DIVERGENCE ANALYSIS OF MORPHOLOGICAL AND QUALITY TRAITS IN SUGARCANE

BY
SANTHI, T. E.

THESIS
SUBMITTED IN PARTIAL FULFILMENT OF
THE REQUIREMENT FOR THE DEGREE
MASTER OF SCIENCE IN AGRICULTURAL STATISTICS
FACULTY OF AGRICULTURE
KERALA AGRICULTURAL UNIVERSITY

DEPARTMENT OF STATISTICS
COLLEGE OF VETERINARY AND ANIMAL SCIENGES
MANNUTHY - TRICHUR
1989

DECLARATTON

I herely declare that this thesis ontitled moivergence rmadysis of morphologicha and ounlity teates
 by me during the course of reseoreh and that the theste has not previously formed the basis for the avard to me of any degree, diploma, ascociateghtp, fellowiship, or other similar title of any other University or cocicty.

Hannuthy.
$29-12-89$

CERTIPICATE

Cortifled that this thesis, entitled morvsramese
'
anabysis or morpholggical and ghlity tadits it suearcanea
is a record of remearch work cone independently by
Smt. Santhi, T, E, under my guidance and auporvision and - that it has not proviously formed the basis sor the award of any degree followship or associateghip to hor.

Dr. (Mrse) P. Garabmaty (Chasman, Advisory Boarc) Associato professor of Agricultural Statiotice (NARP - SR)
College of Agriculturo Vellayani - Trivangrum
Vellayant.
29-12-89

APPROVED BY:

Chairman:
Dr. (Mrs.) P. Saraswathi

Members:
Dr. K.C. George substituted for Sri. K.L. Sunny

Dr. S.G. Sreekumar

External Examiner

I m asoply tndebted to Dr. (Nre.) P. Garaswathy. Associate profemar of Agricultural Statistics Collego of Agmiculture, Vollayans, for suggesting the problem, expert guidenco, continuod support and encouragonont yendered during the entiro courgo of research work.

I ow my copp gence of gratitudo to tho mombors of my advisory comitteo mr. K.C. George, Profossor and Head of Dopartment of statistics, College of Vetorinery and
 K.A.U., Vellanikrare for correcting the manuscript and suggesting modifications and Dr. S.G. Sreokunar. Associate grofesgor of plant Breeding. Colloge of Agriculture, Vellayoni for his consent to uniluze his rebearch date for my t. Sc. progranme.

The asgigtance rendered by Sxi. CoE Ajithkunar, Juntor Programor, College of Agriculturg, Vellayant in Computer progrmming and enalysis is dooply acknowledyod.
try heartrul tharks are also due to my parontes, hugband and Exionds for thoir holp at all atages of thes woris.

Findlly: I m thankeul to kerale Agricultural Univorsity for the followship made avallablo to me for my otudes.

TABLE OF CONTENRS

		Pare No.
IHTaOnction	-••	$1-3$
GEyLIM OF Letanture	-**	$4-25$
Matemals nio memods	-**	27-51
Resulis nid discusatom	-**	52-109
Suthry	6.6	10-112
Reserexcrs	**	114-122
Appmplees	-	123-130

Table No.	Title of the table		Pace 80.
3.1 .1	List of sugarcore varieties taken for the stuciy		29
3.2.1	RHOVA Eor RBD	1	32
3.2 .2	marrova of p variobleg		32
3.2 .3	Analysis of coveriance of RBD		33
4.3.7	Mean values of varlous characters and their test of aignificance W.r.t. 48 clones of sugarcane		53-58
4.3 .1	phenotyple correlation matrix		60
4.3 .2	Genotyple correlation matrix		61
4.3 .3	Environment correlation matrix		62
4.4 .1	Cluster moans of vartous clones of augarcanc for genetic diverm gence		63
4.4 .2	dverage intra and inter cluster D^{2}-values		64
4.5.1.1	Enviroment correlation matris Cluster I		66
4.5 .1 .2 .1	satent roots of tho enviromont correlation metrix - cluster I		68
4.5.1.2.2	Frincipel factor solution in the 22nd itaration for the environment corrolation matrix - Clustor		70
4.5.1.2.3	Rotated principal factor loadinga for the onviromitent correlation matrix - Clustor I		71
4.5.1.3.1	Initial ostimates of factor lood ings and corrogponding unique veriancos for 6 factors of the onviroment cormelation matrise cluster I		73

Tabla ta.	Thele of tho teble	Pego 10.
4.5.1.3.2	Raximum likelinood estimates of factor loadings and unicue variancos in the 73rd itorem tion - Cluster I	75
4.5.1.3.3	Maximun 1ikalihood ostimaton of factor loadings and uniquo veriances in the 74th fteration . clugtar I	76
4.5.1.3.4	Rotatad maximun likolincod entimates of factor loadinge Cluater I	77
4.5.1.3.5	nesidual matrix after removal of siz factors Exon environmont correlation matrix = Cluater I	78
4.5.2.2	Enviroment comrelation matrix: Cluster III	81
4.5 .2 .2 .1	Latent roota of the enviromont correlation matrix - Cluster III	83
4.5.2.2.2	principal fector solution in the 52nd iteration for the environmient correlation matrix Clustar III	84
4.5 .2 .2 .3	Notated principal factor loade ings for the enviroment correlation matrix $=$ Clustor III	85
4.5.2.3.1	Inteial estimates of factor loadinge and corresponding uniquo variances for 6 factors Glupter III	88
4.5.2.3.2	Maximum likelinood ostimates of factor loadings and undquo veriances in the 206th itaration CIuster III	89
4.5.2.3.3	Naximum 1ifelifrood estimates of fector loadings and unicue varianees in the 207th iteration Cluster III	90

Table No.	Title of the table	Page No
4.5 .2 .3 .4	Rotated maximum likelihood estimates of factor loadings Cluster III	91
4,5.2.3.5	```Residual matrix after removal of six factors from the environment correlation matrix - Cluster III```	92
4.5.3.1	Envirorment correlation matrix Cluster IV	95
4.5.3.2.1	Latent roots of the environment correlation matrix - CIuster IV	97
4.5.3.2.2	Principal factor solution in the 6th iteration for the environment correlation matrix - Cluster IV	99
4.5.3.2.3	Rotated principal factor loadings for the environment correlation matrix - Cluster IV	100
4.5.3.3.1	Indtial estimates of factor loadings and corresponding unique variances for 6 factors Cluster IV	102
4.5.3.3.2	Maximum likelihood estimates of factor loadings and unique variances in the 67th iteration Cluster IV	103
4.5.3:3.3	Maximum likelihood estimates of factor loadings and unique variances in the 68th iteration Cluster IV	104
$4.5 \cdot 3.3 .4$	Rotated maximum likelihood estimates of factor loadings Cluster IV	105
4.5.3.3.5	Residual matrix after removal of six factors from the environment correlation matrix - Cluster IV	106

LISE क ApmbDRCE

Apeoncise ma,	3t+20	Paze ${ }^{2}$
3	Setreon disperstor natest	123
IT	Whthin dioperoton matrix	125
ILT	$y^{2}-$ values	$125-130$

INTRODUCTION

Sugarcane ia an inportant cash crop of India. It occupies about an area of 9800 hectareg in Kerala with a cane production of 461000 tonnes por year. The complex factors governing sugar production are mainly the area under the crop, varieties, yield, recovery percentage. climate, pest-disease attacis etc. A knowledge of the nature and megnitude of genetic diversity in morphological and quality traits is important for careful selection of paronts for bettor production. Correlation studies will holp to get a knowledge of association among various traite of the crop.

Nultivariato statistical methods aze usexul in plant breeding programes to explain the influence of varlous characters on the phenomenon under study. when multi varlables aro measured from each unit tho analysis is collectively made through this method. The multivariate analysis of dispersion is helpful to find the variation among a number of variables taken together.

Mahalanobi's D^{2} statistic la a moasure of group distance based on multiple characters. The diverse genom types for hybridization purposes are identified by this method. The genotypes within a cluster aro less divergent than those in other cluaters. Clusters separatad
by the largest statistical distanco show the maximum divergenes.

Factor analyais is a multivariate anolysis used to explain the dependence structure of a set of variables interme of cortain common factoris. The cormon factors generate covarlances among the observable responses. In factor analysis a hypothesis about the covarianco-correlation structure helps to identify fundemental and meaningful dimensions of a multiveriate domain. The comnon factors are necessary to account for the intercorrelation among the variablea, a untque factor roprasenting that factor of a variable not ascribable to its correlations with other variables in the set. Maximun likelinood method ie found to be the most efficient method of extracting factors, though principal fector analysis is commonly used. Maximun likelinood method also providos cests of significance for the datemination of the adequate number of common factors. The prosent study is conducted with the following objectives:

1. To identify the number of factors responsible for genetic divergence in sugarcane by applying factor anolysis methoa.
2. Comparison of the number of fectors of divergence obtained by principal factor analysis and factor analysis by marimum likelihood method.
3. To group the atfferont clonos of eugarcano by D^{2} analy Bis.

REVIEW OF LITERATURE

REVIEN OR HITERATURE

Rultivariata otatistical analyais is vory usoful in biological resaarch to explain the influmen of various factors on the phonomanon undar study, cenecic varipbilitity is of considerable importanco In any plant breaing progremare for crop improvament. In plant breading trials, as a lerge number of varideles are involved, affective breeding celle for the knowledgr of genatic variability emong parents with regard to those charectors which are sought to bo improvec, Genstic divergenco among parents is inmortant bacause a cross involving ganatically diverse paronte 1s 1skely to produce high hotorotic effect and also more veriability could be expectect in the eegrogating generations. In auch stituation, factor analytic mothode will give an insight into the fewer causal influences seaponsiblo for differentiation among genotypoe or populations.

2.1 Theoretical studies

2.1.1 anelysis of alspersion

The multivariate analysis of veriance or MANOVA began with the derivation of tha simultaneous samping distribution of the variances and covariances in aemplos From a meltivarlate normal popuiation (wibhart. 192e).

Hotelling (1951) found the distribution of a randon variable m^{2} which is the multivariate extension of studont's t distribution in a mulivamate nomal population.

Hitus (1932) extenced the tert basod on T^{2} statistic lnown as Wilk's lambda ariterion.

Bartleti (1934) appiled it for tegting significance of treatmonts ulth regard to two variables in a varietal trial and indicated its general use in multivariate tests of significance. Wilks (1935) and Hotoliing (1956) found it useful for testing the independence of soveral eroups of varieter.

Bartictt (1947) approximated the distribution of lambda statistic to a chi-square.
2.1.2 D^{2}-Statistics

Divergence analysis is periormed to identify the diverse genotypes for hyoridization purposes. Clustering by p^{2} statisties is useful in this contert.

A measure for group distance based on multiple characters was given by Mahalanobis (192B).

Mahalanobis (1936) published a paper on 'generalized distance', which has become the standart measure of dism tance botween two populations, when all the observed
charactere are quantitative.

Rao (1948) In his classic work, attempted to generalize the D^{2} statigtic.

Rao (1952) describer Tochar's method of foming the clustors.

Everitt (1979) discussed In detall tho unrosolved probloms of cluster analysiz.

Many mathods for clustering objects into groups were sumarised by everett in 1900.

Arunachelam (1981) made an exposition of the theoreticel encepts behind tho genotic distance.

Krzanowsi (1983) dorived a unique measure of dism tance betwion populations on the basis of a mixod lata - a mixture of quantitaitive and categrised data.

2.1.3 Fector analysis

The method of fector analyaio is widely used as an exploratory tool to reduco the dmonsionality of multivariate data. Factor analyois can applain tho causativo forces reaponsible for inter and Intre-gpecific difforontiation. The method is potent enough to distinguiah the forces of natural and humen selection causing the divorgence

In a particular species.
The theory of factor analysis begins from Spearman's two Eactor theory, which assumes that the inter-relationships of all the veriables involved could be accounted for by a single underlying general factor and group factors which are common to some of the vartables but not to all of then. In addition to this, a third type factor which are pecuilar to ainele variables alone called specific factors vas also differentiated (Spearman, 1904).

Thunstone (1931) generalized Spearman's approach to more than one causel factor.

Roff's suggestion of insertion of sMC (squared multiple cocrelation) in the principal diagonal of the correlation matrix has been largely advocated by Cuttman (1936) because of the property of SHC that it is the Iower bound for the communality.

Holzinger and Harman (1941) presented the principal factor solution of factor loadings.

Thurstone (1947) traced the objective of the factor pattern as follows: "The object of a factor problem is to account for their inter correlations, in terns of a
cmall number of derived variables, the smallest possiblo number thet is consistent with accoptablo residuad orrors".

Kendall (1950) made a useful distinction betweon deperderce and interdopunonce analyois in matesvertate analysio. anamais of demandenco ls concerred with hov a certain mpecified group depond on othor and analyas of intomdependence: 13 concermed with how a group of vaitables are melated among thomselves. Factor analyaie 2 s lateg typa of multuariace analysis.

Enwt (1952) has given a full amount of tests of signteleance in factor analyola doveloped upto that tino.

The computation scheanes of various factor anolyshs methous wore providea by Eruchtor (1954).

Rao (1955) introduced the concept of basite of a vector space for the characterization of fectar analyaio. In the first characterization due to him a fector varteblo explatns an much of variation possible of the data Which leading to principal factor analysis. In second charamerdation, he considored the factor variable as the one withon is predictable Erom the originai measuresments with the mesimu possible precision. leaning to oanonicel Eector anelysio. For this solution tio squared canonical correlation betwen the Inear Eumetion of
hypothotical factor variable and the linear function of moasurable variablos is maxdmisod.

Factor analysis as a branch of multivariato analysio Ls very useful in dotermining the namber and nature of Causative influoncos responsible for tho inter-corrolation of variables in any population. cesentaily, it aims at explaining ap:p corrolation matris (p variateo) by moens of a fowar numbur k (k) of maningful factors (Hownell. 1961: Lawicy and Henvell. 1963).

In the two subseduent papers, cattoll (1965 a and b) attempted an excellont nonmathematical introduction to factor analyos. in preferrod to cell the analysis with closed model winich accounte for all variances of variables in tems of what is in the particular sampla as componont analyois and with the opon roolol, wich ednite. booidos the comon fectors, unexplained apecifsc factors as fector analysit. The uses of fector analysis in modern resoarch as hypothesis creating and tosting mothod ware also dism cusged.

Hommevle (1965) In his papor conaidared tho problom of computing estimatos of fector loadings, spocific veriancos, and commelitios for a factor analytic mocel. Iterative formuleo woro dovaloped to solve the maximum
likelinood equations and a simple officient method of its implemantation on a digital computer was describod.

A genorbl description of tho concopts. theories and technigues of factor analyals has been given, By Hamen (1967).

Joresitog (1969) gave the relovant reaulte for conEsmatory factor analyois, where the matrix of factor loade inge is uniqualy identified by priori rostrictions (usually by astting particular loadings to zero).

Mc Donald (1970) made purely'theoretical comparison anong tho throe factor score construction methods namaly principal factor analyais canonical factor analysis and alpha sactor analysis. According to him. in choosing a factor nodel, there are in Eact, at loest throo neparate cholces to ba mede which are ralatively incepondene. The Eirgt in the choico of basis in common factor space ana it is the cloarest defining cheracteristic of the threo systems discussed. The second is the choice of an iterative elgorithon for the detemination of communalitics/ uniquenesses. The third is the decision rule for the number of common factors.

Jorestog (1971) has given estimation proceduros for factor models involving several populations.

Joreal:og and coldbergor (1972) have dovelopod a generalized least-squares procedure, The estimates are scale free and aoymototically equavalent to the masedmum lifelinood estimates when the cistribution is multivarlato normal.

A nonmotric approach to factor analysis has bean considered by Kruskal and Shepard (1974). Although this techniqua hes some attrective theoretical proportios, it appeare to be very sonsitive to randon variation in tho date.

Swain (1975) constdered a cleas of asymptotically efficient ostimators including both generaliced loest square and maximum likelihood as special casea and derived their large-3ample prorarties.

Joreskog (1977) presentes a general, all-encompasing seriea of methodg for orthogonal factor anclysis by the least squares and maximum likelinood methods. Mony varieblos in the goctal sciences involve latont and structural veriables and Joroskog (2977) devaloped estimation procedures for soveral such methods, working diractly from the covariance matriz.

A fow of the many methode davoloped for factor extrection arc centroid method (Thucstone, 1947), principal
factor method (Karl pearson, 1901), maximun likolinood mothod (Lawley, 1940) etc. zero wo are consicoring prinalpal fector and meximum-11kelihood methods.
2.1.3.2 Erincipel Factor Mothod (EF method)

The iltorature on fector analysis contain a number of alternative methods and procedurea for computation. Anong these, principal factor method has sevaral attractive features. Each fector extracts meximum emount of varlance and gives the smallest poscible restduale. How ever, this method 10 proferred in the prosent stuay mainly owing to cmputational facilitios.

Fioteling (1933 a) developed the principal ares mothod wich provides an optimal solution at the suggeation of Kolley (1935).

Hotelling (1933 b) suggested tho use of this method with eithor unitics in the principal diagonal. The resulting factors are callod "principal components" and aro used to reproduce tho score matrix rather than tho correlation matrix. The nuber of principal compononts oxtractod is equal to the number of variebles in tho study.

Hotelling (1935) Ceveloped an iterativo mathod of obtaining tho loadings winlch can be carricd to any degrco of accuracy.

Princtpal component analysis is conetimes modisied by the insertion of comanalities in the ayagonel of the Correlation matrix and Rao (1955) called this mathod as principal factor analyais.

Hamman (1967) exhibited an outling form of the numerical calculations of the method with an illustrative oxample. The first requirement in applying the principel factor mothod is to dotermino soma auftable estimates of commellty. According to him DF method can bo conoidered es an excellont reatuction of the correlation matrix which provides a basis for rotation to seno other form of solum tion. Tho method also has the advantage of giving a mathematically unique solution for a given correlation matrix.

Schilderinck (1978) has given a complete picture of the gecnatric and olgebraic approaches of principal Factor analysis.
2.2.3.2 Raximunnilkelinood Mothod (ML method)

The distinction between the solutions obtained is using the principal factor method and maximum likelihood method is that fommor corresponds to a priori cholce of commalifiles and the latter, the number of common fectors. The ML solution is based on fundemontal otatistical
conalderations. It considers erplicitly the differencos between the correlations among the obsorvad vartablos and the hypothetical values in tize univorso Erom which they were gempled.

Tho efforts to provide a gound statiotical baels for factor analysis were made first by Lawloy (1900, 1942) who suggested the usa of "maximum likalinood mothod", due to Fisher (1922, 1925), In order to estimate the univarba Valups of tho fector losdings from tho given empirical data. Lawley's mit method ia possible only whon the variates are nomaliy digtributod. It requines a hypotiosis rogarding the number of comion factors.

Lamloy (1940) and Reo (1952) had ghow that ma solution" goes to and Ero botween communalitios and number of Eactore until it hits on the combination which yields the mallest residual.

Kaiber (1960) recommended (aftor considaring statio atical tignificanco, algobraically necessary conditions) the number of conton factors as the number of olgen values greater then or oqual to one in tho correlation matrix. if found this number to bo ebout onemsizth or one-third of the total number of veriabies. The exprossion of Ry mothod in factor analyets becones more moaningful and clear with this foundation.

A moro condeneed dorivation of lix method woro appeered in a mook by mawley and farwell (2963).

Fienmorle (1965) found that Rao's paccoduro convargos more rapldy than Lewlay* m procedure. Fonmorle (1965) in his peper considored the problen of computing esetnatos of factor loadings, gweiftc variances and communalities for a factor analysis modaln Iterativo fomulao ware couelopod to solvo the liz oquations and a simplo and effictont mothod of implomentation of thia method on a digital computer was devolopod by him.

The Min procedure romened imprectical gor all but for tho mallegt problens until the work of Jorcelkog (1967. 1969). as the process converge vory blowly.

In vorockog't (1967) ML method he procsodo oystom matically, fitting orn. tho. .o.... factote ancl toseing at each stage by a ch-acquare togt to geo mhathor furthor Eactors aro roçulret. It also carrian a varimar votation at eech otrago. the also presonte an exanplo to compane the ME fector ogtimates with those given by principal compo nonts.

Kondall ot al. (1983) roportod that tho Mis colution momin scalemseo if restrictions aro frposod won tio paramoters.

2.1.3.3 Pactor rotation

Kaiser (1956) proposed the 'varimax' mothod as a modification of the quartiman metrod mich nearly approm stimates simple structure. tie found that a variable with commalities twico that of another will influonce the sotations by four times as mucho

As a last step in factor analyoiso Cattell (1965 a) explained the rotational technique lifo 1. simplo struce tura and 2. Confactor rotation. In simplo atructure each Eactor affects only a few veriableg. But in confactor rotation real factor doos happon to operate on all or most of the variables in the sample.

Cattoll and Khanna (1977) deseribed difEeront approaches to factor rotation in which ho introduced ono kind of rotacion critarion ic, confactor rotation, winich arises when a second factorisation on tho ano varlables whth another group in involved.

2.2 Appliéd Studies

Lawley (1943) applled the RL method to factor anoly sis of data collected for research in caucation. This in a satisfectory method and deciding tho nubse of factors required to account for the scorea obtained whon the number of indivicuals tested is raasonably large. In this cabo
two general factors are needed to explain eight tests.

Murty and oudri (1966) studied genetic divergence In a collection of forty selfacompatible types of Brassica campestrics varietios using Mahalanobis D^{2} statistic. The forty varieties were grouped into nine clusters.

Arunachalem and Jewahar (1967) studied the diversity in a population consisting of eighty genetic stocies of sorghum from 16 countries utilizing ten characters by multivariate analysis using D^{2}-statistic. The population was divided into three physiological groups.

Murty and Arunachalam (1967) have conducted a multivariate analysis of genetic divergence in the genus sorghum (wild and cultivated types) using quantitetive Characters related to fitness under natural and human selection for the diversity found in this genus. The factors were obtained by the centroid method. Factor analysis revealed the adequacy of the three factors for differentiation.

Singh and Gupta (1968) assessed genetic divergence, using Nahalanobis D^{2} statistic for yield and its components In thirty three streins of upland cotton evolved from seven diverse crosses. The thirty three strains were grouped into nine clusters.

Singh and Bains (1968) ostimetod genotic divorgence In tuonty varictios of undand cotton using Mahalanobis D^{2} statistic. Tho variotios wre groupd into five cilu stors.

Shetty (1969) dotgmined the factors affocting tho use of Eertilizons anong the Eerners by using peincipal component method of factor analycis. The study revtalad that the firat Eour factors ase sufficient for the explam nation of the observed inter-farm variations in the use of fortilizers.

Fsm and penvar (1970) usod Hahalanobis 0^{2} and canonical anelysis to asees tho naturo of divargonce and tes rolationshte with tho components of gonatic variation in rice for four charactors. The first tho canonical roots accounts for 45 per cont of the total vartabllity.

Gupta and singh (1970) gtudied gonotic divorgonce for yield and ito componants in green gram uging Manalanobis D^{2} techigue. Tho varioties differod aignificantly for the nine cinaracters considored. The 36 gerains ware grouped in 10 clusters depending on similarities of thoir p^{2} values.

