.67 14.57 11.44" 7B.49. 102.33 355.04 12.84 5.65 17.87 0 .90 84.15 2.47 7 .43 6.26
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shoot count (115.67) and number of millable canes (102.33) 
was found for Co.449. M.S.6847 had tho maximum girth of 
cana (9.46 cm) and maximum weight of cana (1*99 kg), Co.997 
had the highest values for brix (20.33M), pol <18 *6%),
purity (91.54?;) and c.c.s. (12.81&). The intra and inter

2cluster D - values are given in Table 4.4.2.

Table 4.4.2 Average intra and inter cluster - values

Clusters I II III IV V

I 21.63 38.52 41.09 46.45 38.17
II 21.75 38.79 55.24 60.60

III 37.52 63.89 57.92
IV 24.89 67.35
V 22.87

The genetic divergonca was maximum batmen clusters
IV and V (67.35) followed by III and IV (63.89) and II and
V (60.6). Selecting genotypes from such clusters es parents 
for hybridisation will result in the development of supe­
rior clones with high productivity. Cluster V was quite 
divergent from clusters II, III and TV* Though the varie­
ties Co.997 and Coc.77l were not included In any of the 
clusters, they can be used as parents during crossing 
programmes, since Co.997 end Coc.771 had high gonatic
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divergence and yield components. The magnitude of hete- ' 
rosio is os^pected to be high when crossing tho genotypes 
Co*658* Co*62175* Co,6907, Co.995 of cluster II and 's-87. 
Co.7704, Co,7a5, CoM*7114 of cluster III and Co.1307, ‘ 
CoA,7602 of cluster V.' '

4*5 Factor analysis

- The clusters I, III and IV were taken for factor
analysis and the method was applied for each cluotar sepa­
rately* since the other clusters contained lose number of 
clones* • ' '

4.5.1 Cluster 1

4*5.1.1 Correlation studies . .

The environment correlation matrix of cluster ! is 
given in Table 4*5*1.1* Iho correlations were found to be 
between —0.2925 and 0.9982. The character x^ was signifi­
cantly correlated with x2# x. and :<13 x2
was significantly correlated with all the characters except
X3* X4* X5. *̂ 7* *8 ond *14. ^  correlations of x^ with
x4» x5, x8# x9, :cll, x14 311(5 *15 wore significant, x^ was 
significantly correlated with x3 Xg Xq' Xq x^j and
x15. Significant correlations were found to exist for Xg
with x ^  xQ  ̂ x^4 and x ^  x^ was correlated with

x2 , :<7 and ^ 1 2  30(5 ̂ 7 v/i^n 5Cg and x ^  Tho characters
X3, k 4* *5, x 13, *14 311(2 x15 were found to have significant



T a b le  4 .5 .1 .1  Environment c o r r e l a t i o n  m at r ix  -  C lu s t e r  1

X1 X2

r ■ ■;

X3 X4 X5 X6 X8 X9

oH

'' ^ 1 X12 X13

X2
0.5963

X3
-0 .1092 -0 .0372

X4
-0.1147. -0 .0 37 8 0.9799

x s
-0 .0784 0.0274 0.8386

* *  '
0 .9216

X6 0.3222 0.3549 -0 .0619 -0 .0 6 9 5 0.0336

X7 -0 .0476 -0 .1277 0.0976 0.0693 -0 .0996 -0 .2148

X8
0.1530 0.0254 0.3295 ' 0 .3505 0.34^4 -0 .0051 -0 .1731

-0 .1425 -0 .2 2 9 2 0.3952 0.4025 0.3024 -0 .2 0 3 2 0.1432 0.1377

X10
0.4319

**
0.3218 0.0836 0.1190 0.1732 0.1483 -0 .0 8 9 5 0.2034 0.0428

X11
0.34?*

* *
0.3242 -0 .2 5 3 8 -0 .2 3 2 4 -0 .1566 0.1944 -0 .2 1 7 0 0.0572 -0 .0 92 9

* *
0.2731

^ 2 0.42^4
* *

0.7357 0.1864 0.1537 0.0977
* *

0.3689 -0 .0 5 7 0 0.0937 0.0243 0.4264 0.3304

^13
0.2276 0.2589 -0 .0372 -0 .0 1 9 2 0.0279 0.1629 0.0710

* *
-0 .2925 -0 .1931 0.5507 0.1161 0.1518

X14 -0 .1148 -0 .0374
* *

0.9662 0.9982
**

0.9394 -0 .0 7 1 2 ’ 0.0604
* *

0.3536 0.4012 0.1287
* *

-0 .2241 0.1426 -0 .0 1 3 4

X15 0.1420 0.3727
* *

0.8191 0.8278 0.7530 0.1153 0.0066 0.2553
•»*

0* 3238
* *

0.3459 0.0316
* *

0.6474 0.1371

X14

<Dcn

0.8240

* S i g n i f i c a n t  a t  5% l e v e l * *  S i g n i f i c a n t  a t  1% l e v e l
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correlation with xa while >■ was correlated uith xrt x., x,® <£ 9 3 f  ̂̂
*15, *14 and x^5 Character x ^q was found to have signifi­
cant correlation with x^ x^ x ^  x, a x^3 and x,^ x^
was corrolatod with all tho characters excoot xc x- x~~ 5, 6, 8,
*9* *13 anci *15 *12 si<3nificant corrolatod with x^
x2, XS. "10, X11 and K1S. Correlation o£ ac^ with x ^

Xy and x^q alone wora found to be significant. Character 
x^4 was significantly corrolatod with the characters x^ xA
- ̂ Xg^ x ^  x ^  and x ^  Tho correlations of x^5 witho 9

*G, *7, *11 and x, ̂  were not significant.

4□5.1«2 Principal factor analysis

initially the olgen values and corresponding cigen 
vectors of tho environment correlation matrix was found out 
by Jacobi'g method. 'The latent roots of the matrix are 
given in Table 4.5.1.2.1. The matrix was found to be posi­
tive semidafinita. The first five latent root3 of tho 
matrix was greater then one and they altogether contributed 
about 79.23 per cent to the total variation.

PPA of the environment correlation matrix of order 
15 v?as dona with tho squared multiple correlation coeffi­
cients (SMC) as first estimates of communalitlos and a five 
factor solution was extracted. The number of iterations 
needed for the convergence of communalitics was twenty two* 
with a difference of five units in the third decimal place.
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Table 4.5.1.2.1 Latent roots of the environ­
ment correlation matrix - 
Cluster I

31.
No. Latent roots J?r c?nt c°fribu-tion to variance

1 5.0355 33*5696
2 3.3247 22.1644
3 1.4025 9.3588
4 1.0717 7.1446
S 1,0481 6.9962
6 0.6136 5,4239
7 0.6770 4.5133
3 0.5818 3.8876
9 0.4812 3.2080

10 0,2673 1.7020
11 0.1945 1.2966
12 0.0811 0.5407
13 «0.0177 0.1180
14 0.0035 0.0233
15 0.0000 0.0000
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The principal factor loadings in the 22nd Iteration along 
with commonalities in tho 21st arid 22nd iterations ore 
given in Table 4*5.1.2.2. The loadings in the 22nd Itera­
tion was subjected to varimax rotation to have a more 
meaningful interpretation of tho factors# Tho rotated 
loadings are presented in Table 4.5.1.2#3. Tho important
characters associated with each factor ware isolated in
accordance with the procedure given by Harman <1967).

Pol at 12th month 
Factor I C.c.s. percentage 

Brlx at 12th month 
Sugar yield per plot 
Purity percentage

Factor II Cana yield per plot .
shoot count 
Germination count 
Humber of millablo canes per plot 
Haight of cane

Factor ill Length of cone
Humber of intercedes

Factor IV Length of internode ■
Juiciness at 12th month

Factor V Girth of cane



able 4.5*1.2.2 Principal factor solution in
correlation matrix - Cluster

variable Common factor coefficient!

1
2
3
4
5
6 
7 
0 

9
10

11
12
13
14
15

1 2 3 4

0*0023 0.6459 0.1021 0.USQ
0.1103 0.7959 0.1975 -0.2014
0.9443 —0*1866 -0.0237 —0.0S54
0*9825 -0.1911 -0.0486 -0.0131
0.9045 -0.1068 -0.0436 0.1470
0.0070 0.4402 0.1154 -0.0201
0.021Q -0.1669 —0.2132 -0.2904
0* 3704 0.0148 0.3310 0.4501
0.3862 -0.2409 0.0305 0.0089
0.2531 0.6310 -0.3309 0.4345

-0.1204 0.4683 0.1471 0.1596
0.3306 0.7703 0-27X9 -0.2967
0.0267 0.5030 -0.8364 -0.0405
0.9823 -0.1895 -0.0555 0.0111
0.9129 0.3033 0.0503 -0.1999



tho 22nd iteration for the environment 
I

Estimated communalitv Oriqi—
5 21st ite­

ration

-0.0282 0.4423
0.1272 0.7413
0.0004 0.9344
0.0464 1.0064
0.2714 0.9267
0.2844 0.2384

-0.2966 0.2453
-0.0543 0.4543
-0.3670 0.3430
-0.2825 0.8415
-0.0372 0.2842
-0.1805 0.8973
0.1272 0.9663
0.0604 1.0077

-0.0330 0.9751

22nd Ite- nsl 
ration cortmu—

nality ___________ (SMC)
0.4424 0.5057
0.7414 0.7603
0.9344 1.0003
1.0064 1.0000
0.9267 0.9813
0.2804 0.4634
0.2460 0.4343
0.4531 0.4605
0.3429 0.3364
0.8402 0.6434
0.2643 0.3026
0.8971 0.9398
0.9712 0.6034
1.0077 1.0000
0.9751 0.9757



Table 4,5.1.2.3 Rotated principal factor loadings for the environment corre­
lation matrix - Cluster I

Common factor coefficients
1 2 3 4 - S

1 0.0024 0.6044 -0.1994 0.1912 -0.0282
2 p.1108 0.8387■ -0.0763 -0.0609 0.1272
3 0.9443 -0.1623 0.0785 -0.1008 0.0004
4 ' 0.9825 -0.1895 ‘ 0.0363 -0.0429 0.0464
5 ’ 0.9045 -0.1424 -0.0417 0.1135 ’ 0.2714
6 ' 0.0070 0.4476 -0.0650 0.0535 0.2844
7 0.0210 -0.1677 -0.0302 —0.3586 -0.2966
8 ’ 0.3704 0.03.62 0.1430 0.5396 -0.0543
9 ‘ 0.3862 -0.2127 0.1175 0.0028 ’ -0.3670

10 ’ 0.2531 0.3796 -0.6671 0.3274 —0.2825
-0.1284 0.4482 -0.1041 0.2339 -0.0372

12 0.3306 0.8597 0.0278 -0.1243 -0.1805
13 1 0.0267 0.1853 . -0.9090 -0.3060 0.1272
14 0.9823 —Q.1952 0.0222 -0.0228 0.0604
15 ’ 0.9129 0.3363 -0.0128 -0.1468 -0.0830

Proportionate
variance 0,3309 0.1797 1 0.0919 0.0521 0.0360accounted by 
each factor



4.5.1.3 Maximum Likelihood factor analysis

From the principal factor analysis of tho data it was 
hypothesised that a minimum of five factors would suffice 
to describe tho dependence structure. The ML method was 
applied to extract the factors toy Lav/ley* s iterative scheme 
to got a more meaningful pattern. Tho sequence terminates 
either when a proper acceptable solution has been found 
from tho point of view of goodness of fit or whan tho number 
of factors agree with the given upper bound.

