DESIGNS BALANCED FOR RESIDUAL EFFECTS

By
SATHIANANDAN. T. V.

THESIS

Submitted in partial fulfilment of the requirements for the degree of

$\mathfrak{f l a s t e r}$ of Srience (Axgricultural statistics)

Faculty of Agriculture
Kerala Agricultural Univers:ty

Department of Statistics
COLLEGE OF VETERINARY AND ANIMAL SCIENCES
Mannuthy - Trichur
1984

DEDICATED TO THE LOVING

 MEMMORY OFLATE DR. P. U. SURENDRAN

I hereby dechare that thia thesis andithed＂brgrows解能配
 that the thesum nas not mraviously formen the masen for
 Eellokship，or obnex sintisw title of ary other Unsversity wr sceictya

Place：Mamonultug
Dete ： $24-1-84$

CHRTFICATE

Abstract

Certified that this thesis, entitled o Designs work cone independently by Sri. Sathianandan. T.V. under my guidance and supervision and that it has not previously formed the basis for the award of any degree. Eellowshtp, or associateship to him.

Dr. K.C. GEorge
professor of statistics

I an also indebted to the staff nembers of the Eepartment of stalistics, ny fellow stwents and friends for their co-operation and aincere interest in my work.

I ancerely acknowledge the monetary asketance provided in the form of fellowshive by the Kerala Mgricultural University.

Station

SATTITRMARAM, T.V.

			Tagr ko
Tambly crser	**	**	1
	-	**	4
$\therefore \Rightarrow 3 n+m+m y s$	**	- *	33
	- *	* -	32
	*	**	71
Stinandrx	**	*	77
cremersoss	**	**	79
4 3tind	**	*	

INTRODHCTHON

The projlen of recidual effeces in long tern expersmpats as well as feeding trials are of great concern to Agricultural ama nomel Sctence research warkers. bany plans have berm destoned in this direction 3y several suthors such as Tililians (1949). Fenney (1955). Nair (1967) to onstruct sone dealgns belanced for regudual effects. Fhe rfcent developments in this direction are manly due to navis and Hall (1969). 3erenclut (1970). Luwless (1971), Gray G. Foch (1972). Sona (1972). patterson (3973) and sharma (1902). A11 ehese torisers have constructed designs bianced for restebal axfects. The main approach they nacie wag through ofthoronal latin squares. many of this suthors have construotect gegtgns balanced for Fingt ordar residual efiects only with the aegwrotion that the restauclo will not lagt for a longer period. fut in the case of perennial croms auch as coconut, rubber, cashev, caceo etc." the residual eftects wus to many of the treatrante Gspectally manurial treatmente will have long tern rastaual effacts when apolied in different acquences. fence it is haghiy easential to find sidtable gesigns to exjadicate this cefect while planning the experirent. tith this ovjective in Yied Atininson (19G6) and 1ais (1967) constructec certain designs to butt those gerticular stewation. me main drawback of this layout could be eeen mille analysing the
data - the andysis 高 very chplicated in comparinon to the dadigns balancop for tirst origr residuala.

Tn experiments on merennial croms involving chenteal fertilizers as treathente the rapaual effects way not be 1usting for nore than ane perion le it sa ambec in secuance frufficient tat shoula be given betueen two dpelicitions such that regicuals will not atect the thira applieation in the sequencel. This ase is very triae in the
 Hare the crpsilnenter can deyice nays and meang to agjust tho sergence of treatrenta in sweh a fasimon that the reatuals may not last sor a longer pertoc. Cochren et al.

From all these referemes mentioned above one can reasonably come to a conchusion that the reatiun effects on mory than sifst ordex are not of very scrione noture. ifith this ajective in view the grasent investigation hes wen eonduttec.

The preserte staty hom becn initivitad wht the otajective to congernet few designs halenced for restoual exfoct esmeatally balancing for the Efrot ordar and also to give a sunplizite wnalygis af such layouts. In this friveatigation

balenced for fixat oxder ressound effects. In the first method the designs are ocnstructed, wheh are regutrad for e number of treatments, followimg the linem of mble (1977). In the second metrof the construction is based manty on orthogonal latin squares. The thirs tethod ie that conshruetion of designs that wa manced for Exat orfer
 this method an attept has been made lo conatruet a designa for t trectrants with 4 aequences anc $(t-1)(t-2)+1$ periods. Finally an attwipt has also been mede to give a generalisted and simplified analyalto of deatons minch ars falanced for firsi order zesicuals.

Review of Literature

In lomi cenn axperimontw eho expermantal undts avainable wil be mighly hotrogenoue. So mach treatmant is
 rat nure a mroble comas, that is the eftact of treatmat shat porsiacs hor a period athar the mpiseation of the
 next Geatnent arplied in mucceselon. The affect of a treatrent that perfleta after the apotication of the
 in long texn extry
 resichal siffects snould be used.

Periogs	T	Eenuspecs				
		IT	THE	IV	V	諒
1	1	2	3	1	2	3
5	2	3	1	3	1	2
2 za	3	1	2	$\stackrel{2}{2}$	3	1

But thas cype of axtangenenta are ling ted os shas number of trectryenti arc grual to the mamer of gexiode.

Thillans (1949) gave degigns for the stuations in mich をach minal receivge ach treatment once. fle has ghom that If the number of treatmenta it wen, balance can be achievec by the sumbole choice of a latin square and sox an ond mumber of treatmente tho buch latin scuares are requirect
 dessgns can be owtinea by wemutiny the letecrs cocuring im bate first row of the latin suare in order.
betterson (1952) Gave a metrod of construction of batancec detugn when there are resicual effecte of treatments. Efe hos given beven concitiona for a deafgn to be bazanced for Eirst order rediuals. For bumber of units, k number of pariods anju number of tredurnenes, the methos given by him constst os b/v latin rectangles each having v colume anc k rorg. Pepresencing each treatrent by one of the olrmentr of an aditutwe abelian group of order v, rectanghea are formed suct thet tive cinferences between succiasive rown of the rectangle are such that no trcatrent af the leading searuente are the same ond eam difecrence is an alenant of the adolesve abwisan oroupe te hus guten an exarmie for $v=7, k=3$ anc $b=21$. He bas alto gaven a retaod sor the conatwotion of holanoed desagne hased on ecmalete selt
 rous exon each of $(v-1)$ orthogoned latin squares of ordar v.

 avadablf far n, a 马ostive intiger and with a minimum vitue
 soot of the equation $x^{y-1}=1$, then the distarences lotweon wow of the requires rectangle are

$\delta_{1}: x^{0}$	x^{2}	x^{4}	\cdots	x^{37-1}
$\delta_{2}: x^{2}$	x^{3}	x^{5}	\cdots	x^{8-7}

A method of conctruction ot sertee of atesgne for $k=\frac{1}{3}(v+1)$ and $b /=2$ has also been given.
incas (1956) hag extenged the usual suty th back type of
 back decings resalt in sansituve comparsson of treatmons. Whis type of negigns are limitce to tro trextmento. lie hat develoged auch type of cessans for more than two treatnente Dy combintrg switch back an malaraced incornlete principles.
 wosed on the guggostiong of Exncte (1933) where $Y_{1} Y_{2}$ and $\$_{3}$ ucre the merbomances of an indsuldsel in the three periods. He calculated tho crror warifnce as

$$
\frac{\sum_{i} \sum_{J} D_{1} 1^{2}-\frac{\left(0_{i}^{2}+c_{2}^{2}\right)}{2}}{6 \times 2 \times(x-1)}
$$

Incividual in the $A^{\text {th }}$ seruenen ond G_{i} was the sum of D 's for $i^{\text {th }}$ cequence. $1=1,2, j=1.2, * 0.0$. In thts axtenaed sodel g treatrents required $p(\mathrm{p}-1)$ treatment scquences. If $p \geq 5$ end odd, decigne with $y(w-1) / 2$ segnences could be used. For each reguoed deswinn complimentary begign mes obtained by wisting the bacond row of the rewuega degign as the firit toe and thind row of the comolment and the firgt row of the revuced cestor at tho aecont row of the convilmant. The resuced and complimentery deslons tegether Eora the complete sesign and these were sub divided into

 given.

Sampord (1957) gave various methodi oí construction ami analyais of serxmly balancen fequerces and the designs based on them. tig hes given a general melhod for the construction of "ypew sequsncess with Index "k" of the servence as 1. by an appromideq per mutation of the eolums of a cyclice latin gguare os atie (t-1) in the case of t treatmente. Type 1 and Type 2 sequences were tiget antronucec by Finney and onthwaite (1955. 1955) in which treatments trece
 the residual effects os any treatmat occured the sane number of tires in conjunction with azch treatrant inciuding itsele (typer-1 sequence) or oE rech other (tyce-2 scruences).

The type -7 wormence fot treatoman given by sumpow 3000

1: a pexhtotion as the neturs z to $(t-1)$: 2
 other rificsences on y once Dy inserting a entum

 siso given. le ins oiscusece the coratmotion or on mietay

 thas fots or actigns.

slmply xepeating the last som of the lntin aguare dssigns and representing periods by rows and treament secuences by colwons. In this tyoe of designs each treatrant was followed hy every other creament and itself an equal number of tome and the resshual efsech were orthononal wo sequences.

Fatterson and tucas (1959) pas eoneluered a solution for the defuctencies of change-pver desagns by takirot en extra-aeriod alorg with the tugic desizn. They hove anom that in swch destgna the resiouel snd arect effects are orthogonal ami reduces gstymath variances of aircet and residuel fifectr. They hove given Eive conditons for malamee in a basic changewver design. Yien $t=k=1$, where $t=2$ cha numex of treatenta. k is the muther of units in each block and p is the nubier of perilote, they obteined eomolete balence sith resocet to resicual facecs bx simply repenting the treacmenta of the $p^{\text {th }}$ period in the $(p+1)^{\text {th }}$ protoo. The designs derived from comblete sets of octhogonal latin squeres xecuire a ulatple ar $t(t-1)$ units. The mothos ot avdybas of extrameriod neatges alse have beer given.

Steethe ano Erose (1961) Eormilated a teches of construction of balancea ceaigns lasea on lacin aquares. rile procecure described by then in as follows:
ifite ecwn a sycluc letin stuare of the ordea regrired. Anterlace sach row of thio wruarg with its marror inage ama
 of treatmate The colums ar each whare refer to the orger of brewentakion iron lotw te right and the rovs rafer to

 dentins.

Fecacer and atkinson \{1964\} Eoure general methet of eonstruction of ted soxble chance-over cesinan which cath'te

 effacts. Tho tops of constructions, one by ving (t-1) owthoyonel Latin squares for treatames ence the other
 have been descrimed by then. The retuoc sw constrwaton for

 2,3 and 4 tere ranatect for a odr and row 5.6 and 7 were wepated for o own. The wehof wr chetruction given Eox

14 to 17, 26 to $29 . \ldots$ repating rows 6 to 9 in rows 13 to 21. 30 to 33 and rows 10 to 13 vere repodied in rowe 22 to 25. 34 to 37, An anmysts of the hegign given by then uted the lincar mosel

$$
x_{i j n}=H_{i j n}\left(\mu 4 \gamma_{1}+\beta_{j}+\sigma_{h}+\sum_{p=1}^{t} k_{i}\{i-1)_{p} \rho_{p}+\epsilon_{i j n}\right\}
$$

where pas the general cefent. V_{x} was the esfrot of the $i^{\text {th }}$ colunn. β_{3} was the efrect of the $j^{\text {th }}$ rot, δ_{h} was the nirect effect on $h^{\text {th }}$ trasumant P_{p} was the rescual effect of $p^{\text {th }}$ weatrment in the zow imnediately Eolluming the perico. $\epsilon_{\text {I }}$ were incegendently and nomally elstributech with mean zero and vatiance σ^{2} and in ifh $x 1$ If $n^{\text {th }}$ tratment apaters In the $i^{\text {th }}$ column and $f^{\text {th }}$ row, and zero otherwite. $N_{i(1-2) p^{=}} 1$ if $p^{t h}$ wreathent ampared in the zow (j-1) and in the $i^{\text {th }}$ colum, and zero othensise.

