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CHAPTER 1

INTRODUCTION

During 1992, the United Nations Convention on Biological Diversity defined the term

"biodiversity" as "the variability among living organisms from all sources including, inter

alia, terrestrial, marine and other aquatic ecosystems and the ecological complexes of which

they are part; this includes diversity within species, between species and of ecosystems". At

present, the biodiversity of the world stands close to about 1.75 million species, without taking

into consideration the microbial species (Heywood and Watson, 1995). Reaka-Kudia (1997)

estimated it as around 5 to 120 million. A side by side comparison between terrestrial and

marine species reveals that, while about 1.5 million terrestrial species are known to humans

the number of known marine species stands at a mere 0.3 million (Groombridge and Jenkins,

2002). This draws our attention to the fact that there is a huge gap when it comes to the

knowledge about marine species and their distribution, as 90% of all laxonomic classes are

marine.

Corals are important marine species which form highly productive ecosystem in the

marine realm called coral reefs (Birkeland, 1997). By supporting a large number of species,

the reefs give a tight competition to the tropical rainforests in terms of biodiversity. Their

presence is one of the reasons for the settlement of people in tropical coastal areas and reef

islands (Ferrario et al, 2014). They are a source of livelihood to millions of people and they

also function as a major base of income in some of the developing countries. They are also

considered as a future refuge of the pharmaceutical industry (Spalding et al, 2001). They play

a vital role in providing protection to the coastal region from the waves by acting as a natural

barrier (Hearn 1999; Monismith et al., 2015; Harris et al, 2018). It is our duty to conserve

and protect this treasure. But the changing climate act as hurdle to our conservation strategies.

It affects every single coral badly which leads to the reduction of the reef complexity (Harris

et al, 2018).

Climate change can be defined as the change in regional or global patterns of climate,

especially the changes after the mid or late 20th century, mainly due to the release of

excessive amounts of carbon dioxide to the atmosphere by fossil fuels (Lineman et al, 2015).

Within the past 100 years itself, the temperature of the Earth elevated at a rate of 0.2 ®C per

decade (IPCC, 2017). During 1961 and 2003, the average warming of ocean layers to the

depths of 0 - 700 m was 0.1® C (Bindoff el al, 2007). The impacts of climate change can be



t  observed in different spheres such as agricultural Held, coastai areas, etc. It can increase the

intensity of natural disasters, can cause the extinction of species, the spread of vector-borne

diseases, etc. (Pandve, 2009). Climate change can also result In the redistribution of species.

Many marine species are changing their habitat due to climate change and it is predicted that it

may lead to an increase in the rate of extinction of species (Cheung et ah. 2010; Pereira et al,

2010; CahilIe/«/.. 2013).

Coral reefs are not an exception since they are very sensitive to global climate change

effects (Riegl et al, 2009). Any slight variation in environmental parameters will adversely

affect the reef ecosystem. The major climatic factors which control the reef ecosystem include

sea temperature, sea level rise, salinity, extreme climatic events, etc. The rate and extent of

^  climate change along with the resilience capacity of the reefs will dictate the future health of

the reef and its associated fauna. (Hoegh-guldberg, 2011). The rise in atmospheric temperature

can disrupt the symbiotic relationship between reef-building corals and their zooxanthellae

{SymhiocUmum spp.) on which the former depends for energy. When the relationship is broken

it paves way for coral bleaching. The global climate change leads to an alteration in the

physical and chemical characteristics of oceans and it results in the shift in a geographic range

of the suitable habitat of coral reefs (Freeman et al., 2013). The El Nino Southern Oscillation

(ENSO) events have a greater impact on coral reefs and such an event that occurred in 1998

caused a massive coral bleaching and destruction of corals across the globe (Baker et al.

2008). Temperature and light are two important physical factors that trigger coral bleaching

(Coles & Jokiel, 1978).

^  In order to conserve species, knowledge on their distributions is very important.
Species Distribution Modelling (SDM) acts as a tool for predicting the range of a particular

species. Through SDM, one can understand the environmental conditions required for an

organism's survival, the likelihood of the existence of a particular species and its abundance in

a region. It also helps in getting an insight into the effects of climate change in their range.

SDM emerged as an important instrument used in the field of ecology and conservation

(Miller, 2010). Easier access to georeferenced species records and environmental data played

a vital role in the growth of SDM in the research fields of ecology and conservation. Along

with that, the user-friendly approach of various models also helped in the growth of SDM

(Gomes et al. 2018).

The common strategy which is used in the modeling of species' distribution is to

^  identify the suitable environmental conditions of the species and then to locate those



conditions in space (Robinson et a!., 2017, Gomes et al., 2018). There are mainly three

approaches to know the suitable environmental conditions and they are 1) Mechanistic, 2)

Correlative and 3) Hybrid. In the mechanistic approach, the relationship between the

environment of a species and its fitness is determined. Then map that data onto a location. In

the correlative method, the map is illustrated using the data obtained by correlating the

presence or abundance of a species with the spatial habitat. A hybrid approach is a mixture of

both the two methods (Robinson et al., 2017).

There are different kinds of SDMs such as Generalized Dissimilarity Models (GDM),

Multivariate Adaptive Regression Splines (MARS), Genetic Algorithm for Rule-set Prediction

(GARP), Boosted Regression Trees (BRT), Maximum Entropy Modelling (MaxEnt) etc.

^  Various marine organisms have been subjected to SDMs for studying the impact of climate
change on these organisms, for their conservation, etc. Some examples for SDMs done on

marine organisms are: Sienella dolphins for knowing their distribution across southwestern

Atlantic (Do Amaral et al., 2015), by taking the mean values of environmental variables such

as sea surface temperature; Copepod species in North Atlantic for understanding their

abundance and distribution (Melle et al., 2014); Asian kelp {Undan'a pinnalifida) for

identifying their macro environmental determinants for the successful establishment in the

northern Iberian coast (Baez et al., 2010); marine benthos in the North sea (Reiss el al. 2011);

distribution of benthic marine invertebrates at northern latitudes (MeiBner et al., 2014), etc.;

Franklin et al., (2013), did predictive modeling of 6 coral species in the Hawaiian Islands

using BRT models.

^  The study aims to develop a muliivariate statistical model to delineate the relationship
of remotely sensed climatic variables with the spatial distribution of hard corals in the

northern Indian Ocean. The study also aims to evaluate the habitat suitability of hard corals in

selected future climate scenarios. Acropora miiricata (Linnaeus, 1758), Favia pallida (Dana,

1846), Platygyra daedalea (E\]\s &. SolandcT, 1786). Pocillopora damicornis {L'mnaeus, 1758)

and Porites lutea (Milne Edwards & Haime, 1851) were selected for the study.
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CHAPTER 2

REVIEW OF LITERATURE

2.1 Climate Change and its influence on the distribution of different

species

The chronicles of Earth's history reveal the alteration in the distribution of species in

response to various factors that includes environmental tolerance, constraints in dispersion,

interaction with other biotic and abiotic factors and climatic events (Peterson et ai. 2011; Peel

et ai. 2017; Rosen, 1984). At present, the Earth is encountering dramatic climate change.

Within the past 100 years itself, the temperature of the Earth elevated at a rale of 0.2 °C per

decade and the global mean temperature may extend further by 4.3 ± 0.7 °C. Globally, the

Earth is getting warmed by 0.85® C from 1880 onwards (IPCC, 2017).

Since climate is an influential aspect in the geographic distribution of species, climate

change has a profound effect on it, and this is evinced from the fossil records and from the

well-documented research lines which provide insight on shifts across latitudes, elevations

and with the depths of the oceans (Pearson & Dawson, 2003, Peel et ai, 2017). Due to climate

change, the species of marine, freshwater and terrestrial" environments are changing their

distribution to stick on to suitable habitats. There is a positive relationship between warming

and the distance moved by the species. It is predicted that climate change may shift the

residence of species more towards higher latitudes and elevations (Parmesan et a!., 1999,

Parmesan & Yohe, 2003, Uickling et ai, 2006, Parry et ai, 2007, Thomas, 2010, Chen et ai,

2011). In comparison with terrestrial organisms, marine species exhibits a higher rate of

species distribution (Poloczanska et ai, 2013). The meta-analysis done by Chen et ai. 2011

on terrestrial species showed that the distribution of terrestrial organisms is shilling to higher

latitudes at a median rate of 16. 9 km per decade (or an average of 17.9 km per decade) and to

higher elevations at a median rate of l lm per decade and the meta-analysis done by

Poloczanska et ai (2013) on marine species revealed that marine species move polewards at a

mean rate of 72 km per decade. The terrestrial organisms are moving upwards in order to

escape from the warming lowlands whereas the marine organisms shift from hotter sea



surfaces to deeper regions (Chen et al. 2009; Duivy et al, 2008). The species mainly in

temperate regions are changing their geographic distributions between glacial and interglacial

cycles. AM these forced shifts will have a pervasive effect on their speciation, range size,

latitudinal patterns, minute changes in the liming of their activity and microhabitat use

(Dynesius & Jansson, 2000; Williams el aL, 2008; Bates et al., 2014). In certain species, there

might be a lag in distributional response towards climate change which may be influenced by

various factors (Poloczanska et a!., 2013; Lenoir& Svenning, 2015; Williams et aL 2008).

The redistribution of species can have impacts of varying degrees. The influence of

redistribution of species is reflected in the quality of freshwater systems, marine community

assemblages, the productivity of lerresiria! regions, functional traits within a community etc.

(Weed et al.. 20)3; Fossheim et aL 2015; Paerl & Paul, 2012; Buisson et al., 2013). It also

affects the alpha, beta and gamma diversity of a species (Ochoa-Ochoa et al., 2012). In severe

cases, it may even lead to the alteration of the productivity of the ecosystem and cause havoc

in the carbon sequestration (Cavanaugh et ai, 2014). The research world is in general

agreement that, in future, the redistribution of species due to climate change may become a

prominent reason for the extinction of species which may occur mainly due to the lack of

suitable habitat and limitations in dispersal abilities (Pease er«/., 1989; Thomas e/£j/., 2004).

2.2 Distribution of Hard coral species across the world with an

emphasize to those in the Indian Ocean

Corals are a bizarre group of invertebrate animals belonging to the phylum Cnidaria.

Coral reef communities are widely distributed and spread over distances of thousands of

kilometres. They are known as the architects of sea literally building cities underwater with

their hard calcium carbonate skeleton (Bennert & Ormond, 1981). Warm-water coral reefs are

found in tropical and subtropical waters within the coastal areas of the PaciHc, Indian, and

Atlantic oceans typically between 30°S to 30°N latitudes where the ocean is warm, sunlit,

alkaline, clear, and relatively nutrient deficient (Kleypas et al, 1999b.). Globally there are

three major coral reef ecosystems recognized. They are the Indo-pacific, the wider Caribbean

and the Red Sea. In addition to these, there are certain minor areas too, such as In the tropical

eastern Atlantic, along with the east coast of southern Brazil and around the island of
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Bermuda. There is also some pockets of coral development at eastern Pacific, off the coast of

southern Japan and Western Australia.

2.2.1 Global Distribution

It is estimated that coral reefs cover only 0.1% of the surface of the earth which is

about 250,000 sq. km (McAllister, 1995). The Canribean reefs are home to 9% of the total

coral reefs in the world covering about 20000 square miles. Most of these corals are located

in the Carribean Sea and Central American coast (Spalding & Bunting, 2004). In the Pacific

Ocean, it covers almost 110,493 sq km (Chin et ai. 20II). Australia's Great Barrier Reef

covers more than 3000000 square kilometres.

India is a biodiversity-rich country and has a coastline extending over 8,000 km with

many regions are ideal for reef formation. All three major lypes.of the reef (atoll, fringing, and

barrier) can be seen in the Indian subcontinent. According to Muley et al. (2002), the total

area of coral reefs in India is estimated at 2,374.9 sq. km. Lakshadweep islands are the only

Atoll types, while others are fringing reefs. Barrier reefs are present in the Andaman, and

patchy reefs are found in Malvan area as well as the Kanyakumari district of Tamil Nadu.

Remote sensing survey of Indian coral reefs shows that the area! extent of Gulf of Kutch is

148.4km" and that of Tamil Nadu coast as 64.9 km\ Lakshadweep with 140.1 km* and

Andaman and Nicobar with 813.2 km". In addition, knolls and lagoon reefs roughly constitute

an area of 50 km" (Pillai, 1996).

2.3 Chagos

Chagos archipelago is a pristine marine ecosystem in central Indian ocean consisting

of a large group of atolls and submerged banks. Us central 200 X 300 km area consists of five

atolls with islands. It is surprisingly one of the world's largest atoll areas with only eight

islands on its western and northern rim forming a total area of about 550000 km2 (Sheppard et

al., 2012). The subllttoral substrate in the photic zone is calculated to be approximately 60000

km* (Dumbraveanu and Sheppard, 1999) which is a suitable habitat for coral reef fonnation.

But how much of this huge area actively support coral reef formation is not yet understood

because more than 95% of the territory has never been studied (Sheppard el al., 2012). Reef

area estimation is a herculean task and has been subject to wide variations. According to

Spalding et ai, (2001), the Indian Ocean has 32 000 km2 of reefs, in which the Red Sea



^  region and the Gulf region forms 17 400 and 4200 kin2 respectively while Chagos has 3770

km" of reefs (Rajasuriya et al, 2004). Sheppard et al, (2012) mentioned the lagoons of

Chagos has a higher hard coral coverage (63.04 ± 3.19%) than the ocean facing slopes (39.69

±2.03%).

2.3.1 Maldives

The Maldives constitute the most extensive area of coral reefs in the Indian ocean»

comprised of 27 atolls with 1200 coral reef islands from the central part of the Chagos-

Maldives-Laccadive ridge stretching in the north-south direction (Risk and Sluka, 2000;

^  Gischler ei al. 2014). Before the mass coral bleaching in 1998 Maldives was reported to have
the highest coral cover in the western Indian ocean with 56% to 65% (Davies ei al, 1971;

Scheer, 1971). But after the 1998 incident, the hard-coral cover declined to < 10%

(McClanahan, 2000; Edwards ei al., 2001; Morri et al, 2010). Lasagna et al. (2008)

undertook a detailed coral study in 2006 in the middle of South Male Atoll and Felidhoo atolls

and reported hard coral cover between 12% and 37%. A study conducted in 2010 at

Ihavandippolo atoll, which is the northernmost Maldive atoll, shows a high variability of coral

cover between 1.7% and 50% (Tkachenko, 2012). Similar studies conducted in the other

Maldivian atolls such as southern Addu, Ari and Rasdhoo atoll in 2006 also found variability

but some hi^er coral cover between 5% and 95% (Wallace and Zahir, 2007).

A
2.3.2 Thailand

As elsewhere in the world coral reefs are one of the most productive marine systems in

Thai waters, both in the Andaman Sea and the Gulf of Thailand. There are approximately 700

km coastline, 545 islands span the distance between near-shore and off-shore areas. Thailand

has a total of 153 km2 area of coral reefs in that almost 78 km" is in the Andaman Sea and 75

km" is in the Gulf of Thailand (Yeemin et al., 2006). A study by Yeemin et al, (2009)

observed live coral cover of two islands that ranged from 5.2% at Koh Samui to 64.3% at Koh

Lan, with P. lutea as the dominant coral species. Various bleaching episodes severely affected

the coral reefs of Thailand. In the 2010 bleaching event, there was a loss of 45% coral cover

^  and the most affected species are P. Jamicornis and Acropora millepora (Sutthacheep et al,

2012).
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2.3.3 Madagascar

In the western Indian Ocean, mainly between the waters of Madagascar and mainland

Africa, is located one among the world's most biodiverse area which supports diverse coral

species.369 coral species are identified in the western Indian Ocean and there may be nearly
another 100 (Obura, 2012; Obura et al., 2012), this makes the western Indian ocean as

biodiverse as the Great Barrier reef, and behind the Coral Triangle which has almost 600

species.

2.4 Mauritius

Mauritius has a coastline of 322 km and it has 150 km of protective coral reefs

^  covering a lagoon area of around 243 km^. Coral diversity of Mauritius is around 159 species
of scleractinian corals (Moothien Pillay el al, 2002). The coral reefs of Mauritius are facing
threat from climate change and ocean warming and ihey have lost more than 50%- 60% of

their coral cover (McClanahan etal. 2005, Moothien Pillay e/«/., 2012).

2.4.1 Sri Lanka

Sri Lanka, situated in the south of Indian sub-continent, has a coastline of about 1585

km of which 300 km are beaches and sand dunes (Lowry and Wickremaratne, 1989. Olsen et

a!., 1992). Fringing and offshore reefs are mainly seen in Sri Lanka and these have been

categorized into three main habitat types; the first one is true coral habitat consisting of life

^  coral reefs, then sandstone habitat and rocky habitats (Rajasuriya & De Silva, 1988; De Silva
& Rajasuriya, 1989). About 2% of the coastline contains nearshore fringing reefs (Swan,

1983). Almost 183 species of stony corals have been recorded from Sri Lanka. Growth of

coral is highly influenced by monsoons that have a major impact on the level of turbidity and

freshwater input to the sea, as a result, the extensive coral habitat is limited to areas with lower

sedimentation, which is found in the north-western and eastern coastal areas. Excess of 50%

of reef building coral cover found in some of the offshore reefs. The live coral cover on most

inshore coral reefs is less than 50% while the rocky and sandstone habitats support a
percentage of live coral less than the true coral reefs (Rajasuriya and De Silva, 1988). Almost

all of Sri Lanka's reefs are located within 40 km from the coast and they contribute

^  significantly to the marine fish production (Rajasuriya and White, 1995).
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2.5 Tanzania

Tanzania has a coastline of over 800 km and the coral reefs are located along around

two thirds (600 km) of Tanzania's continental shelf (Wagner, 2004). Most common reef

formations are fringing reefs and patch reefs, found on the continental shelf which is 8-10 km

wide along most of the coast (lUCN Conservation Monitoring Center, 1988). But in some

areas, it reaches a width of 35 km (Danvail & Guard, 2000). Fringing reefs of Tanzania are

often narrow and consist primarily of a reef flat, which is broken by numerous, often extensive

mangrove stands (lUCN Conservation Monitoring Center, 1988). Coral reefs are typically

found close to land due to the narrowness of the shelf of most of Tanzania. There are well-

^  developed barrier reefs present on the ocean-facing eastern coastline of the islands. There are

also coral outcrops and reefs along the leeward side of the islands. 1501 species of hard corals

have been reported from Tanzanian reefs (Hamilton and Brakel, 1984).

2.6 Ecological Forecasting Methods, their uses, and advantages

The rapid change in the climate coupled with anthropogenic stresses are posing severe

threats to the ecosystems such as shifting of natural habitats, invasion of new species and the

emergence of new diseases. So the modeling of the environmental dynamics with parameters

as species distribution and abundance, ecosystem variability and the community composition

contributes to the better prediction of the ecosystem movements and thereby facilitates better

*  management decisions, conservation, and susiainability. During earlier days' ecologists
developed management decisions utilizing the model from mean and variances of the

observed environmental parameters. But faster reformations which occur in the ecosystem as a

consequence of climatic variations cannot be quantified precisely by mere historic

observations (Smith et cil., 2009; Milly el al., 2008; Craig, 2010). Ecological forecasting

makes an attempt to derive a clue about how the environment will behave in the future, based

on the current trends and the past data. This includes forecasts of agricultural yield (Cane el

al,, 1994), species distributions (Guisan & Thuiller, 2005), species invasions (Levine &

Antonio, 2003), pollinator performance (Corbet el ai., 1995), extinction risk (Golelli &.

Ellison, 2006), fishery dynamics (Hare el aL, 2010); disease dynamics (Ollerenshaw & Smith,

1969} and population size (Ward el al., 2014).



i  There are mainly two methods for measuring the structural and physical changes
occurring in the ecosystem and for better forecasting, namely population models and species
distribution models.

2.6.1 Population Models

Models of population dynamics or the ecological population models provide a proper
perception about the dynamics and persistence of a population. This model maps the size of

population and age distribution within a population to its decline or extensive growth and

produces a better prediction regarding the status of a population. The environmental, as well

^  as interactions with other and similar species, may also be a deciding factor (Uyenoyama .

2004). Crowder e/ r//.. 1994; Crouse e/ al, 1987; Caswell, 2001 developed a population model

.which helps to reverse the population diminishing of the loggerhead sea turtle. The model

discloses that the mortality of adults and subadults are the major cause of population decline
of these species. So an alternate management action had been taken by installing the TED
(Turtle Exclusion Devices) in shrimp trawls and was favorable to the growth of population
size of the turtle. Population dynamics models also link the interaction of the environmental

variation and the population growth such as the influence of the sea level rise on the extinction

of polar bears (Hunter et al., 2010). The overabundant species population is also managed by
the help of the population dynamics. Govindarajiilu et al. (2005) propose the measures for

^  controlling the population of harmful bullfrog of Vancouver Island. Elk population reduction

(Bradford and Hobbs, 2008) and potency control of the white-tailed deer (Merrill et al 2003)
was also achieved from the results of the population model.

Even though this model is used extensively for predicting the behavior of a population,

the amount of uncertainty in the data leads to error in prediction. The complicated biological

interactions are not flawlessly implemented by this model unless a suflicient amount of data is

supplied.

2.6.2 Species Distribution Models (SDMs)

Species distribution models (SDMs), otherwise called environmental (or ecological)
^  niche modeling (ENM), habitat modeling, predictive habitat distribution modeling, and range

mapping (Elith and Leathwick, 2009) are widely used in ecological and biodiversity
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conservation research for modeling how the species are distributed globally over the

geographical area. This model accommodates the tools that incorporate known species

occurrences with environmental data (Phillips et al. 2006).

2.6.2.1 Correlative SDMs

Correlative SDMs forecasts the influence of climatic variations on the geographical

distribution of data. (Thomas et al 2004). In European diadromous fishes the linear

combination of predictor attributes best suited for the propagation of the species are developed

by Mennesson-Boisneau ei al (2006). The statistical records of association of environment to

the species abundance and occurrence are analyzed in this SDMs for identifying the hindering

processes to the spread of the species. As per Moilanen & Wintle (2007) the ease of

implementation of the Correlative SDMs because of simplicity and the capability to model

complex interactions of the environment with less data requirement provides supremacy over

other SDMs.