ML estimation of factor loadings with a fivo factor 
model was tried. Forty five Iterations were taken for a 
+0.005 convergence criterion. A test of significance of the 
modal gave a X  value of 36.21 Which was significant, since 
the degrees of freedom for this was forty tha normal test 
criterion J 2 % 2- J 2n-l was applied to test for tho signi­
ficance, where n is the degrees of freedom. So ML solution 
of factor loadings was tried with s six factor model. The 
goodness of fit of this model was tested at 0*01 level and
found that six comaon factors are sufficient to explain the

2dependence structure. ( X 30 « 29,39). Seventy four itera­
tions wore required for the convergence with a +0.005 con­
vergence criterion. Tha initial estimates of factor load­
ings and unique variances obtained from the principal factor 
method of factor analysis are given in Table 4.5.1.3.1, The 
ML solutions in the 73rd end 74th iterations ere summarised



Table 4.5.1.3.1 Initial estimates of factor loadings and corresponding unique variano
for 6 factors of the environment correlation matrix — Cluster I

Factor
1 2 3 4 5 6

—  unique 
variance

1 -0*1143 0.4889 0.0266 •0.1550 -0.0039 0.0031 ' 0.8305
2 -0.0377 0,7765 0.0774 -0.2368 -0.0120 0.2539 0.2690
3 0.9761 —0.0030 -0.0019 0.0015 —0.2177 0.1034 0.0001
4 0*9998 -0.0003 —0.0003 0.0002 -0.0186 •0.0237 0.0002
5 0.9274 0.0156 0.0129 -0.1914 -0.3043 0.3871 0.0001
6 -0.0701 0.3953 0*0007 —0*4944 0.0287 -0.1226 0.4215
7 0.0666 —0.0767 —0.1262 0*5565 -0.1452 -0.3652 0.4904
8 0.3515 ,0.0330 0.3071 —0*0962 0*0623 0.5669 0.5535
9 0*4022 —0.0862 -0.1680 0*3351 -0.0104 0.2858 0.3915

10 : 0.1220 -0.5525 0.3376 -0.0120 0*1670 -0*0358 0.4634
11 -0.J2310 0.4026 0.0775 -0*0652 0*1405 0.0423 0.2472
12 0*1502 0.9327 0.2514 0*0084 -0*1677 —0.2216 0.0001
13 0.0174 . 0.4215 0.3887 0.0079 0.0907 -0,0810 0. 9826
14 0*9991 0*0004 0.0005 —0.0005 0*0415 0.1445 0.0001
15 0.8269 . 0.5309 0.0773 0.0395 0*0465 -0.3772 0.0001

-aco
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in Tables 4»5*1*3,2 and 4.Sol.3*3 respectively* Hie varl- 
raax rotated loadings ere presented in Table 4*5*1.3*4. The 
residual correlation matrix after removal of six factors is 
given in Table 4*5*1.3.5. Tho characters more related with 
each factor are given below.

Factor

Factor II

Pol at 12th month 
C.C.S. percentage 
Brlx at 12th month 
Purity percentage 
sugar yield par plot

Cane yield per plot 
shoot count 
Germination count 
Mo* of mi 11 able canas per plot

Factor III Length of cano
, Number of intornodos .

Factor IV Juiciness at 12th month
Girth of cane

Factor v Length of intemodo

Factor VI height of cans

j.n both PFA and ML methods, factor I was found to ba 
highly correlated with pol at 12th month, C.C.S* percentage.



Table 4.5*1,3.2 Haxlraun likelihood estimates of factor loadings and unique variances
in the 73rd iteration — Cluster 1

Variable Factor loadings
1 2 3 4' 5 6 ” variancs

1 _  _ -0.1147 0.4351 ' 0.1776 -0.1397 -0.0791 0.0509 0.7376
2 ̂ ’ -0.0378 0.7422 0.1712 -0.2260 —0.1086 -0.0581 0.3523
3 0.9770 “0.0256 -0.0029 0.0031 . -0.2037 0.0008 0.0012
4 0.9999 —0.0046 “0.0002 • 0.0002 . -0.0137 0.0001 0.0001
5 0.9261 0.0539 0.0196 -0.2010 0.3009 -0.0348 0.0069
6 -0.0700 0.4752 0.1161 -0.4992 , —0.0943 0.0644 0.5786
7 . 0.0673 -0.1152 0.0384 0*5309 -0.1250 0.2743 0.6017
a 0.3513 0.0851 -0.3105 -0.0951 0.0510 0.2179 0.7138
9 0.4023 -0.0330 -0.1820 0.3290 0.0017 -0.0475 0.6934

10 0.1213 0.4451 0.4921 -0.0010 0.0971 0.1009 0.5254
11 -0.2306 0.4029 0.0597 —0.0400 0.0752 —0.1290 0.7570
12 0.1509 0.9335 ■ 0.0533 . 0.0050 -0.3148 -0.0359 0.0026
13 -0.0179 0.1371 0.9756 . 0.0051 0.0642 0.0314 0.0239
14 0.9990 0.0039 0.QQ08 -0.0039 0.0432 -0.0007 0.0001
15 0.8271 0.5012 0.1002 0.0572 -0.1250 -0.1639 0.0089

cn



Table 4.5,1.3.3 Maximum likelihood estimates of factor loadings and unique variances
in the 74th iteration - Cluster I

‘ Factor loadings Unique— —  ..... .— '■■■■■■»■■— ■' ■ ,'lir.i......t—   .....  ■ — . .......... variance
1 2 3 4 5 6

1 —0*1147 0.4389 0.1768 -0.1377 -0.0745 0*0525 0,7356
2 -0.0378 0.7460 0.1701 -0.2289 -0.1051 -0.0563 0*3465
3 0.9772 -0.0287 —0.0023 0.0033 -0.2107 0.0001 0.0001
4 0.9999 -0.0017 -0.0002 0.0002 -0.0134 0.0001 0.0001
5 0.9258 0.0550 0,0195 -0.2035 0.3026 -0,0312 0.0054
6 -0.0700 0.4762 0.1172 —0.4997 -0.0912 0.0684 0.5772
7 0.0674 -0.1111 0.0875 0.5329 -0.1252 0.2711 0.6023
8 0.3513 0.0870 —0.3104 -0,0936 0.0545 0.2196 0.7127
9 0.4023 —0.0337 —0.1831 0.3271 0.0007 -0.0495 0.6941

10 0,1212 0.4459 0.4907 —0.0006 0.0988 0.1017 0.5256
11 -0.2307 0.4061 0.0582 —0.0434 0.0778 -0.1279 0*7542
12 0.1512 0.9375 0.0502 0.0084 -0.3117 —0.0398 0.0001
13 -0.0179 0.1350 0.9795 0.0022 0.0644 0,0310 0*0170
14 0.9989 0.0063 0.0007 -0.0010 0.0462 -0.0005 0.0002
15 0.8272 0.5043 0.0987 0.0549 -0.1205 —0.1655 0,0068



Table 4.5.1.3.4 Rotated maximum likelihood estimates of factor' loadings -Cluster I
* Factor loadinqs

V  C i i  *1.  u i j m

1  1 2 3 ’ 4 ' 5 ' 6
1 -0.1147 0.4389 0.1768 -0.0943 -0.0595 0.1218
2 -0.0378 0.7460 0.1701 -0.2190 -0.1156 0.0727
3 0.9772 -0.0287 -0.0023 0.0252 -0.2044 0.0448
4 0.9999 -0.0017 -0.0002 0.0016 -0.0129 0.0030
5 0.9258 0.0551 0.0195 -0.2284 0.2860 -0.0055
6 -0.0670 0.4762 0.1172 -0.4123 -0.0718 0.2959
7 0.0674 - 0 . 1 1 1 1 0.0875 0.6074 -0.0556 0.0340
8 0.3513 0.0870 -0.3104 0.0020 0.1062 0.2206
9 0.4023 -0.0337 -0.1831 0.2741 -0.0114 -0.1849
10 0.12i2 0.4459 0.4907 0.0318 0.1206 0.0675
11 -0.2307 0.4061 0.0582 —0.1010 0.0445 -0.1102
12 0.15i2 0.9375 0.0502 0.0236 -0.3120 0.0297
13 -0.0179 0.1350 0.9795 0.0083 0.0670 0. 0120
14 0.9989 0.0063 0.0007 -0.0059 0.0447 -0.0101
15 0.8272 0.5043 0.0987 -0.0073 -0.1571 -0.1421

Contribution 
of each factor

4.8943 2.4308 1.4277 0.7672 0.3135 0.1924

Proportionate 
variance 
accounted by 
each factor

0.3262 0.1621 0.0952 0.0490 0.0204 0.0155



T a b le  4 . 5 . 1 . 3 . 5  R e s id u a l  m a t r ix  a f t e r  rem ova l o f  s i x  f a c t o r s  from environment c o r r e l a t i o n  m at r ix  -  C lu s t e r  I

' X1 X2 X3 x 4 xs X6 X7 XB X9 ' A o  ' X11 X12 ^ 3

X2 0.1981 '
X3 0.0007 0.0001

X4 -0 .0002 0.0000 0.0000

X5 -0 .0036 0.0014 0.0000 0.0000

X6 0.0492 -0 .0684 0.0000 0.0000 0.0029

X7 0.0432 0.0669 0.0005 -0 .0001 -0 .0 02 8 0.0578

X8 0.1896 0.0232 -0 .0 0 0 2 0.0000 -0 .0053 -0 .0 33 8 -0 .1628

X9 -0 .0015 -0 .0856 -0 .0003 0.0000 0.0002 0.0260 -0 .0324 -0 .0 1 6 0

X10 0.1653 -0 .0737 0.0000 0.0000 0.0000 -0 .0667 -0 .1 05 9 0.2467 0.1041

X11
0.1406 -0 .0063 0.0000 0.0000 -0 .0029 0.0129 -0 .0 93 9 0.1407 0.0320 0.0967

^ 2
0.0034 0.0004 0.0000 0.0000 -0 .0001 -0 .0006 -0 .0001 0.0012 -0 .0 0 0 2 0.0003 0.0011

X13 -0 .0035 0.0000 -0 .0001 0.0000 0.0000 0.0009 -0 .0 00 2 -0 .0 0 4 0 -0 .0 0 1 2 0.0025 -0 .0 0 0 8 0.0000

X14
0.0002 0.0000 0.0000 0.0000 0.0000 0.0001 -0 .0003 -0 .0 00 8 0.0000 0.0000 0.0000 0.0000 0.0000

X15 0.0053 0.0015 0.0000 0.0000 -0.0001 -0 .0 00 3 -0 .0013 -0 .0004 0.0000 0.0011 0.0024 0.0000 0.0000

X,14

-siCO
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brix at 12th month* purity percentage and sugar yield par 
plot. These characters are associated with tho quality of 
tho crop and honca can ha.named as quality factor. Cone 
yield per plot* shoot count, germination count and number of 
millabl© canea por plot were found to be highly correlated 
with factor II in ML method while weight of cane also con­
tributed for factor II in PF method, Cano yield and its 
related characters come under thi3 factor* weight of cone 
formed an independent factor, factor VI in ML method. Length 
of cane and number of internodes related to growth of the 
crop cane under factor III as identified by PFA and ML 
method. So this factor may be named, as growth factor.
VJhile length of intemode and juiciness at 12th month are 
more contributing to factor IV in PFA girth of cane and 
juiciness at 12th month contribute to factor IV in ML method* 
Girth of cane remained independent in factor v in PFA* in 
ML method length of internode form an independent factor in 
factor V.

