STUDIES ON THE INFLUENCE OF HOST AND INDUCED SUPERPARASITISM ON THE PUPAL PARASITE *Trichospilus pupivora* FERRIERE (EULOPHIDAE)

AND COLLEGE & RESEARCH AND VELL AND TO BODY & LIBRARN & JUNY

Bу

K. JAYARATHNAM, B. Sc.

THESIS

SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN AGRICULTURE

(ENTOMOLOGY)

OF THE UNIVERSITY OF KERALA.

DIVISION OF ENTOMOLOGY, AGRICULTURAL COLLEGE AND RESEARCH INSTITUTE, VELLAYANI.

1963

CERTIFICATE

This is to certify that the thesis herewith

submitted contains the results of bonafide research work carried out by Shri K.Jayarathnam under my supervision. No part of the work embodied in this thesis has been sub-

mitted earlier for the award of any degree.

Ind. Mare

PRINCIPAL

12 And

K.V. JOSEPH, B.A., M.Sc., Professor of Entomology

Agricultural College & Research Institute, Vellayani, Trivandrum. Date --8--1963.

ACKNOWLEDGEMENT

I wish to express my deep sense of gratitude to Shri K.V. Joseph, B.A., M.Sc., Professor of Entomology, Agricultural College and Research Institute, Vellayani, Kerala for his guidance and valuable suggestions and also for correcting the manuscripts.

I am greatly indebted to Dr. M.R. Gopalakrishnan Nair, M.Sc., Assoc. I.A.R.I., Ph.D., F.E.S.I., Junior Professor of Entomology for his constant help and assistance rendered, in the execution of this work and preparation of thesis.

Thanks are due to Shri G. Renga Ayyer, M.Sc., Assoc. I.A.R.I., M.S. (Tennesse) for his helpful suggestions and constant encouragements.

I am greatly thankful to Dr. C.K.N. Nair, M.Sc., Ph.D. (Cornell), D.R.I.P. (Oak Ridge), Principal, Agricultural College and Research Institute, Vellayani, Kerala for kindly providing the necessary facilities.

I am grateful to Shri E.J. Thomas, M.Sc., M.S. (Iowa), Senior Lecturer in Statistics, for kindly helping me in the statistical studies in this thesis.

CONTENTS

VELLAYANI

(i - vii)

	•	· '	Page
INTRODUCTION	- · ·	••	1
REVIEW OF LITERATURE		, , _	· · · · ·
Part A		• [*] •	4
Part B	•	• •	29
MATERIALS AND METHODS	· , · · ·		
A. Materials		••	40
B. Methods		 € € € 7 7 7 	42
EXPERIMENTS AND OBSERVATIONS			47
DISCUSSION		••	59
SUMMARY AND CONCLUSIONS	•	• •	79

REFERENCES

APPENDIX

PLATES

INTRODUCTION

Coconut is a cash crop, cultivated in 15.87 lakhs acres in the Indian Union, yeilding 415 crores of nuts per annum, valued at Rs.54 crores. Of the total cultivated area, nearly 70% (11.75 lakhs acres) is in Kerala producing 325 crores of nuts per annum. By virtue of its great utility, and its continuous and regular supply of nuts throughout the year, the coconut palm is held in high esteem and is called the "KALPA VRIKSHA" meaning Tree of Heaven.

However, cultivation of this valuable palm in Kerala is considerably handicapped, because of the incidence of a number of insect pests some of which are very serious ones. Of these, the black-headed caterpillar Nephantis serinopa Meyr. (Cryptophasidae) is a very important pest taking a heavy toll of the crop especially along the coastal tracts of Kerala. Studies by Ananthanarayanan (1934), Hutson (1939), Jayaratnam (1941) and Rao et. al (1948) have shown that this pest has in association with it quite an effective parasite complex which usually keeps the pest under check. Among the various parasites which thus exert a controlling effect on this pest in the west coast areas, the Eulophid pupal parasite Trichospilus pupivora Ferriere, is found to be most effective. Ananthanarayanan (1934) found that Trichospilus pupivora could be easily reared in the Laboratory in large numbers if proper conditions of temperature and humidity were provided. It was also observed that besides the primary host namely the pupa of <u>Nephantis</u> <u>serinopa</u>, pupae of several lepidopterous insects could be used as alternate hosts for purposes of mass multiplication of the parasite.

In Kerala control of the coconut caterpillar is now brought about mainly by the mass breeding and liberation of <u>Trichospilus pupivora</u> in the infested coconut gardens. For this purpose the Department of Agriculture, Kerala State, has established seven parasite breeding stations at different places along the coastal tract namely Vellayani, Quilon, Kottayam, Vytilla, Trichur, Calicut and Kasargode. Besides pupae of <u>N. serinopa</u>, pupae of various other lepidopterous insects are being used for the mass multiplication of the parasite in these stations.

Now in the host parasite relationships, the host had been usually looked upon as a passive victim of the parasite. But Salt (1941) reviewing the information available on the effect of host upon the parasites has stated that far from being a purely passive victim which is obliterated without a trace, the host is often able to impress its mark and a very clear mark at that, upon the insect parasitoid that destroys it. He further pointed out that the characters of the parasite like behaviour, rate of reproduction, longevity and even morphological features are modified by the hosts.

From this it follows that the mass breeding of parasites using different hosts for biological control purposes, the efficiency will be governed by the host materials selected. But there exists no knowledge as to how and to what extent the

- 2 -

different host pupae affect the characteristics of \underline{T} . <u>pupivora</u>. Since this knowledge is of great importance and significance bothfrom the scientific point of view and from the point of view of pest control, investigations presented in the following pages were taken up as an attempt to fill up the above mentioned lacuna in our knowledge.

In these studies a standardised strain of \underline{T} . <u>pupivora</u> has been maintained in the laboratory and used to parasitise different species of host pupae and the effect of these different hosts on the number of adults produced, sex ratio, duration of development, longevity and the size of the first generation of parasites, have been ascertained. Observations have also been made on the effect of different levels of superparasitism by \underline{T} . <u>pupivora</u> on its above mentioned characters. That the host and the different levels of superparasitism exert significant influence on these characters of the parasites is evident from these studies.

The present thesis also includes a review of literature on the effects of hosts on parasites in general and also of the work so far done on the parasite <u>Trichospilus</u> <u>pupivora</u> F.

- 3 -

REVIEW OF LITERATURE

The review of literature presented below consists of two parts. Part A deals with work done on the effect of host on parasites and Part B comprises a review of investigations carried out on the Eulophid parasite, <u>Trichospilus pupivora</u> F.

PART A

Although there is considerable amount of information available in literature about the host imparting to its parasite important and sometimes striking morphological, physiological and behaviouristic characters, detailed investigations done in this field are few and far between. Following is a brief review of the previous work done in this field by various workers:-

I. Effect of host on size and morphology of parasites

As early as 1844 Ratzburg pointed out that the body size of the parasite <u>Pimpla examinator</u> ranges from 1.67 mm. to 6 mm. depending on the size of the host on which the parasite develops. Similar findings were later recorded by Toyama (1906) working on <u>Tachina</u> sp.. Morril (1907) reared the Proctotrypid egg parasite, <u>Telenomus ashmeadi</u> on eggs of 3 species of Pentatomid bugs namely <u>Pentatoma ligata</u>, <u>Euschistus servus</u> and <u>Thyanta</u> <u>custator</u>. The average diameters of the eggs of these bugs were 1.01, 0.88 and 0.75 mm. respectively and the average head widths of the parasite emerging from these were 0.60, 0.53 and 0.45 mm. respectively. From these observations he concluded that the size of the emerged parasites has a positive correlation to the size of the host in which it develops.

Strickland (1912) found that males of the parasite Pezomachus flavocinctus (Ichneumonidae) occur in winged and wingless phases. According to him the apterous males which are much smaller than the winged forms are produced on account of insufficiency of food due to the small size of the hosts in which they develop. Similar effects were noted by other workers in . subsequent years. Chewyreuv (1913) in his experiments on four species of Pimpla, (P. instigator, P. examinator, P. brassicaria and P. capulifera) supplied host pupae of different sizes to virgin female parasites for oviposition. The offsprings of virgin females were invariably males. He obtained giant males from the large pupae of Sphinx ligustri, dwarf from the small pupae of Bupalus piniarius and males of medium size from the pupae of Pieris brassicae. Thompson (1923) who reared two male progeny from one female of Pezomachus sericious, one on a large host, a cocoon of Camponotus and the other on a small host, a cocoon of Apanteles found that the males that emerged from the former were large and fully winged while those which developed from the latter were small and completely apterous. 'Mickel (1924) observed that the length of the Mutillid wasp Dasymutella bioculata varies from 1.5 mm. to 6 mm. depending on the size of its hosts. He plotted the length of a large number of individuals and showed that they form a bimodal curve. He also found that this species parasitizes two different genera of Bembesid wasps namely Microbembex monodonta which ranges in length from 8 to 14 mm.

- 5 -

and <u>Bembex pruninosa</u> which varies in length from 16 to 19 mm. By rearing the Mutillid on each of these hosts he showed that smaller individuals develop at the expense of the former hosts while the larger ones develop on the latter.

Hase and Albrecht (1925) noted that the variation in the size of Trichogramma evanescens was due to the effect of large and small hosts. The range in size was found to be so great that normal copulation could not take place between large and small individuals thus creating, so to say a reproductive barrier. Flanders (1930) in his studies with Trichogramma found that adult females of the parasite that emerged from the eggs of Potato tuber moth Gnorimoschema operculella are larger and more robust than those bred on eggs of Sitotroga cerealella. The eggs of the former are larger than those of the latter. Lathrop and Newton (1933) made similar observations on the effect of host on size of the Braconid parasite Opius melleus, which was found to attack the apple maggot Rhagoletis pomonella as well as the much smaller blue berry maggot Rhogoletis mendox. The 'authors observed that apparently there was a tendency for this species of parasite to develop into two strains, large and small as a result of being bred on the large \underline{R} . pomonella and the small R. mendox respectively. They illustrated the difference in size with the help of sketches.

Oldroyds and Ribbands (1936) found that the length of the wing of <u>Trichogramma</u> <u>evanescens</u> and the number of macrotrichia forming the rows on the wings are closely correlated

- 6 -

with the size of the whole parasite, which in its turn is correlated with the size of host. Jackson (1937) showed that the difference in size of parasites as indicated above is the direct effect of the host and not due to the selection of large and small hosts by preexisting strains of large and small parasites. He used the Ichneumonid parasite <u>Pimpla examinator</u> for his experiments. A female of this reared from <u>Abraxas grossulariata</u> measured only 10.7 mm. in length while that which developed on <u>Pieris brassicae</u> was 14 mm. long, this being the largest size. The smallest female progeny was reared on <u>Ephestia kuhniella</u> and measured 7.1 mm. in length. The smallest male descendant also was from <u>Ephestia</u> and this measured only 5.6 mm. in length.

Salt (1937, 1940 and 1941) in his series of research papers under the title 'Experimental studies in insect parasitism' discussed various types of effects of host on parasites. A striking effect of the species of the host on morphology of parasite was demonstrated by Salt (1937) in the egg parasite of Sialis lutaria, viz. Trichogramma semblidis. This parasite exhibits dimorphism mainly as winged and wingless males. They also differ constantly and fundamentally in several other chara-The parasite was reared on four different kinds of hosts. cters. Three of them were moths namely Ephestia kuhniella, Sitotroga cerealella and Barathra boassica. The fourth was the original host Sialis lutaria (Neuroptera-Sialidae). The order of the size of the four hosts used was Sitotroga > Ephestia > Sialis > Barathra. The parasites which emerged from these hosts showed corresponding variation in size. But winged males that emerged

- 7 -

from <u>Sitotroga</u> and <u>Ephestia</u> were smaller, while those from <u>Barathra</u> were larger than the apterous males that emerged from <u>Sialis</u>. It was clear that in this case it is not the amount of food that matters but difference in the kind of food provided by the different species of hosts. It was also pointed out that the dimorphism of the hymenopterous parasite appeared to be controlled by the species of the host on which it develops.

In the case of the egg parasite Trichogramma evanescens, Salt (1940) showed that the progeny of individual parasites vary in size according to the size of the species of hosts on which they are reared. Four species of hosts viz. Sitotroga, Ephestia, Agrotis (in which more than one parasite developed) and Agrotis (one parasite developed) were used in the experiment. The average length and diameter of the eggs of these were 0.44, 0.57, 0.56. 0.56 mm. and 0.23, 0.36, 0.65, 0.65 mm. respectively. Examining the length and the width of thorax, head, and abdomen of emerging parasites he found that there was an overall correlation between the size of the host egg and the size of the emerging parasites. In a particular case the parent measured 0.40 mm. in length. Its smallest female reared from an egg of Sitotroga cerealella was 0.34 mm. long while each of its progenies reared from eggs of Ephestia kuhniella measured 0.46 mm.. Its largest offspring, a solitary female from the egg of Agrotis C-nigrum attained a length Salt (1940) further showed that within the same host of 0.5 mm. species the size of the parasite is influenced by varying size of the individual hosts. In an experiment which was repeated several times, females of the egg parasite Trichogramma evanescens

- 8 -

were allowed to oviposit in large and small sized eggs. The average length and diameter of large and small eggs were 0.59 and 0.29 and 0.48 and 0.22 mm. respectively. He compared the length of the parasites and the width of the head, thorax and abdomen of the parasites emerging from these two sizes of eggs. Parasites emerging from the small sized hosts measured on an average 0.4 mm. in length, while those emerging from larger sized eggs measured on an average 0.4 mm.. Measurements of the width of head, thorax and abdomen also showed similar differences. From these observations he concluded that in general the effect of the host on the size of the parasites is not due to the differences in the kind of food provided by various hosts but simply as one would expect to differences in its amount. He had also observed that when the amount of food is sufficient the parasite If it is just enough to allow the parasite to survive emerges. abnormal individuals called 'runts' are formed. According to him the formation of these runts is the final stage of the reduction in size of the parasites under the influence of small hosts.

II. Effect of host on oviposition and fecundity of parasites

Roubaud (1924) found that the size of the parasites which is influenced by the host in its turn influences the fecundity of the parasite. Thus he found that the chalcid <u>Pachycrepoideus</u> sp. has 27, 28 or 20 ovarioles according to its size which in turn is dependent upon its nourishment during the larval stage. Thompson and Parker (1927) in discussing the problem of host relation with special reference to entomophagous

- 9 -

parasites have recorded that "there is marked difference in size between the adults of gregarious parasites and their hosts." They further state that it seems a general rule that the number of eggs normally deposited within a host is roughly proportional to the amount of food material available. This is dependent upon the size of the host on which it oviposits. Proper (1931) observed the fecundity of 16 females of the Shaleid <u>Eupteromalus</u> <u>nidulans</u> and found that in general the smallest individuals laid the fewest/number of eggs and the largest laid the most. Salt (1935) gave some experimental data on this aspect. He observed that the solitary individuals of <u>Trichogramma evanescens</u> reared from the large eggs of <u>Ephestia kuhniella</u> laid on an average of 23.1 eggs each while the smaller females reared from smaller eggs of <u>Sitotroga cerealella</u> laid only 9.8 eggs.

The effect of host on the size of parasites was noted to have a direct bearing on the oviposition of parasites by Flanders (1935 a). He observed the inability of small specimens of <u>Tricho-</u> <u>gramma evanescens</u> to oviposit in large hosts like the eggs of <u>Pachysphinx modesta</u> which are readily parasitized by large ones.

Flanders (1935 b) had also observed that the host influences the fecundity of parasites which feed on the body fluids of the host. In his observations on certain parasitic <u>hymenoptera</u> particularly the <u>Pteromalids</u>, <u>Dibrachoides</u>, <u>Peridesmia</u>, <u>Spintherus</u> and <u>Eutellus</u>, he showed that when the ovarian follicles reach a certain stage of development a change occurs in the food habits of the female. In the laboratory this change was from a diet of

- 10 -

cane sugar syrup or honey to a protein diet consisting of body fluids of host species. He noted a peculiar habit in <u>Spintherus</u>. It inserts its ovipositor in the host egg and secretes a material around the ovipositor. Then it carefully takes out the ovipositor so as to leave a waxy tube within the egg. It then sucks up the egg content through it.

The direct effect of the host size on the fecundity of parasites was noted by Ullyett (1936). He found that <u>Trichogramma</u> <u>lutea</u> deposits a single egg in the egg of the grain moth <u>Sitotroga</u> <u>cerealella</u>, whereas 3 or 4 eggs are laid in large eggs of <u>Heliothis</u> <u>obsoleta</u>. Taylor (1937) noted that the female of the parasite, <u>Pleurotropis parvulus</u> normally has six ovarioles, but small females may have only 3. Large females were found to lay 60 to 85 eggs, medium sized females 35 to 67 eggs and small females 18 to 32 eggs. He gave similar data for <u>Dinmockia javana</u>. Further, in his studies on the parasitic flies <u>Zenillia libatrix</u>, Dowden (1939) also observed a great variation in the number of ovarioles and in the number of eggs laid. According to his data the large females have about a 100 ovarioles in each ovary and they produce over 2400 eggs per female while small females may have as few as 61 ovarioles only on each side and produce only 820 eggs per female.

Experimental data for the effect of host on size of parasites and its effect on their oviposition was given by Salt (1940). He found that the large <u>Trichogramma</u> which emerged from the eggs of <u>Barathra</u> penetrate the host for oviposition more quickly than the medium sized parasites from <u>Ephestia</u> egg and much more quickly than small ones reared from <u>Sitotroga</u> eggs.

- 11 -

A female of <u>Trichogramma</u> was observed to take an average of 66 minutes, to find, examine, penetrate and parasitise 10 hosts, when the parasite is a small individual reared from <u>Sitotroga</u> eggs, but only 37 minutes when it is a large female reared from <u>Agrotis</u> eggs.

Narayanan and Subba Rao (1955) studying the effect of different hosts on the parasite Microbracon gelechiae found that the fecundity of the parasite varied when bred on different hosts. Thus the parasites bred on Pectinophora gossypiella laid on an average 13.22 eggs per day, those bred on Corcyra cephalonica, 9.75 eggs, those bred on Scirpophaga nivella, 10.42 eggs and those bred on <u>Dichocrosis</u> <u>punctiferalis</u>, 3.11 eggs. Further, they observed that the parasites bred on D. punctiferalis laid on an average a total of only 25 eggs per female on Dichocrosis. In their studies, they found that in the second generation the parasite laid on an average 54 eggs per female. But in the third generation when the parasites were given Cocyra eggs they laid 106 eggs per female. The relatively high fecundity shown by those parasites bred on P. gossypiella was attributed to the high protein content of the host, which is the primary factor in the production of eggs in many insects. Narayanan (1956) in one of his series of experiments on Trichogramma evanescens to study the effects of nutrition on fecundity found Corcyra egg extract to be very necessary for stimulating the egg laying of the parasite. Lowering of fecundity was observed when the parasite was fed only with Corcyra egg protein without sugar. The fecundity of the parasite was highest when fed only on 10% solution of glucose, fructose, maltose or

sucrose in the presence of host egg.

III. Effect of host on development of parasites

Variation in the period of development of parasites in accordance with the period of development of host in which they develop was first noted by Pantel (1910). He found that the Tachinid fly parasitoid Compsilura concinnata develops rapidly in the larvae of Acronycta and Vanessa in which it is full grown in some weeks and slowly in larvae of Pieris in which it takes several months for full development. Similarly the larvae of Tricholyga major (Tachinidae) was found to develop rapidly on Vanessa but slowly on Macrothylacia rubi. A correlation of life cycle of host and parasites was observed by Smith (1912). He showed that life history of Perilampus hyalinus is modified by the host it inhabits. He found that as a rule, the larvae in this case invariably emerge from the host at the time of pupation. If it attacks Limnerium validum which does not pupate until the spring the parasites remain endoparasitic and underdeveloped during winter. If it attacks Varichaeta aldrichi which pupates in the autumn but does not emerge until spring, the parasite becomes endoparasitic in the autumn, but develops no further until the next season. But if the parasite finds itself in a host such as two other species of Limnerium and two Braconids which not only pupate in the autumn but also proceed to immediate emergence in the same season, the parasite likewise develops quickly and emerges as full grown adult. Pierce and Holloway (1912) studying the development of the Braconid, Chelonus texanus a parasite of

Laphygna frugiperda observed that the time of emergence of the parasite seems to depend almost entirely upon the size of the host and that if the host feeds and grows slowly so does the parasite within.

Faure (1924) observed the influence of the host in determining whether the parasite should have one or more than one generation in an year. According to him Bracon glaphyrus normally attacks the larvae of the weevil, Baris latiocallis which is univoltine and in that host the parasite has one generation in a year. If it accidentally lays eggs in Baris chloryan which is partially bivoltine, it completes two generations in a year. This author in a subsequent paper described a similar host parasite relationship in development of Apanteles glomeratus which is a common parasite of the cabbage caterpillar Pieris In this case the host pupates usually in the autumn brassicae. and the larvae of Apanteles then becomes full grown and they spin about their host remains, the familiar cluster of cocoons in which they hibernate as pupae. If by chance the host does not pupate in autumn as often happens, the parasite hibernates as young larvae inside the host caterpillar. A similar effect is seen when it parasitizes Apriacra laegi.

Incomplete synchronism of the host parasite life eycles was observed by Marchal (1927) in his studies on the egg parasite <u>Trichogramma cacaecia</u> which attacks eggs of a Tortricid moth <u>Cacaecia vasana</u> in France. <u>Cacaecia</u> has only one generation in a year. The eggs of these moths enter embrionic diapause and

- 14 -

complete their life cycle only next year. But <u>T</u>. <u>cacaecia</u> has two generations to each generation of its hosts. Thompson and Parker (1928) in describing the life history of the Ichneumonid parasite <u>Dioctes punctoria</u> stated that this parasite is also affected by univoltine and bivoltine strains of their hosts <u>Pyrausta nubilalis</u> and show a complete synchronism between the et al. host Vs. parasite life cycle. Toothhill_A(1930) observed marked variation in the length of the larvel period of <u>Ptychomyia remota</u>, a Tachinid parasite of <u>Levuana irridescens</u> and it was considered that this variation is not entirely a haphazard phenomenon but an adaptation to the condition of the host.

A highly specialised phenomenon of the rate of growth of host being reflected by the parasite was described by Cox (1932). He had observed that in the eggs of the host Ascogaster carpocapsae the egg parasite Chelonus annulipes develops step by step. If the embrionic development of host is delayed, that of the parasite. is also delayed; if the host is unfertilised and therefore never hatches, the parasite similarly fails to develop. Dowden (1934) stated that the Tachinid parasite Zenillia libatrix does not begin to develop rapidly until its host, the gypsy moth pupates so that there is a range of two weeks or longer in the time of development. Dowden (1935) again observed the host determining the number of generation of the parasite Brachymeria compsilurae. This chalcid attacks both Sturmia sentillata which has one generation in a year and Compsilura concinnata which may have two or three generations. When it parasitizes the former hosts Brachymeria remains in the larval stage during the winter

- 15 -

and has only one generation a year. But when it attacks the latter the parasite may have two or three generations. Webber (1937) studied the development of the Tachinid parasite of <u>Compsilura</u> and found that when it attacks its lepidopterous hosts late in the season all the progeny hibernate as larvae along with the host. If it attacks the same host a fortnight earlier a higher proportion of progeny develops before the host hibernates.

The development of the parasites being delayed by diapause of the host was observed by Bradley and Arbuthnot (1938) in their studies on the development of Chelonus annulepes, a Braconid parasite of corn borer. This parasite confines itself to the life cycle of its host at two separate stages. Its larva¢ remains in its first instar when the host is about to pupate. If the host matures steadily there is no delay in the emergence of the parasite. But if the host enters a diapause the parasite remains underdeveloped until the diapause is passed. Another instance of incomplete synchronism was observed by the same They found that in the field the Braconid parasite, authors. Chelonus annulipes when it attacks the first generation egg of the multiple generation Pyrausta nubulalis does not take more than two months for complete development. But when it attacks the second generation eggs of the borer, it takes approximately 10 months for its development. When the parasitism occurs on eggs of the single generation strain of the borer the adults do not appear until approximately a full year has passed.

Salt (1940) observed the size of host influencing

the developmental period of a parasite. He noticed certain variation in the developmental period of Trichogramma evanescens, which he suggested might perhaps be attributed to sizes of hosts in which the parasite was reared. The parasite was reared on 3 hosts under identical conditions and the time of parasitization was the same. The average developmental period in the eggs of Ephestia was 243 hours, in Agrotis 250 hours, and in Sitotroga When the percent emergence of the parasites on the 256 hours. three hostswere plotted against time it was apparent that the parasite from Ephestia, the smallest host emerged earlier than those in Agrotis, the slightly bigger host and much earlier than they did in Sitrotroga the biggest of the three. Narayanan and Subba Rao (1955) found that the developmental period of Microbracon gelechiae bred in different hosts varied considerably. Thus the minimum period of development was 10 days in Corcyra cephalonia, 11 days in Scirpophaga nivella, 9 days in Pectinophora gossypiella, 14 days in Dichocrosis punctiferalis, 13 days in Galleria melonella, 12 days in Plusia orichalcia, 11 days in Chilo zonellus and 11 days in Gnorimoschema operculella.