Upadhyay and Murthy (1970) estimatod genotic divarm genco in seventy varieties of poarl millet using Mahalanoils D^{2} statistic.

Nohndiratta et al. (2971) studied ganetic divargenco in thirty varieties of sorghum uaing hahalanobis D^{2}-statistics. The varieties were grouped into boven clusters.
tialton (1972) used factor analysis in daentifying tho morphological characters related to yiold in spring wheats.
singh (1973) usod controid mothod of factor analysis In uplend cotton to study the evolutionary pattorn of this often cross pollinated crop. Thirteen charactors wore included in the study. The first threo factors accounted for 75 per cont or moro of the total communality.

Abreham and Hoobakit (197a) applied the technique of factor analysis to extract basis factors underlying the observed soil variables. Scores bagad on four undorlying fectorg could ba used for comparison of inter soil variables.

Chauchary and Singh (1975) estimated genstic divorgones in sixty four barley varietios using mahalanobis D^{2} statistic. The varieties were grouped into ton clusters.
potor and Rai (1976) studied genetic divergenco In twenty five varieties of tomato. The study revealed
that thore is no apparent parallelism betwean genotic and geographic divargence. the componant characters locules por fruit and plent height were found to be thmprtant for the oxpregeion of gonatic divorgence.

Martin end Eaves (1977) adapted tho enalysia of covarience structures to the simultaneous merimum ilkelide hood eatimation of gerotical and enviromental factor loadinge and apecific variances. The goodnass of itit is tested by cint-square and atandard orrors of paramoter estimates can ba obtained.

Nair and Cupta (1977) ascessed the nature and magnitude of genetic diversity of 32 varietios of oats by multiveriate analyeis using D^{2} statistics. The 32 veriectes could be clustered into fourteen groups. Out of these. Five clusters ware found to be more divergent than the othere.

Denis and Adams (1978) performed a principel factor anslysis on 22 morphological and yieldmatormining tratta of 16 cultivare and atrang of dry boans. shose were at least two or threa principal factors to be examined for biological meaning and from which to seak insight into the basic atructural coesten of bean plants.

Gaur et al. (1978) studied gonetic divergenco in potato. Stsity eeven potato varietios were groupad in 15
elusters on the basis of D^{2} values. The charecters least Influenced by the selection were mainly responsiblo for ading divergence to the population.

Tikka and ngawa (1978) usea corzelation in 28 gono types of lentil for factor analysis through the prinoipel componant method as suggested by Harman. More than 90 per cent of the veriability was extracted by two factors. whith exch factor, traits were ranked according to the zelative megnitude of factor loadings.

Kutigar and 6 ingh (1979) measured the nature and magnitude of genetic diversity using Mahalenobis D^{2}-statiseic for a set of oight charecters relatod to yield and fitness in forty indigenous and exotic strains of chickpaa. The population was grouped Into ten diferent elustors.

Dixst (1980) conducted a study on genstle divergence for yield and its components in lentil using Mahalanobis D^{2} technique. The 21 varieties ware groupad into oight elusters dapending on D^{2} estimates.

Sundaram ot al. (1980) used centroid method of factor analysis in cowpe to study its evolutionery pattern. Tho analyois dividad the nine cheracters into three groups of factors winch accountect for 98 per cont of total variam tion.

Singh et al. (1980) studiod genetic divergence in 30 varieties of tomato using Mahalanobis D^{2} tecinique for yiela and its components. the varieties wera grouped in eight ciusters.

Sawant et al. (2982) utilized phenotypic correlem tions among seven traits in 90 aivarsifted strainc of triticale for factor anelysis using principal component method. The factor analyals grouped the seven varlables Into two main fectors which together accounted for about 46 par cent or eotal divoreity

Singh et al. (1902) eatimeted genstic a1vorgance emong 45 exctic and 27 indigenous strains of chickpea using Mahalanobis D^{2} statistic and 14 homogeneous genatic grours ware formed.

Jatasra and Paroda (1983) studied genotic divorganco in 26 hybricis of wheat using Mahalanobis D^{2} statistic. All the hybrids got grouped into nine clusters.

Kendall et 31. (1983) compared the ML factor estimates with those given by principal conponents by applying it to fifteon charecteristics of 46 applicante for a post. .

Anand and lawat (1984) studied gonetic divargence in fifty varieties of brown mustard using Mehalanobis D^{2}-atatigeic. The varietios ware grouped into nine clum aters.
kukadie ot al. (1984) conducted a study to determiro the importance of various traits for yiold improvenont in Eorage sorghum. Conotypic correlations ware subjected to factor analysis through the principal componont mothod. Factors accounting for at least 20 per cent variability were retained and arranged in orcior of variance.

Singh and Gill (1984) assessed genotic divergenoo among sixty two vardetion of upland cotton using hahalanobis D^{2} statistic. The varieties wore grouped into twive clum pross.

Bartual ot al. (1985) used factor analysis, principal component analyois and clustor analysis to idontify sots of varietics botier adepiciole to the apecific emviromontal condttiong. Results obtaired from Mi Eactor analyois and prineipas component anelysio ware found to be similar.

Dobhal and Herihar Ram (1985) estimated gonotic Givergenoa in thirty two variettes of pea using Mohalanobis p^{2}-stetistic. The verieties wero grouped into oleven clustors.

Indal and Gupta (1935) stualed genetic divergonce In thirty ning straino of sodocr cotpea using Mahaianobis D^{2}-btatistic. The stratne were groupad into five clustore.

On the basia. of muleivariato analysis. Valsalakunari ot al. (1985) grouped 62 cultivars of banane into 0 clusters conadering 22 characters simuleanoously. The charaocora pulp/peel xatio on volume besis followed by waight of fruit contributed the maximm towerds divergence.

Morcy and George (1987) studiad genette divergence In 30 culsnery variettes of banana by uging D^{2} analysta and canonical analyois. The varteties were grouped into twalva clusters using D^{2} analysis.

SIngin et al. (1981) conducted a ntudy on the selection parameters in sugarcane. In 40 varicties of augarcane there wes a wide fange of phenotypic variation for aix of the elght traits studied, the axcoptions boing atalk weight and top woight. The phenotypic coafficiont of variation was higher than the genotypic coefilcient of variation.

Sukumaran et al. (1982) conducted a study to estim mate the loss in weight and recovery of sugar in the lotged crop of sugarcame. The length of canes, number of mallable canes, wetight and recovary of sugar were found to be reduced as the canes locge.

Nair et al. (1982) conducted a study on the performance of eugeroane varietien in Korala.

25

punda et al. (1983) stualed gonetic alvorgenca in sugazcane using Mahalenobia D^{2} technicuo and ghowed that genetic divergence to be high for all the twelvo chacactore atudied 13 41 genotypes of sugarcane. The 41 genotypas were grouped into 10 clusters deponaing upon D^{2} estimates.
singh et al. (1983) conducted a geudy on variability sor yield and quality in sugarcane and indicatod a wido renge of variability for number of tillers, number of minlable canes. sucrose percentege in juice and care yield. Tho number of tillars and number of millable cenes were posttively and algnificantly correlated with cana yield.

G111 ot al. (1983) conducted a charactor assoctation analysis in 28 Eoretgn varieties and two Indian vartoties of sugarcenc. The study ravealod that parcentage commorcial cane augar had a positive correlation uith cane yiela, juice purity, aucrose percentage and number of millable canes.

Nagesware Reo et al. (1983) studied ganetic vartabillty and charactor ascociations in 19 crosees of sugar:Gans progenies. Vartanco was high for stelk length whilo coofficient of varlation was higher for clump wotght and millable atalks/clump.
punia et al. (1983) conducted corrolation and path anelysis on 41 genotypes of sugarcane. Cane yield/clung was significantly ascociated with the number of tillers/ clump, the number of millable canes/clump, cane thicknsss and cane woight.

MATERIALS AND METHODS

MATERIALS AND METHODS

3.1 Materlals

The morphologicel and quality traite in the material used for the study consiste of 49 clones of sugarcane (Sacharum officinarum io) collected from the germplasm maintained at the sugercane Rosearch Station, Thiruvalia. The clones were planted in a randomised block design with threa replications, during January 1981. This experiment was the projoct work of sreokumer (1996) for his ph.D. programa. Data on the following characters were collected from the plant crop.
$\%_{1}$. Cormination count: the percentage of sprouts in each plot on the 45th day.
x_{2}. shoot count: The number of shoots por plot on the 180th day.
x_{3}. Eris: one iltre of juice was taken and the brix reading recorded using a stenclard brix spindle. This was estimated at the 2 th month.
x_{4}. 8 ol percontage: Estimated by horner's dry lead mothod.
x_{5}. purity percontage: purity of the juice was expressed as the percentage of pol to brix at the 12 th month.
*6. Number of millable canes: Number of fully mature. healthy canes per plot at the time of hervest.
x_{7}. Juiciness: Ustimated at the 12 th month. A sample of two hoalthy canes was cut from each plot. crushod in a power crugher and the juice extracted. Juiciness was estinated as the volume of juice (mI) obtained from one kilogram of cane.

To. Length of intemode: Mean length of the middle most Intornode from tho randon sample of 5 canos.
$x_{9 .}$ Glrth of canos Pean girth of the midale most intoznodo from the Iancom sample of 5 canes.
B_{2}. Number of intornodes: Mean number of internodes per cane from the random sample of 5 canes.
x_{11}, beight of canes Moan weight of cane from a bample of 5 cenos solected at random from eech plot.
x_{12}. Siela of canes keight of millable cenes per plot at the 12 th month.
X_{13}. Eength of cane: Mean length of cene from the random samplo of 5 canes.

K14. Comercial cane suger percentage: C.C.S. was dotermined as per the following formula suggested by Mathur. at the 12th month.

$$
\begin{aligned}
& \text { C.C.S. }=S-[0.4(B-S)] F \\
& \text { where } B= \text { Brix } \\
& S= \text { Pol percentage } \\
& F= 0.73-\text { Factor relative to fibre percen- } \\
& \text { tage of cane }
\end{aligned}
$$

X_{15}. Yield of sugar: Sugar yield per hectare was calculated by multiplying C.C.S. percentage by cane yield per hecm tare and dividing by 100.

The varieties taken for the study are listed in Table 3.1.1.

Table 3.1.1 Sugarcane varieties taken for the study

Code Number	Name of variety	Code Number	Name of variety	Code Number	Name of variety
1	Coc. 774	17	Coc. 777	33	Co. 7704
2	F.1-2	18	S-105	34	COA. 7601
3	T. 67172	19	S-33	35	Co. 62198
4	Co. 658	20	M.S. 6847	36	Co. 62101
5	Co. 62174	21	C0.740	37	C0.6806
6	Co. 997	22	Ic. 225	38	Coc. 778
7	Co. 6807	23	Co. 6907	39	B. 37172
8	Co. 1340	24	C0. 6304	40	Co. 1305
9	C0. 1307	25	CoA. 7602	41	Co. 785
10	Co. 7717	26	S-99	42	Co. 453
± 1	Co. 62175	27	Coc. 775	43	CoM. 7114
12	S-87	28	KHS 3296	44	S-77
13	Co. 419	29	Coc. 671	45	Co. 995
14	Coc. 779	30	Coc. 771	46	Co. 449
15	Co. 7219	31	Coc. 773	47	Com. 7125
16	Co. 527	32:	Coc. 772	48	Co.527-M-10

3.2 Mathociology

3.2.1 Structure of multivariate observations

Multivariate analysis is concernod with analysing muitiple moasurements that heve been made on one or several semples of individuals, and as ouch it deals with the jointness of p measuros on n eubjecer.

The mathematicel model on which most of the multivariate procedures are based is on the assumpeton of multivarlate nomal distribution ($m_{o} \mathrm{~m}_{\mathrm{A}} \mathrm{d}$.). This assumption of m.n.d. for multiple measures con be justified by the same central linit theorem argument that leads to the assumption of nomality for a univarlate neasuroment. "The multivariate normal distribution often occurs bacause the muitiple measuremants are sums of small indapondont offects" (Andercon. 1953).

Measurements on biometrical characters for n varieties replicated of times wore conoted by $x_{i j k}$ where
 Suppose the random variables x_{4} of interest havo a multivariate nomal aistribution with moan $\mu p \times 1=\left(\mu_{1} \mu_{2} \ldots \ldots \mu_{p}\right)$ and covarianco matrix Σ Exp $=(\sigma 1 j)$. If the maburemonts of interest are in widely different units, a more accurate picture of dependence pattern be obtained by standardising
variable as $z_{i}=\frac{x_{i}-\mu_{i}}{\sigma}, 1=1,2, \ldots$ P. Then analysis of the dependence structure of $z_{1} \ldots z_{p}$ which is given by the correlation matrix y of $x_{1} \ldots x_{p}$ is dore. Thus the observed correlation among variables constitute the original data.
3.2.2 preliminary statistical analysis

The date were eubjected to multivariate analyote of a randomised block design with the Anova model as

$$
x_{1 j k}=\mu_{1}+t_{1 j}+b_{i k}+e_{i j k_{k}} i=1,2, \ldots p
$$

where μ_{i} is the general mean, $\varepsilon_{i j}$ is the effect of $j^{\text {th }}$ treatment: $b_{i k}$ is the $k^{\text {th }}$ block effect and $e_{i j}$ is the error component. with respect to the $i^{\text {tin }}$ character and $e_{i j k}$ are normally distributed with mean zero and constant variance.

The least square estimates of the constants of the model are

$$
\begin{aligned}
& \hat{\mu}_{i}=\bar{x}_{i \ldots} \\
& \hat{t}_{i j}=\bar{x}_{i j}-\bar{x}_{i \ldots} \\
& \hat{b}_{i k}=\bar{x}_{i k}-\bar{x}_{i \ldots}
\end{aligned}
$$

Source	d.E	M. 5.
Glocis	9-2	
rreatmonte	$\mathrm{n}-1$	s_{t}^{2}
Erros	$(n-1)(q-1)$	s_{0}^{2}

3*2.3 Analysis of disporetion
Multivariate analysis of varianco vas first dovom loped by wilke (1932 e). Analysis of diaporsion is tha process winin involves the technigus of analyeing the variences and covariances of variables in multivariate case (RaO, 1952). The total dieparsion La spite up into various components as follows.

Table 3.2 .2 MANOVA of pariablee

Source	d.E.	Disporeion matrix
Doviation from hypothesis	$n-1$	B
Error	$n(\mathrm{p}-1)$	W
Totel	np-1	

The critertion arrived at by tillks (1932 a) through the generalised likelihood ratio principle is given by $\wedge=\frac{|\operatorname{dan}|}{\mid \text { k }+B \mid}$
where W is the within dyepersion metrix
3 is the batwean diaporaion matrix
Tho statistic used for testing tho honogeneity of treatment moms for all the characters daken together 1 g given by $V=-\operatorname{mog}_{e} n$
whece V is distributed as χ^{2} with $(n-1)$ p degrees of Erecdon and $m=n q-1+\frac{(p+n)}{2}$ (Bartlett, 1947).
3.2.4 Estimation of correlation maerdx

Tho phenotypic, anviromment and gemotypic corrolations were estimated from the following analysis of variancan coveriance of the date.

Toble 3.2.3 Amalyois of covariance of RED

Source	d.E	$\operatorname{ms}\left(x_{1}\right)$	MS(K_{j})	$\operatorname{MSP}\left(x_{1} x_{j}\right)$
Replication	$\mathrm{g}-1$			
Treatment	$n-1$	MSV_{1}	nSV_{3}	MEV_{11}
Errox	$(c-1)(n-1)$	$M 5 E_{i}$	MSE,	$\mathrm{MSE}_{1 j}$
Total	crim 1	MSP_{i}	MEP	$\mathrm{MSP}_{i j}$

Phenotyplc correlation coefficient

$$
r_{\mathrm{plpj}}=\frac{\mathrm{MSP}_{11}}{\left(\mathrm{MSP}_{2} \mathrm{MSP}_{j}\right)^{\frac{T}{2}}} \pm \neq j
$$

The onvironment corrolation coefficiont

$$
r_{\text {ele } j}=\frac{M S E_{4 i}}{\left(M S \Sigma_{i} \operatorname{MSE}_{j}\right)^{Z_{i p}}} i \neq j
$$

Genotypic corralation coofficient

The environment correlation matrin wes found to be appropriate Eor factor analyticel stuaiea as it leads to stable factor pettorn (Muralidharan, 1986; Tea P.Mathow 1987). Phenotyple and genotyple corrolation matricos failed to give stable factor pattern. So the enviroment correlation matrix was taken here for the present atudy. $3.2 .5 \mathrm{D}^{2}$-analysis

A meagure for group digtance based on multiple characters was given by Mahalanobis (1928). With x_{1}, x_{2} x_{p} en the multiple measumements avaslable as each indivicual and $d_{1}, d_{2}, \ldots, d_{p}$ as $\bar{x}_{1}^{1}-\bar{x}_{1}^{2}, \bar{x}_{2}^{1}-\bar{x}_{2}^{2} \ldots \ldots \bar{x}_{p}^{1}-\bar{x}_{p}^{2}$ respectively, boing the aifference in the means of two populations, Mahalanobis" D^{2}-atatistics is defined as follow.

$$
\begin{equation*}
D^{2}=b_{1} d_{1}+b_{2} c_{2} \ldots+b_{p} d_{p} \tag{1}
\end{equation*}
$$

where x_{1}^{1} is the meen value of $i^{\text {th }}$ character in the firbe
population and \bar{x}_{1}^{2} is the mean value of the $i^{\text {th }}$ character In the second population. Here, the bi values are to bo estimated such that the ratio of varianco between the populations to the veriance within tho population is masimmised. In termo of variances and covariances. the D^{2} value is obtained as follow.

$$
\begin{equation*}
D^{2}=\frac{\varepsilon_{i} \sum_{j}}{} 1 j\left(\bar{x}_{i}^{1}-\bar{x}_{j}^{2}\right)\left(\bar{x}_{j}^{1}-\bar{x}_{j}^{2}\right) \tag{2}
\end{equation*}
$$

where, $w^{i j}$ is the inverse of ostimated variance covariance matris.

Estimation of 0^{2} values by the formula given in equation (2) is very complicated whon the number of characters being studied becones large. The computation is very much aimplified when the charecters under study are indapendent and are expreosed in termb of thair respective standard errors. In this case, computation of D^{2} value reducos to simple summation of the differences in mean values of various characters of the two populations ie, d_{i}^{2}. Thercfore, first transformed the correlated variables to uncorrelated ones and then worked out the D^{2} valuas. Transformation was done by using pivotal condensation method, Let Y_{1}, Y_{2}.o.. Y_{p} ba the transformed variatise. Fow eoch combination the mean deviation, $1 e_{1} Y_{1}^{1}-Y_{1}^{2}$ with $1=1,2, \ldots p$ was computed and the D^{2} was calculated as sum of the squares of thase devitations. ie, $\sum\left(y_{1}^{2}-y_{1}^{2}\right)^{2}$.

Abstract

3.2.5.1 Test of significance of p^{2} values

Tre p^{2} valua obtainod for. a pair of population was taken as the calculated value of χ^{2} and was tested againse the tabulated value of χ^{2} for p degreon of froedon, ware p Is the number of characters considered.

3.2.5.2 Grouping of varieties into verious clustexa

 Tocher nothodThe firot stap in grouping the varieties into aise tinct clusters was to arrange the populations in order of their relativo distences Erom oach othor. Tha two populem tions having smallest distanco from each othor were conm sidered first to which a third populetion heving smallose average D^{2} value from the first two populations was added. Then the neaxest fourth population and so it goas on. At certain stago it was felt that after adalng a particular population, there was abrupt increase in tho average D^{2} this population was not acced to that clustor. Siratlerly. a second cluster was formed. whe process wes continuod till all the populations were included into one or the other clustor.
3.2 .6 Enctor analysis

Factor analysis is the common term for a number of statistical tochnsques for the resolution of e set of

Veriables in terms of a amall number of hypothetical variables, celled fectors. It reducea the multiplicity of tosts and messures to greater oimplictty. The Eundenental step in the analysis of a bociy of observed atata is the Eormulation of a theoretical stetistical model. A lineer model is used in orcer to explain observed phonomena in tems of aimple theories.

The basic fector analysio modal cen bo woitton in matrise notation as

$$
\begin{equation*}
\underset{\sim}{Z}=\lambda E+E \tag{1}
\end{equation*}
$$

where Z is the $p x 1$ vector of standardised variablos
A ie tho $p x$ matrix of factor coefficients
If the $k x 1$ vector of $(k<p)$ common factorn
G is the $p x 1$ vector of spectific (unicuo) factors.
This equation states that the observed veriabloa are waighted combinations of the comon factors and the unique factors. The common factorg account for tho correlations among the variables and the unique factor account for the remaining variance including orror of that variable. The total untt varianco of a standardised variable en is made up of tha comunality attributable to the common factor and the uniqueness, with is the contribution of the unique Eector (Heman, 1967).

In factor analysis lt is usual to discom the athile mean vector and to make use of the covardance matriti or corretation matrix aione wea digeroton matris of the varsates in \bar{Z} is desined as $\mathbb{Z}(3)$ and 40 syametric end positive cerinitte of order p. Whe assuaptions are
$E\left(E^{\prime}\right)=0$
$E\left(e^{\prime}\right)=I_{k}$
$E E\left(e e^{\prime}\right)=\psi$
\& $E\left(e^{\prime}\right)=\psi$
where ψ is a diegonal matns with diagonal elanents as $\psi 5$
 He have it A^{\prime} \& ψ

Where it Ls the orriolation natrits
In practico A and quare unknom parameters wheh am to be estimated ixom experimontal data.

Empoipal factor analyats mathod, centrold aethod,
 sene of the methods for eatimating the promotors A and ψ. Anonf these mothods sone requare ostimates of comonali-
 factoss.
2.2.6.t. Epheretory versus conflymaty factor maiysin

A pertionan application of tactor analyalis is exploratory or conftrmatory secorsing as the number of paraveters prespecipted in the model etuation of Sactor
ansiysis (Joreskog, 1969). In this stury exploratory factor analyais is done by the princtpal factor analysis and maxdmum likelihood mathods.

3.2.6.2 sstimation of commuality

Commanality is the amount of variance of the charecters accounted for by the cormon Eectors (Fruchter, 1954).

There are various methods of estimeting communality. Sut the squared multiple correlation (SMC) of each variable with all other variablee of the aet sems to be the begt possible' systematic estinate of commuality (Gutman, 1956).

The enc of variable $2 i$ is given by SNCI

$$
\begin{equation*}
1-\frac{1}{r^{21}} \tag{6}
\end{equation*}
$$

where $r^{\text {if }}$ is the diagonal element of R^{-1} corresponding to the variable $2 i$. The SMC has another important property that it is the lower bound of the comunality (Haman, 1967).

The maximum correlations in correaponding row or column may also be teken as inttial estimatos of commem lity (Cattell. 1965 a).
3.2.6.3 Principal fector analysis (PFA)

The applicetion of the principal compononte to the
recuced correlation matrix with estimates of commolitios In the diagonal inetead of undty leads to the principal Eactor analysis. This methoa yields a mathomatically unigue solution of component corrolations.