The five common factors in PFA accounted for 69*06 
percentage of the variation in the dependence structure 
whllo 66*84 percentage variation was explained by the six 
factor model in ML solution. The proportion of variation 
accounted by factor I where the characters contributed for 
this factor baing same* accounted.about 33*79 per cent in 
PFA and 32,62 par cent In ML solution, Tho. contribution of



BO

the second factor was 17.97 per cont and 16.21 per cent res­
pectively In PFA and ML solutions, vhile the .proportionate 
variance accounted by factor III in ML was 9.52 per cent it 
was 9*19 per cant in PFA. Tho contribution of remaining 
factors wore 8.49 per cont in ML and S.81 per cent in PF 
solution.

4.5.2 Cluster III ■

4.5.2.1 Correlation studies

The environment correlation coefficients were found 
to lie between -0.4948 and 0.9742 (Table 4.5«2.1)» The 
character was significantly correlated with x2 x^ xg

latod with all tho Characters except Xq .x^q and x ^  while 
X3 had significant correlation with all the Characters
except x ^  x ^  and x^2 Correlation of x^ with tho 
characters except x^ x^ x1q x ^  and x^2 were found to ha 
significant. Significant correlations were found to exist 
for x5 with x2( x ^  x4> x5i x6< x7> x9> x ^  and x ^  xg 
was corrolatod with all except Xy x^0 and x ^  The charac­
ters x2# x5 xB and x^5 wore found to havo
significant correlation with x^ while xQ was significantly 
correlated with x^ x^ x^ x^ and x^3 Xg v;as significantly
correlated with all except x^ xQ x^Q x^^ and x^2 Corre­
lation of x^q with x ^  x^2 and x^3 alone'were found to be



T a b le  4 . 5 . 2 . 1  Environment c o r r e l a t i o n  m a t r ix  -  C l u s t e r  I I I

X1

f -

X2 X3 X4 X5 X6 X7 X8

1----------------- T

X9 X10 X11 X12 X13 X14

X2 0.7376

X3 0.0046 0.3403

X 4 0.050B 0.381$ 0.9206

X5 0.2023 0.4707
* *

0.4378 0.702.1

X6 '
* *

0.4962 0.6686
* *

0.4754
* *

0.5636 0.4804

X7 -0 .1221 -0 .3457 -0 .2 3 4 8 -0 .1 8 5 3 -0 .2263 -0 .0775

X8 -0 .1184 -0 .0155
* *

0.3630 0.2579 -0 .1 6 5 0 0.2381
* *

-0 .4756

x9 -0 .254$ -0 .3308 -0 .4 2 2 5 -0 .4739 -0 .4288 -0 .4 94 8 -0 .1183 -0 .0 29 9

X10
0.1286 0.1660 0.0576 ■ 0.0734 0.0270 0.0750 -0 .0545 -0 .0639 -0 .1 7 5 0

a
, h-

XH -0 .1655 0.0202 0.1610 0.1091 -0 .1176 -0 .0 0 7 0 0.0738 -0 .0134 0.1732 0.6450

X12 0.538$ 0.6868 0.0822 0.0686 -0 .0141
* *

0.5677 -0 .1482 0.1459 0.0343 0.2759 0.1500

X13 0.5258
**

0.6729 0.4023
_ * *  
0.4850 0.4612 0.5248 -0 .3152 0.-3098

trit
-0 .4537

* *
0.3611 0.0208

* +
0.5266

X14 0.0542
* *

■ 0.4366
* *

0.9111
■ * *

0.9742 0.7618
*4r

0.5176 -0 .2767 0.1682 -0 .4 6 6 3 0.0571 0.0831 0.0507
*  *

0.4704

X15 0.4190
**

0.7644 0.5984 0.6375 0.5072 0.7994 -0 .2174 0.0886 -0 .2 2 6 2 0.1918 0.1280
* *

0.7423
* ft * *

0.5704 0.6533

S i g n i f i c a n t  at  5% l e v e l * *  S i g n i f i c a n t  a t  1% l e v e l
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significant, is significantly correlated only with
aCjQ significant correlations ware found to exist for x^2 
with x̂, x2 Xg ^ 5  *13 significantly
corrolatod with all except x ^  Correlation of x ^  with all 
except x^ Xq and x ^  were significant* The correla­
tions of x^5 with x.q end wore not significant*

4.5.2*2 principal factor analysis

The environment correlation matrix waQ found to be 
positive definite* The eigen values and tho corresponding 
eigen vectors of the matrix was found out* The latent roots 
along with contribution of each to the total variation are 
given in Table 4*5*2* 2*1* First four latent roots of the 
matrix was greater than one and they altogether contributed 
78*03 per cent to the total variation*

Using the principal factor analysis to the environ­
ment correlation matrix a four factor model was fitted with 
squared multiple correlation coefficient as estimates cotrmu- 
nalifcy* Fifty two iterations ware taken for tho convergence 
of communalities with a five unit difforence in the third 
decimal place* Tho estimates of loadings in tho 52nd itera­
tion along with cananunalities in the 51st and 52nd itera­
tions are given in Table 4,5.2*2.2* Varimox rotation of 
loadings wg3 applied and tho results are given in Table 
4 *5* 2*2*3* The characters which are more correlated with
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Table 4.S.2.2.1 Latent roots of tho environ­
ment correlation matrix - 
cluster III

si,
NOq

Latent roots Par cant contribu­
tion to variance

1 6.0411 40.4376
2 2.3823 15*9568
3 1.6671 11.1682
4 1.5642 10.4703
5 0.9865 6.6034
6 0.9473 6,3410
7 0.4015 2.6875
B 0.3541 2.3703
9 0.2917 1.9526

10 0*2031 1.3595
11 0.0476 1.3200
12 0,0394 0,2673
13 0.0115 0.0770
14 0.0011 0.0074
15 0.0QQ1 0.0007



Table 4,5,2*2.2 Principal factor solution in tho
orrvironmonfc correlation matrix —

1 2 3 4

1 0*4532 0.5946 0.2495 =0.0114
2 0.3891 0*4828 0.1252 0.0143
3 0.7427 -0.4855 =0.1384 -0.0075
4 0.8401 =0.5239 =0.0396 0.1X92
5 0.6548 =0.2313 0.2605 0.2843
6 0.3809 0.2777 0.0307 =0.0510
7 ■=■0.2969 0.0256 0.0433 0.3318
0 0o2603 =0.2899 =0.3318 =0.4132
9 '=0* 4819 0.1331 =0.1934 =0.1313

10 0.2058 0.2318 =0*4721 0.1373
11 0.Q8GS 0.0806 =0.0848 0*3676
12 0.5062 0*6920 =0.1574 =0.1873
13 0.7311 0.2174 =0.0181 =0.1264
14 0.0491 =0.5221 0.0-035 0.1708
IS 0.8613 0.2207 =0.0504 0.0391

52nd iteration for the 
Cluster ill

Estimated communalifcy Original 
^ ^ " i T e - “^ n 3 n [ t e ^ “ conrouna-
ration lity CsHC)

0.621S 0.6213 0*8944
0.8716 0.8716 0*9676
0.805? 0*8065 0.9997
0.9959 0.9960 0.9942
0.6312 0*630.9 0*9994
0.6522 0.6522 0.9944
0.2011 G.20Q7 0.9292
1.0000 1.0000 0.9507
0.3047 0*3046 0.9322
0.3583 0.3579 0.9544
1.0000 1.0000 0.3599
0.7950 0.7948 0.99S1
0.5980 0*5980 0.9729
1.0000 la0001 0.999G
0*7945 0.7945 0*9973

CO



Table 4.5.2.2.3 Rotated principal factor loadings for tha environment
correlation matrix - Cluster III

V a r ia b le Common f a c t o r  c o e f f i c i e n t s

1 2 3 ’ 4
1 0*4472 0.6470 -0*0070 0.0509
2 0.3497 0.5292 -0*1607 -0.0606
3 0.7037 -0.4426 -0.1372 —0*3110
4 0.8468 -0.4810 -0.0892 -0*1991
5 0*7542 -0.1888 0*0991 0.1293
6 0.3410 0.2472 —0*0948 -0.1815
7 -0.2030 -0.0606 -0.0003 0.3922
8 —0.0188 —0*0339 0.0041 —0.4750

. 9 -0.5376 0.0356 -G.GQ57 -0.0308
10 0.1091 0.0864 -0.5801 0.0448
11 -0.104S —0.2300 —0.1028 0.0457
12 0*3614 0.6961 —0*3654 -0.2148
13 0.6508 0.27S8 -0.1747 —0.2606
14 0.8769 —0*4801 —0*0604 *0.1406
15 0.799S 0.2421 -0*2732 -0.1489

P r o p o r tio n a te  variance 
accounted by
e a c h  f a c t o r

0.3607 0*1434 0.1249 0.1243



those four factors are given below*

Factor

Factor IX

C*C*S* percentage 
:pol at l̂ fch month 
sugar yield per plot 
Purity percentage 
Brix at 12th month

Cana yield per plot 
Germination count 
Shoot, count
Humber of millabla canes per plot

Factor ixx Humber of intemodes

Factor IV Length of internoda
Juiciness at 12th month

4* 5* 2*3 Haximum-Lihelihood factor analysis

The environment correlation matrix was subjected to 
Ml method of factor extraction under the hypothesis that a 
four £actor-model will suffice to explain the dependence 
structure* Twenty nine iterations wore taken for a +0*005 
convergence criterion. A tost of significance of the factor 
model showed that four common factors are not sufficient to
explain the dependence structure ( /t ̂ 51 a 104.27), The ML
method was then tried for a five factor model t-hich again 
found to be inadequate to explain the dependence structure
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A
( I  40 ■ 72*78)* Fifty two iterations wore taken for the 
convergence* A six factor model gave the goodness of fit

ft
statistic as X  30 a 59*14 Which was significant. ML solu­
tion of factor loadings with six factor model was found to be' * ' ‘ - -f; . -

■ * f ’

adequate to explain the dependence structure* Two hundred 
and seven iterations wore taken for the convergence with a 
^0*005 convergence criterion* The initial estimates of 
factor loadings and unique variances obtained from the 
principal factor method of factor analysis are given in 
Table 4*5*2.3*1* The HL solutions in the 206th and 207th 
iterations are summarised in Tables 4*5*2*3*2 and 4*5*2.3.3 
respectively* The vsriroex rotated loadings are preoonfcod 
in Table 4»5*2*3*4* The residual matrix after removal of 
six factors is given in Table 4*5*2*3*5* The characters 
dominating the factors are listed below*

Factor I c*c,s. percentage
pol at 12th month 
Srix at 12 th month 

, Purity percentage
Sugar yield par plot .