IV. Effect of host on the behaviour of parasites

Voukassovitch (1924) found an instance in which the host influenced the behaviour of its parasite in its larval stage. He observed that the larva of <u>Pimpla examinator</u> may develop either in its caterpillar host or in <u>Oenopthera pillerina</u> which lives in a webbing on or between the leaves of the Vine. If develops at the expense of a caterpillar, the full grown

- 17 -

larva emerges from its hosts and spins a cocoon for itself beside the host remains. If however it develops in <u>Oenopthera</u>, its larva pupates inside the covering of the host without spinning a cocoon.

Hase (1925) showed that when females of Trichogramma evanescens were allowed to oviposit on different hosts including the ones in which they had developed, they showed no preference to any host. Salt (1934) observed Trichogramma wasting time in trying to eviposit in false hosts like fragments of glass and crystals of calcium carbonate in the presence of its original host. These observations were contrary to the host selection theory which states that if a parasite is capable of feeding on three or more host species, it tends to oviposit upon the kind in which it has developed. Taylor (1937) who observed the behaviours of <u>Olygostra utilex</u> the egg parasite of coconut leaf beetle Promecotheca reichei in Fiji, found that when the parasite develops in beetle egg it emerges by biting its way through the wall of the egg capsule. But when it develops on eggs of Promecotheca bicolor which have a covering of triturated leaf tissue on their upper surface, the parasite emerges by biting its way in the opposite direction ie., through the tissues of the leaf on which the host egg is laid.

Thorpe and Jones (1937) put forth proof in support of host selection principle, using the Ichneumonid, <u>Nemeritis</u> <u>canescens</u>, a larval parasite of <u>Ephestia</u>. This can also be reared on the small wax moth larva <u>Meliphora grisella</u> if it is

- 18 -

contaminated with the smell of Ephestia . Adults reared from Ephestia attack only larvae of Ephestia in the presence of larvae of Meliphora. But adults reared from Meliphora attack Ephestia larvae alone even in the presence of Meliphora. Salt (1941) reviewing the literature on "The effect of host upon their insect parasites" stated that an instance in which the parasite actually chooses its own host species in preference to the ancestral host is yet to be described in Entomophagous forms. He gave experimental proof in support of Hase's (1925) observations. He found a pure strain of Trichogramma evanescens which was reared for 260 generations exclusively on the eggs of Sitotroga cerealella, chose the eggs of Ephestia and Agrotis for oviposition in preference to eggs of Sitotroga. Similar results were obtained by Venkataraman et.al. (1948) who found that Bracon (Microbracon) greeni after being reared on larvae of Platyedra gossypiella for 3 generations did not seem to result in an actual préference for the new host over the natural host Eublemma amabilis.

Narayanan and Subba Rao (1955) conducted olfactometer experiments to test the selective behaviour of <u>Microbracon</u> <u>gelechiae</u> bred on different hosts. In the first set of experiments, the parasite bred on <u>Scirpophage nivella</u> for 4 generations did not show any preference to <u>S. nivella</u>. But those parasites bred on <u>Corcyra cephalonica</u> for 7 years continuously under controlled conditions, tend to develop into a distinct race which shows preference to the newly adopted host on which it was bred even when the natural host <u>Gnorimoshema operculella</u> is available.

- 19 -

V. Effect of food plant of host on parasites

Gilmore (1938) found marked difference in the parasitisation by <u>Apanteles congregatus</u> on the horn worms <u>Protoparce</u> <u>sexta</u> and <u>P</u>. <u>quinquemaculata</u> fed on different varieties of tobacco. He found the parasites dying before reaching maturity when the hosts were fed on dark-fired tobacco. He attributed this mortality, to the greater nicotine content of dark-fired tobacco. Investigations of Flanders (1942) indicated that great physiological differences exist between individuals of a single host species, if such individuals feed on different food plants. These physiological differences are manifested as developmental reactions of parasites. Thus he found <u>Habrolepis rouxit</u> the parasite of red scale <u>Aonidiella aurantii</u> showing this effect clearly. When the host was on grape fruit only 3.1% of the larvae of parasite died. But when the host was on sago palm 100% of the larvae of parasites died.

Narayanan and Subba Rao (1955) observed that when grown up <u>Plusia</u> caterpillars collected from tobacco and gram were exposed to <u>Microbracon gelechiae</u>, both were parasitized. But all the grubs on tobacco caterpillar died within 3 days of feeding while those on the gram caterpillar developed normally. When very young stages of host caterpillar collected from tobacco leaves were supplied a good (9 out of 22) proportion of grubs developed normally. It is explained that the death of parasite grubs feeding on the tobacco caterpillar may be due to the toxic substance in it-nicotine. In the case of young host

- 20 -

caterpillars, there may not be enough concentration of nicotine in them to affect the parasitic grubs when they feed on them.

VI. Effect of host on sex ratio of parasites

Attention to the fact, that the size of the individual hosts influences the sex ratio of its parasites was first called to by Chewyreuv (1913). He found that in Pimpla instigator which was made to parasitize pupae of different sizes a predominance of 80% males emerged from small pupae of Pieris, Panolis and Bupalus and a complete predominance of 100% females emerged from large pupae of Sphinx, Saturnia and Gastropache. When small intermediate and large pupae were furnished to female parasites, majority of parasites emerging from small and intermediate pupae were males. When the intermediate and small pupae were furnished, females predominated among the parasites emerging from the intermediate pupae and males predominated in those emerging from small pupae. He repeated and confirmed his results by conducting experiments on other 3 species of Pimpla namely P. examinator, P. brassicae and P. capulifera. These observations were further confirmed by him with information on pupae infested by parasites in the field conditions. The author collected 2000 cocoons of Lophyrus from the field and out of these he obtained parasites from 970 cocoons. The cocoons out of which the females emerged were twice as large as those out of which the males had Two species of parasites were obtained (1) Exenterus sp. emerged. of which 870 were bred out. Out of the parasites that emerged from large cocoons 21% were males and 79% females. Out of those

- 21 -

that emerged from small cocoons 53% were males and 47% females. (2) <u>Campopler</u> sp. of which 100 were bred, 30% of the parasites that emerged from large cocoons were males and 70% were females, while these were 74% and 26% respectively for small cocoons. He attributed this marked disparity in the sex ratio of Pimpla to selective oviposition by parent females which aim at providing a greater food supply for the female progeny. Holdoway and Smith (1932) got similar results in their work on Alysia manducator, a solitary parasite in the puparia of blow flies in Europe. The hosts studied were Calliphora vomitoria, Sarcophaga sp., Calliphora erythrocephala and Lucilia serricata, given in descending order of relative size. The largest puparia produced females only. The number of females increased in simple proportion to the increase in size of the puparia. This held true between different species as well as within each species. In large puparia of L. serricata the sex ratio of the parasites was 1:1.3. the males predominating, whereas from the small puparia the ratio was 1:5.1, again males predominating. Seyrig (1935) made similar observations in Madagascar on the parasites Echthromorpha hyalina and Pimpla maculiscaposa which are reared from pupae of several species of Lepidoptera. He attributed this difference in sex ratio to the infertility of small females which did not attract males so readily as did the large females and also to the small females selecting the small pupae and large females large pupae for oviposition.

Flanders (1936) found that in certain species of Coccophagus the males can be produced only hyperparasitically

- 22 -

whereas primary progeny from Coccid host is exclusively female. Related to this phenomenon is the fact that oviposition response of the parent female changes at the time of fertilisation. When unmated, she is attracted only to previously parasitized scales and places her egg in the body of primary parasite, whereas after mating she oviposits only in the unparasitized scales. In those groups in which this relation is not obligatory, unfertilised eggs are laid on small Goccid hosts.

Brunson (1937) studied the influence of instars of the Japanese beetle on the sex ratio of its larval parasite Tiphia popilliavora. Both second and third instar larvae were accepted for parasitization. Parasites emerging from the 2nd instar larvae were predominantly males of the ratio 1:2.8 but the parasite emerging from the 3rd instar larvae were predominantly females of the ratio 1:5.1. He transferred the eggs of parasites from the 2nd instar larvae to 3rd instar larvae. Even then preponderance of males was found. Likewise eggs transferred from 3rd instar to 2nd instar larvae "produced males and females indicating that the sex of progeny is determined at the time the egg is placed on the host." Taylor (1937) obtained similar results in the Chalcid parasite Pleurothrops parvulus. From the first instar host larvae females predominated in the ratio of 1.66:1.00 whereas in the 3rd instar larvae the preponderance of females increased to 4.34:1.00.

Clausen (1939) in his summarisation of literature on "The effect of host size upon the sex ratio of hymenopterous parasites" stated that the sex ratio of a species is in reality

- 23 -

exceedingly variable and that it will vary (1) with the sex ratio of the host (2) with successive generation of the host (3) with different hosts (4) upon the same host and in the same season but in different geographical regions and (5) in successive years when host population is increasing or decreasing rapidly. Flanders (1946) found that Microplectron fuscipennis, parasitic on spruce saw fly and Tiphia popilliavora parasitic on Japanese beetle show preference by depositing fertilised eggs on large hosts and unfertilised eggs on small hosts. Further he found that the eggs originally laid on small hosts and transferred to bigger hosts did not show an increase in proportion of female progeny and vice versa. Another type of influence of host upon the sex ratio of parasite was found out by Rakshpal (1949) in Alophora sp. an endoparasite of the adults of <u>Bagrada</u> cruciferarum. He found only a single fly emerging from each host. Male parasites which have small light brown puparia developed from male hosts and female parasites which have large dark brown puparia developed from female hosts. The cause for this phenomenon is inferred to be the determination of sex due to the influence of sex hormones of the hosts. McGugan (1955) observed that the sexes of the pupal parasite of budworm Apechthis and Phaeogenes did not occur at random among male and female hosts as there was a definite tendency for female parasite to emerge from female hosts and male parasites from male hosts. This is possibly a response to host size as female budworm pupae are somewhat larger than male.

Narayanan and Subba Rao (1955) in their critical experi-

ments found that the number of males and females of <u>Microbracon</u> <u>gelechiae</u> was nearly same when bred on <u>Pectinophora gossypiella</u> and <u>Scirpophaga nivella</u>. In the case of the parasite population developing from <u>Corcyra cephalonica</u>, the female predominated (73.9%). Under mass rearing conditions also similar relations were obtained between sex ratio of the parasites and the different hosts.

VII. Effect of host colouration on the pigmentation of parasite

The only recorded observation on this aspect appears to be that of Narayanan and Subba Rao (1955). Examination of the eggs of <u>Microbracon gelechiae</u> bred continuously for 2-3 generations in different hosts revealed that the colouration of the eggs laid changed gradually and assumed almost that of their respective hosts. Details of these observations are given in the following table.

Sl. No.	Name of the host	General colour of host	r Colour of tal	of generations cen for the trans- rence of the pig- ments
1.	<u>Corcyra</u> <u>capha-</u> lonica	Pale yellow	Glistening white	· · · · · · · · · · · · · · · · · · ·
2.	<u>Scirpophaga</u> nivella	Greenish yellow	Light yellow	4 generations
3.	<u>Pectinophora</u> gossipiella	Pinkish	Pinkish yellow	4 -do-
4.	<u>Dichocrosis</u> punctiferalis	Brownish with yellow and black patches	Yellowish green	2 -do-
5.	<u>Plusia 'ori-</u> chalcia	Green	Light green	2 -do-
6.	Agrotis ypsilon	Green	Light green	2 -do-

Further, the abdomen of the gravid female bred on the various hosts was also found to be pigmented, intensity of pigmentation depending on the colour of the host. It was also noticed that the grubs fed on <u>S</u>. <u>nivella</u> spun deep yellow silken cocoon instead of the normal glistening white cocoon. Direct transference of some pigmented material from host to the yok of the egg during the development of the egg in the ovary was suggested as an explanation for this pigment phenomenon.

VIII. Effect of superparasitism on parasites

The occurrence of superparasitism is a matter of some importance in studying the effect of host, because some or all of the parasites feeding upon it are insufficiently nourished. This in turn alters the effect of host in its various aspects like size, vigour, behaviour, sex ratio etc. Thus Vandel (1932) stated that in the case of the parasite Mermis subnigrescens males predominate when many parasites inhabit a single host. He concluded that this was due to the effect of selective elimination of female parasites owing to the insufficiency of food. Flanders (1935) obtained a predominance of females in the ratio 2:1 in Trichogramma evanescens when three parasites developed in each egg of Estigmene lactinae. But if only a single egg was laid in a host, the progeny was found to be invariably female. Flanders (1936) found that one or more individuals of Trichogramma sp. developed in a single egg of codling moth. When a single parasite emerged from a single host its length was found to be twice that of the four small parasites that developed in one Further, he stated that the larger the parasites the more host.

- 26 -

young ones it can produce. It was also noticed that when a parasite was superparasitized, only the size of the host determines the number of parasites developing in it. Salt (1936) found that "when a single female Trichogramma evanescens was confined on a given number of hosts, 77.6% of the progeny was females." Similar tests by increasing the number of parent females of parasites but retaining the same number of available hosts, revealed a consistent decrease in the proportion of female progeny. In an extreme case of superparasitism induced by confining 50 parent females with 100 host eggs, the percent of female progeny obtained was 43.8%. Salt (1940) studied the effect of superparasitism by Trichogramma evanescens on the eggs of Agrotis C-nigrum. He placed 50 eggs each of the host in two petridishes. In one he introduced 10 parasites and in the other 75 parasites and kept the dishes at 25°C. After 4 hours the parasites were removed and the eggs kept in separate vials. Two to 3 parasites emerged from each egg in the first and 5 or more in the second vial. Measurements showed that when the number of gregarious parasites increases the size of the individual parasite decreases. In some cases where 6 or 7 parasites emerged from a single egg, degenerate forms called 'runts' were seen. They were very inactive, short lived and in all cases died before laying eggs. Structural deformities observed are modified antennal segments and reduced wings.

Flanders (1945) postulated that increase in the proportion of males of <u>Macrocentrus</u> ancylivorus, a parasite of

- 27 -

Potato tuber moth, has correlation with superparasitism by unimpregnated females. He stated that the presence of unimpregnated females resulting from multiple mating may nullify much of the work of impregnated females if superparasitism occurs. Martin, Glen and Finney (1946) obtained data of parasites emerging from hosts superparasitized by lots of female of the parasite Macrocentrus ancylivorus which were assumed to be impregnated. It was apparant that it is the proportion of the female that increased in their progeny. Narayanan et.al. (1948) experimentally found out the effect on sex ratio of Bracon (Microbracon) gelechiae a parasite of potato tuber moth larvae in different intensities of superparasitism on the larvae of Corcyra caphalonica. They observed that when the number of parasitic grubs which share a host increases, the number of males also increases or in other words when food supply is sufficient more females are produced. They also found out that when the number of parasitic grubs that share a single host increases the developmental period also in-Narayanan and Subba Rao (1955) studied the effect of creases. induced superparasitism on Microbracon gelechiae. The hosts used were the final instar larvae of Corcyra. The number of grubs per host was increased from 3 to 30. In the correlation studies they obtained a highly significant negative correlation between the number of grubs per host and percentage of female and also between the number of grubs per host and percentage of develop-The correlation coefficients obtained were -0.98 and ment. -0.96 respectively which are significant at 1% level.

- 28 -

PART B

I. <u>Description of the parasite</u>

The species was described by Ferriere (1930) which for easy reference, is given below:-

Trichospilus pupivora, sp.n.

 $\oint o'$ Body orange yellow, forms sometimes with a faint violacious shine, cheeks with a brown stripe extending from eye to mouth. Antennae yellow, pedicel and funicle more or less brownish. Legs quite yellow. Abdomen brownish black, the petiolus yellow and the middle of the second segment also more or less yellowish. The o'has the body entirely yellow, only the end of the abdomen brown. Wings hyaline more or less smoky brown in the middle.

P Head quite smooth and shining. Ocelli close together. The lateral ocelli nearer to the anterior ocellus than to the eye margins. Cheeks as long as half the length of the eye. Antennae short, the scape narrow, not reaching to the front ocellus, pedicel elongate about 3 times as long as broad; the 2 ring-joints short and transverse, the 2 funicle joints subquadrate, the 1st a little longer than the second, club elongate much pointed at apex, longer than the funicle.

Thorax smooth, very finely reticulated on the mesonotum, with a few scattered long cilia. Pronotum elongated into a neck, mesonotum with strong parapsidal furrows; scutellum truncate at apex with a straight transverse furrow before the post scutellum, smooth in the middle, longitudinally densely striate on the side; post scutellum broad in the middle, rounded behind; propodeon elongate with a median carina and small lateral spiracular furrows, spiracles small and rounded. Wings large, the hairs forming the tufts much thicker than the other discal ciliation, which begins only below the 2nd tuft; there are about 8 long hairs on the marginal vein after which the marginal ciliae are small and weak. Submarginal vein not broken; stigmal vein small with a strong club; post marginal almost absent. Legs with the hind coxae large, strongly reticulated on the outer side; hind femora only slightly broadened; the 4 tarsal joints elongate; middle tibial spur longer than the metatarsus.

Abdomen rounded broader much shorter than the thorax, smooth, very finely reticulated from the end of the 2nd segment; petiole quadrate or a little longer than broad, shorter than the hind coxae; 2nd segment the largest reaching to the middle of the abdomen, the following segments transverse. Ovipositor not visible from above.

Smaller than Q antennae shorter scape and pedicel broader, the 1st ring joint very small, the 2nd not longer much broader, almost as broad as the funicle joints; the 2nd funicle joints quadrate, club not much longer than the pedicel, legs shorter and somewhat thicker; especially the femora, tarsi very short, the 3 first joints as long as broad.

Length: Q 1-1.2 mm., 30.9-1 mm. Ananthanarayanan (1934) noted specimens measuring 1.5 to 2 mm.

- 30 -

II. Life history and habits

+

- 19 Mg - 1924

Our knowledge of life history and habits of <u>T</u>. <u>pupivora</u> is derived mainly from the investigations of Ananthanarayanan (1934) at Calicut and of Jayaratnam (1941) at Peradenia in Ceylon. The review given below is based on Ananthanarayanan's studies. Any difference or additional observations made by other workers are also indicated. The mating habits were observed by both the authors. These habits as observed by them are as follows:-

The female appears normally to be fertilized while within the host pupa. Parasites that emerge in the natural way were not observed to mate. But mating was always noticed when they were let out by artificially puncturing the host pupa. In such cases the parasites were given opportunity to mate as otherwise they would not oviposit on the host pupae. It was noticed that one male fertilised a large number of females accounting for the relatively small number of males.

Oviposition:- Ananthanarayanan (1934) found that the parasite shows little or no choice as to the part of the pupa in which eggs are laid and unfertilised females do not oviposit. Jayaratnam (1941) found that when a variety of host pupae were supplied to this parasite in a tube no partiality was shown to pupae of any kind including those of the natural host.

Life history:- Eggs of the parasite are very minute, barely visible to the naked eye and appear as transparent streaks in the milky fluid content of the host pupae. The eggs are roughly oval in shape, rounded at one end and bluntly tapering at the

- 31 -

other and measures 0.2 mm. by 0.06 mm. The eggs hatch in about The grubs feeding on the content of the pupa become 24 hours. full grown in 5-7 days after having devoured the whole contents of the host and then turn into pupa. According to Jayaratnam (1941) larval period lasts for 7 or 8 days. The full grown pupa devoid of any appendage measures 2 mm. by 0.6 mm. and is a naked pupa covered only by a very thin transparent membrane. In about 5 to 6 days after pupation the compound eyes and the 3 ocelli become bright red, the antennae are clearly marked and the abdominal ventral streak of the female is faintly visible. In about 8 to 10 days after pupation the parasites which are closely packed within the pupal case of the host become adults and emerge by biting tiny holes in the now brittle pupal cell. During hot dry weather from March to April the life cycle is completed in 15 days but during wet weather it takes upto 20 days. Jayaratnam on the other hand observed that the life cycle is completed in 16 to 23 days. He further stated that in a year, 17 to 18 generations are completed with an average period of development of 20.4 days at Peradenia, Ceylon. But at Calicut 22 generations are completed in a year with an average period of development of 16.5 days.

The adult parasite usually lives for 7 days after emergence but they live only for a shorter period in hot dry weather. Feeding them with sugar solution, yeast or dilute honey does not affect their longevity. Jayaratnam stated that in Ceylon the adult parasite lives upto 11 days in Peradenia and

- 32 -

7 days in Batticola and 12 days in Kurunegala.

III. Artificial breeding of the parasite

This parasite has been found eminently suitable for mass multiplication in the laboratory especially because the pupae of other lepidoptera can be used equally well as its natural host for breeding purposes. An ordinary glass specimen tube 15 cm. by 2.5 cm. with bored corks, the holes of which are closed with 90 mesh wire gauze, forms a suitable breeding cage. In each tube one or two host pupae are put and 5-10 parasites are introduced. The tiny creatures as soon as introduced settle on the pupae and begin to lay eggs in the course of 2-6 hours and die in 2-6 days after oviposition. In the course of about 6 days the attacked pupae begin to show characteristic sickly dark colour. The parasites emerge in 16 to 22 days. They are then exceedingly active and crowd towards the lighted part of the cage. In the laboratory during certain parts of the year the parasitized pupae become subject to fungal and bacterial attack. So considerable number of parasitized host pupae are destroyed. The condensation of moisture favours the growth and multiplication of these organisms. By sterilising the tubes and the corks before use the difficulties may be avoided.

IV. Influence of weather in nature and in laboratory

This parasite is highly susceptible to weather changes. They are at their best during wet weather from October to February and practically disappear from the field during the hot dry

- 33 -

weather from March to May. In the laboratory too during hot dry weather the host pupae themselves dry up killing all the contained parasites. Further the egg laying capacity of the parasite is reduced and the few emerging parasites are small and feeble. Ramakrishna Ayyar and Ananthanarayanan (1935) experimentally found laboratory rearing was successful at a temperature of 78°F.-82°F. and relative humidity 92-94%. At high temperature such as 85°F. the development is accelerated but many of the grubs are killed because the host material gets dried up. The few specimens that emerge will be weak and undersized. On the other hand a more humid climate encourages the growth of destructive bacteria and fungi. In addition to this those that develop inside the pupae are unable to come out by puncturing the pupal skin, as it is tough. But if exposed to the sun for a short time they are able to emerge. To overcome the difficulties in breeding parasites in the dry weather, a parasite breeding box wherein temperature and humidity conditions could be suitably regulated, has been devised.

Dr. Hutson (1922) stated that in his attempts to transfer this Eulophid, which was found functioning efficiently in the North-west Province of Ceylon, to drier conditions in Batticaloa District in the Eastern Province proved unsuccessful. Ramachandra Rao et.al. (1948) stated that under the peculiar climatic conditions of the West Coast the parasite would appear to thrive best only during the prevalence of the South West monsoon, and it is fairly active during the comparatively cool and moist period between October and February and becomes

- 34 -

considerably reduced in population during dry hot months from March to May. They further stated that on the West coast the ecological conditions needed for the species to thrive, prevail during the greater part of the year, and so the degree of parasitism rises to 75%. On the other hand in the East coast where climatic conditions are comparatively much drier, this parasite could not establish itself.

V. Potentiality of the wasp as a parasite

The average number of parasites emerging from the attacked pupae in the field was found to be 55. In the laboratory from a single pupa of <u>Tiracola</u>, <u>Spodoptera</u> and <u>Prodenia</u>, Jayaratnam, obtained 1211, 904 and 823 parasites respectively. One parasite is capable of laying 100 to 200 eggs. A parasite attacks more than one pupa. More than one parasite attack the same pupa at a time.

Further, Jayaratnam stated that under laboratory conditions 7 to 8 days old pupae of natural host, ten days old pupae of <u>Tiracola</u> and 6 days old pupae of <u>Prodenia</u> are parasitized by this parasite.

Eventhough the parasites become rapidly reduced during hot seasons, the existing parasites or the liberated ones attack a good proportion of the then existing host pupae in the field and prevent the emergence of the moth.

By field observations it was found that (1) the parasite at its best could destroy 75% of the existing population in the pupal stage (2) live parasites are practically absent when the host pupae are also few (3) there always exist in the field some pupae inaccessible to the parasites.

VI. Causes for the efficiency of the parasites

According to Ananthanarayanan, the reasons for the efficiency of the parasite in the field are as follows:-(1) It is a prolific breeder (2) A single parasite attacks more than one pupa (3) It is eminently suitable for laboratory rearing (4) It has a delicately built structure and active habits for easy and distant dispersal. (It has been recorded 3 miles away from the place of introduction.) (5) Absence of hyperparasites.

Along with some of the above mentioned causes Jayatatnam also pointed out some other causes also, ie. (1) It has a short life cycle of 16.5 days (average), whereas that of its host is 60 days (average) (2) It can parasitize host pupae of 8 days old. (3) Females outnumber males and a single male is capable of fertilising many females.

Ramachandra Rao et.al. (1950) stated that it can breed on alternative hosts in nature and is thus capable of surviving unfavourable seasons when pupae of <u>Nephantis</u> are not available.

VII. Trichospilus pupivora as hyperparasite

Jayaratnam (1941) found <u>T. pupivora</u> along with an Encyrtid and an Eulophid, <u>Syntomosphyrum obscuriceps</u> F. hyperparasitic on a Tachinid larval parasite of <u>Nephantis serinopa</u>.

- 36 -

Stomatomyia bezziana.