Fron the clessical factor analysis modal (1) the relevent portion of tive determination of the comon fector coefficionts may bo

$$
\begin{aligned}
& Z=\Delta E \quad \operatorname{moc} \text { (7) } \\
& \text { or } z_{1}=a_{11} F_{1}+a_{12} F_{2}+\ldots+a_{1 k} F_{1:} \\
& \text { ••••••••••••••••••• } \\
& \text { (B) } \\
& A_{p} a_{p 1} E_{1}+E_{p 2} E_{2}+\ldots+\dot{+} e_{p k} F_{k}
\end{aligned}
$$

The gum of squeres of factor coefficionte given the communality of a perticular variable whilo $a_{\text {im }}^{2}$ indicatos the contribution of the factor F_{m} to the communality of $z_{1 . ~ T h e ~ p r i n c i p e l ~ f e c t o r ~ m e t h o d ~ i n v o l v e a ~ t h e ~ s o l e c t i o n ~ o f ~}^{\text {. }}$ the firat factor coefficionte a_{11} aO as to make the sun of the contribution of that factor to tho total cormunality a maximum.

$$
\text { io. } V_{1}=a_{11}^{2}+\ldots \ldots+a_{p 1}^{2}
$$

is maxinum. The cosfiticients e_{11} must bo chosen such that V_{1} is maximum uncer conditions

$$
r_{i j}=\sum_{m=1}^{K} a_{j m} a_{j m}-(10) i_{8} j=1,2, \ldots p p
$$

where $I_{i j}=r_{j 1}$. and $I_{i 1}$ is the communality h_{i}^{2} of the $i^{\text {th }}$ variable.

This condition implies that the observed correlations are to be replaced by the reproduced correlations, implying the assumption of zero residuals. V_{1} is maximised by applying the method of Lagrangian multipliors under the conditions (10).

The maximisation of V_{1} leads to the system of p equations In p unknown a_{41}.
1e, $\left(R_{1}^{*}-\lambda_{1}\right.$ I) $q_{1}=0 \quad \ldots-(11)$
where R_{1}^{*} is the reduced correlation matrix
Le, $R_{1}^{*}=R_{1}-\psi$
q_{1} is the latent vector corresponding to the latent root λ_{1}.
$\lambda_{1}=\sum_{i=1}^{p} a_{i 1}^{2}$ and $\lambda_{2}=\sum_{i=1}^{p} a_{i 2}^{2}$ and so on.
The linear homogeneous equation system (11) has only a non-trivial solution if its determinant is equal to zero.

$$
\begin{equation*}
\text { ie, }\left|R_{1}^{*}-\lambda_{1} I \cdot\right|=0 \tag{12}
\end{equation*}
$$

The criterion regarding the number of common factors to retain in the factor mocel is equal to the number of
principal components whose aigen values are groater than ono. The investigator whil usually bo satioflod with an evan maller number of factors.

The cinacteristic ofuation (22) gives latent roote $\lambda_{1}, \lambda_{2}, \ldots . \lambda_{3} \geq 0$ and the asweciated oxthogonal charectoristic vectors $g_{1}, G_{2}, \ldots 0 \mathbb{G}_{1}$

Jacois mothod is ubed to find out the eigon valuea and vactors of the matrix A. The lace of the Jacobing mothod 15 to pick up the largest offaidagonel element of the matrix and to aminilete it to earo by apolytng a proper orthogonal cxonoformation. Thon the largeot remaine Ing off-diagonal element found out and that is aminilatod. The procadure is repeated until the offediagonal olamente were aufficiently close to zaro or nagligiblo. The diagonal olements of the matrix is a close approzmation to the eigen valuas. if the successive transfomation matrices ware multiplied togothor, they would protuce an accurato appoximation to tho matris of etgen vectors (hulatk, 1972).

Substituting the largose charactoristio root λ_{3} in (11) we get comesponding charactoristic veptor.
$g_{1}^{\prime}=\left(c_{11}, q_{21}, \ldots g_{p 1}\right)$
The nomelieed cheractertatio vector gin thich fulail the condibions (9) and (10) is

$$
\begin{equation*}
\stackrel{c}{1}^{c_{1}}=\frac{\underline{g}_{1}}{\left(\underline{g}_{1}^{\prime} g_{1}\right) x_{2}} \tag{14}
\end{equation*}
$$

thon the first colum vector of factor loading maerix is determined as $a_{1}=g_{1} \sqrt{\lambda_{1}}$

- (25)

The decond colurin vortor of A is $a_{2}=g_{2} \sqrt{\lambda_{2}}$ and so on. This Bhowe that $a_{1}, a_{2} \ldots$ are scaled nommaliead charectoristic vectors.

The sum of the squaras of factor loadings of the variable givas the corresponding comunality ie, the cquared factor coofficienta can be considerea as the percentage variance components of the comon Eactor (Hommen, 1967). The itoration process is continuad with the new estimates of commalitios until a apecisied degree of convergence is cccurxed. The controlling equation to ensure that no vital informetion is lost le

$$
\begin{equation*}
\mathrm{R}_{I}^{\text {th }}=\mathrm{A}^{\prime} \tag{16}
\end{equation*}
$$

Them are many equivalent mabrices wich all satialy $R_{1}^{*}=A A^{\prime}$. It implies also tho making of a reasoneble choice arong the meny possibilities to perform a finel Matris $\lambda_{\text {. }}$ which contains a sutteble intorpretation of the relation under research. Thia results in the rotation of the factors of tho inttial matring n o
3.2.6.4 Factor rotation

After extraction, the matrike of factor loadings are subnited to varimas orthogonal rotation, the affect of whicia is to accontuate the largor loadnge in cacis factor and suppress the minor locilng coaffictento. and In this way improve the opportunity of achieving a meenm ingrul blological interpretation of each factor (Donis and Ademe. 1978).

Kelger's (1958) varimax rotation is one in wish factors are rotated in such a way that the new loadings tend to be elther relatively large or relatively emall in absolute magnitude compared with the original ones. The simplicity of a factor in cefinea as the varlance of its sguared loedings.

$$
\begin{equation*}
v_{k}=p \sum_{i=1}^{p}\left(a_{k m}^{2} / n_{1}^{2}\right)^{2}-\left(\sum_{i=1}^{p} a_{i m}^{2} / a_{i}^{2}\right)^{2} \quad- \tag{17}
\end{equation*}
$$

p^{2}
where $a_{i m} 29$ tha new factor loading for variable 1 on factor m, where $i=1,2 \ldots p$ and $m=1,2$, k

For entire factor matrix the normalized varimas criterion $\operatorname{sov}=\sum_{i=\mathbb{I}}^{k}\left[p \sum_{i=1}^{p}\left(a_{i m}^{2}\left(r_{i}^{2}\right)^{2}-\left(\sum_{i=1}^{p} a_{i m}^{2} n_{i}^{2}\right)^{2}\right] \cdots\right.$
where h_{i}^{2} ts communality of $1^{\text {th }}$ variabic. The fundemental
rationalo for attempting to ostabitish the nomat variwar critertion io that the normal varitas eriterion is that tho nomal varinax golution is invanime uncer changea in the compostrion of the variablos.
3.2.6.5 Roximum 1Ahe3hood Sactor ane 3yzs

Alternate methods thet circurvent many of the problems of principal sactor analyos have beon sugeestod. One guch methot is paxtuum-lisolinood factor analysis yropooct by Zowley (1940) and later which provides maxtmum Ifrelishood estinates for the factor Loadngs. Finminum ifkelinoou solution mequixen an catimate of the nuber of ofmon Saotors. A 化 solution has the axae general appoarance as a polution, but st aoes not have the litter:o proparty af accounting for a mamumamoun of variance
 tion to whatur for a given body of data a dil colutson diffor emom unothow by a rotwtion (tamang 1907). Whon estinating a population parametor, is a oufficient atatistic exists waymat likelthood estimates ars nunctions of surficicnt atatistic. Roreover, tho liu estmator is a consistent estimator as woll a frequentiy a mintmum variance estrator (hulail, 1972). A dell knom proporty of Mis methed of sactor anaymis is that it is independent of the wats of meauremant in the charecters.

The model to be used in this method is (1). Also x Sollows multiveriate normal distribution with maan vector and covariance matris

The sample covariance metrix of x is denoted by 3 where $s=\frac{1}{n} \sum_{k}\left(r_{k}-\bar{x}\right)\left(y_{y_{k}}-\bar{x}\right)$

$$
x=\frac{2}{n} \sum_{k=1}^{n} x_{k}
$$

whare x_{k} is the column vector of random semple of $n(p)$ observations of $\mathrm{x} . \mathrm{k}=1,2, \ldots . . \mathrm{n}_{\mathrm{p}} \mathrm{m}=\mathrm{n}=1$, The distrim bution of B is Whart with m d.f. $1 e_{\mathrm{p}} \mathrm{ms} \sim \mathrm{w}(\mathrm{E}, \mathrm{m})$

$$
\text { Hore } \sum(s)=\Sigma
$$

The logarithm of the litelinood function for the semple, onitting a function of the observations: is given by

$$
\begin{equation*}
\log _{e} L=\frac{-n}{2} \quad \log _{e}|\Sigma|+\operatorname{tr}\left(S \varepsilon^{-1}\right) \tag{19}
\end{equation*}
$$

This is regerded as a function of A and ψ. Considering these as mathemetical variables we seek values of A and denoted eventually by \hat{A} and $\hat{\psi}$ that maximise the value of $\log _{e}$ L. * It is mora convensent to minimise the Eunction.

$$
F_{k}(A, \psi)=\log |\varepsilon|+\operatorname{tr}\left(s \varepsilon^{-1}\right)-\log |\varepsilon|-p-\quad(20)
$$

For the purpose of mindmising the function F the partial derivatives with respect to the elements of λ and the diagonal elements of ψ wieh is given by
$\frac{\partial F}{\partial A}=2 \varepsilon^{-1}(\varepsilon-S) \varepsilon^{-1} A$.
$\frac{\partial E}{\partial \psi}=$ diag $\left[\Sigma^{-2}(\varepsilon-5) \varepsilon^{-1}\right]$
aco required.
Equating $\frac{\partial F}{\partial A}$ and $\frac{\partial F}{\partial \psi}$ to zero and solving tha reaulting equations to get the ostimates of \bar{n} and ψ (bavicy s Moxkell. 1971). The estimation equations aro indopendent of the scale of measurement of the $X \cdot s$ and consequently the estimation equations for the a's can be expresued in terms of the correlations rather than the covarlanoes (Lawley, 1970).

$$
\begin{equation*}
\operatorname{se} R=A A^{\prime}+\psi \tag{23}
\end{equation*}
$$

anâ $\psi=I-\operatorname{alag} M a^{\prime}$
$A^{\prime} \mathrm{P}^{\cos } \mathrm{A}$ is diagonal

- (25)

Premultiplying both aides of (23) by $A^{\prime} \psi^{-1}$ yiolds

$$
\begin{equation*}
\left(A^{\prime} \psi^{-1} \alpha+I\right) \dot{A}^{\prime}=A^{\prime} \psi^{-1} \varepsilon \tag{26}
\end{equation*}
$$

This equation can be simplified to

$$
\begin{aligned}
& \text { JA' } A \psi^{-1} R-A^{\prime} \\
& \text { where } J=A^{\prime} \psi^{-1} A \\
& \text { Which is amenabie to an iterative method of solution } \\
& \text { (Lawleys 1942) }
\end{aligned}
$$

$$
-\quad(28)
$$

Starting with an arbitrary factor matrix $A=\left(a_{1}, a_{2}, \ldots . a_{m}\right)$ (usually loadings obtained from principal factor analysis) and corresponding

$$
\begin{equation*}
\because \quad \omega_{1}=I . m \text { alg } A A^{\prime} \tag{29}
\end{equation*}
$$

the factor loadings $B=\left(b_{1}, b_{2}, \ldots,{ }_{n}\right)$ are derived
from the iterative process, where

$$
\begin{aligned}
& \underline{b}_{1}=\frac{\left(R \psi^{-1} a_{1}-a_{1}\right)}{a_{1}^{1} \psi^{-1}\left(R \psi^{-1} a_{1}-a_{1}\right)^{\frac{1}{2}}} \\
& \underline{b}_{2}=\frac{\left(R \psi^{-1} a_{2}-a_{2}-b_{1} b_{1}^{1} \psi^{-1} a_{2}\right)}{a_{2}^{1} \psi^{-1}\left(a \psi^{-1} a_{2}-a_{2}-b_{1} b_{1}^{1} \psi^{-1} a_{2}\right)^{L_{2}}}
\end{aligned}
$$

$$
\begin{aligned}
& \underline{b}_{m}=\frac{\left(R \psi^{-1} a_{m}-a_{m}-\ldots b_{m-1} b_{m-1}^{1} \psi^{-1} a_{m}\right)}{a_{m}^{1} \psi^{-1}\left(R \psi^{-1} a_{m}-a_{m}-\ldots-b_{m-1} b_{m-1}^{1} \psi^{-1} a_{m}\right)^{\frac{1}{2}}} \\
& \quad \psi_{2=2-a 1 a g B^{\prime}}
\end{aligned}
$$

The iterative process is repeated again and again until the convergence is obtained to the desired degree of ecuracy. In standardised variates, the convergence criterion has usually bo taken as 0.005 . The final matrix A consing the Mr estimates of factor loadings for the assumed number of common factors. In tins iterative method it is tacitly assumed that none of the uniquenesses vanish. In some

Cases the maximisation of the likelihood function leads to one or more of the variables with uniqueness essentially zero. In the literature of factor analysis this type of improper solutions have usually been known as Heywood case. Joreskog (1967) has made a provision for the Heywood case.

It is assumed that a maximum likelinood factor analysis with a certain value of k has been performed resulting in an improper solution with $m(<k)$ of the unique variances zero. Assuming that this has occurred for the first m variables, the dispersion matrix may be partitioned as

$$
s=\left[\begin{array}{ll}
s_{11} & s_{12} \tag{30}\\
s_{21} & s_{22}
\end{array}\right]
$$

where Matrices S_{11}, S_{12}, S_{21} and S_{22} are of orders $m x$ m, $m \times(k-m),(p-m) \times m$ and $(p-m) \times(k-m)$ respectively. Then the estimates $\hat{A}_{11}, \hat{A}_{12}$ and \hat{A}_{21} are defined as
$\hat{A}_{11}=S_{11} \Gamma \Delta^{-\frac{1}{2}}$

$$
\begin{equation*}
\hat{A}_{21}=s_{21} \Gamma \Delta^{-\frac{1}{2}} \tag{32}
\end{equation*}
$$

$$
\wedge
$$

and

$$
\begin{equation*}
A_{12}=0 \tag{33}
\end{equation*}
$$

where Γ is an orthogonal matrix of order $m \times m$ that reduces S_{11} to diagonal form and Δ is a diagonal matrix
containing latent roots of s_{11}. The matrices $\hat{\mu}_{22}$ and $\hat{\psi}_{2}$ are obtained by applying the maximum likelihood method to the conditional dispersion matrix.

$$
\begin{equation*}
s_{22.1}-s_{22}-s_{21} s_{11}^{-1} s_{12} \tag{34}
\end{equation*}
$$

In the analysis of $S_{22.1}$ the number of variables is decreased by m and also the number of factors is docroasod by th. Then
are the maximum likelihood estimates of A and ψ.
3.2.6.5.1 Test of gignificence for the munar of factors

Ono of the main advantages of using the maximum likelihood method of estimation is that it enables us to test the hypothesis H_{k} that. for specified k, there are k com on factors. After obtaining a proper solution the hypothesis is tested by

$$
u_{k}=\left[n-1-\frac{(2 p+5)}{6}-\frac{2 k}{3}\right] F_{k}(\hat{\psi})
$$

where $F_{k}(\hat{\psi})=\sum_{i<1} \frac{\left(s_{1 j}-\hat{\sigma_{i j}}\right)^{2}}{\hat{\psi_{i}} \hat{\psi_{j}}}$
$s_{i j}-\frac{\hat{v_{1 j}}}{}$ represents the residual covariance of x_{i} and x_{j}

51

after eliminating K common factors, The criterion U_{k} ia actually measure of how much the resicual covariancos diEfor Erom zero. undor th, Eor moderately large n, u_{i} $1 s$ very naarly aistributed as χ^{2} with d_{c} d.F. whoro $d_{k}=$ $z_{2}\left[(p-k)^{2}=(p+k)\right]$

This exactly imposes an upper limit on m tor given p. ie, The number of common Eactors cannot exceed tine lergeat integes satinfytng $m<\frac{1}{2}(2 p+1-\sqrt{\text { Ep+1}})$ for a Eivea number of p vardablas.

Tho non significance of χ^{2} meana that there would Do no point in fitting further factors to the data.

The computetions wore cerried out on the Vieps Its cystam in the statictics Department of the $\mathrm{kA} \mathrm{U}_{\text {. }}$

RESULTS AND DISCUSSION

The results of the pretuent study arm given in aections 4.1 to 4.5 under the hadings 4.1 veltalnary mbatstacs malyass 4.2 Analysis of gitpyenston
4.3 Pwimated combatann metrices
$4 \times 4 \quad y^{2}-$ matysis
4.3 Sactor andaras

 the genotypos wifh respect to pach chastreare the pean

4.2 inezysis of ofsperaton

 tho totah aisgacion natox was botit up inco potaom now

 Mineig lamban seatistic was a 49×19^{-9}. Go that

 Level.

Teble 4.1.1 Noan values of various characters and thein test of significance with reference to 48 clonas of sugarcane

	x_{1}	x_{2}	x_{3}	X_{4}	x_{5}	X_{6}	x_{7}	${ }^{*}$
1.	45.06	98.33	17.73	14.55	82. 26	73.33	444.09	13.01
2.	38.89	74.67	18.99	17.23	90.62	68.00	432.79	12.08
3.	42.90	E1.00	14.07	11.47	80.95	70.00	469.91	12.73
4.	53.09	109.33	17.43	15.42	87.86	99.33	443.45	11.50
5.	30.86	49.33	17.20	14.88	85.05	45.67	452.38	10.65
6.	39.20	113.00	20.33	18.63	92.54	99.33	424.89	9.53
7.	37.04	93.33	14.53	11.17	75.75	75.67	450.98	11.72
8.	35.19	96.67	15.65	11.80	75.25	84.00	423.41	12.10
9.	41.98	75.33	15.18	12.86	64.48	69.33	453.22	13.90
10.	62.42	94.67	14.83	12.01	80.76	76.00	458.72	12.98
11.	51.54	89.67	13.53	16.75	90.31	20.67	508.92	11.23
12.	42.59	68.00	19.73	17.64	89.27	59.00	472.71	10.57
13.	49.69	84.00	17.77	15.50	87.14	73.67	481.62	12.19
14.	45.99	90.00	14.69	11.55	78.50	84.00	490.29	12.51
15.	42.36	78.67	18.71	16.03	85.64	66.33	423.42	12.90
16.	28.70	91.67	15.35	12.53	81.65	66.33	453.96	10.85

	x_{1}	x_{2}	x_{3}	X_{4}	X_{5}	X_{6}	X_{7}	x_{B}
17.	42.90	99.67	17.24	14.73	85.23	81.67	467.97	12.71
18.	50.31	77.00	16.26	13.37	81.68	66.67	457.64	10.69
19.	34.26	94.00	18.20	16.26	89.13	87.33	402.97	12.31
20.	39.81	70.33	12.12	8.53	66.05	54.33	438.89	14.32
21.	52.78	84.00	19.19	15.50	80.56	70.67	433.88	11.90
22.	47.22	96.33	16.62	14.71	87.92	76.33	439.09	11.07
23.	44.14	82,33	19.87	18.43	92.66	79.00	470.17	12.42
24.	47.22	77.33	14.96	11.95	80.04	58.67	429.91	12.49
25.	39.20	37.00	16.97	14.18	83.36	79.33	453.95	15.45
26.	39.81	96. 32	19.08	16.79	87.77	82.67	441.14	13.25
27.	44.14	86.00	16.63	14.29	85.01	77.00	377.22	15.79
28.	38.27	64.33	18.55	16.91	91.19	53.67	446.39	10.80
29.	29.01	54.00	19.05	17.85	93.80	46.33	475.40	13.08
30.	62.35	107.33	17.10	14.31	82.55	95.33	376.43	15.81
31.	43.21	66.33	17.27	15.10	67.34.	61.00	425.03	12.48
32.	49,36	72.67	16.03	13.49	84.04	66.67	407.99	12.13

	X_{2}	X_{2}	x_{3}	x_{4}	X_{5}	X_{6}	X_{7}	X_{g}
33.	39.51	66.67	20.19	18.62	92.20	59.33	433.55	11.65
34.	25.31	$46_{a} 67$	25.26	12.99	84.95	45.00	461.81	12.85
35.	43.83	74.67	16. 63	14.37	06.31	61.00	409.18	13.39
36.	28.09	62.67	15.46	12.12	75.34	62.67	447.46	12.51
37.	36. 11	95.67	18.03	15.15	84.16	78. 33	407.68	12.71
38.	47.22	83.67	13.68	10.99	79.49	60.67	462.42	11.98
39.	50.62	107.33	19.47	17.50	90.27	91.00	434.31	12.02
40.	47.53	76.33	17.12	15.04	87.87	69.67	386.84	12.37
41.	54.32	100.00	18.74	15.75	84.16	90.67	428.92	16.66
42.	53.40	91.67	13.50	10.30	75.13	69.33	425.61	14.83
43.	50.93	86.33	16.03	13.25	82.13	69.33	382.64	10.50
44.	47.53	89.00	17.06	14.72	e6.12	71.33	376.84	11.21
45.	50.00	107.67	17.89	15.46	96. 41	96.67	458.33	11.31
$46 .$	46.91	115.67	14.57	11.44	78.49	102.33	355.04	12.84
47.	35.80	73.00	13.94	16.46	86.86	53.00	454.17	12.10
48.	48.77	9.6 .67	18.09	25.68	86. 29	82.00	383.03	11.97
F-values	$5.01{ }^{\text {*x }}$	$6.94{ }^{\text {k* }}$	$3.66^{\text {*/ }}$	$3.42^{* *}$	$1.91{ }^{\text {t }}$	$4.81 * *$	$1.72^{\text {k }}$	$6.89{ }^{\text {R3t }}$
	* Signifi	cant at 5\%	level	** Signt	cant at	1:0 Level		

	X_{9}	$\times 10$	x_{11}	x_{12}	x_{13}	X_{14}	${ }_{15}$
17.	7.93	24.53	1.47	145.92	2.90	10.02	11.87
18.	0.01	26.73	1.44	101.85	2.76	8.92	7.84
19.	6.49	22.33	1.21	90.86	2.70	11.31	6.28
20.	9.46	22.80	1.99	108.55	2.90	5.18	4.29
21.	7.40	25.00	1.47	107.40	2.78	10.23	8.49
22.	7.26	26.20	1.44	115.71	2.76	10.19	9.77
23.	7.73	25.80	1.56	110.03	2.86	13.03	11.53
24.	7.47	23.40	1.45	83.82	2.64	7.85	5.38
25.	7.96	19.53	1.58	106. 87	2.84	9.54	0.23
26.	8.09	23.73	1.61	125.39	2.71	11.59	11.52
27.	7.10	20.47	1.25	94.97	2.87	9.74	7.34
28.	7.98	24.40	1.69	92.13	2.38	11.86	8.91
29.	8.19	21.40	1.66	79.99	2.59	12.69	B. 21
30.	8.11	21.07	1.57	156.00	3.12	9.63	12.02
31.	7.64	22.53	1.39	22.37	2.72	10.39	6.83
32.	7.76	24.53	1.65	202.99	2.87	9.11	7.57

	${ }^{2}$	\times_{10}	2in	\therefore_{12}	x_{13}	x_{1}	X_{15}
33.	3.95	22.93	1.74	101.19	2.77	13.13	10.02
34.	7.48	22.73	1.71	70.82	2.74	3.37	5.16
35.	6.34	20.13	I. 41	72.71	2.42	9.83	5.75
36.	7.49	22.47	1.45	93.24	2.65	7.86	6.09
37.	6.17	20.47	1.09	72.48	2.47	10.22	7.98
38.	7.49	22.67	1.57	103.29	2.53	7.24	5.75
39.	5.98	23.60	1.01	87.32	2.69	12.20	10.75
40.	6.47	12.53	0.95	71.64	2.27	10.37	7.43
61.	7.27	22.40	1.45	120.89	3.14	10.63	3.2 .79
42.	2.37	10.07	1.40	93.14	2.70	6.50	6.55
43.	7.87	27.20	1.63	125.46	3.16	E. 86	10.31
44.	7.97	21.07	1.36	108.39	2.24	10.05	10.96
45.	7.18	28.27	1.47	141.34	2.00	10.57	14.99
46.	5.65	17.87	0.90	84.15	2.47	7.43	G. 26
47.	7.98	23.67	1.47	73.70	2.59	11.29	8.32
45.	7.27	19.40	1.26	E5. 86	2.30	10.74	2.10
ralues	5.59	$5.75{ }^{\text {** }}$	$7.52^{\text {23 }}$	$7.19^{* *}$	4.93^{44}	$3.19^{* * 3}$	$6.49^{3 *}$

** Significant at 1.3 lovel
4.3 Estimated correlation matrices

The enalysis of covarlance was done for all the pairs of 15 characters. The phenotypic, genotypic and environment corrolation coatficients wero estimated and are given respectively in Tablos 4.3.1. 4.3.2 and 4.3.3.
$4.4 D^{2}-$ Analysis
Tha genotic alstances botween the populations wore estimeted based on 15 variable dimension and the values are presented in ippendix III. Host of these values are significant at 5 per cent level.