Factor II Gano yield per plot
Shoot count 
Germination count 
Number of millable canes per plot



Table 4.5.2.3.1 Initial estimates of factor loadings and corresponding unique
variances for 6 factors — Cluster III

Variable Factor loadings Unique
1 2 3 ' 4 5 " 6

vaiiauut

1 -0.0703 0.5677 0.0170 -0.1867 ' -0.4642 ' 0.3238 0.3173
2 -0.4456 0.6884 0.0133 -0.1788 ' -0.2107 ‘ 0.1201 0.2366
3 0.9203 -0.0l43 -0.0li9 0.3881 ‘ -0.0411 1 0.0694 0.0001
4 0.9771 -0.0037 -0.0052 0.0513 ' -0.0395 1 -9.0405 0.0394
5 0.7515 -0.0i41 -o.oiie 0.6579 ’ 0.0379 ' -0.1059 0.0002
6 -0.5362 0.5617 -0.3660 -0.0771 ‘ -0.3719 ‘ -0.4484 0.0001
7 0.2743 -0.1303 0.2800 -0.0323 ’ —0.0168 ' 0.3100 0.7320
8 0.1846 0.0789 0 .24b0 -0.4766 * 0.2891 ' -0.3095 0,4956
9 0.4767 -0.0^75 -0.0657 0.0858 ■ 0.4516 1 -0.1341 0.5369

10 -0.0580 0.2704 0.3063 -0.0271 ’ 0.0325 ’ -0.0789 0.8217
11 0.0805 0.1131 0.1105 -0.2571 * 0.2386 ' 0.1066 0.8341
12 -0.0598 0.9902 0.0210 0.1093 ’ -0.0201 ’ -0.0424 0.0013
13 -0.4820 0.5143 0.4877 0.1214 ' -0.4480 ' 0.3903 0.0001
14 0.9992 0.0080 0.0097 -0.0187 ' 0.0307 * -0.4869 0.0001
15 0.6603 0.7129 0.1963 0.0007 -0.0432 -0.2080 0.0002

•GO
CO,



Table 4.5.2.3*2 Maximum likelihood estimates of factor loadings and unique
variances in the 206th iteration - Cluster 112 »

J Factor loadings Unique.. ...  ..—..— I,— — ■■■■!. i —   ......     variance '
1 2 3 4 5 6

1 ^0*2060 0.4489 0.2100 -0.1843 -0,3850 0.1687 0.5011
2 -0.5222 0.6148 Q.0XB4 -0.0301 —0.2586' -0*0792 0.2749
3 0.6209 -0.3243 -0.0108 0.0239 -0.2110 0.0171 0.4638
4 0*8353 -0.2121 -0*0039 0.0241 -0.4712 0.0206 0.0342
5 0.9734 -0.1342 -0.0126 0.0112 0.1684 -0.0097 0.0057
& —0.5674 0.3898 -0.3916 -0.2867 -0.0391 0.3005 0.1923
1 —0.2550 -0.1425 0.0791 0.1214 -0.0285 0*2845 0*8119
8 0.0499 0.3381 0.2112 -0.2807 0.3918 -0.2314 0.5527
9 0.4801 , -0.0447 -0.3199 0.4108 0.1631 -0.1315 0.4525

10 -0.0529 0.2743 0.5955 -0.3741 0.0648 0,0254 0.422S
11 0.0654 0.2316 0.5833 -0.2093 0.2035 0.4239 0.3369
12 -0.0529 0.9322 0.0347 0.0786 —0*3531 -0.0014 0.0G02
13 -0*5241 0.4185 0.0949 G.374S —0.5250 0.5322 0.0001
14 0*83X5 0.1614 0.0409 -0.0695 0*4331 —0*0048 ' 0.0028
15 0.6177 0.3452 0.0314 0.1413 -0*0384 -0.1571 0.4522



Table 4.5.2.3.3 Maximum likelihood estimates of factor loadings and unique
Variances in the 207th iteration - Cluster III t

' ' Factor loadings , Unique
—  ... '    ■ ■■ —   ....  ■ 1 1 ■ ■ ’------------  variance
1 2 3 4 . 5 6

1 -0.2070 1 0.4450 ’ 0.2120” -0.1847 -0.3830 0.1659 . 0.5059
2 -0.5225 0.6129 0.0203 ‘ -0.0264 -0.2616 -0.0762 , 0.2760
3 0.6195 ’ -0.3264 1 -0.0107 0.0192 -0.2131 0.0140 . 0.0005
4 0.8323 ' -0.2104 ' -0.0038 ‘ 0.0201 -0.4732 0.0176 , 0.0384
5 0.9756 ' —0.1360 -0.0127 ‘ 0.0091 0.1714 -0.0057 . 0.0005
6 -0.5653 0.3861 ' -0.3936 * -0.2890 -0.0850 , 0.2986 , 0.1965
7 0.2569 ' -0.1443 0.0763 0.1244 -0.0315 0.2813 . 0.8118
8 0.0452 1 0.3413 0.2083 * -0.2776 0.3949 _ -0.2275 , 0.5533
9 0.4829 -0.0438 -0.3239 0.4138 0.1591 -0.1306 0.4464

10 -0.0496 0.2752 0.5986 -0.3778 0.0688 0.0233 0*4155
11 0.0623 0.2356 0.5863 -0.2074 0.2005 0.4278 0*3306
12 -0.0513 0.9291 0.0366 0.0756 -0.3560 -0.0003 0.0004
13 -0.5274 0.4155 0.0905 0.3770 -0.5290 0.5251 0.0001
14 0*8794 0.1655 0.0445 -0.0734 0.4365 -0.0027 0.0014
15 0.6147 0.3404 0.0281 0.1454 —0* 0362 -0.1543 0.4592



Table 4<>5o2.3*4 Notated maximum
Cluster III

Variable 1 *?c5t
1 0.0755 0*5894
2 —Ga27iSB 0.7562
3 G.8853 -0.1137
4 0.9201 -0.1600
5 0* 6601 -0*1507
6 -0.5125 0*4849
1 0.1467 —0*1539
& -0.1133 0*1118
9 0,4077 -0.0662

10 0.0249 0*2827
IX -0*1516 0.1297
12 0.0941 0*9788
13 -0.1791 0.4930
14 0*9333 0.1450
15 0.5603 '0*3031

Contribution
of each 4.4031 3*06l4
factor
Proportionate
variance 0.2575 0.2377
accounted by 
each factor



likelihood estimates of factor loadings —

Factor loadings
5

+0.1671 -0.3362 —0.0105 0.0040
0.0581 —0o 2080 0*0854 —0.1472

—0*0153 0.0121 —0* 3618 0.2677
-0.0060 0.1753 -0.0310 Q.22B1
-0.0661 0.4564 -0.5513 -0.1475
—Oo 1517 —0.3114 -0.1179 0*3638
0.0781 0.0652 -0.0296 0.3631
0.0S61 -0.1395 Go,6210 -0.0872

-0.1515 O.SS36 0.2003 —0.0461
0.6819 -0.1239 0.0638 0.1356
0.5422 -0.2226 0.1165 0.4687
0.0003 0.1375 -0.0979 —0.0638
0.0678 0.1029 -0.6645 0.4672
0*0240 -0.1440 0.0226 -0*2910
0*0675 0.0524 -0*0325 —0*0760

1.5467 1.3436 0.7647 0.7946

CDh**

0*0972 0.0071 0.0631 0.0516



T ab l e  4 . 5 . 2 ^ . ^ "  R e s i d u a l  m at r ix  a f t e r  remova l  o f  s i x  f a c t o r s  from the envi ronment c o r r e l a t i o n  m at r ix  -  C l u s t e r  I I I

' X1 ' X2 X3 X4 ' X5 X6 ' X7 ' X8 X9 X10 X11 ' X12 ' ^ 3 X14

X2 0.2346

X3
0.0032 0.0024

* -0 .0339 -0 .0 576 ' -0 .0 0 0 5

*5
0.0006 0.0004 0.0000 0.0000

X6 -0 .0015 -0 .0 01 1 0.0000 0.0004 0.0000

*7
-0 .0092 -0 .1147 -0 .0 0 0 6 0.0666 -0 .000 2 -0 .000 4

X8 -0 .2429 -0 .1266 -0 .0 02 0 0.0361. -0 .000 4 0.0029 -0 .4 12 0

X9 -0 .0292 -0 .065 3 0.0018 0.0173 0.0005 -0 .0 01 6 -0 .2142 0.2381

X10
0.0305 -0 .042 6 0.0001 -0 .0035 0.0000 -0 .0007 -0 .0121 -0 .1033 -0 .1 906

X11
0.0003 0.0012 0.0000 -0 .0001 0.0000 0.0000 -0 .0004 0.0000 0.0026 0.0002

X12 0.0001 0.0002 0.0000 0.0002 0.0000 0.0000 0.0000 0.0004 0.0000 -0 .0002 0.0000

X13
-0 .0014 -0 .0013 0.0000 0.0001 0.0000 0.0000 0.0010 0.0011 -0 .0 004 0.C001 0.0000 0.0000

X14 -0 .0117 -0 .0075 0.0000 0.0023 0.0000 0.0000 0.0001 0.0081 -0 .009 4 -0 .0009 0.0000 0.0000 0.0000

X15
-0.0051 -0 .000 5 o.oooe - 0 .012 4 0.0002 -0 .0003 0.0188 -0 .0523 0.0260 0.0233 -0 .0001 0.0000 -0 .0002 -0 .0 03 0
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Factor I V . Girth of cano

Factor V Length of cane
Length of intornode

Factor VI weight of cano
Juiciness at 12th month

The characters c.c.s. percentage* pol at 12th month* 
brix at 12th month, purity percent ago and sugar yield per 
plot were found to be higlily correlated with Factor I in 
both PFA and ML methods. The characters .are related to . 
quality aspects of the crop and lienee named as the quality 
factor# The second factor is associated with cans yield 
per plot, shoot count* germination count and number of 
millable canes per plot in both methods# The third factor 
is characterised by number of inter nodes in PFA and ML
methods. Length of intomode and juiciness at 12th month
are more contributing to factor IV in PFA while girth of 
cane alone contribute factor IV in ML method, in ML method 
length of cane and length of internodo formed fifth factor 
and 6th factor is highly correlated with weight of cane and 
juiciness at 12th month#

Factor III Number of internodea

The four common factors is PFA accounted for about
75.33 percentage of variation in the dependence structure 
while 79.44 percentage variation was explained by tho six
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factor model In  ML solution. Factor I accounted 36,07 per­
centage of variation in PFA and 25,75 in  ML method, pro­
portionate variance accounted by the second factor was
14,34 per cent in PFA and 23,77 per cent in ML method, The 
contribution of tha third factor was 12,49 per cent and 
9,72 per cant respectively in PFA and ML method. Contribu­
tion of remaining factors wercr 12,43 per cent in PFA and 
20.20 per cent in ML method,

4*5,3 Cluster XV

4,5,3*1 Correlation studios

The environment correlation matrix is given in  

Table 4*5,3,1 and the correlation coefficients were found 
to lie between **0,8199 and 0,9948, Character was signi­
ficantly correlated with all the characters except x^, The 
correlation of x2 with all the characters ware significant 
except for x4< x3  ̂ and x ^  Correlation of x3 with the 
characters except xQ  ̂ x ^  and x13 were found
to be' significant. Significant correlations were found to 
sxlsfc for w ith x1> x 3 ( x 5( x 7f xg> and x ^  Xg

had correlation with all except x0 xQ and x,rt Correlation. o XU* 1
of Xq with x ^  and x ^  wore found to be non-
eignifleant. Characters x2> KIQ, x12 and ̂ 3  vjerQ Sound
to have non-significant correlation with x^ tSiile characters

K2* x4, x5, ^ll, *12, x13 3X153 :̂ ls **av0 significant 
correlation with Xg^ x^ was correlated with all except x3