VIII. Susceptibility of T. pupivora to insecticides

Nirula et.al. (1958) studied the residual toxicity of field weathered insecticidal residues to <u>T</u>. <u>pupivora</u>. In their experiments using leaves sprayed with 0.2% DDT suspension, they found that DDT was toxic to this parasite even after 8 weeks from the date of spraying, although an exposure period of 72 hours was required to give 50% mortality. In the case of BHC however a similar low degree of toxicity reached after 5-6 days but its action was rapid until after the 2nd day on which it caused 50% mortality after an average period of exposure of 6.25 hours. Neither spray affect the immature stages of the parasites which are passed within the host. In laboratory experiments, Joseph (1959) found that DDT spray at 0.025% and above, caused 100% mortality to this parasite, 35 days after spraying.

Hosts of T. pupivora

Hosts attacked in nature

Ceylon

- (1) <u>Nephantis serinopa</u> M. First noted by Hutson (1919) in Negombo district in Ceylon.
- (2) Thosea cervina W.
- (3) Spodoptera mauritia B
- (4) Puparia of Tachimid parasite of Nacolea annubilata S.

These three hosts are recorded by Hutson from Peradenia, Lunuwala, Passara and Karunagala, quoted by Ferriere

- 37 -

(1930) Jayaratnam (1941) is of opinion that more evidence is necessary regarding <u>Thosea</u> and <u>Spodoptera</u> as the former was not attacked in the laboratory and the latter pupate in soil.

India

- (1) <u>Nephantis serinopa</u> M noted in Cochin on the Malabar coast of South India in (1925), quoted by Jayaratnam (1941)
- (2) <u>Sylepta</u> <u>derogata</u> F. Cotton leaf roller. Recorded by Ananthanarayanan (1939) at Calicut.

Malaya Peninsula

(1) <u>Tirathaba</u> <u>rufivena</u> W. Recorded by Corbett at Sepang, quoted by Ferriere (1930)

Java

(1) <u>Tirattaba</u> spp. Recorded by Paine at Buittenzorg quoted by Ferriere (1930)

Hosts attacked in the laboratory

Host pupae attacked by the parasite in the laboratory as listed by Ananthanarayanan (1939) and Jayaratnam (1941) are as follows:-

At Coimbatore (South India)

- (1) Cotton semilooper Acontia graelZsiz F
- (2) Paddy leaf roller Cnaphalocrosis medinalis G.
- (3) A pyralid on grape vine.

- (4) Castor butterfly Ergolis merione C.
- (5) A Hesperid coconut caterpillar.
- (6) Cotton leaf roller Sylepta derogata F.
- (7) Paddy army worm Spodoptera mauritia B.
- (8) Tobacco cut worm Prodenia litura F.

In the laboratory of Peradenia (Ceylon)

- (1) <u>Tiracola</u> <u>plagiata</u> W.
- (2) Cosmophila erosa H.
- (3) Plusia spp.
- (4) Terias silhetana
- (5) Parnara bada W.
- (6) Parnara mathias W.
- (7) Borolia venella W.
- (8) Homona cofferia N.
- (9) Catopsila crocal C.
- (10) <u>Psara bipunctalis</u> F.
- (11) Polytella gloriosae F.
- (12) Margaronia caesaly
- (13) Puparia of Stomatomyia bezyiana
- (14) Tachnid puparia of larval parasite of Spodoptera mauritia.

ORIGINAL INVESTIGATIONS

MATERIALS AND METHODS

A. MATERIALS

(a) Host pupae used

(1) Phytometra (Plusia) peponis F. (Noctuidae)

Caterpillars were collected from leaves of snakegourd in the College Farm and reared in the laboratory on snakegourd leaves. When they reached the prepupal stage they were removed and kept in petridishes. A small opening was made in the leaf fold to observe as to when they pupated. As soon as the pupae had been formed, they were removed from the cell and used for the experiments.

(2) <u>Prodenia</u> <u>litura</u> F. (Noctuidae)

Caterpillars were collected from banana leaves and reared in the laboratory on tender banana leaves. The caterpillars when about to pupate went into the soil provided in the cages. The soil was examined daily for pupae or prepupae, and freshly formed pupae were used for the experiments.

(3) Orthaga exvinacea W. (Noctuidae)

Larvae were collected from mango trees in the College Farm and reared in the laboratory on mango leaves. As soon as cocoons were formed, they were separated from the bulk breeding and kept in petridishes and as soon as they pupated they were used for the experiments.

(4) Sylepta derogata F. (Pyralidae)

The caterpillars which are leaf rollers, were collected on bhindi leaves from the field. They were bred in the laboratory on bhindi leaves. The larvae in the prepupal stage were transferred to petridishes for pupation.

41

(5) Lampides (Polyonmatus) boeticus L. (Lycaenidae)

The caterpillars are pod borers. They were collected from the field and reared in the laboratory on pods of cowpea. The larva pupated outside the pods. As soon as the pupae were formed, they were used for the experiments.

(6) <u>Margaronia indica</u> S. (Pyralidae)

The caterpillars were collected from the field on leaves of bittergourd and reared in the laboratory. The full grown larvae pupated inside leaf folds. Such leaf folds were removed to petridishes and as soon as they pupated the pupae were removed for the experiments.

(7) Nephantis serinopa M. (Cryptophasidae)

Caterpillars were collected from the field and reared in the laboratory on cut pieces of coconut leaves. The larvae pupated within oval flattened cocoon of frass and silk among the galleries. These cocoons were removed carefully to petridishes. As there is only a wall of silk at the base of the cocoon the pupation could be easily observed.

(8) <u>Gracillaria</u> <u>soyella</u> D. (Gracillaridae)

The caterpillars are top shoot webbers of pulses.

They were collected from the field from <u>Moghania macrophylla</u> and were reared on <u>Moghania</u> leaves. The prepupae were removed to petridishes. When the pupae were formed they were used for the experiment.

(b) Parasites used

Parasites used for the purpose of rearing a stock culture of parasites were obtained from the Parasite Breeding Station attached to The Division of Entomology, Agricultural College and Research Institute, Vellayani.

(c) <u>Glassware</u>

(i) Hurricane chimneys - size 17 cm. x 11 cm.
(ii) Specimen tubes - 7.5 cm. x 1.3 cm. & 7.5 cm. x 2.5 cm.

(d) <u>Cottonwool plugs</u>

Cotton wool was rolled into small balls and the balls were covered with pieces of muslin cloth. The top was tied and these were used for closing tubes.

- (e) Tube stand 135 cm. x 38 cm. to hold 72 tubes
- (f) Tube rack 45 cm. x 37 cm. to hold 30 tubes
- (g) Camel hair brushes
- (h) Diluted sugar solution 10% sugar solution for feeding parasites.

B. METHODS

I.

(1) Rearing stock culture of T. pupivora

With a view to minimise the variations in size, vigour

etc. of the parasite a standard method was adopted for rearing the parasites. For this purpose, a stock culture was reared on pupae of <u>Margaronia indica</u>. In the method of exposing pupae to the parasites single pupae were taken in specimen tubes, (7.5 cm. x 2.5 cm.) and five parasites were introduced and kept in the tube until all the parasites died. Particular care was taken to see that the pupae used were less than 24 hours old. The parasites used were invariably those which had emerged on the same day. Only female parasites were introduced, this being possible by selecting the larger individuals in a group as the larger ones are the females.

(2) <u>Rearing parasite on different host pupae to study the effect</u> of host on the parasite

The first process consisted in exposing the pupae to the parasites in specimen tubes (7.5 cm. x 1.3 cm.). Five female parasites were selected from the stock culture and introduced into the tube. For selecting the females alone the following procedure was adopted. At first some parasites from the rearing tubes were allowed to crawl out under an inverted petridish placed on a sheet of white paper, under the light of a work-table lamp. One edge of the petridish was then slightly lifted for allowing a few parasites to move out on to the paper. Five larger individuals of these were guided into the exposure tube by means of a fine camel hair brush. The tube was then closed with a cotton wool plug and the parasites were examined against light with a hand lens to ensure that the five parasites introduced were all females. (When examined against light the females could be

- 43 -

identified by observing the abdomen, which is darker in colour and has a median streak formed by the ovipositor. In the males the upper half of the abdomen is clear and the streak is absent.) (See plate 1)

The host pupa was then gently cleaned with a camel hair brush and weighed in a chemical balance individually. The pupa was then carefully introduced into the tube containing the 5 parasites. A small strip of blotting paper soaked in sugar solution was placed inside the tube to serve as food for the parasites. The tubes closed with cotton plugs were then placed on a tube rack in such a way that the bottom end pointed towards light and the pupae were at that end. (See plate 2-a) The use of narrow tubes placed in this way minimised the effort of the parasites in locating the pupae and thus ensured the efficiency of parasitism to the maximum. The pupae were thus kept exposed to the parasites till all the five parasites died. The parasitised pupae were then cleaned, removed to clean specimen tubes (7.5 cm. x 2.5 cm.) plugged with cotton wool and placed on a tube stand. (See plate 2-b) When the parasites emerged they were supplied with sugar solution on filter paper as mentioned earlier.

(3) Determination of period of development

The period of development is calculated as the number of days from the date of oviposition by the parasites to the date of emergence of the parasites.

- 44 -

(4) <u>Determination of longevity</u>, total number emerged and sex ratio

The number of parasites that died on each day after the day of emergence was counted. For this purpose, the live parasites in the rearing tubes were made to move to the bottom of the tube by keeping that side towards light. The cotton plug was removed, care being taken to put back into the tube any parasite present on it. The dead parasites along with the remains of the host pupa and the filter paper strip were collected in a petridish. (See plate 2-c) A fresh strip of filter paper soaked with sugar solution was supplied to parasites in the tube. The host pupal shell was broken open on the white paper and the live parasites if any were put back into the tube. All the dead parasites were grouped into small numbers of about 30 within the petridish and each group was examined under Binocular microscope, separated into males and females and counted. This was continued each day till all the parasites died. Thus in the end, data on the total number of parasites emerged and the number of the two sexes were obtained.

Longevity was determined as the average number of days lived by the parasites that emerged from a pupa. For this purpose, the number of parasites dead each day was multiplied by the number of days it has lived. The total of these products was divided by the total number of parasites emerged.

(5) Measurements of parasites

Measurements were made of 5 male and 5 female parasites

- 45 -

selected at random from all the dead parasites emerging from a host pupa. The parasites were mounted on a slide in glycerin with dorsal side upwards. The measurements were done under a microscope with the help of micrometers. Length of male measured was that from the base of antenna to the tip of adeagus, while in females it was from the base of antenna to the tip of abdomen. Head width in both the cases was measured across the region of the eye, and width of thorax measured was between the bases of the forewings.

II. STATISTICAL STUDIES

The data obtained in the present investigations were statistically analysed using the methods of correlation, regression and analysis of covariance.

- 46 -

EXPERIMENTS AND OBSERVATIONS

I. Studies on the effect of different host pupae on T. pupivora

A series of 8 experiments were carried out in the laboratory with the purpose of ascertaining the total number of adults produced, sex ratio, developmental period, longevity and size of \underline{T} . <u>pupivora</u> bred on 8 different species of host pupae. These experiments are given below.

Experiment 1

Host pupa

Experimental details:

Number of pupae used:

Age of pupae:

Number of female parasites used for parasitising each host pupa:

Age of parasites used for parasitisation:

Period during which the experiment was conducted and concluded:

Temperature during the period of experiment:

Relative humidity during the period of experiment: 10

Less than 24 hours

Phytometra peponis F.

5

Less than 24 hours

21--9--1962 to 14--11-1962

Mnm. $76^{\circ} - 80^{\circ}$ F. Mxm. $80^{\circ} - 87^{\circ}$ F.

85% - 92%

<u>Procedure</u> - Pupae were weighed, exposed to parasites and various observations made as described on pages 43, 44 and 45. Details regarding weights of pupa used, dates of exposure and emergence of parasites are given in Table 1. <u>Results:</u> Results of the experiment are given in Appendix I, Tables 1 to 4. From table 1 it may be seen that the developmental period varies from 18 to 22 days, the average being 19.6 days. Table 2 gives the total number of adult parasites which emerged from each pupa exposed and their sex ratio. It can be observed that the number of parasites emerging from a pupa varies from 247 to 561, the average being 372.9. The ratio of male : female parasites is seen to be on an average 1:29.822. Table 3 gives the number of parasites dying on each day following their emergence and the calculated longevity. It may be noted that the parasites emerging from pupae of P. peponis live for an average period of 3.28 days. Table 4 shows the average measurements of length, width of head and width of thorax of 5 males and 5 females of the parasites emerging from each of the ten pupae of P. peponis and the calculated average measurements of the total of 50 parasites. It will be seen that the average measurements are 1.210, 0.365, 0.330 and 1.273, 0.431, 0.353 mm. respectively.

Experiment 2

Margaronia indica

<u>Hest pupa</u>

Experimental details

Period durin was conducte	2291962 to 2110-1962	
Temperature	during the experiment:	Mnm. $76^{\circ} - 80^{\circ}$ F Mxm. $80^{\circ} - 87^{\circ}$ F
•		

Relative humidity during the experiment: 85% - 91%

- 48 -

Details of weight of pupa and dates of exposure and emergence of parasites are given in Table 5.

Rest of the details as in Experiment 1. <u>Results</u>:- Results are presented in Appendix I, Table 5 to 8. Table 5 which gives the developmental period of <u>T</u>. <u>pupivora</u> when bred on pupa of <u>M</u>. <u>indica</u> shows that the developmental period varies from 17 to 18 days, the average being 17.3 days. From table 6 it is seen that the number of parasites emerging from a pupa varies from 121 to 244, the average being 163.7 and that the ratio of male : female parasites is 1:13.699. Table 7 shows that the longevity of the parasites emerging from pupa of <u>M</u>. <u>indica</u> is on an average 2.298 days. Table 8 which gives the data on the average measurements of length, width of head and width of thorax of male and female parasites bred on pupa of <u>M</u>. <u>indica</u> shows that these measurements are 1.137, 0.343, 0.318 and 1.137, 0.379, 0.333 mm. respectively.

Experiment 3

Lampides boeticus Host pupa Experimental details Period during which the experiment 24--9--1962 to 29--10-1962 was conducted and concluded: Mnm. 76 · 80Ŭ Temperature during the experiment: Mxm. 80 Relative humidity during the ex-79% - 91% periment: Details of weight of pupa and dates of exposure and emergence of parasites are given in Table 9. Rest of the details are as in Experiment 1.

- 49 -

<u>Results</u>:- Results are presented in Appendix I, Tables 9 to 12. Data on the developmental period of <u>T. pupivora</u> when bred on pupa of <u>L</u>. <u>boeticus</u> given in table 9 show that the developmental period varies from 17 to 22 days, the average being 18.5 days. It may be seen from table 10 that the number of parasites emerging from a pupa varies from 131 to 298, the average being 194.5 and that the ratio of male : female parasites on an average is 1: 15.458. From table 11 it is observed that the longevity of parasites emerging from the pupa of <u>L</u>. <u>boeticus</u> is on an average 2.292 days. From table 12 which gives the data on the average measurements of length, width of head and width of thorax of male and female parasites bred on pupa of <u>L</u>. <u>boeticus</u> it may be seen that these measurements are on an average 1.088, 0.327, 0.300 and 1.152, 0.398, 0.325 mm. respectively.

Experiment 4

<u>Host pupa</u>

Prodenia litura

Experimental details

Period during which the experiment 2--10--1962 to was conducted and concluded: 21-12--1962

Temperature during the experiment:

Mnm. $76^{\circ} - 84^{\circ}$ F. Mxm. $81^{\circ} - 88^{\circ}$ F.

Relative humidity during the experiment: 82%

82% - 95%

Details of weight of pupa and dates of exposure and emergence of parasites are given in Table 13.

Rest of the details as in Experiment 1.

Results: - Results are presented in Appendix I, Tables 13 to 16.

- 50 -

A perusal of the data in Table 13 shows that developmental period varies from 17 to 20 days, the average being 18.5 days. Table 14 gives the number of parasites emerged and their sex ratio. It is seen that the number of parasites emerging from a pupa varies from 161 to 233, the average being 209. The ratio of male : female parasites is seen to be on an average 1:17.270. Table 15 gives the longevity of the parasites emerging from the pupa of P. litura and the average longevity is observed to be 4.066 days. Table 16 records the data on the measurements of length, width of head, and width of thorax of male and female parasites bred on pupa of These measurements (average of 50 insects) are 1.142, P. litura. 0.333, 0.302 and 1.205, 0.401, 0.322 mm. respectively.

Experiment 5

Host pupa

Sylepta derogata

Experimental details

Period durin	10101962 to	
was conduct	9121962	
Temperature	during the experiment:	Mnm. 78° - 84° F. Mxm. 82° - 88° F.

Relative humidity during the experiment: 79% - 95%

Details regarding weight of pupa and dates of exposure and emergence of parasites are given in Table 17.

Rest of the details as in Experiment 1.

Results are presented in Appendix I, Tables 17 to Results:-Table 17 gives the developmental period of T. pupivora 20. when bred on pupa of S. derogata.

The developmental period is observed to vary from 16 to 18 days, the average being 16.9 days. Table 18 gives the total number of parasites which emerged from each pupae and their sex ratio. The number of parasites emerging from a pupa varies from 103 to 248, the average being 167.1. The ratio of male : female parasites is seen to be on an average 1:14.993. From Table 19 it may be seen that the longevity of the parasites emerging from the pupa of <u>S</u>. <u>derogata</u> is 4.963 days. Table 20 shows that the average measurements of length, width of head and width of thorax of the male and the female parasites bred on pupa of <u>S</u>. <u>derogata</u> are 1456, 0.350, 0.323 and 1.234, 0.411, 0.333 mm. respectively.

Experiment 6

Host pupa

Experimental details

Period during which the experiment was conducted and concluded:

Temperature during the experiment:

Relative humidity during the experiment:

Details of the weight of pupa and dates of exposure and emergence

of parasites are given in Table 21.

Rest of the details as in Experiment 1.

<u>Results:</u> Results are presented in Appendix I, Tables 21 to 24. Table 21 gives the developmental period of <u>T</u>. <u>pupivora</u> when bred on pupa of <u>O</u>. <u>exivinacéa</u>. The developmental period varies from 17 to 20 days, the average being 18.7 days. Table 22 gives the number of parasites that emerged from each pupa and their sex

16--10--1962 to 20--12--1962 Mnm. $78^{\circ} - 84^{\circ}$ F Mxm. $82^{\circ} - 86^{\circ}$ F

Orthaga exvinacéa

79% - 95%

It is seen that the number of parasites emerging from ratio. a pupa varies from 135 to 351, the average being 235.4. The ratio of male : female parasites is seen to be on an average Table 23 shows that the longevity of the parasites 1:17.943. emerging from the pupa of $\underline{0}$. exvinaces is on an average 4.874 Table 24 gives the data on the measurements of length, days. width of head and width of thorax of male and female parasites bred on pupa of O. exvinacea. The measurements (average of 50 insects) are seen to be 1.156, 0.359, 0.323 and 1.234, 0.413, 0.345 mm. respectively.

Experiment 7

Host pupa

Experimental details

Period during which the experiment 22 - 11 - 1962 to 16--12--1962 was conducted and concluded: Mnm. 80° - 84° F. Mxm. 82° - 86° F. Temperature during the experiment:

Relative humidity during the ex-81% - 95% periment:

Details of weight of pupa and dates of exposure and emergence of parasites are given in table 25.

Rest of the details as in Experiment 1.

Results: - Results are presented in Appendix I, Tables 25 to 28. Tables 25 show that the developmental period of \underline{T} . pupivora when bred on the pupa of <u>N</u>. serinopa varies from 17 to 18 days with an average of 17.3 days. From Table 26 it may be seen that the number of parasites emerging from a pupa varies from 141 to 286,the average being 227.7 and that the ratio of male : female

Nephantis serinopa

parasites is 1:12.859. Table 27 shows that the longevity of parasites emerging from the pupa of <u>N</u>. <u>serinopa</u> is on an average of 3.781 days. Table 28 gives the data on the average measurements of length, width of head and width of thorax of male and female parasites bred on the pupa of <u>N</u>. <u>serinopa</u>. It may be seen that the measurements (average of 50 insects) are 1.121, 0.336, 0.304 and 1.181, 0.391, 0.313 mm. respectively.

Experiment 8

Host pupa:

Gracillaria soyella

Experimental details

Period during which the experiment was conducted and concluded: Temperature during the experiment:

17--2--1963Mam. $78^{\circ} - 80^{\circ}$ F

28--1--1963 to

Mxm. 80° - 86° F

Relative humidity during the experiment:

79% - 89%

Details regarding the weight of pupa and dates of exposure and emergence of parasites are given in Table 29.

Rest of the details as in Experiment 1.

<u>Results</u>:- Results are presented in Appendix 1, Table 29 to 32. Table 29 gives the developmental period of <u>T</u>. <u>pupivora</u> when bred on pupae of <u>G</u>. <u>soyella</u> which shows that the developmental period varies from 16 to 18 days, the average being 17 days. From Table 30 it is seen that the number of parasites emerging from a pupa varies from 12 to 17, the average being 14.7 and that the ratio of male : female parasites is on an average 1:9.050. Table 31 shows that the longevity of parasites emerging from the pupa of <u>G. soyella</u> is on an average 1.445 days. Table 32 which gives the data on the average measurements of length, width of head and width of therax of male and female parasites bred on pupa of <u>G. soyella</u> shows that the measurements, average of 50 insects are 0.998, 0.308, 0.278 and 1.124, 0.372, 0.319 mm. respectively.

II. Studies on the effect of induced superparasitism on T. pupivora

A series of 4 experiments were conducted with a view to ascertain the effect of 4 levels of induced superparasitism by <u>T</u>. <u>pupivora</u> on the total number of adults produced, sex ratio, developmental period, longevity and size of parasites when bred on pupa of <u>Plusia peponis</u>.

Experiment 9

Pupae parasitised by five parasites

Experimental details

Number of pupa used:

Age of pupa:

Age of parasites used for parasitisation:

Period during which the experiment was conducted and concluded:

Temperature during the period of experiment:

Relative humidity during the period of experiment 10

Less than 24 hours

Less than 24 hours

18-1-1963to 14-2-1963Mnm. $78^{\circ}_{-} 80^{\circ}_{-}$

Mnm. 78 – 80 F. Mxm. 80 – 86 F.

79% - 90%

Procedure - Same as in Experiment 1.

Details regarding the weights of individual pupa used, of exposure and emergence of parasites are given in Table 38. <u>Results:</u>- Results of the experiment are given in Tables 38 to 41. (Appendix I). A perusal of the data in Table 38 shows that the developmental period varies from 17 to 22 days, the average being 19.6 days. From Table 39 it may be seen that the number of parasites emerging from a pupa varies from 266 to 461, the average being 372.9. The ratio of male : female parasites is seen to be on an average 1:29.242. Table 40 gives the data on the survival of the adult parasites following their emergence and their calculated longevity. It will be observed that the parasites survive for an average period of 3.799 days. Table 41 shows that the average measurements (of 50 parasites) of length, width of head and width of thorax of male and female parasites as 1.186, 0.357, 0.320 and 1.278, 0.437, 0.350 mm. respectively.

Experiment 10

Pupae parasitised by 10 parasites

Experimental details

Period during which the experiment was conducted and concluded:

Temperature during the period of experiment:

Relative humidity during the period of experiment: $18--1--1963 \text{ to} \\ 19--2--1963 \\ \text{Mnm. } 78^{\circ} - 80^{\circ} \text{ F} \\ \text{Mxm. } 80^{\circ} - 86^{\circ} \text{ F}$

79% - 90%

Details of weight of pupa and dates of exposure and emergence of parasites are given in Table 42.

Rest of the details as in Experiment 9.

<u>**Results:-</u>** Results are presented in Appendix I, Tables 42 to 45. Table 42 shows that the developmental period varies from 16 to 20 days, the average being 17.7 days. From table 43 it is seen that the number of parasites emerging from a pupa varies from</u> 318 to 529 the average being 408.7. The ratio of male : female parasites is 1:27.992. Table 44 shows that the parasites that emerge from the pupa of <u>P</u>. <u>peponis</u> exposed to ten parasites survive on an average for a period of 4.255 days. The data on the measurements of length, width of head and width of thorax of male and female parasites are presented in Table 45. The average measurements are 1.121, 0.338, 0.312 and 1.177, 0.392, 0.312 mm. respectively.

Experiment 11

Pupae parasitized by 15 parasites

Experimental details

Period during which the experiment was conducted and concluded:

Temperature during the period of experiment:

Relative humidity during the experiment: $\begin{array}{r} 19 - 1 - 1963 \text{ to} \\ 21 - 2 - 1963 \end{array}$ $\begin{array}{r} \text{Mnm. } 78^{\circ} - 80^{\circ}\text{F} \\ \text{Mxm. } 80^{\circ} - 86^{\circ}\text{F} \end{array}$

79% - 90%

Details of weight of pupa and dates of exposure and emergence of parasites are given in Table 46.

Rest of the details as in Experiment 9.

<u>Results:</u>- Results are presented in Appendix I, Table 46--49. From Table 46 that the developmental period varies from 17 to 18 days with an average 17.3 days. Table 47 shows that the number of parasites emerging from a pupa varies from 401 to 528, the average being 453.8. The ratio of male : female parasites is seen to be on an average 1:26.454. Table 48 shows the longevity of the parasites and it is seen that the average period of survival for the parasites is 4.752 days. Table 47 gives data on measurements of length, width of head and width of thorax of male and female parasites. The average measurements are 1.110, 0.336, 0.301 and 1.172, 0.391, 0.312 mm. respectively.