2.6.2.2 Mechanistic SDMs

This model otherwise called biophysical models or process-based models because it

aims al mapping the relationship between the physiology of the species and the surroundings

which has an influence on their abundance and distribution. (Kearney & Porter, 2009). Other

than the current radius of the species, the model utilizes the processes or physiological

changes within the body of organisms with respect to climate variations and vegetation which

helps in the prediction of the future extension possibilities of species range towards a great

extent of the ecosystem levels (Porter et al, 2002; Kearney & Porter. 2009). For the complex

analysis of interactions between the environment and climatic influences in large scales, the

mechanistic SDMs will not be suitable because it requires a large quantity of variables to be

considered which makes the model computationally and lime constrained to carry out both

train and validation phases.

2.6.3 Methods used in the Species Distribution Modelling

The species-specific interaction had to be studied in conservation planning measures

and the best tool available for this is species bioclimatic envelope models. They shared the

same principle of biome envelope models, in which the current distribution of species is used

11
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to 'train' a model for the future incorporation of predicted climatic conditions (Hannah etal,

2002). Envelopes were constructed using the Geographic information System (CIS) software
or by genetic algorithms or general additive modeling (Peterson et ai, 2001; Berry ei al,
2002, Midgley et ai, 2002). But these models could not model dynamic transitions,

interspecific competition, herbivory, dispersal or other factors. By coupling with land-use
projection models, application of the results of bioclimatic envelope models could be used in

real-world conservation (Hannah et oi, 2002). Forecasting the geographic ranges of different
species with the use of occurrence records (presence or absence) and data of environmental

variables from the same locality is the focus of Species distribution modeling (Phillips et ai,
2006; Elith and Leathwick, 2009).

2.6.4 Generalized Dissimilarity Models (GDM)

For the modeling of spatial turnover in community composition among pairs of sites as

functions of environmental differences between these sites. Generalized Dissimilarity Models
(GDM) were used (Ferrier et ai. 2007). For the estimation of the probability of occurrence of
distribution of a given species, kernel regression algorithm was used within the transformed

environmental space produced by GDM (Lowe, 1995). Elements of matrix regression and
generalized linear modeling were combined which allowed the user to model non-linear

responses of the environment which captured the ecologically realistic relationships between
dissimilarity and ecological distance (Ferrier, 2002; Ferrier et.ai, 2002).

2.6.5 GLM and GAM models

Non-parametric and non-linear functions were used by Generalised Linear Models

(GLM) whereas Generalised Additive Models (GAM) use parametric and combinations of

linear, quadratic or cubic terms. GAMS can model complex ecological response shapes than
GLM because of greater flexibility (Yee and Mitchell, 1991). GLM and GAM were widely
used in species distribution modeling because ecological relationships were modelled
realistically and they have strong statistical foundations (Jowett et ai, 2008; Alexander, 2016;
Rezaei and Sengul, 2018).
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2.6.6 Multivariate Adaptive Regression Splines (MARS)

For fitting non-linear responses, an alternative regression-based method called

Multivariate Adaptive Regression Splines (MARS) was used. It used piecewise linear fits

rather than smooth functions. It was very easy to use in GIS applications for making

prediction maps, faster to implement compared to GAMs and had the ability to analyze

community data (MARS-COMM) which helped in relating the variation in occurrence of

species to the environmental predictors in one analysis, and later estimating the individual

model coefficients for each species simultaneously (Leathwick et a!., 2005).

2.6.7 Genetic Algorithm for Rule-set Prediction (CARP)

For the approximation of bioclim species' fundamental ecological niches, several

approaches had been used such as BIOCLIM (Booth el of., 2014), logistic multiple regression

(Peeters and Gardeniers, 1998) and Genetic Algorithm for Rule-set Prediction (GARP).

GARP was defined by heterogeneous rules that defined the polyhedrons in the ecological

niche spaces that were assumed to be liveable by a particular species. The model quality was

assessed by dividing the occurrence points into 'training data' used for training and 'test data'

used for testing models (Fielding and Bell, 1997). GARP has two versions: DK-GARP used

widely for the modeling data from natural history collections and OM-GARP, a new open

implementation, where a group of rules for adaptations of regression and range specifications

are chosen with the use of a genetic algorithm for both these versions and hence predicted as

the best species distribution (Stockwell and Peters, 1999). GARP is a machine-learning

approach and also linked the occurrence records to the environment variables using envelope

(variables are bounded to lower and upper bounds), atomic (values are assigned to each

variable) and logistic regression rules. The algorithm used pseudo-absence localities since the

model works on presence-absence data (Stockwell and Peters, 1999). GARP included the

properties of both BIOCLIM and logistic multiple regression and it was based upon artificial

intelligence (Stockwell and Noble, 1992; Stockwell and Peters, 1999). The extensive testing

done on the GARP model showed that it has high predictive ability for species geographic

distributions (Peterson and Cohoon, 1999; Peterson el ai, 2001).
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2.6.8 Boosted Regression Trees (BRT)

Boosting Regression Trees were developed in a forward stage-wise manner, where

small modifications were done in the model at each step for better fitness of data (Friedman el

ai, 2000). BRT used the combination of two algorithms: regression-tree algorithm also called

as the boosting algorithm to construct a combination or "ensemble" of trees. The use of

regression-trees helped in the good selection of relevant variables and it could model

interactions. Jt was upon the weighted versions of data set where the observation that was

poorly fitted in the preceding model and they were accounted by adjusting the weights (Elith

et ai, 2006). Overfitting of data were avoided by using cross-validation in BRT, to grow the

models progressively during the predictive accuracy testing on withheld portions of the data

(Elith et ai. 2006). The correlation between the distribution of adult stage of copepod Oithona

similis was established using the Boosted Regression tree method (Pinkerton et ai, 2010).

2.6.9 Maximum Entropy Modelling (MaxEnt)

According to Phillips et ai, 2006, Ma.\Ent uses the distribution of maximum entropy.

This data was subjected to the constraint that the e.xpected value of each environment

parameter (interactions) in the estimated distribution matched its empirical average for

estimating the distribution of species. Using the background locations and data derived

constraints, it approximated the most uniform distribution (Philips el ai, 2004; Philips et ai,

2006). In this model the complexity of the fitted functions could be chosen, if presence-only

species data were used. It was observed that Maximum entropy modeling (MaxEnt) had done

better or as well than other modeling techniques (Eliih et ai, 2006; Hernandez et ai, 2006;

Philips et ai, 2006). Compared to other algorithms, MaxEnt achieved higher success rate and

it marked the differences even at low sample sizes (Pearson el ai, 2007). MaxEnt models

predicted the broader area of suitable conditions and the MaxEnt projection had tlie ability to

predict excluded areas also, but the model performance felt a negative impact when sample

sizes were reduced artificially (Pearson et ai, 2007). However, it is observed that species-

specific model parameter tuning can enhance Maxent models efficiency (Radosavljevic and

Anderson, 2014.).

MaxEnt can create very complicated, e.xtremely nonlinear response curves that is

possible due to the usage of various feature classes like linear, quadratic, threshold, hinge,
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product, and categorical that in turn is decided by the number of presences by default (Syfert

et al.. 2013). Other than the feature class, the MaxEnt has another modifiable parameter called

the Regularization Multiplier. It is a parameter that adds new restrictions, i.e. a penalty

imposed on the model. The main objective is to avoid overcomplexily and/or overfltting by

controlling the intensity of the selected feature classes used to create the model (Morales et

at., 2017). Several studies have recorded the variability in predictions that may arise from

distinct MaxEnl background samples, with a specific focus on the extent of the location from

which they are chosen (Baasch et a!.. 2010; Giovanelli et al.. 2010; Barve et a!.. 201 1). The

outputs obtained from MaxEnt models fall into three categories namely, the raw output that is

interpreted in terms occurrence rate, Cumulative output interpreted as omission rate and then

the logistic output. But the difference in the scaling of these three types of outputs plays a

crucial role in providing differently appearing prediction maps (Merow el al, 2013). Maxent

has recently been shown to be associated mathematically to log-linear modeling and differ

only in intercept terms (Renner & Warton, 2013). An attempt to test the effect of bias types,

bias intensity, and correction method on MAXENT model performance the ability of

methods to correct the originally sampling bias varied greatly depending on bias, bias

intensity and species (Fourcade et al, 2014). Reliability on small sample size, non-essentiality

of absence data and methods to compensate the spatial bia.s in sampling are the reason for the

recent popularity of MaxEnt in modeling of habitat suitability and distribution of various open

sea species (Peavey, 2010).

MaxEnl had used to investigate the distributional patterns of Geckos {Uroplatus spp.)

for predicting the species distribution (Pearson et al, 2007), American black bear {Ursm

americamts) for the assessment of denning habitat (Baldwin and Bender, 2008), Bush dog

{Speothos veaaticus) to appraise the excellence of protection (DeMalteo and Loiselle, 2008),

Little bastard {Tetrax tetra\) for modelling the seasonal distribution changes (Suarez-Seoane

et al. 2008), predicting and mapping of Sage grouse's {Cenirocercus urophaskinus) nesting

habitat, Asian slow lorises {Nycticebm spp.) was assessed to threats and species distribution

analyzed to find conservation urgencies (Thorn et al, 2009). MaxEnt can precisely build the

model even if there is less number of location points and it was an advantageous feature since

frequently there is a deficiency of dependable locations obtainable for mapping the spreading

of species (Baldwin, 2009).
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2.7 SDM in marine animals

Species distribution models (SDMs) has been done for a variety of organisms in the

marine environment, for effective marine biodiversity management, which includes

correlative, mechanistic and hybrid models (Robinson et al., 2011). For example, the

correlative model for the distribution of Stenella dolphins across southwestern Atlantic was

done by Do Amaral et al (2015), mechanistic model for the distribution and abundance of a

copepod species in the North Atlantic by Melle et al (2014) and the hybrid model for the

abundance pattern of two abalone species by Fordham et al (2013). Many other SDMs done

on various marine lives includes those on Asian kelp Vnciariapinnatifuh to identify its macro

environmental determinants for the successful establishment in the northern Iberian coast

(Baez et al. 2010); marine benthos in the North Sea (Reiss, 2011); distribution of bemhic

marine invertebrates at northern latitudes (MeiBner et al, 2014); the foraging habitats of grey

headed albatross in southern Atlantic (Scales et al., 2016) to list out a few. SDMs for marine

species have especially focused on developing conservation and management plans, assessing

climate change impacts and spread of invasive species on marine ecosystems and to study the

relationship between organisms and their environment (Robinson et al, 2017). Among these

objectives proposing marine protected, areas and essential fishing habitats are the focus of the

majority of marine SDMs while a less number of works targeted the invasive species and

climate change impact in the marine realm. A different group of marine animals came under

SDMs till date with those on fishes is the most common possibly due to their commercial

value and data availability followed by marine mammals due to their declining population

trends (Robinson et al, 2011). A systematic review of marine-based SDMs by Robinson et al

(2017) found 236 SDMs having applications in the intertidal, pelagic and deep ocean

environment. More than a hundred of these studies were conducted in the northern Atlantic

Ocean followed by temperate northern Pacific and central Indo-Pacific. The least number of

SDMs (2-3) were done in temperate South America and Southern Africa. Western Indo-

Pacific that includes the marine areas of India, together with tropical Eastern Pacific and the

Arctic witnessed only 4-7 SDMs (Robinson et al, 2017).

A major issue associated with SDMs is the quality of data through the occurrence and

ecology of thousands of fish and other marine animals are available databases such as

FishBase (http://www.fishbase.org/search.php) or OBIS (OBIS: httD://www.iobis.org/l
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(Robinson et ai. 2011). For rare marine species, occurrence data are very few making the

prediction of their distribution quite challenging. The testing of the robustness of predictive

performance of models with decreasing occurrence data found that the thinning of occurrence

data for a species with small habitat is less undesirable to the predictive performance than a

species having larger habitats (Virgili et ai, 2018). Another problem associated with marine

species modeling is the use of environmental variables having an impact on the sea surface

only is coupled with bathymetric occurrence to predict the distribution despite the striking

disparity in the environmental conditions (Duffy & Chown, 2017)

Different types of distribution modeling methods used in the marine environment are

presence-only algorithms, algorithm comparisons, 3D modeling, rare species, joint SDMs,
T

ensemble modeling, scale effects, null models, model selection, pseudo-absence generation

and predictor datasets (Bosch et ai, 2018). Bosch et ai (2018) studied the most suitable

predictors of marine species distribution and the part of the SDM process which has the most

influence on the suitability of the predictors. They noted that the methods of marine SDMs are

highly biased towards terrestrial studies in spite of the remarkable variations in the ecological

factors existing in the marine environment that determine the spatiotemporal differences in the

distribution of animals. Recently, in contrast to the single models used in earlier studies, a

method of using multiple models and then ensemble them to reduce model uncertainty is

adopted by some modelers, for example, Jones and Cheung (2015).

2.8 Species Distribution Modelling ofHard Corals

Species Distribution Models that is used to identify vulnerable marine ecosystems and

to predict the distribution of biological functional group have been less frequently applied on

the coral reef species (Garza-Perez et ai, 2004). Different computer models are now

increasingly used to pretend the aspects of coral reef (Aigner et ai, 1989). Different species of

scleractinian coral display intraspecific variation in colony architecture among habitats

(Kaniewska et ai, 2008)

The statistical modeling of species distributions needed components such as an

ecological model concerning the ecological theory, a data model concerning the collection of

^  the data, and a statistical model concerning the statistical theory (Austin, 2002). MaxEnt is a

statistical model, and to apply it to model species distributions successfully must consider how
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it relates to the two other modeling components (the data model and ecological model (Philips

et aL, 2006). (Leathwick et a/.. 2008) suggested that Data from coral SDMs can be

incorporated into spatial optimization exercises for marine conservation) or for geographically

explicit threat assessments to reefs (Selkoe et ai, 2009; Burke et ai, 2011). Modeled

probabilities of species occurrence can easily be adjusted to projected changes in

environmental conditions on a species-by-species basis {e.g. changes in distributions of corals

with increased sediment levels owing to major coastal deforestation)

Tillensor et al. (2010) conducted studies on predicting habitat suitability for stony

corals on seamounts using MAXENT and ENFA, showed the influence of variables relating to

the chemical environment e.g. levels of nitrate, silicate, phosphate, aragoniie saturation,

dissolved oxygen, and percent oxygen saturation on model predictions. Higher resolution

environmental parameters should also improve model predictions (Anderson et ai, 2013) and

may also contribute to more local-scale models of coral-distribution (Dolan et ai. 2008).

From SDMs, coral species can be characterized on regional scale. This characterization will

lay the foundation for spatially explicit ecosystem modelling of coral reefs along with its

marine spatial planning (Franklin et ai, 2013). Regional-scale characterization of coral

species from SDMs provides the framework for spatially explicit ecosystem modeling and

marine spatial planning of coral reefs.
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CHAPTER 3

MATERIAL AND METHODS

3.1 Study area

The area chosen for the present study is the Northern Indian Ocean. This study area

comprises of Arabian Sea, Bay of Bengal, Red Sea, the Persian Gulf, the Andaman Sea, Gulf

of Thailand. Gulf of Aden, Malacca strait etc. The Indian Ocean includes nearly 209c of the

water in the world (Fatima and Jamshed, 2015). The unique feature of the Indian ocean is that

it is a closed ocean unlike the Atlantic and Pacific Ocean, it is land-locked in the north and

does not extend to the northern hemisphere's cold climate areas. (Bouchard and Crumplin,

2010) The area of the Indian ocean selected for this study comes under the jurisdiction of

different nations.

locnm

Fig. 1 Map of the study site - The Northern Indian Ocean
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if 3.2 Species Occurrence Data

The corals selected for the study are:

Acropora mwicola: Tliey are considered as 'Nearly threatened' species (Carpenter et ai,

2008). They can be found in tropical to subtropical regions and also in Indo - Pacific regions

(Veron, 2000). They grow at a rate of 3.7-7.6 cm per year. (Yamano et al. 2011). According

to the studies, they are the architects of the reefs of Indopacific regions (Hongo & Kayanne,

2011).

Pocilhpora damtcorms: It is also known by the common name 'Cauliflower Coral'. It is a

cosmopolitan species and it Is widely distributed in the Indo - Pacific region (Veron, 2000;

Torres & Ravago-Gotanco, 2018). It is characterized by the absence of a true verruca (Veron

and Pichon, 1976).

Favia pallida: One of the most common faviids, it is widely distributed in its own range. It

can be seen in shallower and deeper parts of the reefs of the tropical region (DeVantier el al..

2014)

Plutygyra daedalea: The common name of P. daedulea is 'Brain Coral'. This species is very

common and can be found in various reef environments. They may forni colonies of diameter

of about one meter or more (DeVantier el al. 2014)

Porites lutea: It belongs to the family 'Poriiidae'. It is a common species and can be seen in

large numbers in the Red Sea. It forms huge colonies with diameters of 3 to 5m (Sheppard et

^  al, 2014).

The occurrence records of these five different coral species were collected from open source

databases like GBIF, OBIS and other published literature. The distribution points of the

species were plotted using ArcGlS software

3.3 Selection of environmental layers

The environmental predictors were obtained from the Bio-oracle and GMED which are

available online. This study used 13 potential predictors that are capable of influencing the

occurrence of the selected coral species. These include Mean Sea Surface Temperature (Mean

temperature). Maximum Sea Surface Temperature (Max temperature). Sea Surface Salinity

(SSS), Bathymetry, Chlorophyll-a, Ocean current, Photosynlhetically Active Radiation (PAR),

pH, Calcite, Phosphate, Nitrate, Diffusion attenuation coefficient and Dissolved oxygen.
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Distance from the shore was avoided to achieve the lowest collinearity among predictors. The

climatology data of mean and maximum SST were collected from MODJS-Aqua (Moderate

Resolution Imaging Spectroradiometer (EOS PM) satellite) with a spatial resolution of 4x4

km and were downloaded from ocean color web database maintained by NASA (Feldman &

McClain. 2010). SSS data of Simple Ocean Data Assimilation ocean/sea ice reanalysis

(SODA) (Carton et ai, 2008) of 1/4 x 1/4-degree resolution were utilized. The gridded

bathymetric data of 30 arc-second was obtained from GEBCO (General Bathymetric Chart of

the Ocean) Global ocean & land terrain models hosted by the British Oceanographic Data

Centre (BODC). The chlorophyll-a data with 4 km x 4 km Spatial resolution was taken from

the Ocean color web database (Feldman & McClain, 2010). Ocean current data was taken

from HYCOM Global with l/12-degree spatial resolution (Bleck, 2002). The monthly

climatology data of PAR (5 arc-minute spatial resolution) was taken from Bio-Oracle

(Feldman & McClain, 2010). The Calcite, Phosphate, Nitrate, pH, Dissolved oxygen and

Diffusion attenuation coefficient with a spatial resolution of 5 arc-minute were gathered from

GMED (Global Marine Environment Datasets, version 2.0) (Basher et ai, 2014). Using

ArcGIS version each variable was reprojected to GCS_WGS_1984 coordinate system and

clipped to the same extent. The variables of coarse resolution were interpolated using Inverse

Distance Weighting (IDW) with a mask polygon, which covers the occurrence data. All the

covariate rasters were resampled to get the same extent and resolution (9x9 km). The rasters

were finally converted into ASCII using conversion tools in ArcMap.

The environmental variables used for the prediction of coral occurrence under the

three different RCP scenarios (RCP 4.5, RCP 6 and RCP 8.5) were Maximum SST, Mean

SST, SSS and ocean currents. Bio-oracle also offers future variables based on predictions

produced by the Intergovernmental Panel on Climate Change (IPCC) for 2100 with different

levels of RCP scenarios. These variables have been trimmed to our research area and re-

sampled for a resolution of 5 arc minute (— 9 km). The predicted concentration scenarios for

greenhouse gas (GHG) such as RCP 4.5, 6.0, and 8.5 were chosen for the expected periods

2040-50 and 2090-2100.

3.4 Predicting Hard Coral Distributions

Maximum Entropy modeling is a machine learning strategy that involves the

correlative modeling of a species ' spatial distribution relative to the environmental factors that
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determine the species ' niche. MaxEnt is a technique for modeling geographic distributions of

species on a grid as a function of that grid's environmental predictors and species occurrence.

It estimates the probability of species existence by establishing the connection between

variables and species occurrence. Although there is no need for absence data as a modeling

input for a species, this method utilizes other independent background variables for the entire

study region. We developed background rasters for each species to enhance the model's

precision as well as prevent the sampling bias. A regularization feature is used to prevent

model overfltting (Philips, 2006) and value (6) was set as one so that the model will give the

highest lest AUCs (Area Under the Curve) among various trials (Warren and Seifert, 2011).

The data should be entered in the necessary format in the software. Species data have been

transformed into '.csv ' format and the bioclimatic layers should be asc' format. The

software was programmed to a suitable level in accordance with our requisites for a run under

settings options. The recommended default values were used for the convergence threshold

(10-5) and maximum iterations (1000). The random test percentage has been set as 30%,

which decreases the bias from the entire model outcomes when using the single set of points.

Sub-sampling has been chosen for replication because it does not encourage the incorporation

of noise variables and has been shown to create a stable mode! (Meinshausen and Buhlmann,

2006). This utilizes all thresholds to discriminate between appropriate and noise variables. A

background raster of coral occurrence was developed using ArcGlS and used in the model to

decrease bias and uncertainty in the samples.

Based on the ROC curve, the different models predicted under different settings were

analyzed and high AUC values were used to measure the model's capacity for discrimination

(Philips et ai, 2006). An AUC value of 0.5 showed that the output of the model was no better

than random, while values close to 1.0 showed the better output of the model. Twenty-five

percent of the occurrence data were used as test data and the rest were used for training the

model. To quantify the contribution of each environmental parameter to the model and its

efficiency, the Jackknife analysis (Pearson et ai, 2007) and in order to analyse the

contribution of each environmental parameter to the model and its efficiency, single variable

response curves were used. AUC's Jackknife helps to know the largest contribution of the

environmental predictor and the least influence on hard coral distribution in the present

research region. The most appropriate is the expected maps with pixel values of 1 and the least
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suitable are cells with values near to 0. Appropriate habitats were then split into 2

classifications to demonstrate appropriate habitat gradation. The area of suitable habitat

predicted was estimated in the GIS environment.

3.5 Prediction of Future Distribution

In MaxEnt model, the trained environment layers are projected to another available set

of environmental layers containing the future climatic data in order to predict the species

distribution of the five selected hard coral species in the future. The projection layers should

have trained layers which were mutually compatible but the conditions will be different. The

name of the layers and the map projection should be the same as that of the trained data. A

model was trained on the environmental variables which corresponded to the current climatic

conditions and was projected into a separate layer based on the future environmental data.