Intenblut (1964) prosentre a fanily of cosians from Which enrect effecto and contrasts of darect effecta can be estimated without lose of information by confounding ence which refuire 6 y periois and v^{2} subjects for v taatmente. Th has genaralised the deasg given by Ouenoxilie (1953) for
 orthogonal. In the nethoo for v treaunento he represente

the zollousing arrangruents

$\alpha \equiv$	3	Q	c	***	*
$\beta=$	V	\cdots	F		U
$y^{\prime \prime}$	U	7	A	***	管

$\psi=$	m	E	F	\cdots	c
$\phi=$	c	D	b	\cdots	\square
ω_{m}	B	c	D	\cdots	A

 Given bolow:

Pexiocas	Sutjects (1 to v^{2})			
1	α	\propto	**	α
2	β	γ	***	\propto
3	γ	ν	***	γ
4	δ	ϵ	***	γ
*	*	*	:	*
$v=1$	ϕ	ω	***	ψ
\checkmark	ω	ω	**	ω
$y+1$	ω	∞	***	\varnothing
$7+2$	\varnothing	ϕ	***	\varnothing
$:$:	*	:	*
$2 \mathrm{v}-1$	β	β	***	β
2 V	α	β	***	ω

For an even value of v, tive 1 Ines For periods v and $v+1$, sox pestocis vw 1 and viz ctc., of the above design are
 siswen.

Atkingon (1906) has given some desams In thich treathents form incomplete block kitnin expersmental unite and Eron which the fifect of a squence of treatmats can
 atm for t treatments and when the resichal pafectg persiste for demost proflod\%, consist of applying one treatment to

 ᄃ (t-1) columa were used such thet each treammot is followed by each other treakncnt an egal numbat of thmes and no observations are made from the firgt ($\mathrm{k}-1$) periods. In that design rowe were nuwered from the $\mathrm{k}^{\text {th }}$ row onwards as 1.2, k+1 und colums vere ingexed by a couble
 is thet of the zecond treatment. He obtainea the gegion
 construction suggestca by "xilizers. Nan t, tha mumber of

 the design into (t-1) subsets who the saruences win 11 be
arranged in guch a way that in the first you the $2^{\text {th }}$ treatrant ocaurs in $1^{\text {th }}$ colwn. In case when it is oad two Iatin squarem were refuird and the desten was obtatnog by repeating each rov of wheh latin wairea k tiged. In both the coses the Etrat (k-1) rosu vere not waco in the analysia.

Faylor (1967) has used orthomeni polynoninela in the analyste of change-over designs with delfy cow and given Lour types of methole of melysis. The methot of replactige doserwations by orthocomal wotyomials of the fom
 In the teblea by Fleher and Yates (9963). were given by patcerson (1950; 1951) and Lucts (1952). They obzalned the standard deviation of the error term of $\operatorname{pax}^{\text {as }}\left\{\sqrt{\sum_{j}^{1} \varepsilon_{i j}^{2}}\right\} \sigma_{\text {. }}$ and $\sigma_{1}^{2} \geqslant \sigma_{2}^{2} \geqslant \sigma_{3}^{2} \ldots$. where σ_{i}^{2} is the vartance of a unit observation bavis of $\mathrm{Fh}^{\text {s }}$. Also they obtainet the estimates of paremeters by least cruare anelysis. Anothry metrod of andygis argeates by Taylor was to mertarm a wefinted least spuare amayria with welmhts as $H_{1}=1 / \sigma_{1}^{2}$ and estinating the paraneters by nimimaing

$$
\sum_{i} \sum_{i} \sum_{h} \frac{\left(F_{h}-\phi_{h i}\right)^{2}}{\sum_{i} \xi_{i j}^{2}}
$$

where $\phi_{h i}$ is a lincar function of λ_{1}, T_{k} and $\rho_{k j}$. A third nethod described by Cox (195s) wes by fitting regression equetions of appropriste dager. Daterson and luean (1959)
 perion and they obtained $\sigma_{1}^{2} \geqslant \sigma_{4}^{2} 0 \sigma_{3}^{2}=\ldots$. and an alrost unbtated extinate of esrox. faylor made a comparian on these methods.

Nais (1967) nas given one methot of construction of serially balanced scruencra thich are malamed for pair
 of standaro sertally balinoed sarguncee also. se has Befined 3erinily balanced sequencer of orex twith index|m and malanced zor pars of resichul effects es a seguence fnyolving t distinct Iftters such that any three adjuscent
 cech of the $t(t-1)(t-2)$ orgered trinuets of letvers ocour sexisily excctiv ia thtse Remoted inis beguence by SgS $(t, 7,2)$. Necording to him a standara amrially balanced sequence is an shin in which the aequance after the initidi pair can be broken up into gets of t, such that pach set contain distanct letters. The procecure for construetion of an ses ($t, 0,2$) givan by hent is as follewe:

Taise all pogsible non-zaro poirg ($\{, f$) of elements of

EOF a Eired i. Eorm a sequenoa

whan $i<t / 2, t$ even of $i<(t+1) / 2$. t oddy and that sequence

 sequance and ingert in the sequence $22131 \ldots 1$... 1 - 212 , Juat after the number i, which is to bef sonf for all w. Trov the resultimg aeguence replace the initial; by the pair (i. 1 ?

 xeanleing açuence by $\left\{x_{j}\right\} ;=1,2, \ldots,(t-1)(t-z)+1$, conatruct an arramgent fot tows anf (t-1)(E-2) 2 columas whose $(p, q)^{\text {th }}$ gement $1.9(p-1)+\sum_{j=0}^{-1} x_{j} x_{0}=0,1 \leqslant p \leqslant t$,
 Eron the th row of $t^{\text {th }}$ and insert the row wo obtasnem in the $(t-1)^{\text {th }}$ row of a jugt after the pian (t-1.0). Out off the initial peir (t-2, t-1) of the enlargea $(t-1)^{\text {th }}$ zor of ond insert in the (t-2) th ros juet aftex the rair (t-2,t-1) anc
 In the first row just after the pair 61, 2l. The reanting secuence is an was ($6,1,2$) and from this sequence an
 the serquence sts ($t, 1,2$) after ondtiry the initial pais
serially cractiy fores anc patinc the lag* pair of the raselting sequance as ita initial mix.

Fit has algo given methodg of construction of stencard gerally bakenccd sechencer (SSBS), one Erom destgna involving t trextments wheh that the possible t(t-1) (t-)! orderea triglets ocemx times in each bleck having \& distinct treatmenta and the firgt and last two wosftione of blocks contan ail posaible orwered pairs of treatnonts m

 oweur once in each klock, each inlock contelnimg aintinct tectinemts, the blocks can be grouped into t groups of (t-1) blocks each and sach klock in each gromp starts with sfatimet cratments and end in the ame treatment has also joen jiven.
 berred on the desfans given by Millams ams still anothet nethou of Exrulng asgs (t, 1. 2^{2} was based on "rownt table moluctons ${ }^{2}$. Y马 has shac ixen give the methoia of analyots of such designe.

Eererblut (10G7) Gave a deaign for tegting a Tuancinative Eactor at fone wually meaced lewsis which fin suitable sox Guick anelysis then the gresence of first order restenal GEfect was excountan for* The arrangemet of tha deaign was such that the three segrees of trescion for the linear,

 he has ueed the lingar nowel

 are innear, Fuafatio ant cumbe enponente of dicect and

 varianess.
 reaidual eftects adusten for subjecto in the andiysts of a ennatemever besign by weing (v-1) ortiogonal contratits betwern the residusl effecte in the case of viratrents. If $\sum_{1} 1_{i}$ ta one such conkerst, then be blatned the sux of gruares absocinted with the pontrate mb

where ${ }^{2}(1)$ wat the total for subjoct whoge lets treatment is i. R (1) was the conal obsexvantons receiving the residual
 Whraher ary Tha (1968) macic an atterot to analyse
critieally the data of a series of experimonen designed to
 deasisn usex by them consistec of 12 trabenent ancuences and treahments fere alloted to aifyerent glots of a cimie replicaticn succesaively mor sixyovrs. The treadmene sequences in the Erst the ycars ware repater for the next whee years also in this cesigna In tix figet sequence
 were appisud in tha next two years. In the second sequence

 trestrent appated in the rest of the ramiods. a simitar arrongemen was made for the next theee seguences with 1
 C. 6 and 0 , mes repeated in the firgt theee pears resocotwely. ifere $i_{1}=22.4 \mathrm{~kg} \mathrm{~F}_{2} \mathrm{O}_{5} / \mathrm{ha}, \mathrm{P}_{2}=44.8 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}$ and
 sen nitucgen.

Derenblut (1960) has given a methoed of constructing Changemver bes gns for thoung treatant fretors at quaslly spaced leveis. The Gcsxp\# given by hin was foncisting of n latin stuarea dra required versone and ny quafects fox
 Geblyns wat that the Eegrera of treedon for the linedr resumal effect moul* De orthogonti to the hinoze.

Guabratic, ondic ate.. Azrees of Erecaon of the direct
 Fnoar reatual intaraction shoule werthogonal to each Eegrees of freeton of the maln eftets. bidit inese Goneluions he has sfown that eywerwien de-igne exist for
 ©ven and (Tw 3) lutin squares for v oded. He hes almo been Given the nethoith of congtruction of non-aymmericai deszun. The methoo of analyais was also given.

Tavis and Hall (1569) hxwe show vat men in a cyclic
 sequencee and row are tefea as periodi wh will get a class of changeover designa. The gyclic incomplete block nessin
 sosenubur, b. of initiel biecica nox (t). Then they obtalned whe requined vealgn by the eyefic dovelopmort of one or mare generating secumaces of uredtwents corresponding to the Lnitial blocks of the cyclyc incomplate block design* is spectal feature of thin dealgn is chat they rany we aralysed after any mumer of pextods and further mexiont may in aded di raquired. They havf alao giwn the metrod of onazysts and efesconcy of the cymile ehonge-over cestona sor Abrimstont values of t and p_{0}

Berentiut (137) conmiceres a en of suqumeg thet

 actial zom and using the wnversiom sugrested by jambiord

 Ecrulatad by him were arrally wabred zor linear whe duct esecto.

 T0 \%

 3^{2} exyer..rente and thesr ardiycis.

Gray G. Foch (1972) vort non-parametric metiole in the

 ardivimals in tre *eriods and onservarions iore tarn * two fatiocs. bip has user rise linemymal.

 period ϕ_{2} wes the 1 trcot exirent of $i^{\text {th }}$ tratucht. λ_{1}, its the

 menn sero and vazsence σ_{b}^{2}. Then then nonmy rametalo

 wuojects ir ine to difatent seviencem. yence a non-

 modet and hezee by ranking the affercrecs and adalng the
 tests to the disfirmees could Demalisg. He obtanfen a non-parametria ctatistic for testing perion effects ton the mbence of rasidual cfects by ranking the crotsmover Gifterences and by adaing the ranka in the swallez samolet. The bivariate folleoxon watistic for testing tra equallyy
 use?