The populations wore arranged in increasing order of their rolative distancos from each other. The forty eight varieties ware groupod into thirteen clusters. There were fifteon varieties in the first cluster. Eive in second, nine In third, seven in fourth and four varioties in the fifth cluater. The varieties Coc.774. Co.997. N.S.6847. C0.740, Coc.771, CoA.7601, Co.1305, Co. 449 could not be grouped. The variettes belonging to difforont clusters and tho cluster means are given in Table 4.4.1. Cec. 771 had the maximum sugar yield (12.02 $\mathrm{fg} / \mathrm{plot}$), gemmination count (62.35). length of internode (15.31 cm), cane yield ($156 \mathrm{~kg} / \mathrm{plot}$) and length of cane (3.12 m). Genotypes of Cluster II showed high juiciness (467.70 ml), nore number of internodes (27.05) and sugar yisld ($12.01 \mathrm{~kg} / \mathrm{plot}$) The meximum

Table 4.3.1 Phenotypic correlation matrix

	x_{2}	x_{3}	X_{4}	x_{5}	x_{6}	X_{7}	x_{8}	x_{9}	x_{10}	x_{11}	x_{12}	x_{13}	x_{14}	x_{15}
x_{1}	0.5247	-0.0460	-0.0757	-0.0731	0.4485	-0.1332	0.1825	0.0409	0.1683	0.0815	0.5389	0.3208	-0.0906	0.3107
x_{2}		0.0817	0.0338	-0.0388	0.8156	-0.2851	0.0842	-0.3557	-0.0113	-0.3420	0.5011	0.0812	-0.0004	0.3592
x_{3}			0.9665	0.7471	0.1152	-0.0485	-0.1122	-0.0206	0.2309	-0.0217	0.0605.	0.0453	0.9429	0.6872
x_{4}				0.8719	0.0648	-0.0110	-0.1426	-0.0210	0.2349	0.0154	0.0414	0.0305	0.9915	0.7111
X_{5}					-0.0155	0.0218	-0.1740	-0.0726	0.1714	0.0476	-0.0240	-0.0285	0.8989	0.6200
X_{6}						-0.1765	0.0968	-0.3709	0.0428	-0.3243	0.5004	0.1327	0.0279	0.3762
x_{7}							-0.1326	0.2885	0.2931	0.3240	0.0917	0.0720	-0.0006	0.0645
x_{B}								0.0777	-0.3631	0.0701	0.1059	0.2698	-0.1512	-0.0569
X_{9}									0.2644	0.6549	0.3092	0.2350	-0.0210	0.1930
X_{10}										0.4609	0.5071	0.5658	0.2362	0.5172
x_{11}							,				0.3845	0.4765	0.0291	0.2782
x_{12}												0.5538	0.0212	0.7077
x_{13}													0.0256	0.4007
X_{14}								-						0.7015

Table 4.3.2 Genotypic correlation matrix

	χ_{2}	x_{3}	X_{4}	x_{5}.	x_{6}	x_{7}	x_{8}	x_{9}	x_{10}	x_{11}	x_{12}	x_{13}	X_{14}	X_{15}
x_{1}	0.4980	-0.0401	-0.0657	-0.0329	0.4869	-0.3019	0.2179	0.0762	0.1413	0.1090	0.5867	0.3651	-0.1019	0.4193
x_{2}		0.0052	-0.0534	-0.1692	1.0007	-0.2965	0.1043	-0.4527	-0.1345	$\rightarrow 0.5409$	0.4019	-0.0690	-0.1225	0.2763
x_{3}			0.9928	0.9843	0.1858	0.1711	-0.3669	-0.0418	0.3644	-0.1177	0.0447	0.0472	0.9813	0.6125
x_{4}				1.0008	0.1508	0.1947	-0.3991	-0.0114	0.3711	-0.0780.	0.0409	0.0333	0.9979	0.6151
X_{5}					0.0941	0.2075	-0.4932	-0.0415	0.3822	-0.1160	-0.0076	-0.0135	1.0007	0.5876
x_{6}						-0.3864	0.1491	-0.4706	-0.0223	-0.5049	0.5380	0.0960	0.1040	0.5229
x_{7}			.			,	-0.2460	0.7831	0.9259	0.9068	0.4960	0.4219	0.2304	0.5467
x_{8}								0.0505	-0.5655	0.1377	0.1145	0.4422	-0.4134	-0.1605
x_{9}									0.4150	1.0017.	0.4696	0.4626	-0.0009	0.3505
x_{10}										0.5271	0.5591	0.5096	0.3861	0.6826
x_{11}											0.4917	0.6166	-0.0417	0.3337
x_{12}											.	0.6697	0.0190	0.8114
x_{13}													0.0455	0.5346
X_{14}														0.5993

Table 4.3.3 Environment correlation matrix

	χ_{2}	x_{3}	X_{4}	X_{5}	x_{6}	x_{7}	\times_{8}	x_{9}	x_{10}	x_{11}	x_{12}	x_{13}	x_{14}	x_{15}
x_{1}	0.5744	-0.0529	-0.0874	-0.1067	0.3987	-0.0556	0.1274	-0.0095	0.2080	0.0363	0.4676	0.2622	-0.0815	0.1756
x_{2}		0.1868	0.1460	0.0549°	0.5186	-0.3434	0.0446	-0.1888	0.2070	0.0703	0.7020	0.3236	0.1464	0.4929
x_{3}			0.9449	0.6505 .	0.0413	-0.1535	0.2187	0.0038	0.0780	0.1102	0.0851	0.0437	0.9140	0.7664
x_{4}				0.8424	-0.0213	-0.1023	0.1722	-0.0323	0.0880	0.1401	0.0447	0.0281	0.9872	0.8102
X_{5}					-0.0853	-0.0285	0.0393	-0.1035	0.0491	0.1912	-0.0420	-0.0409	0.8695	0.6921
x_{6}						-0.0825	0.0155	-0.2328	0.1353	-0.0315	0.4486	0.1800	-0.0449	0.1978
X_{7}							-0.0851	0.0358	-0.0471	-0.0133	-0.1711	-0.1147	-0.0976	-0.1840
x_{8}								0.1253	-0.0073	-0.0695	0.0886	-0.0024	0.1526	0.0989
X_{9}									0.0300	0.0108	0.0263	-0.0859	-0.0429	-0.0164
x_{10}										0.3419	0.4158	0.6482	0.0842	0.2958
x_{11}											0.1576	0.2506	0.1207	0.1982
x_{12}												0.3726	0.0256	0.5643
x_{13}													0.0068	0.2359
x_{14}										-				0.8050

Tables 4.4.1 Cluster means of various clones of sugarcane for genetic divergence

cluster пumber	No. of clusters	Clones	Germination count	Shoot count	$\begin{gathered} \text { Brix } \\ \% \end{gathered}$	Pol $\%$	```Purity per- cen- tage```	No. of millable canes	Juiciness (ml)	Len- gth of internode (cm)	Girth of cane (cm)	No. of internode	weight of cane (kg)	Cane yield per plot (kg)	Length of cane (m)	$\begin{aligned} & \text { C.C.S. } \\ & \text { per- } \\ & \text { cen- } \\ & \text { tage } \end{aligned}$	Sugar yield per plot (kg)
I	15	$\begin{aligned} & \text { T. 67172, Co.7717, } \\ & \text { Co.419, Coc.779, } \\ & \text { Co.7219, Coc.777, } \\ & \text { Ic.225, Co. } 6304, \\ & \text { S.99, Coc. } 773, \\ & \text { Coc.772, Co.62198, } \\ & \text { Co.621O1, Coc.778, } \\ & \mathrm{S} .77 \end{aligned}$	45.18	83.13	16.27	13.70	83.51	70.18	441.40	12.44	7.71	23.20	1.52	107.33	2.68	9.25	8.19
II,	5	$\begin{aligned} & C 0.658, \mathrm{Co.62175,} \\ & \mathrm{S.105}, \mathrm{Co.6907,} \\ & \mathrm{Co.} 995 \end{aligned}$	49.82°	92.0	18.0	15.89	87.78	84.47	467.70	11.43	7.83	27.05	1.55	128.45	2.82	10.98	12.01
III	9	$\begin{aligned} & \text { F.1-2, Co.62174, } \\ & \text { S.87, KHS. } 3296, \\ & \text { Coc. } 671, \mathrm{Co.7704,} \\ & \text { Co. } 785, \mathrm{CoM.7114,} \\ & \text { CoM. } 7125 \end{aligned}$	40.02	70.7	19.60	16.51	88.48	60.44	442.11	11.90	8.0	24.30	1.58	96.63	2.76	11.14	9.57
IV	7	$\begin{aligned} & \text { Co. } 6807, \mathrm{Co.1340,} \\ & \text { Co. } 527, \mathrm{~S} .33 . \\ & \mathrm{Co.6806,} \mathrm{B.37172.} \\ & \text { Co. } 527-\mathrm{M}-10 \end{aligned}$	38.67	96.48	17.05	14.31°	83.21	80.57	422.33	11.95	6.69	21.64	1.16	85.32	2.51	9.54	7.37
V	4	$\begin{aligned} & \text { Co. 1307, CoA. } 7602, \\ & \text { Coc. } 775, \text { Co. } 453 \end{aligned}$	44.68	85.0	15.57	12.91	82.00	73.75	428.75	14.99	7.68	20.67	1.47	105.53	2.90	8.64	7.74
VI	1	Coc. 774	. 45.06	98.33	17.73	14.55	82.26	73.33	444.08	13.01	8.85	20.53	1.48	103.17	2.43	9.7	8.13
VII	1	C0. 997	39.2	113.0	20.33	18.63	91.54	99.33	424.88	9.53	6.92	24.2	1.07	111.72	2.45	12.81	11.33
VIII	1	M.5.6847	39.81	70.33	12.12	8.53	66.05	54.33	438.89	14.32	9.46	22.8	1.99	108.55	2.98	5.18	4.29
IX	1	Co. 740	52.78	84.0	19.19	15.50	80.56	70.67	433.88	11.9	7.4	25.00	1.47	107.4	2.78	10.23	8.49
X	1	Coc. 771	62.35	107.33	17.10	14.31	82.55	95.33	378.43	15.81	8.11	21.07	1.57	156.0	3.12	9.63	12.02
XI	1	CoA. 7601	25.31	46.67	15.26	12.99	84.95	45.0	461.81	12.85	7.48	22.73	1.71	70.82	2.74	8.87	5.16
XII	1	Co. 1305	47.53	76.33	17.12	15.04	87.87	69.67	386.84	11.87	6.47	18.53	-0.95	71.64	2.27	10.37	7.43
XIII	1	Co. 449	46.91	115.67	14.57	11.44°	78.49.	102.33	355.04	12.84	5.65	17.87	0.90	84.15	2.47	7.43	6.26

shoot count (115.67) and numer of millable canes (102.33) was found for Co. 869 . H. 5.6847 had the maximun gireh of cane (9.46 cm) and maximum woight of cane (1.99 kg). C0.997 hed the highest values for brix (20.33%), pol (18.6%), purity (91.54%) and c.C.s. (12.81%) . The intre and intor elustor D^{2} - valuoe are givon in mablo 4.4.2.

Table 4.4.2 Average intra and inter clustor $\mathrm{D}^{2}-\mathrm{valuos}$

Clustors	I	$I I$	$I I I$	$I V$	V
I	21.63	38.52	41.09	46.45	38.17
II		21.75	38.79	55.24	60.60
III			37.52	63.89	57.92
$I V$				24.89	67.35
V					22.87

The genetic aivergence was maximum betweon clusterd IV and $V(67.35)$ followed by III and IV (63.89) and II and V (60.6). Selecting genotypos from such clustors as parents for hybridization will result in tho dovelopment of oupew rior clones with high productivity. Clustor V was guite divergent from clustors II. III and IV. Though the variom ties Co. 997 and Coc. 771 were not included in any of the clusters, they can bo used as parents during crossing programes. Sinco Co. 997 and coc. 771 had high gonatic
divargence and yield componente. The magnitude of hetem rosis is espacted to be high when crossing the ganotypea Co.658. Co.62175. Co.6907, Co. 995 of cluster II and $\mathrm{Sm}=87$. Co.7704, Co.785, CoM. 7114 of clugter III and Co.1307.' Con. 7602 of cluster V.

4.5 Factor analysis

The clusters I. III and TV were taken for factor analysis and the method was applied for each clustor soperately, since the other clusters contained lose number of clones.

4.5.1 Cluster I

4.5.2.1 Correlation otudies

The enviromment correlation matrix of cluster I is givan in Tabla 4.5.1.1. The corrolations waro found to be between -0.2925 and 0.9982 . The character x_{1} was gignseicantly correlated with $x_{2}, x_{6}, x_{10}, x_{11}, x_{12}$ and x_{13}, x_{2} was eignisicantly corrolated with all the charactero except $x_{3}, x_{6}, x_{5}, x_{7}, x_{6}$ and x_{14}. The correlations of x_{3} with $x_{4}, x_{5}, x_{8}, x_{9}, x_{11}, x_{14}$ and x_{15} wore oicnificant. x_{4} was significantly correlated with $x_{3}, x_{5}, x_{8}, x_{9}, x_{31}, x_{14}$ and X_{15}. Significant correlations were found to oxist for x_{5} with $x_{3,} x_{4} x_{8}, x_{9}, x_{14}$ and x_{15}, x_{6} was correlated with x_{4}, x_{2}, x_{7} and x_{12} and x_{7} with x_{6} and x_{11}. The Characters $x_{3}, x_{4}, x_{5}, x_{13}, x_{14}$ and x_{15} ware found to have significant

Table 4．5．1．1 Environment correlation matrix＝Cluster I

	x_{1}	x_{2}	x_{3}	x_{4}	X_{5}	x_{6}	x_{7}	x_{8}	X_{9}	x_{10}	－ X_{11}	x_{12}	x_{13}	X_{14}
x_{2}	0．5963													
x_{3}	－0．1092	－0．0372							，					
X_{4}	－0．1147．	－0．0378	$0.97{ }^{\text {＊}}$＊											
X_{5}	－0．0784	0.0274		$0.92{ }^{\text {咅离 }}$										
x_{5}	0．322 ${ }^{\text {² }}$	$0.35 \stackrel{*}{\text { ® }}$ ¢	－0．0619	－0．0695	0.0336									
x_{7}	－0．0476	－0．1277	0.0976	0.0693	－0．0996	－0．2148								
x_{8}	0.1530	0.0254	0.329 \＃＊	0.350 ＊＊＊	$0.34{ }^{\text {5 }}$	－0．0051	－0．1731							
X_{9}	－0．1425	－0．229 ${ }^{\text {2 }}$	$0.39{ }^{\text {² }} \mathbf{2}$	0．4025	$0.30{ }^{4} 4$	－0．2032	0.1432	0.1377						
x_{10}	0.4319	$0.32{ }^{\text {＊}}$ 离	0.0836	0.1190	0.1732	0.1483	－0．0895	0.2034	0.0428					
x_{11}	0．34 ${ }^{\text {¹ }}$	$0.32{ }^{\text {每 }}$	－0．2538＊	－0．2324	－0．1566	0.1944	－0．2170゙	0.0572	－0．0929	0．27产咅				
x_{12}	$0.42{ }^{\text {离 }} 4$		0.1864	0.1537	0.0977		－0．0570	0.0937	0.0243	0．42音 ${ }^{\text {a }}$	$0.330{ }_{4}^{*}$			
X_{13}	0.2276	$0.258{ }^{\text {® }}$	－0．0372	－0．0192	0.0279	0.1629	0.0710	－0．2925 ${ }^{\text {＊}}$	－0．1931	0．550゙キ	0.1161	0.1518		
x_{14}	－0．1148	－0．0374		$0.998{ }^{*}{ }_{2}$	0.9394	－0．0712	0.0604	0.3536	0.4012	0.1287	－0．224 ${ }^{*}{ }^{\text {¹ }}$	0.1426	－0．0134	
X_{15}	0.1420	0．37 ${ }^{\text {\％}} \mathbf{7}$	0．319＊＊	$0.8278{ }^{\text {离 }}$	$0.75{ }^{\text {＊＊＊}}$	0.1153	0.0066	$0.255{ }^{\frac{*}{3}}$	$0.32{ }^{\text {＊＊＊}}$	$0.34{ }^{\text {＊＊＊}}$	0.0316	0． 6474	0.1371	0.8240

＊Significant at 5\％level
＊＊Significant at 1% level

Correlation with x_{8} while x_{9} was corrolated with x_{2}, x_{3}, x_{4}, x_{15}, x_{14} and x_{15}. Character x_{10} was found to have significant correlation with $x_{1}, x_{2}, x_{11}, x_{12}, x_{13}$ and x_{15}, x_{11} was corrolatod with all the characters except x_{5}, x_{6}, x_{5}, x_{9}, x_{13} and x_{15}. x_{22} had aignificant corrolated with x_{1}, $x_{2}, x_{6}, x_{10}, x_{11}$ and x_{15}. Correlation of x_{13} with x_{1}, x_{2}. x_{y} and x_{10} alone wore found to be significant. Cherector x_{14} was significantly corrclatod with the characters x_{3}, x_{4}. $x_{5}, x_{0}, x_{9}, x_{11}$ and x_{14}. The correlations of x_{15} with x_{1}. x_{6}, x_{7}, x_{11} and x_{13} were not significant.
4.5.1.2 Principal factor analysis

Initially the ofsion values and corresponding oigen voctors of tho environnant correlation matrix was found out by Jacobi's methoc. The letent roots of the matrix are given In Teble s.5.1.2.1. The matrix wes Eounc to bo positive semideEinito. The Eirst five latont roots of tho matrix was greator then one and they altogether contributed soout 79.23 per cont to the total variation.

PEA of the enviroment corcelation matrix of order: 15 was dono with the squared multiple correlation coofficients (SHC) as first ostimates of comunalitios and a five factor solution was oxtracted. The numbur of Itorations needed for the convargonce of communalities tas twanty two. with a difference of five unite in the third cacimal plice.

The principal factor loadings in the 22nd ftoration along with comunalities in the 21 st and $22 n d$ iterations are given in Table 4.5.1.2.2. Tho loadings in the 22ne letration was subjected to varimex rotation to have a more meaningful interprotation of the factors. Tho roteted loadings are presonted in Teble 4.5.1.2.3. The important charactors associated with oach factor wow icolated in accordance with the procodure given by Hermen (1967).

Fol at 12th moneh
Factor I C.C.S. parcontege Bris at 12 th month Sugar yiold per plot purity porcantage

Factor II Cano yield per ploe Shoot count Gemination count Numbor of millablo cances por plot bought of cane

Factor III Length of cane Numbar os internodes

Factor IV Lengti of internode Jujcinoes at 12 th month

Factor V Girth of cene

Table s.5.1.2.2 principaI factor solution in correlation matrix - Cluster

Variable	Common Exccor coofeicient			
	1	2	3	4
1	0.0023	0.6459	0.1021	0.1130
2	0.1103	0.7959	0.1975	-0. 2014
3	0.9443	-0.1066	-0.0237	-0.0854
4	0.9825	<0.1911	-0.0486	-0.0131
5	0.9045	-0.1068	-0.0.0.46	0.1470
6	0.0070	0.4402	0.2154	-0.0201
7	0.0210	-0.1669	$\cdots 0.2132$	-0.2904
θ	0.3704	0.0149	0.3318	0.4502
9	0.3662	20.2409	0.0305	0.0089
10	0.2531	0.6310	-0.3309	0.4345
11	-0.1284	0.4683	0.1471	0.1596
12	0.3306	0.7703	0.2719	-0.2967
13	0.0267	0.5030	-0.0364	-0.0405
14	0.9823	-0.1895	-0.0355	0.0111
15	0.9129	0.3033	0.0503	-0.1999

5	Estimated 21st itom ration	$\begin{aligned} & \text { communality } \\ & \text { 22nd ite } \\ & \text { ration } \end{aligned}$	$\begin{aligned} & \text { origi- } \\ & \text { nal } \\ & \text { comme } \\ & \text { nality } \\ & (\sin) \end{aligned}$
0.0282	0.4423	0.4824	0.5057
0.1272	0.7413	0.7414	0.7600
0.0004	0.9344	0.9344	1.0003
0.0454	1.0064	1.0064	1.0000
0.2714	0.9267	0.3267	0.9813
0.2844	0.2884	0.2834	0.4634
-0.2966	0.2458	0.2460	0.4343
-0.0543	0.4543	0.4531	0.46050
-0.3670	0.3430	0.3429	0.3364
-0.2925	0.8815	0.3402	0.6438
-0.0372	0.2842	0.2643	0.3026
-0.1005	0.8973	0.8971	0.9398
0.1272	0.9663	0.9712	0.6034
0.0604	1.0077	1.0077	1.0000
-0.0330	0.9751	0.9751	0.9757

Table 4.5.1.2.3 Rotated principal factor loadings for the enviroment correIation matrix - Cluster I

Variable	Common factor coefficients				
	1	2	3	4	5
1	0.0024	0.6044	-0.1994	0.1912	-0.0282
2	0.1108	0.8387 .	-0.0763	-0.0609	0.1272
3	0.9443	-0.1623	0.0785	-0.1008	0.0004
4	0.9825	-0.1895	0.0363	-0.0429	0.0464
5	0.9045	-0.1424	-0.0417	0.1135	0.2724
6	0.0070	0.4476	-0.0650	0.0535	0.2844
7	0.0210	-0.1677	-0.0302	-0.3586	-0.2966
8	0.370_{4}	0.0362	0.1430	0.5396	-0.0543
9	0.3862	-0. 2127	0.1175	0.0028	-0.3670
10	0.2531	0.3796	-0.6671	0.3274	-0.2825
11	-0.1284	0.4482	-0.1041	0.2339	-0.0372
12	0.3306	0.8597	0.0278	-0.1243	-0.1805
13	0.0267	0.1853	-0.9090	-0.3060	0.1272
14	0.9823	-0.1952	0.0222	-0.0228	0.0604
15	0.9129	0.3363	-0.0128	-0.1468	-0.0830
Proportionate variance accounted by each factor	0.3309	0.1797	0.0919	0.0521	0.0360

4.5.1.3 haximun ikelinood sactor analysis

From the principal factor analysis of the data it vas hypothosimex that a mininum of elvo fectors would suffice to doseribe the depondance structure. The HL mothod was applied to extrect the Eactors by wavloy's fterative schone to got a mono moningsul pattorn. tho sequonce tamanatos Gither when a proper acouptable solution has been found from tho point of viow of goodness of Eit or whon the numbr of factors agreo with the given upper bound.