Models of different RCPs i.e., RCP 4.5, RCP 6.0 and RCP 8.5 were done for the years 2040-

50 and 2090-2100 using ten replicates and test percentage of 30. The projection was done

using subsampling method of replication.

'A
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CHAPTER 4

RESULTS

We predicted the current spatial distribution of five major hard coral species viz., A.

mtiricafa, F. pallida. P. daedalea, P. damicornis and P. hitea in the Northern Indian Ocean.

The environmental suitability Is indicated on the map by the legend from yellow to red. Red

represents highly suitable habitat whereas yellow represents the least. The predicted habitat

suitability of each species for different climatic scenarios was represented as maps using a

legend from blue, green to red according to the increasing order of species habitat suitability.

4.1 Acropora muricata

4.1.1 Prediction of the current distribution

4.1.1.1 The Model Performance and variable contributions

The model performance is assessed by using the average test AUC value for 10

replicates was 0.943 (SD= 0.014). The sensitivity vs. 1-specificity graph shows the area under

the Receiver Operating Characteristic (ROC) curve or AUC. The lest omission rate and AUC

curve (Fig. 2 & Fig.3) was found fit in this model. The Fig.3 shows that the mean omission

line on the test data was passing through the predicted omission line. In the Fig. 2 the AUC

line was passing through the left top of the random prediction.

4.1.1.2 Contribution of predictor variables

The relative contribution of each predictor variable is given by the MaxEnt output and

it is shown in Table 1. Among all the variables, bathymetry showed a significantly higher

contribution of 70.2 %, followed by Nitrate (7.6%) and Phosphate (5.6%). The dissolved

oxygen is the only variable with no contribution in this particular model developed for A.

muricata. For the Pennuiation importance, for each environmental variable, the values of that

variable in training presence as well as in background data were randomly permuted. The

variable having high permutation importance (83.9) were bathymetry and the diffusion

attenuation coefficient by 4.3 percent.
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Table 1 Percent contribution and permutation importance of all environmental variables to the
model for A. tmiricata

Variable Percent Permutation

contribution importance

Bathymetry 70.2 83.9

Nitrate 7.6 2.3

Phosphate 5.6 2.5

Kd 4.1 4.3

Calcite 3.1 0.5

pH 2.5 1.3

Current 1.5 0.3

Chlorophyll 1.3 2.6

Mean Temperature 1.2 0.9

Salinity 1.1 0

PAR 1 I

Max. Temperature 0.9 0.1

DO 0 0.1

■

The Jackknife of AUC for A. muricata shows the environmental variable that decreases the

gain the most when it is omitted is bathymetry, which therefore appears to have the most

3>i'' Aeropem MurfcMl

i:h'
Low ojiooors

Fig. 6 The predicted distribution ot'/t. muricaia in the Northern Indian ocean
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information that isn't present in the other variables. Also dissolved oxygen shows a lesser

gain, lower than 0.50.

The response curves for the A. muricata model (Fig. 5) showed the change in predicted

probability when the corresponding variable is used in isolation and averaged for 10

replicates. These plots demonstrate the dependence of predicted suitability on the selected

variables as well as on the dependencies induced by correlations between each variable and

other variables.

4,1.1.3 Prediction of the present distribution of the A. muricata

Fig. 6 shows that the predicted distribution of A. muricata in the Northern Indian

ocean with suitability ranging from 0.30 to 0.99, low to high indicated by a legend of yellow

to red. The A. muricata shows higher environmental suitability (80-99%) along the Maldives,

Chagos, Gulf of Mannar, Andaman & Nicobar Islands, Southwestern boundary of Northern
Indian Ocean, Northwestern boundary of Madagascar Island as well as in the islands and

seamounis (which lies in between), the Western islands and boundaries of Sumatra. A medium

to high suitability (50-80%) was predicted in Lakshadweep Islands, Gulf of Kulch, Gulf of

Thailand, Malacca Strait, boundaries of Red Sea, along the Seychelles-Mauritius Plateau and

along the South-western coast of India.

4.1.2 The Future distribution of^. muricata under different Climate Scenarios

Models prepared using the optimized variables under three different Representative

Concentration Pathways (RCP) such as RCP4.5, RCP6 and RCP8.5 gave the prediction for

future distribution of the A. muricata in the Northern Indian Ocean for the years 2040-2050

and 2090-2100.

4.1.2.1 Future distribution of muricata under RCP 4.5 for years 2040-50 and 2090-2100

4.1.2.1.1 TTie model performance and contribution of variables

The average test AUC value averaged over 10 replicates for the years 2040-50 and

2090-2100 were 0.922, (SD= 0.059) and 0.97(SD=0.053) respectively (Fig. 7).
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4.1.2.1.2 Contribution of predictor variables

Table 2 Percentage contribution and permutation importance of all environmental variables to the
model for A. miiricaia under RCP 4.5 for the decades of 2040-2050 and 2090-2100.

Variable Percent

contribution

RCP4.5 (2040
2050)

Batfiymetry 57.9

Mean Temperature 24

Salinity 9.4 ■

Current 8.5

Max Temperature 0.2 ■

Permiiiation

importance

RCP 4.5 (2L
2050)

Percent Permutation

contribution importance

RCP4.5 (2090- RCP 4.5 (2090-
2 WO) 2W0)

emi

27

T.4

3.7

0

23.6

" ~1.6 '

5.9

0.5

Among these variables, bathymetry showed a significantly higher contribution of 57.9

% and 62.5% for the years 2040-50 and 2090-2100 respectively under RCP 4.5, followed by

Mean Temperature (24% & 23.6%) (Table 2). The Maximum Temperature has the least

contribution in this particular model developed for A. muricata. For the Permutation

importance, the variable having high permutation importance for both periods were

bathymetry with 76.3% & 67.8% and the Maximum temperature shows no contribution to this

scenario.

The Jackknife of AUC (or A. muricata shows environmental variable with the highest

gain when used in isolation is Mean Temperature followed by bathymetry for both periods

under the RCP 4.5 (Fig. 8). The values shown are averages over 10 replicate runs. The

environmental variable that decreases the gain the most when it is omitted is mean

temperature, which therefore appears to have the most information that isn't present in the

other variables, whereas salinity shows a lesser gain, lower than 0.55.
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Ifi'

4.1.2.1.3 Response curves of variables used in both models

am asm

1.D

• • ■.1

cwfM

mma

fO

K
fl.MI SMS

<b}

Fig. 9 The Response curve of each variable for 2040-50 and 2090-2100

The response curves for the A. muricata model under the RCP 4.5 for the years 2040-

50 (Fig. 9a) and 2090-2100 (Fig. 9b) showed the change in predicted probability when the
corresponding variable is used in isolation and averaged for 10 replicates.

4.1.2.1.4 The predicted habitat suitability of A. muricata under RCP 4.5

Fig. 10 Map showing the predicted habitat suitability of A. muricata in the northern Indian Ocean
in present condition (a) and for 2040-50 (b) under RCP 4.5
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t

Based on current environmental variables the model predicted maximum distribution

in regions such as the Gulf of Kulch, Western coast of Madagascar, the entire stretch of

Seychelles - Mauritius Ridge (SMR) and the Chagos Archipelago. Other regions of low

plausibility of occurrence include south-eastern Africa, coast of Arabian Peninsula, western

central and eastern coast of India, the islands of Andaman & Nicobar and the Gulf of

Thailand. However, the occurrence of corals predicted as per the RCP 4.5 for 2040-2050

shows the disappearance of reef ecosystems from all the above-mentioned regions except the

southern part of SMR, Gulf of Kutch and north-eastern Madagascar.

The prediction of coral distribution for 2090-2100 based on the RCP 4.5 (Fig. 11) is

somewhat similar to that for 2040-2050. The reason can be inferred from the similarity in the

temperature range for decadal periods.

4.1.2.2 Future distribution o^'A. muricata under RCP 6.0 for years 2040-50 and 2090-2100

m

4.1.2.2.1 The model oerformance and contribution of variables

The average test AUC value averaged over 10 replicates for the years 2040-50 and

2090-2100 were 0.917, (SD= 0.047) and 0.941 (SD= 0.050) respectively (Fig. 12).

4.1.2.2.2 ■ Contribution of predictor variables

Table 3 Percentage contribution and penmilation importance of all environmental variables to the
model for A. muricata under RCP 6.0 for the decades of 2040-2050 and 2090-2100.

Variuble Percent

contribution

(RCP 6.0 2040-

50)

Permutation

importance
(RCP 6.0 2040-

50)

Percent

contribution

(RCP 6.0 2090-

2100)

Permutation

importance
(RCP 6.0 2090-

2100)

Bathymetry 56.4 59.4 56.6 75.7 I

Mean 27.9 26.7 27.5 19.3

temperature

Salinity 8.2 -HI
Current 6.5 9.9 Ta 3.1

Max 0.1' 0.2 0

temperature L&
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IK Among these variables, bathymetry showed a significantly higher contribution of 56.4

% and 56.6 % for the years 2040-50 and 2090-2100 respectively under RCP 6.0, followed by

Mean Temperature (27.9 & 27.5%) (Table 3). The Maximum Temperature has the least

contribution in this particular model developed for A. muricaia. For the Permutation

importance, the variable having high pemiutation importance for both periods were

bathymetry with 59.4% & 75.7% and the Maximum temperature shows the least contribution

(0.1 & 0%) for this scenario in both periods.

The Jackknife of AUC for A. miirkata shows environmental variable with the highest gain

when used in isolation is bathymetry followed by mean temperature for the first decadal

period whereas the Jackknife analysis for 2090-2100 shows that the mean temperature

7^ exceeds bathymetry under the RCP 6.0 (
Fig. 13). The values shown are averages over 10 replicate runs. The salinity shows a lesser

gain in both cases that just above 0.55 and about 0.50 for the period 2040-50& 2090-2100

respectively.

4.1.2.2.3 Response curves of variables used in both models

The response curves for the A. muhcata model under the RCP 6.0 for the years 2040-

50(Fig. 14a) and 2090-2100 (Fig. 14b) showed the change in predicted probability when the

corresponding variable is used in isolation and averaged over 10 replicates.

4.1.2.2.4 The predicted habitat suitability of A. muricaia under RCP 6.0

Based on RCP 6.0 the distribution of A. muricaia in the present condition is predicted in the

entire Indian coast with a higher probability of presence on tlie northern coast of Maharashtra

and the nearby regions of Gujarat coast followed by north-western Madagascar; the SMR and

the Chagos Lakshadweep ridges, and also on the southern cape regions of Indian peninsula.

However, the Andaman Nicobar Islands and the surrounding regions are predicted poorly for

the presence of this species. The distribution becomes more reduced for the decade of 2040-

2050 under RCP 6.0 in which the entire Andaman and Nicobar Islands, Lakshadweep islands

and the east and west coast of India are predicted with no A. muricaia. Its distribution is also

diminished on the SMR, the Red Sea and the Persian Gulf regions. An increase in the coral

population density is predicted for the southern part of SMR and south-eastern Africa.
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When compared with the prediction given for 2040-2050 under RCP 6.0 remarkable

differences can be seen in the predicted distribution for this species in 2090-2100 (Fig. 16).

Here it is completely absent in two island groups of India and its entire coast expect Gujarat.

The population vanished in the north-western parts of Madagascar and the SMR while a

comparatively good presence is retained in the eastern coast of Madagascar and southern part

of SMR. Distribution is predicted but in new regions along the coast of the Arabian Peninsula.

A notable feature is the almost complete absence of the species in the Red Sea.

4.1.2.3 Future distribution of A. muricaUi under RCP 8.5 for years 2040-50 and 2090-

2100

4.1.2.3.1 The model performance and contribution of variables

The average test AUC value averaged over 10 replicates for the years 2040-50 and

2090-2100 were 0.922 (SD= 0.061) and 0.925 (SD= 0. 046) respectively (Fig. 17).

4.1.2.3.2 Contribution of predictor variables

Table 4 Percentage contribution and permutation importance of all environmental variables to the
model for^. immcara under RCP 8.5 for the period or2040-2050 and 2090-2100.

Variable Percent Permutation Percent Permutation

contribution imixirlance contribution importance
RCP 8.5 (2040- RCP 8.5 RCP 8.5 RCP-8.5 (2090-
2050) (2040-2050) (2090-2100) 2100)

Bathymetry

Mean Temperature

Salinity

Current

Max Temperature

59.1

25.2

8.5

7.1

1! ■

71.1

20.2

3.7

54.6

28.2

7.5

65.6

24.8

6:2

3.3

Among these variables, bathymetry showed a significantly higher contribution of 59.1 % and

54.6% followed by Mean Temperature (25.2 & 28.2%) for the years 2040-50 and 2090-2100

respectively (Table 4). The Maximum Temperature has the least contribution in this particular

model developed for A. muricata. For the Permutation importance, the variable having high

permutation importance for both periods were bathymetry with 71.1% & 65.6% and the
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Maximum temperature shows the least contribution for the year 2040-2050 and has no

contribution for 2090-2100 during this scenario.

The Jackknife of AUC for A. miiricata (Fig. 18) shows environmental variable with

the highest gain is bathymetry when used in isolation, followed by mean temperature for both

periods under the scenario RCP 8.5. The values shown are averaged over 10 replicates. The

environmental variable that decreases the gain the most when it is omitted is bathymetry,

which therefore appears to have the most information that isn't present in the other variables.

Whereas salinity shows a lesser gain in both periods similar to the other scenarios.

-f
4.1.2.3.3 Response curves of variables used in both models

Z7
mntaniMntar*

nwOTtwnpiraiur*

*71 •»'

cwrant

bathymetry

mntemperalura

MMy

ism

(b|

Fig. 19 The Response curve of each variable for 2040-50 and 2090-2100.

The response curves for the A. miiricata model under the RCP 8.5 for the period of

2040-50 (Fig. 19a) and 2090-2100 (Fig. 19b) showed the response of each variable in

determining the distribution of the species created using only the corresponding variable,

averaged for 10 replicates.
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4.1.2.3.4 The predicted habitat suitability of A. muricara under RCP 8.5

W (b)

Fig. 20 Map showing the predicted habitat suitability of A. muricata in the Northern Indian Ocean
in present condition (a) and for 2040-2050 (b) under RCP 8.5.

Under RCP 8.5 the predicted distribution of A. muricata (Fig. 20) for the present

condition is almost similar to that under RCP 4.5 and 6.0. For the 2040-2050 decade, the

prediction is more similar to that under RCP 4.5.

£

Fig. 21 Map showing the predicted habitat suitability of A. muricoto in the Northern Indian Ocean
in present condition (a) and for 2090-2100 (b) under RCP 8.5.

Here the range of A. muricara for 2090-2100 (Fig. 21) is just confined to the

northernmost coast of the Persian Gulf, the coast of Oman, eastern Madagascar and southern

SMR, however to a lesser degree.
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4.2 F. pallida

4

4.2.1 Prediction of the current distribution

4.2.1.1 The Model Performance and variable contributions

The model performance assessed by using the average test AUC value for 10

replicates was 0.933 (SD= 0.025). The sensitivity vs. 1-specificity graph shows the area under

the Receiver Operating Characteristic (ROC) curve or AUC. The test omission rate and AUC

curve (Fig. 22 & Fig 23) was found fit in this model. The Fig. 22 shows that the mean

omission line on the lest data was passing through the predicted omission line. In theFig. 22,

the AUC line was passing througli the lefi top of the random prediction.

4.2.1.2 Contribution of predictor variables

Table 5 Percentage contribution and permutation importance of all environmental variables to the
model for F. palUda

VariaMe

Bathymetry

Calcite

pH
Nitrate

Current

Kd

Phosphate
PAR

Mean temperature

Chlorophyif
Solinit)'
Max temperature
DO

Percent contribution Permutation importance

The relative contribution of each predictor variable is given by the MaxEnt output and

it is shown in Table 5. Among alt the variables, bathymetry showed a significantly higher

contribution of 62.3 %, followed by Calcite (7.9%) and pH (6.3%). The dissolved oxygen

shows the least contribution of 0.5 % in this model developed for F. pallida. For the

Permutation importance, for each environmental variable, in turn, the values of that variable in

training presence as well as in background data were randomly permuted. The variable
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Average Sensttivlty vs. 1 - Spectfictty for Favia_j>allida
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Mean (AUC= 0.933)

Mean *(• onestddev

Random Prediction

1 - Specificity (Fracttonal Predicted Area)

Fig. 22 ROC curve of variable optimization model of the F. pallida

Average Omission and Predicted Area for Favia_paliida

30 40 50 60 70

Cumulative threshold

Mean area *

Mean area *f- one stddev ■

Mean omission on test data *

Mean omission one stddev ■

Predicted omission ■

Fig. 23 Test omission rale and predicted area as a function of the cumulative threshold, averaged
over the replicate runs for F. pallida
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having high permutation importance (80.7%) were bathymetry and the nitrate by 3.9

percentage.

JaeKKnife of AUC for Favia^paliida

bathymetry

calcitel

chlorophyll I

current I
9

a  DO
n

1  Kd
Ic maxtemperature
9  I

1 mearrtemperature I
O  {

'I nitrate
lu I

PAR

pH I

^osphatel

salinity

Without variable

With only variable

Withal! variables

0.50 0 55 0.60 0 65 0.70 0.75

AUC

OSO 0B5 090 0.95

Fig. 24 Jackknife analysis of AUC for the F. paUida using all the variables

The Jackknife of AUC for f. paUida (Fig. 24) shows environmental variable with the

highest gain when used in isolation is bathymetry, followed by calcite and diffusion

attenuation coefficient (Kd), which therefore appears to have the most useful information by

itself. The values shown are averages over replicate runs. The environmental variable that

decreases the gain the most when it is omitted is bathymetry, which therefore appears to have

the most information that isn't present in the other variables. Also, the mean temperature

showed the least gain

The response curves for the F. paUida model (Fig. 25) showed the change in predicted

probability when the corresponding variable is used in isolation and averaged for 10

replicates. These plots demonstrate the dependence of predicted suitability on the selected

variables as well as on the dependencies induced by correlations between each variable and

other variables.
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Fig. 25 The response curves of each variable for the F. pallida model

4.2.1.3 Prediction of the present distribution of the F. pallida

J

i^lapalMcto

HsbHMigHal}Uily "
930S4

Fig. 26 The predicted distribution of F. pallida along the Northern Indian Ocean.

Fig. 26 shows that the predicted distribution of F. pallida in the Northern Indian ocean

with suitability ranging from 0.30 to 0.99, low to high indicated by a legend ol yellow to red.
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The F. paUida shows higher environmental suitability (80-99%) along the Lakshadweep

islands, Maldives, Chagos, Gulf of Kutch, Northern region of Gulf of Thailand, Southwestern

boundary of Northern Indian Ocean, North-western coast of Madagascar as well as in the

islands and seamounts (which lies in between), the Western coast of Sumatra. A medium to

high suitability (50-80%) was predicted in Andaman and Nicobar Islands, Gulf of Mannar and

Srilanka coast, Mergui archipelago, boundaries of Red Sea, Persian Gulf, the entire stretch of

Seychelles-Mauritius Plateau and along the South-western coast of India.

4.2.2 Future distribution of F. pallida under different Climate Scenarios

Models prepared using the optimized variables under three different Representative

Concentration Pathways (RCP) such as RCP4.5, RCP6 and RCP8.5 gave the prediction for

future distribution oflhe F. pallida in the Northern Indian Ocean for the years 2040-2050 and

2090-2100.

4.2.2.1 Future distribution of F. paUida under RCP 4.5 for years 2040-50 and 2090-

2100

4.2.2.1.1 The model performance and contribution of variables

The average test AUC value averaged over 10 replicates for the years 2040-50 and

2090-2100 were 0.924 (SD = 0.011) and 0.911 (SD = 0.026) respectively (Fig. 27).

4.2.2.1.2 Contribution of predictor variables

Among the variables, bathymetry showed the highest contribution of 84.1% and 86.1%

for the years 2040-50 and 2090-2100 respectively under RCP 4.5, followed by the current (8.6

& 7.1%) (Table 6). The Maximum Temperature has the least contribution in this particular

model developed for F. paUida. For the Permutation importance, the variable having high

permutation importance for both periods were bathymetry with 89.9% & 93.1% and similar to

the contribution, maximum temperature also shows the least permutation importance (4.1% &

0.9%) in this scenario.
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Fig. 27 ROC curve of variable optimization for the F. pallida under RCP 4.5 for the years 2040-50
(a) and 2090-2100(b)

Table 6 Percentage contribution and permutation importance of all environmental variables to the
model for F. pallula under RCP 4.5 for the decades of 2040-2050 and 2090-2100.

Variable

Bathymetry

Current

Mean

temperature

Salinity

Max

temperature

Percent Permutation Percent Permutation

contribution importance contribution importance
RCP4.5 (2040- RCP 4,5 RCP4.5 (2090- RCP 4,5
2050) (2040-2050) 2100) (2090-2100)
84.1

8.6

3^

2.3

% -

89.9

1.6

3.5

0.8

4.1

86.1

7.1

3.1

2.3

1.4

93.1

0.6

2.9

2.4

m

1
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Fig. 28 Jackknife analysis of AUC for the F. pallida using variables according to RCP 4.5 for
years 2040-2050 (a) and 2090-2100 (b)

4.2.2,1.3 Response curves of variables used in both models

nwiaafivMfitui* fciiliynwiliy
u

u

04
Ttx Ktn

HiMManiparA**

mm m

solMy
«4

s
00

8<7T JO 114 MIM 40 Ml

curr«nl

ai

u W.

•  \.m

inunlHnp*'>lur>

ana

{•) (b)

Fig. 29 The Response curve of each variable for 2040-50(a) and 2090-2100(b).

The Jackknife of AUC for F. pallida shows environmental variable with the highest

gain when used in isolation is bathymetry followed by maximum temperature for the period of

2090-2100 whereas the current and max temperature shows maximum contribution in 2040-50

under RCP 4.5 (Fig. 28). The environmental variable that decreases the gain the most when it

is omitted is bathymetry, which therefore appears to have the most information that isn't

present in the other variables. Whereas mean temperature shows a lesser gain, lower than

0.50. The values shown are averages over 10 replicate runs.
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The response curves for the F. pallida model under the RCP 4.5 for the years 2040-50 (Fig.

29a) and 2090-2100 (Fig. 29b) showed the change in predicted probability when the

corresponding variable is used in isolation and averaged for 10 replicates. For both periods of

projection, each variable follows a similar pattern of response to the particular model.