Sahe (1972) defined fartielly balanced change-over Gaicns as e sesign in which cach experimontal unit recelves a cyelic sexuence of several treatmente in suecesseve periods
 begrevs of precesoican Two type of partlatly bolanced designo mizich are $\lambda \beta$ begigns and $\lambda \eta$ designa han been defined

Suppose in a changemover ceargn $\lambda_{\text {if }}$ is the number of tinas the trcetment pax (1,1) occurs and $\beta^{i} \quad$ is the number of tines the trentment mair (i.j) ocourb in senuences with j in the last prion and γ_{j}^{i} is tire nupeer of tunes treatment j is impeditaly prececded in sequences my treatment
 inen $\lambda_{1}-\lambda, \beta_{j}^{i}=\beta$ and $j^{j}=\gamma$ Eor every 1 and y then the

Cessgn become balanced, $\lambda \beta$ cesign is a design for which
 1. (v-1) $\lambda \eta$ design is a deaign for mioion $\lambda_{i=1} \lambda, \eta=\eta$

 und one series of Mdesign has also ben given. fles he hao
 leating nequence $\left(a_{2}, a_{2}\right.$, an* a_{k}, where a_{i} 's are aistinct Glements of GE (y). by ancing elemente to the secusence. ingen the number of trextrent v is of che form $4 n+1$, he obtained tix leading sequence so

$$
\begin{aligned}
& \text { [3. 2s, }(2+4) s, \ldots,(2+4+\ldots+v-1) s] \text { and }
\end{aligned}
$$

 ' x ' af gr (v). In case when v is a wrim power the leading secuences $\left(x^{0}, x^{2}, \ldots+x^{v-3}, 0\right)$ and $\left(x^{2}, x^{3}, \ldots \ldots x^{5-2}, 0\right)$ reaucec modulo gave a degign with $(v+1) / 2$ perions and 2v secturnces. por eny prime or prine powcr v, of the form $4 n+3$ he obtainca a $\lambda \eta$ Eecod Erop the 1 sading serusnce ($\left.x^{0}, x^{3}, \ldots, x^{7-3}, 0\right)$ or $\left(x^{2}, x^{3}, \ldots \ldots x^{7-2}, 0\right) x+t^{2}$ (val) $/ 2$ verloos anci v sepuences. n methoci of analysia of Guch deesgns has also been given.
patterson (3073) has compayed and extended the three

Sharma (1032) has been given a wehos of construction and antlysis of axtromeriod balanced change-over deaigns
 denored the treetrments by $0,1,2, \ldots, *(t-1)$ onc formed two Inftial mequences of $2 t$ elements each by interlacing the elements of the seçunce $0.1 .2 . * * t-1$ with the elements of the reverse sequence $t-1, t-2, \ldots, 1,0$ es
$[0, t-1,1, t-2, \ldots * t-2,1, t-1,0] \operatorname{anc}$ $[t-1,1, t-2,1, \ldots \ldots, 1, t-2,0, t-1$.

Sy develoning sither of this zequences he obtainet an arrencement with terw and 2 teolurns. Then by repeating the $2 t$ colums in the semp order n tines he obeatned the required wequence. In than deatgn each treatmant occurea once in each weriod and an tomea in such scquence ane wath treaznent sas prececter by every other eremtment $2 n$ tizet and atself by (2n-1) ticua. fie ached an extra perjod at the on hy repeating tho last period treatents to rake the aricect and residual efects orthogonal. mis des.gn ts called extra-bericc changc-over design and was having (7nt+1) pextass for t treawnente. The methote of andiysis hotin by retsining as well as onting Eirat perfod observations has also been given.

Materials and Methods

In the preatnt investigation eongtruction or designo that axe Dalanced for reaicuel effacts are feing undertaken. Thts has ben onom chrough afferght asprochea.

The Eirst method of construction of Ediancet design is bodsed on cyelic letin sruares. The method is in the line of Amble (197\%' ag atven in the folloring atega:

1. Write denn a tymlic latin satuare of the order гequired.
2. Wrice the latin square inich is the girror inege of che eyclic , metn squere.
 one square and one colum of whe othox square successively and shsee in half to get two latin aquares.
3. Irfie tac two 1ath squares with reva an colmms and viee verse.

The seconc method of conetruction of cegicns hajanced
 The requitar axthod of construetion of arthogenat letia squares is as follows:

Let $0.1, \alpha \cdot \alpha^{2} \cdot *+\alpha^{s-2}$ gethe giements of a galold tield, $\operatorname{GP}\left(p^{n}=s\right)$ where p an mime neroser anc n a positive

Intiger and α is the printetve element of the Ge joig tield. If we denote by u_{4}, the $i^{\text {th }}$ element of the coleta field. then the slement in the $x^{\text {th }}$ row and $y^{\text {th }}$ column of the $t^{\text {tha }}$ orthogonai latin equare 18 given ty the expression $u_{i} u_{x}+u_{y}, 1=1,2, \ldots,(8-1), x_{0} y=0,1,2, \ldots,(6 m 1)$ and
 such orthogonal lutin stucres of orcier s. When the first bacin 3quare Gey latin squaxe) is obained, the reat of then can be obtalned by suleasle pernutation of the rown. If we denoce the squares by $\sum_{1}, I_{2} \ldots \ldots \ldots E_{s-1}$ and the rove of the first square by O. $1, \ldots+*(5-z)$. then i_{2} con be obtained from L_{1} as follows:

From L_{1}, cut off the first row and ado as tho jast row to obtain K_{2}. By the same raceodre L_{3} can se obtanned Erom L_{2}. Contiming inis procodute we con obiain all the (s-1) orthozonad lawn sunares of order s.

Now for oblaining the eixst laten square we have the
 But $u^{x}+{ }^{4} y$ is nothng but the acaisinon toble of the oflois field efter exangitg the elements in the order $u_{0}=0$. $u_{1}=1$, $u_{2}=\alpha, u_{3}=\alpha^{2}, \ldots, u_{3-2}=\alpha^{5-2}$, Now by replacing each element In the addition table by ite suffix se will obtain the first atin waare. fience tre can obtain all the ($5-1$) orthogonal latin aquares in this war*
i) third wethod of conciruction of deaigns which are
 be afisusgea is based on the construction of metyally balanced serunmoes given by fais (1967). The method given wh nim far congtructing an sas (t, 1.2" is as followss

 $j=1+1,1+2, \ldots,\{t-1\}$, when $1 \geqslant t / 2, t$ even or then $i \geqslant(t+1) / 2, t$ odd where $i=2,2, \ldots,(t-2)$. then t is ods, there are $\operatorname{sen}_{2}(t-1)(\mathrm{tm} 3)$ such texplets and men tis even thare are ${ }_{5}(t-2)^{2}$ such pairs. From triplets (i, jois, for a
 ** $i(t-1)$ i, when $i<t / 2$. even or aren $i<(t+1) / \pi$, t oda and the seguence $\{(1+2) 1(1+2) \pm * * 1(t-1) 3$, when $i \geq t / 2$, tsven or when $i \geq(t-1) / 2$ t oria. fe get (t-2) such sequences

 Insert thit sequence just aftar the number 1 in the seazence
 (t-2). In the single sequance son notared. replace the Inctial 1 by a pair (1.1). Th atinetion if equ is even.
 (t-1) in this sequance by pairs (2,2), (3,3),..... (t-1,t-1). When $t=4$, replace a 3 in the sequence by the pair (3,3) in edcition to replacing 1 in the sequence by (1.1). Denote the scquence so obrained by $\left\{x_{j}\right\}$, $j=1,2, \ldots \ldots$ ($\left.t-1\right)(t-2)+1$. From this basic sequance construct an axrmoment of of t roug and $(t-1)(t-2)+2$ colnmas sueh that the $(p, q)^{\text {th }}$ element in n is given by ($p-1$) $+\sum_{j=0}^{q-1} x_{j}$, where $x_{0} 0 ; 1 \leqslant p \leqslant t$. $1 \leqslant q \leqslant(t-1)(t-2)+2$. How cut off the initial paxr $(t-1,7)$ Eron the $e^{\text {th }}$ row of \bar{z} and insert the row go ovtained into tine $(t-1)^{\text {th }}$ row just after the pair $(t-1,2)$. Then cut off the initial pair ($t-2$, t-1) from the so enlarged ($t-1$) in row of A and insert this trubcated but enlarged $(t-1)^{\text {th }}$ rew Into the $(t-2)^{\text {th }}$ rom of A just afler the pair ($t-2, t-1$) in it and so on until we insert the enlarged but truncated second row obtained after cutting off its instial pair (1,2) in it. The resulting sazuence is an SES (t.1,2).

Analysie of the destigns using latin gruares are baing Giscussed teking into aecount the first oracr residsul atects.

Results

In the present inveatioation three difterent method of construction of desman when are balanced fox first order rembual affects are bend discussed. " gracral samolisiec metud of enelyste of suoh destons basea on an intuitive method io also tried in this investigetion.

The differcat methous of enotruction alacussed here are (1) methox of conctruction in the line of mble (1977). (2) method of eonstruction based on arthogonal latin squares and (3) rethed of construction sased on the methot giver by tian (1967).

xetrica 3.

The dessin reguired for a nuber of treatnerts cen mo obtained by thas method in the following steps.

Stab 1. Nrite iown a gyine letho square of the order requirea.
 of the cyclic latin gracke.

Btop 3. Interlace the two seuaxes by writing one colurn of one wouse and one colurn of the ather oruare buccessively and slice in hate to get tho latin styuares.
gtep 4. pritue the two gauares with roxa ac columa and vice versa.

If the number of treatrants ts ewan ach ong of these two latin gquares vill be balcnced and when the number of trestrants io cod both of these latin orquaren torcthox afve sabanced arramgexent.

Gy definicione design is oaict bo be balanced fe every lettar sozlows every obher leterr ectus 217 Erechently*

A General groot of how this arzthaexent becones Falanced can be given as Eollows:

Let there be p treatments. Take a cyclic latin square of ortex p in numbers 1 to p. fee shan assume that the
 In the numbers. Te shall grnote this latin struare by c and its colunh $3 y G_{1}, G_{2}, \ldots, G_{p}$. Kow cefinc another. latin equare R olotanca by plectry the colurne of c in tho reverse oreney thet is $R=\left(0_{p}, c_{n-1}, * * c_{2}, c_{1}\right)$. is shall call R. the aizror refliction of C. Thut for example for $3: 4 \operatorname{anc} 5$

Fe shall now getemene the nowtion of 1 in c. th (i.j) jenewe the $5^{\text {th }}$ rom $j^{\text {th }}$ colum position. 1 occura in (4n positions (1, 1), $(2, p),(3, p-1),(4, p-2), \ldots$,

$$
\{i, p-(1-2)\}, \ldots=(1,-1,3),(p, 2)
$$

The elemsts in tive eorresponaina positions of pere obeatned by rememberimg the Eact thet the ($1, j)^{\text {th }}$ glement

 2(1-1) excecte p. it will have tn be replaced by the remainder after rivision ly p.

 the elements in the corresmonding positions of care, 3.2.4.6, ..** $2(1-1), \ldots(p-\ldots),(p-2)$ where, when $2(1-1)$ exceus p it will have to be replaced hy the remainacr etuac dsvision by p.
 of C is $5+j-1$, when thas excecte by p it will hove to be replicea by the remeinciar after divisuon by pe

How we differentiace the wo cases nameiy p ak and $p=2 k+1$.

Coge (i) $p=2 \%$
We khall ronote the column of C br $\mathrm{c}_{2}, c_{2} \ldots \ldots \mathrm{C}_{2 \%}$
 acrangement

$$
\begin{equation*}
c_{1} R_{1} c_{2}^{R_{2}} * * c_{k}^{R_{3}} \quad \cdots-\cdots-\cdots \tag{1}
\end{equation*}
$$

so that it nas $2 k$ mwa , no $2 k$ column each contatning the 2k numbers exactify because (1) is nothing but the zk columne of C in some order.