Experiment 12

<u>Pupae parasitised by 20 parasites</u> Experimental details

Period during which the experiment
was conducted and concluded:20-1-1963 to
19-2-1963Temperature during the experiment: M_{nm} . 78°_{-} 80°_{-}
Mxm. $30^{\circ} 86^{\circ}_{-}$

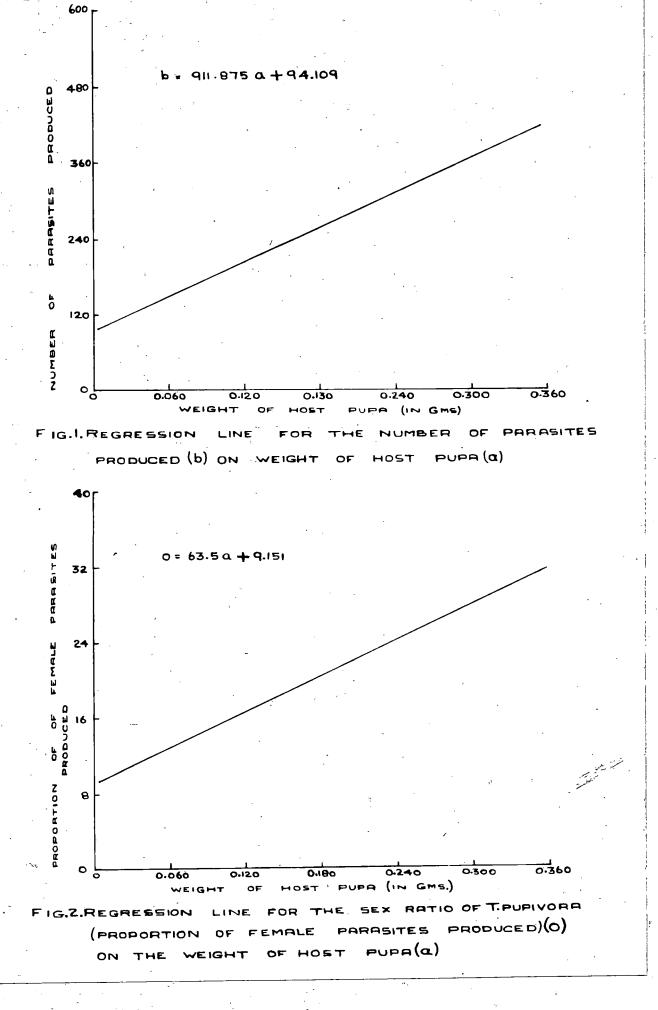
F.

Relative humidity during the experiment: 79% - 89% Details of weight of host pupa and dates of exposure and emergence

of parasites are given in Table 50.

Rest of the details as in Experiment 9.

<u>Results</u>:- Results are presented in Appendix I, Tables 50 to 53. Table 50 shows that the developmental period of the parasite varies from 17 to 18 days, with an average of 17.1 days. Table 51 gives the number of parasites emerged and their sex ratio. The number of parasites emerging from a pupa varies from 612 to 901 the average being 742.8. The ratio of male : female parasites is seen to be on an average 1:15.49. Table 51 shows that the average period of survival of the parasite is 3.142 days. Table 53 gives the data on the measurements of length, width of head and width of thorax of male and female of parasites and these measurements are 1.037, 0.310, 0.284 and 1.080, 0.359, 0.304 mm. respectively.


DISCUSSION

I. Effect of different hosts on the number of adults of <u>T. pupivora</u> produced

(a) <u>Relation between weight of host pups and number of</u> adults of <u>T</u>. <u>pupivora</u> produced

With a view to ascertain if there exists any relation between weight of host pupa and the number of adults of <u>**T**</u>. <u>pupivora</u> produced, the coefficient of correlation has been calculated taking the weight of host pupae and the number of parasites obtained as the two variables. For this all the 80 host pupae under study have been taken as a sample of the population without taking into consideration the effect, if any, of species concerned. The correlation coefficient (**r**) is found to be 0.764. Test for significance shows the tabulated value of (**r**) for 78 d.f at 1% level as 0.2867, indicating significant correlation between the weight of host pupa and the number of parasites produced.

Further, the regression of the number of parasites (b) on weight of host pupa (a) was calculated and found to be b = 911.875a + 94.109 and Fig. 1 gives the best fitting line for the data. In the test for regression the calculated F ratio is 126.76 as against the tabulated value of 7.008 for 1 and 78 d.f. at 1% level, which shows that the regression coefficient is highly significant.

The results of these analyses thus show that there exists a positive linear correlation between the size of host pupa and the number of parasites produced. This observation agrees with that made by Ullyet (1936) on <u>Trichogramma lutea</u>.

(b) <u>Number of adults produced by different species of host</u> <u>pupae</u>

The average number of parasites produced by the different species of host pupae are given in Table 33.

Table 33

Average number of adults of T. pupivora produced by different

species of host pupae

S1. No.	Name of pupa	Weight of pupa in Gms. average.	Number of parasites produced.
1,	Phytometra peponis	0+320	372.9
2.	Prodenia litura	0.172	209.0
3.	Orthaga exvinacea	0.117	235.4
4.	<u>Sylepta derogata</u>	0.085	167.1
5.	Lampides boeticus	0.082	194.5
6.	<u>Margaronia</u> <u>indica</u>	0.070	163.7
7.	<u>Nephantis</u> serinopa	0.066	227.7
8.	<u>Gracillaria</u> soyella	0.004	14.7

It will be seen that <u>Phytometra</u> pupa produces the largest number of parasites followed in the descending order by <u>Orthaga</u>, <u>Nephantis</u>, <u>Prodenia</u>, <u>Lampides</u>, <u>Sylepta</u>, <u>Margaronia</u> and <u>Gracillaria</u>.

- 60

From the statistical analysis using the analysis of covariance technique the following conclusion has been arrived at.

3 2 7 5 4 6 8

in which the numbers denote the different species as:-

- 1. <u>Phytometra peponis</u>
- 2. <u>Prodenia</u> litura
- 3. Orthaga exvinacea
- 4. <u>Sylepta</u> <u>derogata</u>
- 5. Lampides boeticus
- 6. <u>Margaronia</u> indica
- 7. <u>Nephantis serinopa</u>
- 8. <u>Gracillaria soyella</u>

The details of the calculations are given in Appendix IIa.

From this it is evident that <u>Phytometra</u> pupa produces significantly higher number of parasites than the other host pupae. Among the rest, there is no significant difference in the number of parasites produced by the host pupae 2 to 7 while pupa 8 produces the least number of parasites.

II. Effect of host on sex ratio of T. pupivora

(a) <u>Relation between the weight of host pups and sex</u> ratio of <u>T</u>. <u>pupivora</u>

Correlation coefficient calculated from all the 80 host pupae irrespective of the species is 0.893. The tabulated value of 'r' for 78 d.f. at 1% level was found to be 0.2867. This shows that the correlation between the weight of host pupa and sex ratio is highly significant.

The regression of the sex ratio (0) on the weight of host pups (a) is calculated to be 0 = 63.5a + 9.151. In the regression test, calculated F ratio is 282 as against the tabulated value 7.008, for 1 and 78 d.f at 1% level. Thus the regression coefficient also is highly significant. This is graphically represented in Fig. 2.

The above analyses show that the proportion of the number of female parasites of <u>T</u>. <u>pupivora</u> produced, increases as the size of the pupa increases. Similar observations on the effect of host on sex ratio were made by Chewyreuv (1913) on <u>Pimpla instigator, Exenterus</u> sp. and <u>Campoplex</u> sp., Smith (1932) on <u>Alysia manducator</u>, Seyrig (1935) on <u>Ecthromorpha hyalina</u> and <u>Pimpla maculiscaposa</u>, Brunson (1937) on <u>Tiphia popiliavora</u> and Taylor (1937) on Chalcid parasite <u>Pleurothrops parvulus</u>.

(b) Sex ratio of <u>T</u>. <u>pupivora</u> produced by different species of <u>host pupa</u>

Table 34 shows that <u>Phytometra</u> pupa produces the largest proportion of females followed in the descending order by <u>Orthaga</u>, <u>Prodenia</u>, <u>Lampides</u>, <u>Sylepta</u>, <u>Margaronia</u>, <u>Nephantis</u> and <u>Gracillaria</u>.

Analysis of covariance shows that with respect to the sex ratio of the parasites produced, the different host pupae can be grouped as follows:-

1 2 3 5 4 6 7 8

(The numbers are similar as referred to earlier. Details of calculations are given in Appendix II b)

It may be observed that <u>Phytometra</u> (1) pupa produces significantly larger proportion of female parasites than the other host pupae. Further in the proportion of females produced, pupae 2, 3 and 5 differ significantly from pupa 8 while there exists no difference among the pupae 2 to 7.

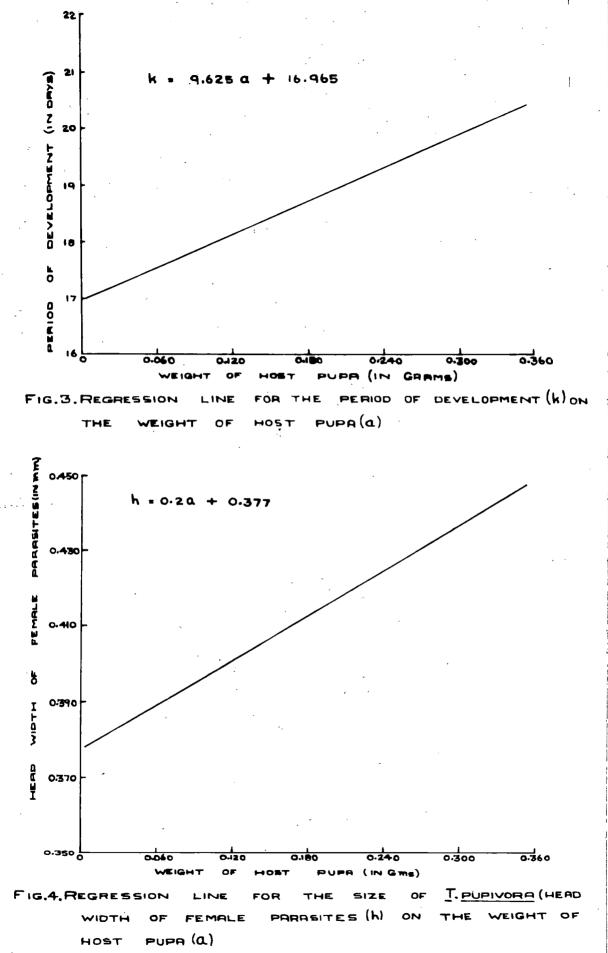
Ta	b1	e	34

Sex ratio of T. pupivora produced by different species of host

		pupa	· · · · ·	· ·	
S1. No.	Name of pupa	Weight of pupa in Gms. av.	Number of male	Number of female	Sex ratio
1.	Phytometra peponis	0.320	12.2	360.7	29.822
. 5	<u>Prodenia</u> <u>litura</u>	0.172	11.5	197.5	17.270
3.	Orthaga exvinacea	0.117	12.8	222.6	17.943
1 .	<u>Sylepta</u> <u>derogata</u>	0.085	10.7	156.4	14.993
5.	Lampides boeticus	0.082	12.1	182.4	15.458
ŝ.	<u>Margaronia</u> <u>indica</u>	0.070	11.9	151.8	13.699
7.	<u>Nephantis serinopa</u>	0.066	16.7	211.0	12.859
3.	<u>Gracillaria</u> soyella	0.004	1.6	13.0	9.050

- 63 -

64


(a) <u>Relation between the weight of host pups and the</u> developmental period of <u>T</u>. <u>pupivora</u>

Correlation coefficient calculated from all the 80 host pupae irrespective of the species is 0.647. The tabulated value of 'r' for 78 d.f. at 1% level is 0.2867. Thus a highly significant correlation between the weight of host pupa and developmental period is indicated.

The regression of the developmental period (k) on the weight of host pupa (a) is calculated to be k = 9.625a + 16.965. In the test for regression the calculated F ratio is 63.31, while the tabulated value for 1 and 78 d.f. at 1% level is 7.008. Thus the regression also is significant. This is represented graphically in Fig. 3. It is evident that there exists a positive linear correlation between the weight of host pupa and the duration of development. The only other study on the effect of the size of the host on the developmental period of a parasite is that of Salt (1940) on <u>Trichogramma evanescens</u>. He also observed similar correlations as observed in the present studies.

(b) Developmental period of <u>T</u>. pupivora in different species of host pupae

From table 35 it may be seen that the total duration of development is longest in <u>Phytometra</u> pupa followed by the other host pupae in the order, <u>Orthaga > Prodenia</u> = <u>Lampides</u> > <u>Margaronia</u> = <u>Nephantis</u> > <u>Gracillaria</u> > <u>Sylepta</u>.

Table 35

Average duration of development of T. pupivora in different

species of host pupa

Sl. No.	Name of pupa		Weight of pupa in Gms.(av.)	Duration of Development in days	
1.	<u>Phytometra</u> peponis	+ - 1	0.320	19.6	ار ب
2.	<u>Prodenia</u> <u>litura</u>	۰ ۰	0.172	18.5	•
3.	<u>Orthaga</u> <u>exvinacêa</u>		0.117	18.7	
4.	Sylepta derogata		0.085	16.9	*
5.	Lampides boeticus		0.082	18.5	
6.	Margaronia indica	•	0.070	17.3	
7.	<u>Nephantis</u> <u>serinopa</u>	-	0.066	17.3	
8.	<u>Gracillaria</u> soyella		0.004	17.0	

The conclusions drawn from the analysis of covariance may be summarised as:-

<u>1 3 2 5 6 7 4 8</u>

This explains that the developmental period of the parasites is significantly longer in the pupa of <u>Phytometra</u> (1) than in the pupae 6, 7, 4 & 8 and is not significantly longer than in the pupae 3, 2 and 5. (Details of calculations given in Appendix IIc)

IV. Effect of host on the longevity of adults of <u>T</u>. <u>pupivora</u> (a) <u>Relation between weight of host pupa and longevity</u> of <u>T</u>. pupivora

- 65 -

The correlation coefficient calculated from all the 80 host pupae irrespective of the species is 0.122. The tabulated value of 'r' for 78 d.f. at 5% level is 0.2136. This indicates that there appears to be no significant correlation between the size of host pupa and the longevity of the adult parasites which emerge from them.

(b) Longevity of adults of <u>T</u>. <u>pupivora</u> produced by <u>different species of host pupae</u>.

The average longevity of \underline{T} . <u>pupivora</u> adults bred on different host pupae are given in Table 36.

Tab	1	е	36	1

Average longevity of adults of <u>T</u>. <u>pupivora</u> bred on different <u>species of host pupae</u>

51.	·	Weight of	Lon	Longevity in days			
NO.	Name of pupa	pupa (average)	Male	Female	Whole		
1.	Phytometra peponis	0.320	2.146	3.368	3,282		
2.	<u>Prodenia</u> <u>litura</u>	0.172	1.721	4.273	4.066		
3.	Orthaga exvinacea	0.117	2.158	5.118	4.874		
4.	<u>Sylepta</u> <u>derogata</u>	0.085	1.952	5. 2 19	4.963		
5.	Lampides boeticus	0.082	1.303	2.351	2.292		
6.	<u>Margaronia</u> <u>indica</u>	0.070	1.336	2.340	2.298		
7.	<u>Nephantis</u> <u>serinopa</u>	0.066	1.631	3.919	3.781		
8.	<u>Gracillaria</u> soyella	0.004	1.050	1.535	1.455		

It is seen that the longevity of parasites is greatest when bred on <u>Sylepta</u> pupae. It decreases in the descending order in other hosts as <u>Orthaga</u>, <u>Prodenia</u>, <u>Nephantis</u>, <u>Phytometra</u>, <u>Margaronia</u>, Lampides and <u>Gracillaria</u>.

By the application of analysis of covariance the following conclusions has been made:-

4 3 7 2 6 5 8 1

(Details of calculations given in Appendix IId) This shows that the longevity of parasites produced in pupa of <u>Sylepta</u> (4) is significantly longer than that of the parasites produced in pupa of <u>Phytometra</u> (1) and that it does not vary from the longevity of parasites produced by pupae 3, 7, 2, 6, 5 and 8.

V. Effect of host on the size of T. pupivora

(a) <u>Relation between the weight of host pups and the size</u> of <u>T</u>. <u>pupivora</u>

To study this, the head width of female parasites has been taken as a measure of the size of parasites. The correlation coefficient between the head width of female parasites and the weight of host pupa has been calculated to be 0.556, while the tabulated value of 'r' for 78 d.f. at 1% level is 0.2867. This indicate a significantly high correlation between the two variables.

The regression of the size of the parasites (h) on the weight of host pupae (a) is h = 0.2a + 0.377. In the regression

test the calculated F ratio is 20.9 as against the tabulated value 7.008 for 1 and 78 d.f. at 1% level. Thus the regression also is highly significant. It is represented graphically in Fig. 4. All these go to show that there exists a highly significant and positive linear correlation between the weight of host pupe and the size of parasites. Similar results were obtained by many previous workers like Ratzburg (1844), Toyama (1906), Morril (1907), Chewyreuv (1913), Thompson (1923), Mickel (1924), Flanders (1930), Lathrop and Newton (1933), Jakson (1937) and Salt (1940) in various other parasites.

(b) Size of adults of \underline{T} . <u>pupivora</u> bred on the different <u>species of host pupae</u>

The various measurements of the male and female adult parasites bred on the different species of host pupae are given in Table 37. With a view to understand the extent of variation existing in the size of the parasites produced in the different host pupae, analysis of covariance was done using the head width of female parasites as the effect. The F ratio was not found to be significant, indicating that there is no significant difference in the size of parasites emerging from the different species of hosts.

- 68 -

<u>Table 37</u>

	spe	cies of	host pupae						
*	\ \	· .		هو محي بريد 	÷.,				
- <u>,</u> -	17 a	4 abt of		Measu	rement	s in m	n.		
S1. No.	Name of pupa		Len		Width (head	of V	Vidth (thora:	_	
			Male	Female	e Male	Female	e Male	Female	
1.	Phytometra peponis	0.320	1.210	1.273	0.365	0.431	0.330	0.353	
2.	<u>Prodenia</u> <u>litura</u>	0.172	1.142	1.205	0.333	0.401	0.302	0.322	
3.	<u>Orthaga</u> <u>exvinacea</u>	0.117	1.156	1.234	0.359	0.413	0.323	0.345	
4.	<u>Sylepta</u> <u>derogata</u>	0.085	1.166	1.234	0.350	0.411	0.323	0.333	
5.	Lampides boeticus	0.082	1.088	1.152	0.327	0.398	0.300	0.325	
6.'	Margaronia indica	0.070	1.137	1.137	0.343	0.379	0.318	0.333	
7. '	<u>Nephantis</u> serinopa	0.066	1.121	1.181	0.336	0.391	0.304	0.313	
8.	Gracillaria soyella	0.004	0.998	1.124	0.308	0.372	0.278	0.319	

VI. Effect of different levels of induced superparasitism on the number of adults of <u>T</u>. <u>pupivora</u> produced by pupae of <u>Phytometra peponis</u>

The average numbers of parasites produced in <u>P</u>. <u>peponis</u> pupa as a result of parasitisation by varying numbers of parasites are given in Table 54.

It will be seen that the maximum number of parasites is produced when the pupa is parasitised by 20 parasites, while the numbers of parasites produced when parasitised by 15, 10 and 5 parasites follow a descending order.

Table 54

Average number of adults of <u>T</u>. <u>pupivora</u> produced in pupa of <u>P</u>. <u>peponis</u> when parasitised by different numbers

of parasites

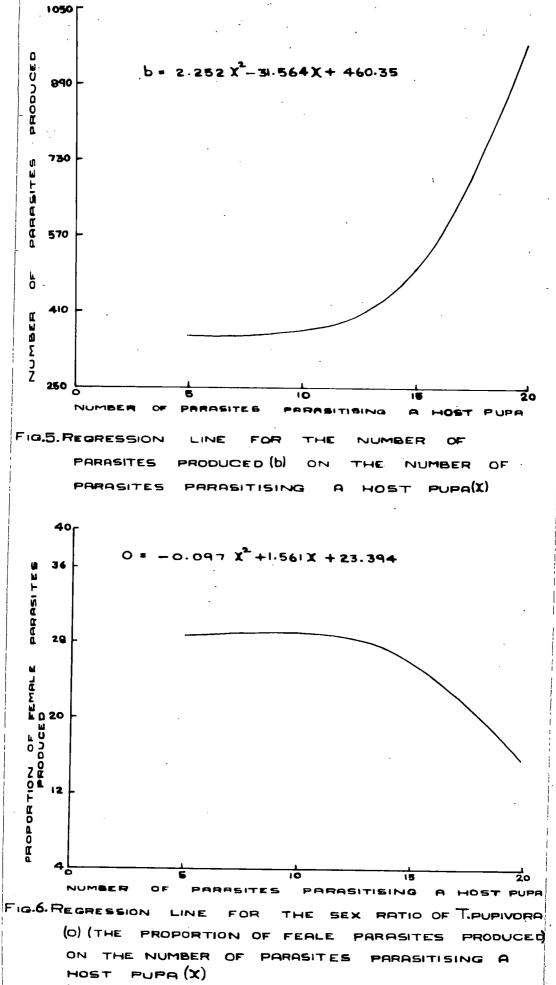
Sl. No.	Numb parasi	er of 1 tising	arasites a pupa.		Weight of host pupa	· ····	Number of parasites
	به روی میں میں میں میں محمد م			· , ·	average		produced.
1.		5			0.317		345.9
2.	· · · ·	10		, .	0.312	-*	408.7
3.		15		· · · ·	0.297		453.8
4.	а -	20			0.305		742.8
						· · ·	

In order to understand whether there exists any correlation between the different levels of induced superparasitism and the number of adults of $\underline{\mathbf{T}}$. <u>pupivora</u> produced, the coefficient of correlation has been calculated. For this all the 40 host pupae under study have been considered as a sample of the population. The different levels of superparasitism and the number of parasites emerged are considered as the two variables. The correlation coefficient (r) is calculated to be 0.807. Test for significance shows the tabulated value of r for 38 d.f. at 1% level as 0.3732, indicating significant correlation between the different levels of superparasitism and the number of parasites emerged.

Further, the regression of the number of parasites (b)

on different levels of superparasitism (x) has been calculated. It is seen that there is no linear regression. When these two are plotted the points have been seen to lie very closely along a 2nd degree curve (Fig. 5). The equation of which is $b = 2.252x^2 - 31.564x + 460.35$. In the test for regression, the calculated F ratio is 57 as against the tabulated value of 5.243 for 2 nd 37 degrees of freedom at 1% level and this shows that the regression coefficient is highly significant.

The results of the analyses thus show that there exists a highly significant and positive correlation between the different levels of superparasitism and the number of parasites emerged.


This observation agrees with that of Salt (1940) on <u>Trichogramma</u> evanescens.

Analysis of covariance has enabled the following conclusion:

20 <u>15 10</u> 5

in which the numbers denote the different numbers of parasites used for parasitisation. (Details of calculations given in Appendix Π

From this also it is evident that a significantly large number of parasites is produced when pupae are parasitised by 20 parasites. Further, the number of parasites produced when the pupae are parasitised by 15 parasites is significantly larger than when parasitised by 5 parasites, but is not significantly larger than when parasitised by 10 parasites.

VII. Effect of different levels of induced superparasitism on the sex ratio of <u>T</u>. <u>pupivora</u> bred on pupae of <u>P</u>. <u>peponis</u>:

Table 55 shows that the largest proportion of females is produced when the pupae are parasitised by 5 parasites each. This proportion shows a progressive decrease corresponding with the progressive increase in the level of superparasitism from 5 to 20.

<u>Table 55</u>

Sex ratio of <u>T</u>. <u>pupivora</u> bred on pupa of <u>P</u>. <u>peponis</u> when parasitised

Sl. No.	Number of parasites parasitising a pupa	Weight of host pupa in Gms. (average)	Number of male	Number of female	Sex ratio
1.	5	0.317	11.5	334.4	29.242
2.	10	0.312	14.6	394.1	27.992
3.	15	0.297	18.9	434.9	26.454
4.	20	0.305	46.8	696.0	15.490

Coefficient of correlation of these two variables is calculated to be-0.605. Its tabulated value for 38 d.f. at 1% level is 0.3732. Thus a significant negative correlation between levels of superparasitism and proportion of female parasites is in evidence. The regression of the sex ratio (0) on the different levels of superparasitism (x) is calculated to

 $0 = -0.097x^2 + 1.561x + 23.394$. In the regression test be the calculated F ratio is 15.69 as against the tabulated value of 5.243 at 2 and 37 degrees of freedom at 1% level, indicating that the regression coefficient is highly significant. This is graphically represented in Fig. 6. The above analysis thus shows that the proportion of the number of females of I. pupivora produced decreases as the level of superparasitism increases.

Similar observations of the effect of induced superparasitism on sex ratio of parasites were made by Salt (1936) on <u>Trichogramma</u> evanescens.Narayanan et. al. (1945) on Bracon (Microbracon) gelechiae and Narayanan and Subba Rao (1955) on Microbracon gelechiae.