Table 4.5.3.1 Environment correlation matrix - Cluster IV

*1 X2 X3 X4 X5 X6 X7 X8 X9 x i o  ' X11 X12 ^ 3 X14

X2
0.6376

X3
-0 .1236 0.3404

X4 -0 .2258 0.-1678 0.9433

X5 -0 .3795 -0 .1999
* *

0.5667 0.7850

XG 0.6611 O.B525
*•*

0.2721 0.0878 -0 .3207

x n 0.2282 -0 .1 24 6 -0 .643 0 -0 .6 37 3 -0 .4044 0.0647

X8 0.4042
* w

0.3195 0.0806 0.0196 0.0334 0.1948 0.2545

X9 0.4464 0.2351 -0 .1989
* ■*

-0 .3 652 -0 .531 3
* *

0.2934 0.1978 -0 .1151

X10
**

0.2811 0.5392 0.0271 -0 .016 6 -0 .198 6 0.4494 -0 .0 430 0.0471 -0 .1035

X11 -0 .260 0 0.1023 0.4992 0.6044 0.6387 0.0567 -0 .2554 0.2452 -0 .819 9 0.4015

X12 0.6800 0.7623 0.0820 -0 .120 4 -0 .4631
* *

0.7343 0.1364 0.4444 0.2875 0.6688 0.0619

X13 0.4582 0.6282 -0 .1171 -0 .1677 -0 .262 8
**

0.3236 -0 .0605 0.4366 -0 .0997
★ ★

0.6957 0.1686 0.6460

X14 -0 .2224 0.1465 0.9084 0.9948 0.6246 0.0548 -0 .6 34 8 0.0189 ■-0. 4033 -0 .0013 0.6230 -0 .1 47 2 -0 .1 389

^ 5 0.2509
•* *

0.5604 0.8808 0.8129 0.4  606 0.4786 -0 .4 98 2 0.3100 -0 .131 8 0.2605
* +

0.5166 0.4419 0.1813 0.8039

* *  S i g n i f i c a n t  a t  5 «  l e v e l *  S i g n i f i c a n t  at  1% l e v e l
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^7 x8, *9 an£* *14 ^io waa ,lc>t with Xg
^Sa *7, ^e, Xg and x,4 end significantly correlated with .. 
other characters* had significant correlation with all 
the characters except x2 x^2 and x^3 and x^2 with all 
except x3< x4j x ^  and x^3 was significantly
correlated with x2 x5t xg xQ x^0 x^2 and x^2

Correlation of x^4 with x^ x ^  x4 Xg x^ x ^  and x^5
were found to he significant* x^g was significantly corre­
lated with all except Kg and x ^

4*5.3*2 Principal factor analysis

Th© environment correlation matrix was found to bo 
positive semi definite* The eigen values and th© corres­
ponding eigen vectors of th© matrix was determined* The 
oigen values along with contribution of ©ach latent root to 
the total variation are given in Table 4*S*3*2*1. First 
four latent roots of the matrix was greater than one and 
they altogether, contributed 87*37 per cant to the total 
variation. ,

A four factor model was extracted using principal 
factor analysis with squared multiple correlation coeffi­
cient as initial estimate of canmunality* The number of 
iterations needed for the convergence of consminalifciee was 
six* with a difference of five units in the third decimal 
place* The principal factor loadings in the 6th iteration
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Table 4*5.3.2*1 Latent roots o£ the environ^
raant correlation matrix - 
Cluster IV

sl* T Per cent contribu-
No. t'atont roots tion to varianca

1 5*4283 36.1920
2 4.6725 31*1500
3 1.8167 12*1113
4 1.1031 7.9207
5 0*7128 4.7520
6 0.4009 2.6727
7 0.3359 2.2393
8 0.2319 1.5460
9 0.0994 0.6627

10 0*0728 0*4853
11 0.0315 0*2100
12 0.0087 0*0580
13 QcOOOO 0*0000
14 0*0000 0.0000
15 0.0000 0.0000
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along with cannunalit&es In tho 5th and 6th iterations; are' ’ n I X
given in Teblo 4*5.3*2*2* Factors in tho 6th iteration was

\subjected to varlmax rotation# The rotated loadings are 
presented in Table 4#5.3*2,3* The characters Which are 
highly correlated with the four factors are given below*

Factor

pol at 12 th month 
Brix at 12th month 
c*C#s* percentage 
Sugar yield per plot 
purity percentage

Factor II
Cane yield per plot 
Shoot count
Number of millablo canes per plot 
Germination count

Factor 1X1 Number of internodes ........
Length of cane

/Factor IV Length of intercede
Juiciness at 12th month

4*5#3*3 Maximum Likelihood factor analysis

ML estimation of factor loadings with a four factor 
model was done* Twenty eight iterations were taken for a 
£P*OOS convergence criterion* h test of significance of

* nthe model gave a X  value of 103*02 for fifty one degrees



Teblo 4.S.3.2.2 Principal factor solution In the .6th Iteration for the environment
correlation matrix — Cluster IV

V a r ia b le Common fa c to r -  c o e f f i c i e n t s

2 4

E s tim a te d  com m unality O r ig in a l
communal— 
11 t y  (SMC)S th  i t s  

r a t i o n
S th  i t e ­
r a t i o n

1 —0*1£>3Q 0 .7 5 6 9 0*17X 3 0 .2 2 0 6 0 .6 8 8 9 0 .6 8 8 2 0 .9 9 9 9
2 Go230Q 0 .8 8 4 6 0 *1 3 6 1 - 0 .0 6 9 9 0 .8 5 8 8 0 .8 5 8 6 1 .0 0 0 0
3 0 * 9 0 8 5 0 .0 9 2 9 0 .3 2 8 5 —O..QQ64 0 .9 4 1 8 0 .9 4 2 0 1 .0 0 0 0
4 0 * 9 7 9 2 - 0 * 0 9 5 0 0 .2 0 5 6 Q.0D76 1 .0 0 0 0 1 .0 0 0 0 1 .0 0 0 0
5 G.76G3 —0 *4 2 5 3 - 0 .1 1 3 3 0 *1 6 8 0 0 .8 0 9 6 0* SQ9i 1 .0 0 0 0
6 0 .1 1 4 9 0 *7 9 6 4 0 .2 2 6 5 -0 * 0 4 9 0 0 .7 0 1 2 0 *7 0 1 1 0 .9 9 9 9

7 —0 *5 9 7 1 0 .0 9 1 1 —0 .1 8 4 2 0 .2 9 5 1 0 .4 6 8 5 0 .4 8 5 9 0 * 9 9 9 8
8 0 .1 1 0 9 0 *4 4 3 4 - 0 .3 0 3 4 0 .7 3 5 0 0 .8 3 9 0 0 .8 4 1 2 0 .9 9 9 9

9 —0 .4 9 8 3 0 .3 0 4 8 0 .6 9 0 1 - 0 .0 0 9 5 0 .8 2 0 2 0 .6 1 7 5 0 *9 9 9 9

1 0 0 * 1 2 5 6 0 *6 5 2 6 -0 * 4 3 1 0 - 0 .4 9 7 0 0 .8 7 1 5 0 .8 7 4 4 1 .0 0 0 0

11 0 * 7 4 6 3 0 .0 2 4 1 —0 *5 9 5 3 - 0 .0 1 6 5 0 .9 0 9 9 0 *9 1 2 3 0 *9 9 9 9

1 2 - 0 * 0 2 0 2 0 .9 4 3 0 - 0 .0 5 3 7 - 0 .0 0 3 6 0.G 9XS 0 .8 9 2 5 1 .0 0 0 0
13 - 0 .0 0 5 8 0 .6 7 8 2 - 0 *  4120 - 0 .0 9 2 6 0 *6 4 1 1 0 .6 3 8 4 1 .0 0 0 0

14 0 .9 7 8 0 - 0 .1 1 1 9 0 .1 5 0 4 0 *0 0 6 2 0 *9 9 1 3 0 .9 9 1 7 . 1 .0 0 0 0

15 0 .8 4 3 8 0 * 4 4 4 6 0 .2 1 1 1 0 .1 0 8 9 0 *9 6 6 0 0 .9 6 6 1 1 ,0 0 0 0

CDCO



1 0 0

Table 4B5,3.2.3 Rotated principal factor loadings for
tho environment correlation matrix - 
Cluster IV

•iable Common factor coefficients
1 2 3 4

1 -0*1151 0.7569 0,2310 -0.2206
2 Q.2S42 0.88463 0.0405 -0.0699
3 0.9655 0.0929 -0.0342 —0.GQ64
4 0.9852 -0.0950 -0.1747 0.0078
5 0.6666 -0.4253 —0.3911 0.1680
r6 0*1911 0.7964 0.1673 -0.0490
? -0.6227 0.0911 0,0520 0.2952
8 -0.0103 0.4434 —0.3229 0.7350
9 —0.2048 0.3078 0,8262 -0.0096
10 -0.C443 0.6526 —0*4468 -0.4970
11 0.4702 0.0241 - -0.8309 —0 a 0165
12 -0.0300 0.9430 —0,0423 —Da0037
13 —0*1591 0.6782 -0.3301 -0,0926
14 0.9635 -0.1119 -0*2254 0.0062
15 0.8618 0.4446 —0*1190 Do1039

Proportionate
variance
accounted 0,3213 0.2981 0.1439 0.0553by each
factor
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of freedom* which was significant. So ML solution of 
factor loadings was tried with a five factor model which

t . - . *■ ; » „• .

again found to ha significant ( X  40 => 57.97)* Fifty two 
iterations were taken for the convergence. ML solution of 
factor loadings with six factors was found to be adequate

J ’to explain the dependence structure ( X  30 = 54*52), Sixty 
eight iterations -were required for the convergence with a 
£0*005 convergence criterion. The initial estimates of 
factor loadings, and, unique variances are given in Table 
4.5.3*3*1. The ML solutions in the ©7th and 60fch itera­
tions are given in Tables 4.5.3.3*2 and 4*5.3,3*3 respec­
tively* Tho veriraax rotated loadings are presented in 
Table 4*5*3.3*4* The residual matrix after removal of six 
factors is given in Table 4.5.3.3*5* The characters with 
high loadings in each factor are given below,

Pol at 12th month
r C.C.S* percentage 

Factor I Brix at 12th month
Sugar yield per plot 
Purity percentage

Cane yield per plot 
Factor is shoot count

Humber of miliable canes per plot 
Germination count



Table 4.5.3«3*1 Initial estimates o£ factor loadings and corresponding uniqm
variances for € factors * Cluster XXX

riabla Faster loadings Unique
1 2 3 4 5 6

1 -0,2202 0.6192 0.3038 -0.1875 -0.4302 0.0497 0.2531
2 —0*1652 0.7787 0.1868 —0.1264 -0.0153 0*3766 0.1734
3 0*9318 -0.1817 -0.2153 0.1236 -0.1783 0.1766 0.00Q1
4 0*9991 -0.0005 —0.0269 0*0157 —0*0253 -0.0495 0.0002
5 0.8002 -0.2507 -0.2937 -0.0275 0.2840 -0.4709 0.0001
6 —0*0802 0.7342 -0.2260 —0*1000 —0*0560 0.2219 0.3510
7 0.6363 -0.0431 0.0893 -0.2131 -0.1970 0.2443 .0.5586
8 0.0251 0.4171 0.0003 0*4443 0,4770 -0.0257 0*3998
9 0.3831 -0.1673 -0.7414 —0®3452 0.0910 -0.0051 0.1481

10 -0,0045 0.2573 0.4994 -0.3345 0.2404 -0.1128 0.5020
11 0.6193 0.2131 0.6923 -0.2936 0.0195 0.1062 0.0003
12 -0*1233 0.9829 0.1139 0.0227 —0* 0489 —0,1165 0.0002
13 -0.1505 0.6691 0.2831 0.2577 -0.1603 0.0335 0*3563
14 0* 9980 0.0216 0.0339 -0.0327 0.0346 —0.2885 0.0001
15 0.8201 0.5248 0.1733 0.0493 -0.1256 -0.0733 0.0002