4.2.2.1.4 The predicted habitat suitability of F. pallida under RCP 4.5

A
I f

\ ■ 'J

(a) (b)

Fig. 30 Map showing the predicted habitat suitability of F. pallida in the Northern Indian Ocean in
present condition (a) and for 2040-50 (b) under RCP 4.5.

On comparing the predicted distribution of F. pallida under RCP 4.5 (Fig. 30) for the

present situation and for 2040-2050, the range of this species get diminished for 2040-50, in

some parts of the Bay of Bengal, ie. in the Gulf of Mannar region; in the Andaman sea; the

Red Sea and in the Maldives and Lakshadweep archipelago. The high degree of presence is

retained for both cases in the eastern coast of Africa followed by a lesser degree of presence in

the entire western coast of India and the SMR.
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(a) (b)

Fig. 31 Map showing the predicted habitat suitability of F. pallida in the Northern Indian Ocean in
present condition (a) and for 2090-2100 (b) under RCP 4.5.

No remarkable reduction in the range of this species is predicted for the decade 2090-2100

under RCP 4.5 (Fig. 31) when compared with its range predicted for 2040-50. However, a slight

degree of increase in its presence can be noted for the coast of western India and Bangladesh.

4.2.2.2 Future distribution of F. pallida under RCP 6.0 for years 2040-50 and 2090-

2100

4.2.2.2.1 The model performance and contribution of variables

The average test AUC value averaged over 10 replicates for the years 2040-50 and 2090-2100

were 0.924 (SD= 0.011) and 0.911 (SD= 0.026). respectively (Fig. 32(a) and Fig. 32 (b)).
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Fig. 32 ROC curve of variable optimization model of the F. pallida imder RCP 6.0 for the years
2040-50 (a) and 2090-2100 (b).
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4.2.2.2.2 Contribution of predictor variables

Among the variables, bathymetry showed a significantly higher contribution of 83.8 % and

84.5 % for the years 2040-50 and 2090-2100 respectively under RCP 6.0, followed by the

current (8.8 & 9.4%) (Table 7). The Salinity has the least contribution in this particular model

developed for F. pallida. For the Permutation importance, the variable having high

permutation importance for both periods were bathymetry with 93.6 % & 90.6 % and the

Salinity itself shows minimum pennutation importance in this scenario.

Table 7 Percentage contribution and pennutation importance of all environmental variables to the
model for F. pallida under RCP 6.0 fbr the decades of 2040-2050 and 2090-2100.

Variable Percent Per/niitation Percent Pennutation

contribution importance contribution importance
(RCP 6.0 2040- (RCP 6.0 2040- (RCP 6.0 2090- (RCP 6.0 2090-
2050) 2050) 2100) 2J00)

Baihymetry

Current

Mean

temperature

Max

temperature

Salinity

83.8 93.6

The Jackknife of AUC for F. pallida (Fig. 33) showjr environmental variable with the

highest gain when used in isolation is bathymetry followed by the current for 2040-2050

decade under RCP 6.0. The values shown are averages over 10 replicate runs. The

environmental variable that decreases the gain the most when it is omitted is bathymetry,

current and maximum temperature which therefore appears to have the most infonnation that

isn't present in the other variables. Whereas mean temperature shows a lesser gain, lower than

0.50.
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Fig. 33 Jackknife analysis of AUC for the F. pallicia using variables according to RCP 6.0 for
years 2040-2050 (a) and 2090-2100 (b)

4.2.2.2.3 Respon.se curves of variables used in both models

bMhifnatry current

eaei i.tn

meantenipweture

OJ

MJI2

bathnnway current

IJ6

meenlemperatur*

saMly

ItJM mmt

Fig. 34 The Response curve of each variable for 2040-50(a) and 2090-2100(b).

The response curves for the F. pallida model under the RCP 6.0 for the years 2040-50

(Fig, 34a) and 2090-2100 (Fig. 34b) showed the change in predicted probability when the
corresponding variable is used in isolation and averaged for 10 replicates.
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4.2.2.2.4 The predicted habitat suitability of f. pallkia under RCP6.Q

(«) (b)

Fig. 35 Map showing the predicted habitat suitability of F. pallida in the Northern Indian Ocean
in present condition (a) and for 2040-50 (b) under RCP 6.0.

The distribution forecast of F. pallida under RCP 6.0 for the two time periods is similar to that under

RCP 4.5.

Compared to the species' range for 2040-50 the population constricted in most regions

for 2090-2100 such as, along the entire coast of India, it's two island groups and the Maldives

from where it is completely disappeared. Its range over the Red Sea and the Persian Gulf is

also shown to be reduced except in the northern parts. The northern regions of SMR also show

reduced presence while even more percentage of presence can he seen on the entire east

African coast.

r ^

J-

(a) (b)

Fig. 36 Map showing the predicted habitat suitability of F. pallida in the Northern Indian Ocean in
present condition (a) and for 2090-2100 (b) under RCP 6.0.
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4.2.2.3 Future distribution of F. pallida under RCP 8.5 for years 2040-50 and 2090-

2100

4.2.2.3.1 The model performance and contribution of variables

The average lest AUC value averaged over 10 replicates for the years 2040-50 and

2090-2100 were 0.932 (SD= 0.025). and 0.940 (SD= 0.011) respectively (Fig. 37).
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Fig. 37 AUC curve of variable optimization model of the F. palliJo under RCP 8.5 for the years
2040-50 (a) and 2090-2100 (b)

4.2.2.3.2 Contribution of predictor variables

Table 8 Percentage contribution and permutation importance of all environmental variables to the
model for F. pallida under RCP 8.5 for the decades of 2040-2050 and 2090-2100.

Variable Percent Permutation Percent Permutation
contribution importance contribution importance
RCP8.5 RCP8.5 (2040^ RCP8.5 (2090- RCP8.5 (2090-
(2040-2050) 2050) 2100) 2100)

Bathymetry 86.3 87.6 85.2 92.9 1
Current 6.7 1.2 S.I 1.1

Mean 3-7 5.5 3.2 -

temperature
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Max

temperature

Salinity-

2.1

1.3

4.9

0.8

1.8

1.8

1.4

1.1

-I

Among these variables, bathymetry showed a significantly higher contribution of 86.3

% and 85.2% for the years 2040-50 and 2090-2100 respectively under RCP 8.5. followed by

current (6.7 & 8.1%) (Table 8). The salinity has the least contribution in this particular model

developed for F. pallida. For the Permutation importance^ the variable having high

permutation importance for both periods were bathymetry with 87.6% & 92.9% and the

salinity shows the least importance to this scenario.
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Fig. 38 Jackknife analysis of AUC for the F. pallida u.sing variables according to RCP 8.5 for
years 2(H0-2050 (a) and 2090-2100 (b)

The Jackknife of AUC for F. pallida (Fig. 38) .shows environmental variable with the

highest gain when used in isolation is bathymetry followed by maximum temperature for both

periods under the RCP 8.5. The values shown are averages over 10 replicate runs. The

environmental variable that decreases the gain the most when it is omitted is bathymetry,

which therefore appears to have the most information that isn't present in the other variables.

Whereas the mean temperature shows a lesser gain, about 0.50.
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4.2.2.3.3 Response curves of variables used in both modehs

J4H

Fig. 39 The Response curve of each variable for 2040-50(a) and 2090-2100(b).

The response curves for the F. pallida model under the RCP 8.5 for the years 2040-50

(Fig. 39a) and 2090-2100 (Fig. 39b) showed the change in predicted probability when the

corresponding variable is used in isolation and averaged for 10 replicates.

4.2.2.3.4 The predicted habitat suitahilitv of F. pallida under RCP 8.5

Under RCP 8.5, F. pallida are projected to have an extreme degree of presence in

almost all regions where it is predicted in the present situation (

Fig. 40). The exception is seen in the two island groups of India and in the southern Red Sea.

The presence is estimated with an extreme degree in the northern Persian Gulf; the coast of

Oman, Gujarat, Bangladesh, entire East Africa and Madagascar, and the SMR. Northern parts

of the Red Sea are also projected with its good presence.

The presence of F. pallida predicted for 2090-2100 under RCP 8.5 (Fig. 41) is

strikingly different from that of 2040-50. Here its entire range has dwindled especially on the

coasts and islands of India without a single point of presence. A smaller degree of presence is

projected for the continental coast and islands in the western part of the north-western Indian

ocean.
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4.3 P. daedalea

4.3.1 Prediction of the current distribution

4.3.1. i The Model Performance and variable contributions

The model performance assessed by using the average test AUC value for 10

replicates was 0.936 (SI>= 0.019). The sensitivity V5. 1-specificity graph shows the area under

the Receiver Operating Characteristic (ROC) curve or AUC. The test omission rate and AUC

curve (Fig. 42 & Fig. 43) was found fit in this model. The Fig. 43 shows that the mean

omission line on the test data was passing through the predicted omission line, in the Fig. 42,

the AUC line was passing through the left top of the random prediction.

Avarag* Sensitivity vs. l - Specificity for Platygyra_daedatea

«0.3

Mean (AUC = 0 936)

Mean *t- one stddev

Random Prediction

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.6 0.9 1.0
1 - Specificity (Fractional Predicted Area)

I

Fig. 42 AUC curve of variable optuuization model of the Platygyra deadalea
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^0,6

Mean area
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Mean omission on test data

Mean omission «- one stddev

Predicted omission

40 50 60

Cumulative threshold

Fig. 43 the Test omission rate and predicted area as a function of the cumulative threshold,
averaged over the replicate runs for Platygyra deadalea

4.3.1.2 Contribution of predictor variables

Table 9 Percentage contribiiiion and pennutation importance of all environmental variables to the
model for P. daedalea

Variable

Bathymetry
Calcite

Current

pH
Nitrate

Kd

Mean temperature
PAR

Chlorophyll
Phosphate
Salinity
Max temperature

DO

Percent contribution Permutation importance

64.5

8.6

7.1_
5

4,3
2.3

^2
1.7

1.4

"0.6

0.6
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^  The relative contribution of each predictor variable is given by the MaxEnt output and it is

shown in Table 9. Among all the variables, bathymetry showed a significantly higher

contribution of 64.5 %, followed by calcite (8.6%) and current (7.1%). The dissolved oxygen

is the variable with the least contribution in this model developed for P. daedalea. For the

Permutation importance, for each environmental variable one by one, the values of that

variable in training presence as well as in background data were randomly permuted. The

variable having high permutation importance (82.9) were bathymetry and the chlorophyll by

2.1 %.

The Jackknife of AUC for P. daedalea (Fig. 44) shows environmental variable with

^  the highest gain when used in isolation is bathymetry, which therefore appears to have the

most useful information by itself. The values shown are averages over replicate runs. The

environmental variable that decreases the gain the most when it is omitted is bathymetry,

which therefore appears to have the most information that isn't present in the other variables.

Whereas, nitrate shows a lesser gain, lower than 0.50.

The response curves for the P. daedalea model (Fig. 45) showed the change in

predicted probability when the corresponding variable is used in isolation and averaged for 10

replicates. These plots demonstrate the dependence of predicted suitability on the selected

variables as well as on the dependencies induced by correlations between each variable and

other variables.
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Fig. 44 Jackknife analysis of AUC for the P. daedalea using all the variables
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4.3.1.3 Prediction of the present distribution of the P. daedalea
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Fig. 46 The predicted distribution of P. daedalea along the Northern Indian Ocean.

Fig. 46 shows the predicted distribution of P. daedalea in the Northern Indian ocean

with suitability ranging from 0.30 to 0.99, low to high indicated by a legend of yellow to red.

The P. daedalea shows higher environmental suitability (80-99%) along the Maldives,

Southwestern boundary of Northern Indian Ocean, North-western boundary of Madagascar

Island as well as in the islands and seamounts (which lies in between), and the northern region

of the Gulf of Thailand. A medium to -high suitability (50-80%) was predicted in

Lakshadweep Islands, Gulf of Kutch, Andaman and Nicobar Islands, boundaries of Red Sea,

along the Seychelles-Mauritius Plateau and along the Gulf of Mannar and the coasts of

Srilanka.
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4.3.2 The Future distribution of P. daedalea under different Ciimate Scenarios.

Models prepared using the optimized variables under three different Representative

Concentration Pathways (RCP) such as RCP4.5, RCP6, and RCP8.5 gave the prediction for

future distribution of the P. deadulea in the Northern Indian Ocean for the years 2040-2050

and 2090-2100.

4.3.2.1 Future distribution of Platygyra deadalea under RCP 4.5 for years 2040-50

and 2090-2100

4.3.2.1.1 The model performance and contribution of variables

The average test AUC value averaged over 10 replicates for the years 2040-50 and 2090-2100

were 0.959 {SD= 0.011) and 0.955 (SD= 0.011). respectively (Fig. 47).
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Fig. 47 AUC curve of variable optimization model of the P. daedalea under RCP 8.5 for the years
2040-50 (a) and 2090-2100 (b)
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4.3.2.1.2 Contribution of predictor variables

Table 10 Percentage contribution and permutation importance of all environmental variables to the
model for P. daedalea under RCP 4.5 for the decades of 2040-2050 and 2090-2100.

Variable Percent Permutation Percent Permutation
contribution importance contribution importance
RCP4.5 (2040- RCP4.5 (2040- RCP4.5 (2090- RCP4.5 (2090-
2050) 2050) 2100) 2100)

Bathymetry 78.5 81.6 16.1 85.1

Mean 11.8 6.8 13.9 12

temperature

Salinity

1

1

"  1.8 'i ■ 1 Mr-

Max- 3.1 9 2.9 5.4

temperature

Current 2 0.8 2.8 1.8

1

Among these variables, bathymetry showed a significantly higher contribution of 78.5

% and It.l^/c for the years 2040-50 and 2090-2100 respectively under RCP 4.5, followed by

Mean Temperature (11.8 & 13.9%) (Table 10). The ocean current has the lea.st contribution in

this model developed for P. daedalea. For the Permutation importance, the variable having

high permutation importance for both periods were bathymetry with 81.6%' & 85.1% in this

scenario.

Jiem of AUC fof nitnfijttdilei Jiekkniti of AUC tor Plitjisfojudolet

Mwiianiblsi •

Airsniiqntttei «

NTiVfina&lssi \ OTtrC

US aid 0.(5 nn m

NIC

dBS ojg us 3«l m 9?0 D?S

AUC

cso m

14

Fig. 48 Jackknife analysis of AUC for the P. daedalea using variables according to RCP 4.5 for
years 2040-2050 (a) and 2090-2100 (b)
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The Jackknife of AUC for Platygyra deadalea (Fig. 48) shows environmental variable

with the highest gain when used in isolation is bathymetry followed by maximum temperature

for both periods under the RCP 4.5. The values shown are averages over 10 replicate runs.

The environmental variable that decreases the gain the most when it is omitted is bathymetry,

which therefore appears to have the most information that isn't present in the other variables.

Whereas salinity shows a lesser gain, lower than 0.55.

4.3.2.1.3 Response curves of variables used in both models

btf^RMtry

IIK

rantamiMrMm

)4 8M

Mk—L
Mie

cwTcnt

2 72)urn2 29

(■) (b)

4

Fig. 49 The Response curve of each variable for 2040-50(a) and 2090-2100(h).

The response curves for the P. doedalea model under the RCP 4.5 for the years 2040-
50 (Fig. 49a) and 2090-2100 (Fig. 49b) showed the change in predicted probability when the
corresponding variable is used in isolation and averaged for 10 replicates.
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4.3.2.1.4 The predicted habitat suitability of P. daeclulea under RCP 4.5

(a) (b)

Fig. 50 Map showing the predicted habitat suitability of P. tlaedaiea in the Northern Indian Ocean
in present condition (a) and for 2040-50 (b) under RCP 4.5.

The predicted distribution of P. daedalea under RCP 4.5 for the current and 2040-50

period shows significant population reduction around the coasts of the Bay of Bengal and

Andaman sea (Fig. 50). On the west coast of India, its presence gradually decreased towards

the south for the 2040-50 decade as is the case in Lakshadweep and Maldive group of islands.

Another major population constriction in the decade is in the Persian Gulf.

(■) (b)

Fig. 51 Map showing the predicted habitat suitability of P. daedalea in the Northern Indian Ocean
in pre.sent condition (a) and for 2090-2100 (b) under RCP 4,5.
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No major difference in the range of P, daedalea is forecasted for the 2090-2100

decade when compared to its range in the 2040-2050 period.

4.3.2.2 Future distribution of Platygyra deadalea under RCP 6.0 for years 2040-50

and 2090-2100

4.3.2.2.1 The mode! perfonnance and contribution of variables

The average test AUC value averaged over 10 replicates for the years 2040-50 and

2090-2100 were 0.960 (SD= 0.018). and 0.960 (SD= 0.019). respectively (Fig 52).

Avtragt ScniffivNy i%. 1 • Ifwcintmi for PHtygyra.tfwdalM Avtragc Scnsmvtty vs. 1 -SptcMeRirforPwynra.tfatdaiM

Htan m smn •
RandofflPretfcSen

ll»anWCs<LttQ«

RaMam PmMan ■

03 04 05 OS 07 0.0
t - (FwOonil PraAcM Aiu]

w

01 03 04 05 00 07 <U
1 ■ SatcMnir fncoonM Prt(tictad Oratf

Fig. 52 ROC curve of variable optimization model of the P. daedalea under RCP 6.0 for the

years 2040-50 (a) and 2090-2100 (b)
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4.3.2.2.2 Contribution of prediclor variables

Table 1! Percentage contribution and permutation importance of all environmental variables to the
model for P. daecialea under RCP 6.0 for the decades of 2040-2050 and 2090-2100.

Variable Percent Penmitation Percent Permutation

contribution importance contribution importance
(RCP 6,0' (RCP 6.0- 2040- (RCP 6.0 2090- (RCP 6.0 2090-

50} 2100) 2100)

Bathymetry' 77.3 90.9 76.2 88.4 iS

Mean 14.1 4.2 13.7 4.3

temperature

Max 3.6 3.5 4.9 1.7 g
temperature

Salinity 3.5 0.7 3.2 ~  3.7

Current 1.5 0.7 2 1 M

Among these variables, bathymetry showed a significantly higher contribution of 77.3

% and 76.2% for the years 2040-50 and 2090-2100 respectively under RCP 6.0. followed by

Mean Temperature (14.1& 13.7%) (Table 11). The ocean current has the least

contribution in this particular model developed for P. daedalea. For the Permutation

importance, the variable having high permutation importance for both periods were

bathymetry with 90.9% & 88.4 % and the current show the least importance for the year 2040-

50 whereas Max temperature has the least importance (1.7%) during 2090-2100 for this

scenario.

JKUmiti or UK for Ptanyn JKtlmiro of AUC for natygpi.^Mdiloi

bilvnerr

ciDHrttmnb

iwmfiiaittiei
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{•)

AUC

(b)

Fig. 53 Jackknife analysis of AUC for the P. daedalea using variables according to RCP 6.0 for
years 2040-2050 (a) and 2090-2100 (b)
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The Jackknife of AUC for P. daedalea (Fig. 53) shows environmenial variable with

the highest gain when used in isolation is bathymetry followed by max temperature for both

periods under the RCP 6.0. The values shown are averages over 10 replicate runs. The

environmental variable that decreases the gain the most when it is omitted is bathymetry,

which therefore appears to have the most information that isn't present in the other variables.

Whereas salinity shows a lesser gain, lower than 0.55.

4.3.2.2.3 Response curves of variables used in both models

The response curves for the P. daedalea model under the RCP 4.5 for the years 2040-50 (Fig.

54a) and 2090-2100 (Rg. 54b) showed the change in predicted probability when the

corresponding variable is used in isolation and averaged for 10 replicates.

4.3.2.2.4 The predicted habitat suitability of P. daedalea under RCP 6.0

Here also the projected range and extremity of the population is similar to that shown

under RCP 4.5 for the same period. For 2040-50, under RCP 6.0, the predicted distribution of P.

daedalea is somewhat similar to the range given under RCP 4.5 for the same period.

ZTilT

WJl

Mtumitiy cwrtnl

27X0 ILtX!
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M

Fig. 54 The Response curve of each variable for 2040-50(a) and 2090-2100(b).
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4.3.2.3 Future distribution of P. daedalea under RCP 8.5 for years 2040-50 and 2090-

2100

4.3.2.3.1 The model performance and contribution of variables

The average lest AUC value averaged over 10 replicates for the years 2040-50 and

2090-2100 were 0.953 (SD= 0.015) and 0.942 (SD= 0.018) respectively (Fig. 57 (a) and Fig.

57 (b)).
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Fig. 57 AUC curve of variable optimization model of the P. daedalea under RCP 8.5 for the years
2040-50 (a) and 2090-2100 (b)

4.3.2.3.2 Contribution of predictor variables

Table 12 Percentage contribution and permutation importance of all environmental variables to the
model for P. daedalea under RCP 8.5 for the decades of 2040-2050 and 2090-2100.

Variable Percent Permutation Percent Permutation

contribution importance contribution importance
RCP8.5 RCP8.5 (2040- RCP8.5 (2090- RCP8.5 (2090-
(2040-2050) 2050) 2W0) 2100)

Bathymetry 78.9 85.6 75.7 ■ 1 88.6
Mean 11.9 6.7 12.7 7.3

temperature

Salinity 4.1 2.1 5.1

1
1

Max 2.6 4.1 3.9 1.8

temperature

Current 14 " 1.5 __ ___ 2.6:

1

o
ON

Among these variables, bathymetry showed a significantly higher contribution of 78.9

and 75.7 % for the years 2040-50 and 2090-2100 respectively under RCP 8.5, followed by
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mean temperature (11.9 & 12.7%) (Table 12). The current has the least contribution in this

particular model developed. For the Permutation importance. The variable having high

permutation importance for both periods were bathymetry with 85.6% & 88.6% and the

current has the minimum importance in this scenario.

The Jackknife of AUC for P. ctaedalea (Fig. 58) shows environmental variable with

the highest gain when used in isolation is bathymetry followed by ma.ximum temperature for

both periods under the RCP 8.5. The values shown are averages over 10 replicate runs. The

environmental variable that decreases the gain the most when it is omitted is bathymetry,

which therefore appears to have the most information that isn't present in the other variables.

Whereas the salinity shows a lesser gain, about 0.55.

4.3.2.3.3 Response curves of variables used in both models

The response curves for the P. checlalea model under the RCP 8.5 for the years 2040-

50 (Fig. 59a) and 2090-2100 (Fig. 59b) showed the change in predicted probability when the

corresponding variable is used in isolation and averaged for 10 replicates.