In $C_{1}{ }_{1}$, the element 1 occurs in N_{2} in the second row and the element in the porresponding position of c_{1} is 2 and hence the ocjerea pair (2,1) is obtained. As 1 occurs in the firet row and the corresponding pountion of p_{3} is oceuried by $2 k$, the ordecco zeir (1,2k) also is obeaned.

Consider the asrangement $\theta_{1} \operatorname{Bin}_{2} C_{2}$ Tho elefent 1 occura In C_{2} in the $2 k^{\text {th }}$ row and the aiemsint in the correnponding position of ${ }_{2}$ if (2k-1). Hence be get the orierec peir (2k-1. 1). Since 1 accura in n_{1} in the scoond ros and the alement in the corfoswonding poaition of c_{2} is 3 , the
 orcered pains $(2,1),(2 k-1,1),(1,2 k),(1,3)$ zach occoring onet and these are she enly ordered palre in which 1 can ing an elerent.

Consiber the arrangament $C_{1} H_{1} C_{2} R_{2}$. The element I occurs in R_{2} in tite thixG row . The flement in the cotrasponting powithon of c_{2} is and hence we get the orgered pair (4, I).

It " now cloat that the ordered wati in when tho

Fra have aircady meen that the element occuse in C in the position $\left\{x_{2} z(1-2)\right\}$. putcing $j=\mathrm{ym}(1-2)$ we get imp-j+2. Thus in the $i^{\text {th }}$ oolume of c the element 1 occurs In the $(p-1+2)^{\text {th }}$ row. $A s$ already coberved the $\left(2 . j^{\text {th }}\right.$

 element of c and thas is $(5-1+2)+(5-i+2)-1=2 p-21+3$ and thil shoula be replaceaty the remanater after diviaton sy p when it is greater than p. Since we have taken

Putting $2=2.3 . *=\ldots$, k get the ordered pairs

$$
(2 k-1), 1),(2 k-3,1),(2 k-5,1), \cdots+(5,1),(3,1)-\cdots-
$$

In $R_{i}{ }^{*}$ the element 1 octur in that $(1+1)^{\text {th }}$ row. The element in the $(1+1)^{\text {ch }}$ row of $C_{1} 483+(5+1)-1=21$.

Thus $C_{i} R_{1}, i=2,2 \ldots \ldots$, k givea the ordered wains

$$
\{2,1),(4,1\},\{6,2), \cdots,(2 k, 1) \quad-\infty-\cdots-\cdots
$$

Cominining (2) and (3) the element I follows every orher element in ite row once Hence if $D \mathrm{C}_{1} \mathrm{R}_{1} \mathrm{C}_{2} \mathrm{R}_{2} \ldots \mathrm{C}_{\mathrm{y}}^{\mathrm{R}} \mathrm{K}$ in the columg of D^{\prime} every lement is folloved by I exactly once sincc this is symetric in all the elenents it followr that every number follow every other number exactly once.

In c_{1} the eigment 1 occurs in the (moi+2) th row and the element in the corresponding posttion of ${ }_{i}$ te sume as the element in the $\left\{p-\{+2, p-\{1-1\}\}^{\text {th }}\right.$ position of a anc this $1 \mathrm{~s} p-1+2+p-(1-1)-1=2 p-21+2=4 k-21-2$ braunsa $p=2 k$.
 That is $\mathrm{C}_{\mathrm{i}} \mathrm{R}_{1}$ gives the ordered pairs

$$
\begin{equation*}
(1,2 k),(1,2 k-2),(1,2 k-4), \ldots,(1,2)-m-\cdots-\cdots \tag{4}
\end{equation*}
$$

In x_{5-1}. the element 1 occurs in the $i^{\text {th }}$ row. The element in the $i^{\text {th }}$ row of C_{i} is 21-1. Nence $n_{i-1} C_{i}, i-2, \ldots, k$ gives the ordered pair (1,2i-1), $1=2,3, \ldots, k$. Thua ${ }_{P_{1-1}} C_{i}, i=2, \ldots *, k$ gives the orcered pairs

$$
\begin{equation*}
(1,3),(1,5),(1,7) \ldots,(1,2 k-1) \quad--\ldots-m \tag{5}
\end{equation*}
$$

Cominining (4) and (5) we sce that 1 precegde every number in the row of t exbotly onon. This is same ag gaying thet 1 preceeds every mumer in tha columas of D exactly once.
enting together all the regales of (2).(3).(4) and (5)
we see that 1 follow every owner hurter exactly once and it also is followed by wok of the other murmurs exactly once in the colum of c^{\prime}. Since the arrangenent is symmetric in all the numbers, what 1 y true of 1 is true of other numbers atop.
now datEline

$$
\begin{aligned}
E & =\xi_{k+1} c_{k+1} R_{k+2} c_{k+2} \cdots n_{2 n} c_{k+k} \\
& =c_{k} n_{k} c_{k-1}{ }_{k-1} \ldots c_{2} n_{1}
\end{aligned}
$$

 It followed by every other muser. Th s as m woperty mill be true for ${ }^{-1}$ ' 1130 . This cost 3 testes the proof far $p=2 \%$.

Case (ii) $p=2 k+1$.
Consider the arramenent $C_{1} \pi_{1} C_{2} \eta_{2} \ldots c_{k} k_{k} n_{k+1}=D_{1}$. The ordered pairs involving 1 can arise tron pare ot colmar of the types $G_{1} \mathrm{~T}_{2}$ or $\mathrm{i}_{1} \mathrm{C}_{1+1}$ "

Take the pains of tine tepee $c_{i} R_{1}$. In R_{1}, the Element 1 occurs in the $(1+1)^{\text {th }}$ now. The element in the $(2+1)^{\text {th }}$ rots
 Fist to para of the type

$$
\begin{equation*}
(2,1),(4,1),(6,1), \ldots,(2 k, 1) \cdots \cdots \tag{6}
\end{equation*}
$$

Turning to pairs of the type $k_{1} c_{1+1} f=1,2, \ldots \ldots$. k. se note that in G_{i+2} the element 1 occurs in the $(p-1+1)^{\text {th }}$ row.
 of is which is the $\{p-i+1, p-(2-1)\}^{\text {th }}$ element of $C *$ This
 $2(2 k+1)-2 i+1=4 k-2 i+3\} i=1,2, \ldots \ldots k$.

Thue we get the ordered paire
$(2 k, 1),(2 k-2,1),(2 k-4,1 \%, \ldots+(4,1),(2,1) \cdots-\cdots-(7)$
We note that (6) anc (7) are identical. Thus in the row of D_{1}. that is in the colurns of ${ }_{1}$. Cach of the pases in (7) oceurs twice.
 Here also the arderge pairs Involving 1 oricet fron paire of column of the type $\sum_{1} c_{i+1}, \frac{2}{}=k+1, k+3, \ldots+2 k$ and of another type $C_{3} P_{1}, 1=k+2, \ldots \ldots 2 k+1$.
mate pairs of the tyoe $f_{1} c_{1+1}$. $1=k+1$, ..e. $2 k$. In C_{i+1}, the element 1 ocours in (poi+1) th row. The cocresponding alement of R_{i} ts the $(p-i+1, i)^{\text {th }}$ of R, whicin 1a the $\{p-1+1,3-\{\hat{x}-1\}\}^{\text {th }}$ elareme of G ana this is $(p-i+1)+(p-i+1)-1=2 p-2 i+1,4=k+1, \ldots+2 k$. Thys gites rise to the ordered paite

$$
\begin{equation*}
(2 k+2,1)(2 k-1,1),(2 k-3,1), \ldots(5,1),(3,1) \tag{8}
\end{equation*}
$$

Taking the pains $C_{4^{2}}{ }^{2} 10 \mathrm{k}+2, \ldots, 2 k+1$, the elerent 1 occurs in p_{1} in the $(1+1)^{\text {th }}$ row and the element in the
corresponding position of c_{1} is $21,1=k+2, k+3 \ldots \ldots, 2 k+1$. This gives rien to the oriered patrs

$$
\begin{equation*}
(3,1),(5,1),(7,1), \ldots \ldots,(2 k-1,1),(2 k+1,1) \tag{3}
\end{equation*}
$$

Thus in the rows of E_{2}. that is in the colwme of z_{1}. Bach of the ordered pairs in (3) occure twice.

Taking (6), (7), (8) and (9) togethes we see thet the columa of D_{1}^{\prime} and r_{1} give all ine patred esfecrencea involving 1 eractly twice.

We Further note that when in is ocg the columnt of ni and $; 1$ togecher alone will alve all the pairec aifferencea. Eince the cycilc laein square is symmetric in all the elemants whet is true of 1 la true for sny other number. Hence the proof for p is odd.

Exemples:-
(土) $p=5$, ie an ocd number.
Denote treatments by $1,2,3.4$ and 5. Gynlio latin square C rexumred end its mirror image f are

1	2	3	4	5	5	4	3	2	1
2	3	4	5	1	1	5	4	3	2
3	4	5	1	2	and $1=$	2	1	5	4
4	5	1	2	3	3				
5	1	2	3	4	3	1	5	4	
			3	3	2	1	5		

Unteriacing colume of c and R and sltelng in half anc wrining coivma as row of gech lozin oguare wa will get the sollowing design:

Square I

1	1	2	3	4	5	3	4	5	1	2
IT	5	1	2	3	4	4	5	1	2	3
TIT	2	3	4	5	1	2	3	4	5	1
$I V$	4	5	1	2	3	5	1	2	3	4
4	3	4	5	1	2	1	2	3	4	5

The above arrangement as a whole will give a folancod Sesign with 5 srewthents, 10 securnces and in 5 pertods.
(2) $p=6$ which is even and so two separate ceseigns are passible, which can se obtained by a sininar procedure and in fagten below:

Treatments are acnoted by 1.2.3.6.5, am a.
(1)

perions	I	$\pm \mathrm{I}$	ITE	IV	V	VT
$=$	1	3	3	4	5	5
TI	5	1	2	3	4	5
ITI	2	3	4	5	6	1
IV	5	6	3	2	3	4
7	3	4	5	6	1	2
ys	4	5	6	\ddagger	2	3

(ii)

Perionia	I	$I I$	$I T I$	$T V$	Y	$Y I$
$I V$	4	5	6	1	2	3
$I I$	3	4	5	6	2	3
$I T$	5	6	1	2	3	4
$I V$	2	3	4	5	6	1
V	6	1	2	3	4	5
$V I$	1	2	3	4	5	6

(3) $p=7$.

If we cenote the trevtrments by 1,2,3.4.5,6 and 7, the reguired design with 7 periods and 14 treatrient seguences is
Square I (Sequences) Equare It

I	1	2	3	4	5	6	7	4	5	6	7	1	2	3
II	7	1	2	3	4	5	6	5	6	7	1	2	3	4
Tis	2	3	4	5	6	7	1	3	4	5	6	7	1	2
IV	6	7	1	2	3	4	5	6	7	1	2	3	4	5
V	3	4	5	6	7	1	2	\%	3	4	5	6	7	1
$V I$	5	6	7	1	2	3	4	7	1	2	3	4	5	6
VIT	4	5	6	7	1	2	3	\pm	2	\%	4	5	5	7

(4) $p=8$. Treatments are denotec by $1.2 * * *$. 2 . sunce p is even there are two squares each of whin whll give balancen design with s creatmants, 0 wequences and 9 geriocis.
(i)

Periods	Σ	IT	EIT	TV	V	VI	VII	VITI
I	1	2	3	4	5	6	7	8
\pm	3	1	2	3	4	5	6	7
TTI	2	3	\checkmark	5	6	7	6	1
IV	7	8	1	2	3	4	5	6
v	3	4	5	5	7	8	2	3
VI	6	7	3	1	$?$	3	4	5
vis	4	5	6	7	3	1	3	3
VTIT	5	5	7	9	1	2	3	4

(ii)

Periods I II III IV V VE VII vixit

I	5	6	7	B	1	2	3	4
II	4	5	6	7	3	1	2	3
525	6	7	θ	1	2	3	4	5
TV	3	4	5	6	7	8	1	2
\forall	7	8	1	2	3	4	5	6
V3	2	3	4	5	6	7	8	1
VIT	3	1	2	3	4	5	6	7
VITI	1	2	3	4	5	6	7	8

Nethoo 2.