©ro



Table 4. 5,3<>3. 2 Maximum likelihood estimates o£ factor loadings and unique
variances in the 67fch iteration — Cluster IV

ariaole Factor loadings Unique
variance1 2 3 4 5 6

1 -0.2501 0.6139 0.3417 -0.0511 -0.4072 0.2568 0.2094
2 —0*1479 0.7741 0.2459 -0.0951 -0.0213 -0.5171 0.0415
3 0.9217 -0.1810 -0.2398 0.0840 -0.2285 0.0222 0.0004
4 0.9971 -0.0019 -0.0889 ' 0,0037 -0.0229 0.0070 0.0002
5 0.0159 -0.2357 -0.2459 0.0551 0.2969 —0.0066 0.8741
6 —0.0644 0.7311 —0.2326 -0.0243 -0.0976 0.3852 0.2487
7 0.6265 -0.0576 0.1787 0.2538 -0,1651 0.0574 0.4773
a 0.0299 0.4400 0.0959 -0.5661 0.2635 -0.1162 0.3929
9 0.4392 -0.1423 -0,7782 0.1379 0.0398 -0,0451 0.1586

10 *0.0094 0.3489 0.3727 -0,5520 0.0569 —0.0033 0.4313
11 0.6665 0,2385 0.6951 -0.0902 0.0112 0.0059 0.0074
12 -0.1349 0.9918 0.1216 0,0386 -0.0146 -0.0082 0.0013
13 -0.1489 0.6698 0.1870 0.2568 -0.2247 0.2841 0.2971
14 0,9979 0.0196 0.0459 -0.0336 0.0532 —0*0082 0.0001
15 0.8079 0.5264 0.2242 0.1065 -0.0792 -0.0091 0.0022

CO
T



Table 4*5*3,3.3 Maximusi livelihood. estimates of factor loadings and unique
' variances in the 63th iteration — Cluster IV

V a r ia b le  F a c to r  lo a d in g s  Unique ,
11 * 1 ' '  " ' " 1 '   ■■■   ..., n ..... .......... -  v a r ia n c e

1 2 3 4 5 6

1 -0.2517 0.6090 0.3446 . -0.0471 . —0.4040 0.2598 0.2141
2 -0.143 3 0.7711 0-2490 —0*0936 -0.0252 .-0.5200 0.0431
3 ■ 0*9183 —0.1809 -0.2437 0.0806 -0.2333 0.0197 0.0024
4 0.S953 -0.0052 -0.0928 0.0D07 —0*0227 0.0048 0.0002
5 0*8192 -0.2326 -0.2400 0.0587 0.3014 -0.0018 0.1229
6 -0.0609 0.7281 -0.2365 -0.0274 -0.0997 0.3893 0.2480
7 0*6242 -0.0607 0.1835 0.2564 -0.1610 0.0545 0.4734
a 0.0335 0.4433 0.0981 -0.5699 0.2606 -0.1194 0.3856
9 0*4422 -0.1384 -0.7811 0.1360 0.0366 —0.0482 0.1531

10 -0*0130 0*3528 0.3698 —0* 5540 0.0540 -0.0055 0.4287
11 0.6706 0.2416 0.6956 -0.0881 0.0031 0.0020 0.0002
12 -0.1375 0.9016 0.1243 0.0417 -0.0117 -0.0036 0.0002
13 -0.1457 0.6699 G.1S49 0.2569 -0*2286 0.2392 0.2939
14 0.9965 0.0157 0.0475 -0.0338 0.0564 —0.0044 0.0001
IS 0.8035 0.5283 0.2281 0.1097 -0.0773 -0.0073 0,0052



Table 4*5.3.3.4 Rotated maximum likelihood estimates of factor 1oadins -
Cluster IV

Variable Factor loadings
1 2 3 4 5 6

1 0.1278 0.6023 0.4071 —0.4036 —0.2703 0.0251
2 -0.2156 0.8S19 0.1893 —0.1875 -0.0986 -0.1843
3 0.9434 -0.1320 -0.0641 0.0512 -0.2694 0.0353
4 0.9725 ' —0*0023 -0.2315 0.0056 -0.0222 0.0061
5 0.6982 -0.3038 -0.4902 Q.03e6 0.3079 -0.1278
6 —0.1336 0.7613 -0.2045 -0.2498 -0.2021 0.0981
7 0.6501 —0.0606 0.0266 -0.3003 -0.0576 0.0334
Q ' -0.0002 0,2215 0.1036 0*7437 0.0051 -0.0352
9 0.1681 -0.1539 -0*8017 0.09G0 0.0011 -0.1182

10 0.1064 0.3277 0.3S44 0.2139 0.0239 0.3597
11 -0.4119 0.1752 0.8740 0.1505 0.0693 0.0727
12 0.0903 0.8174 0.1618 -0.3919 -0.1372 -0.3533
13 -0.1973 0.7731 0.1284 -0.1009 -0.2062 Q.01G0
14 0.9590 0.0004 0.2748 0.0146 0.0660 —0* 0047
15 0.S342 0.4067 0.0410 0.3121 0.0365 -0.1810

Contribution 
of each 
£ actor .

5.3084 4.1750 1.7402 0.8161 0.5931 0.4793

Proportionate 
variance 
accounted by 
each factor

0.3139 0.2714 0.1560 0.0333 0.0243 0.0247



Tab l e  4.5.
3 . 3 . 5  R e s i d u a l  m a t r i x  a f t e r  remova l  o f  s i x  f a c t o r s  from the envi ronment c o r r e l a t i o n  m at r ix  -  C l u s t e r IV

X 1 X 2 X3 X 4 X 5 X 6

1
X?

X8 X9 =*10 «—1

X 2 -0 .0 0 2 2

X3 -0 .0 0 1 1 0 .0 0 0 0

X 4 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0

X5 -0 .0 1 2 2 0 .0 1 3 0 -0 .0 0 1 7 0 .0 0 0 4

X 6 0 .0 8 94 0 .0211 -0 .0 0 6 4 0.001'Q -0 .0 4 2 5

X7 0 .0 3 43 0 .0201 - 0 .0 1 7 7 0 .0 0 4 0 0 .0 1 95 0 .1 3 21

X8 0 .0133 -0 .0 0 4 8 0 .0 0 6 2 - 0 .0 0 0 8 0 .0 1 81 -0 .1 4 2 9 0 .0 4 90

x 9 0 .0161 0 .0 0 68 - 0 .0 0 2 8 0 .0 0 0 8 0 .0 3 38 0 .0 5 4 2 0 .0999 0 .0193

X10 0 .0 0 2 0 - 0 .0 0 0 2 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 3 -0 .0 0 0 5 0 .0 0 02 0 .0 0 1 1 - 0 .0 0 0 2

X 11 0 .0001 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 01 0 .0 0 0 5 0 .0 0 0 2 0 .0 0 0 0 -0 .0 0 0 1 0 .0 0 0 0

X12 - 0 .0 0 0 9 0 .0001 0 .0 0 0 0 0 .0 0 0 0 - 0 .0 0 0 2 0 .0 0 0 0 0 .0 0 1 3 0 .0004 0 .0 0 0 4 0 .0 0 0 0 0 .0 0 0 0

X13 -0 .0 7 B 1 0 .0099 0 .0 0 9 0 -0 .0 0 2 2 -0 .0 1 8 3 - 0 .1 9 4 3 -0 .1 0 1 3 ■ 0 .1 7 87 - 0 .1 3 0 4 0 .0 0 0 2 -0 .0 0 0 6

X 14 ■ - 0 .0 0 0 7 ' 0 .0 0 0 0 O.O'OOO 0 .0 0 0 0 -0 .0 0 0 5 - 0 .0 0 3 9 0.0C33 -0 .0 0 1 2 - 0 .0 0 0 6 0 .0 0 0 0 ■ 0 .0 0 0 0

X15 0 .0 1 83 -0 .0 0 2 9 0 .0 0 0 7 -0 .0 0 0 1 0 .0031 -0 .0 0 1 4 - 0 .0 2 7 8 - 0 .0 1 0 5 - 0 .0 0 8 2 0 .0 0 0 0 0 .0 0 0 0

*12 V

0.0001.
0.0000
0.0000

0.0027

-C .0 0 0 7

"*1 4

0.0000
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Factor III Girth of cans 
weight of can©

Factor IV length of intornocle

Factor V Length of cane

Factor VI Number of intemode3

In both I?FA and ML methods, factor I was found to ba
highly correlated with pol at 12th month, c*C*s, percenters, 
brix et 12th month, sugar yield per plot and purity percen­
tage which was designated as quality factor* Cane yield
per plot, shoot count, number of miXlable canes per plot

<■
and gemination count wore found to be highly correlated 
with factor II in both the methods* The third factor was 
dominated by number of intcrno&es and"length of cans in 
FFA and girth of cane and weight of cane in ML method. The 
fourth factor is characterised by length of intornodo and 
juiciness at 12th month in PFA and length of intornodo only 
in ML method* In ML method, length of cans formed an inde­
pendent factor, factor v and number of in tor nodes another 
factor, factor VI*

In PFA 82*86 percentage of variation in tho depen­
dence structure was explained by the four common Sectors 
while in ML method 87*41 percentage was explained by the 
six factor model* The proportion of variation accounted
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by factor I was about 32*13 par cant in PFA and 31*39 par cent 
in ML solution* second factor accounted © proportion of 
variance of 29,81 per cent in PFA and 27*14 par cont in 
ML solution* The contribution of factor III was 14*39 per 
cont in PFA and 15*6 in ML solution* Contribution of remain­
ing factors ware 6*53 and 13.28 respectively in PFA and ML 
methods*

PFA and ML methods were tried for each cluster* The 
clones within eec'n cluster are lass divergent than those 
between clusters* The two methods wero tried for each 
cluster with the purpose of identifying tho factors in 
general* All the clusters gave mora or loss the same result 
viien tried with both the methods. However ML method is 
preferred as it allows the testing of tho adequacy of the 
factor model for generating the observed correlations*

The characters pol at 12th month# c.c.s, percentage# 
brlx at 12th month, sugar yield per plot and purity percen­
tage remained the same in factor I for all the three clusters* 
This factor is clearly a factor associated with quality 
aspect and contributes a major share of the variation of the 
dependant structure of tho morphological end quality traits 
of tho crop* Tha char actors which ©re moire amenable to 
change in this factor era pol at 12th month# C.C.S. per­
centage and brix at 12th month. Second factor were domi­
nated with the characters cana yield per plot# shoot count#
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germination count and number of millable cones in all the 
throe clusters while weight of cano is found to be an , 
additional character in this factor for tho first cluster. 
In this factor tho characters cano yield par plot and 
shoot count are found to ha tho characters which are more 
amenable to changes* In the cano of other factors the 
characters are not the some in tho felireo clusters. How­
ever in .all tho clusters 6 factors are found to be nece­
ssary to explain the covariance structure as revealed by 
tho ML method.

From this study it is clear that the main factor of 
divergence in sugarcane is the quality factor of which the 
characters pol at 12th month, C.C.s. percentage and brix 
at 12th month contributing more towards divergence. Hence 
this factor has to be given more importance) in breeding 
programmes on divergence. In the second factor the charac­
ters cane yield per plot, shoot count and number of millable 
canes contributing more towards divergence.
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■ SI&1MARY ■ .