4.3.2.3.4 The predicted habitat suitability of P. daeckiJea under RCP 8.5

As clear from the map (Fig. 60), almost complete disappearance of the species is

predicted in the entire study region for the decade 2040-50 though population size of very

lesser degree is shown to have remained in the islands of Maldives, Chagos, and Andaman.

Flere the range of distribution is shown to reappeare in some regions in 2090-2100 from where

it is predicted to be absent for the 2040-50 period. A major population can be seen on northern

Persian Gulf, Oman, Gujarat, and the SMR (Fig. 61).
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4.4 P. damicomis

4.4.1 Prediction of the current distribution

4.4.1.1 The Model Performance and variable contributions

The model performance assessed by using the average test AUC value for 10 replicates

was 0.880 (SD= 0.056). The sensitivity vs. 1-specificity graph shows the area under the

Receiver Operating Characteristics (ROC) curve or AUC. The test omission rate and AUC

curve (Fig. 62 & Fig. 63) was found fit in this model. The Fig. 63 shows that the mean

omission line on the test data was passing through the predicted omission line. In the Fig. 62,

the AUC line was passing through the left top of the random prediction.

Average Sensitivrty vs. 1 - Specificity for Poclllopora_damicomis

Mean (AUC s 0.880)

Mean *1- one stddev

Random Prediction

0.2 0.3 0.4 0.5 0.6 0.7 0.8

1 - Specificity (Fractional Predicted Area)

Fig. 62 ROC curve of variable optimization model of the P. damicomis
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Avcrag* Omission and Prodlctod Aroa for Poelttopora damleomis

4

5 0.5

f

Mean area ■

Mean area *t- one stddev ■

Mean omission on test data *

Mean omission +• one stddev •

Predicted omission ■

30 40 SO 60 70

Cumuiative ttireshoid

100

Fig. 63 Test omission rate and predicted area as a function of the cumulative threshold, averaged
over the replicate runs for P. damicomis

4.4.1.2 Contribution of predictor variabie.s

Table 13 Percent contribution and permutation importance of all environmental variables to the
model for P. damicomis

Variable Percent contribution Permutation importance

Bathymetry 41.5 64.8

Chlorophyll 13.6 3

Nitrate

Calcite 10.6 2

Mean temperature

Phosphate 5.1 3.4

Current

Max Temperature 1.3 0.3

pH

Kd 0,7 0.7

DO 3.1

salinity 0  0

PAR 0
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The relative contribution of each predictor variable is given by the MaxEnt output and

it is shown in Table 13. Among all the variables, bathymetry showed a comparatively higher

contribution of 41.5 %, followed by chlorophyll (13.6%) and nitrate (12%). The salinity, as well

as par, shows no contribution in this particular model developed for P. damicornis. For the

Permutation importance, for each environmental variable one by one, the values of that

variable in training presence as well as in background data were randomly permuted. The

variable having high permutation importance (64.8) were bathymetry and the mean

temperature by 11.1 percent.

Jaekknife of AUC for Poeniopora^damicomis

bathymetry

calcrte

chlorophyll

current

DO

Ko

maxtemperature

meanlemperature

nitrate

PAR

pH

phosphate

salinity

Without variable

With only variable

With all variables

0 45 0 50 0 55 0 60 0.65 0 70 0.75 0 80 0 65 0.90

AUC

Fig. 64 Jaekknife analysis of AUC for the P. damicornis using all the variables

The Jaekknife of AUC for P. damicornis (Fig. 64) shows environmental variable with

the highest gain when used in isolation is bathymetry, which therefore appears to have the

most useful information by itself. The values shown are averages over replicate runs. The

environmental variable that decreases the gain the most when it is omitted is bathymetry,

which therefore appears to have the most information that isn't present in the other variables.

Also, salinity shows a lesser gain, lower than 0.45.
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The response curves for the P. damicornis (Fig. 65) model showed the change in

predicted probability when the corresponding variable is used in isolation and averaged for 10

replicates. These plots demonstrate the dependence of predicted suitability on the selected

variables as well as on the dependencies induced by correlations between each variable and

other variables.

4.4.1.3 Prediction of the present distribution of the P. damicornis

ecrotTE 100WE

m

Uw:a300009

PociMopon dMmlcornlS

Habitat SutotxRly v

M High: 0.99999

.... / 680 '

Fig. 66 The predicted distribution of P. damicornis along the Northern Indian Ocean.

Fig. 66 shows that the predicted distribution of P. damicornis in the Northern Indian

ocean with suitability ranging from 0.30 to 0.99. low to high indicated by a legend of yellow

to red. The P. damicornis is a species which shows lower environmental suitability in the

northern Indian ocean compared with other .selected coral species. The map shows

environmental suitability ranging from 50 to 99% along the islands in the Mozambique
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Channel. Chagos, Gulf of Kutch, Gulf of Aden, Andaman & Nicobar Islands, Mergui

Archipelago, Southwestern boundary of Northern Indian Ocean, North-western boundary of

Madagascar Islands, northern waters of the Gulf of Thailand, boundaries of Red Sea, and

Mauritius.

4.4.2 The Future distribution of P. damicornis under different Climate

Scenarios.

Models prepared using the optimized variables under three different Representative

Concentration Pathways (RCP) such as RCP 4.5, RCP 6.0 and RCP 8.5 gave the prediction

for future distribution of the P. damicornis in the Northern Indian Ocean for the years 2040-

2050 and 2090-2100.

4.4.2.1 Future distribution of P. damicornis under RCP 4.5 for years 2040-50 and

2090-2100

4,4.2.1.1 The model performance and contribution of variables

The average test AUC value averaged over 10 replicates for the years 2040-50 and

2090-2100 were 0.932, (SD= 0.042) and 0.947 ( SD= 0.036) respectively (Fig. 67).

*vtrig« y». 1 . S^ciWcliy Pocillopoft a«mitwww AvtriM Sanimvfty vt. 1 •SpaetricttytorPoeitioiMra damtcomt*

RMdmPradnma

MMniMXaasaa*

UNA ana MM*

ftwliKnPniw

S3 o.« as SI 07

t. (FiaOM* PiMMMAn#

W

03 6< OS as 07

t-apMfc»lFncWn#Pw#t#a»M)

M

Fig. 67 ROC curve of variable optimization model of the P. damicornis under RCP 4.5 for the
years 2040-50 (a) and 2090-2100 (b)
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4-4.2.1.2 Contribution of predictor variables
Table 14 Percent contribution and permutation importance of all environmental variables to the
model for P. damicomis under RCP 4.5 for the decades of 2040-2050 and 2090-2100.

Variable

Bailiymetry

Mean
temperature
Current

Salinity

Max

temperature

Percent
contribution
HCP4.5
(2040-2050)

Permutation
importance
RCP 4.5

(2040-2050)

Percent
contribution
RCP4.5
(2090-2100)

65.9

19.9

8.1

5.1

1, "

60.2

^"l8J

"13-2

7.r

65,5

21.4

5

w

Permutation
importance
RCP 4.5 (2090-
2100)

i4".7

3.7

3.7 J
Among these variables, bathymetry showed a significant contribution of 65.9 % and

65.5% for the years 2040-50 and 2090-2100 respectively under RCP 4.5, followed by Mean
Temperature (19.9 & 21.4%) (Table 14). The Maximum Temperature has the least
contribution m this model developed for P. damicomis. For the Permutation importance, the
variable having high permutation importance for both periods were bathymetry with 60.2% &
69.6% and the Maximum temperature shows the least contribution to this scenario.

The Jackknife of AUC for P. damicomis (Fig. 68) shows environmental variable with
the highest gain when used in isolation is bathymetry followed by mean temperature for both
periods under the RCP 4.5. The values shown are averages over 10 replicate runs. The
environmental variable that decreases the gain the most when it is omitted is bathymetry,
which therefore appears to have the most information that isn't present in the other variables.
Whereas salinity shows a lesser gain, lower than 0.40.

%
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4.4.2.1.3 Response curves of variables used in both models

The response curves for the P. damiconm mode! under the RCP 4.5 for the years

2040-50 (Fig. 69a) and 2090-2100 (Fig. 69b) showed the change in predicted probability when

the corresponding variable is used in isolation and averaged for 10 replicates.

4.4.2.1.4 The predicted habitat suitability of P, damicomis under the RCP 4.5 Scenario

Fig. 70 Map showing the predicted habitat suitability of P. damicomis in the Northern Indian
Ocean in present condition (a) and for 2040-50 (b) under RCP 4.5

For P. damicomis the distribution will get diminished across the Bay of Bengal, the

west coast of India and the Chagos, Maldives and Lakshadweep group of islands for the

period 2040-50 under RCP 4.5. The population is shifted to new areas across the Red Sea, the

Persian Gulf and through the Oman coast with not much difference in the strength of

occurrence(Fig. 70).

Fig. 71 Map showing the predicted habitat suitability of P. damicomis in the Northern Indian
Ocean in present condition (a) and for 2090-2100 (b) under RCP 4.5
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No remarkable difference in the dislrihution of P. ciamicornis is predicted for 2090-

2100 under RCP 4.5 in comparison to 2040-50.

4.4.2.2 3.4.2.2 Future distribution of P. damicomis under RCP 6.0 for years 2040-50

and 2090-2100

4A2.2.1 The model performance and contribution of variables

The average lest AUC value averaged over 10 replicates for the years 2040-50 and

2090-2100 were 0.917(SD= 0.043) and 0.955 (SD= 0.012). respectively (Fig. 72 (a ) and Fig.

72(b))

<0

09

o.a

|o7

INjUi(AL>CsO.Btn*
Man H- on« *

Random PiMitlpn >
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Fig. 72 ROC curve of variable optimization of the P. damicomis under RCP 6.0 for the years
2040-50 (a) and 2090-2100 (b)

4.4.2.2.2 Contribution of predictor variables

Table 15 Percentage contribution and permutation importance of all environmental variables to the
model for P. damicomis under RCP 6.0 for the decades of 2040-2050 and 2090-2100.

Variable Percent Permutation Percent Permutation

contribution importance contribution importance
(RCP 6.0 2040- (RCP 6.0 2040- (RCP 6.0 2090- (RCP 6.0
50) 50) 2100) 2090-2100)

Bathymetry 61 62.8

■  -
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Mean 23.4 22.9 23.3 20.2

temperature

Salinity 7S h":, 6.6

■

■

18.9

Current 7.2 4.1 5.6 7.5

Max temperature 0.5 1.2
■

1.6

Among these variables, bathymetry showed a significantly higher contribution of 61 %

and 62.8 % for the years 2040-50 and 2090-2100 respectively under RCP 6.0, followed by

Mean Temperature (23.4 & 23.3%) (Table 15). The Maximum Temperature has the least

contribution in this model developed for P. damicornis. For the Permutation importance, the

variable having high permutation importance for both periods were bathymetry with 65.2 % &

51.9 % and the Maximum temperature shows the least contribution (1.2 & 1.6 %) for this

scenario in both periods.

JKkknift of AtiC for Po(Hopon,daiiiicomis Jickknifi of AUC for Pociliopora.dimicomis

Wictfnittife'

MViMnnasiH*

I nsftrw3t-T
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0

3

I
I fnabfflpotnuri
«

c (nsntOTOflrsEifi

1

OM O SS 070 075
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095 OiQ
0.15 050 055 O.OO 005 070 075

AUC
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Fig. 73 Jackknife analysis of AUC for the P. damicornis using variables according to RCP 6.0 for
years 2040-2050 (a) and 2090-2100 (b)

The Jackknife of AUC for P. damicornis (Fig. 73) shows environmental variable with the

highest gain when used in isolation is bathymetry followed by mean temperature. The values

shown are averages over 10 replicate runs. The salinity shows a lesser gain in both periods is

about 0.45.
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4.4.2.2.3 Response curves of variables used in both models
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Fig. 74 The Response curve of each variable for 2040-50 and 2090-2100.

The response curves for the P. damicomis model under the RCP 6.0 for the years

2040-50 (Fig. 74a) and 2090-2100 (Fig. 74b) showed the change in predicted probability when

the corresponding variable is used in isolation and averaged over 10 replicates.

4.4.2.2.4 Predicted habitat suitability of P. damiconiis under the RCP 6.0

(•) (b)

Fig. 75 Map showing the predicted habitat suitability of P. damicomis in the Northern Indian
Ocean in present condition (a) and for 2040-50 (b) under RCP 6.0
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The extent of distribution of P. damicornis under RCP 6.0 for the 2040-50 decade is

also similar to distribution projected for the same period under RCP 4.5.

(i) (b)

Fig. 76 Map .showing the predicted habitat suitability of P. damicornis in the Northern Indian
Ocean in pre.sent condition (a) and for 2090-2100 (b) under RCP 6.0

Here the extent is further decreased and the species is predicted to be vanished from

eastern Indian ocean regions of this study and from the west coast of India and the

Lakshadweep archipelago. In addition, further decrease is projected in the Red Sea, Persian

Gulf, Maldives, Chagos and northern SMR region.

4.4.2.3 3.4.2.3 Future distribution of P. damicornis under RCP 8.5 for years 2040-50

and 2090-2100

4.4.2.3.1 The model performance and contribution of variables

The average lest AUC value averaged over 10 replicates for the years 2040-50 and

2090-2100 were 0.956 (SD= 0.044) and 0.924 (SD = 0.043). respectively (Fig. 77(a) and Fig.

77 (b)).
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Fig. 77 the AUC curve of variable optimization of the P. damicornis under RCP 8.5 for the years
2040-50 (a) and 2090-2100 (b)

4.4.2.3.2 Contribution of predictor variables

Table 16 Percentage contribution and permutation importance of all environmental variables to the
model for P. damiconiis under RCP 8.5 for the period of 2040-2050 and 2090-2100.

Permutation

importance

Variable Percent Permutation Percent

contribution importance contribution

2100)

RCP 8.5 RCP 8.5 RCP 8.5

(2040-2050) (2040-2050) 2100)

Bathymetry 62.1 143 65.2

Mean 23.8 14.2 21.6

Temperature

Salinity 7.4 4.9 7"

Current 6.2 5.3 5.1

Max 0.6 IS 12
Temperature F

163

15.7

3.6

2

2.4

Among these variables, bathymetry shows highest contribution of 62.1 % and 65.2%

followed by Mean Temperature (23.8 & 21.6%) for the years 2040-50 and 2090-2100
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4.

respectively (Table 16). Maximum Temperature has the least contribution in this particular

model developed For the Permutation importance, the variable having high permutation

importance for both periods were bathymetry with 74.2% & 76.3% and the Maximum

temperature shows the least contribution for the year 2040-2050 and 2090-2100 during this

scenario.
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Fig. 78 Jackknife analysis of AUC for the P. dotnicornis using variables according to RCP 8.5
for years 2040-2050 (a) and 2090-2100 (b)

The Jackknife of AUC for P. damicornis (Fig. 78) shows environmental variable with

the highest gain is bathymetry when used in isolation, followed by mean temperature for both

periods under the scenario RCP 8.5. The values shown are averaged over 10 replicates. The

environmental variable that decreases the gain the most when it is omitted is bathymetry,

which therefore appears to have the most information that isn't present in the other variables.

Whereas salinity shows a lesser gain in both periods similar to the other scenarios.
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4.4.2.3.3 Response curves of variables used in both models

bathmwtiy currant

o.aoi MM

maanlenM«ratura
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MftHnMiiy CMTMi

0>}

Fig. 79 The Response curve of each variable for 2040-50 and 2090-2100.

The response curves for this species under the RCP 8.5 for the period of 2040-50 (Fig.

79a) and 2090-2100 (Fig. 79b) showed the response of each variable in determining the

distribution of the P. damicomis created using only the corresponding variable, averaged for

10 replicates.
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4.4.2,3.4 Prediciod habitat suitability of P. damiconus under the RCP 8.5

(a) (b)

Fig. 80 Map showing the predicted habitat suitability of P. damiconus in the Northern Indian
Ocean in present condition (a) and for 2040-50 (b) under RCP 8.5

Here, for the 2040-2050 decade (Fig. 80), the species is completely absent in the Red

sea and the two island groups of India. It is retained only in small degree across Gujarat coast,

Chagos, eastern Madagascar, islands off Somalia, Oman, North-eastern Arabian Peninsula and

south SMR.

Fig. 81 Map showing the predicted habitat suitability of P. damiconus in the Northem Indian
Ocean in present condition (a) and for 2090-2100 (b) under RCP 8.5

For the decade 2090-2100 the species shows further drop in the percentage distribution

when compared to the projection for 2040-50 as it is completely absent in the Chagos,
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northern SMR and entire eastern Africa (Fig. 81). However, the population remains in the

northern Persian Gulf and Oman coast in a moderate degree,

4.5 P. liitea

4.5.1 Prediction of the current distribution

4.5.1.1 The Model Performance and variable contributions

The model performance is assessed by using the average test AUC value for 10

replicates was 0.933 (SD = 0.016). The sensitivity I'jr. l-specificity graph shows the area under
the Receiver Operating Characteristic (ROC) curve or AUC. The test omission rate and AUC

curve (Fig. 82 & Fig. 83) found to fit into this model. The Fig. 83 shows that the mean

omission line on the lest data was passing through the predicted omission line. In the Fig. 82,
the AUC line was passing through the left lop of the random prediction.
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Fig. 85 The response curves for the P. lutea

98



\

4.5.1.2 Contribution of predictor variables

Table 17 Percent contribution and permutation importance of alt environmental variables to the
model for P. lutea

Permutation importanceVariable Percent contribution

Bathymetry 71.4

Current B.2

Nitrate 7.9 " ^ ~
pH 4.4

Phosphate 2.4

Calciie 2.2

Chlorophyll
Kd 1.2

Max

Temperature '

PAR 0.4

Mean 0.4

Temperature
DO 0

Salinity o._

The relative conlribuiion of each predictor variable is given by the MaxEnt output and

it is shown in Table 17. Among all the variables, bathymetry showed a comparatively higher

contribution of 71.4 %, followed by current (8.2%) and nitrate (7.9 %). The salinity, as well as

DO, shows no contribution in this particular model developed for P. lutea. For the

Permutation importance, for each environmental variable one by one, the values of that

variable in training presence as well as in background data were randomly permuted. The

variable having high permutation importance (88.9) were bathymetry and the phosphate

(2.9%).

The Jackknife of AUC for P. lutea (Fig. 84) shows environmental variable with the

highest gain when used in isolation is bathymetry, which therefore appears to have the most

useful infonnation by itself. The values shown are averages over replicate runs. The

environmental variable that decreases the gain the most when it is omitted is bathymetry,

which therefore appears to have the most information that isn't present in the other variables.

The PARshows a lesser gain, lower than 0.45.

The response curves for the P. lutea showed the change in predicted probability when

the corresponding variable is used in isolation and averaged for 10 replicates (Fig. 85). These
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plots demonstrate the dependence of predicted suitability on the selected variables as well as

on the dependencies induced by correlations between each variable and other variables.

4.5.1.3 Prediction of the present distribution of the P. lutea

A

If -.
ixv ziji' PoritBS tut9»

HabiMSuitaM
Kiah:0

Low: 0.300034

Fig. 86 The predicted distribution of P. luteu along the Northern Indian Ocean.

Fig. 86 shows that the predicted distribution of P. lutea in the Northern Indian ocean

with suitability ranging from 0.30 to 0.99. low to high indicated by a legend of yellow to red.

P. lutea is a species which shows lower environmental suitability in the northern Indian ocean

compared with other selected coral species. The map shows environmental suitability ranging

from 80 to 99% along the islands in the Mozambique Channel, the entire .Seychelles Mauritius

ridge, Lakshadweep, Maldives Chagos, Gulf of Kutch, Gulf of Aden, Southwestern boundary

of Northern Indian Ocean, Northwestern boundary of Madagascar Islands, northern waters of

the Gulf of Thailand, boundaries of Red Sea. A medium suitability of about 50-80% were

observed at Andaman and Nicobar Islands, Mergui Archipelago, Gulf of Mannar, Malacca

strait and in the Persian Gulf.
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4.5.2 The Future distribution of P. liiteci under different Climate Scenarios.

Models prepared using the optimized variables under three different Representative

Concentration Pathways (RCP) such as RCP4.5, RCP6.0 and RCP8.5 gave the prediction for

future distribution of P. lutea in the Northern Indian Ocean for the years 2040-2050 and 2090-

2100.

4.5.2.1 Future distribution of P. lutea under RCP 4.5 for years 2040-50 and 2090-

2100

4.5.2.1.1 The model performance and contribution of variables

The average test AUC value averaged over 10 replicates for the years 2040-50 and

2090-2100 were 0.950(SD = 0.009) and 0.931 (SD = 0.012) respectively (Fig. 87).

Avtraga StflsKtvtty vs. 1 • ifMRMly ttr P«ilt>s_hitia Avsrafl* tMsHtvitif vs. 1 • Spsemelty tor P«ntos,iuEM
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Fig. 87 the ROC curve of variable optimization model of the P. lutea under RCP 4.5 for the years
2040-50 (a) and 2090-2100 (b)
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4.5.2.1.2 Contribution oFprcdictor variables

Table 18 Percent contribution and permutation importance of all environmental variables to the
model for P. lutea under RCP 4.5 for the decades of 2040-2050 and 2090-2100.

Percent Permutation Percent Permutation

contribution importance contribution importance
Variable RCP4.5 (2040- RCP 4.5 (2040- RCP4.5 (2090- RCP 4.5 (2090-

2050) 2050) 2100) 2100)

bathymetry 75.5 T

i  " "
85.2

1
84.4" 94.6

Mean 15.3

II V 1

10.7

1

1

3.5

temperature

current

salinity

" Z'-"

3.2 2 0.5 1 *^
Max ■  . * 0.2 (Tl 0.2 :

temperature

Among these variables, bathymetry showed a significant contribution of 75.5 % and

84.4% for the years 2040-50 and 2090-2100 respectively under RCP 4.5, followed by Mean

Temperature (15.3 & 13.7%) (Table 18). The Maximum Temperature has the least

contribution in this model developed for P. lutea. For the Permutation importance, the

variable having high permutation importance for both periods were bathymetry with 85.2% &

94.6% and the Maximum temperature shows the least contribution to this scenario.

The Jackknife of AUC for P. lutea (Fig. 88) shows environmental variable with the

highest gain when used in isolation is bathymetry followed by max temperature for both

periods under the RCP 4.5. The values shown are averages over 10 replicate runs. The

environmental variable that decreases the gain the most when it is omitted is bathymetry,

which therefore appears to have the most information that isn't present in the other variables.