This method of construction is by using orthosonal latin squares. This can be steted in the form of theoren. Theorem:- In a set of (s-1) arthogonel latin squares of order ex 5 , each treatment Follows each other treatwent exacely ($\mathrm{d}-1$) eines.

For the prook of this theoren we require the follo ing prelininary ideas dnd iempa.

Let us consider the orthogonal latin mouares of orcer 3 and 4. They are

0	1	2	0	1	2
1	2	0	2	0	1
2	0	1	1	2	0

and

0	1	2	3	0	1	2	3	0	1	2	3
1	9	3	2	2	3	0	1	3	2	1	0
2	3	0	1	3	2	1	0	1	3	3	2
3	2	1	0	1	0	3	2	2	3	0	1

Let $\lambda_{1}^{(3)}$ be the sum of arrangemente showing the numbers preceeding i in 3×3 latin square and $A_{i}^{(4)}$ siniler sum in the case of $4 x 4$ orthogonal latin squareg. Then $A_{y}^{(3)}=\left[\begin{array}{lll}- & - & 2 \\ - & 2 & -\end{array}\right]+\left[\begin{array}{lll}-1 & - \\ - & - & 1\end{array}\right]=\left[\begin{array}{lll}- & 1 & 2 \\ - & 2 & 1\end{array}\right]$ (By matrix

$$
\begin{aligned}
& N_{i}^{(3)}\left[\begin{array}{lll}
0 & - & - \\
- & - & 0
\end{array}\right]+\left[\begin{array}{lll}
- & - & 2 \\
2 & - & -
\end{array}\right]=\left[\begin{array}{lll}
0 & - & 2 \\
2 & - & 0
\end{array}\right] \quad \begin{array}{l}
\text { (by matrix } \\
\text { adation) }
\end{array} \\
& A_{2}^{(3)}=\left[\begin{array}{lll}
- & 1 & - \\
1 & - & -
\end{array}\right]+\left[\begin{array}{lll}
0 & - & - \\
- & 0 & -
\end{array}\right]=\left[\begin{array}{lll}
0 & 1 & - \\
1 & 0 & -
\end{array}\right] \quad-20- \\
& x_{0}^{(4)}=\left[\begin{array}{cccc}
- & 1 & - & - \\
- & - & 3 & - \\
- & - & - & 1
\end{array}\right]+\left[\begin{array}{llll}
- & - & 2 & - \\
- & - & - & 1 \\
- & 2 & - & -
\end{array}\right]+\left[\begin{array}{llll}
- & - & - & 3 \\
- & 2 & - & - \\
- & - & 3
\end{array}\right]=\left[\begin{array}{llll}
- & 1 & 2 & 3 \\
- & 2 & 3 & 1 \\
- & 2 & 3 & 1
\end{array}\right] \\
& s_{1}^{(4)}=\left[\begin{array}{cccc}
0 & - & - & - \\
- & - & - & - \\
- & - & 0 & -
\end{array}\right]+\left[\begin{array}{llll}
- & - & - & 3 \\
- & - & 0 & - \\
3 & - & - & -
\end{array}\right]+\left[\begin{array}{llll}
- & - & 2 & - \\
3 & - & - & - \\
- & - & - & 2
\end{array}\right]=\left[\begin{array}{llll}
0 & - & 2 & 3 \\
3 & - & 0 & 2 \\
3 & - & 0 & 2
\end{array}\right] \\
& x_{2}^{(A)}=\left[\begin{array}{cccc}
- & - & - & 3 \\
1 & - & - & - \\
- & 3 & - & -
\end{array}\right]+\left[\begin{array}{llll}
0 & - & - & - \\
- & 3 & - & - \\
- & - & - & 0
\end{array}\right]+\left[\begin{array}{llll}
- & 1 & - & - \\
- & - & - & 0 \\
1 & - & - & -
\end{array}\right]=\left[\begin{array}{llll}
3 & 1 & - & 3 \\
1 & 3 & - & 3 \\
1 & 3 & - & 3
\end{array}\right] \\
& A_{3}^{(4)}=\left[\begin{array}{llll}
- & - & 2 & - \\
- & 0 & - & - \\
2 & - & - & -
\end{array}\right]+\left[\begin{array}{llll}
-1 & - & - \\
2 & - & - & - \\
- & - & 1 & -
\end{array}\right]\left[\begin{array}{llll}
0 & - & - & - \\
- & - & 1 & - \\
- & 0 & - & -
\end{array}\right]=\left[\begin{array}{llll}
0 & 1 & 2 & - \\
2 & 0 & 1 & - \\
2 & 1 & 1 & -
\end{array}\right]
\end{aligned}
$$

In general is (am) orihogonal latin squarea of order z are considered, asouning that the firgt row of every latin
 which $j^{\text {th }}$ columa $i s$ bionk and equery row will contain $2.2 \ldots \ldots$....s (except j) exactly onee.

Lemar-1:- Let there be (smin orthorgomal latin scuaros of order $s x 3$ in numbers 1 to s. The eiser rog of eech fatin
square has numbers $1.2, \ldots+0$ in that order in the colums . -ake any ($s-1$) numbers cxcent j, one in each of the ($s-1$) colums ocher then the $j^{\text {th }}$ colum of one of the orthogonal latin squares p_{i}, say. If these numbers are distinct a set of elements which fall on these numbers when the (s-1) orthogonal lutin squarea are superimosed on p_{1} will contain each of the ($s-1$) numbers (other than 1) ($s-2$) times.
troos:- tet $a_{1}, a_{2}, \ldots, a_{j-1}{ }_{j+1} \ldots \ldots a_{s}$ bet the numbers in the first, $\ldots \ldots(j-1)^{\text {th }},(j+1)^{\text {th }}, \ldots \ldots s^{\text {th }}$ columns of p_{1}. Agsume that these are gistinct. then $(s-1)$ orthogonal latin squares are superimposed on p_{1}, the numbers other than which fall on
a_{1} are a_{2} and otiver ($s-2$) numbers other than j;
a_{2}. are a_{2} and other ($5-2$) number other than j;
etc.
in the set so obtatred each of the numbrs other than 1 oecur exactly (s-2) timco.

```
Hote - 1:- If he take any one row without 1 the lema will be satisficd.
```

Lemma - 2s-Let there be (s-1) ofthogonal latin equares of
 each latin square has numbers $1,2, \ldots, s$ in that order in the s colums. Take any one os the orthosonal letin squares.
say Pi, and take (s-I) mumbers other than 3 in (s-i) colums excluping the $j^{\text {th }}$ colum. If the set of elements unch foll on these numbere, when the (smi) orthogonal latin marmes are superampozad on F_{i}. oontain each of the nurberg other than j equally frectontly. the (omi) nombers taken in P_{i} are all disitnct.

Eroof:- bie shall astanlsh the result by outaining a contradiction. If possible let there be two fientical number. aty a_{1}, a_{1} arong the (s-1) nurbers taken in D_{1} in ($s-1$) coluns oches thon the $j^{\text {th }}$. Let us agsume, without hass of genarality that ($a_{1}, \$_{1}$) occura in the firet two columas. It then follows that when (s-1) oxthogonal latin aguares are superimposed on p_{1} the numbers which Eall on z_{2}
 In the second colum are a_{1} and (sminumbers other than 1 . In the first of these i will not be present and in the secons 2 vill noe beypeagnt. Jhus in the overall set of elementa *1 will be pregent (a-1) tures and cach of tive other numbera
 contain all nuabers ocher than jo ecruridy Erequentily, the cribogonal set fron P_{i} fhoula contein (emil distinct nurbere.
 lema - 2 will be true 15 each of the ($s-1$) distinct numbers occurs ecually freguently.

Wow take one of the orthogonal lotwn suares ${ }_{2}$ and replice all merbers other then those innediately parecedirg j by zero. Benote the square so obtaned by $D_{1}, 1=1,2 \ldots,(5 m 1)$.
 Let $D=D_{1}+\ldots+D_{t-1}$. Then n as a scuare with $j^{\text {th }}$ column and last row containing zero only, In othar places we get elements whinh gracece fo pupermpose the ($s-1$) orthocionel latin apudres over the sutware and obtein the aet of numbers, axclusing i.
 the nusbers other than j will occur equally Erequentiy in thas set ens therefore by leman- 2 the bostc set conststing of the non-zero elenents of 13 bill conteln each of the numbers 1. $2 . * \ldots$ e... ascepting j equally Erequancly.

Ereof of the theoren ssatsed:-

Ve shall donote fhe elements of the salola field
(sF ($9 x p^{n}$) where pis a prine by

$$
u_{0}=0, u_{1}=u_{1} u_{2} x \alpha, u_{3}=\alpha^{2} \ldots \ldots u_{s-1}=\alpha^{s} 2
$$

where o is a prinitive element of gital. Then if we put f_{0} Where J ic definer by $u_{2} a_{x}+u_{y} u_{j}$. In the $x^{\text {th }}$ row and $y^{\text {th }}$
 orthogonsi latin spuageg of arier s. In all the (smi) sumarem j occur in the $(1+1)^{\text {mit }}$ colum of the first row. Excepting this. Eor any given $:$

$$
\begin{equation*}
u_{i} u_{x}+u_{y}=u_{j} \tag{1}
\end{equation*}
$$

hes ($\mathrm{a}-1$) solutions. The elanent preceeaing f in the same colum when (i) holus true $45 \mathrm{~J}^{\prime}$ given by

$$
\begin{equation*}
u_{i} u_{x-1}+u_{y}=u_{j} \tag{2}
\end{equation*}
$$

Hence taidny the difEerence becwegn (1) and (2) we yet

$$
u_{i}\left\langle u_{x}-u_{x-1}\right\rangle=\left(u_{j}-u_{j}\right\rangle---\infty--
$$

since $u_{x} \neq u_{x-1}$ and $u_{j}{ }^{+} u_{j}$, the equetion (3) has a non-wero solution. Thc equation (2) hee execely (o-1) colutions for

 mandiately precest f. we have already sem that in this set cach of the (s-1) numbers other than f cecurs equaliy frequently. Thus cach surber preceede 1 exactly (smi) times in the (s-1: bethogonal latin squares.

Corollary - 1:- In (s-1) orthoyonal 1dtin scharex af orger s each numicr will precede othar numers exachiy ($\mathrm{s}-1$) tinas. The sescle sollows invedidely frou the croof of the theoren. Corollaryt 2:- Sinee every pair of creatmants occur the seme number of timea every segucnce will sccur the game number of tsmes.

Yapoles:-

(1) $=5$. The orthogonal latin stuares in thich the treatnents ex benoted by $0,1,2,3$ and 4 zet ziven below wheh an a hole will give the required bolanced design for 5 number of
treatments, with 20 treatracnt seguences and 5 periods.
(i)

0	1	2	3	4
1	3	4	0	3
2	4	3	1	0
3	0	1	4	2
4	3	0	2	1

(113)
end (IT)

0	1	2	3	4
3	0	1	4	2
4	3	0	2	1
1	2	4	0	3
2	4	3	1	0

(2) $s=7$. elamants of Gr $^{(7)}$ are $0,1,3,2,6,4,5$ anct the 6 orthogonal hatin squares of order 7 agez
(1.)