ML estimation of fector loedinge with a five factor modol was tried. Forty five iterations were takon for a ± 0.005 convorgence eritorion. A test of significanco of tho modal gave a χ^{2} value of 36.21 winch was significent. since the degrees of Eicodom for this χ^{2} was forty tho normal test critorion $\sqrt{2 \chi^{2}}-\sqrt{2 \pi-1}$ was aplice to test for the significance, whore n is thre dagrees of freocom. So thin solution of factor loadings was tried with a six Ecctor model. Tho goodress of fit of this model wes tested at 0.01 level and found that $3 i x$ comnon factors are aufficiont to oxplain the copentance griucture. ($\chi^{2} 30=29.39$. Seventy zour iteram tions were required for the convergence with a ± 0.005 convergence critorion. The inityal estinatos of factor loadIngs and unique varlancos obtained from the principal factor method of factor analyais aro given in Table 4.5.1.3.1. The HL golutione in the 73 ra and 74 th iterations are swmarised

Table 4.5.1.3.1 Initdal gatimetes of factor loadnge and corresponding unique vartances for 6 factors of the envinonment correlation matrix - cluster I

Vaxiable	Eontor loadinge						indeve variance
	1	2	3	4	5	6	
1	-0.1143	0.4889	0.0266	-0.1550	-0.0039	0.0031	0.8305
2	-0.0.377	0.7765	0.0774	-0.2368	-0.0120	0.2539	0.2690
3	0.9761	-0.0030	-0.0019	0.0015	-0.2177	0.1084	0.0001
4	0.9998	-0,0003	$\ldots 0.0003$	0.0002	-0.0186	0.0 .0237	0.0002
5	0.9274	0.0156	0.0129	-0.1914	-0.3043	0.3671	0.0001
6	-0.0701	0.3953	0.0007	$=0.4944$	0.0287	-0.1225	0.4215
7	0.0666	-0.0767	-0.1262	0.5565	-0.1452	-0.3652	0.4904
8	0.3515	: 0.0330	0.3071	-0.0362	0.0623	0.5669	0.5535
9	0.4022	-0.0862	-0.1680	0.3351	-0.0104	0.2858	0.3915
10	0.1220	-0.5525	0.3376	-0.0120	0.1670	-0.0353	0.4634
1.1	-0.2310	0.4025	0.0775	-0.0552	0.1405	0.0423	0.2472
12	0.1502	0.9327	0.2514	0.0084	-0.1677	-0.2216	0.0001
13	0.0174	0.4215	0.9887	0.0079	0.0907	-0.0810	0.9826
14	0.9991	0.0004	0.0005	-0.0005	0.0415	0.1445	0.0001
15	0.8269	0.5309	0.0773	0.0395	0.0965	-0.3772	0.0001

In Tables 4.5.1.3.2 and 4.5.1.3.3 respectively. The veri-max rotated loadings are prosented in Table 4.5.1.3.4. Theresidual correlation matrix enter removal of git fectors isgiven in Table 4.5.2.3.5. The characters more rolated witheach factor are givan bolow.pol et 32 th monthFactor I C.C.S. parcontage
Brix at 12th month
Purity percentage
sugar yiald per plot
Factor 3 I Cone yield por plot
shoot count
Germination count
\$o. of millable canes per plot
Bactor ITI Longth of canoNumber of Internodes
Eactor IV Juiciness at 12th month
Girch of cane
Factor V Ength of internote
Fector VI Weight of cane
In both egn and Min methods, factor I kes found to De

Table 4.5.1.3.2 haximum likelinood estimates of factor loadings and unique variancos in the 73Fa iteration - Cluster 5

Varsable	Factor loadings						dnsetue varianco
	1	2	3	4	5	6	
1	-0.1147	0.4351	0.1776	-0.1397	-0.0791	0.0509	0.7376
2	-0.0378	0.7422	0.1712	-0.2260	-0.1086	-0.0581	0.3523
3	0.9770	-0.0256	-0.0029	0.0031	$=0.2087$	0.0008	0.0012
4	0.9999	-0.0046	+0.0002	0.0002	-0.0137	0.0001	0.0001
5	0.9261	'0.0539	. 0.0196	-0.2010	0.3009	$=0.0348$	0.0069
6	-0.0700	O. 4752	0.1161	-0.4992	-0.0943	0.0644	0.5786
7	0.0673	-0.1152	0.0384	0.5309	-0.1250	0.2743	0.6017
8	0.351 .3	0.0851	-0. 0.3105	-0.0951	0.0510	0.2179	0.7138
9	0.4023	-0.0330	-0.1820	0.3290	0.0017	-0.0475	0.6934
10	0.1213	0.4451	0.4921	-0.0010	0.0971	0.1009	0.5254
11	-0.2306	0.4029	0.0597	-0.0400	0.0752	-0.1290	0.7570
12 0.1509	0.9335	- 0.0533	. 0.0050	$\bigcirc-0.3148$	-0.0359	0.0026
13	-0.0179	0.1371	0.9756	0.0051	0.0642	0.0314	0.0239
14	0.9990	0.0039	0.0008	-0.0039	0.0432	-0.0007	0.0001
. 15	0.8271	0.5012	0.1002	0.0572	-0.1250	-0.1639	0.0089

Table 4.5.1.3.3 Maximura litelihood estimates of factor loadnge and undque variances in the 7ath iteration \rightarrow Cluster I

Variable	Factor loadings						Uniciue variance
	1	2	3	4	5	6	
1	-0.1147	0.4389	0.3768	-0.1377	-0.0745	0.0525	0.7356
2	-0.0378	0.7460	0.1701	-0.2289	-0.1051	-0.0563	0.3465
3	0.9772	-0.0297	-0.0023	0.0033	-0.2107	0.0001	0.0001
4	0.9999	-0.0017	-0.0002	0.0002	-0.0134	. 0.0001	0.0001
5	0.9258	0.0550	0,0195	-0.2035	0.3026	-0.0322	0.0054
6	-0.0700	0.4762	0.1172	-0.4997	-0.0912	0.0684	0.5772
7	0.0674	-0.1111	0.0875	0.5329	-0.1252	0.2711	0.6023
8	0.3513	0.0870	-0.3108	-0.0936	0.0545	0.2196	0.7127
9	0.4023	-0.0337	-0.1831	0.3271	0.0007	-0.0495	0.6941
10	0.1212	0.4459	0.4907	-0.0006	0.0988	0.1017	0.5256
11	-0.2307	0.4061	0.0582	-0.0634	0.0778	-0.1279	0.7542
12	0.1512	0.9375	0.0502	0.0084	0.3117	-0.0398	0.0001
13	-0.0179	0.1350	0.9795	0.0022	0.0644	0.0310	0.0170
1.4	0.9989	0.0063	0.0007	-0.0010	0.0462	-0.0005	0.0002
15	0.8272	0.5043	0.0987	0.0549	-0.1205	-0.1655	0.0068

Table 4.5.1.3.4 Rotated maximum likelihood estimates of factor loadngs - Cluster I

Variable	Factor loadings					
	1	2	3	4	5	6
1	-0.1147	0.4389	0.1768	-0.0943	-0.0595	0.1218
2	-0.0378	0.7460	0.1701	-0.2190	-0.1156	0.0727
3	0.9772	-0.0287	-0.0023	0.0252	-0.2044	0.0448
4	0.9999	-0.0017	-0.0002	0.0016	-0.0129	0.0030
5	0.9258	0.0551	0.0195	-0.2284	0.2860	-0.0055
6	-0.0670	0.4762	0.1172	-0.4123	-0.0718	0.2959
7	0.0674	-0.1111	0.0875	0.6074	-0.0556	0.0340
8	0.3513	0.0870	-0.3104	0.0020	0.1062	0.2206
9	0.4023	-0.0337	-0.1831	0.2741	-0.0114	-0.1849
10	0.1212	0.4459	0.4907	0.0318	0.1206	0.0675
11	-0.2307	0.40161	0.0582	-0.1010	0.0445	-0.1102
12	0.1512	0.9375	0.0502	0.0236	-0.3120	0.0297
13	-0.0179	0.1350	0.9795	0.0083°	0.0670	0.0120
14	0.9989	0.0063	0.0007	-0.0059	0.0447	-0.0101
15	0.8272	0.5043	0.0987	-0.0073	-0.1571	-0.1421
Contribution of each factor	4.8943	2.4308	1.4277	0.7672	0.3135	0.1924
Proportionate variance accounted by each factor	0.3262	0.1621	0.0952	0.0490	0.0204	0.0155

Table 4.5.1.3.5 Residual matrix after removal of six factors from environment correlation matrix - Cluster I

	x_{1}	x_{2}	x_{3}	X_{4}	x_{5}	x_{6}	x_{7}	x_{8}	X_{9}	${ }_{.}{ }_{10}$	x_{11}	x_{12}	x_{13}	x_{14}
x_{2}	0.1981				-									
x_{3}	0.0007	0.0001												
x_{4}	-0.0002	0.0000	0.0000											
x_{5}	-0.0036	0.0014	0.0000	0.0000										
x_{6}	0.0492	-0.0684	0.0000	0.0000	0.0029									
x_{7}	0.0432	0.0669	0.0005	-0.0001	-0.0028	0.0578								
x_{8}	0.1896	0.0232	-0.0002	0.0000	-0.0053	-0.0338	-0.1628				.			
x_{9}	-0.0015	-0.0856	-0.0003	0.0000	0.0002	0.0260	-0.0324	-0.0160						
x_{10}	0.1653	-0.0737	0.0000	0.0000	0.0000	-0.0667	-0.1059	0.2467	0.1041					∞
x_{11}	0.1406	-0.0063	0.0000	0.0000	-0.0029	0.0129	-0.0939	0.1407	0.0320	0.0967				
x_{12}	0.0034	0.0004	0.0000	0.0000	-0.0001	-0.0006	-0.0001	0.0012	-0.0002	0.0003	0.0011			
x_{13}	-0.0035	0.0000	-0.0001	0.0000	0.0000	0.0009	-0.0002	-0.0040	-0.0012	0.0025	-0.0008	0.0000		
x_{14}	0.0002	0.0000	0.0000	0.0000	0.0000	0.0001	-0.0003	-0.0008	0.0000	0.0000	0.0000	0.0000	0.0000	
X_{15}	0.0053	0.0015	0.0000	0.0000	-0.0001	-0.0003	-0.0013	-0.0004	0.0000	0.0011	0.0024	0.0000	0.0000	0.0000

brix at $12 t h$ month purity percontage and sugar yield per plot. These characters are associated with the cuality of the crop and hence can be namod as quality factor. Cane yicld per plot, shoot count, gormanation count and number of millable canes per plet were found to bo highly correlated with fector II In M1 method wile weight of cane also cone tributad for factor II in $P E$ mothod. Cano yiold and $\pm t s$ rolated choractors cane under this factor keloht of cano formed an independent factor. factor $V i$ in min method. iength of cane and number of internodes related to growth of the crop como undor factor III as identified by Pint and fit mothod. So tinis Eactor may be nemed as growth Eactor. While length of intornode and juiciness at 22 th month aro more contributing to factor IV In PFA girth of cane and juiciness at 12 th month contribute to factor IV in ML mathod. Girth of cane remained Independent in factor V in PFA . In ML method length of internode form an independent factor in factor V.

The five comon pactors in PEA accounted for 69.06 parcentage of the variation in the dopendence structure whilo 66.84 porcontage variation was arplainod by the six fector model in the solution. The proportion of variation accounted by factor I winere the charactern contributed for this factor being same. accounted. about 33.79 per cont in PFA and 32.62 par cent in ML solution. The. contribution of
the socond factor was 17.97 per cent and 16.21 per cent respectively in PEA and His solutions. Fhile the proportionate verfance accounted by factor III in Hi was 9.52 por cent it was 9.19 per cent in PEA. The contribution of remaining factors wore 8.49 par cont in $M L$ and 8.81 per cent in PF solution.

8.5.2 Cluster III

4.5.2.1 Correlation studes

The environmont correlation coefficionts were found to 11 e batwsen $\mathbf{~} 0.4948$ and 0.9742 (Table 4.5.2.1). The character x_{1} was aignificantly correlated with x_{2}, x_{5}, x_{9}. x_{12}, x_{13} and x_{15}. x_{2} was found to ba significantly corrow latod with all tho cheracters except x_{g}, x_{10} and x_{11} while r_{3} hed adgnificant correlation with all the characters excopt x_{1}, x_{10}, x_{11} and x_{12}. Corrolation of x_{4} with the characters except $x_{1}, x_{7}, x_{10}, x_{11}$ and x_{12} ware found to be gignificant. Significant correlations were found to exist for x_{5} with $x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{9}, x_{15}$ and x_{24}. x_{6} was corrolatod with all excopt x_{7}, x_{10} and x_{11}. The characters $x_{2}, x_{3}, x_{5}, x_{8}, x_{13}, x_{14}$ and x_{15} wore found to have significont corrolation with x_{7} whilo x_{8} was aignificantly correlated with $x_{3}, x_{4}, x_{6}, x_{7}$ and x_{13}. x_{9} was significantly correlated with all oscopt $x_{1}, x_{8}, x_{10}, x_{11}$ and x_{12}. Correlation of x_{10} with x_{11}, x_{12} and x_{13} alone were found to be

Table 4．5．2．1 Environment correlation matrix－Cluster III

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	x_{8}	X_{9}	x_{10}	x_{11}	x_{12}	x_{13}	X_{14}
x_{2}	$0.73{ }^{\frac{7}{5}}$													
x_{3}	0.0046	0.3403 \＃̇												
x_{4}	0.0508	$0.381{ }^{\text {\＃}}$	0.920 誇											
X_{5}	0.2023	$0.470{ }^{\text {® }}$	$0.437{ }^{\text {＊}}$ \％	$0.70{ }^{*}{ }^{1}$										
x_{6} ，	0.49 詨	$0.668{ }^{* *}$	$0.47{ }^{\text {TA }}$	$0.56{ }^{\frac{*}{36}}$	$0.1800 \frac{1}{4}$									
x_{7}	－0．1221	－0．34 ${ }^{\frac{7}{5}}$	－0．2348	－0．1853	－0．226 ${ }^{\text {² }}$	－0．0775								
x_{8}	－0．1184	－0．0155	$0.36{ }^{\text {²0 }}$	0.2579 ％	－0．1650	0.2381	－0．47 ${ }^{\text {＊＊＊}}$							
x_{9}	－0．254＊	－0．330゙も	－0．42 ${ }^{\text {² }}$	－0．473＊	－0．128E	－0．494＊	－0．1183	－0．0299						
x_{10}	0.1286	0.1660	0.0576.	0.0734	0.0270	0.0750	－0．0545	－0．0639	－0．1750					∞
x_{11}	－0．1655	0.0202	0.1610	0.1091	－0．1176	－0．0070	0.0738	－0．0134	0.1732	0.64 ºt $^{\text {a }}$				
x_{12}	0．53䜶		0.0822	0.0686	－0．0141	$0.56{ }^{\text {¹ }} 7$	－0．1482	0.1459	0.0343	0.27 ̈ $^{\text {\％}}$	0.1500			
x_{13}	$0.525{ }^{\text {² }}$	$0.67{ }^{*}{ }^{*} 9$	$0.40{ }^{\text {² }} 3$		$0.461^{\frac{1}{2}}$		－0．3152 ${ }^{\text {\％}}$	0.309 ®＊	－0．453＊	$0.361{ }^{*}{ }^{*}$	0.0208	$0.52{ }^{\text {＊}}$ \％${ }^{\text {a }}$		
$\therefore x_{14}$	0.0542	－0．43 ${ }^{\text {＊＊＊}}$	$0.91{ }^{\text {¹ }} 1$	$0.97{ }^{\frac{1}{4}}{ }^{\frac{1}{2}}$	0.7618	$0.51{ }^{\text {雬 }}$		0.1682	－0．466＊＊	0.0571	0.0831	0.0507	$0.47{ }^{\text {＊}}$＊	
x_{15}	$0.419{ }^{\text {\％}}$	$0.76{ }^{\text {＊}}$	0．59 ${ }^{\text {\％}}$ \％	$0.63{ }^{\text {青䒨 }}$	$0.507{ }^{*}$	$0.799^{\text {® }}$ ¢	－0．2174	0.0886	－0．226 ${ }^{*}$	0.1918	0.1280	$0.74{ }^{\text {娄 }}$		$0.65 * * *$

[^0]significant. x_{11} is significantly corrolated only with x_{10}. Significant correlations mare found to oxist for x_{12} with $x_{1}, x_{2}, x_{6}, x_{10}, x_{13}$ and x_{15}, x_{13} is significantly correlated with all excopt x_{11}. Correlation of x_{14} with all excopt x_{1}, x_{8}, x_{10} and x_{11} ware significant. The correla tions of x_{15} with x_{3}, x_{10} and x_{11} wro not significant.

4.5.2.2 principal factor analysis

The envirorment correlation matrix was found to bo positive definite. The elgen values and the corresponding eligen vectors of the matrix was found out. The latent roots along with contribution of each to the total variation are given in rable 4.5.2.2.1. First four latent roots of the matrix was greator then ono and they altogether contributed 78.03 per cont to the totel variation.

Using the principal factor analysis to the environment comrelation metris a four factor model was fitted with squared multiple correlation coofficiont as estimates commnelity. Fifty two iterations ware takon for tho convorgence of commanaties with a five untt difforence in the thire decimal place. Tho estimatos of Ioadings in tho 52nd itoration along with communalities in the 51st and 52nd iterations are given in Table 4.5.2.2.2. Varimar rotation of loedings was applied and tho resulte aro given in Table 4.5.2.2.3. The charactore which are more corrolated with

51. No.	Latent roots	per cent contribum tion to varlamce
1	6.0421	40.4376
2	2. 3828	15.9588
3	1.6671	11.1082
4	1.5642	10.4703
5	0.9865	6.6034
6	0.9473	6,3410
7	0.4015	2.6875
8	0.3541	2.3703
9	0.2917	1.9526
10	0.2031	1.3595
11	0.0478	1.3200
12	0.0394	0.2673
13	0.0115	0.0770
24	0.0011	0.0074
15	0.0001	0.0007

Table cas. 2.2 .2 principal factom solution in tho $52 n$ iteration for the onvinommat corrclation metrig * Cluster III

Variable	common fictor cooffichemts				Estimated comunalitySise item 52natitemrabion ration		oxjginal conmunam- Ifty (stc)
	1	2	3	4			
1	0.4532	0.5946	0.2495	-0.0114	0.6215	0.6213	0.8984
2	0.3891	0.4328	0.1252	0.0243	0.8716	0.871 .6	0.9676
3	0.7427	$\cdots 0.4055$	-0.1384	-0.0075	0.8067	0.8065	0.9997
4	0.8401	-0.5239	-0.0396	0.1192	0.9959	0.9960	0.9942
5	0.6548	-0.2313	0.2605	0.2343	0.6312	0.6309	0.9994
6	0.3809	0.2777	0.0907	-0.0510	0.6522	0.6522	0.9944
7	0.0 .2969	0.0256	0.0433	0.3318	0.2012	0.2007	0.9292
¢	0.2603	-0.2899	-0.3310	-0.4132	1.0000	3.0000	0.9507
9	-0.4819	0.1331	-0.1934	-0.1313	0.3047	0.3046	0.9622
10	0.2058	0.2318	-0.4721	0.1973	0.3593	0.3570	0.9544
11	0.0806	0.0800	$=0.0640$	0.3676	1.0000	1.0000	0.9599
12	0.5062	0.6920	0.1574	0.1873	0.7950	0.7943	0.9961
13	0.7311	0.2174	$=0.0181$	0.02264	0.5980	0.5980	0.9729
24	0.0492	-0.5221	0.0095	0.1700	1.0000	1.0001	0.9996
15	0.0613	0.2207	-0.0504	0.0392	0.7945	0.7945	0.9973

Teble 4.5.2.2.3 Rotated principal factor loadings Eor the anviroment correlation matris - cluster IsI

Variable	Common factor coefficients			
	1	2	3	4
3	0.4472	0.6470	-0.0070	0.0509
2	0.3497	0.5292	-0.2607	-0.0606
3	0.7037	-0.4426	-0. 2372	-0.3110
4	0.8468	-0.4310	-0.0892	-0.1991
5	0.7542	-0.1898	0.0991	0.1293
6	0.3410	0.2472	-0.0940	. 0.1815
7	-0.2080	-0.0606	-0.0003	0.3922
8	-0.0188	-0.0889	0.0081	-0.4750
9	-0.5376	0.0856	-0.0857	-0.0308
10	0.1091	0.0864	-0.5801	0.0448
11	-0.1045	-0.2300	-0.1028	0.0457
12	0.3614	0,6961	-0.3654	-0.2143
13	0.6508	0.2758	-0.1747	-0.2606
14	0.8769	-0.4901	- 0.0604	-0. 0.405
15	0.7995	0.2421	-0.2732	-0.1489
Proportionate variances eccounted by each sactor	0.3607	0.1434	0.1249	0.1243

these four Eactors are given balow.
Factor I C.C.S. percentage
pol at 12 th month
Gugar yield per plot
Purity porcontageBrix as 12 th month
Factor II Cane yield per plot
Cominetion count
Sheot. count
Number of millabla canes per plot
Factor III Number of internodes
Eactor IV Irength of internods
Juiciness at 12 th month
4.5.2.3 Moximumalkelinood Eector anelystaThe anviromont correlstion metrix was subjected toWh method of fector extraction uncer the hypothegts that aEour fectormodel wil sufeice to erplain the degencencestructure. Twonty nime itorations ware taken for a ± 0.005convorgence cxiterion. A teat of gignificenco of tire factormorel thowed that four common actors are not sufficiont toexplein the dopendenco atructure $\left(\chi^{2} 51 \Rightarrow 104.27\right)$. The mmethoc was then tried for a Eive factor model wich againfound to be inadequate to explain tho dependence structure
$\left(\chi^{2} 60=72.78\right)$. Fifty two iteratione ware taken for the convergence. A glx factor model gave the goodness of ale statistic as $\chi^{2} 30=59.24$ which was significant. ML solution of factor loadings with aix factor model vas found to bo edecuate to oxplain the dependence structure. Two hundred and eeven iterations were takon for the eonvergonce with a ± 0.005 convergence oriterion. The initial estimates of factor loadings and uniqua variances obtadned from the princtpal factor mothod of factor analysis aro given in Tebla 4.5.2.3.1. The if solutions in the 2064h and 207th itorations are aumarised in Tebles 4.5.2.3.2 and 4.5.2.3.3 respectively, The varimat rotated loadings are presonted In Table 4.5.2.3.4. The zesidual matrix after romoval of six fectors is given in Table 4o5.2.3.5. The characters doninating the factors are listed bolow.