Whereas salinity shows a lesser gain, which is lower than 0.55 in 2040-2050 whereas the

mean temperature shows the lowest value for 2090-2100 decade.

i

102



\A

MnifiofiiyCfofPefitM lutia

A

A

Jjrtknifa of AUC for Porto Woi

'Mioiiliiniiatiiei |
WiilTanajai I

I malsmitffiiurT
s

cMniponaiTt

UK J.«5 670 07S

KJC

III

055 0 50 055 OTO 075

MX

Ibl

Fig. 88 Jackknife analysis of AUC for the P. lutea using variables according to RCP4.5 for years
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Fig. 89 The Response curve of each variable for 2040-50(a) and 2090-2100(b).

4.5.2.1.3 Response curves of variables used in both models

The response curves for the P. lutea model under the RCP 4.5 for the years 2040-50

(Fig. 89a) and 2090-2100 (Fig. 89b) showed the change in predicted probability when the

corresponding variable is used in isolation and averaged for 10 replicates.
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4.5.2.1.4 The predicted suitability of P. luiea under the RCP 4.5

{•) (b)

Fig. 90 Map showing the predicted habitat suitability of P. lutea in the Northern Indian Ocean in
present condition (a) and for 2040-50 (b) under RCP 4.5

The predicted distribution of P. luteo under RCP 4.5 for the 2040-50 period shows

marked reduction when compared to the current situation. Entire coast of India and Andaman

group of islands shows either reduction or complete decline of the species. However, it is

predicted with a good degree of presence in the Lakshadweep, Maldives and Chagos islands;

the east African coast and the Red Sea than its presence in these areas in the present condition.

V
W

>1>'
<a) (b)

Fig. 91 Map showing the predicted habitat suitability of P. lutea in the Northern Indian Ocean in
present condition (a) and for 2090-2100 (b) under RCP 4.5

For the projection obtained under RCP 4.5 for 2090-2100 the species shows a notable

increase in its range as it is then present in the Bay of Bengal regions from where it is absent
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for 2040-50 decade. In addition, the species shows a strong foothold in the eastern coast of

Africa, Red Sea and Oman; around Madagascar and entire SMR.

4.5.2.2 Future distribution of P. lufca under RCP 6.0 for years 2040-50 and 2090-

2100

4.5.2.2.1 The model performance and contribution of variables

The average test AUC value averaged over 10 replicates for the years 2040-50 and

2090-2100 were 0.916 (SD = 0.022) and 0.925 (SD = 0.015). respectively (Fig. 92).

4.5.2.2.2 Contribution of predictor variables

Table 19 Percentage contribution and permutation importance of all environmental variables to the
model for P. lutea under RCP 6.0 for the decades of2040-2050 and 2090-2100.

Variable Percent Permutation

contribution importance
(RCP 6.0 (RCP 6.0 2040-
2040-50) 50)

Bathymetry [85.7 93.1

Current 12.2 4.4

Meat) f V-" 1.2

Temperature
Max 0.8 I.I

Temperature
Salinity ^9 6.2

Percent

contribution

(RCP 6.0

2100)

Permutation

importance
(RCP 6.0

2100)

Among these variables, bathymetry showed a significantly higher contribution of 85.7

% and 82.5% for the years 2040-50 and 2090-2100 respectively under RCP 6.0, followed by

the ocean currents (12.2 & 15.3%) (Table 19). The salinity has the least contribution (0.3%) in

this model developed for P. lutea. For the Permutation importance, the variable having high

permutation importance for both periods were bathymetry with 93.1% & 94.9 % and the

salinity shows the least contribution (0.2 & 0.6 %) for this scenario in both periods.
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The Jackknife of AUC for P. lutea (Fig. 93) shows environmental variable with the

highest gain when used in isolation is bathymetry followed by the current. The values shown

are averages over 10 replicate runs. The mean temperature shows a lesser gain in both periods

is about 0.45.
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4.5.2.2.3 Response curves of variables used in both models
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Fig. 94 The Response curve of each variable for 2040-50 and 2090-2100.

The response curves for the P. hitea model under the RCP 6.0 for the years 2040-50

(Fig. 94a) and 2090-2100 (Fig. 94b) showed the change in predicted probability when the

corresponding variable is used in isolation and averaged over 10 replicates.

4.5.2.2.4 The predicted habitat suitability of P. lutea under RCP6.0

Under RCP 6.0, for the period 2040-50 the distribution of P. lutea resembles its range

predicted under RCP 4.5 for 2090-2100 (Fig. 95)

In this case, the range of occurrence of P. lutea is diminished in lesser degree in all

regions where it is predicted for the 2040-50 period (Fig. 96). However, it remains the same

for the east African coast, Madagascar and SMR.
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4.5.2.3 Future distribution of P. lutea under RCP 8,5 for years 2040-50 and 2090-

2100

4.5.2.3.1 The model performance and conuibution of variables

The average test AUC value averaged over 10 replicates for the years 2040-50 and 2090-2100

were 0.924 (SD = 0.016) and 0.931 (SD = 0.023). respectively (Fig. 97).
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Fig. 97 the AUC curve of variable optimization model of the P. lutea under RCP 8.5 for the years
2040-50 (a) and 2090-2100 (b)

4.5.2.3.2 Contribution of predictor variables

Table 20 Percentage contribution and permutation importance of all environmental variables to the
model for P. lutea under RCP 8.5 for the decades of 2040-2050 and 2090-2100.

Variable Percent Permutation Percent Permutation

contribution importance contribution importance
RCP8.5 (2040- RCP8.5 (2040- RCP8.5 (2090- RCP8.5

2050) 2050) 2100) (2090-2100)

Bathymetry 84.5 93.3 85.1 95.8

Current 12.6 4.3 12.2 2.3 ~ ~

Mean 1.7 1.4 1.4

Temperature
Max 0.8 0.8 0.7 0.5

Temperature
Salinity 0.4 0.2 0.6
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Among these variables, bathymetry showed a significantly higher contribution of

84.5% and 85.1 % for the years 2040-50 and 2090-2100 respectively under RCP 8.5, followed

by current (12.6 & 122 %) (Table 20). The salinity has the least contribution in this particular

model developed for P. lutea. For the Permutation importance, the variable having high
permutation importance for both periods were bathymetry with 93.3% & 95,8 % and the

salinity shows the least importance to this scenario.

The Jackknife of AUC for P. lutea (Fig, 98) shows environmental variable with the

highest gain when used in isolation is bathymetry followed by ocean currents for both periods
under the RCP 8.5. The values shown are averages over 10 replicate runs. The environmental

variable that decreases the gain the most when it is omitted is bathymetry, which therefore

appears to have the most Information that isn't present in the other variables. Whereas mean

temperature in the first decade and max temperature in the second decade shows the least

gain.

4.5.2.3J Response curves of variables used in both models

The response curves for the P. lutea model under the RCP 8.5 for the years 2040-50

(Fig. 99a) and 2090-2100 (Fig. 99b) showed the change in predicted probability when the

corresponding variable is used in isolation and averaged for 10 replicates.

For 2090-2100 decade, the probability of distribution of P. lutea is restricted to Oman,

East Africa, northern Red Sea, eastern Madagascar, southern SMR. It is not predicted to be

present across the entire Indian coast except Gujarat (Fig. 101).

Under RCP 8.5 the probability of distribution of the species is found to be increased in

the whole of the Persian Gulf, eastern Africa and the Andaman sea while slight reduction is

noted in the Red sea; Chagos, Maldives and Lakshadweep group of islands (Fig. 100).
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CHAPTER 5

DISCUSSION

Coral reefs are among the world's most intricate as well as economically important

ecosystem that function as a single unit and provides ecosystem services that are vita! to

human societies and industries. However, coral reefs have continued to deteriorate because of

human impacts in the decade since the inaugural International Year of the Reef in 1997. The

rapid increase in greenhouse gas emission may be the ultimate insult to this living community
by accelerating global warming as well as ocean acidification. This study clearly portrays the
current response of hard coral species towards various environmental parameters, predicted

the environmentally suitable habitat in the northern Indian ocean and the future changes in

coral distribution using three RCP emission scenarios viz., RCP 4.5, RCP 6.0 and RCP 8.5.

The criteria used in the study to assess model performance are Area Under the Curve

(AUC), which is independent of thresholds (Fielding and Bell, 1997; Philips et al., 2006). As
per the suggestions put forwarded by Lobo et al.. (2008) the sensitivity Kv I- specificity were

taken into consideration to account the relative significance of commission and omission

error, along with AUC. All 35 models used in this study gives excellent performance as the
AUC value for all models shown above 0.88. The contribution of each variable in each model

for different species were analysed separately using the Jack-knife of AUC as well as the

response curves.

The bathymetry remained as the major predictor in all models since the growth of
coral reefs is always facilitated, as the corals tend to grow at shallow waters in order to

harness the available sunlight. Corals also prefer a hard bottom substrate to which the corals

attached. In the case of models that predicted the present distribution of the five species, the

nutrients like Calcite, Phosphate, Nitrate, and diffusion attenuation coefficient holds the place
of other contributors in the models. Calcite is the major structural compound of a reef
ecosystem. Based on the correlation between current coral reef distribution and aragonite

saturation state of the surrounding ocean waters, Kleypas et al. (1999a.) observed the

importance of calcite for the calcification of coral reefs. The nutrients like phosphate and
nitrate should be discussed with caution that it may be misinterpreted of having a directly
proportional influence with coral reefs. According to Fig. 5 the influence of nitrate and

phosphate is found to be increasing slightly up to a point after which it declines. The first

inclination may not be really indicating a positive association but can be due to the greater
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impact of these nutrients in the shallow waters near the coast which are fed by terrestrial run

offs having high concentration of these chemicals. According to some earlier studies,

(Marubini & Davles, 1996) nitrate can increase the zooxanthellae symbiont density but

reduces the skeietogenesis of corals. Phosphate also has the same effect on corals (Rosset et

al., 2017). The difftision attenuation coefficient (Kd), a measure of turbidity is the next

contributor to coral flourishment. Scleractinians always prefer clear waters, which only can

pave a smooth path for light through the water column. In the models of future predictions,

mean temperature is the major influencing variable after bathymetry. This may be because of

the rise in sea surface temperature coupled with increased greenhouse gas emissions in future

scenarios.

^  The future distribution of five species of scleractinian corals in the northern Indian

Ocean shows the varying percentage probability of occurrence under various RCPs such as

4.5, 6.0 and 8.5. No particular similarity in the future occurrence for these species can be

observed from the results obtained as the species show varying percentage of occurrence in

different regions in the study area. Individual reefs respond differently to disturbances based

on the community composition, population structure, climatic parameters and level of coral

recruitment (Hatcher, 1997). For example, pocilloporids and acroporids are more affected by

elevated temperature than that of other massive corals (Marshall & Baird, 2000). The northern

Indian Ocean is home to some of the rich coral ecosystems such as the Red Sea, Madagascar,

the Lakshadweep-Maldives and Chagos group of islands on the North-western part while the

islands of Andaman Sea on the eastern part of Indian Ocean. These ecosystems are under the

action of different physicochemical variables having a varying degree of influence.

In the case of A. muricata, a higher probability of occurrence is shown for the regions such as

north-western India, Madagascar and the Seychelles-Mauritius Ridge for the two different

decades (2040-2050 and 2090-2100) under RCP 4.5 and 6. Its occurrence for different periods

under these two RCP is more or less similar, with slight variations, in different regions.

However, the situation is grim under RCP 8.5 for the decade 2090-2100 in which the species

is narrowed to Oman coast and the northern Persian Gulf only with minimal possibility while

completely absent in all other regions. A similar plight can be seen for P. damicornis under

the same RCP for the same period. P. daedaiea, for the 2040-50 decade under RCP 8.5, have

A  an occurrence, with a very low percentage of presence, only in the Maldives, Chagos and

Andaman Islands while showing total absence in remaining study areas.

116



Another remarkable observation is the predicted presence of all five species along the

Indian coasts under all the three RCPs, with a few exceptions. This is especially true for all

five species except A. muricata. Under RCP 8.5 for the period 2040-50, F. paltida shows the

highest percentage of occurrence all along the Indian coast. The Andaman and Nicobar along

with other islands in that region indicate greater vulnerability in the future existence of the

species in various scenarios. The same is true in the case of the Red Sea that is now a major

reef ecosystem in the world. The LMC archipelago and the SMR in the north-western study

region are also pregnable to the future changes in the variables influencing corals. In the case

of F. pallida, a change in this situation is observed in which the species is found to be less

probable to occur in these regions for the period 2090-2100 under RCP 8.5 and 6.0. However,

P. (Jaedalea is found to have a good percentage of occurrences under all RCPs in every time

period studied. The status of occurrence of P. liiiea is remarkably high in all regions except

for the period 2090-2100 under RCP 8.5 and for 2040-50 under RCP 4.5 in which it showed

absence around Indian coast and the Andaman Sea, The Red Sea and the Persian Gulf exhibit

a very low percentage of occurrence probability for A. muricata. P. damicornis and P.

daedalea while the other two species managed to maintain a comparatively moderate

percentage of distribution.

In the existing scenario of accelerated warming of the global oceanic waters, the

current study shows a bleak future of the vulnerable sessile organisms like the hard corals.

The current rate of development in the business as usual scenario that is the RCP 8.5 will be a

sure nemesis for the coral reefs of Northern Indian Ocean. The decrease in the spatial diversity

can in turn reduce the minimum stocking biomass and connectivity. Such cascading effects

will make the coral reefs to reach a point of no return. The wider oceanic biodiversity who are

depending directly or indirectly on the coral reefs also will definitely take the heal. A need to

acknowledge the global warming and there by controlling the carbon emissions is an

imminent requirement and the countries across the world should have already taken measures

towards this. In addition, it is also important to reduce and manage the secondary stressors that

can cause the decline of coral reefs after each bleaching event. Conserving the most resilient

coral reefs and keeping the major source reefs of coral larvae alive will help these sensitive

ecosystems to thrive against the oddities and continue sustained provisions for human

wellbeing.
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CHAPTER 6

SUMMARY

Global warming and climate change are terms for the observed century-scale rise in

the average temperature of the earth's climate system and its related effects. Climate change

prior to the industrial revolution can be explained by natural phenomena. Anthropogenic

climate change has a significant impact on the physical and biological systems all over the

globe. The multiple components of climate change are anticipated to aftect all the levels of

biodiversity, from organism to ecoregions. Researches have been done in identifying the

factors affecting species distribution and analysing their current and future distribution

pattern. Species are affected in a different manner; the species niche is migrated northward

from the tropics with the elevation in ocean temperature. The northern Indian Ocean is

landlocked and further extension of suitable habitat towards north seems impossible in this

region. The shift in habitat suitability is directly associated with the environmental variables

like sea surface temperature, sea surface salinity, chlorophyll, pH, ocean currents, PAR,

diffusion attenuation coefficient, and nutrients like calcile, phosphate, nitrate etc. The present

study is a supporting element for the above statements. The spatial and temporal distribution

of selected hard coral species was studied with respect to the changing climate. Certain warm

water coral species having greater incidence as well as importance in Indian ocean such as

Acropora mnricata, Favia pallicia, Platygyra daeiialea, Pocilhpora chniicornis and Poriies

lulea are selected for the study. For analysing the distribution of different species,

environmental niche modelling (ENM) or species distribution modelling (SDM) was done.

The best-suited niche model used is the maximum entropy based model i.e., MaxEnt. This

predictive niche model provided very good results for modelling the hard-coral species'

distribution for present conditions as well as predictions for future scenarios. Using these

SDMs it is able to identify the potential places of their occurrences and helpful in executing

conservation steps to protect them in the changed habitat. Using the current occurrence data

collected from OBIS and OBIS database and the climate data acquired from the GMED and

Bio-Oracle database, the modelling for the present condition was done. Then utilising the

current distribution analysis, it would project the distribution of the coral species into the

future by converging it to the maximum entropy probability distribution. To carry out the
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modelling process for the future prediction, the same current environmental layers along with

the future predictor layers for different RCPs such as RCP 4.5, RCP 6.0 and RCP 8.5 were

utilized.

The study revealed the current and projected distribution patterns of the selected hard

coral species for the years 2040-2050 and 2090-2100 under different RCP projections. The

nature of the relationship between each environmental variable and coral species were

analysed using this model technique. The models developed shows that the variables like

bathymetry, calcite, diffusion attenuation coefficient, nitrate and phosphate have a great deal

with the coral distribution in the northern Indian ocean in present condition. Looking into the

•V future changes, the Mean temperature and current become major contributors af^er

bathymetry. The salinity shows lower variable contribution as its gradient in this tropical

region is very narrow but its contribution is evident in the waters of Persian Gulf, the region

with extreme fluctuations in salinity (Wilson et a}., 2002).

All the reef ecosystems in the study region are found to be at risk because of the

changing climate and its effects on environmental factors affecting species. Under different

RCPs and time periods the five selected study species show varying degree of distribution and

occurrence probability. For the majority of future estimates of occurrences, all these corals are

noted in new areas which are now devoid of coral reefs. These include mainly the entire

^  Indian coast and the east African coast. Two species viz., P. daedalea and P. luiea, reveal a
high percentage of future and current occurrence in all the regions except for the lesser

percentage of distribution possibility for P. lutea in two different time periods. A. muricata is

found to be the most vulnerable species under all the three RCPs. Difterent regions exhibit

varying degrees of response to species distribution with the changing environmental variables

in different time periods. Red Sea, Persian Gulf and Indian coasts are found to be more

exposed to the vagaries of climate change regarding coral distribution.

119



X, REFERENCES

Aigner T, Doyle M, Lawrence D, Epling M, van Vilet A (1989) Quantitative modeling of
carbonate platforms: some examples. In: Crevello PD, Wilson J.L., Sarg J.F., Read J.F.
(eds) Controls on carbonate platform and basin development. Spec Publ Soc Econ
Paleontol Mineral 44:27-37

Alexander, R.E. 2016. A comparison of GLM, GAM, and GWR modeling of fish distribution
and abundance in Lake Ontario (Doctoral dissertation, MSc Thesis). University of
Southern California, Los Angeles, California, USA).

Anderson D., Armstrong R., Weil E. 20)3 Hyperspectral Sensing of Disease Stress in the
Caribbean Reef-Building Coral, Orblcella faveolata—Perspectives for the Field of

^  Coral Disease Monitoring. PLoS ONE:8:e8l478. doi: 10.137l/joumal.pone.0081478.
Austin, M.P. (2002) Spatial prediction of species distribution: an interface between ecological

theory and statistical modelling. Ecological Modelling, 157, 101-1 18.

Baasch, D.M., Tyre, A.J., Millspaugh. J.J., Hygnstrom, S.E., and Vercauteren, K.C. 2010. An
evaluation of three statistical methods used to model resource selection. Ecological
Modelling. 221(4), pp.565-574.

, Baez J.C., Olivero, J., Peteiro, C., Ferri-Yafiez, F., Garcia-Soto, C., and Real, R. 2010.
Macro-environmental modelling of the current distribution of Undaria pinnatifida
(Laminariales, Ochrophyia) in northern Iberia. Biological Invasions. 12(7), pp.213l-
2139.

Baker, A.C., Glynn, P.W., and Riegl, B. 2008. Climate change and coral reef bleaching: An
ecological assessment of long-term impacts, recovery trends and future outlook. E.Uiiar
Coa.st Shelf Sci., 80(4), pp.435-47!.

w  Baldwin, R. 2009. Use of maximum entropy modeling in wildlife research. Entropy. 11(4),
pp.854-866.

Baldwin, R.A., and Bender, L.C. 2008. Den-Site Characteristics of Black Bears in Rocky
Mountain National Park, Colorado. J. Wildl. Manag. 72(8). pp. 1717-1724.

Barve, N., Barve, V., Jimenez-Valverde, A., Lira-Noriega, A., Maher, S.P., Peterson, A.T.,
Soberon, J., and Villalobos, F. 2011. The crucial role of the accessible area in
ecological niche modeling and species distribution modeling. Ecol. Model. 222(11),
pp.1810-1819.

Basher, Z., Bowden, D.A., and Costello, M.J. 2014. GMED: Global Marine Environment
Datasels for environment visualization and species distribution modeling. Earth Syst.
Sci. Data. https://doi. org/10.5l94/essd-2018-64.(ESSD-2018-64).

Bates, A.E., Peel, G.T., Frusher, S., Hobday, A.J., Wernberg, T., Smale, D.A., Sunday, J.M.,
Hill, N.A., Dulvy, N.K., Colwell, R.K., and Holbrook, N.J. 2014. Defining and
observing stages of climate-mediated range shifts in marine systems. Glob. Environ.

^  Change. 26, pp.27-38.

120



t

Bermert, G., and Ormond, R. 1981. Red Sea coral reefs. Taylor & Francis.

Berry, P.M., Dawson, T.P., Harrison, P.A., and Pearson, R.G. 2002. Modelling potential
impacts of climate change on the bioclimatic envelope of species in Britain and
Ireland. Global. Ecol. Biogeogr. 11(6), pp.453-462.

Bindoff, N.L., Wlllebrand, J., Artale, V., Cazenave, A., Gregory, J.M., Gulev, S., Hanawa, K.,
Le Qu^r6, C.. Levilus, S., Nojiri, Y. and Shum, C.K., 2007. Observations: oceajiic
climate change and sea level.

Birkeland, C., 1997. Life and death of coral reefs. Springer Science & Business Media.

Bleck, R. 2002. An oceanic general circulation model framed in hybrid isopycnic-Cartesian
coordinates. Ocean Model 4( 1), pp.55-88.

Booth, T.H., Nix, H.A., Busby, J.R., and Hulchinson, M.F. 2014. BIOCLIM: the first species
distribution modelling package, its early applications and relevance to most current
MAXENT studies. Divers Distrib. 20(1), pp.1-9.

Bosch, S., Tyberghein, L., Deneudt, K., Hernandez, F. and De Clerck, O. 2018. In search of
relevant predictors for marine species distribution modelling using the Marine SPEED
benchmark dataset. Divers Distrib. 24(2), pp.144-157.

Bouchard, C., and Crumplin, W. 2010. Neglected no longer: the Indian Ocean at the forefront
of world geopolitics and global geostrategy. Journal ofthe Indian Ocean Region, 6(1),
pp.26-51.

Bradford, J.B., and N.T. Hobbs. 2008. Regulating overabundant ungulate populations: An
example of elk in Rocky Mountain National Park, Colorado. J. Environ. Manage.
86:520-528.