0	1	2	3	4	5	6
1	3	5	2	0	6	4
2	5	4	6	3	0	1
3	2	6	5	1	4	0
4	0	3	1	6	2	5
5	6	0	4	2	1	3
6	4	1	0	5	3	2

(112)

0	1	2	3	4	5	6
3	2	6	5	1	4	0
4	0	3	1	6	2	5
5	6	0	4	2	1	3
6	4	1	0	5	3	2
1	3	5	3	0	6	4
2	5	4	6	3	0	1

(v)

0	1	2	3	4	5	6
5	6	0	4	2	1	3
6	4	1	3	5	3	2
1	3	5	2	0	6	4
2	5	4	6	3	0	1
3	2	6	5	1	4	0
4	0	3	1	6	2	5

and (vi)

3	2	2	3	4	5	6
6	4	1	0	5	3	2
1	3	5	2	0	6	4
2	5	4	6	3	0	1
3	2	6	5	3	4	0
4	9	3	1	6	1	5
5	6	0	4	2	1	3

驚chog =3:-

This method of construction of uesigns that are bulanced for first orier resitudy effecta for treatments wilh t sequences axt ($\varepsilon-1$) (t-2) +1 periods is as follows:
 the form (i, j) where i axd j are non-uere eleante of the
resicue class modulus $x, i \neq j$ and $1+j \neq 2$ mod (t). Erom
 $j=1+1,1+2, \ldots \ldots(t-1-1),(t-1+1), \ldots \ldots(t-1)$ when $i<\varepsilon / 2$ for t even or $\{<(t+1) / 2$, for t oda and $j=(1+1) \cdot(1+2)$ (t-1) when $i \geq t / 2$ 玉or t even or $2 \geqslant(t+1) / 2$, t ond. Now for

 $i<(t+1) / 2$. t odds and the sequence $1(\hat{i}+1) i \cdots+1(t-1) i$ when $2 \geqslant t / 2 t$ even or $1 \geqslant(t-1) / 2$. t acit. This ls to be Eoume for $4=1,2, \ldots \ldots(t-2)$. Now eut off the intital 1 from the seguence
 just atier the number i. Thits io to be sone tor $2=2,3, \ldots \ldots$ (t-2). mincn replace the inntial 1 in the sequance by the zair (1.1) a dhen $t \neq 1$ ever, replace the (t-3) numberg
 (t-2, t-2) regpectively, Then $t=4$. replace $3 \mathrm{D}_{\mathrm{y}}(3,3$) ant

 whoce elemont in the $p^{\text {th }}$ xom and th colum is given by $a_{x_{1}}=(p-1)+\sum_{j=2}^{q-1} x_{j}$ whare $x_{0} \operatorname{mog}_{2} 1 \leqslant p \leqslant t, 1 \leqslant q \leqslant(t-1)(t-2)+1$
 of A^{\prime} are teken as periovs ant colwhas of $A *$ are taken as sequences we aill get belanced detagn whtch will be balenced for the Eirst orker restrual efects, with t teeatmenct. t struences and $(t-1)(t-2)+1$ periode.

Exarmex:-

(1) $t: 4$ *

Denote treatranter by $0.1+2$ anc 3. Tossible ments of the
 and (3.2) and possible triplets are $\{1,3,1$ and $(2,3,2)$ and corcemponcing sciquences are 121 and 232. Inacriting thas sequences in tha basic senmence tal we get the equance 12321. Replecang 1 b.i (1, 1) and 3 by (3,3) we wil get the sequence $\left\{x_{j}\right\}$, as 1123321. Now Eoming the netrix $A=$ (a ${ }^{2}$, Where $a_{p x^{2}}(p-1)+\sum_{j=0}^{q-1} x_{j}, x_{0} a, 1 \leqslant p \leqslant 4,1 \leqslant q \leqslant 7$, we get

$$
A=\left[\begin{array}{lllllll}
0 & 1 & 2 & 3 & 3 & 2 & 3 \\
1 & 2 & 3 & 1 & 0 & 3 & 1 \\
2 & 3 & 0 & 2 & 1 & 0 & 2 \\
3 & 0 & 1 & 3 & 2 & 1 & 3
\end{array}\right]
$$

Henct the required derign is

sequencess

Periods	\underline{L}	$\underline{3}$	ITI	IV
I	0	1	2	3
II	1	2	3	9
T	2	3	0	1
IV	0	1	2	3
V	3	0	2	2
VI	2	3	σ	2
Vİ	0	1	2	3

 gaire satizeying the required somitions are (1.2). (1.3*. $(2,4),(2,1),(3,1),(3,4),(4,2)$ ane $(4,3)$. Traplets Eormed
 Fequares bosed on these trigiets are 12133,262 anc 343. Ingerting the last two aequences in the tesic sequence te get the sequence 124213431. Feplacing 1 by (2.1). I by (3.7). 3 by (3,3) and by (4.4) Eec get the sexysnce 1324221334431. Then che matrix $A=\left\{a_{p x}\right\}^{\prime}$ where $a_{p}=\{p-1\}+\sum_{j=1}^{n=1} x_{j}$ ia

$A \cdot$| 0 | 2 | 2 | 3 | 4 |
| :--- | :--- | :--- | :--- | :--- |
| 1 | 2 | 3 | 4 | 0 |
| 2 | 3 | 4 | 0 | 1 |
| 4 | 0 | 1 | 2 | 3 |
| 3 | 4 | 0 | 2 | 2 |
| 0 | 4 | 2 | 3 | 4 |
| 2 | 3 | 4 | 0 | 1 |
| 3 | 4 | 0 | 2 | 2 |
| 1 | 2 | 3 | 4 | 0 |
| 4 | 3 | 1 | 2 | 3 |
| 3 | 4 | 0 | 1 | 2 |
| 2 | 3 | 4 | 0 | 1 |
| 3 | 1 | 2 | 3 | 4 |

In the above arrangement rows rwprezent petiods and columos represent treatment sequences.
(3) $t=6$. Treatmenta are $0.2,2.3 .4$ and 5 and poselble pats are $(1,2),(1,3),(2,4),(2,1),(2,3),(7,5),(4,1),(4,3)$, (4,5). (3.2). (3,2). (3.4), (3,5), (5,2), (5.3) and (5,4).
 $(3,4,3),(3,5,3)$ end $(4,5,4)$. securaces anenerwad by theae criplets are 1213141: 2325 ? 34353 and 454. Tneexang the last three servencer in the sergence $121314{ }^{2}$ feget tho spchance 12325913435314541 . Now remacing the elements 1.2 .4 and 5 respectively sy vars we get the securnce $\left\{x_{j}\right\}$ Ag 112322552134435314541 . Kow eqefinf $\hat{N}=\left(a_{\mathrm{aq}}\right)$, where $a_{p q}=(\mathrm{pel})+\sum_{j=6}^{q-1} x_{j}$, fe can get h' as

n	1	2	3	4	3
1	2	3	4	5	0
2	3	4	5	3	1
4	5	0	1	2	3
1	2	3	4	5	0
3	4	5	0	1	2
5	3	1	2	3	4
4	5	0	1	2	3
3	4	5	0	1	2
5	2	1	2	3	4
0	1	2	3	4	5
3	4	5	7	1	2
1	2	3	4	5	7
5	3	1	2	3	4
2	3	4	5	2	1
1	2	3	4	5	0
4	5	0	1	2	3
5	0	1	2	3	4
3	4	5	0	1	2
3	3	4	5	2	1
0	2	2	3	4	5

(4) $t=7$. Treaumencs are denoted by $2,1,2,3,4,5$ and 6 . Then by a similar procedure as in the above cases we can get the regutred design as rollows:-

0	1	2	3	4	5	6
1	2	3	4	5	6	0
2	3	4	5	6	0	1
4	5	6	0	1	2	3
0	1	2	3	4	5	6
2	3	4	5	6	0	1
4	5	6	0	1	2	3
1	2	3	4	5	6	2
5	6	0	1	2	3	4
0	1	2	3	4	5	6
6	0	1	2	3	4	5
5	6	0	1	2	3	4
0	1	2	3	4	5	6
1	2	3	4	5	6	0
4	5	6	0	1	2	3
0	1	-	3	4	5	6
5	6	0	1	2	3	4
3	4	5	6	0	1	2
6	3	1	2	3	4	5
5	6	0	1	2	3	4
1	2	3	4	5	6	1
2	3	4	5	6	3	1
6	0	1	2	3	4	5
4	5	6	0	1	2	3
1	2	3	4	5	6	0
0	1	2	3	4	5	6
4	5	5	0	1	2	3
5	6	0	1	2	3	4
3	4	5	6	0	1	2
2	3	4	5	6	0	1
0	1	2	3	4	5	6
0	1					

 the matrix the can get the rçuirea coatgn as given below:

I	π	TEI	IV	v	Vx	YT	RTY
4	5	6	7	9	0	1	\%
7	E	0	1	3	3	4	5
3	0	1	2	3	4	5	6
3	4	5	6	7	\square	n	1
0	1	2	3	4	5	6	7
4	5	6	7	8	0	x	2
2	3	4	5	6	7	8	0
6	7	a	0	1	2	3	4
5	6	7	8	0	1	2	3
7	1	2	3	4	5	6	7
1	2	3	4	5	6	7	8
6	7	9	0	1	2	3	4
3	4	5	6	7	9	0	1
8	9	1	2	3	4	5	6
6	7	5	5	1	2	3	4
3	3	4	5	6	7	8	0
1	2	3	4	5	6	7	6
6	7	θ	0	1	2	3	4
7	3	\%	1	2	3	4	5
4	5	6	7	8	0	1	2
2	3	4	5	6	7	5	9
9	0	1	2	3	㙃	5	6
7	3	9	1	2	3	4	5
4	5	6	7	3	0	1	2
5	6	7	9	3	1	z	3
3	4	5	6	7	8	0	1
${ }^{2}$	3	4	5	6	7	3	0
0	1	2	3	4	5	6	7

Fiere also row rerresent vericos and colums rentement troatrant secamest.