Factor I	C.C.S. percentege
	pol at 12th month
	日rix at 12th month
	purity percentage
	Suger yiela por plot
Factor II \quad	Cane yield per plot
	Shoot count
	camination count
	Number of millable canes per plot

Table 4.5.2.3.1 . Initial estimates of factor loadings and corresponding unique variances for 6 factors = Cluster III

Variable	Factor loadings						Unique variance
	1	2	3	4	5	6	
1	-0.0703	0.5677	0.0170	-0.1867	-0.4642	0.3238	0.3173
2	-0.4456	0.6884	0.0133	-0.1788	-0.2107	0.1201	0.2366
3	0.9203	-0.0143	-0.0119	0.3881	-0.0411	0.0694	0.0001
4	0.9771	-0.0037	-0.0052	0.0513	-0.0395	-9.0405	0.0394
5	0.7515	-0.0141	-0.0116	0.6579	0.0379	-0.1059	0.0002
6	-0.5362	0.5617	-0.3660	-0.0771	-0.3719	-0.4484	0.0001
7	0.2743	-0.1303	0.2800	-0.0323	-0.0168	0.3100	0.7320
8	0.1846	0.0789	0.2400	-0.4766	0.2891	-0.3095	0.4956
9	0.4767	-0.0475	-0.0657	0.0858	0.4516	-0.1341	0.5369
10	-0.0580	0.2704	0.3063	-0.0271	0.0325	-0.0789	0.8217
11	0.0805	0.1131	0.1105	-0.2571	0.2386	0.1066	0.8341
12	-0.0598	0.9902	0.0210	0.1093	-0.0201	-0.0424	0.0013
13	-0.4820	0.5143	0.4877	0.1214	-0.4480	0.3903	0.0001
14	0.9992	0.0080	0.0097	-0.0187	0.0307	-0.4869	0.0001
15	0.6603	0.7129	0.1963	0.0007	-0.0432	-0.2080	0.0002

Table 4.5.2.3.2 Mesimum likelinood estimates of fector loedings and uniquo variances in the 206th iteration a Cluster IIT

Vartable	Factor loadings						unique variance
	1	2	3	4	5	6	
1	-0.2060	0.4489	0.2100	-0.1848	-0.3850	0.1687	0.5011
2	-0.5222	0.6148	0.0184	-0.0302	-0.2586	-0.0792	0.2749
3	0.6209	-0.3243	-0.0108	0.0239	-0.2110	0.0171	0.4638
4	0.8353	-0.2121	-0.0039	0.0241	-0.4712	0.0206	0.0342
5	0.9734	-0.1342	-0.0126	0.0112	0.1684	-0.0097	0.0057
6	-0.5674	0.3898	-0.3916	0.2867	-0.0891	0.3005	0.1923
7	-0.2550	-0.1425	0.0791	0.1214	-0.0285	0.2845	0.8119
8	0.0499	0.3381	0.2112	-0.2807	0.3918	-0.2314	0.5527
9	0.4801	-0.0447	-0.3199	0.4108	0.1631	-0.1315	0.4525
10	-0.0529	0.2743	0.5955	-0.3741	0.0648	0.0254	0.4225
11	0.0654	0.2316	0.5833	-0.2093	0.2035	0.4239	0.3369
12	-0.0529	0.9322	0.0347	0.0796	-0.3531	-0.0014	0.0002
13	-0.5241	0.4185	0.0949	0.3748	-0.5250	0.5322	0.0001
34	0.8315	0.1614	0.0409	-0.0695	0.4331	-0.00\$8	0.0028
15	0.6177	0.3452	0.0314	0.1413	-0.0384	-0.1571	0.4522

Table 405.2.3.	4 hoteced maximun chuscer IrI	
Varicolo		
	1	2
1	0.0755	0.5894
2	-0.2700	0.7562
3	O. 8953	-0.1137
4	0.9202	-0.1600
5	0.6602	0.1507
6	-0.5225	0.3649
7	0.1467	-0.1539
8	-0.1183	O. 1118
9	0.4077	-0.0662
10	0.0249	0. 2827
11	0.1516	0.1297
12	$0.094 \pm$	0.3788
13	-0.1791	0.4930
14	0.9333	0.3450
15	0.5603	0.3032
Contrioneion OE exch Eactos	4.4031	3.0614
proportionate verionco eccounted by cach factor	0.2575	0.2377

14helinood ontimates of Eactor loasimgs -

Factor loncings

Table 4.5.2.3. 5 Residual matrix after removal of six factors from the environment correlation matrix - Cluster III

	x_{1}	x_{2}	x_{3}	X_{4}	x_{5}	x_{6}	x_{7}	x_{8}	X_{9}	x_{10}	x_{11}	x_{12}	x_{13}	x_{14}
x_{2}	0.2346									,				
x_{3}	0.0032	0.0024												
x_{4}	-0.0339	-0.0576	-0.0005											
x_{5}	0.0006	0.0004	0.0000	0.0000										
x_{6}	-0.0015	-0.0011	0.0000	0.0004	0.0000									
x_{7}	-0.0092	-0.1147	-0.0006	0.0666	-0.0002	-0.0004								
x_{8}	-0.2429	-0.1266	-0.0020	0.0361.	-0.0004	0.0029	-0.4120							
X_{9}	-0.0292	-0.0658	0.0018	0.0173	0.0005	-0.0016	-0.2142	0.2381						
x_{10}	0.0305	-0.0426	0.0001	-0.0035	0.0000	-0.0007	-0.0121	-0.1033	-0.1906					
x_{11}	0.0003	0.0012	0.0000	-0.0001	0.0000	0.0000	-0.0004	0.0000	0.0026	0.0002				
x_{12}	0.0001	0.0002	0.0000	0.0002	0.0000	0.0000	0.0000	0.0004	0.0000	-0.0002	0.0000			
x_{13}	-0.0014	-0.0013	0.0000	0.0001	0.0000	0.0000	0.0010	0.0011	-0.0004	0.0001	0.0000	0.0000		
χ_{14}	-0.0117	-0.0075	0.0000	0.0023	0.0000	0.0000	0.0001	0.0081	-0.0094	-0.0009	0.0000	0.0000	0.0000	
x_{15}	-0.0051	-0.0005	0.0008	-0.0124	0.0002	-0.0003	0.0188	-0.0523	0.0260	0.0233	-0.0001	0.0000	-0.0002	-0.0030

Factor III Number of Internodes
Factor IV. Girth of cano
Factor V Length of canc
Length of Internode

Factor VI weight of cane
Juiciness at 12 th month

The charactere C.C.S. percentage, pol at 12th month, brix at $12 t h$ month. purity parcentago and sugar yiold por plot were found to be highly correlated with Eactor I in both DFA and Mis methode. The characters are zelated to quality eapocts of the crop and honce named as the quality Factor. The second Eactor is sesoclated with ceno yiald per plot: shoot count. gazmination count and number of millable canes por plot in both mathods. The third factor is characterised by numer of internodes in DPA and R1t methods. Length of intornode and juiciness et $12 t h$ month are more contributing to Esctor IV in PEA while girth of cane alone contribute factor IV in ML method. In ML mothod length of cens and length of internodo fommed fifth factor and 6 th factor is highly correlatod with woight of cane and Juicineos at 12 th month.

The four comon factors is PFM accounted for about 75.33 percontago of variation in the dopondence structure while 79.44 porcentage varletion wes explained by tho six
factor nodol in ML solution. Factor I accounted 36,07 poscentege of variation in PEA and 25.75 in it mathod. prom portionate variance mecounted by the second Eector was 14.34 por cont in PFA and 23.77 per cont in Mit mothot. The contribution of ting third factor was 12.49 per cont and 9.72 per cent respectively in pra and Min method. Contribum tion of romaintng fectore wero 12.43 per cont in PRA and 20.20 per cent in mathod.

4.5.3 Clustor IV

4.5.3.1 Correlation studias

The mivironment corrolation matriti is given in Fable 4.5.3.I and the corrolation coefetciente wero Eound to 1 ie batween 00.8199 and 0.9948 . Character $\%$ was Eicnificantly correlated with all the characters orcept x_{3}. The correlation or s_{2} whth all tha charectors were gignificant axcopt for x_{4}, x_{5}, x_{7} and x_{14}. Corrolation of x_{3} with the charactors cxcopt $x_{1}, x_{9}, x_{9}, x_{10}, x_{12}$ and x_{13} were found to be significont. SLgntescant correlations were sound to oxist for x_{4} with $x_{1}, x_{3}, x_{5}, x_{7}, x_{9}, x_{11}, x_{14}$ and x_{15}, x_{5} had corrolation with all axcept x_{2}, x_{B} and x_{10}. Correlation of x_{6} with $x_{4}, x_{7}, x_{9,} x_{11}$ and x_{14} wore found to bo nonEignticant. Charecters $x_{2}, x_{9,}, x_{10}, x_{12}$ and x_{13} tere Found to have nonmsignificant correlation with $x 7$ wile characters $x_{1}, x_{2}, x_{4}, x_{5}, x_{6}, x_{11}, x_{12}, x_{13}$ and x_{15} have significont correlation with x_{8}, x_{9} was correlated with all except x_{3}.

Table 4.5.3.1 Anvironment correlation matrix - Cluster IV

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	x_{8}	x_{9}	x_{10}	x_{11}	x_{12}	x_{13}	x_{14}
x_{2}	0.63 老													
x_{3}	-0.1236	$0.340 \frac{\text { T }}{4}$												
x_{4}	-0.225 ${ }^{\text {® }}$	0.1678	$0.94{ }^{*}{ }^{\text {K }}$											
x_{5}		-0.1999	$0.566^{*} 7$	$0.78{ }^{\text {º }}$ (0)										
x_{6}	$0.661^{* 1}$	$0.85{ }^{*}{ }^{*}$	$0.27{ }^{*}{ }^{*} 1$	0.0878	-0.320**									
x_{7}	0.228*	-0.1246	-0.64 ${ }^{\text {** }}$		-0.404 ${ }_{4}^{* *}$	0.0647								
x_{8}	0.4042\%	$0.31{ }^{\text {²** }}$	0.0806	0.0196	0.0334	0.1948	$0.254 \stackrel{\star}{5}$							
x_{9}	$0.44{ }^{\text {¢ }}$	0.2351	-0.1989	$-0.36{ }^{*}$ ²	-0.581* ${ }^{*}$	$0.29{ }^{\text {t }}{ }_{4}^{4}$	0.1978	-0.1151						
x_{10}	$0.281{ }^{* *}$	$0.539{ }^{*}{ }^{\text {² }}$	0.0271	-0.0166	-0.1986	0.449**	-0.0430	0.0471	-0.1035					
x_{11}	-0.260 ${ }^{\text {® }}$	0.1023	$0.499{ }^{*}$	$0.60{ }^{\text {\% }} 4$	$0.63{ }^{\text {® }}$ \# ${ }_{7}$	0.0567	-0.2554*	$0.245 \frac{*}{2}$	-0.819**	$0.40^{*}{ }_{5}^{*}$				
x_{12}	0.6800 ®̃	$0.762{ }^{*}{ }^{4}$	0.0820	-0.1204	$-0.463 \overline{1}$	$0.73{ }^{*}{ }^{*} \frac{1}{3}$	0.1364	$0.44{ }^{\text {¢ }}$	$0.28{ }^{\text {** }}$	$0.66 \mathrm{t}$	0.0619			
x_{13}		$0.62{ }^{\text {考 }} 2$	-0.1171	-0.1677	-0.262 ${ }^{\text {* }}$	$0.32{ }^{\frac{8}{36} 6}$	-0.0605	$0.43{ }^{*}$ * ${ }^{\text {a }}$	-0.0997	0.695 t	0.1686	$0.54{ }^{*}$ **		
x_{14}	-0.222 ${ }^{\text {\# }}$	0.1465	$0.900^{* *} 4$	$0.39{ }^{*}{ }^{\text {B }}$	$0.824{ }^{*}{ }_{6}$	0.0548	-0.634**	0.0189	$-0.40{ }^{* *}{ }^{*}$	-0.0013	$0.62{ }^{* 3}{ }^{\text {B }}$	-0.1472	-0.1389	
\dot{x}_{15}	0.2509	0.560 *		$0.81{ }^{*}{ }^{*}$	$0.46{ }^{\text {T* }}$	0.47 ** ${ }^{\text {® }}$	-0.49 ${ }^{\text {® }}$ *	0.310 **	-0.1318	$0.260{ }^{*}$	0.51**	$0.441{ }^{\star *}$	0.1813	0.80 ***

x_{7}, x_{6}, x_{9} and x_{14}, x_{10} was not corrolatod with x_{3}, x_{4} x_{5}, x_{7}, $x_{9} x_{9}$ and x_{24} and eignificantly coxrelatad with other characters. x_{11} hed significant corrolation with all the charecters ercept x_{2}, x_{6}, x_{12} and x_{13} and x_{12} with all oxcopt $x_{3}, x_{4}, x_{7}, x_{11}$ and x_{14}, x_{13} was signseicantly corrolated with $x_{1}, x_{2}, x_{5}, x_{6}, x_{8}, x_{10}, x_{12}$ and x_{13}. Correlation of x_{14}, ith $x_{1}, x_{3}, x_{4}, x_{5}, x_{7}, x_{9}, x_{11}$ and x_{15} woro Eound to bo aignikicant. x_{15} was bignikicently correlated with all except x_{9} and x_{13}.
4.5.3.2 principal factor analysis

The environmant corrolation matrix was found to bo positive semi dafinite. The oigen velues and tho corresm ponding elgen vectors of the matrix was detemined. The olgen valuss along with contribution of ach katont soot to the total variation are given In Tablo 4.5.3.2.1. Farst Four latent roots of the matrix was greater than one and thoy altogether contributad 87.37 per cent to the total variation.

A four Eactor model was extrected using principal factor analysis with squared multiplo corrolation coeffim cient as initial estimate of cormunality. The numbar of Iterotions meeded for the convergence of commualities wes ols, with a difforence of five unita in the third decimal place. The prinolpal factor loadings in the fth itaration

Table 4.5.3.2.1 Latent roots of tine environm mont corrolation matrix m Cluster IV

$\begin{aligned} & \text { Sl. } \\ & \text { NO. } \end{aligned}$	Latent roots	per cent contribu tion to varianco
1	5.4283	36.1920
2	4.6725	31.1500
3	1.8167	12.1113
4	1.1881	7.9207
5	0.7128	4.7520
6	0.4009	2.6727
7	0.3359	2.2393
6	0.2319	1.5460
9	0.0991	0.6627
10	0.0728	0.4853
11	0.0315	0.2100
12	0.0087	0.0580
13	0.0000	0.0000
14	0.0000	0.0000
15	0.0000	0.0000

Blong with commalitiles in the 5th and 6th iterations are givon in Table 4.5.3.2.2. Factors in the 6th iteration wew aubjected to vartmax rotation. The roteted loadings are presented in Teble 4.5.3.2.3. The characters which are highty correlated with the four factors are given below.

Fector II shoot count
Nubiber of millable canes par plot
gemination count

Factor III Numbar of internodes
iangth of cano

Factor IV Length of internode
JuLciness at 12 th month
4.5.3.3 Maximus inelifrood fector analysis

His estimation of factor loadings with a four fector model was donc. Twonty elght iterations wora taken for a ± 0.005 convergence oriterion. A teat of signtificances of the model gave a χ^{2} value of 108.02 for fifty one degrees

Varisble	Comon Eactor coerEicients				Estinated conmunality5th item $6 t h 16 e-$ ataion retion		Original communa 1ety ($5 x+c$)
	1	2	3	A			
2	0.2930	0.7569	0.1713	0.2206	0.6839	0.6382	0.9999
2	0.2300	0.3045	0.1361	-0.0699	0.3508	0.8586	1.0000
3	0.9085	0.0929	0.3285	0.0064	0.9418	0.9420	1.0000
4	0.9792	- 0.0950	0.2056	0.0076	1.0000	1.0000	1.0000
5	0.7603	-0.4253	-0.1133	0.1680	0.8096	0.0092	1.0000
6	0.1149	0.7964	0.2265	-0.0490	0.7012	0.7011	0.9999
7	-0.5971	0.0912	-0.1842	0.2951	0.4895	0.4859	0.9998
8	0.1509	0.4434	-0.3036	0.7350	0.8390	0.8412	0.9999
9	-0.4983	0.3048	0.6901	0.0005	0.8202	0.8175	0.9999
20	0.1256	0.6526	-0.4310	-0.4970	0.8715	0.0714	1.0000
11	0.7463	0.0241	-0.5953	-0.0365	0.9099	0.9123	0.9999
12	-0.0202	0.9430	-0.0537	-0.0036	0.6926	0.6925	1.0000
13	-0.0058	0.6782	-0. 0.220	0.0 .0926	0.6811	0.6384	2.0000
14	0.9780	-0. ± 119	0.1504	0.0062	0.9913	0.9917	1.0000
15	0.8438	0.4446	0.23 .13	0.1009	0.9660	0.9662	1.0000

Tainle 4.5.3.2.3 iotated princtpul factor loednga for tho environrent corroletion mekris Cluster XV

Voriebia	Common factor coefficionts			
	1	2	3	8
1	-0.115	0.7569	0.2310	0.2206
2	0.2642	O.Esag	0.0405	0.0 .0899
3	0.9655	0.0929	-0.0342	+0.0.006A
4	0.9852	-0.0950	-0.3787	0.0076
5	0.6686	-0.4253	-0.3911	0.1600
${ }^{6} 6$	0.2912	0.7964	0.1673	0.0 .0490
7	-0.6227	0.0911	0.0520	0.2952
6	-0.0103	0.4634	-0.3229	0.7350
9	-0.2040	0.307 E	0.8252	0.0096
10	-0.C443	0.6526	-0.4466	-0. 0.8370
12	0.4702	0.0242	- 0.0309	-0.0265
12	-0.0308	0.9430	-0.0423	0.0 .0037
13	-0.1592	0.6782	-0.3802	-0.0926
14	0.9635	00.1119	-0.2254	0.0062
15	0.8616	0.4446	$=0.1190$	0.1089
Proportion variance accounters by each factor	0.3213	0.2981	0.1439	0.0653

of freecion, which was significent. So MLs solution of Eactor loadings was trited with a five factor motel which egoin found to be significant $\left(X^{2} 40=57.97\right)$. Fifty two iterations were taken for the convorgence. ML solution of factor loadings with six factors was found to be adequate to explain the dependence structure $\left(X^{2} 30=54.52\right)$, sixcty aight iterations ware required for the convorgonce with a ± 0.005 convergence criterion. The initial estimates of ractor loadings and unique variances are given in Teble 4.5.3.3.1. The 柆 solutions in the 67 th and 68 ch itera tions are given in Tables 4.5.3.3.2 and 4.5.3.3.3 respectively. The varimar rotated loadings are preaented in Table 4.5 .3 .3 .4 . The reotdual matrix aftor removal of six factors is given in Table 4.5.3.3.5. The charecters with high loadings in each factor are given below.

r		Pol at 12th month C.C.S. percentage
Factor	I	Brix at 12 ch month
		Sugar yicla poz plot
		Putity percentage
		Cane yiela per plot
Pactor	II	Shoot count
		Number of miliable canes por plot Geraination count

Table 4.5.3.3.1 Initial eatimetes of factor loadings and corresponaing unique vaztences for 6 Eactors - Cluster IIr

Variable	Factor loasings						Undegua vartance
	1	2	3	4	5	6	
1	-0.2202	0.6192	0.3038	-0.1875	-0.4302	0.0497	0.2531
2	-0.1652	0.7787	0.1968	-0. 1264	-0.0153	0.3766	0.1734
3	0.9318	-0. 0.1817	-0.2158	0.1236	-0.1783	0.1766	0.0001
4	0.9991	-0.0005	-0.0269	0.0157	-0.0253	-0.0495	0.0002
5	0.8002	-0.2507	-0.2937	-0.0275	0.2840	-0. 4709	0.0001
6	-0.0802	0.7362	-0.2260	-0.1000	-0.0560	0.2219	.0. 3510
7	0.6363	-0.0431	0.0993	-0.2131	-0.1970	0.2443	. 0.5586
6	0.0251	0.4171	0.0003	0.4443	0.4770	-0.0257	0.3998
9	0.3832	-0.1673	-0.7414	-0.3452	0.0910	-0.0051	0.1481
10	-0.0045	0.2573	0.4994	-0.3345	0.2404	-0.1128	0.5020
11	0.6193	0.21 .31	0.6923	-0.2936	0.0195	0.1062	0.0003
12	-0.1233	0.9629	0.1139	0.0227	-0.0489	-0.1165	0.0002
13	-0.1505	0.6691	0.2831	0.2577	-0.1603	0.0335	0.3563
14	0.9980	0.0216	0.0339	-0.0327	0.0346	-0. 2885	0.0001
15	0.8201	0.5248	0.1733	0.0493	-0.1256	-0.0733	0.0002

Tablo 4.5.3.3.2 Maximum likelifhood estinates of factor loadings and unigua variances in the 67 ch iteration - Cluster IV