Buisson, L., Grenouillei, G., Villeger, S., Canal, J., and Laffaille, P. 2013. Toward a loss of
fiinctiona! diversity in stream fish assemblages under climate change. Global Change.
Biol 19(2),pp.387-400.

Burke, Lauretta & Reylar, Katie & Spalding, Mark & Perry, Allison. (2011). Reefs at Risk
Revisited.

Cahill, A.E., Aiello-Lammens, M.E., Fisher-Reid, M.C., Hua, X., Karanewsky, C.J., Yeong
Ryu, H., Sbeglia, G.C., Spagnolo, F., Waldron, J.B., Warsi, O., and Wiens, J.J. 2013.
How does climate change cause extinction?. Proceedings of the Royal Society B: Biol
Sc/. 280(1750), p.20121890.

Cane, M.A., Eshel, G., and Buckland, R.W. 1994. Forecasting Zimbabwean maize yield using
eastern equatorial Pacific sea surface temperature. Nature, 370(6486), p.204.

Carpenter, K.E., Abrar, M., Aeby, G., Aronson, R.B., Banks, S., Bnickner, A., Chiriboga, A.,
Cortes, J., Delbeek, J.C., DeVantier, L., and Edgar, GJ. 2008. One-third of reef-
building corals face elevated extinction risk from climate change and local impacts.
Science. 321(5888), pp.560-563.

Carton, J.A., Chepurin, G.A., and Chen, L. 2018. SODA3: A new ocean climate reanalysis. J,
C//W. 31(17), pp.6967-6983.

121



■f

X Caswell, H., 2001. Matrix Population Models: Construction, Analysis and Interpretation
(Sinauer, Sundcrland, MA).

Cavanaugh, K.C., Kellner, J.R., Forde, A.J.. Gruner, D.S., Parker, J.D., Rodriguez, W., and
Feller, l.C. 2014. Poleward expansion of mangroves is a threshold response to
decreased frequency of extreme cold events. Proc. Nail. Acad ScK, 111(2), pp.723-
727.

Chen, I.e., Hill, J.K., Ohlemiiiler, R., Roy, D.B., and Thomas, C.D. 2011. Rapid range shifts
of species associated with high levels of climate warming. Science^ 333(6045),
pp. 1024-1026.

Chen, I.e., Shiu, HJ., Benedick, S., Holloway, J.D., Chey, V.K., Barlow, H.S., Hill. J.K., and
Thomas, C.D. 2009. Elevation increases in moth assemblages over 42 years on a
tropical mountain. Proc. Natl. Acad. ScL, 106(5), pp.1479-1483.

Cheung, W.W., Lam, V.W., Sarmiento, J.L., Kearney, K., Watson, R.E.G., Zeller, D., and
Pauly, D. 2010. Large-scale redistribution of maximum fisheries catch potential in the
global ocean under climate change. Ghh. Chang. Biol, 16(1), pp.24-35.

Chin, A., Lison de Loma, T., Reytar, K., Planes, S., Gerhardt, K., Clua", E., Burke, L., and
Wilkinson, C. 2011. Status of coral reefs of the Pacific and outlook: 2011. Global
Coral Reef Moniioring Network.

Coles, S.L. and Jokiel, P.L., 1978. Synergistic effects of temperature, salinity and light on the
heimatypic coral Montipora verrucosa. Marine Biology, 49(3). pp. 187-195.

Corbel, S.A., Saville, N.M., Fussell, M., Prys-Jones, O.E., and Unwin, D.M. 1995. The
competition box: a graphical aid to forecasting pollinator perfonnance. J. Appl. Ecoi,
pp.707-7i9.

Craig, R. (2010) "Stationarity is dead"-long live transformation: Five principles for climate
change adaptation law. Harvard Environ Law 34:9-75.

Crouse, D.T., Crowder,L.B., and Caswell, H. 1987. A stage-based population model for
loggerhead sea turtles and implications for conservation. Ecology 68:1412-1423.

Crowder, L.B., Crouse, D.T., Heppell, S.S., and Martin, T.H. 1994. Predicting the impact of
turtle excluder devices on loggerhead sea-turtle populations. Ecol. Appl, 4:437-445.

Danvall, W. R. T., and Guard, M. (2000) Southern Tanzania. In: McCIanahan, T. R.,
Sheppard, C. R. C., & Obura, D. O. (eds.) Coral Reefs of the Indian Ocean: Their
Conserv. Biol. Oxford University Press, Oxford, U.K. pp. 131-165.

Davies, P.S., Stoddart, D.R., and Sigee, D.C. 1971. Reef forms of Addu atoll, Maldive islands.
In Symp. Zool. Soc. Lond (Vol. 28, pp. 217-259).

De Bin, R., Janitza, S., Sauerbrei, W., and Boulesteix, A.L. 2016. Subsampling versus
bootstrapping in resampling-based model selection for multivariable regression.
Biometrics, 72(1), pp.272-280.

De Silva, M.W.R.N., and Rajasuriya, A. 1989. Collection of marine invertebrates of Sri
Lanka (Phase I) Tangalle to Kalpitiya as part of the Zoological Survey of Sri Lanka.

122



(N

Report to Natural Resources Energy and Science Authority (NARESA) on
NARESA/SAREC Zoological Survey of Sri Lanka, Project SAREC/1 l/ZSSL-2.

DeMatleo, K.E., and Loisclle, B.A. 2008. New data on the status and distribution of the bush
dog (Speothos venaticus): Evaluating its quality of protection and directing research
efforts. 5/o/. Com., 141(10), pp.2494-2505.

DeVantier, L., Hodgson, G., Huang, D., Johan, O., Licuanan, A., Obura, D.O., Sheppard, C.,
Syahrir, M. and Turak, E. 2014. Fovia paflida. The lUCN Red List of Threatened
Species 20l4;e.T132936A54l63337.

Do Amaral, K. B., Alvares, D. J., Heinzelmann, L., Borges-Martins, M., Siciliano, S., and
Moreno, 1. B. (2015). Ecological niche modeling of Stenella dolphins (Celartiodactyla:
Delphinidae) in the Southwestern Atlantic Ocean. J. Exp. Mar. Biol. Ecol 472 166-
179.

^  Dolan, M. F., Grehan, A. J., Guinan, J. C., & Brown, C. (2008). Modelling the local
distribution of cold-water corals in relation to balhyinetric variables: Adding spatial
context to deep-sea video data. Deep Sea Research Port 1: Oceanographk Research
Papers, 55{ 11),! 564-1579.

Duffy, G. A., and Chown. S. L. 2017. Explicitly integrating a third dimension in marine
species distribution modelling. Mar. Ecol. Prog. Ser. Vol. 564: 1-8, 2017.

Duivy, N.K., Rogers, S.L, Jennings, S., Stelzenmuller, V., Dye, S.R., and Skjoldal. H.R. 2008.
Climate change and deepening of the North Sea fish assemblage: a biotic indicator of
wanning seas. J. Appl. Ecol. 43{4), pp.1029-1039.

Dumbraveanu, D. and Sheppard, C.R.C., 1999. Areas of substrate at different depths in the
Chagos Archipelago. Ecology ofthe Chagos Archipelago, 2, pp.35-44.

Dynesius, M., Jansson, R. (2000) Evolutionary consequences of changes in species'
geographical distributions driven by Milankovitch climate oscillations. Proc. Natl.
Acacl. Sci. of the United States of America 97: 9115-9120.

•41'.
Edwards, A.J,, Clark, S., Zahir, H., Rajasuriya, A., Naseer, A., and Rubens, J. 2001. Coral

bleaching and mortality on artificial and natural reefs in Maldives in 1998, sea surface
temperature anomalies and initial recovery. Mar. Pollui. Bull. 42(1), pp.7-15.

Elith, J., and Leathwick, J.R. 2009. Species distribution models: ecological explanation and
prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 40, pp.677-697

Elith, J., Graham, H. C., Anderson, P., Dudik, Terrier, R., Guisan, S., Hijmans, A.,
Huettmann, J.R., Leathwick, F.R., Lehmann, J., A. and Li, J. 2006. Novel methods
improve prediction of species' distributions from occurrence data. Ecogropby 29(2)
PP.I29-15L

Fatima, Q., and Jamshed, A. 2015. The Political and Economic Significance of Indian Ocean:
An Analysis. South A.sian Studies, 30(2), p.73.

Feldman, G.C., and McClain, C.R. 2010. Ocean Color Web, SeaWiFS Reprocessing, NASA
Goddard Space Flight Center. Eds. Kuring, N., Bailey, SW.

123



0

Ferrario, F.. Beck. M.W., Storlazzi, C.D., Micheli, F., Shepard, C.C. and Airoldi, L, 2014.
The effectiveness of coral reefs for coastal hazard risk reduction and adaptation.
Nature conimunications, 5, p.3794.

Farrier, S. 2002. Mapping spatial pattern in biodiversity for regional conservation planning:
where to from here?. Sysf. BioL 51 (2), pp.331 -363.

Ferrler, S., Drielsma, M.. Manion, G., and Watson, G. 2002. Extended statistical approaches
to modelling spatial pattern in biodiversity in northeast New South Wales. II.
Community-level modelling. Bhclivers. Comerv. 11(12), pp.2309-2338.

Ferrier, S., Manion, G., Ellth, J., and Richardson, K.. 2007. Using generalized dissimilarity
modelling to analyse and predict patterns of beta diversity in regional biodiversity
assessment. Divers, distrih. 13(3), pp.252-264.

Fielding, A.H., and Bell, J.F. 1997. A review of methods for the assessment of prediction
^  errors in conservation presence/absence models. Environ. Comerv. 24{ 1), pp.38-49.

Fordham, D. A., Mellin, C., Russell, B. D., Ak^akaya, R. H., Bradshaw, C. J., Aiello
Lammens, M. E., Julian, M. Caley., Sean, D., Coiinell, Stephen. Mayfield. Scoresby.,
Shepherd, A., Barry, W. Brook. (2013). Population dynamics can be more important
than physiological limits for determining range shifts under climate chanue. Glob.
Chang. BioL 19, 3224-3237.

Fossheim, M., Primicerio, R., Johannesen, E., Ingvaldsen, R.B., Aschan, M.M., and Dolgov,
A.V. 2015. Recent warming leads to a rapid borealization of fish communities in the
Arctic. Nat. Clim. Chang 5(7), p.673.

Fourcade, Y,, Engler, J.O., Rodder, D., and Secondi, J. 2014. Mapping species distributions
with MAXENT using a geographically biased sample of presence data: a performance
assessment of methods for correcting sampling bias. PloSone, 9(5), p.e97l22.

Franklin, E. C., Jokiel, P. L., and Donahue, M. J. (2013). Predictive modeling of coral
distribution and abundance in the Hawaiian Islands. Mar. Ecol. Prog. Ser. 481, 121-
132.

Freeman, L.A., Kleypas, J.A., and Miller, A.J. 2013. Coral reef habitat response to climate
change scenarios. PloSone, 8(12), p.e82404.

Friedman, J., Hastie, T., and Tibshirani, R. 2000. Additive logistic regression; a statistical
view of boosting (with discussion and a rejoinder by the authors). Ann. Stat. 28(2),
pp.337-407.

Giovanelli, J.G., de Siqueira, M.F., Haddad, C.F., and Alexandrino, J. 2010. Modeling a
spatially restricted distribution in the Neotropics: How the size of calibration area
affects the performance of five presence-only methods. Ecol. Mockll. 221(2), pp.215-
224.

Garza-Perez, Joaquin & Lehmann, Anthony & Arias, Ernesto. (2004). Spatial prediction of
coral reef habitats: Integrating ecology with spatial modeling and remote sensing.
Marine Ecology-progress Series - MAR ECOL-PROGR SER. 269. 141-152.

\  10.3354/meps26914l.

124



\

Gischler, E., Store, D., and Schmitt, D. 2014. Sizes, shapes, and patterns of coral reefs in the
Maldives, Indian Ocean: the influence of wind, storms, and precipitation on a major
tropical carbonate platform. Carbonates amiEvaporites, 29(1), pp.73-87.

Gomes, V.H., IJff, S.D., Raes, N., Amaral, I.L., Salomao, R.P., de Souza Coelho, L., de
Almeida Matos, F.D., Castilho, C.V., de Andrade Lima Filho, D., Ldpez, D.C. and
Guevara, J.E., 2018. Species Distribution Modelling; Contrasting presence-only
models with plot abundance data. Scientific reports. Si I), p. 1003.

Gotelli, N.J., and Ellison, A.M. 2006. Forecasting extinction risk with nonstationary matrix
models. Ecol. Appi 7(5(1), pp.51-6L

Government of Sri Lanka (GSL). 1985. Second Interim Report ofthe Land Commission.

Govindarajulu, P., Altwegg, R., and Anholt. B.R. 2005. Matrix model investigation of
invasive species control: Bullfrog on Vancouver Island. Ecol Appl 15:2161-2170.

-X Groombridge, B., and Jenkins, M.D., 2002. World atlas of biodiversity: earth's living
resources in the 21st centwy. Univ of California Press.

Guisan, A., and Thuiller, W. 2005. Predicting species distribution: offering more than simple
habitat models. Ecol Lett. <S(9), pp.993-1009.

Hamilton, H.G., and Brakel, W.H. 1984. Structure and coral fauna of East African reefs. BuU.
Mar. Scl 34(2), pp.248-266.

Hannali, L., Midgley, G.F., and Millar, D. 2002. Climate change-integrated conservation
strategies. Glob. Ecol Biogeogr. 11(6), pp.485-495.

Hare, J.A., Alexander, M.A., Fogarty, M.J., Williams, E.H., and Scott, J.D. 2010. Forecasting
the dynamics of a coastal fishery species using a coupled climate-population model.
Ecol Appl 20(2), pp.452-464.

Harris, D.L., Rovere, A., Casella, E., Power, H., Canavesio, R., Collin, A., Pomeroy, A.,
Webster, J.M. and Parravicini, V., 2018. Coral reef stnictural complexity provides
important coastal protection from waves under rising sea levels. Science advances,
-/(2). p.eaao4350.

Hatcher, B.G., 1997. Coral reef ecosystems: how much greater is the whole than the sum of
the parts?. Coral Reefs, /6(l), pp.S77-S9L

Beam, C.J., 1999. Wave-breaking hydrodynamics within coral reef systems and the effect of
changing relative sea level. Journal of Geophysical Research: Oceans, 704(C12),
pp.30007-30019.

Hernandez, P.A., Graham, C.H., Master, L.L., and Albert, D.L., 2006. The effect of sample
size and species characteristics on performance of different species distribution
modeling methods. Ecography, 29(5), pp.773-785.

Heywood, V. H. and Watson, R. T. (Eds.), 1995. Global biodiversity assessment, (Cambridge
University Press, New York).

^  Hickling, R., Roy, D. B., Hill, J. K., Fox, R., and Thomas. C. D. (2006). The distribution of a
wide range of taxonomic groups are expanding polewards. Glob. Chang. Biol J2{3),
450-455.

125



\

Hoegh-Guldberg, O. 2011. Cora! reef ecosystems and anthropogenic climate change. Reg.
Environ. Change. 11(1), pp.215-227.

Hongo, C., and Kayanne, H. 2011. Key species of hermatypic coral for reef formation in the
northwest Pacific during Holocene sea-Ievcl change. Mar. Geol. 279(1-4), pp. 162-177.

Hunter, C.M., Caswell, H., Runge, M.C., Regehr, E.V., Amstrup, S.C., and Stirling. I. 2010.
Climate change threatens polar bear populations: A stochastic demographic analysis.
Ecology. 91:2883-2897.

IPCC Summary for Policymakers in Climate Change 2013: The Physical Science Basis (eds
Stocker, T.F., Qin, D., Planner, G.K., Tignor, M., Allen, S.K., Boschung, J., Nauels,
A., Xia, Y., Bex V., and Midgley, P.M.) (Cambridge Univ. Press, 2013).

IPCC, 2014; Climate Change 2014: Synthesis Report. Contribution of Working Groups 1, 11
and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate

^  Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva,
Switzerland, 151 pp.

lUCN Conservation Monitoring Centre. (1988) Coral reefs of the world. Vol. 2: Indian Ocean,
Red Sea and Gulf. International Union for Conservation of Nature and Natural
Resources, United Nations Environment Program. Gland, Switzerland.

Jokiel, P.L., 1984. Long distance dispersal of reef corals by rafting. Coral reefs. 3(2), pp.113-
1 16

Jones, M. C., and Cheung, W. W. L. (2015). Multi-model ensemble projections of climate
change effects on global marine biodiversity. ICES J. Mar. Sci. 72, 741-752.

Jowett, I.G., Parkyn, S.M., and Richardson, J. 2008. Habitat characteristics of crayfish
(Paranephrops planifrons) in New Zealand streams using generalised additive models
(GAMs). Hycirobiologia, 596( 1), pp.353-365.

Kaniewska, P., Anthony, K. R., & Hoegh-Guldberg, O. (2008). Variation in colony geometry
X  modulates internal light levels in branching corals, Acropora humilis and Stylophora

pistillata. Marine Biology, /55(6), 649-660.

Kearney, M., and Porter, W. (2009). Mechanistic niche modelling: combining physiological
and spatial data to predict species' ranges. Ecology Letters. 12 (4); 334-350

Kleypas, J., Buddemeier, R., Archer, D.W.R., George, S., Langdon, R. and Opdyke, B.,
1999a. Geochemical consequences of increased atmospheric C02 Coral Reefs.
Science. American Association for the Advancement of Science.

Kleypas, J.A., McManus, J.W., and Menez, L.A. 1999b. Environmental limits to coral reef
development: where do we draw the line?. American Zoologist, 39( I), pp.146-159.

Lasagna, R., Albertelli, G., Glovannetti, E., Grondona, M., Milani, A., Morri, C., and Bianchi,
C.N, 2008. Status of Maldivian reefs eight years after the 1998 coral mass mortality.
Chemislty ami Ecology. 24(S1), pp.67-72.

Leathwick, J.R,, Rowe, D., Richardson, J., Elith, J., and Hastie, T. 2005. Using multivariate
>  adaptive regression splines to predict the distribution of New Zealand's freshwater

diadromous fish. Freshwater Biol. 50(12), pp.2034-2052.

126



Leathwick, J.; Moilanen, A.; Francis, M.; Elith, J.; Taylor, P.; Julian, K.; Hastie, T.; Duffy, C.
2008: Novel methods for the design and evaluation of marine protected areas in
offshore waters. Conservation Letters I: 91—102.Lenoir, J. and Svenning, J.C., 2015.
Climate-related range shifts-a global multidimensional synthesis and new research
directions. Ecography, 380), pp.15-28.

Levine, J.M., and D'Antonio, C.M. 2003. Forecasting biological invasions with increasing
international trade. Conse/'v. Biol. /7(1), pp.322-326.

Lineman, M., Do, Y., Kim, J.Y., and Joo, G.J. 2015. Talking about climate change and global
warming. PloSone, 10(9). p.eO 138996.

Lobo. Jorge M., Alberto Jimenez-Valverde, and Raimundo Real. 2008. "AUC: A Misleading
Measure of the Performance of Predictive Distribution Models." Global Ecology and
Biogeography 17, no. 2 : 145-51. https://doi.org/10.l 1 1 l/j.1466-8238.2007.00358.x.

Lowe, D.G. 1995. Similarity metric learning for a variable-kernel classifier. Neural
computation, 7(1), pp.72-85.

Lowry, K., and Wickremaratne, H.J.M. 1989. Coastal area management in Sri Lanka. Ocean
Yearbook. 7, 263-293 pp.

Marshall, P.A. and Baird, A.M., 2000. Bleaching of corals on the Great Barrier Reef:
differential susceptibilities among laxa. Coral reefs, I9{2), pp. 155-163.

Marubini, F., and Davies, P. S. (1996). Nitrate increases zooxanlhellae population density and
reduces skeleiogenesis in corals. Mar. Biol. 127(2), 319—328.

McAllister, D.E. 1995. Status of the world ocean and its biodiversity.

McClanahan, T.R. 2000. Bleaching damage and recovery potential of Maldivian coral reefs.
Mar. Pollut. Bull. 40(7), pp.587-597.

McClanahan, T.R., Maina, J., Moothien-Pillay, R., and Baker, A.C. 2005. Effects of
geography, ia.xa, water flow, and temperature variation on coral bleaching intensity in

^  Mauritius. Mar. Ecol. Prog. Ser. 29^, pp.\3]-\42.

Meinshausen, N., and Buhlmann, P. 2006. High-dimensional graphs and variable selection
with the lasso. Ann. Stat., 34(3), pp.l436-l462.

Meifiner, K., Fiorentino, D., Schnurr, S., Arbizu, P.M., Huettmann, F., Hoist, S., Brix, S. and
Svavarsson, J., 2014. Distribution of benthic marine invertebrates at northern latitudes-

An evaluation applying multi-algorithm species distribution models.,/. Sea. Res. 85,
pp.241-254.

Melle, W., Runge, J., Head, E., Plourde, S., Castellani, C., Licandro, P., Pierson, J.,
Jonasdottir, S., Johnson, C., Broms, C., and Debes, H. 2014. The North Atlantic Ocean

as habitat for Calanus finmarchicus: Environmental factors and life history traits. Prog.
Oceanogr. 129, pp.244-284.

Mennesson-Boisneau, C., Aprahamian, M.W., Sabatie, M.R., and Cassou-Leins, J.J. 2006.
^  Remontee migratoire des adultes. Les alo.ses, pp.55-72.

127



Merow, C., Smith, M.J., and Siiander Jr, J.A. 2013. A practical guide to MaxEnt for modeling
species' distributions: what it does, and why inputs and settings matter. Ecography,
36(10), pp.!058-1069.

Merrill, J.A., Cooch, E.G., and Curtis, P.D. 2003. Time to reduction: Factors influencing
management efficacy in sterilizing overabundant white-tailed deer. J. Wildl. Manag.
67:267-279.

Midgley, G.F., Hannah, L., Millar, D., Rutherford, M.C., and Powrie, L.W. 2002. Assessing
the vulnerability of species richness to anthropogenic climate change in a biodiversity
hotspoi.G/o6. Ecoi Biogeogr. 11(6), pp.445-451.

Miller, J., 2010. Species distribution modeling. Geography Compass, 4(6), pp.490-509.