RETHEXES

 nethoc can be given as follous:

 Shach code thath the tradt wert in then

$$
x(y-1)=\lambda(y-1) \text { LE } r=\lambda
$$

$$
\begin{aligned}
& \varepsilon_{i}=w p_{i}=v \sum_{(2)}^{a}(2)-E E_{1}
\end{aligned}
$$

Hence i_{1} ean also ac etthated.

$$
\begin{aligned}
& \text { now } \frac{T_{i}+v_{i}^{2} E_{i}}{\left(v^{2}-v-3\right) x}=\frac{v(v-1)}{\left(v^{2}-v-2\right)} \mu+x_{i}
\end{aligned}
$$

$$
V_{i}^{(r)}=\pi \sigma^{2}
$$

ance ${ }_{2}$ a the total on ouservetione hin jextoris just

inhenendent on envetrons. Fasce

$$
\left.y o_{q}\right)=x(v-1) \sigma^{2}
$$

 Fosecez

$$
\begin{aligned}
& V\left(\varepsilon_{2}\right)=z v \sigma^{3}
\end{aligned}
$$

to then. Eintiarip

$$
\left.\left.\operatorname{Cov}_{1} 7_{i}, f_{1}\right)=r \sigma^{2} ; \operatorname{mov}_{1}, S_{5}\right)=2
$$

sience

$$
\begin{align*}
\operatorname{Cov}\left(O_{i}, O_{j}\right) & =\operatorname{Cov}\left(T_{1}+v R_{i}+S_{i}, T_{j}+v R_{j}+S_{j}\right) \\
& =(4 v+2 r) \sigma^{2} \quad \ldots-- \tag{3}
\end{align*}
$$

Substituting \{2\} and (3) in (1) and simplisying we can get

$$
V\left(x_{1}-r_{j}\right)=\frac{2 y}{r\left(v^{2}-v-3\right)} \sigma^{2}
$$

We have

$$
\begin{aligned}
& \left(v^{2}-v-1\right) T_{i}+2 x_{i}+s_{1}=v\left(v^{2}-1\right) x \mu+v\left(v^{2}-v=-2\right) x t_{i} \\
& \because \quad \frac{\left(v^{2}-v-1\right) s_{1}+v p_{i}+s_{i}}{v\left(v^{2}-v-2\right)}=\frac{\left(v^{2}-1\right)}{\left(v^{2}-v-2\right)} p+v_{1}
\end{aligned}
$$

$$
\begin{align*}
& V\left(L_{I_{i}}-t_{j}\right)=\frac{v\left(L_{L_{i}}\right)+V\left(L_{i}\right)-\Sigma \operatorname{Cov}\left(L_{i}, L_{i}\right)}{v^{2} r^{2}\left(v^{2}-v-2\right)^{2}} \quad-\cdots- \\
& \text { now } V\left(L_{i}\right)=v\left[\left(v^{2}-G m 1\right) I_{i}+V R_{i}+s_{i}\right] \\
& =\left[\left(v^{2}-v-1\right)^{2} v x+v^{2}(v-1) x+v x+2\left(v^{2}-57+1\right) x\right] \sin ^{2}-(5)
\end{align*}
$$

simatariy

$$
\begin{equation*}
v\left(L_{j}\right)=\left[\left(v^{2}-v-1\right)^{2} v x+v^{2}(v-1) x+v x+2\left(v^{2}-v-1\right) r\right] \sigma^{2}---(6) \tag{7}
\end{equation*}
$$

$\operatorname{cov}\left(I_{i}, I_{j}\right)=\left[2 v^{2} r(v-1)+2 r\left(v^{2}-v-1\right)\right] \sigma^{2}$
substituting (5). (6) 2nc (7) in (4) and singlifying we can get

$$
v\left(t_{1}-t_{j}\right\}=\frac{2\left(v^{2}-v-1\right)}{v\left(t v^{2}-v-2\right)} \sigma^{2}
$$

Here tha sum of Equares sue to resibual eqeects acjumted for Ahrect 昔fects is

$$
\begin{aligned}
& \sum_{1}\left(F_{2}+\nabla R_{i}+F_{i}\right)^{2}-\frac{\left.\sum_{i}\left(T_{2}+V p_{i}+s_{i}\right)\right]^{2}}{\psi} \\
& = \\
& x v\left(v^{2}-v-2\right)
\end{aligned}
$$

 cfecct is

$$
\frac{\sum_{i}\left[\left(v^{2}-v-1\right) T_{i}+v R_{2}+s_{i}\right]^{2}-\frac{\left.\left[\sum_{i=1}\left\{\left(v^{2}-v-1\right) v_{1}+v q_{1}+s_{1}\right)\right\}\right]^{2}}{v}}{v v^{2}\left(v^{2}-v-1\right)\left(v^{2}-v-2\right)}
$$

The error sum of squareg can ine obtained ag

$$
\begin{aligned}
& \text { - Ss dut to period x scuare interaction } \\
& \text { - } 33 \text { Detween ansrals within syuars }
\end{aligned}
$$

$$
\begin{aligned}
& \text { - ss due to civect effects (uncajusiedy }
\end{aligned}
$$

Here the ditherent sun of soumes liko ant of oquares betwean sixueres. sum of souares betrean pariods. sua os squares due to period x squate interamion, sua of stwares between anfmals within oruazes and gum of scuares dut w direct atsceta

the andzots of variance tajle will take the Eolloring Eorna

AN0V入

Source diE
setween gavares ($x-1$)
Hetween periscie \{yon\}
Seriod steruere
$(x-1)(y-1)$

within eruares rivol\}

Error

Totel $x y^{2}-1$

21ustrative mannleg:

 cows in an experiment ooneboted ly kxtanankutiy (1909) at
 corchiter to othry the sfrect of cortain commerchal compounted feeds on milk promution in cattze. The anfrals wate atvided into two sets of thace ach, ewoh animal in a

start wth. The total ouration of the experiment with ech fecd has 63 days divided into tincee rquat poriode of 21 days. me experimental fesinn aboptex in thit case was the ${ }^{23}$ gitchwover design" ac piven helow:-

Set

periods	i	2	3	4	5	6
I	A	B	G	A	B	C
$I n$	B	C	A	C	A	$\#$
$I I$	C	B	B	D	C	λ

Here $A=A 1$ Drand cattia fech; $n=H$ nolevar catele Eear and $G=$ Eushti Gatele feed.

Ifilk ylelde in kg of the indivicuan cous for 3×3 werks are given below:

Eet I
Antmal No. 853 825 747
$A \quad \mathrm{C}$
Pectoci \quad B4 77 93
$85 \quad 104105$

merios II	E		λ
	92		96

96
$\begin{array}{ccc}6 & A & 0 \\ 92 & 100 & 119\end{array}$

97	115	129

snalygis:

Totals for mutures	: $a_{1}=723 \% \partial_{2}=925$					
Tatale for secuences	: $s_{13}: 255$	199	269	274	319	332
Ccanc fotel	F $0=1648$.					

1	533	399	531	2231	4363
2	579	349	543	2169	4495
3	536	372	574	2326	4370

$C F=150983.55$
Resinkall 55 (arjusted) $=92.861$ 3
Direst si (ugjusted) $=73.2167$
Dract $5 S$ (unatjusted) $=290.7333$

ss between perioda $=44.1156$
Square x periods $5 s=150.1056$
56 due to squares 2266.3944
Totel ss $m 4444445$
Exror $55=131.4618$

A齿OV为

source	Ef	50	\%	F
metween aquares	1	2366.6944	2566.8984	63.97**
Eetween pericaus	2	44.1165	22.2593	T. 67
Period x Scuara	2	250.1356	75.052\%	2.2 .3
satmeen andmala withan squares	4	1532.2215	383.0554	11.65*
Disest (acjusted)	2	78.2167	39.1094	1.19
Regixatal (atojusted)	2	93.0623	49.4307	* 5 \%
exror	4	231.4619	32.9655	
Total	17	444**4445		
	$=$			¢xamem
$V\left(x_{i}-I_{j}\right\}=24.6491 ; V\left(t_{i}-t_{j}\right)=13.694$.				
Enference:- The aboue anslyats revedise that there is no				
signisicant difference betwegn direet effcets of treatments				
as also for reslcual effects of treatments \%ut signieican				
Qifternnce betwecn seuarna and significsnt differance between				
animals within subares are found.				

(2). The zollowing ure the data coilected in four yeave from an experiment conouctea at epert. Kannara in Eown periods to Etudy the especte of Inter and mixed croping of banana in nemanut garcen.

Periods Raplication I Realiastion zr

75-76	$\begin{gathered} A \\ 7.33 \end{gathered}$	$\frac{5}{6.29}$	$\stackrel{6}{9.76}$	$\begin{gathered} 5 \\ 10.03 \end{gathered}$	$\begin{gathered} G \\ 13.13 \end{gathered}$	B_{01}^{5}	12.03	$\stackrel{3}{14.47}$
76-77	$\begin{gathered} D \\ 13.14 \end{gathered}$	$\begin{gathered} n \\ 16.56 \end{gathered}$	$\begin{gathered} \text { E } \\ 13.96 \end{gathered}$	$\underset{12.04}{C}$	27.40	$\stackrel{C}{87.23}$	$\begin{gathered} D \\ 13.47 \end{gathered}$	$1.3^{3} 5$
77-78	$\begin{gathered} B \\ 7.49 \end{gathered}$	$\begin{gathered} c \\ 13.39 \end{gathered}$	$\stackrel{\mathrm{D}}{9.14}$	$\begin{gathered} { }^{2} \\ 13.39 \end{gathered}$	$\stackrel{0}{0.01}$	13.44	$\begin{aligned} & 3 \\ & 8.05 \end{aligned}$	${ }_{12}^{c}$
75-79	$\stackrel{C}{8.50}$	$\stackrel{0}{12.09}$	$10 . \begin{gathered} A \\ 10.34 \end{gathered}$	$\frac{E}{3 \cdot 40}$	$\begin{aligned} & x_{2}^{2} \\ & 9.20 \end{aligned}$	31.34	19.61	9.57

Analysis:
Total for squares $: 0_{1}=171.63: a_{2}=191,37$
Total for sequences:

$$
S_{i j} 36.36 ; 48,30 ; 42.1 ; 44.35 ; 47.74 ; 47.22 ; 46.96 ; 49.65
$$

Grond Total:0 $=363$

$\begin{aligned} & \text { freatment } \\ & \text { No (i) } \end{aligned}$	${ }_{1}$	F_{1}	S_{1}	$x_{i}+v^{2} i_{i} s_{i} \quad\left(v^{2}-v-1\right) \gamma_{i}+v k_{i}+s_{i}$	
1	33.53	72.80	89.84	474.57	1499.37
2	99.29	69.37	91.87	453.64	1336.54
3	97.72	76.74	83.32	490.00	1465.20
4	83.46	6\%*35	97.97	433.83	1273.43

[^0]
sG fue to rqueres $=12.1772$
ssi Detiaen periocis $\Rightarrow 117.3756$

Total $58=269.3234$
neanmas 5s（ad jusced）$=17.3544$
sirect 58 （ackusted）$=23.9673$
Furect ss（uncajusted）$=14.4332$
Error $\operatorname{SS}=\$ 3.5495$

Source	dE	58	枟家	z
Eetweca ecyurce	1	12．2772	12.1772	2.49
Between perious	3	117．3756	39.1250	8.92
Ferlod 3x actuare	3	28．6029	9.5343	1.95
Betreen plants within cqueres	6	30.3307	3.3985	0.69
Pirect（xajustea）	3	23.5673	7.9893	1．64
Ficsidual（ajusted）	3	17．954	5.9515	1.22
Eras	12	59.5495	4.3791	
Total	31	269．3294		

车

$$
\forall\left(r_{1}-r_{j}\right)=1.9516 y \quad \forall\left(t_{1}-t_{j}\right)=1.3418
$$

Inference：Fron the above analysis of variunce it is fourm
that the treatmentar are herrogenous with reegeot to atrect
 difseremoe between perzod effecte．

Discussion

DTEXUSEMOH

W1111ans (1949) gave a special method of construetion of badanced changeover designs balanced for Eheat order feriduala try the method of moxule difeerences. In the Eresent invegtigation sintlax dengnn have been construeted Bswed on dyelice latin aguaces in the line of Amble (1977). It was found bhat the construction baed on cycilc Imtin *quares aleo shown balance for first order residxal
 tho cases were considered. using even amd ond nuther of treatnents. While emparing the two methoss vian sifiliuma wothot and cyelic latin souere method, it was Found thet a destgn wid sais to be balanced for firet order mesidual EsEects 18
(i) each treatrent is preceedea by each other treatnent equally frequently: and
(is) each bredtment Ehall oseur equally Erequently at edeh position in oxder of apolication to the sites.
since query treatment ghoulc occur in all mbeg it followed thet the nuriver of sites ghall be multsple of the number of treatments. tre should assume thet there were n tractrenta and we represent them by residue class maculo n. If, now, vis arrange the first row of a square in ouch a way thet the (n-1)
adjacent differences are $1.2, \ldots .$. ($n-1$), itatelf with ($n-1$) rown obtained by adding 1 to the previoug row would be a
 occur equaliy frequentiy, thua showing that every treatment sould be preceeded by wery other treatmant.