The analysis of covariance shows that with respect. to the sex ratio of the parasites produced, the different levels of superparasitism can be grouped as follows:-

10 15 20

(Details of calculations given in Appendix II g) It may be observed that the significantly lowest proportion of females is produced when the pupae are parasitised by 20 parasites. There does not appear to be any significant difference in the proportion of females produced when the pupae are parasitised by 5, 10 or 15 parasites.

VIII. Effect of different levels of superparasitism on the developmental period of T. pupivora bred on pupae of P. peponis

From the Table 56 it may be seen that the total

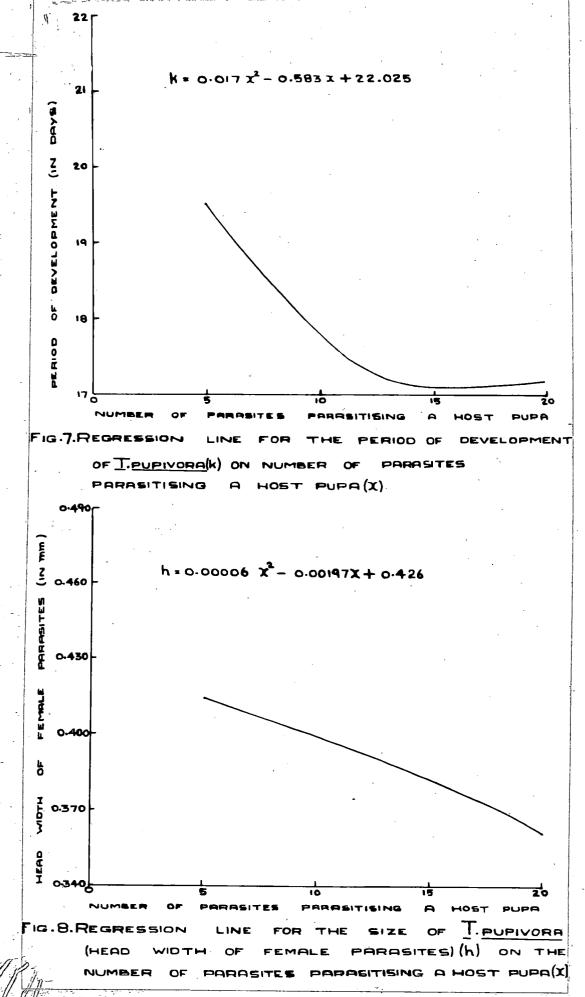

duration of development is longest when the pupae are parasitised by 5 parasites, followed in the descending order by parasitisation by 10, 15 and 20 parasites.

Table 56

Average duration of development of \underline{T} . <u>pupivora</u> in the pupa of \underline{P} . <u>peponis</u> when parasitised by varying numbers of parasites

Sl. No.	Number of parasites parasitising a pupa	Weight of pupa in Gms. (average)	Duration of development in days
1.	5	0.317	19.6
2.	10	0.312	17.7
3.	15	0.297	17.3
4.	20	0.305	17.1

Correlation coefficient (r) calculated is - 0.670 while the tabulated value of 'r' for 78 d.f. at 1% level is 0.3732, indicating significant correlation between different levels of superparasitism and developmental period. The regression of the period of development (k) on different levels of superparasitism (x) is calculated to be $k = 0.017 x^2 - 0.583x +$ 22.025. In the regression test, the calculated F ratio is 18.5 as against the tabulated value of 5.243 for 2 and 37 d.f. at 1% level, which shows that the regression coefficient is highly significant. This is graphically represented in Fig. 7. Thus it is evident that there exists a negative correlation between different levels of superparasitism and duration of development.

-

The conclusion drawn from the analysis of covariance may be summarised as follows:

This explains that the developmental period of <u>T</u>. <u>pupivora</u> is significantly longest when the pupae are parasitised by 5 parasites. No significant difference in developmental period of <u>T</u>. <u>pupivora</u> is found when the pupae are parasitised by 10, 15 or 20 parasites. (Details of calculations given in Appendix II h)

IX. Effect of different levels of induced superparasitism on longevity of adults of <u>T</u>. <u>pupivora</u> bred on pupae of <u>P</u>. <u>peponis</u>

Table 57 indicates that the average longevity of the parasites is highest when the pupae are exposed to fifteen parasites followed by the other levels of parasitism in the order 10 < 5 < 20.

The correlation coefficient (r) calculated is - 0.117, the tabulated value of 'r' being 0.3732 for 38 d.f. at 1% level and 0.3126 at 5% level. Thus there appears to be no significant correlation between the different levels of superparasitism and longevity of parasites.

Analysis of covariance gives the following conclusion.

15 10 5 20

(Details of calculations given in Appendix II i) This indicates that the longevity of parasites is significantly longer when pupae are parasitised by 15 parasites than when

- 75 -

parasitised by 5 or 20 parasites but is not significantly different from that when parasitised by 10 parasites. Further, longevity of parasites is significantly longer when pupae are parasitised by 10 parasites than when parasitised by 20 parasites but is not significantly different from that when parasitised by 5 parasites.

Table 57

Average longevity of adults of \underline{T} . <u>pupivora</u> bred on pupae of P. <u>P. peponis</u> when exposed to different levels of superparasitism

Number of parasites Sl.parasitising a No. pupa		Weight of	Longevity in days			
		pupa in Gms.(av.)	Male	Female	Whole	
1.	5	0.317	2.170	3.852	3.799	
2.	10	0.312	2.020	4.434	4.255	
3.	15	0.297	1.617	5.080	4.752	
4.	20	0.305	1.533	3.202	3.142	

X. Effect of different levels of induced superparasitism on the size of \underline{T} . pupivora bred on pupae of \underline{P} . peponis

The various average measurements of the male and female parasites bred on pupae of <u>P. Peponis</u> when parasitised by different numbers of parasites are given in Table 58.

- 76 -

Table 58

Average	size	of	adults	of <u>T</u>	. pupiv	<u>ora</u> b	red on	pupae	of \underline{P} .	peponis	' 1
when pai	rasiti	.sed	by var	ryine	g number	s of	parasi	tes:			

* . • .	•	Number of para-	Weight		easure	ements	in mm	• .	•
Sl. No.		sites parasiti- sing a pupa.	of pupa in Gms.	Trength Width of		Width of thorax			
		4	(av.)	Male F	eamle	Male	Female	Male	Female
1.		5	0.317	1.186	1.278	0.357	0.417	0.320) 0.350
2.		10	0.312	1.121	1.177	0.338	0.392	0.312	2 0.311
3.	-	15	0.297	1.110	1.172	0.336	0.391	0.30 1	0.318
4.		20	0.305	1.037	1.080	0.310	0.359	0.284	L 0.304

The coefficient of correlation 'r' between the head width of female parasites (which is taken as a measure of size) and different levels of induced superparasitism is found to be -0.612, while the tabulated value of 'r' for 38 d.f. at 1% level is 0.3732. Highly significant negative correlation between size of parasites and different levels of superparasitism is thus indicated. The regression of the size of parasite (h) on the different levels of induced superparasitism (x) is $h = -0.00006x^2 - 0.00197x \pm 0.426$. In the regression test the calculated F ratio is 10.7 as against the tabulated value of 5.243 for 2 and 37 d.f. at 1% level. Thus the regression also is highly significant. It is represented graphically in Fig.8. It is thus evident that as the number of parasites parasitising a pupa increases the size of the emerging parasites show a corresponding reduction in size.

Similar results were obtained by Flanders (1936) on <u>Trichogramma</u> sp. and Salt (1940) on <u>Trichogramma</u> evanescens.

Analysis of covariance studies on this relation gives the following conclusion:-

5 15 10 20

This explains that the size of the emerging parasite is significantly bigger when pupae are parasitised by 5 parasites than when parasitised by 10 or 20 parasites, but does not vary significantly from that when parasitised by 15 parasites. Further, the emerging parasite appears to be significantly bigger when pupae are parasitised by 15 parasites than when parasitised by 20 parasites but no significant difference is seen when parasitised by 10 parasites. (Details of calculations given in Appendix II j).

SUMMARY AND CONCLUSIONS

The literature on the effect of host on parasites and that on <u>Trichospilus</u> pupivora has been reviewed.

The total number of adults produced, sex ratio, developmental period, longevity and size of <u>T</u>. <u>pupivora</u> were ascertained when bred on eight different species of host pupae, namely (1) <u>Phytometra peponis</u>, (2) <u>Prodenia litura</u>, (3) <u>Orthaga</u> <u>exvinacea</u>, (4) <u>Sylepta derogata</u>, (5) <u>Lampides boeticus</u>, (6) <u>Margaronia indica</u>, (7) <u>Nephantis serinopa</u>, and (8)<u>Gracillaria</u> <u>soyella</u>.

Correlation and regression studies show that there exist, a highly significant and positive linear correlation between the weight of the host pupa on the one hand and the number of parasites emerged, the proportion of females, the developmental period and the size of the parasites on the other. There does not appear to be any correlation between longevity of parasites and weight of host pupa.

Analysis of covariance shows that the different host pupae can be ranked as follows:-

(a) With respect to number of adult parasites produced:-

1 3 2 7 5 4 6 8

(b) With reference to the proportion of females produced:1 2 3 5 4 6 7 8
(c) With reference to developmental period:-

6

7

4

(d) With reference to longevity:-

3 2

4 3 7 2 6 5 8 1

5

It may thus be concluded that of the eight pupae under study, <u>Phytometra</u> pupa is the most suited for mass multiplication of <u>T</u>. <u>pupivora</u> in the laboratory because it produces the largest number of adult parasites and largest proportion of females.

The variations in the total number of adult parasites produced, sex ratio, period of development, longevity and size of <u>T</u>. <u>pupivora</u> bred on pupa of <u>P</u>. <u>peponis</u> when parasitised by 5, 10, 15 and 20 parasites have been ascertained.

Correlation and regression studies have shown that there exists a highly significant positive correlation between the levels of superparasitizm (i.e. the number of parasites parasitising the pupa) and the number of adults produced and a significant negative correlation between the different levels of superparasitism on the one hand and the proportion of females produced, developmental period and size of the parasites on the other. There is no correlation between the number of parasites parasitising the pupa and the longevity of the parasites.

Based on analysis of covariance, the different levels of superparasitism with respect to the various characters of the parasite can be ranked thus:-

(a) With respect to number of parasites produced:-

20 <u>15 10</u> 5

(b) With respect to proportion of female parasites produced:-

5 10 15 20

(c) With respect to developmental period:-

5 10 15 20

(d) With respect to longevity:-

15 10 5 20

(e) With respect to size:-

5 15 10 20

It may thus be concluded that greater numbers of the parasite are produced when the host pupe is subjected to higher levels of superparasitism, but this advantage appears to be effset by the related reduction in the proportion of females.

REFERENCES

1.	Ananthanarayanan, K.P.	1934.	On the bionomics of a Eulophid (<u>Trichospilus pupivora</u> Ferriere) a natural enemy of the coconut caterpillar (<u>Nephantis serinopa</u> Meyr.) in South India. <u>Bul. Ent</u> . <u>Res.</u> , <u>25</u> : 55-61.
2.	Bradley, W.G. & Arbuthnot, K.D.	1938.	The relationship of host physio- logy to development of the Braconid parasite <u>Chelonus</u> <u>annulipes</u> Wesmael. <u>Ann. Ent.</u> <u>Soc. Amer., 31</u> : 359 - 365.
3.	Brunson, M.H.	1937.	Influence of instars of host larvae on the progeny of <u>Tiphia popilliavora</u> Rohwer, <u>Science</u> , <u>86</u> : 197 pp.
4.	Cox, J.A.	1932.	Ascogaster Carpocapsae Vierick, an important larval parasite of the Codling moth and Oriental fruitmoth. N.Y. State Agr. Expt. Sta. Tech. Bull., 188, 26 pp.
†5 .	Chewyreuv, I.J.	1913.	Le rôle des femelles dans la detérmination du sexe et leur descendance dans le groupe des Ichneumonides. <u>Soc. de Biol.</u> (Paris) <u>Compt. Rend.</u> , <u>74</u> :695- 699.
6.	Clausen, C.P.	1939.	The effect of host size upon the sex ratio of Hymenopterous parasites and its relation to methods of rearing and coloni- sation. J.N.Y. ent. Soc., 47: 1 - 9.
7.	Dowden, P.B.	1934.	Zenillia <u>libatrix</u> Pantzer, a Tachinid parasite of the Gypsy moth and the Brown-tail moth. Jour. <u>Agr. Res.</u> , <u>48</u> : 97 - 114.
8.		1935.	Brachymeria intermedia Nees, a primary parasite and <u>B. compsilura</u> Cwfd. a secondary parasite, of the Gypsy moth. Jour. Agr. Res., <u>50</u> : 495-523.

		- ii	_
*9.	Faure, J.C.	1924.	Observations biologiques sur <u>Bracon</u> <u>glaphyrus</u> March. <u>Rev. path. Veg</u> ., <u>11</u> : 70-72.
10.	Ferriere, C.	1930.	Notes on asiatic Chalcidoidea. <u>Bull</u> . <u>Ent. Res</u> ., <u>21</u> : 358.
11.	Flanders, S.E.	1930.	Use of factitious host for rearing <u>Trichogramma</u> . <u>Hilgardia</u> , <u>4</u> : 465-501
*12.		1935 a.	Host influence on the prolificacy and size of <u>Trichogramma. Pan</u> - <u>Pacific Ent., 11</u> : 175 - 177.
13.	මේ ස්) හා සම	1935 b.	An apparant correlation between the feeding habits of certain Pteromalids and the condition of their ovarian follicles. <u>Ann. Ent. Soc. Amer.</u> , <u>28</u> : 438 - 444.
14.		1936 a.	A biological phenomenon affecting the establishment of Aphelinidae as parasites. <u>Ent. Soc. Amer. Ann</u> ., <u>29</u> : 251 - 255.
15.		1936 b.	<u>Coccidophilus citricola</u> Brethes, a predator enemy of Red and Purple scales. <u>J. econ</u> . <u>Ent</u> ., <u>29</u> : 1023-1024.
16.		1942.	Abortive development in parasitic Hymenoptera by the food plant of the insect host. <u>J. econ</u> . <u>Ent</u> ., <u>35</u> : 834-835.
17.		1945.	The role of spermatophore in the mass propagation of <u>Macrocentrus</u> <u>ancylivorus</u> . J. <u>econ</u> . <u>Ent.</u> , <u>38</u> : 323-327.
18.	සා යා හා මා	1946.	The mechanism of sex control in the Honeybees. J. econ. Ent., 39: 379.
19.	Gilmore, J.U.	1938.	Notes on <u>Apanteles</u> <u>congregatus</u> Say, as a parasite of Tobacco hornworms. <u>J. econ</u> . <u>Ent</u> ., <u>31</u> : 712-715.
	-		

		- ii:	i - The second s
	¢ , , , , , , , , , , , , , , , , , , ,		
*20.	Hase, A.	1925.	Beitrage zur lebensgeschichte der
•		,	schlupwepe Trichogramma evanescens
÷		· ·	Westw. Biol. Reichsanst. f. Land
			U. Forstw. Arb., 14 : 171-224.
*21.	&	•	
. 60 [0	Albrecht, F.O.	1925.	Beitrage zur lebensgeschichte der
			schlup wespe Trichogramma evanescens
4 2			Westwood. Biol. Reichsanst. f. Land
·``			<u>u. Forstw. Arb., 14</u> : 171 - 224.
		·**	
22.	Holdaway, E.G. &		A relation between size of host pupa-
.~~•	Smith, H.F.	1932.	ria and sex tatic of Abysia manducator
		•	Pantzer. Austral. Jour. Expt. Biol.
· .		4	and <u>Med</u> . <u>Sci., 10</u> : 247-259.
*23.	Hutson, J.C.	1919.	Report of the Entomologist. Ceylon
~~~			Dept. Agri. Administr. Repts. for
	<b>x</b>	n an	1919, Peradeniya. pp. 08-010.
•			
24.		1922.	The coconut caterpillar ( <u>Nephantis</u>
£4.		1 366 .	serinopa). Trop. Agri, Peradeniya,
			<u>59</u> : 21-24.
	3	 -	
05		1044	A study of the control of the coconut
25.	Jayaratnam, T.J.	1941.	caterpillar ( <u>Nephantis</u> serinopa M.)
· .		·	in Ceylon with special reference to
	•	а - 1.	its Eulophid parasite, Trichospilus
			pupivora F., Trop. Agriculturist,
			<u>96</u> : 3-21.
, • [•]	÷	1. C.	
26.	Jackson, D.J.	1937.	Host selection in <u>Pimpla</u> <u>examinator</u> F
		in the second	(Hymenoptera) Proc. Roy. Ent. Soc.,
۰.			London, $12(A) = 81-91$ .
		· · · ·	
27.	Joseph, K.V.	1959.	The advisability of spraying DDT on
		· · ·	coconut trees over extensive areas
۔ • بر ۲			in Kerala. <u>First conference of</u>
· ·			<u>coconut research workers in India,</u> Indian Central Coconut Committee,
1			Ernakulam.
• •			
5 k.		۰.	
28.	Lathrop, F.H. &	1022	The biology of <u>Opius</u> <u>melleus</u> Graham, a parasite of the Blueberry maggot.
	Newton, R.C.	1933.	Jour. Agri. Res., <u>46</u> : 145-160.
7			
, 1 ,		. *	
· · · ·	•	•	
 -		•	
	· · · · · · · · · · · · · · · · · · ·		

•

1				
			- iv	- · ·
:	*29.	Marchal, P.	1927.	et phenotypique des Trichogrammes.
· · ·				(Paris) <u>Acad. des. Sci. Compt. Rend.</u> <u>185</u> : 489-493.
	30.	Martin, H.,		Control of for notic in Manual t
	00.	Glenn, L., & Finney.	1946.	Control of sex ratio in <u>Macrocentrus</u> <u>ancylivorus</u> . <u>J. econ</u> . <u>Ent.</u> , <u>39</u> : 296-299.
		``````````````````````````````````````	•	
• •	31.	McGugan, B.M.	1955.	Certain host-parasite relationship involving the Spruce budworm. <u>Cand</u> .
			· .	Ent., <u>87</u> : 178-187.
	e fair	· · · · · · · · · · · · · · · · · · ·	- •.	
	<b>*</b> 32°.	Mickel, C.E.	1924.	
	ž ž	· · · ·		in size of the parasite <u>Dasymutella</u> <u>bioculata</u> . <u>Ent. news</u> ., <u>35</u> : 236-242
	33.	Morril, A.W.	1007	Departmention of a new succience
	00.	MULILI, A.W.	1907.	Description of a new species of <u>Telenomus</u> with observations on its habits and life history. <u>Amer. Nat.</u> ,
. •				<u>41</u> : 417-430.
·	34.	Narayanan, E.S. & Subba Rao, B.R.	1955.	Studies on insect parasitism 1-iii. <u>Beitrage</u> gur <u>Entomologie</u> , Band 5. N.R. <del>1</del> .
	-		,'	
	35.	Nonoronon E C &	•	
	30.	Narayanan, E.S. & Venkataraman, T.V. & Sen Gupta, G.C.	1948.	Studies in experimental insect para- sitism. Superparasitism. <u>Current</u> <u>Science</u> , <u>17</u> : 269-270.
	36.	Nirula, K.K., Antony, J.,	4.050	Retentive toxicity of field weathered insecticides to the Eulophid para-
		Sahasranamam, K., & Menon, K.P.V.	1958.	site ( <u>Trichospilus pupivora</u> F.) associated with <u>Nephantis serinopa</u> M. <u>Indian cocon. J., 11</u> : 124-132.
	37.	Oldroyds, H., & Ribbands, C.R.	1936.	On the validity of trichiation as a systamatic character in <u>Trichogramm</u>
	· · ·			Proc. Roy. Ent. Soc., Lond., B, 5 : 148 :152.
	≠38.	Pantal, J.	1910.	Recherches sur les dipteres a larves entomobies. <u>Cellule</u> , <u>26</u> : 27-216.
			а <b>(</b> ( <b>,</b>	
	· ' ·			
	•• •		•	
		· · ·		

	· · · · · ·			
	· · ·	~		
39.	Pierce, W.D. &		-	Notes on the biology of <u>Chelonus</u>
	Holloway, T.L.		1912.	
· .		•		titor -
40.	Proper, A.B.		1931.	
	•			of the Brown-tail and Satin moths.
		,		Jour. Agr. Res., 43 : 37-56.
	<b>-</b>			
41.	Rakspal, R.		1949.	Effect of the sex of the host ( <u>Bagrada cruciferarum</u> ) on the sex
	•	· .		of its parasite. Alophora sp.
7	· _ ·	· •		(Tachinidae) Indian J. Ent., 16 :80.
· .			·	
42.	Ramachandra Rao, M	Y.,	-	Infestations of <u>Nephantis</u> <u>serinopa</u>
	Cherian, M.C., &		1948.	Meyr. in South India and their
	Ananthanarayanan,	K.P.	-	control by the biological method. Indian J. Ent., 10: 205-247.
,				
A 73	Domolrati alego Arreon	10 T	2.	Agnioulturel Mateonelogy in its
43.	Ramakrishna Ayyar, Ananthanarayanan,	, Т.У. К.Р.	1935.	Agricultural Meteorology in its relation to insect pests. <u>Madras</u>
· ·	·		· · ·	<u>Agric. J., 23</u> : 328-335.
	· · ·			· · · · · · · · · · · · · · · · · · ·
*44.	Ratzburg, J.T.C.		1844.	Die ichneumon der Forstensecton
		. ·		in Forsthicher und crtomologi.
				Bevichunoj, Berlin, 224 pp
z	•		<i>i</i>	
*45.	Roubaud, D.E.		1924.	Histaire des <u>Anacanptomyies</u> <u>mouches</u> parasites des guepes sociales d'
	• '			Afrique. Ann. Sei. nat. Zool., 7 :
-			· -	197-248.
46.	Salt, G.		1934.	Experimental studies in insect
1		•		parasitism. I Introduction and
,		,		Technique. II Superparasitism, Proc.Roy. Soc., London, Ser. B.,
				$\frac{1100}{114}$ ; $450-476$ .
	- -	•••••••••••••••••••••••••••••••••••••••	·	
47.			1935.	Experimental studies in insect
-2 ( +		. 7		parasitism. III. Host selection,
	,		•	<u>Proc. Roy Soc.</u> , London, <u>Ser</u> . B., <u>117</u> : 413-435.
		1		
			1070	Transmission to incost
48.	المرة منه تحد الم		1936.	Experimental studies in insect parasitism IV. The effect of super-
			•	parasitism on papulations of
				<u>Trichogramma</u> <u>evanescens</u> <u>Jour</u> . <u>Esp</u> . <u>Biol.</u> , <u>13</u> : 363-375.
	· · · · · · · ·		. *	<u></u> , <u></u> _, <u></u> , <u>_</u> , <u></u>
	•			·
	ب • را ا			

•

.

•

. .

•			·
49.	Salt, G.	1937.	The egg parasite of <u>Sialis lutaria</u> : a study of the influence of the host upon a dimorphic parasite. <u>Parasitology</u> , <u>29</u> : 539 - 553.
50.		1940.	Experimental studies in insect parasitism VII. The effect of differ- ent hosts on the parasite <u>Trichogramma</u> <u>evanescens</u> W. <u>Proc. Roy. Ent. Soc. Lond.</u>
• .			A, <u>15</u> : 81-95.
51.		1941.	The effect of hosts upon their insect parasites. <u>Biol. Revs. Cambridge Phil</u> . <u>Soc., 16</u> : 239-264.
*52.	Seyrig, A.	1935.	Relations entre le sexe de certains Ichneumonids (Hym.) et. l'hoteaun depens duque itsontvecu. <u>Bull. Soc</u> . <u>ent. Fr., 40</u> : 67-70.
53.	Smith, H.S.	1912.	The Chalcid genus <u>Perilampus</u> and its relation to the problem of parasite introduction. <u>Tech. Ser. U.S. Bur</u> . <u>Ent.</u> , <u>19</u> : 33-69.
54.	Strickland, E.H.	1912.	The Pezomachini of North America. <u>Ann</u> . <u>ent. Soc. Amer., 5</u> : 113-140.
55.	Taylor, T.H.C.	1937.	The biological control of an insect in Fiji. London, 239 pp
*56.	Thompson, W.R.	1923.	Sur le determinisme de L'opterisme chez un Ichneumonidae parasite. <u>Soc. Ent</u> . <u>de France, Bull</u> . 40-42.
57.	Thompson, W.R. & Parker, H.L.	1927.	The problem of host relation with special reference to entomophagous parasites. <u>Parasitology</u> , <u>19</u> : 1-34.
58.	میں میں نما نیک تھ	1928.	The European Corn borer and its control- long factors in Europe. <u>Tech. Bull</u> . U.S. <u>Dep. Agri., 59</u> : 62 pp

vi

- Thorpe, N.H., & 59. 1937. Jones. F.G.W.
- 60. Tothill, J'.D., Taylor, T.H.C., & Paine, R.W. 1930.
- Toyana, K. *61.
- 1936. 62. Ullyett, G.C.
- 1932. ¥63. Vandel, A.
  - 64. Venkataraman, T.V., Gupta. Sn., & Negi, P.S.
- 1924. *65. Voukassovitch, P.
- 1948.

Webber, R.T. 66.

The coconut moth in Fiji. London, 269 pp..

Olfactory conditioning in a parasitic

insect and its relation to the pro-

blem of host selection. Proc. Roy. Soc. London, Ser. B, 124 : 56-81.