Variable	Fector loadings						Unicue veriance
	1	2	3	4	5	6	
1	m0. 2501	0.6139	0.3417	0.0 .0511	-0.4072	0.2568	0.2094
2	-0.1479	0.7741	0.2459	-0.0951	-0.0213	-0.5171	0.0415
3	0.9217	-0.1810	-0.2398	0.0840	-0.2285	0.0222	0.0004
4	0.9971	-0.0019	-0.0809	0.0037	-0.0229	0.0070	0.0002
5	0.3159	-0.2357	-0.2459	0.0551	0.2969	-0.0066	0.8741
6	-0.0644	0.7311	00.2326	-0.0243	-0.0976	0.3552	0.2487
7	0.6265	-0.0576	0.1787	0.2538	-0.1651	0.0574	0.4773
8	0.0299	0.4400	0.0959	-0.5661	0.2635	-0.1162	0.3929
9	0.4392	-0.1423	-0.7782	0.1379	0.0398	-0.0451	0.1586
10	-0.0094	0.3489	0.3727	-0.5520	0.0569	-0.0093	0.4313
11	0.6665	0.2385	0.6951	-0.0902	0.0112	0.0059	0.0074
12	-0.1349	0.9818	0.1216	0.0386	-0.0146	-0.0082	0.0013
13	-0.1489	0.6698	0.1870	0.2568	-0.2247	0.2841	0.2971
- 14	0.9979	0.0196	0.0459	-0.0336	0.0532	0.0082	0.0001
15	0.8079	0.5264	0.2242	0.1055	-0.0792	-0.0091	0.0022

Teble 4.5.3.3.3 Maximua binelinoos estimetes of fector loadings and unique variances in the 6Sth itoration - Cluster IV

Variabla	Factor loadinga						Dnicue variance
	1	2	3	4	5	6	
1	-0.2517	0.6090	0.3446	-0.0471	-0.4040	0.2598	0.2141
2	-0.1433	0.7712	0.2490	-0.0936	-0.0252	. -0.5200	0.0431
3	0.9188	-0.1809	-0.2437	0.0806	-0.2333	0.0197	0.0024
4	0.9953	-0.0052	-0.0928	0.0007	-0.0227	0.0043	0.0002
5	0.8192	- 0.2326	+0.2400	0.0537	0.3014	-0.0018	0.1229
6	-0.0609	0.7281	-0.2365	-0.0274	-0.0997	0.3893	0.2480
7	0.6242	-0.0607	0.1935	0.2564	-0.1610	0.0545	0.4784
8	0.0335	0.4433	0.0981	-0.5699	0.2606	-0.1194	0.3856
9	0.4422	-0.1384	-0.7811	0.1360	0.0366	-0.0482	0.1531
10	-0.0130	0.3520	0.3698	-0.5540	0.0540	-0.0055	0.4257
11	0.6706	0.2416	0.6956	-0.0881	0.0081	0.0020	0.0002
12	-0.1375	0.9816	0.1243	0.0417	-0.0117	-0.0036	0.0002
13	-0.1457	0.6699	0.1549	0.2569	$\cdots .02286$	0.2892	0.2939
14	0.9965	0.0157	0.0475	-0.0338	0.0564	-0.0044	0.0001
15	0.0035	0.5283	0.2283	0.1097	-0.0773	-0.0073	0.0052

Tablo 4.5.3.3.4 rotatec maximum inelinood ostimatos of fuctor loedns clustar IV

Variable	Eactor loadinge					
	1	2	3	4	5	6
1	0.1278	0.6023	0.4071	0.4036	-0.2703	0.0251
2	-0.215	0.8919	0.1898	-0. 1875	-0.0906	-0.1043
3	0.9434	-0.1329	-0.0641	0.0512	-0.2694	0.0353
4	0.9725	-0.0023	-0.2315	0.0056	-0.0222	0.0061
5	0.6989	-0.3038	-0.4902	0.0366	0.3079	-0.1278
6	0.0 .1336	0.7613	0.2045	-0.2408	-0.2021	0.0981
7	0.6501	-0.0606	0.0266	0.0 .3003	-0.0576	0.0334
8	-0.0002	0.2215	0.1036	0.7437	0.0051	-0.0352
3	0.1681	-0.1539	-0.8817	0.0960	0.0011	-0.1132
10	0.1064	0.3277	0.3544	0.2139	0.0239	0.3597
11	-0.4119	0.1752	0.8740	0.1505	0.0693	0.0727
12	0.0903	0.8174	0.16218	-0.3929	-0.1372	-0.3533
13	-0.1973	0.7731	0.1204	-0.1009	-0.2062	0.0160
14	0.9590	0.0004	0.2748	0.0146	0.0660	-0.0047
15	0.3342	0.4067	0.0410	0.3121	0.0365	0.0 .1010
Contribution of cech factor	5.3084	4.1750	1.7502	0.0161	0.5331	0.6793
Droportionete voriango accounted by each Eictor	0.3139	0.2714	0.1560	0.0933	0.0243	0.0247

Table 4.5.3.3.5 Residual matrix after removal of six factors from the environment correlation matrix - Cluster IV

	x_{1}	x_{2}	x_{3}	x_{4}	X_{5}	x_{6}	X_{7}	x_{8}	x_{9}	x_{10}	χ_{11}	x_{12}	x_{13}	x_{14}
x_{2}	-0.0022													
x_{3}	-0.0011	0.0000												
X_{4}	0.0000	0.0000	0.0000											
x_{5}	-0.0122	0.0130	-0.0017	0.0004										
x_{6}	0.0894	0.0211	-0.0064	0.0010	-0.0425									
x_{7}	0.0343	0.0201	-0.0177	0.0040	0.0195	0.1321								
x_{8}	0.0133	-0.0048	0.0062	-0.0008	0.0181	-0.1429	0.0490							
${ }_{9}$	0.0161	0.0058	-0.0028	0.0008	0.0338	0.0542	0.0999	0.0193						
x_{10}	0.0020	-0.0002	0.0000	0.0000	0.0003	-0.0005	0.0002	0.0011	-0.0002					
x_{11}	0.0001	0.0000	0.0000	0.0000	0.0001	0.0005	0.0002	0.0000	-0.0001	0.0000				
x_{12}	-0.0009	0.0001	0.0000	0.0000	-0.0002	0.0000	0.0013	0.0004	0.0004	0.0000	0.0000			
x_{13}	-0.0781	0.0099	0.0090	-0.0022	-0.0103	-0.1943	-0.1813	0.1787	-0.1304	0.0002	-0.0006	0.0001.		
X_{14}	-0.0007	0.0000	0.0000	0.0000	-0.0005	-0.0039	0.0033	-0.0012	-0.0006	0.0000	0.0000	0.0000	0.0027	
x_{15}	0.0183	-0.0029	0.0007	-0.0001	0.0031	-0.0014	-0.0278	-0.0105	-0.0092	0.0000	0.0000	0.0000	-0.0007	0.0000

Fector III Girth of cane welght of cane
Factor IV Eength of internode
Factor V length of cane
Pector VI Number of internodes

In both PEA and ME nethods, factor I was found to be highly correlated with pol at 12 th month. C.C.S. percentege, brix at 22 th month. sugar yield por plot and purity percentage thich was cosignated as quality Eactor Cam yiela por plot, shoot count, number of millabie canes per plot and gormination count wore found to be highly corrolated With Fector II In both the nothode. IThe third fector was cominated by number of internodes andilength of cano in pfa and girth of cand and weight of cane in His mothod. the fourth Eector is characteriged by length of intornode and juicinoss at 12th moneh in EFA and lengti of internode oniy in $h=$ mothod. In ML method, langth of cane formed an indem pendent fector. factor V and number of internodes anothar factor, Eactor VI:

In PFA 82.86 porcentage of variation in the dopendence structure was explainod by the Eour comon gactors thile in atr method 07.51 percontage was explained by tho sile fector model. The proportion of variation accounted
by factor in was about 32.13 por cent in PFR and 31,39 per cont in ML solution. second factor accountod a proportion of variance of 29.31 per cent in pra and 27.14 por cont in Mt solution. The contribution of factor III was 14.39 per cent in pPA and 15.6 in meolucion Contribution of zomalning factors were 6.53 and 13.2 E respectively in PFA and Mis methods.

PFA and mh methods were triec for each clustor. The clones within eacin cluster are lass divergent than those between cluaters. The two methods woro tried for each cluster with the purpose of idontifying the fectors in genaraj. All the clusters geve moro or loss the seme rosult wion eried with both the mothods. Howover ML mathod is preforred as it allows the testing of the adequacy of the factor modsl for gonerating the obssrved correlations.

The charactors pol at $12 t h$ month. C.C.S. percontage. brix at 12 th month, sugar yiold per plot and purity parcontags remained the sam in factor I for all the three clustors. This fector is clearly a factor associatan with quality aspect and contributes a major shero of the variation of the dapendont atructure of the morphological and cuality traits of the crop. The charectors will ane mone amonable to change in this gactor are pol at 12 th month. C.C.s. percentaga and brix at i2th month. Second factor were dominated with the characters cana yield por plot. shoot count.
gormination count and number of millable canes in all tho three clusters mille weight of cane is found to be an additional character in this factor for tho E1sat cluster. In this factor the characters cane yicld per plot and shoot count are found to bo the cheracters which ara more amenable to changes. In the cene of other factors the Characters are not the game in the three clusters. How gvar in all the clusters 6 factors are found to be necom ssary to explain the covariance structure as revealed by the mas method.

From this study it is clear that the main factor of divergence in sugercane is the guelity factor of witich the characters pol at 12th month, C.C.S. poroontage and brise at 12 th month contributing mare towards divorgence Hence this eactor heis to be given more importanoo in breading programos on divergence. In the second Eactor the characters cene yield por plot, shoot count and number or millable canes contributing more towarde aivergence.

SUMIMARY

Multivariate statistical techniques aro vary much useful in plent breeding programas on augarcano as they estimate the degree of divergence in morphological and quality traits which are intercorralated to verying degrees. Factor analysis is consicored as the boot analytic mathod dua to tea powar and elegance in studies of this type. prinetpal factor analysis and maximum linelihood mothod aro two ways to oxtrecting the fectors of divergence. of winch maximum likolinood method is considored as the best one as it satisfies certain properties of a best ostimator and allows for the dotormination of an acequate number of stable fectors fran the polnt of view of goounebs of fit of the factor-model.

The available data on various morphological and quality traits in sugarcane with respect to forty aight varieties were utilized for the stuady. Tho analyets of disporsion revoaled significent differences among the varioties for aggregate effect of all the chaxacters indicating coneiderable variebility among the cxperimental material.

Divercrence analysis is parformed to idontify the aiverse genotypas for hybriaization purpoess. The forty eight genoeypes were grouped into thirteen cluatore by
D^{2} manalyais. The first clustor conelsted of fifteen variem tios, seconc fivo variotios, thirc nibe, Eourth soven and Eifth aluetar concioted of fou varioties. jinc ocher genotypoe rare not able to oluster.

Verious zactormodels wate tried for the environmont correlution matrix as factor anelyws amm to oxplatn the intercormatations ancos the numeroun variables in toms of olmple reletione Eector anelyots wos dono ceparately for the Eirat, thitr and Eouth cluoterp.

Principal factor analysis allows fow tho detorminam tion of a mbactor patern whero m rofors to tho nuntor of primpal componones those atgen volues are greater than or caual to ono (famman 1967). Ab such a fivo-factot modol wes Eittod to the environmont correlation matris of clustor I and four factor models for thind and Eouth elustors. The Eirst factor was che same for the three clugtors which wes a guality fector. The chatactors pol at 12 th month. C.C.S. percentage, brize at $12 t h$ month wugar yield por plot and purity porcentage bolonging to this factor. second fector was dominated with sane yield per plot, shoot count. germinaeion count and mubor of millablo cones in tho eltree chustere wille wagith of cane also was in thas factor for the first clustar: Third epotor ves the seme for tirst and fourith clusters which conststed of the characters length
of cene and number of internoces while number of intarnoces only in the thind factor of the second cluster. The charac. tors longth of internode and juicinass at 12 th month bolonging to fourth factor which was the sate For tho threo clusters. The additional factor for the firgt clustor consisted of girth of cano only.

Tho maxtmun k kelihood mothod robulted in fitting a sin: factor model to explain the correlation otructure in alt the three clustors. The first two factors are the same as thet pbtained by PEA. Thind factor consiated of longth of canc anci mumor of intomodos in tho first cluster fhato number of internodes remange alono in sino thira clustor. In the Eourh eluster enird Eactor mas donineted with the charectore girth of caro and volghe of cara. The charecters juchoen at 12 th month and gixth oz cane belongIng to fourth factor" in the Eirst olustor and girth of cane remeinod indopondenimy in the third cluster. But in tho Fourth cluster lengith of intermode formod as tho Eourth factor. EtEth Eactor was dominated by Ienjth of intomode in the firet cluster wile longth of cane and length of Internode cominatod this Eactor in the thire cluster. Eength of cate somed the sisth fector theorth chustor, sixch factor concisted of whght of camo in tha first atuator. juicinots wi $12 t h$ month in tho thited cluoter and nomber of intoraode in cho fourth cingtor.

113

 and brity at 12 th month in the guatity Eactor anc oas yiald por plot and shoot count in the sacond factor whin found to be tha sera in all the three clugters sturtoc. It is olear that the guality saceor jis tho matit Eactor of diverm gence in sugarcanc.

REFERENCE

REFERENCES

Abraham, T.P. and Hoobakht. A. (1974). An application of factor analysis for interpretation of soil analysis data. I. Indian Soc. agric. Stat. $2 \underline{\text { 26(1) }}$ 103-112.

Anand, I.J. and Rawat, D.S. (1984). Genetic diversity, combining ability and heterosis in Brown mustard. Indian J. Genet. : 44(2): 226-234.

Anderson. T.W. (1958), An Introduction to Multivariate Statistical Analysis. John Wiley and Sons, Inc. New York, pp. 374.

Arunachalam, V. and Ram, J. (1967). Geographical diversity in relation to genetic divergence in cultivated sorghum. Indian J. Genet. . 27: 369-380.

Arunachalam, V. (1981). Genetic distance in plant breeding. Indian J. Genet., 40 (1): 226m236.

Bart, C. (1952). Tests of significance in factor analysis. Brit. J. Psychol. Stat. Sec., 5: 109-133.

Bartlett, M.S. (1934). The vector representation of a sample. Proc. Camb. Phil. Soc. 30 : 327-340.

Bartlett, M.S. (1947). Multivariate analysis. J. Roy. Stat. Soc., (B) 9: 176-197.

Bartual, B., Carbonel1, E.A. and Green, D.E. (1985). Multia variate analysis of a collection of soybean cultivars for South Western Spain. Euphytica 34(1): 113-123.

Catell, R.B. (1965 a). Factor analysis. An introduction to essentials 1. The purpose and underlying models. Biometrics 21(1): 190-215.

Cattell, R.B. (1965 b). Factor analysis. An introduction to essentials II. The role of factor analysis in research. Biometrics 21(2): 405-435.

Cattell, R.s. and Khanna, D.K. (1977). Frinciplos anc procedures for unique rotation in factor analysio. Mathematical methods for digital computere. 3. Ed. Enslein, K. Relston, A_{4} and Wif. HoSe. Jonn wiley and Sons, Inc. New Yorka

Cheuthary, B.D. and Singh. V.P. (1975). Genotic divorgance in seme and oxotic barley varietios and their. hybrids. Indian I. Geneto. 35: (409-413).

Denis. J. and Adans, H. W. (1978). A Eactor analysis of plant variablos related to yicla in ory beans. Crop Scin. $18(1): 74=73$.

Dixit. R.f. (1980). Genotic divergence for yield and its components in lentil. Indian J. earic. Sci.: 50(3): 222-224.

Dobnel. V.K. and Ran, H. (1905). Genotic divergance in pay Indian ${ }^{2}$. agide. Sci. $55(2): 67-71$.

Everitt, B. (1979). Unresolvad problems in cluator analyeis日iometrics 35(1): 169-181.

Bveritt, 3. (2980). Clustar analvsis. 2nd Edn. Heinemann paucational Books. Loncon.
*Figher, R.A. (1922). On the mathematical foundations and theorctical statistics. Phil. Treng. Foy. Soc. 222
*Fishera R.A. (1925). Tizeory of gtatistical ontimation. proc. Camb. Ehis. SOC. 22: 700-725.

Eruchter, 日. (1954). Introduction to Bector Analycis. D. Van Fostrand Company, Inc. Now York, pp. 280.

Galu. P.C., Gupte, P.K. and kishore, H. (1978). Studies on genetic divergence in potato. euphytica 27 : 361-368.

G11., S. De, Tripathi, Boko, Hisra, G.P. and Lal, S. (1983). Character aosocietion analysis in somo foreign varietias of augarcane. Indian I. agric. Sci. 53(12): 985-987.

Gupta. M. P. and singh, R.B. (1970). Genctic divorgence for yield and its compononts in greengrem. Indian士. Ganet. $30(1): 212-221$.

Gutiman. Lo (1956). "Best possible" systematic eatimetos of cormunalities. psychometzike. 21 (3): 273-265.

Hamar. H. H. (1967). Modern Factor analysis. 2ndedn. University of chicago Dregs. Chicago pp. 473.
itemorle. W.J. (1965). Obtaining maximum likelihood estlmates of factor loadings and commnalitios using an easily inplemonted itarative computer procedure. psychometrike, 30(3): 291-302.

Holmingar, K.J. and Hiaman, H. H. (1941). Fector Analysts. University of Chicego press. Chicago. p. 417.

Hotelling. H. (1931). The generalization of studont'a ratio. Ann. Math. Stateo 2: 360m364.

Fotellinge H. (1933 a). Analygis of a complex of otatisticel variablas into principal componente. I. Educ. PSychol., 24: 417-441.

Fotelling. F. (1933 b). Analysis of a complex of statio stical variablos into principal componants. J. Educ. Psycholo. 29: 498-520.
*Hotelling. H. (1935). The most predictable criterion. J. Educ. Esychol. $25: 139-142$.

Jatassa, D.S. and paroda, 1.5. (1903). Genetic divergence in wheat. Indian J. Genet. $43(1)$: 63-67.

Jindall, S.K. and Gupta, B. S. (1995). Cenetic diverconco In fodcer cowpea. Indian J. agric. Sct. 55(1): 1-3.

Joreskog. K.G. (1967). Scme contributions to masimun inelihood Eactor analysis. Esychometrika. $32: 1$
$443-482$.

Joresisog: K.G. (1969). A goneral approach to confinmatory moxtinum likelinood fector analysis. psychomotrike. 34(2): 183-202.

Joresiog. K.G. (1971). Simultaneous Eactor analyois in sevaral populations. Psychometrika. 36: 409.

Joreskog. K.G. and Goldborgor. No S_{a} (1972). Factor enalyais by goneralizod least squeros. pgychomotrika, 37.

Jorabkog. r.c. (1977). Factor anclysis by loost ogurab and maximum-illolinood metiods. phathomaticel pothods
 and Jile his. John :illoy and Sons. Ino. Wow Vori.
 Unpublishoc Ph. D. Thusis. untversiey of Colifcema.
*Kaisorn i. F. (i960). Tho application of alactronic computore to factor analysis. Ede. Egychz. fooguromant. 20: 141~151.

Katiyar, N.D. and Singh. Sop. (1979). Gemotic divergence

*Kelley. Fefo (1935). Cseential traits of mental lifo. Harward Ctuded in SAucation 20 Horvard Ungworaty Press. Canbrilgo.

Kendall. M, B . (1950), Poctor anaiysis as a otaticeical ecchniguo. J. 5oy. 3tat. Soc. (3) 12: 60m75.
 Theory of statisties. 3 (4h ed.) Charlog Grievin and Company. iondon.

Krusital. J. B. ans Stopard, RoN. (1974). A non metric yariety of liman factor analyais. poychomotrika 39: 123.
[rjanonth. (2983). Distance botwen populations using mixed continuous and categomical voriableo. Biontrybe 79(1): 235-243.
 in sorghm Eor forage yiald. Incian jo ighic. 5ci. $58(11): 1001 m 1003$.
*Lawley, DuH. (1940), Tha ostimation of fector loodingo by tio motioc of maximu lilolihoor. Dyoc. ivoy. 50c. 210., 00: 64.32.

Mawley. D. ${ }^{(N, ~(1942) . ~ E u t h o r ~ i n v o n e f g o t i o n c ~ i n ~ E a c t e r ~}$ estimation. proc. Sov. Sec. Lino. 61: 176 ma .

Towley Deke (1943). The application of tho mactimum 1inco 1 hhood mothod for factor aralyoin. Ifit. I. Beyche. 33: 172m175。

Lawloy. D.N. and Namell, NoE (1.563). pactor nualyoio ze fitatisticel ifethoso Buttorerthy iondon. pp. 177.
 head mezeurement. I. asjatic soc. Doncej $25:$ 301-377.

Mahalanobse. P.C. (1936). On the gomoralioct distanco in statistics. proc. natn. ncec. Sci. India. $2: 49 \sim 55$.

Martins. NoG. and Zavor, isut. (1977), Tha gonotical analyolo os covariance structure. zoredity 3g(1): 79m05.
*Hamwil. A. \because. (196I). recont troncs in foctor anivisis. J. Roy. Stat. Soc. (A) 12t: 89-59.

Me. Donald R.E. (1970). Tho thooraticel foundations of principal factor cnalyais, cononical fector analysis anc aipha Fuctor analygis. Brit. S. Matio Scat. Esychol: $23(1)$: 1-21.
 cenetic dyorcity in re?ation to zoliner ytuld and tta componante in corghma Incien I. Gonut.. 31(2): 300-304.

Notcys Ko . and Gorco Koc. (1987). conatic dyurgonco in culinary varietios of banano serje. mos. J. Kerala. 25(1): 11-16.
 Ho Gravolfill. Intermotlonal Book Compan.

va

Rulaik, S.A. (1972). The Foundacions of Factor Analybis. MC. Gren Hill. Inc. Now Yorlt. pp. 453.

Muralicharan. K_{6} (1986). Assesmant of genotic divergenco by factor analysis in groundnut. Unpubliehed M.SC. (Agestat.) Thesie. KoA.U.

Wurty, E. K_{o} and oudri. M.I. (1966). Analysis of aivergence in some selfocompatibla formo of Brassica cangertris var: Brown Sarson. Indian E. genet." 26(2): 45-58.

Nurty, suin and Arunchalam. V_{4} (1967 a). Computer progren for sone probjems an bicmotrical genetics. 2. the of Majkelanobis D^{2} in clasgificatory problens. Incitan I. Genat: $27(1): 60-67$,

Murty, BoR. and Arunconalam. V. (1967). Frector anelysia of diversity in the genus oerghum. Indian I" canat. * 27: 223-135.

Nageawara Reo, E., Remman, MoAn, Pendurangs Reo, C* (1903). Genctic variabillty and charecter anscolations in sugarcana progenteg. Indian Io antic. ECi.o S3(3): 621-623.
 Perfomance of sugarcane vardeties in Kerale, Anric.

Neir. R.c. and Gupta, Y.K. (1977). Ganotic aiversity based on emponente of fedmer yield in oats. acruc. Ees. 2. Kerala, $25(2): 160 \mathrm{~m} 164$,
*parson. K. (1901). on 1mee and planes of closest Eit to systoms of poines in bpece. philopophicel Megazino (Geries 6) 2 a 559m57.
peter, K. Yo and hai. Bo (1976). Analyais of genotic Givor-

punia, M.S.s Chauchary, E.S, ant Hooda, R.S. (2983). Conotic divergence in sugarcano. Indian I. noric. Sci. $53(6): 834-436$.
 Comelation and path andzysis of came yield in sugarcane．Ingenn 9 ．Gonge． $43(1): 100-112$.