How consliex a cyclic latin square in $3.1 .2$. ie. then $n=2 m$. Then

0. $2 m-1,1,2 m-2,2,2 m-3, \ldots, m+1, m-1, m$

The differencea arising from nexghouring pars are

$$
2 m-1,2,2 m-3,4,3 n-5, \ldots, 2 m-2,1
$$

and these are all the (2n-1) duffarence in the morule,

Further from the construction of eft follews thet swery re"
 that in the rown of a every orderad mair ocour exactiy men.
 cosstruction by cycinc letin equares when in is evan.

Tet us now take n, an orf intane, gay $n=$ mot. The
 anc the cyolic latin equare in these elonencg is

Theresore the rezlection R of C is

 3. $2 \pi, 1,2 m-1,2,2 \pi-2, \ldots, m-1, m+1, \pi$

The dufenences axicing from the no-ribourinc xirs are $2 m, 2,2 m-2,4, i^{2}-c_{1}, \ldots, 2,2 m$

That is all even elements of the module oocuring exactly twice. Consider " 1 where

$$
s_{2}=R_{m} C_{m+1} n_{m+1} C_{m+2} \cdots P_{2 m-1} C_{2 m} R_{2 m}
$$

Its Eirst row is

$$
m, n+1, m-1, m+2, \ldots+1,2 n, 0
$$

The difecrences orlsiny frwa the nefgioouxtwy yafre are

$$
\text { 1. } 2 \mathrm{rm}-1,3, \ldots=*, \pi \mathrm{~m}-1,1
$$

that is all ocis elerente of the module occuring exactiy twice.
Be alao know thai cacti row of E_{1} is obtained by acciny 1 to the grevious xow. Purther we innow that the colurns of D_{1}^{2} and E_{1} give balancse design for the resxoual effects fith each treatrant following amon otirer twice. ztence the methed of module fistienances 19 3ams tise conotruction by cyclic intin square when n is ody also.

Hence the methor of movule itzferenceg given by billtams anc the rethod uggested in the present suudy through cyello latin stuareg were leading to the ame resurt fox both in is even and ofol. Eut it coukl be seen that the cyclic 13 tin stare method explained in the prement investigetion was ruch more exater then the retaod of differences. boch these destgn acooun for firat orger residials anc require n experinental umita end a poctods then n is even and it require an experimental urits and n periode then n ode

The second rethod explainad in the resent stuoy was bases on (m-1) orthogonal latin suuseg of orcer ne Thio wetho of conotruction could be eastly meate use of winen a is a prire or prime power. Here eswh treatment Eollowed each other treatrent exactly (nmi) timas. Hence in the gresent design the resuaual efreqts could be more effictently estinatec than the previoun demgne discusied. Thus when the reshoual cffects were equally important 9 S that of the firect effects thie geasg could be more appropriate.

The third methon attermeter in the mesent inventigation
 vieualised the estination of the residual effects upto seconc order. The analysta suggested by him was also very much eomolicated. In our rresent Investigation ve vere interested only in the adjustment of firgt order neainuals. This was achieved $x y$ making a deviation of hair*s fethod after forming the matrix a whose (pag th elenent vas given by the erycession

$$
(p-1)+\sum_{j=0}^{q-1} x_{j} x_{0}=0 ; 1 \leqslant p \leqslant t, 1 \leqslant q \leqslant(t-1)(t-2)+1
$$

Whare $\left\{x_{j}\right\}$ was obtained in the game maner as cxolained by Hair for the construction of desagna balanced for palre on rebinual effects. By using this deviss a generalised begitn fequiring e expertrentel units and (r-I)(t-2) 4 pertals in the seme of t treatmenta bas contrtuted. This denjgn would
be wasance Eow the Estet ercer residtals. Bhis conctruction aemed to de cuita sinde and gculd be encily unarstood. This type of design coald be castity adepted when the total gurution of the experament coubd we divicea indo inge number of merfoda of morter leagth.

The methos of aralysta wetroved in the present fnvestigation whe of very generel nature mich van zarelvan intuitive wetnox. Gut in the usud andysis suggested by astienent authore were based on the metind of fitttug constente Which was very cumbersone to put into practice. In the mesent
 Gue to direct afifots ajueted for resinual cifects and sum
 efgects sy usimy the reationsind

From all the above threa mathorts of investigation In the moesent study it could bu pagily geen thet pach ore was suwerlor to the correwonding exisiling designe in the Ilght of the pregme objectves. The andyste explatned in this fnveghigation was also stmple and easy to adont in coraxison to the exdening malygus.

Summary

A general method of construction ar designs that aze balanced for first order restubal efrects based on cyclic latin stuaras in the line of frole (1977) has been derivec. Bxamples af layout of this Gesian bave bean worked out in difforent cagos when the humber of treatrents are 5,6,7 anc 8.

A second method of construction of desi mas thet nre bolanced fox firgt order reatanul affacts, wien the numex or treatments is z prime nutar or rowaz of a prine nutbex. has been gexlained by the rule atn a set of (e-1) orthogonal 2otin squexes of order $s x$. each treatrent follons fach
 ot this type of designs have also becn warked ost for valuet of $\$ 3.4 .3$ and 7 (where a meing the number of treaxnenta).

A thins methex os construction of destigns balanced for First orber reajiual effecta nith more numise of periods havo Secn estabibsined based on the proccure given by Noir (1967). twout of such cieagns have bean sorted out for the numer of trectmente $=4,5,6,7,3$ and 9 . This gesions canotructed but
 efrecta.

A11 Lhe above methods hrve been comosued with the
corresponaling existing methoris given by deterent a ithors. Ths method of moxule differshees by thillans (19ab) wis
 enuares constructed in tinis investigetion.

A gencras intutive and gemy aethom of enalysia has beer cevased. Dy thit methot of andyas restiual and ditect exfects of treatments ean aleo wo easily estimater* inustrative aramples, one esch Erom agriculture are ansoisl exconce sector, have alno becn worked out.

Regencicms

 anct resules of a acries of experanemes to estsinate the repidual eftects of whothete. Englen I. Bgric. Sci. 38 (4): 655-619.

Anble. V. 4 . (1977). Stetistical tiethocs in ganel seiences. Indian Society of Aoricultural Statistice, New Deint「2. 380.

Atkinson. GaF: (1966). Desugn Eor sequences of treatments with carry-over affects. Bionetrics. 22 (2): 292-3n9.

Berenblet. I.I. (1964). Change-over deslgns with conrlete belance for first residual efsects. Eionetrycte 29 (4): 757-712.

Terenblut. I.I. (2967). A changemover deafon for testing a treatment sactor at four equally gpaced ievels. J. Roy seatist. Soc. 29 (2): 370-373.

Berenblut. 2. . (1967). The analysis of changewover sesugns with complete balance for first reaidual efsects. 5fometrice 23 (3): 573-530.

Eerenblut. T.F. (196引). Changemover designe balanced zor the linear component of first reaiduel effecta. Eionetrisa. 55 (2): 297-353.

Ferenblut. I.I. (1970). Treatment seruences malencea for the linear corponent of ressaual exfects. Blometrics. 29 (1): 154-156.
 suttohmuck crials. Rowa Agr. Expt Stan Research Eu23. 234.
 A couble changemover acatan for saixy catele feading exerrimets. IV Datry Sel. 24: $1937-1081$.
 Dh.Ley, Nent York.
*Cox, c.3. (1053). The analysis of jeen square tec.gne with individual ourvatures in ome tarcetion. I. Statist. Soc. 22 (0): 193-204.

Dey. A. and balechandron, Q. $\{9761$. A Ches of charem over destige balancer for firit residual aftects. In

pederer, i.f. (1967). Wxerimental designs. oxford ant TEA Publishing Co.. Nek Delhi. pro 544.
 changemover desxans. Gioneteics. 2g(1): 163-191.
*Fimey, z.J. and Outhwaitc. 'aD. (1955). Sertally balanced sequencos. Naturc. 175: 748.
*Fisher. FA. ard Yates. P. (1953). Ftatistical tobles for bfolonicst wriculumal n ne regscal resprech. Ouster and Eoyd, Jamburih. 6th Ed.

Roch, Gef. (1772). Ghe use of non-rarmetric methoce it the wtatstifeal analysis of the two perio: changeover desion. Rionetrieg. 20 (2): 577-584.
Lamiese. J.F. (1971). A note on certain typer of atolet Delanced for restual affects. yn wath getist.错 (4): 1438-1441.

Laces, fis. (1956). Switeh beck vriale for more than two treatments. I. Gairy Scs. 39 (2): 146-154.

Lucsis, H. . . (1957). Tatrameriox latin muare change-over designs . J. Raixy sod. 49 (3): 245m239.
 Dover publications, Rev Fork.

Manson. Jek. anc Hinkelmann. K. (1971). Changemoncr Gestigns eor eeating different treaternt factorg at several levels. Biometrics. 37 (2it 431-435.

Nair. R.C. (1967) , Sequencea busanced Eor paire of residuel effects. I. A"er. Statisw. Assoc. 62 (317): 255-275.
 I. Aesta sact 40: 375-35 3.
*petterson, H.E.(1951). Changenver frials. I. 点. Statist. צoce 13 (B$): 256-271$.
patterson, H.D. (1951). The congtruction of bolunees dmstign for experiments involving secuences af

 onsangenover designa. Bionetrigs. 15 (1) 116-13.
patberson. *iw. (1970). Non-adatititity in change-ovex fealens for a quantitative factor at four levels.

petterson. h.D. (1973). Quenoullie*s chamgemover aesigns. 3ionetrika. 60 (1): 33-45.

Ouenounlle, 4.H. (2053). The sesinn and manalyis of Experjments. Hefner publishing Co. Hew York.

5aha. Gexe (2972\}. On pertieliy balunoed change-ower

 19 (2): 2g6-3~4.
Sharna. V.K. (1932). Extramerion balanced chengemover

Shere. Van. and Trwin Duv. Eross (3961). Latin sawares to balance immediate residuals and other order effects. Hignetrics. 17 (3): 435-414.
*Sprott. DaA. (1954). Wole on balanced lncomplete block

raylor, 3. (9767). The velue of orthogonal polynomials In the analysis of change-over trials with datry cous. Sionetrics. 23 (2): 997-312.
 the estamation of restidual esfecta of treatmenta. Arguraitun I. Solemtific Eege 2 (A): 149m163.

* Originals not consulted.

DESIGNS BALANCED FOR RESIDUAL EFFECTS

By
SATHIANANDAN. T. V.

ABSTRACT OF A THESIS
 Submitted in partial fulfilment of the requirements for the degree of flaster of $\mathfrak{B x}$ ience (Agritultural $\mathfrak{Z x a t i s t i c s)}$
 Faculty of Agriculture
 Kerala Agricultural University

Department of Statistics
COLLEGE OF VETERINARY AND ANIMAL SCIENCES Mannuthy - Trichur
1984.

sermact

 that rergists for a rerion aftor bie aphitation of the treatment to reforrec to at resinhai afect of that treatmot.
 which will bulonce for fars orcer resicush fifeces to st t
 sein to le balmeer if every treathent followe everf btwe tresumentalig Emetumtiy.

 end te have shom the sumb arrantement is relanced ity上inat wrer resalual tifects.

The seend rethod of enratruction i- suger on the det y^{\prime}
 treasemes.

 the rocedure jiven by Nux (1~67) for the conetruction of

[^0]: (170,