- 1906. Contribution to the study of silk worms. III. On the parasitic fly of the domesticated silk worms of Siam. Bull. Coll. Agri. Toky, 7 : 247-257.
  - Host selection by <u>Microplectron</u> <u>fuscipennis</u> Zett. <u>Proc. Roy. Ent</u>. Soc. Ser. B, <u>120</u>: 253-291.
  - Le sexe des parasites depend il du nombre d'individua renfermis dans le meme hote? Soc. Ent. de France. Livre. du centenaire: 245-252.
    - Primary trials in propagation of Bracon (Microbracon) greeni. A. on unnatural hosts. Proc. Ind. Acad. Sci., 27: 93-104.
  - Contribution a le' tude Eudenes (Polychrosis batrana Schiff) ole la Pyralidae la vigne (<u>Oenopthera</u> pilleriana Schiff) et de leurs parasites. Thesis Univ: Jourlouse, 248 pp..
- 1937. Laboratory propagation of <u>Compsilura</u> concinnata Meig.. J. <u>econ</u>. <u>Ent.</u>, <u>30:</u> 144-149.
- # Original not seen

#### 

### Table 1

Duration of development of T. pupivora in pupa of P. peponis

Sl. No.	Weight of pupa in Gms.	Date of exposure.	Date of emergence	Duration of lopment in	deve- days
1	0.311	219-1962	710-1962		
2	0.330	239-4962	10-10-1962	18	
3	0.355	910-1962	27-10-1962	19	-
4	0.355	10-10-1962	29-10-1962	20	× .
5	0.289	10-10-1962	<b>28-10-196</b> 2	19	
6	0.308	11-10-1962	111-1962	22	
7	0.286	17-10-1962	711-1962	22	
8	0.299	17-10-1962	311-1962	⁵ . 18 · ·	
9	0.351	17-10-1962	511-1962	20	,
10	0.316	20-10-1962	911-1962	. 21	
Average	e 0.320	•		19.6	

T	ab	1	e	- 2

Number of adults produced and sex ratio of  $\underline{T}$ . <u>pupivora</u> bred on

	•	pupa of I	<u>peponis</u>		
Sl. No.	Weight of pupa in Gms.	Total number of parasites produced.	Number of males	Number of females	Sex ratio Male : Female
1	0.311	433	16	417	26.06
`2	0.330	247	10	237	23.70
3	0.355	270	10	260	26.00
<b>4</b> .	0.355	301	8	293	36.63
-5	0.289	401	11	390 🕺	35.45
6	0.308	316	12	304	25.33
7	0.286	268	. 9	259	28.75
8	0.299	561	16	545	34.06
9	0.351	480	18	462	25.57
10	0.316	452	12	440	36.67
	rage 0.320	372.9	· · ·	·	29.822

- 11 -

Table 3

Longevity of adults of T. pupivora bred on pupa of P. peponis

Sl. No.	Wt. of pupa in Gms	Date of emergence	Numi on:-		of pa ays a 3							Total	Longe- vity (days)
	ی هد هه چه که که نود چه چه هه	در می مود همه بود. بود بود این من بود بود بود این من بود بود بود این می بود. 		• حته دود برق ط								بہ ہے جو کہ کہ پر	طل حله که که چه چه گه (
1	0.311	710-1962	4	115	301	13					,	433	2.74
2	0.330	10-10-1962	0	0	89	69	87	.1	1	•		247	3.98
3	0.355	27-10-1962	0	19	23	<b>9</b> 8	117	11	2			270	4.31
4	0.355	29-10-1962	0	, 26	21	59	193	0	.1	0	1	301	4.43
5	0.289	28-10-1962	1	9	141	30	134	85	0	0	1	401	4.36
6	0.308	111-1962	48	121	36	25	42	29	14	ं0	1	316	3.13
7	0.286	711-1962	23	26	86	38	48	29	10	8		268	3.84
8	Q.299	311-1962	519	40	1	1	,			•		561	1.08
9	0.351	511-1962	102	77	206	65	16	8	. 6			480	2.90
10	0.316	911-1962	217	-90	79	38	28				-	452	2.05
Av:	0.320						, ,		• •			372.9	3.282

### Table 4

Measurements of adults of T. pupivora bred on pupa of P. peponis

	Weight of	Measurements in mm.										
Sl. No.	pupa in Gms.	Le Male	ngth Female		Width Male	of head Female.	Width Male	of thorax Female				
1 2	0.311 0.330	1.212 1.266	1.293 1.278	· — — — — — — — — — — — — — — — — — — —	0.402 0.354	0.423	0.354 0.348	,				
3	0.355	1.245	1.344		0.372	0.438	0.315	0.375				
· <b>4</b>	0.355	1.203	1.338		0.363	0.453	0.345	0.360				
5	0.289	1.215	1.251	•	0.378	0.411	0.339	0.354				
6	0.308	1.317	1.236	·	0.372	0.432	0.342	0.363				
7	0.286	1.248	1.350		0.378	0.435	0.330	0.369				
8	0.299	1.116	1.164		0.333	0.378	0.291	0.306				
9	0.351	1.128	1.269	• · · · ·	0.327	0.468	0.303	0.345				
10	0.316	1.149	1.203		0.375	0.423	0.336	0.324				
Av:	0.320	1.210	1.273	. · ·	0.365	0.431	0.330	0.353				

.....

.

Table 5									
Duration of development	of T. pupivora	in pupa of M. indica							

•	•		··· 0	<u>.</u>
Sl. No.	Weight of pupa in Gms.	Date of exposure	Date of emergence	Duration of deve- lopment in days
1	0.070	22-91962	810-1962	17
2	0.066	22-91962	910-1962	18
3	0.072	23-91962	910-1962	17
. 4	0.070	23-91962	10-10-1962	18
5	0.075	23-91962	910-1962	17
6	0.066	24-91962	10-10-1962	17
7	0.065	24-91962	10-10-1962	17
8	0.068	24-91962	10-10-1962	17 °
9	0.073	28-91962	14-10-1962	17
10 -	0.073	28-91962	15-10-1962	18
Av :	0.070	· · ·		17.3

### Table 6

Number of adults produced and sex ratio of T. pupivora bred on

pupa of M. indica

		-			··· · ·		
Sl. No:	Weight of pupa in Gms	Total number of parasites produced	Number of males	Number of females	Sex ratio Male:Female		
1	0.070	121	6	115	19.11		
2	0.066	134	9	125	13.89		
.3	0.072	140	8	132	16.50		
· 4	0.070	158	14	144	10.29		
, 5	0.075	244	22	222	10.55		
6	0.066	145	13	132	10.15		
7	0.065	.183	15	168	11.60		
8	0.068	232	14	218	15.57		
9	0.073	147	10	137	13.70		
10	0.073	133	· · 8 .	125	15.63		
Av:	0.070	163.7		· .	13.699		
				در بر مرد بان خان این من من من من من این این این این			

Table 7

- iv -

Longevity of	of	adults	of	<u>T</u> .	pupivora	bred	on	pupa	of	<u>M.</u>	indica	,

Sl.	Wt. of pupa	Date of				para after			Total	Longe- vity
No.	in Gms	emergence		1	2	3	4	56		(days)
1	0.070	810-19	62	35	83	3	•••••		121	1.77
2	0.066	910-19	62	5	16	101	11	1 1	134	2.90
3	0.072	910-19	62	6	92	. 39 /	3		140	2.28
<b>, 4</b>	0.070	10-10-19	62	23	25	<b>99</b>	11	- ·	158	2.99
5	0.075	910-19	<b>62</b> `	20	146	59	19		244	2.32
6	0.066	10-10-19	62	102	43	·			145	1.27
7 ·	0.065	10-10-19	62	101	79	3			183	1.46
8	0.068	10-10-19	62	196	33	× .	• • •		232	1.15
<b>9</b> ·	0.073	14-10-19	62	8	111	26	2		147	2.15
10	0.073	15-10-19	62	6	4	13	26	62 22	133	4.69
Av.	0.070			, , , ,			· . 	. •	163.7	2.298

Table 8

Measurements of adults of <u>T</u>. pupivora bred on pupa of <u>M</u>. indica

			8	
51.	Weight of	Me	asurements in 1	
No.	pupa in Gms.	Length Male Female	Width of hea Male Female	ad Widthofthor Male Female
1	0.070	1.170 1.227	0.339 0.366	0.360 0.390
2	0.066	0.939 0.912	0.285 0.279	0.252 0.258
3	0.072	1.185 1.212	0.357 0.408	0.321 0.369
4	0.070	1.173 1.194	0.342 0.387	0.318 0.324
5	0.075	1.188 1.137	0.366 0.390	0.339 0.333
° 6	0.066	1.122 1.068	0.327 0.372	0.309 0.306
7	0.065	1.125 1.137	0.336 0.405	0.303 0.324
8	0.068	1.050 1.095	0.330 0.381	0.297 0.309
9	0.073	1.140 1.167	0.369 0.411	0.321 0.336
10	0.073	1.275 1.224	0.380 0.393	0.360 0.384
Av:	0.070	1.137 1.137	0.343 0.379	0.318 0.333
	· .	\$	×	

.

<u>Table 9</u>

Duration of	development	of	<u>T</u> .	<u>pupivora</u>	in	pupa	of	<u>L</u> .	<u>boeticus</u>
-------------	-------------	----	------------	-----------------	----	------	----	------------	-----------------

			1		. ·
S1. No.	Weight of pupa in Gms.	Date of exposure	Date of emergend	f Durat Se lopme	ion of deve- nt in days.
1	0.103	249-1962	10-10-19		17
2	0.069	259-1962	11-10-19	962	17
3	0.092	259-1962	11-10-19	962	17
<b>4</b>	0.084	259-1962	12-10-19	962	18
5	0.079	710-1962	28-10-19	962	22
6	0.070	710-1962	24-10-11	962	18
7	0.071	710-1962	25-10-1		19
8	0.082	710-1962	26-10-19	962	20
9	0.101	810-1962	25-10-19	962	18
10	0.072	810-1962	26-10-19	962	19
Av:	0.082	- · ·	-		18.5
Numb	er of adults prod	<u>Table</u> aced and sex r pupa of <u>L</u> .	atio of T.	oupivora	bred on
S1. No.		otal number f parasites produced	Number of Males	Number of females	Sex ratio male:female
1	0.103	289	19	270	14.74
°2	0.069	164	10	154	15.40
3	0.092	177	9	168	18.67
4	0.084	131	7	124	17.71
5	0.079	189	12	177	14.75
6	0.070	169	13	156	12.00
~ 7 ⁽	0.071	196	13	183	14.08
8	0.082	144	8	136	17.00
. 9	0.101	298	18	280	15.56
10	0.072	188	12	176	14.67
Av:	0.082	194.5		· · · ·	15.458

٧ĺ

Table 11

Longevity of adults of T. pupivora bred on pupa of L. boeticus

Sl. No:	Wt. of pupa in Gms.	Date of emergence		ber (day 2	of pa s aft 3	rasit er em 4			Total	Longe- vity (days)
1	0.103	10-10-1962	52	54	129	51	3		289 [.]	2.65
2	0.069	11-10-1962	86	43	32	3			164	1.69
3	0.092	11-10-1962	43	25	71	36	2		177	2.60
<b>4</b>	0.084	12-10-1962	10	15	71	22	9	1	128	3.06
5	0.079	28-10-1962	117	72	ند ن	ġ.			189	1.41
6	0.070	24-10-1962	78	42	28	14	7		169	1.99
,7	0.071	25-10-1962	86	45	40	21	4		196	2.17
8	0.082	26-10-1962	10	26	68	19	13	8	144	3.16
9	0.101	25-10-1962	56	62	119	<b>48</b> .	13		298	* 2.66
10	0.072	26-10-1962	108	51	29			-	188	1.53
Av.:	0.082	· _				·			194.5	2.292

Table 12

Measurements of adults of T. pupivora bred on pupa of L. boeticus

sı.	Weight of		Me	asureme	nts in mm.		
No.	pupa in Gms.	Le Male	ngth Female	Width Male	of head Female.	Width Male	of thorax Female.
1	0.103	1.008	1.023	0.300	0.360	0.285	0.279
2	0.069	1.038	1.170	0.318	0.411	0.291	0.333
3	0.092	1.098	1.182	0.342	0.426	0.312	0.318
4	0.084	1.206	1.242	0.357	0.423	0.327	0.381
5	0.079	1.104	1.170	0.321	0.378	0.288	0.300
6	0.070	1.047	1.164	0.321	0.399	0.294	0.327
7	0.071	1.038	1.170	0.315	0.420	0.288	0.321
8	0.082	1.194	1.248	0.354	0.426	0.327	0.378
9	0.101	1.020	1.008	0.321	0.357	0.282	0.291
10	0.072	1.125	1.146	0.318	0.378	0.306	0.297
Av:	0.082	1.088	1.152	0.327	0.398	0.300	0.325

## - vii -

Table 13

Duration of development of T. pupivora in pupa of P. litura

<u>sı.</u>	Weight of pupa	Date of	Date of	Duration of	deve
No.	in Gms.	exposure		lopment in	
1	0.180	210-1962	21-10-1962	20	
2	0.169	210-1962	20-10-1962	19	. ⁷ .
3	0.177	310-1962	22-10-1962	20	•
• 4	0.149	16-10-1962	311-1962	19	•
5	0.208	22-11-1962	912-1962	18	
6	0.166	22-11-1962	812-1962	17	, c
7	0.156	22-11-1962	912-1962	. 18	•
8	0.172	22-11-1962	912-1962	18	
9	0.162	23-11-1962	10-12-1962	18	· · ·
10	0.180	24-11-1962	11-12-1962	: 18	. "
Av's	0.172	•	i.,	. 18.1	5

### Table 14

Number of adults produced and sex ratio of <u>T</u>. <u>pupivora</u> bred on pupa of <u>P</u>. <u>litura</u>

Sl. No.	Weight of pupa in Gms.	Total number of parasites produced	Number of males	Number of females	Sex ratio male:female
1	0.180	233	18	221	18.42
ຂ	0.169	208	11	197	17.91
3	0.177	217	13	204	15.69
4	0.149	201	<b>11</b>	190	17.27
5	0.208	161	* 8	153	19.11
6	0.166	199	12	187	15.58
7	0.156	191	11	180	16.36
8	0.172	233	13	220	16.92
9 .	0.162	218	· 11·	207	18.83
10	0.180	229	13	216	16.61
Av:	0.172	209	κ.		17.270

Longevity of adults of  $\underline{T}$ . pupivora bred on pupa of  $\underline{P}$ . litura

Wt. of pupa in Gms	Date of emergence	1	2		4	Numi on:- 5	oer (da 6	ys	āft	er	emei	dea rger 11	nce	-	14	15	16	Total	Longe- vity (days)
0.180	21-10-1962	:14	67	102	18	26	- 6						,				•	233	3.05
0.169	20-10-1962	<b>2</b> 2	76	24	26	16	23	12	. 9								•	208	3.00
0.177	22-10-1962	20	14	15	17	<b>9</b>	10	32	29	18								217	5.28
0.149	311-1962	20	98	19	22	16	5	21				÷			•		6.9	201	3.05
0.208	912-1962	6	2	2	• 2	5	47	56	7	3	3	0	9	0	10	6	3	161	7.36
0.166	812-1962	18	12	10	.85	9	7	13	27	9	4	3	· 1	3	5	3		209	4.96
0.156	912-1962	18	102	14	20	13	8	16				÷	4 4	•			•	191	3.15
0.172	912-1962	· 12	67	118	12	20	4	•		1.96					,			233	2.88
0.162	10-12-1962	20	98	18	25	19	17	21			E							218	3.28
0.180	11-12-1962	18	20	79	19	4	6	13	29	30	11						·	229	4.65
0.172		ŗ					·	•			•							209	4.066

Table 15 - viii -

Table 16

Measurements of adults of T. pupivora bred on pupa of P. litura

-	·						
S1.	Weight of pupa			easurem	ents in m	n.	
No.	in Gms.		gth female	Width male	of head female	With male	of thorax female.
1	0.180	1.098	1.143	0.318	0.357	0.294	0.309
2	0.169	1.104	1.146	0.312	0.354	0.300	0.303
3	0.177	1.110	1.221	0.336	0.432	0.276	0.357
4	0.149	1.113	1 <b>.16</b> 4	0.312	0.375	0.300	0.300
5	0.208	1.350	1.398	0.396	0.471	0.366	0.360
6	0.166	1.104	1.218	0.315	0.432	0.270	0.327
7	0.156	1.110	1.167	0.348	0.375	0.300	0.300
8	0.172	1.218	1.227	0.369	0.393	0.333	0.330
9	0.162	1.110	1.146	0.312	0.363	0.303	0.303
10 Av:	0.180 0.172	1.104	1.218 1.205	0.315 0.333	0.462 0.401	0.273 0.302	0.330 0.322

Table 17

Duration of development of T. pupivora in pupa of S. derogata

• .'	· · ·		· .		1
Sl. No.	Weight of pupa in Gms.	Date of exposure		Duration of lopment in	
1	0.078	249-1962	10-10-1962	17	
2	0.075	259-1962	12-10-1962	8 18	
3	0.085	259-1962	11-10-1962	2 17	
4	0.093	12 <b>1</b> 1-1962	28-11-1962	17 -	
5	0.079	13-11-1962	29-11-1962	3 17	
6	0.096	13-11-1962	29-11-1962	317	
7	0.084	14-11-1962	29-11-1962	16	
8	0.083	14-11-1962	30-11-1962	. 17	•
9	0.100	14-11-1962	30-11-196	2 17	•,
10	0.077	14-11-1962	29-11-196	2 16	
Av:	0.085		. •	16.	9 🕓

_

### Table 18

Number of adults produced and sex ratio of <u>T</u>. <u>pupivora</u> bred on <u>pupa of S. derogata</u>

Sl. No.	Weight of pupa in Gms.	Total number of parasites produced	Number of males	Number of females	Sex ratio male:female
1	0.078	196	16	-180	11.31
2	0.075	119	7	112	16.00
3	0.085	192	10	182	18.20
4	0.093	147	11	136	12.36
¹ 5	0.079	146	9	137	15.22
6	0.096	124	n <b>7</b>	117	16.71
7	0.084	248	15	233	15.53
8	0.083	103	6	97	15.17
9	0.100	207	11	196	17.83
10	0.077	189	15	174	11.60
Av:	0.085	167.1	· · ·		14.993

X -

Longevity	of	adults	of T.	<u>pupivora</u>	bred	on	pupa	of	<u>s</u> .	<u>derogata</u>
-----------	----	--------	-------	-----------------	------	----	------	----	------------	-----------------

· .

•, •

					•	· .					· •							- '		5
Wt. of pupa in Gms	Date of emergence	1	2	3	4	N 5					dead ergenc 10		12	13	14	15	16	Tota	longe- vity (days	
0.078	10-10-1962	86	35	59	11													196	2.05	
0.075	12-10-1962	19	42	49	7	2	•				•	. ,						119	2.47	
0.085	11-10-1962	10	39	57	76	8	1	1				• •	۲ ۸	•		,	•	192	3.21	
0.093	28-11-1962	10	6	6	15	4	3	0	8		14	25	1	15	25	3	1	147	9.14	
0.079	29-11-1962	34	68	40	0	2	2	1				• •						146	2.13	Tabl
0.096	29-11-1962	0	0	10	1	1	8	· 6	48	39.	9	2		•				124	7.87	e 19
0.084	29-11-1962	8	9	18	12	4	0	7	46	62	32	29	18	3	. `			248	7.81	10
0.083	30-11-1962	10	11	6	9	3	5	52	<b>ົ</b> 7		•				,	•	۰.	103	4.88	ī ,
0.100	30-11-1962	11	81	9	4	7	4	81	10					•		ŧ		207	4.46	
0.077	29-11-1962	16	33	<b>9</b>	ຂ	2	3	96	15	7.	6							189	5.61	
0.085							,	•				р.						167	4.963	

Lye X

Ч Ч Ч

#### - xii -

#### Table 20

	Measurements	of	adults	of	<u>T</u> .	pupivora	bred	on	pupa	of	s.	derogata
--	--------------	----	--------	----	------------	----------	------	----	------	----	----	----------

si.	Weight of		Measuremen	ts in mm.	)	
No.	pupa in Gms.	Length Male Femal	Width e Male	of head Female.	Width Male	of thorax Female
<b>1</b>	0.078	1.068/01.11	6 0.330	0.387	0.318	0.312
2	0.075	1.179 1.08	3 0.354	0.384	0.315	0.306
3	0.085	1.194 1.14	6 0.336	0.405	0.315	0.33 <b>0</b>
4	0.093	1.182 1.31	1 0.363	0.420	0.345	0.309
5	0.079	1.179. 1.33	2 0.375	0.426	0.333	0.345
6	0.096	1.254 1.31	7 0.384	0.453	0.351	0.378
7	0.084	1.122 1.26	9 0.333	0.399	0.303	0.333
8.	0.083	1.026 1.24	5 0.312	0.423	0.288	0.345
9	0.100	1.224 1.29	6 0.369	0.426	0.339	0.339
10	0.077	1.230 1.22	1 0.345	0.390	0.327	0.330
Áv:	0.085	1.166 1.23	4 0.350	0.411	0.323	0.333

OIN DURA TOR B. DETORISTOR

Table 21

Duration of development of T. pupivora in pupa of O. exvinacea

S1. No.	Weight of pupa in Gms.	Date of exposure	Date of emergence	Duration of deve- lopment in days
1	0.145	279-1962	16-10-1962	20
2	0.099	1+0-1962	18-10-1962	18
3	0.094	110-1962	19-10-1962	19
· 4	0.127	16-10-1962	411-1962	20
5	0.117	20-10-1962	711-1962	19
6	0.110	11-11-1962	28-11-1962	18
7	0.125	11-11-1962	27-11-1962	17
8	0.124	18-11-1962	612-1962	19
9	0.120	23-11-1962	10-12-1962	18
10	0.112	26-11-1962	14-12-1962	19
Av:	0.117		· · ·	18.7

# Number of adults produced and sex ratio of T. pupivora bred on

pupa of <u>O</u>. <u>exvinacea</u>

		والمراجع المراجع والمراجع والمراجع والمراجع والمراجع		
Weight of pupa in Gms.	Total number of parasites produced	<b>_</b> ·	<b>•</b> •	Sex ratio male:female
0.145	135	6	129	21.50
0.099	196	10	86	18.60
0.094	247	13	234	18.00
0.127	337	19	318	16.74
0.117	351	18	333	18 <b>.39</b>
0.110	171	12	159	13.25
0.125	256	15	241	16.07
0.124	160	7	153	21.86
0.120	274	12	262	21.83
0.112	227	16	211	13.19
0.117	235.4	· · · · ·		17.943
	pupa in Gms. 0.145 0.099 0.094 0.127 0.117 0.110 0.125 0.124 0.120 0.112	pūpa in Gms.of parasites produced0.1451350.0991960.0942470.1273370.1173510.1101710.1252560.1241600.1202740.112227	pupa in Gms.of parasites producednumber of males0.14513560.099196100.094247130.127337190.117351180.110171120.125256150.12416070.120274120.11222716	pūpa in Gms.of parasites producednumber of males malesfeamles0.14513561290.09919610860.094247132340.127337193180.117351183330.110171121590.125256152410.12416071530.120274122620.11222716211

# Longevity of adults of <u>T</u>. <u>pupivora</u> bred on pupa of <u>O</u>.exvinacea

Sl. No.	Wt. of pupa in Gms	Date of emergence	1	2	3			parae after 6	· eme	erger	ice)			12 1	3 14	15	Total	Dønge- vity (days)
 _ 1	0.145	16-10-1962	5	42	84	4	. · · ·		• • • • • • •	a		·····					135	2.64
2	0.099	18-10-1962	19	173	4	·, ·	-10-	• • •		~						• • •	196	1.92
. 3 -	0.094	19-10-1962	10	129	77	31					÷				******		247	2.52
. <b>4</b>	0.127	411-1962	0	77	12	8	6	71	89	142	2				-		337	6.87
5	0.117	711-1962	9	6	16	38	30	92	103	57	, ,		^, , ,			``	351	5.39
6	0.110	28-11-1962	2	8	14	13	0	6	3	26	40	48	7	4		-	171	7.85
7	0.125	27-11-1962	17	8	5	5	51	<b>.</b> 91	25	16	39	· · ·		•	ал 1. п. 1. г. г.	,	256	5.95
8	0.124	612-1962	0	3	5	2	10	<u>10</u>	2	3	5	8	59	34	4	78	160	9.61
9	0.120	10-12-1962	10	51	95	28	40	50		-				Υ.	• •		274	3.64
10	0.112	14-12-1962	44	104	66	10	) 1	2	·: 4			•	- "- *, ++	• •	• • •	•	227	2.35
Av:	0.117			• • •	. ,	• •			, '''				, , ,	• •	а 	۰. د	235.4	4.874

- xiv-Table 23

Tal	<b>b1</b>	е	24

Measurements of adults of T. pupivora bred on pupa of O. exvinacea

S1.	Weight of		•	Measu	rements i	n mm.	
No.	pupa in Gms.		gth female	Width male	of head female.	Width male	of thorax female.
1	0.145	1.260	1.311	0.387	0.459	0.354	0.381
2	0.099	1.104	1.239	0.363	0.432	0.315	0.360
3	0.094	1.071	1.888	0.339	0;354	0.297	0.318
4	0.127	1.143	1.212	0.354	0.399	0.342	0.360
5	0.117	1.134	1.173	0, 360	0.420	0.339	0.354
6	0.110	1.257	1.272	0.357	0.429	0.330	0.357
7	0.125	1.122	1.218	0.360	0.393	0.303	0.318
8 ,	0.124	1.233	1.350	0.369	0.444	0.333	0.366
.9	0.120	1.185	1.296	0.351	0.417	0.315	0.327
10	0.112	1.050	1.083	0.354	0.381	0.306	0.306
Av:	0.117	1.156	1.234	0.359	0.413	0.323	0.345

# Table 25

Duration of Development of T. pupivora in pupa of N. serinopa

Sl. No.	Weight of pupa in Gms.	Date of exposure	Date of emergence	Duration of deve- lopment in days.
1 1	0.076	22-11-1962	10-12-1962	19
2	0.070	22-11-1962	812-1962	17
3	0.080	23-11-1962	912-1962	17
4	0.058	24-11-1962	10-12-1962	17
5	0.070	24-11-1962	10-12-1962	17
6	0.058	25-11-1962	11-12-1962	17
7	0.060	25-11-1962	12-42-1962	18
8	0.060	25-11-1962	11-12-1962	17
9	0.059	25-11-1962	11-12-1962	17
10	0.064	26-11-1962	12-12-1962	17
Av:	0.066	-		17.3

. . .