Multivariate statistical techniques are very much 
useful in plant breeding programmes on sugarcane as they

1 ' " . \ -i • 'estimate the degree ©£ divergence in morphological and 
quality traits Which are intorcorrelated to varying degrees. 
Factor analysis is considered as the boot analytic method 
due to its power and elegance in studies of this type. 
Principal factor analysis and maximum livelihood method 
are two ways to extracting the factors of divergence, of 
which maximum likelihood method is considered as the best 
one as it satisfies certain properties of a best estimator 
and allows for the determination of an adequate number of 
stable factors from the point of view of goodness of fit 
of the factor-modal.

The available data on various morphological and 
quality traits in sugarcane with respect to forty eight 
varieties were utilised for the study* Tho analysis of 
dispersion revealed significant differences among tho 
varieties for aggregate effect of all the characters indi­
cating considerable variability among the experimental 
material*

Divergence analysis is performed to identify tho 
diverse genotypes for hybridisation purposes. The forty 
eight genotypes were grouped into thirteen clusters by
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D -analysis. The first cluster consisted of fifteen varie­
ties, second fivo varieties, third nine, fourth seven and 
fifth cluster consisted of four varieties* Tha other geno­
types were not able to cluster*,

Various £ act or—mo dela wore tried for tha environment 
correlation matrix as factor analysis aims to explain the 
intercorrelotions among the numerous variables in terras of 
simple relations* Factor analysis was done separately for 
the first, third and fourth clusters.

Principal factor analysis allows for tha determina­
tion of a m-factor pattern where rr. rotors to the number of 
principal components whose eigen values ore greater than or 
equal to ona (Harman, 1967). as such a five-factor model 
was fitted to the environment correlation matrix of cluster I 
and four factor models for third and fourth clusters* The 
first factor was tho same for the three clusters which was 
a quality factor. The characters pol at 12fch month, c.c.6. 
percent age, brix at 12th month, sugar yield per plot and 
purity percentage belonging to this factor. Second factor 
was dominated with cane yield per plot, shoot count0 germi­
nation count and number cf millablo canes in the throe 
clusters while weight of cane also was in this factor for 
the first cluster. Third factor was the* seme for first 
and fourth clusters which consisted of the charactors length

2
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of cano and number of in ter nodes while number of intercedes 
only in the third factor of the second cluster* The charac­
ters length o£ internoda and juiciness at 12th month belong­
ing to fourth factor vAiich was the same for tho three 
clusters* The additional factor for tho first cluster 
consisted of girth of cane only.

The maximum likelihood method resulted in fitting a 
six factor model to explain the correlation structure in 
all the three clusters. The first two factors are tho 
same as that obtained by PFA. Third factor eonsisted of 
length of cane and number of internodes in tho first cluster 
while number of internodes remained alone in tho third 
cluster* In the fourth cluster third factor was dominated 
vith the characters girth of cane and weight of cano* Tho 
characters juiciness at 12th month and girth of cane belong­
ing to fourth factor In the first cluster and girth of cano 
remained Independently in tho third cluster* But in tho 
fourth cluster length of inter node formed as tho fourth 
factor. Fifth factor was dominated by length of internode 
in the first cluster while length of can® and length of 
internode dominated this factor in the third cluster. Length 
of cano formed the fifth factor in fourth cluster, Sixth 
factor consisted of Vaight of can® in the first cluster, 
juiciness at 12th month in the third cluster and number of 
internodes in tho fourth clustor.
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Th-3 characters v&iich arc more umnablo to changes 
due to selection are pol at 12th month, C.C.o. percentage 
and bri>' at 12th month in the quality factor and cans yield 
per plot and shoot count in the second factor Which found 
to he tho same in all the three clusters studied, it is 
clear that the quality factor is tha main factor of diver™ 
genea in sugarcane*
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pc.TiAi.it. L  Between dispersion matrix

X1 x 2 X3 X4 X5 X6 X7 X8 X9 x i o X11 ' X12 X13 X14 ^ 5

X1
201.27 199.56 -2 .0 7 -4 . 0 9 -7 .5 4 164.76 -1 57 .1 6 7.35 1.13 10.11 0.56 257.24 2.04 -4 .3 5 22.05

X2
762.01 3.86 -1 .3 1 -24 .95 630.41 -436 .9 8 6.78 -1 5 .08 -1 0 .2 8 -5 .1 5 393.66 -0 .0 1 -5 .5 4 36.59

X3 11.51 13.56 27.31 12.67 6.46 -2 .1 4 -0 .1 4 4.71 -0 . 1 0 5.66 0.07 10.42 9.31

X4
16.67 36.11 • 10.88 14.92 -2 .8 6 -0 .0 9 5.75 -0 .0 6 5.36 0.05 12.99 11.44

X5
94.21 7.16 42. e i - 7 . 5 8 -0 .7 5 11.47 -0 .1 0 - 5 . 0 5 -0 . 0 9 29.05 24.37

X6
613.55 -355 .85 7.97 -1 4 .01 0.88 -4 .2 9 41 3 .e4 1.17 5.17 47.42

x 7 3265.70 -2 5 .23 35.89 140.46 12.69 457.71 4.89 14.99 59.47

X8
6.59 0.21 -5 .6 7 0.11 9.13 0.39 -2 .  33 - 1 . 2 3

X9
1.78 2.14 0.47 17.07 0.20 -0 .0 5 1.56

X10
21.49 0.94 79.79 1.04 4.60 11 .86

X11
0.17 5.85 0.09 -0 .0 1 0.53

X12
1030.19 8.29 2.05 103.54

X13
0.18 0.05 0.83

X14
10.23 8.79

X. . 17.87

Hi



Within dispersion matrix

X1 X1 X2 X3 X4

1

X5 X6 X7 X8 X9 x i o X11

. J — 

^ 2 X13 *14 *15

X1 40.19 38.16 - 0 .  60 - 1 . 2 2 -4 .7 4 28.54 -15.34 0.79 ' - 0 .0 3 2.55 0.03 35.46 0.31 -0 .9 3 2.23
X2 109.79 3.47 3.38 4.04 61.37 -156 .6 5 0.4 6 -1 .1 2 4.19 0.11 87.99 0.64 2„ 75 10.29

X3 3.15 3.70 8.22 0.83 -11.85 0.38 0.00 0.27 0.03 1.81 0.01 2.90 2.71

X4 4.88 13.05 ' - 0 . 5 3 -9 .8 4 0.37 -0 .0 4 0.38 0.05 1.1B' 0.01 3.90 3. 57

X5 49.21 -6 .7 6 -8 .7 2 0.27 -0 .4 1 0.67 0.20 -3 .5 3 -0 .0 5 10.92 9.67

X6 127.53 -4 0 .56 0.17 - 1 .4 8 2.95 -0 .0 5 60.60 0.38 -0 .9 1 4.45

X7 1895.59 -3 . 6 2 0.88 -3 .9 6 -0 .0 9  ■’ -89 .13 -0 .9 4 - 7 .6 1 - 1 5 . 9 6

X8 0.96 0.07 -0 .0 1 -0 .0 1 1.04 0.00 0.27 0 .19

X9 0.32 0.03 0.00 0.18 -0 .0 1 - 0 . 0 4 -0 .0 2

X10 ■ 3.74 0.10 9.61 0.24 0.29 1.14

XU 0.02 0.28 0.01 0.03 0 .06

x 12 143.10 0.34 0.55 13.45

X13 0.04 0.00 0.09

X14 3.21 2.87

X15 3.97



Appendix-III.

1 2 3 4 5 6 7 8 9

1. 53.23 21.76 31.76 44.55 61.56 27.93 29. 22 61.37

2. 34.49 38.49 23.37 09.25 39,79 45.56 53.61

3. 22.21 32.47 B7.30 21.01 36.45 23.97

4. -O • CD 46.27 26.94 36.40 53.59

5. 79.41 41.93 57.61 60.11

6. 41.56 34.05 151.96

7. 19.93 63.60

8. 67.50

9.
10.
11.
1 2.
13.

14.

15.



2D -values

10 11 12 13 14 . 15 16

19.99 53.04 70.06 37.15 27.43 29.48 46.59

48.36 48.52 27.79 32.55 34.83 14.52 73.04

11.09 36.39 48.02 16.61 9.29 20.16 64.37

27.33 27.01 50.65 19.92 18.12 32.69 74.22

44.43 45,19 25.82 29.60 38.49 23.72 31.36

90.55 96.10 103.35 97.88 79.07 69.22 41.14

30.41 55.49 61.00 41.75 21.43 29.00 39.19

54.93 82.41 91.09 67.94 40.45 35.16 16.58

40.73 51.46 52.59 23.36 26.78 31.61 136.79

38.94 54.95 20.77 20.64 28.35 82.13

19.22 12.55 26.88 47.96 127.51

16.99 40.44 31.43 132.70

11.89 23.22 114.18

24.86 82.75

64.16



pD -values (contd.)
T

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

1. 29.78 41.21 35.90 70.13 41.56 28.99 36.02 26.31 35.61 15.89 47.61 48.02 ’ 52.22 71.3 5 41.63 45.71

2. 39.10 14.44 27.35102.13 20.59 21.23 19.31 26.20 66.97 36.04 51.83 25.14 33.90 92.02 15.82 22.51

3. 17.03 28.44 31.81 40.50 36 .10 17.62 21.23 12.09 22.98 13.57 23.21 32.05 29.78 47.69 21.82 17.15

4. 14.33 31.68 32.57 93.52 38.42 11.50 19.39 34.6S 54.80 IS .  51 54.50 38.39 S9.53 59.16 40.10 35.31

5. 48.62 18.64 48.82 82.86 27.66 30.02 25.62 25.67 75.81 39.29 68.59 8.81 23.39 105.18 15.91 21.62

6. 73.44 72.61 34.62 200.57 71.90 40.44 64.45 80.15 131.38 62.46 115.86 76.71 114.89 176.66 86.56 108.10

7. 28.50 39.27 18.36 74.17 42.89 16.16 29.83 27.71 S3.35 .2 1 .2 7 50.47 38.72 48.16 92.26 38.44 43.69

8. 39.02 45.49 16 .90  124.38 49.01 24.54 50.57 31.49 64.20 34.13 52.75 66.84 83.75 113.40 52.78 65.48

9. 24.35 S7.54 62.93 31.68 64.46 54.49 3ij. 52 46.72 19. 30 33.69 28.44 67.01 32,14 23.40 3 3 .G2 24.96

l o . 33.06 28.01 51.04 53.06 32.92 24.66 29.18 14.46 38.30 20.76 39.70 39.55 47.30 45.33 26.69 19.33

11. 28.64 29.25 74.31 75.67 45.72 28.63 19.23 48.64 74 .16 27.76 90.01 33. S8 54.39 80.13 50.99 34.80

12. 45.16 22.01 70.08 o3.35 25.88 35.71 16.70 44.42 86 .20 43.03 87.67 20.13 33.86 95.70 30.00 22.28

13. 14.73 23.71 54.80 50.59 27.18 24.33 12.33 30.24 40.78 16.03 52.56 22.56 25.98 42.08 24.55 13.38

14. 9.51 26.19 37.82 51.93 33.80 19.30 21.66 26.75 33.10 13.15 44.25 35.20 .36.72 50.45 30. S7 22.86

15. 24.32 '21 .44 18.73 70.22 13.85 19.85 13.17 14.35 33.04 20.04 21.60 29.18 22.13 54.40 ' 5.99 14.19



2D -values (contd .)