Rata，J．and Pangar，0．V． 3 a（1970）．Intraspecisic diver－ gence in rice．Endian J．Genet． $30(1): 1-10$ ．
 in problems of biological cigssipicanion．I．Ray． Stat．Soce（3）10（2）：153－203．

Ras．6． R ．（7952）．Advancad Gtatisticat Methods in BLo－ metric Rasemeh，Joh tiloy and Gons，Inc．Hew lork， 10．246－250．
 factor andysie．Equgosetriks $20(2)$ ： $95-111$ ．

Ro土土，fo（1936）＊Sone propertieg of the communality in

 analysis of atnety diversified atcains of tutitcalo．

 in Esprogotmics．2nd ed．pp． 236.

Shetty．Nis．（1069）．A factor analysk of use of fontilizers by garmors．Enotan i．agetc．Zco：24：50－61．
 Madias gatio．士．69：1535－1939．

Singh，7．（1930）．Gonatis divesstity for moas quantitntive characters in barley Endian I．Gonet $49: 304-395$.
singh，Hota（1930）．Variebility for ytela and quazity in sugarcane Itetan I．ametic Sci $59(2): 785-739$.
 perametana in quarcano．Indigis 51（e）：562－566．
 （13a2）．Genetic divergence in chickper．Encinn 5. agio．Scit 52（6）：492－4，95．

Singh, R.B., and Bains. S.S. (1963). Conetic divergonce for gining out turn and ite componionts in uphond cotton varleties obtainod from difforent geograpic locetions. Indian J. Conati: 2B: 262-26B.

Singh. R.B. and Gupta. A.p. (1968). Multivariato analyois of divergence in upland cotton.' Indian J. Genot." 28: 151-157.
singh, RoRe anc singh, HoN. (1900). Oonetic divargence In tomato. Indian j. agric. Sci. $50(8): 591 m 594 *$

Singh, T.H. and Gill, S.S. (19B4). cenotic divargity in upland cotton indor aifgerent onviromanti. Indian I. Genat: 44(3):500-513.

Spearman, C. (1904). General intelligenco objoctivoly cotermined end measurad. Amar. I. Paychol: ${ }^{2}$: 201-293.
sreekumar, S.G. (1986). cenetic variability, path analyais and stablilty peramoters in sugarcane. Unpublished Eh.D. Thesis. F.A.U.

Gukmoran, S.N., Jacob, K.M. and Nair, B.K.C. (1982). lodging of sugercenc and its influonco on yicle and guality of cortain cultivars. Agric. ges. I. Korala. 2ㅇ́ㅇ 2): $8=15$.

Sunderame λ_{0}, Remakrishnan. A. © Marappan, P.V. and Balakrimhnan. G. (1980). Factor analyois in cowpea. Indian I. Egric. Sct. $50(3): 216-218$.

Swain. A.J. (1975). A cless of factor enalyels proceduros. with common abymptotic sempling propertios. Esychon matrika 40: 315.

Tes P.Mathow (1983). Factor analysis of gonetic civercence in sesame. Unpublished M.Sc.(Ag. stat.) Thosis. K.A.U.

Thurstone, i.L. (1933). Multiple Eector Anelysis. Unjverm sity of Chicago Press. Chicago.

Thurgtone. 1. 5. (1947). . Iultiple Eactor Anelysin. pgychol. Rev. . 38: 405m427.

Thke, S.B.S. anc Asawa, B.R. (1979). Fector analysis in 1entil. Indian J. agric. gci. 48(11): 643-646.

Upadhyay. M.K. and Murty, E.R. (1970). Genotic divergence in relation to geographical distribution in poarl min1et. Indien J. Genet. 30: 704-715.

Valsalakumat: Poic. Neir, P.C.S. and Erabhakaran, P.V. (1985). Genetic divergenco in banana. Acric. Res. J. Karale. 23(2): 146-149.

Valton. P.D. (1972). Eactor analyeic of yield in apring wheat. Cxop Sct = 12: 731-733.

Wilker. S.S. (1932 e). Cortain ganoraltzations in tho analyois of varianco. Biometrisa. $24: 471$.

Wilks, sis. (1935). On the indopendence of k eets of nommaly distributed statinetcal variableo. Eegnomatrics 3:309.

Wishart. J. (1928). The generalized procuct moment distribution in ample from a normal multeivariato population. Bicmatrita. $20(A)$: 32-36.

[^1]
APPENDICES

> Appendix - I

Between dispersion matrix

	X_{1}	X_{2}	X_{3}	X_{4}	X_{5}	x_{6}	X_{7}	X_{8}	X_{9}	x_{10}	X_{11}	x_{12}	X_{13}	x_{14}	X_{1}
X_{1}	201.27	199.56	-2.07	-4.09	-7.54	164.76	-157.16	7.35	1.13	10.11	0.56	257.24	2.04	-4.35	22.05
X_{2}		762.01	3.86	-1.31	-24.95	630.41	-436.98	6.78	-15.08	-10.28	-5.15	393.66	-0.01	-5.54	36.59
X_{3}			11.51	13.56	27.31	12.67	6.46	-2.14	-0.14	4.71	-0.10	5.66	0.07	10.42	9.31
x_{4}				16.67	36.11	10.88	14.92	-2.88	-0.09	5.75	-0.06	5.36	0.05	12.99	11.44
X_{5}					94.21	7.16	42.81	-7.58	-0.75	11.47	-0.10	-5.05	-0.09	29.05	24.37
X_{6}						613.55	-355.85	7.97	-14.01	0.88	-4.29	413.84	1.17	5.17	47.42
χ_{7}							3265.70	-25.23	35.89	140.46	12.69	457.71	4.89	14.99	59.47
X_{8}								6.59	0.21	-5.67	0.11	9.13	0.39	-2. 33	$\rightarrow 1.23$
X_{9}									1.78	2.14	0.47	17.07	0.20	-0.05	1.56
X_{10}										21.49	0.94	79.79	1.04	4.60	11.86
x_{11}											0.17	5.85	0.09	-0.01	0.53
x_{12}												1030.19	8.29	2.05	103.54
X_{13}													0.18	0.05	0.83
X_{14}														10.23	8.79
X_{15}															17.87

$\bar{\omega}$

Appendis - 1
Within dispersion matrix

X_{1}	X_{1}	X_{2}	x_{3}	X_{4}	x_{5}	X_{6}	X_{7}	x_{8}	X_{9}	X_{10}	X_{11}	X_{12}	X_{13}	x_{14}	X_{15}
X_{1}	40.19	38.16	-0. 60	-1.22	-4.74	29.54	-15.34	0.79	-0.03	2.55	0.03	35.46	0.31	-0.93	2.23
X_{2}		109.79	3.47	3.38	4.04	61.37	-156.65	0.46	-1. 12	4.19	0.11	87.99	0.64	2.75	10.29
X_{3}			3.15	3.70	8.22	0.83	-11.85	0.38	0.00	0.27	0.03	1.81	0.01	2.90	2.71
X_{4}				4.88	13.05	'-0.53	-9.84	0.37	-0.04	0.38	0.05	$1.18{ }^{\prime}$	0.01	3.90	3.57
X_{5}					49.21	-6.76	-8.72	0.27	-0.41	0.67	0.20	-3.53	-0.05	10.92	9.67
x_{6}						127.53	-40.56	0.17	-1.48	2.95	-0.05	60.60	0.38	-0.91	4.45
X_{7}							1895.59	-3.62	0.88	-3.96	-0.09	-89.13	-0.94	-7.61	-15.96
X_{8}								0.96	0.07	-0.01	-0.01	1.04	0.00	0.27	0.19
X_{9}									0.32	0.03	0.00	0.18	-0.01	-0.04	-0.02
X_{10}										13.74	0.10	9.61	0.24	0.29	1.14
x_{11}											0.02	0.28	0.01	0.03	0.06
X_{12}								-				143.10	0.34	0.55	13.45
X_{13}						.						,	0.04	0.00	0.09
X_{14}														3.21	2.87
x_{15}															3.97

Appendix-III.

1	2	3	4	5	6	7	8	9
1.	53.23	21.76	31.76	44.55	01.56	27.93	29. 22	¢1. 37
2.		34.49	34.49	23.37	69.25	39.79	\$5.56	53.81
3.			22.21	32.47	87.30	21.01	36.45	23.97
4.				47.48	48.27	26.94	36.40	53.59
5.					79.41	41.93	57.81	60.11
6.						41.56	34.05	151.96
7.							19.93	63.60
8.								87.50
9.								
10.								
11.				-				
12.								
13.								
14.								
15.								

D^{2}-values

10	11	12	13	14.	15	16
19.99	53.04	70.86	37.15	27.43	29.48	46.59
48.36	48.52	27.79	32.55	34.83	14.52	73.04
11.89	36.39	49.02	16.61	9.29	20.16	64.37
27.33	27.01	50.65	19.92	18.12	32.69	74.22
44.43	45.19	25.82	29.60	38.49	23.72	31.36
98.55	96.10	103.35	97.88	79.07	69.22	41.14
38.41	55.49	61.00	41.75	21.43	29.00	39.19
54.93	82.41	91.09	67.94	40.45	35.16	16.58
40.73	51.46	52.59	23.38	26.76	31.61	136.79
	38.94	54.95	20.77	20.64	28.35	82.13
		19.22	12.55	26.88	47.96	127.51
			18.99	40.44	31.43	132.70
				11.89	23.22	114.18
					24.06	82.75

501

$$
D^{2} \text {-values (contd.) }
$$

	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
	29.78	41.21	35.90	70.13	41.56	28.99	36.02	26.31	35.61	15.89	47.61	48.02	52.22	71.35	41.63	45.71
2.	39.10	14.44	27.351	102.13	20.59	21.23	19.31	26.20	66.97	36.04	51.83	25.14	33.90	92.02	15.82	22.51
	17.03	20.44	31.81	40.50	36.10	17.62	21.23	12.09	22.98	13.57	28.21	32.05	29.78	47.69	21.82	17.15
	14.33	31.68	32.57	93.52	38.42	11.50	19.39	34.ES	54.80	15.51	54.50	38.39	59.53	59.16	40.10	35.31
5.	48.62	18.64	48.82	82.86	27.66	30.02	25.62	25.87	75.81	39.29	68.59	8.81	23.39	105.18	15.91	21.62
	73.4.4	72.61	34.62	200.57	71.90	40.44	64.45	80.15	131.38	62.46	115.86	76.71	114.89	176.66	86.58	108. 10
	28.50	39.27	18.36	74.17	42.89	16.16	29.83	27.71	53.35	21.27	50.47	38.72	48.16	92.26	38.44	43.69
	39.02	45.49	16.90	124.38	49.01	24.54	50.57	31.49	6.4 .20	34.13	52.75	66.84	83.75	113.40	52.78	65.48
	24.35	57.54	62.93	31.68	64. 46	54.49	34.52	46.72	19.30	33.69	28.44	67.01	32.14	23.40	33.62	24.96
10.	33.06	24.01	51.04	53.08	32.92	24.6u	29.18	14.46	38.30	20.76	29.70	39.55	47.30	45.33	26.69	19.73
11.	2 d .64	29.25	74. 31	75.67	45.72	28.63	19.23	48.64	74.16	27.76	90.01	33.98	54.39	80.13	50.99	34.80
12.	45.16	22.01	70.08	03.35	25.88	35.71	18.70	44.42	86.20	43.03	87.67	20.13	33.86	95.70	30.08	22.28
13.	14.73	23.71	54.80	50. 59	27.18	24.33	12.33	30.24	40.78	16.03	52.56	22.56	25.98	42.08	24.55	13.38
14.	9.51	26.19	37.82	51.93	33.80	19.30	21.65	26.75	33.10	13.15	44.25	35.20	36.72	50.45	30.57	22.86
15.	24.32	` 21.44	18.73	70.22	13.85	19.85	13.17	14.35	33.04	20.04	21.60	29.18	22.19	54.40	5.99	14.19

$$
D^{2} \text {-values (contd.) }
$$

	33	34	35	36	37	36	39	40	41	42	43	44	45	46	47	45
1.	52.65	80.96	33.35	41.70	38.13	25.14	56.51	60.59	51.54	35.41	57.97	26.16	43.06	61.65	23.61	19.68
2.	38.03	36.38	25.61	27.22	45.63	32.51	46.72	34.51	67.19	64.06	25.71	33.42	30.24	87.39	21.47	36.02
3.	40.29	34.00	17.63	14.c2	43.99	5.02	67.31	50.22	37.37	18.02	34.75	25.11	29.38	67.62	20.16	23.46
4.	51.83	E1. 13	41.24	37.02	55.34	26.45	51.39	50.63	56.60	48.52	40.21	19.87	5.10	67.91	17.05	30.74
5.	23.07	44.2b	31.08	25.04	66.58	30.01	77.16	39.99	93.73	71.17	31.05	20.58	43.70	116.34	18.35	30.74
6	111.69	160.69	83.57	90.45	38.64	85.69	23.63	67.79	137.55	125.41	94.73	53.14	45.93	67.02	53.85	47.86
7	59.57	64.28	32.31	26.06	30.13	20.71	41.65	51.26	69.67	46.57	46.31	29.18	28.58	55.74	24.07	27.15
8.	93.39	97.87	38.87	37.91	11.90	41.52	30.42	47.94	69.37	52.32	71.51	38.34	34.18	27.88	33.71	31.95
9.	38.99	30.71	51.54	27.98	101.75	33.37	121.01	$8!.03$	29.85	35.83	37.34	67.94	63.69	12.53	C 1.99	73.50
10.	44.38	64.45	22.88	42.34	62.00	10.54	66.59	50.78	41.00	19.58	36.07	24.81	33.64	76.33	35.34	24.33
11.	37.29	72.28	70.98	47.92	109.05	44.57	100.93	101.72	78.81	83.06	37.12	48.57	20.47	150.76	52.09	70.48
12.	20.48	52.47	59.78	39.60	102.63	46.61	96.01	80.40	87.89	94.00	19.17	50.87	36.13	163.79	35.73	68.95
13.	18.40	44.36	39.32	25.40	35.52	19.17	Bc. 52	66.12	43.09	47.34	21.19.	. 29.96	23, 22	120.95	37.71	45.97
14.	40.91	47.60	37.36	22.42	62.17	13.67	73.54	65.01	46.45	39.83	27.65	30.71	19.82	88.88	34.36	41.43
15.	27.93	40.53	14.04	16.37	32.42	19.35	40.63	27.56	31.55	31.59	22.65	26.70	33.15	66.63	12.60	21.46

$$
D^{2} \text {-values (contd.) }
$$

	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
16.	22.9s	76.03	32.11	165.47	84.33	47.51	83.74	50.71	99.44	69.07	84.95	93.14	111.c9	175.67.	80.76	103.21
17.		37.60	35.44	63.76	42.50	21.20	21.80	300.89	29.05	8.97	40.52	48.50	43.35	42.86	38.6 .4	34.05
19.			45.64	93.37	13.42	14.01	22.76	15.52	77.49	37.92	65.32	21.05	48.42	92.93	19.07	27.06
19.				105.52	13.51	20.00	27.35	31.56	46.80	25.67	30. 28	51.90	49.45	E7. 50	29.94	$4=.7 \epsilon$
20.					102.49	90.67	68.83	68.70	37.71	54.16	64.61	84.08	42.56	54.13	68.50	51.85
21.						24.73	24.03	20.60	72.10	37.99	59.15	24.25	44.83	82.46	17.97	19.98
22.						*	15.36	14.55	60.74	19.79	49.01	24.90	48.48	81.65	24.26	24.67
23.								25.84	42.96	13:03	40.90	1-9.56	21.92	60.09	16.43	17.53
24.									47.27	29.77	32.79	20.18	40.74	72.89	13.71	15.05
25.										22.95	17.72	81.73	40.02	27.26	45.93	46.28
26.											30.03	34.81	31.47	40.53	32.71	31.07
27.												77.24	45.50	33.68	27.10	36.29
28.													23.66	102.85	21.27	20.34
29.														68.50	18.33	23.57
30.															59.98	18.06
31.							.									6.41

D^{2}-values (contd.)

	33	34	35	36	37	38	39	40	41	42	43	. 44	45	46	47	48
16.	134.69	125.91	55.28	73.96	13.66	64.54	33.71	63.1 1	113.73	77.33	113.05	64.41	75.20	30.29	45.30	42.76
17.	45.32	58.00	46.80	23.06	61.99	24.37	73.07	70.92	37.93	40.90	36.02	36.64	20.45	85.07	43.11	4E.48
18.	41.62	57.40	33.17	34.76	54.57	24.54	55.56	41.60	74.96	60.36	17.82	23.81	21.44	96.97	21.47	37.60
19.	63.72	65.26	25.44	31.01	11.53	35.96	20.82	32.81	51.61	47.15	52.84	36.42	35.32	31.30	24.0.4	19.50
20.	53.65	44.31	76.35	50.20	141.08	49.80	175.62	141.43	68.69	53.30	72.32	93.47	107.93	166.63	84.90	94.99
21.	38.90	71.21	27.50	37.34	49.97	29.41	46.76	34.37	61.04	56.66	21.91	26.44	29.51	94.64	18.69	30.22
22.	48.72	63.76	25.50	29.35	34.97	16.99	32.32	36.96	61.37	45.16	26.05	16.61	8.99 ${ }^{\prime}$	60.01	20.87	23.52
23.	19.87	43.62	28.10	22.13	54.26	26.51	50.37	47.12	43.88	49.66	28.01	2日. 75	18.12	92.25	21.54	30.29
24.	49.14	47.60	8.17	23.36	33.99	10.07	45.10	30.16	46.60	22.63	30.71	21.40	33.14	58.87	16.54	20.82
25.	56.26	46.97	42.24	31.83	68.47	3t. 65	99.19	87.41	14.56	21.59	71.46	69.00	72.16	82.58	57.90	52.99
26.	33.63	51.24	33.18	19.49	47.49	23.41	t2.18	44.66	35.53	38,26	42.27	28.31	21.34	75.9 i	27.67	29.68
27.	64.70	51.37	22.87	$32.5 \overline{2}$	46.11	35.96	64.96	46.72	13.22	14.26	60.24	$5 \overline{5} .17$	68.07	52.42	50.67	39.56
28.	21.33	48.65	30.48	32.50	72.21	27.0 C	74.93	45.99	95.54	75.84	29.39	18.39	33.32	124.73	21.04	36.43
29.	12.09	20.88	31.83	24.34	79.46	30.61	95.86	61.03	E2.01	58.19	40.37	46.09	64.49	131.42	28.22	48.51
30.	63.86	81.36	68.32	63.52	123.40	55.49	135.69	100.96	22.51	35.35	66.70	78.41	84.92	122.01	102.67	78.15
31.	22.50	34.49	11.57	21.61	48.17	18.55	53.01	21.45	46.54	36.30	18.61	23.43	41.74	81.39	17.76	23.91

D^{2}-values (contd.)

	33	34	35	36	37	38	39	40	41	42	43	44	45	. 46	47	48
32.	20.31	32.35	19.88	22.80	70.47	15.20	75.58	40.23	47.35	36.97	10.70	25.54	35.97	100.69	29.22	34.03
33.		41.93	47.76	37.67	100.57	39.31	105.24	69.36	73.88	73.48	27.60	39.69	Sé. 79	150.26	3C. 22	48.70
34.			44.7 \%	24.03	97.84	40.35	127.85	BC. 61	70.01	61.45	54.22	74. Cb	00.40	139.72	54.20	77.39
35.				25.63	28.51	14.64	42.00	17.76	42.89	21.13	43.78	22.41	46.87	51.25	20.53	1.3.64
36.					51.70	22.76	$76.9 E$	52.87	45.69	37.46	39.24	36.57	35.83	83.73	30.53	43.04
37.						40.62	13.98	34.36	67.47	52.61	82.16	47.62	55.64	19.35	2 e .76	22.23
36.							61.86	39.48	49.33	20.63	26.41	19.67	34.73	70.39	25.44	24.05
39.					-			31.86	81.87	72.98	79.53	52.33	49.14	33.97	37.76	27.96
40.									79.05	52.48	54.54	24.59	58.68	51.04	38. 39	20.93
41.										20.87	72.55	77.57	67.62	76.69	66.91	57.85
42.						.					63.93	48.57	67.11	50.91	54.66	30.16
43.												33.49	36.88	117.64	36.10	47.74
44.													27.87	69.31	27.73	15.02
45.														83.32	39.70	42.83
46.															78.79	38.70
47.																21.14

The numbers 1 to 48 in the table refers to the code number of varieties

DIVERGENCE ANALYSIS OF MORPHOLOGICAL AND QUALITY TRAITS IN SUGARCANE

BY
SANTHI, T. E.

ABSTRACT OF A THESIS
SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENT FOR THE DEGREE
MASTER OF SCIENCE IN AGRICULTURAL STATISTICS
FACULTY OF AGRICULTURE
KERALA AGRICULTURAL UNIVERSITY

AASTRACT

Multivariate analytical techniques are found to be very useful in plant breeding research to explain the influence of various factors on the phenomenon under study. Fector analyais is found to be an appropriato tool to identify the factors of genetic divergence. D^{2}-analysis is helpful to group the divergent genotypes into various clusters when measurements on a numbr of related characters are available on a large number of genotypes such that the gonotypes within a cluster are homogeneous with respect to these characters and heterogeneous between the clusters.

The present geudy is aimed at identifying the factors of divergence in relation to morphological and cruality traits in forty eight clones of sugarcane. The fifteen clones T.67172. Co.7717, Co.419. Coc.779. Co.7219. Coc.777. IC. 225. CO.6304. S-99, Coc.773, Coc.772, CO.62198, Co.62101, Coc. 778 and s-77 are able to group into one cluster. Four more clusters are able to form respectively with five varieties (Co. 65s. Co.62175, $5-105, C 0.6907$, Co.995) in the eccond cluster, nine (E.1-2, Co.62174. S-97, Kins 3296,
 seven (Co.6807, Co.1340, Co.527, S-33, Co.6806, D. 37272. Co. 527-M-10) in the fourth and Eour varieties (Co.1307,

Coh.7602. Coc.705. Co.453) in tho Eifth clustor. Tho renatning clonos are not able to group. Awong those cluctoro ard utilized for factor andysis.
\therefore Eactor malated to cuality in ertractod as tho firat Ecctor in all tho threo clustors. Tho characterc pol at 12th month, C.C.S. parcentace, brix at $12 t h$ month. purity porcontage and sugar yield por plot dominated this factom. Among thece characters pol at 12th month. C.C. S. parcontago and brix at $12 t h$ month aro found to be more amonable to changes duo to solcction. Tho second factor is icantificd by the characters cane yiold wor alot, shoot count gemination count and numor of millable canos. Apart fron thooe cheractens waight of canc is also included in this factor In cluster 5 . The cheracters which are woro ammable to Crange due to selection aro cano yiold par plot and shoot count. The charactors are not ocmon in the romoining four factors. Those six Eactorg aro able to explain 66.04 porcent, 79.44 parcent and 87.41 percent of variation rospoctively in the first, third and fourth clustor.

[^0]: ＊Significant at 5\％level
 ＊＊Significant at 1% level

[^1]: - Originala not scen