Number of adults produced and sex ratio of T. pupivora bred on

1.00	×	pupa or	M. BEITINDE		· ·
• ,		1. 1		4 	
Sl. No.	Weight of pupa in Gms.	Total number of parasites produced	Number of males	Number of females	Sex ratio male:female
1	0.076	148	14	134	9,57
2	0.070	237	18	219	12.17
3	0.080	286	21	265	12.62
4	0.058	244	15	229	15.27
5	0.070	237	16	221	13.75
6	0.058	254	18	236	13.11
7	0.060	141	9	132	14.67
8 -	0.060	230	14	216	15.43
9	0'.059	247	19	228	12.00
10	0.064	253	23	230	10.00
Av:	0.066	227.7			12.859

pupa of <u>N</u>. serinopa

	- * -		, ,	v:									,.		х	,	<u>ک</u>
Sl. No.	Wt. of pupa in Gms	Date of emergence		2	Nur on:- 3	nbei - (da 4	c of ays e 5	para after 6	site ème: 7	s deac rgence 8	1 9 9	 10	 11	 	Total	Longe- vity (days)	
	0.076	10-12-1962	3	36	16	9	36	44	<b>4</b>		٠.				148	4.26	
2	0.070	812-1962	9	.9	15	16	90	77	10	11	• .	•			237	5.09	
3	0.080	912-1962	0	9	58	29	12	68	73	24	8	2	1	2	286	5.62	
4	0.058	10-12-1962	10	25	4	ò	72	103	10	4	3	0	12	1	244	4.99	
5	0.070	10-12-1962	, <b>1</b> .	40	94	13	26	57	. 6	· .					237	3.92	Table
6	0.058	11-12-1962	145	80	21 21	3	5			· .					254	1.57	
7	0.060	12-12-1962	7	17	42	75								ч	141	3.28	27
8	0.060	11-12-1962	<b>4</b>	9.	5	56	128	18					•	, X	230	4.64	
9	0.059	11-12-1962	86	115	44	2									247	1.85	
10	0.064	12-12-1962	48	83	46	76		7 ¹⁰	*		-	•			253	2.59	•.
Av:	·						· `	,		, , ,	•				227.7	3.781	

Longevity of adults of  $\underline{T}$ . pupivora bred on pupa of  $\underline{N}$ . serinopa

xvii

#### - xviii -

#### Table 28

Measurements of adults of T. pupivora bred on pupa of N. serinopa

sı.	Weight of	-	Measurements in mm.							
No.	pupa in Gms.	Len Male	gth Female	Width Male	of head Female	Width Male	of thorax Female.			
1	0.076	1.170	1.218	0.360	0.426	0.330	0.324			
2	0.070	1.158	1.239	0.324	0.378	0.303	0.324			
3	0.080	1.176	1.167	0.342	0.402	0.321	0.312			
4	0.058	1.053	1.140	0.330	0.393	0.291	0.306			
5	0.070	1.041	1.125	0.306	0.378	0.270	0.294			
6	0.058	1.083	1.179	0.345	0.381	0.300	0.312			
7	0.060	1.191	1.239	0.366	0.387	0.321	0.336			
8	0.060	1.149	1.164	.0.333	0.390	0.315	0.303			
9	0.059	1.080	1.194	0.315	0.381	0.294	0.306			
10	0.064	1,107	1.146	0.342	0.393	0.297	0.309			
Av:	0.066	1.121	1.181	0.336	0.391	0.304	0.313			

Table 29

Duration of development of  $\underline{T}$ . <u>pupivora</u> in pupa of  $\underline{G}$ . <u>soyella</u>

S1. No.	Weight of pupa in Gms.	Date of exposure	Date of emergence	Duration of deve- lopment in days
1	0.003	281-1963	132-1963	17
2	0.003	281-1968	132-1963	17
3	0.003	281-1963	132-1963	17
4	0.005	281-1963	132-1963	17
5	0.004	281-1963	142-1963	18
6	0.004	311-1963	162-1963	17
7	0.004	311-1963	162-1963	17
8	0.004	311-1963	162-1963	17
9	0.004	311-1963	152-1963	16
10	0.003	311-1963	162-1963	17
Av:	0.004	•		17

----

Number of adults produced and sex ratio of  $\underline{T}$ . pupivora bred an

sı.	Weight of pupa in Gms.	Total number of parasites produced	Number of males	Number of Females	Sex ratio male:female
	0.003	14	2	12	6.00
2	0.003	13	1	12	12.00
<b>3</b> \	0.003	17	2	15	7.50
<b>4</b> .	0.005	12	1	11	11.00
5	0.004	16	1	15	15.00
6	0.004	19	2	17	8.50
7	0.004	16	2	14	7.00
8	0.004	12	2	10	5.00
9	0.004	15	2	13 .	6.50
10	0.003	13	1	12	12.00
Av:	0 004	14.7	•	, · · ·	9.050

pupa of <u>G</u>. <u>soyella</u>

Table 31

Longevity of adults of  $\underline{T}$ . pupivora bred on pupa of  $\underline{G}$ . soyella

Sl. No.	Wt. of pupa in Gms.	Date of emergence	Numb on:-( 1	er of p days af 2	arasite ter eme 3	s dead rgence) 4	Total	Longe- vity (days)
1	0.003	132-1963	14			• 2.5	14	1.00
2	0.003	132-1963	1	10	2		13	2.08
3	0.003	132-1963	1	16			17	1.94
4	0.005	132-1963	12	`.	•		.12	1.00
5	0.004	142-1963	* - <b>8</b>	3	5		16	1.00
6	0.004	162-1963	19	•	•	~.	19	1.00
7	0.004	162-1963	15	1	· ·	. :	16	1.06
8	0.004	162-1963	2	<b>1</b>	8	1	12	2.67
9	0.004	152-1963	3	12		×	15	1.80
10	0.003	152-1963	13				13	1.00
Av:	0.004		. v				14.7	1.455

Measurements of adults of T. pupivora bred on pupa of G. soyella

Sl.	Weight of	_		Meas	urements	in mm.	
NO.	pupa in Gms.	Length Male Female			of head Female	Width Male	of thorax Female
1	0.003	0.915	1.023	0.270	0.345	0.277	0.360
ຂ໌	0.003	1.080	1°•206	0.315	0.396	0.300	0.330
3	0.003	0.938	1.077	0.300	0.351	0.285	0.,300
4	0.005	0.900	0.966	0.255	0.226	0.240	0.288
5	0.004	1.065	1.173	0.330	0.400	0.280	0.300
6	0.004	0.990	1.107	0.308	0.399	0.270	0.290
7	0.004	0.953	1.158	0.308	0.363	0.278	0.300
8	0.004	1.088	1.239	0.338	0.417	0.295	0.348
9	0.004	0.975	1.065	0.308	0.369	0.270	0.288
10	0.003	1.080	1.224	0.345	0.454	0.285	0.390
Av:	0.004	0.998	1.124	0.308	0.372	0.278	0.319

- XX -

- xxi -

Sl. No.	Wt. of pupa in Gms.	Date of exposure	Date of emergence	Duration of deve- lopment in (days)
1	0.311	181-1963	821963	22
2	0.324	181-1963	421963	18
3	0.288	191-1963	421963	17
4	0.292	191-1963	821963	21
5	0.294	201-1963	821963	20
6	0.300	201-4963	821963	20
7	0.345	201-1963	92-1963	21
8	0.355	201-1963	721963	19
9	0.318	211-1963	921963	20
10	0.338	211-1963	721963	18
Av:	0.317		• •	19.6

Duration of development of  $\underline{T}$ . <u>pupivora</u> in pupa of <u>P</u>. <u>peponis</u> nanaditical by five naradites

Number of adults produced and sex ratio of  $\underline{T}$ . <u>pupivora</u> bred on

		pupa of	<u>P. peponis</u> pa	rasitised	
		by	five parasite	S	
Sl. No.	Wt. of pupa in Gms	Total number of parasites produced	Number of males	Number of females	Sex ratio male:female
1	0.311	308	.12	296	24.67
2	0.324	441	15	426	28.40
3	0.288	327	10	317	31.70
4	0.292	278	10	268	26.80
5	0.294	411	13	398	30.61
6	0.300	360	9	351	39.00
7	0.345	324	10	314	31.40
8	0.355	283	,11	272 '	24 <b>.7</b> 3
9	0.318	461	14	447	31.93
10	0.338	266	11	255	23,18
A <b>⊽∶</b>	0.317	345.9	、		29.242

Table 39

#### - XX11 -

# Table 40

Longevity of adults of <u>T</u>. <u>pupivora</u> bred on pupa of <u>P</u>. <u>peponis</u>

	•											والمحاد محد أتكر بال	
S1.	Wt. of pupa	Date of emergence		on:-	-(daj	ys af	ter	em	es de ergen	ce		Total	Longe vity (days
No.	in Gms	0	1	2	3	<u>4</u>	5	6	78	9	10		(uays
	0.311	821963	. 52	132	25	18	56	18	11 4	2	,	308	2.95
2	0.324	421963	8	102	311	14	-6					441	2.79
- 3	0.288	421963	12	65	81	15	58	Ö.	4 32	4	6 ,14	327	4.81
4	0.292	821963	25	28	80	42	52	31	18 2	•		278	3.87
5	0.294	821963	4	12	121	40	146	81	07	,		411	4.43
6	0.300	821963	16	82	134	22	42	16	28 0	1	28	360,	4.07
7	0.345	921963	0	40	18	68	172	15	0.1	1		324	4.46
8	0.355	721963	. 2	26	18	92	128	12	5	,		283	4,32
9	0.318	92-1963	202	89	102	36	32		ı			461	2.13
10	0.338	721963	. 0	2	68	102	79	9	6			266	4.16
Av:	0.317						•••	•				345	3.799
				و هده شروه خدید ور		- بند سم عنه بي				-			

Parasitised by five parasites

Table 41

Measurements of adults of T. pupivora bred on pupa of T. peponis

parasitised by five parasites

, en en en en	Wt. of	ب ک در خرد خو بو بو هد جه رود		M	easuremen	ts in mm.	5. T	· .
Sl. No.	pupa in Gms	Length Male female		Width ( male	of head female	Width omale	of thorax female	· ·
1	0.311	1.242	1.308	0.368	0.426	0.338	0.363	
2	0.324	1.209	1.293	0.399	0.423	0.354	0.366	`
3	0.288	1.023	1.206	0.321	0.339	0.285	0.306	
- 4	0.292	1.248	1.350	0.348	0.435	0.360	0.339	• •
5	0.294	1.209	1.254	0.375	0.411	0.336	0.357	
6	0.300	1.047	1.206	0.321	0.369	0.291	0.306	
7	0.345	1.206	1.338	0.360	0.456	0.342	0.363	
8	0.355	1.245	1.335	0.375	0.438	0.324	0.378	
9	0.318	1.155	1.212	0.347	0.420	0.321	0.333	
10	0.338	1.272	1.281	0.357	0.453	0.345	0.387	
Av:	0.317	1.186	1.278	0.357	0.417	0.320	0.350	

#### -----

#### Table 42

Duration of Development of T. pupivora in pupa of P. peponis

Sl. No.	Wt. of pupa in Gms.	Date of exposure	Date of emergence	Duration of deve- lopment in days
1	0.292	181-1963	32-1963	17
2	0.298	181-1963	42-1963	. 18'
3	0.294	191-1963	52-1963	- 18
<b>4</b>	0.349	191-1963	42-1963	20
5	0.295	201-1963	42-1963	16
6	0.358	231-1963	82-1963	17
7	0.340	231-1963	82-1963	17
8	0.293	231-1963	82-1963	17
9	0.291	241-1963	10-2-1963	18
10	0,312	251-1963	12-2-1963	19
Av:	0.312	•		17.7

#### parasitised by ten parasites

#### Table 43

Number of adults produced and sex ratio of  $\underline{T}$ . <u>pupivora</u> bred on

	pupa of	<u>P. peponis</u> parasi	tised by ten	parasites	
S1. No.	Wt. of pupa in Gms	Total number of parasites produced	Number of males	Number of females	Sex ratio male:female
1	0.292	437	 14	423	30.21
2	0.298	331	10	321	32.10
3	0.294	356	15	341	22.73
4	0.349	526	19	507	26.68
5	0.295	437	15	422	28.13
6	0.358	469	25	444	17.76
7	0.340	<b>5 338</b>	12	326	27.17
8	0.293	346	. 11	335	30.45
9	0.291	318	11	307	27.91
10	0.312	529	14	515	36.78
Av:	0.312	408.7			27.992

4

- xxiv -

Table 44

Longevity of	adults of	T.	pupivora	bred	on	pupa	of	Ρ.	peponis
The second s	and the second distance of the second distanc	_			-				

<u>sı.</u>	Wt. of pupa	Date of emergence	• ,						ites d emerge			Cotal	Longe vity
No.	in Gms		1	2	3	4	5	<b>6</b> e	78	9	10		(days
1	0.292	32-1963	60	160	36	4	15	38	88 36			437	3.91
2	0.298	42-1963	. 28	5	5	13	92	50	40 69	29		331	5.92
3	0.294	52-1963	27	16	21	72	92	32	14 6	50	26	356	5.39
4	0.349	42-1963	112	88	199	<b>7</b> 8	22	18	9			526	2.81
5	0.295	42-1963	. 2	71	56	35	104	58	91 16	4		437	5.10
6	0.358	82-1963	157	28	.6	95	36	28	44 63	12		469	3.79
7	0.340	82-1963	33	15	8	67	24	68	62 38	16	7	338	5.43
8	0.293	82-1963	27	20	25	72	102	36	48 10	6		346	4.70
9	0.291	10-2-1963	14	68	90	25	42		28 49		-	318	4.20
10	0.312	12-2-1963	429	80	10	2	8	•		•	•	529	1.30
Av:	0.312			ې _م ې د	· · ·	·	· ·		8° 40	,			4.255

Table 45

Measurements of adults of T. pupivora bred on pupa of P. peponis

parasitised by ten parasites

Sl.	Wt. of	- ···	Méasurements in mm.							
No.	pupa in Gms		gth female	Width male	of head female	Width male	of thorax female			
1	0.292	1.082	1.082	0.336	0.378	0.306	0.330			
2	0.298	1.113	1.182	0.351	0.381	0.312	0.279			
3	0.294	1.161	1.215	0,369	0.420	0.348	0.318			
4	0.349	1.280	1.281	0.330	0.453	0.315	0.348			
5	0.295	1.101	1.188	0.327	0.378	0.303	0.303			
6	0.358	1.086	1.137	0.330	0.375	0.303	0.300			
. 7 :	0.340	1.077	1.140	0.315	0.375	0.303	0.294			
.8	0.293	1.161	1.212	0.369	0.405	0.348	0.318			
9	0.291	1.029	1.206	0.321	0.369	0.285	0.306			
10	0.312	. 1.119	1.128	0.336	0.378	0.306	0.330			
Av:	0.311-	1.121	1.177	0.338	0.392	0.312	0.311			

Duration of development of T. pupivora in pupa of P. peponis

	و الزام بورد الله، وي وي منه بين مي بين بين بين منه بين ا	و برابین برای برای برای برای برای برای برای برای	و هي خار بيه	
Sl. No.	Wt. of pupa in Gms.	Date of exposure	Date of emergence	Duration of deve- lopment in days
<b>-</b>	0.305	191-1963	521963	18
2 .	0.300	191-1963	421963	17
3	0.288	201-1963	521963	17
4	0.307	201-1963	521963	17
5	0.293	231-1963	821963	17
6	0.305	231-1963	821963	17
7	0.298	231-1963	821963	17
8	0.286	241-1963	921963	17
9	0.286	261-1963	12-2-41963	18
10	0.302	261-1963	12-21963	18 `
Áv:	0.297			17.3

#### Table 47

Number of adult parasites produced and sex ratio of T. pupivora

#### bred on pupa of P: peponis parasitised by fifteen parasites

S1. No.	Wt. of pupa in Gms	Total number of parasites produced	Number of males	Number of females	Sex ratio male:female
1	0.305	442	 13	429	33.00
2	0.300	528	29	499	17.21
3	0.288	440	12	428	35.67
<b>4</b>	0.307	443	26	417	16.04
5	0.293	463	23	440	19.13
6.	0.305	401	24	377	15.71
<b>?.</b>	0.298	474	26	448	17.15
18	0.286	418	<b>11</b>	407	37.00
· . 9	0.286	453	14	439	31.36
10	0.302	476	11	465	42.27
Av:	0.297	453.8		· · · · · · · · · · · · · · · · · · ·	26.454

parasitised by fifteen parasites

# Longevity of adults of <u>T</u>. <u>pupivora</u> bred on pupa of <u>P</u>. <u>peponis</u>

#### parasitised by fifteen parasites

								<u> </u>				
Sl. No.	Wt. of pupa in Gms	Date of emergence		Nun on:- 2	-(de	of iys a 4	pare i ter 5	site eme 6	erge	lead ence) 8910	Total	Longe- vity (days)
1	0.305	521963	55	49	28	69	72	49	120	).	442	4.54
2	0.300	421963	102	68	92	5 <b>2</b>	105	64	32	13	528	3.71
- 3	0.288	521963	118	13	13	17	28	66	91	49401	5 450	4.95
4	0.307	521963	87	· 7	13	1,20	96	108	8	4	443	4.14
. 5	0.293	821 <b>9</b> 63	92	17	10	99	9,6	128	21	· · ·	463	4.18
6	0.305	821963	24	25	12	53	87	18	182		401	5.03
7	0.298	821963	24	16	28	40	<b>B</b> 2	48	198	58	474	5.80
8	0.286	92-19 63	47	8	10	30	77	89	115	32	418	5.25
. 9	0.286	12-21963	65	29	28	71	69	142	49		453	4.46
10	0.302	12-21963	53	16	28	10	92	102	89	68 18	476	5.46
Av:	0.297			• • • •				, 19 ayo 440 ayo 1		ا بينادانيد خانه دينه جزه خته خ	454.8	3 4.752

Table 49

Measurements of adults of T. pupivora bred on pupa of P. peponis

parasitised by fifteen parasites

	Wt. of	· · · · · · · · · · · · · · · · · · ·	Meas	urements	in mm.	
S1. No.	pupa in Gms	Length Male female		of head female	Width male	of thorax female.
1	0.305	1.056 1.206	0.294	0.390	0.291	0.297
2	0.300	1.055 1.077	0.318	0.369	0.294	0.294
3	0.288	1.101 1.206	0.327	0.381	0.297	0.315
4	0.307	1.074 1.197	0.327	0.375	.0.300	0.297
5	0.293	1.074 1.191	0.327	0.375	0.300	0.315
6	0.305	1.137 1.140	0.345	0.384	0.333	0.309
7	0.298	1.149 1.218	0.303	0.423	0.300	0.336
8	0.286	1.152 1.179	0.342	0.420	0.300	0.327
9	0.286	1.056 1.092	0.330	0.372	0.294	0.303
10	0.302	1.143 1.212	0.342	0.420	0 <b>. 303</b>	0.327
Av:	0.297	1.110 1.172	0.336	0.391	0.301	0.312

#### ----

#### Table 50

Duration	of	development	of	T.	pupivora	in	pupa	of	Ρ.	peponis

					A	
Sl. No.	Wt. of pupa in Gms.	Date of exposure	Date of emergenc		ion of nt in	deve- days
1	0.315	201-1963	5219	63	.17	چەقە ھە تە «
2	0.328	201-1963	5219	63	17	• .
3	0.228	201-1963	6219	63	18	
4	0.320	231-1963	8219	63	17	
5	0.297	231-1963	8219	63	17	a'
6	0.310	231-1963	8219	63	17	
7	0.312	251-1963	10-219	63	17	
8	0.300	271-1963	12-2-419	63	17	
9	0.310	271-1963	12-219	63	17	
10	0.331	281-1963	13-219	63	17	
Av:	0.305				17.1	•
	·	Table 51	•		· · · · · · · · · · · · · · · · · · ·	
Numb	er of adults pro	duced and sex	ratio of	<u>T. pupivora</u>	bred o	n
	pupa of <u>P</u> . pepo	<u>nis</u> parasitise	d by twen	ty parasite	8	
DI.	Wt. of Total pupa of par in Gms prod	asites ^N	umber of males	Number of females	S _{ex r} male	atio female
1	0.315 64	3	44	599	13	5.61
2	0.328 96	7	40	927	23	5.18
-		<b>A</b> .		AE 4		<b>~</b> ~ [′]

parasitised by twenty parasites

0.228 654 3 709 55 11.89 4 0.320 32 714 22.31 746 40 14.30 5 0.297 612 572 6 0.310 683 48 635 13.23 594 9.43 0.312 63 7 657 13.48 8 0.300 637 44 593 832 9 0.310 873 41 20.29 13.77 10 0.331 901 61 840 15.49 Av: 0.305 742.8

#### - XXV111 -

#### Table 52

Longevity of adults of T. pupivora bred on pupa of P. peponis

parasitised by twenty parasites

Sl. No.	Wt. of pupa Date of in Gms	1	Nun on:- 2	nber -(day 3	of i vs ai 4	ter 5	emer 6	dea geno 7	ad e) 8	Total	Longe- vity (days)
1	0.315 521963	225	104	81	21	58	92	48	14	643	3.19
2	0.328 521963	86	70	24	16	26	33	302	410	967	6.29
3	0.228 621963	238	128	60	82	102	42	48	9	709	3.06
4	0.320 821963	170	48	44	255	229	-	-	-	746	3.43
. 5	0.297 821963	92	162	138	220		•		• *	612	2.79
6	0.310 821963	259	150	49	150	.48	19	8		683	2.54
7	0.312 10-21963	263	153	42	155	20	15	9		65 <b>7</b>	2.39
8	0.300 12-21963	294	62	82	23	72	96	8		637	2.74
9	0.310 12-81963	484	176	82	68	26	28	. 9	2	873	1.96
10	0.331 13-21963	96	189	211	405	-				901	3.03
Av:	0.305				к		·			742.8	3.142

Table 53

Measurements of adults of  $\underline{T}$ . pupivora bred on pupa of  $\underline{P}$ . peponis

parasitised by twenty parasites

÷	Wt. of	•	Me	easurem	ents in m	m.	ڪي ڪري ڪري بين جو جو جو جو جو جو
SI. Ng.	pupa in Gms	Len Male	gth female	Width male	of head female	Width male	of thorax female
	0.315	1.068	1.104	0.318	0.363	0.306	0.360
2.	0.328	1.023	1.143	0.318	0.387	0.288	0.321
3	0.228	1.074	1.095	0.305	0.372	0.303	0.291
4	0.320	1.074	1.098	0.318	0.363	0.270	0.288
5	0.297	0.999	1.020	0.306	0.351	0.270	0.312
6	0.310	0.987	1.053	0.285	0.342	0.273	0.291
7	0.312	0.987	1.053	0.285	0.342	0.264	0.290
8	0.300		1.104	0.327	0.357	0.306	0.291
9	0.310	0.026	1.056	0.318	0.351	0.285	0.300
10	0.331	1.059	1.076	0.321	0.366	0.276	0.297
Av:	0.305	1.037	1.080°	0.310	0.359	0.284	0.304

#### APPENDIX II

A. Analyses of covariance of different characters of <u>Trichospilus</u> <u>pupivora</u> with respect to different species of host pupae.

Design:- Completely randomised design. Tr

Treatments: - 8 species of host pupae.

Replication:- 10

Ancillary variate:- The weight of host pupa.