33 34 35 36 37 36 39 40 41 42 43 44 45 ' 46 47 43

1. 52..35 30..96 33,.35 41.,78 38,.13 25. 14 56..51 60..59 51.,54 35.,41 57.,97 26.,16 43.,06 61.,65 23.,61 19.,68

2. 38..03 36,.38 25..61 27..22 45..63 32. 51 48.,72 34..51 67..19 64.,86 25.,71 33.,42 30. 24 87. 39 21..47 36.,02

3. 40,.29 34,.00 17,,63 14.,62 48..99 5. 02 67..31 50..22 37..37 18. 02 34.,75 25.,11 29.,38 67.,62 29,.16 23.,46

4. 51,.03 61,.13 41..24 37..02 55..34 26. 45 51,,39 50.,63 56.,60 48..52 40.,21 13.,87 o.,10 67.,91 -16..05 30.,74

S. 23,,07 44..23 31.,08 25..04 06,.58 30. 01 77..10 39.,99 93.,73 71.,17 31.,05 20.,sa 43.,70 116.,34 ie . .35 33.,74

6. 111..69 160..69 63..57 90.,45 38,.64 85. 69 28.,33 67..79 137.,55 125..41 94.,73 53..14 45..93 67.,02 53.,85 47,,86

7. 59,,57 64.,28 32..31 26..06 30..13 20. 71 41..85 51,.26 69,,67 46,,57 46.,31 29,,18 28.,58 55.,74 24,.07 27,.15

8. 93..39 97.,87 38..87 37.,31 11..90 41. 52 30..42 47,.94 69.,37 52..32 71..31 33,.34 34.,18 27..88 33,.71 31,.95

9. 38..99 30.,71 51.,54 27..98 101,.75 33. 37 121,,01 89,.03 29..89 35..63 37..84 67,.94 63.,69 122,,53 Cl,.99 73,.60

10. 44..38 64.,45 22.,88 42..34 62,.00 10. 54 66,,59 50,.78 41..00 19,,58 36,.07 24,.81 3-3..64 76., 33 35,. 34 24,.33

11. 37,,29 72..28 70..98 47..92 109..05 44. 57 100,,93 101..72 78,,31 03..06 37,.12 48,.57 20,.47 ISO..76 52,.09 70,.48

12. 20..46 52..47 59..78 39,. 6o 102,.63 46. 61 96,,01 80..40 87,.89 94.,00 19,.17 50,.07 36,,13 163,.79 35,.73 68,.95

13. 13..40 44..36 39.,32 25.,40 85,,52 19. ■P 8b.,,52 66,.12 43,.09 47,,34 21,.19 ■ 28,.96 23.,22 120..95 37,.71 4-"j,.97

14. .40,,91 47..60 37,.36 22..42 62..17 13. 67 73,,54 65,.01 46,.45 39,.83 27,.65 30,.71 19,.82 88,,88 34 .36 41-..43

15. 27..93 40,,53 14,.04 16,,37 32,.42 19. 35 40,.63 27,.56 31,.55 31,.59 22,.65 26,.70 33,.15 66,.63 12,.80 21 .46



2D -values (contd.)

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

16. 62.98 76.03 32.11 165.47 84.33 47.51 83.74 50.71 99.44 69.07 84.95 93.14 111.59 175.67 80.76 103.81

17. 37.60 35.44 63.76 42.50 21. 20 21.80 36.89 29.05 8.97 40.52 48.50 43.35 42. -16 38.64 34 .05

18. 45. 64 93.37 13.42 14.01 22.76 15.52 77.49 37.92 65.32 21.05 48.42 92.93 19.07 17.0C

10. 105.52 43.51 20. 6u 27.35 31.56 46.80 25.67 30. 28 51.90 49.45 87. 63 29.94 ■4 - .76

20. 102.48 00.67 68.6 J 63.70 37.71 54.16 64.61 84.08 4.-J.S6 54.13 68.50 51 .85

21. 2-1.73 24.03 20.66 72.10 37.99 59.15 24.25 44.83 82.46' 17.97 19.98

22. 15.36 14.55 60.74 19.79 49.01 24.90 48. 48 81 .65 24.26 24. 67

23. 25.64 42.96 13103 40.90 1-9.56 21.92 60.09 16.43 17.53

2-1. 47.27 29.77 32.79 23.18 40.74 72.89 13.71 15.05

25. 22.95 17.72 81.73 40.02 27. 28 45.93 46.28

26. 36.03 34.81 31.47 48. 53 32.71 31.07

27. 77.24 45.50 33. rs 27.10 36.29

28. 23.66 102.85 21.27 20.34

29. 68.50 18.33 23.57

30. 59.98 18.06

31. 6.41

cQ



2D -values (contd.)

33 34 35 36 37 38 39 40 41 42 43 .44 ■ 45 . 46 47 40

16. 134.69 125.91 55.28 73.96 13.66 64.64 33.71 63.18 113.73 77.33 113.05 61.41 75.20 30. 29 45.30 42.76

! ? . 45.32 58.08 46.80 23.06 61.99 24.37 7 3.07 70.92 37.93 40.90 36.02 36.64 20.45 85.07 43.11 46. 48

10. 41.62 57.40 33.17 34.76 50.57 24. 64 55.56 41.60 74.96 60.36 17.82 23.81 21.44 96.97 21.47 37.60

19. 63.72 65.26 25.44 31.01 11.53 35.96 20.82 32.81 51.61 47.15 52.84 36.42 35.32 31.30 24.84 19.50

20. 53.65 44.31 76.35 50.20 141.00 49.80 175.62 141.43 68.69 53.30 72.32 93.47 107.93 166.63 84.90 94.99

21. 38.90 71.21 27.50 37.34 49.97 29.41 46.76 34.37 61.04 55.66 21.91 26.44 29.51 94.64 18.69 30.22

22. 48.72 63.76 25.58 29.35 34.97 16.99 3 2.32 36.96 61.37 '45.16 26.05 16.61 8 .99 ' 60.01 20.87 23.52

23. 19.87 43.62 20.10 22.13 54. 26 26.51 50.37 47.12 43.88 49.66 28.01 28.75 18.12 92.25 21.54 30.29

24. 49.14 47.60 8.17 23.36 33.99 10.07 45.10 30.16 46.60 22.63 30.71 21.40 33.14 58. e7 16.54 20.82

25. 56.26 46.97 42.24 31.83 68.47 36.65 99.19 87.41 14.56 21.59 71.46 69.00 72.16 82.58 57.90 52.99

26. 33.68 51. 24 33.18 19.49 47.49 23.41 62.18 64.66 35.53 38.26 42.27 28.31 21.34 75.96 27.57 29.60

27. 64.70 51.37 22.87 32.52 46.11 35.96 64.96 46.72 13.22 14.26 60.24 56.17 68.07 52.42 50.67 39.56

28. 21.33 48.65 30.48 32.50 72.21 27. OC 74.93 45.99 95.54 75.84 29.39 18.39 33.32 124.73 21.04 36.43

29. 12.09 20.88 31.83 24.34 79.46 30.61 95.86 61.03 62.01 58.19 40.37 46.09 64.49 131.42 28.22 48.51

30. 63.86 81.36 66.3 2 63.52 123.40 55.49 135.69 100.96 22.51 35.35 66.70 78.41 84.92 122.01 102.67 78.15

31. 22.50 34.49 11.57 21.61 48.17 18.55 53.01 21.45 46.54 36.30 18.61 23.43 41.74 81.39 17.76 23.91



2D -values (contd.)

' 33 ’ 34 ' 35 ' 36 37 ' 38 39 ‘ 40 41 ' 42 43 44 45 .46 47 ’ 48

32. 20.31 32.35 19.68 22.60 70.47 15.20 75.58 40.23 47.35 36.97 10.70 25.54 35.97 100.69 29.22 34.03

33. 41.93 47 .76 37.67 100.57' 39.31 105.24 69.36 73.88 73.48 27.60 39.68 56.79 150.26 36.22 40.70

34. 4 4 .7B 24.03 97.64 40.65 127.65 66.61 70.01 61.45 54.22 74.68 00.40 139.72 54.20 77.39

35. 25.63 28.51 14.64 42.00 17.76 42.89 21.13 43.78 22.41 46.87 51.25 20.53 1.3.64

36. 51.70 22.76 76.96 52.67 45.69 37.46 39.24 36.57 35.63 83.73 30.53 4 3.64

37. 4 o . 62 13.98 34.36 67.47 52.61 82.16 47.62 55.64 19.35 28.76 22. 23

3B. 61.86 39.48 49.33 20.63 26.41 19.67 34.73 70.39 25.44 24.05

39. 31.86 81.87 72.98 79.53 52.33 49.14 33.97 37.76 27.96

40. 79.05 52.46 54.54 24.59 58.68 51.04 36.39 20.93

41. 20.87 72.55 77.57 67.62 76.69 66.91 57.85

42. 63.93 48.57 67.11 50.91 54.66 36.16

43. 33.49 36.88 117.64 36.10 47.74

44. 27.87 69.01 27.73 15.02

45. 83.32 39.70 42.88

46.
78.79 38.70

47.
21.14

The numbers 1 to 48 in the table refers to the code number of varieties
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ABSTRACT

Multivariate analytical technique© are found to bo 
very useful in plant breeding research to explain the 
influence of various factors on the phenomenon under 
study* Factor analysis is found to be an appropriate tool 
to identify the factors of genetic divergence. D2-analysis 
is helpful to group the divergent genotypes into various 
clusters when measurements on a number of related charac­
ters are available on a large number of genotypes such 
that the genotypes within a cluster are homogeneous with 
respect to these characters and heterogeneous between tho 
clusters*

The present study is aimed at identifying the factors 
of divergence in relation to morphological and quality 
traits in forty eight clones of sugarcane* The fifteen 
clones T*57172, Co*7717, Co.419, Coc.779, Co.7219, Coc.777. 
Ic.225, Co*6304, S-99, Coc.773, Coc.772, Co.62193, Co*62l01, 
Coc.778 and s-77 are able to group into one cluster* Four 
more clusters are able to form respectively with five varie­
ties (Co*658, Co*62175, S-105, Co.6907, Co.995) In tho 
second cluster, nine (F.l-2, Co,62174, 3-87, KHS 3296, 
Coc*671, Co*7704, Co.735, CoM.7il4, CoM.7125) in the third, 
seven (Co.6807, Co*l340, Co.527* S-33, Co*6806, B.37172, 
Co*527—M—IQ) in the fourth and four varietieo (Co.1307,



CoA.7602, Coe.705, Co#453) in the fifth cluster. The 
remaining clones arc not able to group. Among those 
clusters ere utilized for factor analysis.

a factor related to quality is extracted as the first 
factor in all tho three clusters. The characters pol at 
12th month, C.C.3. percentage, brix at 12th month, purity 
percentago and sugar yield per plot dominated this factor. 
Among these characters pol at 12th month, C.C.S. percentage 
end brix at 12th month ere found to be more amenable to 
changes duo to selection* The second factor is identified 
by the characters cane yield per plot, shoot count germina­
tion count and number of millablc canes. Apart from those 
characters weight of cane is also included in thin factor 
in cluster I* Tho characters Which are more amenable to 
change duo to selection oro cano yield per plot and shoot 
count, The characters are not common in tho remaining four 
factors. Those six factors are able to explain 66*04 per­
cent, 79.44 percent and 87.41 percent of variation respec­
tively in the first, third and fourth cluster.