Milly, P.C., Betancourt, J., Falkenmark, M., Hirsch, R.M., Kundzewicz, Z.W., Lettenmaier,
D.P., and Stouffer, R.J., 2008. Climate change. Stationarity is dead: Whither water
management? Science, 319(5863), pp.573-574.

Moilanen, A., and Winlle B.A. (2007) Quantitative reserve network aggregation via the
boundary quality penalty. Conserv. Biol. 21,355-364.

Monismiih, S.G., Rogers, J.S., Koweek, D. and Dunbar, R.B.. 2015. Frictional wave
dissipation on a remarkably rough reef. Geophysical Research Letters, 42(10),
pp.4063-4071.

Moolhien Pillay, R., Bacha Gian, S., Bhoyroo, V., and Curpen, S. (2012), Adapting Coral
Culture to Climate Change: The Mauritian Experience. Western Indian Ocean J. Mar.
Sci. Vol. IO,No.2, pp. 155-167,2012.

Moothien Pillay, R., Terashima, H., and Kawasaki, H. (2002). The extent and intensity of the
1998 mass bleaching event on the reefs of Mauritius, Indian Ocean.Galaxea 4: 43-52.

Morales, N.S., Fernandez, I.C., and Baca-Gonzalez, V. 2017. MaxEm's parameter
configuration and small samples: are we paying attention to recommendations? A
systematic review. Peer./, 5, p.e3()93.

Morri, C., Aliani, S., and Bianchi, C.N. 2010. Reef status in the Rasfari region (North Mal6
Atoll, Maldives) live years before the mass mortality event of 1998. Estiiar. Coast.
Shelf. Sci 86(2), pp.258-264.

Muley, E.V., Venkataraman, K., Alfred, J.R.B., and Wafar, M.V.M. 2002. Status of coral
reefs of India. In Proceedings of the Ninth International Coral Reef Symposium. Bali,
23-27 October 2000, (Vol. 2, pp. 847-853).

OBIS (2018). Ocean Biogeographic Information System. Intergovernmental Oceanographic
Commission of UNESCO, mvw.iobis.ors.

Obura, D. 2012. The diversity and biogeography of Western Indian Ocean reef-building
corals. PloSone, 7(9), p.e450l3.

Obura, D., Church, J. and Gabrie, C., 2012. Assessing Marine World Heritage from an
Ecosystem Perspective: The Western Indian Ocean.

128



Ochoa-Ochoa, L. M., Rodriguez, P., Mora, P., Flores-Villela, O., and Whittaker, R.J. (2012).
Climate change and amphibian diversity patterns in Mexico. Biol Conserv. 150, 94-
102.

Ollerenshaw, C.B., and Smith, LP. (1969). Meteorological factors and forecasts of helminthic
disease. Adv. Parasilol. (Vol.7, pp.283-323).

Olsen, S., Sadacharan, D., Samarakoon, J.I., White, AT., Wickremaratne, H.J.M., and
Wijeratne, M.S. 1992. Coastal 2000: Recommendations for a resource management
strategy for Sri Lanka's coastal region, Vol I & 2. Coast Conservation Department,
Coastal Zone Management Project, Sri Lanka and University of Rhode Island, USA,
I02p.

Paerl, H.W., and Paul, VJ., 2012. Climate change: links to global expansion of harmful
cyanobacieria. Wafer Res. 46(5), pp.1349-1363.

Pandve, H.T. 2009. India's national action plan on climate change. Indian. J. Occup. Environ.
Med. 13(1), p.l7.

Parmesan, C., Ryrholm, N., Slefanescu, C., Hill, J. K., Thomas, C. D., Descimon, H., and
Tennent, W. J. (1999). Poleward shifts in geographical ranges of butterfly species
associated with regional wanning. Nufure, 399(6736), 579.

Parmesan, C., and Yohe, G. 2003. A globally coherent fingerprint of climate change impacts
across natural systems. Nature. 421. 37-42.

Parry, M., Parry, M. L., Canziani, O., Palutikof, J., Van der Linden, P., and Hanson, C. eds.
(2007). Climate change 2007-impacts, adaptation and vulnerability: Working group U
contribution to the fourth assessment report of the IPCC (Vol. 4). Cambridge
University Press.

Pearson, R. G., and Dawson, T. P. (2003). Predicting the impacts of climate change on the
distribution of species: are bioclimate envelope models useful? Glob. Ecol. Biogeogr.
12(5), 361-371.

Pearson, R.G., Raxworthy, C.J., Nakamura, M., and Townsend Peterson, A. 2007. Predicting
species distributions from small numbers of occurrence records: a test case using
cryptic geckos in Madagascar. J. Biogeogr. 34(1), pp. 102-117.

Pease, C.M., Lande, R, and Bull, J.J. (1989) A model of population growth, dispersal, and
evolution in a changing environment. Ecology 70: 1657-1664.

Peavey, L. 2010. Predicting pelagic habitat with presence-only data using maximum entropy
for Olive Ridley Sea Turtles in the eastern tropical Pacific. Ma.ster.s project, Duke
University I.

Peel, G. T., Araujo, M. B., Bell, J. D., Blanchard, J., Bonebrake, T. C., Chen, I. C., Clark,
T.D., Colwell, R.K., Danielsen, F., Evengard, B., and Falconi, L. (2017). Biodiversity
redistribution under climate change: Impacts on ecosystems and human well-being.
Science, 355(6332), p. eaai92I4.

Peeters, E.T., and Gardeniers, A.J.J. 1998. Logistic regression as a tool for defining habitat
requirements of two common gammarids. Fre.shwater Biol. 39(4), pp.605-615.

129



i  Pereira, H.M., Leadley, P.W., Proenga, V., Alkemade, R., Scharlcmann, J.P., Femandez-
Manjan-es, J.F., Araujo, M.B., Balvanera, P., Biggs, R., Cheung, W.W., and Chini, L.
2010. Scenarios for global biodiversity in the 2Ist century. Science, 330(6010),
pp. 1496-1501.

Peterson, A.T. 2001. Predicting species' geographic distributions based on ecological niche
modeling. The Comhr. 103(3), pp.599-605.

Peterson, A.T., and Cohoon, K.P. 1999. Sensitivity of distributional prediction algorithms to
geographic data completeness. Ecol. Model. 117(1), pp. 159-164.

Peterson, A.T., Sanchez-Cordero, V., Soberon, J., Barlley, J., Buddemeier, R.W., and
Navarro-SigUenza, A.G. 2001. Effects of global climate change on geographic
distributions of Mexican Cracidae. Ecol. model. 144(1), pp.21-30.

Peterson, D.L., Millar, C.I., Joyce, L.A., Fumiss, M.J., Halofsky, J.E., Neilson, R.P. and
Morelli, T.L., 2011. Responding to climate change in national forests: a guidebook for

^  developing adaptation options. Gen. Tech. Rep. PNW-GTR'855. Portland, OR: US
Department of Agriculture, Forest Sei'vice, Pacific Northwest Research Station. 109
p., 855.

Philips, S. J., Anderson, R. P., and Schapire, R. E. (2006). Maximum entropy modeling of
species geographic distributions. Ecol. model.\90{3-4), 231-259.

Philips, S.J., Dudik, M., and Schapire, R.E. 2004, July. A maximum entropy approach to
species distribution modeling. In Proceedings of the twenty-fir.st international
conference on Machine learning (p. 83). ACM.

Pillai, C.S.G. 1996. Coral reefs of India, their conservation and management.

Pinkerton, M.H., Smith, A.N., Raymond, B., Hosie, G.W., Sharp, B., Leathwick, J.R., and
Bradford-Grieve, J.M. 2010. Spatial and seasonal distribution of adult Oithona similis
in the Southern Ocean: predictions using boosted regression trees. Deep Sea Research
Parti: Oceanographic Research Papers, 57(4), pp.469-485.

^  Poloczanska, E.S., Brown. C.J., Sydeman, W.J., Kiessling, W., Schoeman, D.S., Moore, P.J.,
Brander, K., Bruno, J.F., Buckley, L.B., Burrows, M.T., and Duarte, C.M. 2013.
Global imprint of climate change on marine life. Nat. Clim. Change. 3(10), p.9l9.

Porter, W.P., Sabo, J.L., Tracy, C.R., Reichman, O.J., Ramankutty, N. (2002) Physiology on a
landscape scale: plant-animal interactions. Integr Comp Biol 42,431—453

Radosavljevic. A., and Anderson, R.P. 2014. Making better Maxent models of species
distributions: complexity, overrating and evaluation. J. Biogeogr, 41(4), pp.629-643.

Rajasitriya, A., and de Silva, M.W.R.N. 1988. Stony Corals of Fringing Reefs of the Western,
Southwestern and Southern Coasts of Sri Lanka. Proceedings of the 6th International
Coral ReefSympo.Hium, Australia, Vol. 3, p. 287-296.

Rajasuriya, A., and White, A.T. 1995. Coral Reefs of Sri Lanka: Review of Their Extent,
Condition and Management Status. Coast. Manage. Vol. 23, pp. 70 -90.

^  Rajasuriya, A., Zahir, H., Venkalaraman, K., Islam, Z., and Tamelander, J. 2004. Status of
coral reefs in South Asia: Bangladesh, Chagos, India, Maldives and Sri Lanka.

130



Reaka-Kudla, M.L. 1997. The global biodiversity of coral reefs: a comparison with rain
forests. Biodiversity JI: Understanding and protecting our biological resources, 2,
p.551.

Reiss, H., Cunze, S., K6nig, K., Neumann, H., and Krdncke, I. 2011. Species distribution
modelling of marine benthos: a North Sea case study. Mar Ecol Prog Ser. 442, pp.7!-
86.

Renner, I.W., and Warton, D.I. 2013. Equivalence of MAXENT and Poisson point process
models for species distribution modeling in ecology. Biometrics, 69(1), pp.274-281.

Rezaei, R., and Sengul, H. 2018. Development of Generalized Additive Models (GAMs) for
Salmo rizeensis Endemic to North-Easlem Streams of Turkey. Turk. J. fish. Aqiiat. Sc.
19(1), pp.29-39.

Riegl, B., Bruckner, A., Coles, S.L., Renaud, P., and Dodge, R.E. 2009. Coral reefs: threats
and conservation in an era of global change. Ann. N. Y. Acad. Sci. 1162(1), pp. 136-
186.

Risk, M.J., and Sluka, R. 2000. The Maldives: a nation of atolls. Coral Reef of the Indian
Ocean pp.324-351.

Robinson, N.M., Nelson, W.A., Costello, M.J., Sutherland, J.E., and Lundquist, C.J. 2017. A
systematic review of marine-based Species Distribution Models (SDMs) with
recommendations for best practice. Front. Mar. Sci. 4, p.42l.

Robinson, K.A., Saldanha, I.J. and Mckoy, N.A., 2011. Development of a framework to
identify research gaps from systematic reviews. Journal of clinical epidemiology,
64(12), pp.1325-1330.

Rosen B. R. 1984. "Reef coral biogeography and climate through the late Cainozoic: Just
islands in tlie sun or a critical pattern of islands" in Fossils and Climate, P. J.
Brenchley, Ed. (Geol. J. Special Issue (11). pp. 201-262

Rosset, S., Wiedenmann, J., Reed, A. J., and D'Angelo, C. (2017). Phosphate deficiency
promotes coral bleaching and is reflected by the ultrasiruclure of symbiotic
dinoflagellates. Mar. Pollut. Bull. 1 18(1-2), 180-187.

Scales, K.L., Miller, P.I., Ingram, S.N., Hazen, E.L., Bograd, S.J., and Phillips, R.A. 2016.
Identifying predictable foraging habitats for a wide-ranging marine predator using
ensemble ecological niche models. Divers Disirib. 22(2), pp.212-224.

Scheer, G.E.O.R.G. 1971. Coral reefs and coral genera in the Red Sea and Indian Ocean. In
Symposia ofthe Zoological Society ofLondon (Vol. 28, pp. 329-367).

Selkoe, K.A., Halpcm, B.S., Eberl, C.M., Franklin, E.C., Selig, E.R., Casey, K.S., Bruno, J.
and Toonen, R.J., 2009. A map of human impacts to a "pristine" coral reef ecosystem,
the Papahanaumokuakea Marine National Monument. Coral Reefs, 2S{3), pp.635-650.

Sheppard, A., Fenner, D., Edwards, A., Abrar, M., and Ochavillo, D. 2014. Porites luiea. The
lUCN Red List ofThreatened Species 2014: e.TI33082A5419l 180.

Sheppard, C.R., Ateweberhan, M., Bowen, B.W., Carr, P., Chen, C.A., Clubbe, C., Craig,
M.T., Ebinghaus, R., Eble, J., Fitzsimmons, N., and Gailher. M.R. 2012. Reefs and
islands of the Chagos Archipelago, Indian Ocean: why it is the world's largest no-lake

131



:jt marine protected area. Aquatic Conservation: marine and freshwater ecosystems,
22(2), pp.232-261.

Smith, M.D., Knapp, A.K., Collins, S.L (2009) A framework for assessing ecosystem
dynamics in response to chronic resource alterations induced by global change.
Ecology 90:3279-3289.

Spalding, M., and Bunting, G. 2004. A guide to the coral reefs of the Caribbean. Univ of
California Press.

Spalding, M., Spalding, M.D., Ravilious, C., and Green, E.P. 2001. World atlas ofcoral reefs.
Univ of California Press.

Stockwell, D. & Peters, D. (1999). The GARP modelling system: Problems and solutions to
automated spatial prediction, international Journal of Geographical Information
Science. 13. 143-158. 10.1080/136588199241391.

-1^ Stockwell, D. R.B. and Noble, I.R., 1992. Induction of sets of rules from animal distribution
data: A robust and informative method of data analysis, Mathematics and Computers
in SimuIation,33 (5-6), Pp.385-390

Suarez-Seoane, S., de la Morena. E.L.G., Prieto. M.B.M.. Osbome. P.E., and de Juana, E.
2008. Maximum entropy niche-based modelling of seasonal changes in little bustard
(Tetrax telrax) distribution. Ecol. Model. 219( 1 -2), pp. 17-29.

Sutlhacheep, M., Yucharoen, M., Klinthong, W., Pengsakun, S., Sangmanee, K., and Yeemin,
T. 2012. Coral mortality following the 2010 mass bleaching event at Kut Island,
Thailand. PMBC Res. Bull. 71, pp.83-92.

Swan, 8. 1983. An Introduction to the Coastal Geomorphology of Sri Lanka, National
Museums of Sri Lanka., Colombo., 182p.

Syfert, M.M., Smith, M.J., and Coomes, D.A. 2013. The effects of sampling bias and model
complexity on the predictive perfonnance of MaxEnt species distribution models. PloS

^  one, 8(2), p.e55I58.
Thomas, C. D. (2010). Climate, climate change and range boundaries. Divers. Distrib. 16(3),

488-495.

Thomas. C.D., Cameron, A.. Green, R.E., Bakkenes, M., Beaumont, L.J., Collingham, Y.C.,
Erasmus, B.F., De Siqueira, M.F., Grainger, A., Hannah, L., and Hughes, L. 2004.
Extinction risk from climate change. Nature, 427(6970), p. 145.

Thomas, Chris & Cameron, Alison & Green, Rhys & Bakkenes, Michel & Beaumont, Linda
& Collingham, Yvonne & Erasmus, Barend & Siqueira, Marinez & Grainger, Alan &
Hannah, Lee & Hughes, Lesley & Hiintley, Brian & Van Jaarsveld, Albert & Midgley,
Guy & Miles, Lera & A Ortega-Huerta, Miguel & Peterson, Andrew & Phillips, Oliver
& Williams, Stephen. (2004). Extinction risk from climate change. Nature. 427. 145-8.
I0.1038/nature0212l.

Thorn, J.S., Nijman, V., Smith, D., and Nekaris, K.A.I. 2009. Ecological niche modelling as a
technique for assessing threats and setting conservation priorities for Asian slow
lorises (Primates: Nycticebus). Divers. Distrib. 15(2), pp.289-298.

132



\'

Tittensor, D.P., Baco, A.R., Hall-Spencer, J.M., Orr, J.C. and Rogers, A.D., 2010. Seamounts
as refugia from ocean acidification for cold-water stony corals. Marine Ecology, 31,
pp.212-225.

Tkachenko, K.S. 2012. The northernmost coral frontier of the Maldives: the coral reefs of
Ihavandippolu Atoll under long-term environmental change. Mor. Environ. Res. 82,
pp.40-48.

Torres, A.F., and Ravago-Gotanco, R. 2018. Rarity of the "common" coral Pocillopora
damicornis in the western Philippine archipelago. Coral Reefs. 37(4), pp. 1209-1216.

Uyenoyama, M.K., 2004. among Haplodiploids: Effects of Recombination and Epistasis.
Mathematical Evolutionary Theory, 948, p. 174.

Veron, J.E.N. 2000. New species described in Corals of the World (Vol. II). Townsville:
Australian Institute of Marine Science.

Jy Veron, J.J., and Pichon, M.M. 1976. Scleraciinia of Eastern Australia. Part I: Families
Thamnasteriidae, Asirocoeniidae, Pocilloporidae. Australian Government Publishing
Service.

Virgin, A., Authier, M., Monesiiez, P., and Ridoux, V. (2018) How many sightings to model
rare marine species distributions. PLoS ONE eO!93231.

Wagner, G.M. 2004. Coral reefs and their management in Tanzania. Western Indian Ocean J.
Mar. Sci. 3(2), pp.227-243.

Wallace, C.C., and Zahir, H. 2007. The "Xarifa" expedition and the atolls of the Maldives, 50
years on. Coral Reefs. 26(1), pp.3-5.

Ward, E.J., Holmes, E.E., Thorson, J.T., and Collen, B. 2014. Complexity is costly: a meta-
analysis of parametric and non-parametric methods for short-term population
forecasting. Oikos. 23:652-661.

Warren, D.L., and Seifert, S.N. 2011. Ecological niche modeling in Maxent: the importance
^  of model complexity and the perfonnance of model selection criteria. Ecol. Appl.

21(2),pp.335-342.

Weed, A.S., Ayres, M. P., and Hicke, J. A. (2013). Consequences of climate change for biotic
disturbances in North American forests. Ecol. Monogr. 83,441-470.

Williams, S. E., Shoo, L. P.,. Isaac, J. L, Hoffmann, A. A., and Langham, G. 2008. Towards
an integrated framework for assessing the vulnerability of species to climate change.
PLOS Dial. 6,2621-2626.

Wilson, S.I.M.O.N., Fatemi, S.M.R., Shokri, M.R., and Claereboudt, M.i.C.H.E.L. 2002.
Status of coral reefs of the Persian/Arabian Gulf and Arabian Sea region. Status of
coral reefs ofthe world, 2002, pp.53-62.

Yamano, H., Sugihara, K., and Nomura, K. 2011. Rapid poleward range expansion of tropical
reef corals in response to rising sea surface temperatures. Geophys. Re.s. Lett. 38(4).

_  Yee, T.W„ and Mitchell, N.D. 1991. Generalized additive models in plant ecology. J. Veg.
^  Sci. 2(5), pp.587-602.

133



\

Yeemin, T., Saenghaisuk, C., Sunhacheep, M., Pengsakun, S., Klinthong, W., and
Saengmanee, K. 2009. Conditions of coral communities in the Gulf of Thailand: a
decade after the 1998 severe bleaching event. Galaxea, Journal of Cora! Reef Siudies,
11(2), pp.207-217.

Yeemin, T., Sutthacheep, M. and Pettongma, R., 2006. Coral reef restoration projects in
Thailand. Ocean & Coastal Management, 49(9-10), pp.562-575.

134



\

<

CLlMATi: ENVELOPE MODELLING OE HARD CORALS

by

ANAKHA MOHAN

(2014-20-123)

THESIS ABSTRACT

Submitted in partial fulfilment of the

requirements for the degree of

BSc. -M.Sc. (Integrated) Climate Change Adaptation

Faculty of Agriculture

Kerala Agricultural University

ACADEMY OF CLIMATE CHANGE EDUCATION AND RESEARCH

VELLANIKKARA, THRISSUR - 680 656

KERALA, INDIA

2019



nw8

ABSTRACT \
6?"b

The global climate change is pushing marine ecosystems towards extinction. The

sensitive ecosystems like coral reefs will be the first few to take the imminent impacts of an

increase in temperature. Unlike any other oceans, Northern Indian Ocean (NIG) is thought to

be highly vulnerable due to its typical topography with the massive Eurasian Continent in the

north. The Indian Ocean is the warmest among all tropical oceans and more vulnerable in the

era of climate change. The ecosystems of this landlocked sea will not permit the migration of

the organisms to cooler waters as the years' progress. Scleractinians, the Hard Corals, are

sessile and are very sensitive to the shifts in biogeochemical variables. The hard corals in the

northern Indian Ocean are increasingly susceptible to elevated anthropogenic stressors,

including impacts from climate change, overfishing, runoff, and ocean acidification. In order

to study the precise impact of such stressors, the knowledge about the existing extent of hard

coral distribution is necessary. The wider distribution and their growth in the oceanic remote

islands and ridges makes their complete distribution unknown to science. With the emergence

of new powerful statistical techniques and GIS tools, the development of predictive habitat

distribution models has become easier. In this study, climate envelope modeling is carried out

using maximum entropy principle (MaxEnt) to predict the occurrence of five hard coral

species viz., Acropora mitricaUi. Favia pallida. Plaiygyra ckieckilea, Pocillopora damicorms

and Porites Itttea by correlating their point observations of data with gridded environmental

variables. The statistical model that expresses the correlation and the species threshold to

different independent variables is thus employed to create maps of predicted occurrence by

applying the model to maps of the environmental parameters. The future distribution of each

species was delineated using the IPCC emission scenarios, RCP 4.5, RCP 6.0, and RCP 8.5

for the period of 2040-50 and 2090-2100. The study unveils possible distribution areas of

these hard-coral species' in the northern Indian Ocean and their vulnerability towards elevated

greenhouse gas emissions in the future decades. Much of future estimates of occurrences, all

these corals are noted in new areas that are now devoid of coral reefs mainly the entire Indian

coast and the east African coast. A. muricuta is found to be most vulnerable species under all

the three RCPs. It is also found that the Red Sea, Persian Gulf and Indian coasts are found to

be more exposed to the vagaries of climate change regarding coral distribution. Tlie nature of

the relationship of coral distribution with the climatic parameters as predicted by this study

can also help conservators and marine protected tnea managers well prepared for expected but

sudden environmental changes. Prediction of future shifts in the hard-coral occurrence will

provide a guideline to the management actions either to decrease the impact or prevent

possible extinction events.
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