(a) Number of <u>T</u>. <u>pupivora</u> produced

Source	s.s.(b ² )	S.P.(ab)	S.S.(a	a ² ) A	djusted S.S.	d.f	.Variance r	R atic
Total	920880.688	576.643	0.655		•	78		
Treat- ment	6841 <b>76.</b> 188	579.576	0.641		у.*	7	· .	
Error	236704.500	-2.933	0.041	2360	89.639	71	3325.206	5,
Error + treat	920880.688	576.643	0.655	4132	20.918	• <b>Alder extr alder den</b> (	۹۳ هو نور به هو په وي مي هو نور نور به هو اي وي	*** *** *** *
Treat.	, , , , , , , , , , , , , , , , , , ,			1775	31.279	7	25225.415	57.6
. •	ignificant at a = weight		a b		mber of oduced.		asites	• => => 67 a
	S.S.= sum of	squares	S.P.	= su	un of pr	oduc	ts.	
	d.f.= degrees	s of freedom	L	, <b>.</b>	•	2		

Table of analysis of variance and covariance

. ,	host pups	<u>36</u>	
Treatment number	Mean weight of	Mean number of produc	
number	host pupa	Unadjusted	Adjusted
- 1	0.320	372.9	416.072
8	0.117	235.4	236.029
į <b>2</b> – į	0.172	209.0	221.155
7	0.066	227.7	217.536
5	0.082	194.5	11877794
4 <b>4</b>	0.085	167.1	161.024
6	0.070	163.7	154.479
8	0.004	14.7	-8.416
(b)	<u>Sex ratio of T. pupin</u> <u>Table of analysis of</u>		ariance
Source	S.S.(0 ² ) S.P.(a0)	S.S.(a ² ) Adjust S.S.(a ² ) S.S.	ed Vari- F d.f.anceratio
Total	3267.9808 39.7255	0.655	78
Treatment	2599.9613 39.9264	0.641	7
Error	668.0195 -0.2009	0.014 665.136	5 71 9.368
Error + treat treat	3267.9808 39.72 <b>6</b> 5		3 3 71 27.566 2.9
ब्द्रिक कुछ के को कि		9	

Table of number of T. pupivora produced adjusted for weight of

 $0 = \text{Sex ratio of } \underline{T}$ . <u>pupivora</u>.

- XXX -

Table	of	sex	ratio	of	<u>T</u> .	<u>pupivo ra</u>	adjusted	for	weight	of	host
-------	----	-----	-------	----	------------	------------------	----------	-----	--------	----	------

	pupae	<b>1</b>	
Treatment number	Mean weight of host pupa	Mean sex ratio	o of <u>T. pupivora</u>
ITATIO ET	host pupa	Unadjusted	Adjusted
1	0.320	29.822	32.780
2	0.172	17.270	18.102
3	0.117	17.943	17.986
5	0.082	15.458	15.004
4	0.085	14.993	14.568
6	0.070	13.699	13.061
7	0.060	12.859	12.174
8	0.004	9.050	7.471
S.E.	= 1.874	C.D. = 7.502	، الله الله الله الله الله الله الله الل
(c)	Developmental period o	f <u>T. pupivora</u>	
•	Table of analysis	of variance and c	ovariance
Source	S.S.(k ² ) S.P.(ak)	Adjuste S.S.(a ² ) S.S.	d Vari-F d.f.ance ratio
Total	143.95 5.501	0.655	78
Treatment	67.35 5.522	0.641	7
Error	-76.60 -0.021	0.014 76.569	71 1.078
Error + treat.	143.95 5.501	0.655 97.750	,

<u>pupae</u>

Table of	<u>f</u> analysis	<u>of varian</u>	<u>ce and cor</u>	vari	ance
s.s.(k ² )	S.P. (ak)	S.S.(a ² )	Adjusted S.S.	d.f	Vari-F .ance ratio
143.95	5.501	0.655		78	
67.35	5.522	0.641	:	. 7	· -
76.60	-0.021	0.014	76.569	71	1.078
143.95	5.501	0.655	97.750		**
			21.181	7	3.026 2.8
	S.S.(k ² ) 143.95 67.35 76.60	S.S. $(k^2)$ S.P. $(ak)$ 143.95 5.501 67.35 5.522 76.60 -0.021	S.S. $(k^2)$ S.P. $(ak)$ S.S. $(a^2)$ 143.95 5.501 0.655 67.35 5.522 0.641 76.60 -0.021 0.014	S.S. $(k^2)$ S.P. $(ak)$ S.S. $(a^2)$ Adjusted S.S.143.955.5010.65567.355.5220.64176.60-0.0210.01476.5690.65597.750	67.35       5.522       0.641       7         76.60       -0.021       0.014       76.569       71         143.95       5.501       0.655       97.750

k

- Developmental period

Treatment number	Mean weight of		Mean developmental period of <u>T. pupivora</u>				
unmper	host pupa	Ur	nadjusted	A	djusted	• • • •	
	0.320		19.6		19.909		
8	0.117		18.7		18.704		
2	0.172		18.5		18.587	ε 1	
5	0.082		18.5		18.452	-	
6	0.070		17.3		17.239	ĩ	
7	0.066		17.3		17.228		
4	0.082		16.9		16.852		
8	0.082	4	17.0		16.835		
(a) <u>L</u>	ongevity of <u>T</u> . 1	<u>oupivora</u>		· · · · · · · · · · · · · · · · · · ·			
· · · · · · · · · · · · · · · · · · ·	ongevity of <u>T</u> . ] able of analysis		ance and (	<u>covarianc</u>	: <u>e</u>	, ,	
· · · · · · · · · · · · · · · · · · ·	able of analysis			• • • • •		- F rat	
<u> </u>	able of analysi:	s of varia		• • • • •		Frat	
<u>Te</u> Source	able of analysis S.S.(1 ² )	s of varia S.P.(al)	S.S.(a ²	• • • • •	Vari- d.f.ance	-F rat	
<u>Ta</u> Source Fotal	able of analysis S.S.(1 ² ) 304.033	s of varia S.P.(al) 3.1008	S.S.(a ² 0.655	adjusted	Vari- d.f.ance	- F rat	
<u>Ta</u> Source Fotal Freatment Error	able of analysis S.S.(1 ² ) 304.033 114.389	<u>s of varia</u> S.P.(al) 3.1008 2.9621	S.S.(a ² 0.655 0.641	adjusted	Vari d.f.ance 78 7	- F rat	

Table of developmental period of T. pupivora adjusted for weight

#### of host pupa

= Longevity of  $\underline{T}$ . <u>pupivora</u>.

	pupa		
Treatment	Mean Weight of host	Mean longevity	r of <u>P. pupivóra</u>
number	pupa	Unadjusted	Adjusted
4	0.085	4.963	5.250
3	0.117	4.874	4.844
7	0.066	3.781	4.247
2 ***	0.172	4.066	3.491
<i>,</i> <b>, 6</b>	0.070	2.298	2.724
5	.0.082	2.292	2.609
8	0.004	1.455	2.545
· . <b>1</b>	0.320	3.282	1.241
	.E. = 2 e of <u>T. pupivora</u>	C.D. = 3.	992
<u>Tab</u>	<u>le of analysis of t</u>	variance and covar	iance
Source	S.S.(h ² ) S.P.(ah)	$S.S.(a^2)^{Adjuster}$	d Vari- F d.f.ance. ratio
Total 0	.120531 0.117816	0.655	78
Treatment O	.025446 0.106609	0.641	7

Table of longevity of  $\underline{T}$ . <u>pupivora</u> adjusted for weight of host

F ratio not significant.

0.095085

0.120531

Error

Error +

treat.

Treat.

0.011207

0.117816

0.014 0.086

0.655

0.099

0.013

71

7

0.0012

0.0018 1.5

Analyses of covariance of different characters of <u>Trichospilus pupivora</u> bred on pupa of <u>Phytometra peponis</u> with respect to different levels of induced superparasitism.

Design:- Completely randomised design.

Treatments:- 4 levels of induced superparasitism (i.e. the number of parasites parasitising the pupa).

Replication:- 10.

Ancillary variate:- The weight of host pupa.

(f) Number of T. pupivora produced

Table of analysis of variance and covariance

SourceS.S. $(b^2)$ S.P. $(ab)$ S.S. $(a^2)$ AdjustedVari-FSourceS.S. $(b^2)$ S.P. $(ab)$ S.S. $(a^2)$ S.S. d.f. ance ratioTotal1181861.9 -0.71240.0217538Treatment925061.8 -19.14570.002183Error256800.1 '18.43330.01956 239470.3 35 6842.0Error 4treat.1181861.9 -0.71240.02175 1181838.8Treat942368.5 3 314122.9 45.Treat942368.5 3 314122.9 45.Treat942368.5 3 314122.9 45.Treat942368.5 3 314122.9 45.TreatMean weight of host pupaeInadjustedMean number of parasites producedUnadjustedAdjusted200.305742.8 750.338150.297453.8 464.858100.312408.7 404.47050.317345.9 337.628S.E. = 37.67C.D. = 76.527	-	,	•	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Source	S.S.(b ² ) S.P.(ab)	Adjusted S.S.(a ² ) S.S.	Vari- F d.f. ance ratio
Error $256800.1$ $18.4333$ $0.01956$ $239470.3$ $35$ $6842.0$ Error + treat. $1181861.9$ $-0.7124$ $0.02175$ $1181838.8$ Treat $942368.5$ $3$ $314122.9$ $45.$ Table of number of T. pupivora produced adjusted for weight of host pupa $10 \times 10^{-10}$ $100 \times 10^{-10}$ Mean weight of host pupaMean weight of host pupa20 $0.305$ $742.8$ $750.338$ 15 $0.297$ $453.8$ $464.858$ 10 $0.312$ $408.7$ $404.470$ 5 $0.317$ $345.9$ $337.628$	Total	1181861.9 <u>-</u> 0.7124	0.02175	38
Error : treat. 1181861.9 -0.7124 0.02175 1181838.8 Treat 942368.5 3 314122.9 45. <u>Table of number of T. pupivora produced adjusted for weight of host pupae</u> <u>Treatment Mean weight of host pupa</u> <u>Mean number of parasites produced</u> <u>Unadjusted Adjusted</u> 20 0.305 742.8 750.338 15 0.297 453.8 464.858 10 0.312 408.7 404.470 5 0.317 345.9 337.628	Treatment	925061.8 -19.1457	0.00218	3
treat.       1181861.9       -0.7124       0.02175 1181838.8         Treat       942368.5       3 314122.9       45.         Table of number of T. pupivora produced adjusted for weight of number       host pupae       Mean number of parasites produced         Treatment number       Mean weight of host pupa       Mean number of parasites produced       Mean number of parasites produced         20       0.305       742.8       750.338         15       0.297       453.8       464.858         10       0.312       408.7       404.470         5       0.317       345.9       337.628	Error	256800.1 18.4333	0.01956 239470.3	35, 6842.0
Table of number of T. pupivora produced adjusted for weight of host pupaeInationMean weight of host pupaMean number of parasites produced200.305742.8750.338150.297453.8464.858100.312408.7404.47050.317345.9337.628		1181861.9 -0.7124	0.02175 1181838.8	*1
$ \begin{array}{c c} \underline{host \ pupae} \\ \hline \underline{host \ pupae} \\ \hline \\ \hline \\ \hline \\ \hline \\ reatment \\ number \\ \hline \\ number \\ \hline \\ host \ pupa \\ \hline \\ \hline \\ \hline \\ \\ 20 \\ 20 \\ 0.305 \\ 15 \\ 0.297 \\ 15 \\ 10 \\ 0.312 \\ \hline \\ \\ 5 \\ 0.317 \\ \hline \\ \hline \\ \\ \hline \\ \hline \\ \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \hline \\ \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \\ \hline \hline$	Treat		942368.5	3 314122.9 45.9
Treatment number         Mean weight of host pupa         produced           20         0.305         742.8         750.338           15         0.297         453.8         464.858           10         0.312         408.7         404.470           5         0.317         345.9         337.628	Table of			for weight of
UnadjustedAdjusted200.305742.8750.338150.297453.8464.858100.312408.7404.47050.317345.9337.628				
150.297453.8464.858100.312408.7404.47050.317345.9337.628	number	host pupa	Unadjusted	Adjusted
10         0.312         408.7         404.470           5         0.317         345.9         337.628	20	0.305	742.8	750.338
5 0.317 345.9 337.628	15	0.297	453.8	464.858
	10	0.312	408.7	404.470
S.E. = 37.67 C.D. = 76.527	5	0.317	345.9	337.628
		S.E. = 37.67	C.D. = 76.527	स्वी प्रायंत्र स्वी स्वी प्रायं प्रायं स्वी स्वी स्वी स्वी स्वी स्वी स्वी स्वी

(g) Sex ratio of T. pupivora

Table of analysis of variance and covariance

	-			Adjuste	ed	Vari-	F
Source	$S.S.(0^2)$	S.P.(a0)	S.S.(a ²	) <b>D</b> .S.	d.f.	ancer	atio
Total	2480.086	-0.2758	0.02175	· ·	38	,	
Treat.	1182.366	+0.5981	0.00218	• •	· 3	`. 	•
Error	1297.720	-0.8739	0.01956	1257.676	35	35.933	د بین مین میں
Error + treat.	2480.086	-0.2758	0.02175	2476.588		· · ·	**
Treat				1218.912	3 -	406.304	11.307

Table for sex ratio of  $\underline{T}$ . <u>pupivora</u> adjusted for weight of host

Ireatment	Mean weight of	Mean sex ratió	of <u>T</u> . <u>pupivora</u>
number	host pupa	Unadjusted	Adjusted
<b></b>	0.317	29.242	29.680
10	0.312	27.992	28.216
15	0.297	26.454	25.921
20	0.30 5	15.549	15.420
	E 2.73	C.D. = 5.5	46

(h) Developmental period of T. pupivora

Table of analysis of variance and covariance

Source	S.S.(k ² )	S. <b>B.</b> (ak)	S.S.(a ² )	Adjusted S.S.	Vari- d.f.ance r	F atio
Total		0.2061	0.02175		38	
Treatment Error	39.275 37.500	0.2256	0.00218 0.01957	37.483	3 35 1.0709	
Error +	76.775	0.2061	0.02175			· · · · · · · · · · · · · · · · · · ·
Treat.	- - 1			37.341	3 12.44 7	11.62

	weight	of host pupa	n de la companya de		
Treatment	"Our of mono	Mean develop <u>T</u> .	mental pe <u>pupivor</u> a		178 (18) (23) (39)
number	pupa	Unadjusted	. ·	Adjusted	
5	0.317	19.6		19.609	, ,
10	0.312	17.7	1	17.704	
15	0.297	17.3	•	17.289	
20	0.305	17.1	•	17.097	
	5.E = 0.471		957		<b>ک بلہ یہ ک</b> ۱
(i) <u>L</u>	ongevity of <u>T. pup</u>	ivora		· .	
. <u>T</u>	able of analysis o	f variance an	<u>d covaria</u>	ince	•
Source	S.S.(1 ² ) S.P.(a	1) (S.S.(a ² )	Adjusted S.S.	Vari- d.f.ance	F ratio
Total	61.784 -0.1514	0.02175	•	38	
Treat.	17.061 -0.0836	0.00218		3	
Error	44.723 -0.0678	0.01957	44.489	35 1.271	
Error +	61.784 -0.1514	0.02175	60.731	هه دي هو که څخ هه <del>په دو مو چه خه وه وه خه</del>	
treat. Treat.		0.02115	16.242	3 5.418	** 4.26
-	මේ රාද්ශය හා දරුණා හා දරුණා මෙ කොරි හො කොරි හා හා දැන් මේ මේ මේ මෙ	د. میں فرود دورہ دورہ میں میں میں میں میں میں میں دورہ دورہ دورہ میں ،	ده هاید وکه خونه بونه وی هی دی در ان	ی و او د برند. این	-
Tehle of	longevity of <u>T</u> . <u>pu</u>	niwora adjust	ed for we	ight of ho	st
		Pupa		<u>,1811, 01 10</u>	
			بي وي خو هد دو زيد وي چرد		
Treatment	Maan mainht of	Mean lo	ngevity c	of <u>T</u> . <u>pupiv</u>	ora
number	Mean weight of host pupa	Unadjust	ed	Adjusted	
15 [·]	0.297	4.932		4.895	· .
10	0.312	4.255		4.270	
5	0.317	3.799		3.829	
20	0.305	3.142		3.133	
s.	E = 0.512	C.D.	= 1.04(	)	کن که خد بنبه د ا

Table for developmental period of  $\underline{T}$ . pupivora adjusted for

(j) <u>Size of T. pupivora</u>

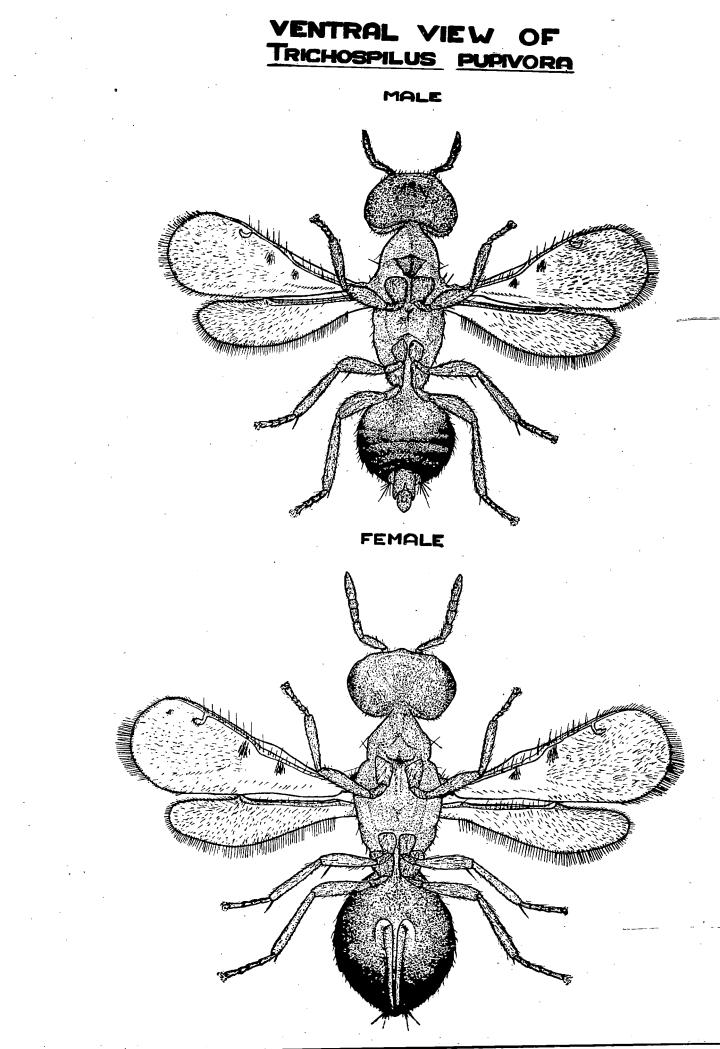
TADIE OI A	nalysis of		· · · · · · · · · · · · · · · · · · ·		,	-
Source	s.s.(h ² )	S.P.(ah)	S.S.(a ² )	Adjusted S.S.	l Vari- d.f.ance r	F atio
Total	0.04118	0.0096	0.02175		38	• • • • • • • • • • • • • • • • • • •
Treat.	0.01668	0.0031	0.00218	· · ·	3	
Error	0.02450	0.0065	0.01967	0.0223	35 0.00064	•
Error +		0.0000	0.02175	0.0370	يني وي هي پي نين اين وي	هي دارد هند .
treat.	0.04188	0.0096	0.00110			
Ireat 		و و و و و و و و و و و و و و و و و و و	97 - 770 - 780 - 490 - 190 - 190 - 190 - 190 - 190 - 190 - 190 - 190 - 190 - 190 - 190 - 190 - 190 - 190 - 190	0.0147	3 0.00490	7.
Ireat 		و و و و و و و و و و و و و و و و و و و	97 - 770 - 780 - 490 - 190 - 190 - 190 - 190 - 190 - 190 - 190 - 190 - 190 - 190 - 190 - 190 - 190 - 190 - 190	0.0147	3 0.00490 It of host p	7.
freat	size of <u>T</u> .	<u>pupivora</u>	adjusted	0.0147 for weigh	چی ہیں ہیں ہیں ہیں ہیں ہے جو اندر کے ح	7.
Treat Table for		<u>pupivora</u>	adjusted	0.0147 for weigh size of <u>T</u>	it of host p	7. upa
Freat Fable for Freatment	size of <u>T</u> . Mean wei	<u>pupivora</u> ght of pu <b>p</b> a	adjusted Mean	0.0147 for weigh size of <u>T</u> sted	it of host p • <u>pupivora</u>	7. upa
Treat Table for Freatment number	size of <u>T</u> . Mean wei host	<u>pupivora</u> ght of pu <b>p</b> a	adjusted Mean Unadju	0.0147 for weigh size of <u>T</u> sted 70	it of host p <u>pupivora</u> Adjusted	7. upa
Treatment number 5	size of <u>T</u> . Mean wei host 0.31	pupivora ght of pupa 7	adjusted Mean Unadju 0.41	0.0147 for weigh size of <u>T</u> sted 70 10	nt of host p <u>pupivora</u> Adjusted 0.4141	upa 

xxxvii

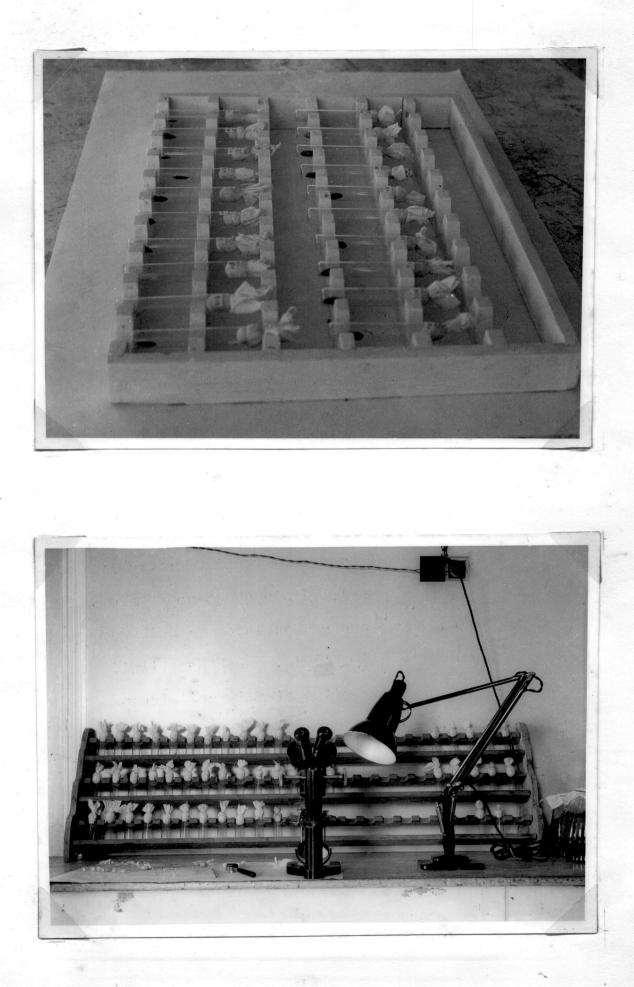
ŧ

; ••

۰.


# PLATE 1

ι.


ąr,

<u>Trichospilus</u> pupivora F.

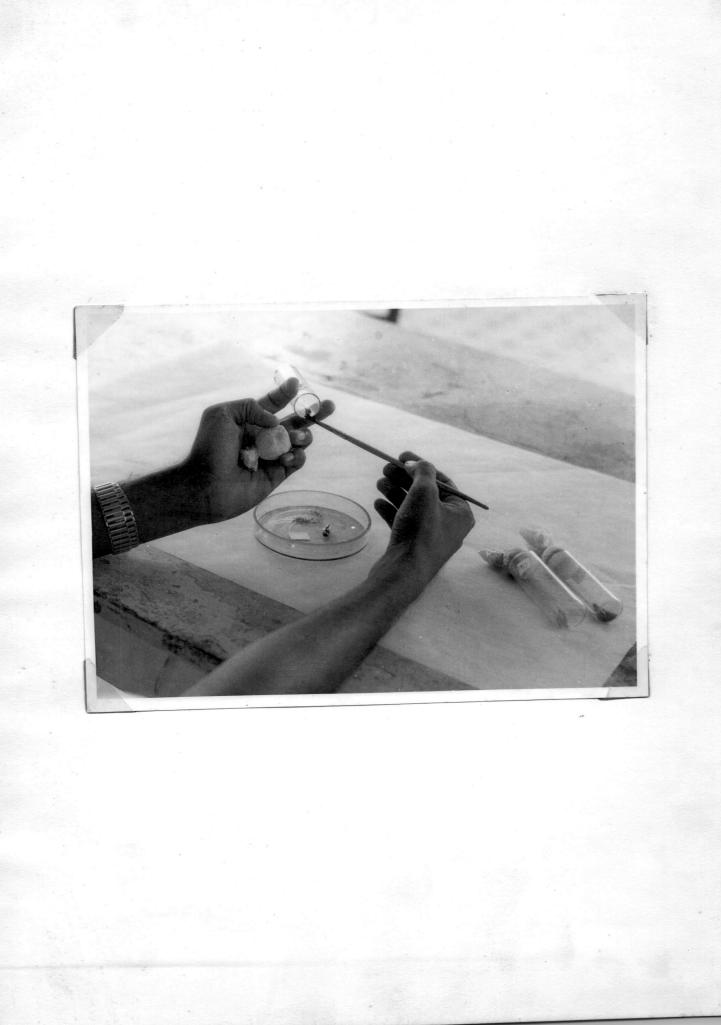
Ventral view of adult male and female



a. Host pupae set for parasitisation by <u>T</u>. <u>pupivora</u>.
b. Rearing tubes with parasitised host pupae within, on tube stand.



c .


# PLATE 3

• • • •

5

. .

Showing method of removing dead parasites from the rearing tubes.

