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CHAPTER |
INTRODUCTION

During 1992, the United Nations Convention on Biological Diversity defined the term
“biodiversity” as “the variability among living organisms from all sources including, inter
alia, terrestrial, marine and other aquatic ecosystems and the ecological complexes of which
they are part; this includes diversity within species, between species and of ecosystems”. At
present, the biodiversity of the world stands close to about 1.75 million species, without taking
into consideration the microbial species (Heywood and Watson, 1995). Reaka-Kudla (1997)
estimated it as around 5 to 120 million. A side by side comparison between terrestrial and
marine species reveals that, while about 1.5 million terrestrial species are known to humans
the number of known marine species stands at a mere 0.3 million (Groombridge and Jenkins,
2002). This draws our attention to the fact that there is a huge gap when it comes to the
knowledge about marine species and their distribution, as 90% of all taxonomic classes are
marine.

Corals are important marine species which form highly productive ecosystem in the
marine realm called coral reefs (Birkeland, 1997). By supporting a large number of species,
the reefs give a tight competition to the tropical rainforests in terms of biodiversity. Their
presence is one of the reasons for the settlement of people in tropical coastal areas and reef
islands (Ferrario et al., 2014). They are a source of livelihood to millions of people and they
also function as a major base of income in some of the developing countries. They are also
considered as a future refuge of the pharmaceutical industry (Spalding er al., 2001). They play
a vital role in providing protection to the coastal region from the waves by acting as a natural
barrier (Hearn 1999; Monismith ef al., 2015; Harris er al., 2018). It is our duty to conserve
and protect this treasure. But the changing climate act as hurdle to our conservation strategies.
It affects every single coral badly which leads to the reduction of the reef complexity (Harris
etal, 2018).

Climate change can be defined as the change in regional or global patterns of climate,
especially the changes after the mid or late 20th century, mainly due to the release of
excessive amounts of carbon dioxide to the atmosphere by fossil fuels (Lineman er al., 2013).
Within the past 100 years itself, the temperature of the Earth elevated at a rate of 0.2 °C per
decade (IPCC, 2017). During 1961 and 2003, the average warming of ocean layers to the
depths of 0 - 700 m was 0.1° C (Bindoff et al., 2007). The impacts of climate change can be



observed in different spheres such as agricultural field, coastal areas. efc. It can increase the
intensity of natural disasters, can cause the extinction of species, the spread of vector-borne
diseases, etc. (Pandve, 2009). Climate change can also result in the redistribution of species.
Many marine species are changing their habitat due to climate change and it is predicted that it
may lead to an increase in the rate of extinction of species (Cheung er al., 2010; Pereira et al.,
2010; Cahill et al., 2013).

Coral reefs are not an exception since they are very sensitive to global climate change
effects (Riegl ef al., 2009). Any slight variation in environmental parameters will adversely
affect the reef ecosystem. The major climatic factors which control the reef ecosystem include
sea temperature, sea level rise, salinity, extreme climatic events, etc. The rate and extent of
climate change along with the resilience capacity of the reefs will dictate the future health of
the reef and its associated fauna. (Hoegh-guldberg, 2011). The rise in atmospheric temperature
can disrupt the symbiotic relationship between reef-building corals and their zooxanthellae
(Symbiodinium spp.) on which the former depends for energy. When the relationship is broken
it paves way for coral bleaching. The global climate change leads to an alteration in the
physical and chemical characteristics of oceans and it results in the shift in a geographic range
of the suitable habitat of coral reefs (Freeman ef al., 2013). The El Nino Southern Oscillation
(ENSO) events have a greater impact on coral reefs and such an event that occurred in 1998
caused a massive coral bleaching and destruction of corals across the globe (Baker er al,
2008). Temperature and light are two important physical factors that trigger coral bleaching
(Coles & Jokiel, 1978).

In order to conserve species, knowledge on their distributions is very important.
Species Distribution Modelling (SDM) acts as a tool for predicting the range of a particular
species. Through SDM, one can understand the environmental conditions required for an
organism’s survival, the likelihood of the existence of a particular species and its abundance in
a region. It also helps in getting an insight into the effects of climate change in their range.
SDM emerged as an important instrument used in the field of ecology and conservation
(Miller, 2010). Easier access to georeferenced species records and environmental data played
a vital role in the growth of SDM in the research fields of ecology and conservation. Along
with that, the user-friendly approach of various models also helped in the growth of SDM
(Gomes er al., 2018).

The common strategy which is used in the modeling of species’ distribution is to

identify the suitable environmental conditions of the species and then to locate those



conditions in space (Robinson e al, 2017, Gomes e al, 2018). There are mainly three
approaches to know the suitable environmental conditions and they are 1) Mechanistic, 2)
Correlative and 3) Hybrid. In the mechanistic approach, the relationship between the
environment of a species and its fitness is determined. Then map that data onto a location. In
the correlative method, the map is illustrated using the data obtained by correlating the
presence or abundance of a species with the spatial habitat. A hybrid approach is a mixture of
both the two methods (Robinson et af., 2017).

There are different kinds of SDMs such as Generalized Dissimilarity Models (GDM),
Multivariate Adaptive Regression Splines (MARS), Genetic Algorithm for Rule-set Prediction
(GARP), Boosted Regression Trees (BRT), Maximum Entropy Modelling (MaxEnt) etc.
Various marine organisms have been subjected to SDMs for studying the impact of climate
change on these organisms, for their conservation, etc. Some examples for SDMs done on
marine organisms are: Stenella dolphins for knowing their distribution across southwestern
Atlantic (Do Amaral er al., 2015), by taking the mean values of environmental variables such
as sea surface temperature; Copepod species in North Atlantic for understanding their
abundance and distribution (Melle er al, 2014); Asian kelp (Undaria pinnatifida) for
identifying their macro environmental determinants for the successful establishment in the
northern Iberian coast (Baez et al., 2010); marine benthos in the North sea (Reiss ef al. 2011);
distribution of benthic marine invertebrates at northern latitudes (MeiBner ef al., 2014), etc.;
Franklin et al., (2013}, did predictive modeling of 6 coral species in the Hawaiian Islands
using BRT models.

The study aims to develop a multivariate statistical model to delineate the relationship
of remotely sensed climatic variables with the spatial distribution of hard corals in the
northern Indian Ocean. The study also aims to evaluate the habitat suitability of hard corals in
selected future climate scenarios. Acropora muricata (Linnaeus, 1758), Favia pallida (Dana,
1846), Platygyra daedalea (Ellis & Solander, 1786), Pocillopora damicornis (Linnaeus, 1758)
and Porites lutea (Milne Edwards & Haime, 1851) were selected for the study.



CHAPTER 2
REVIEW OF LITERATURE

2.1 Climate Change and its influence on the distribution of different
species

The chronicles of Earth’s history reveal the alteration in the distribution of species in
response to various factors that includes environmental tolerance, constraints in dispersion,
interaction with other biotic and abiotic factors and climatic events (Peterson et al., 2011; Pecl
et al., 2017; Rosen, 1984). At present, the Earth is encountering dramatic climate change.
Within the past 100 years itself, the temperature of the Earth elevated at a rate of 0.2 °C per
decade and the global mean temperature may extend further by 4.3 = 0.7 °C. Globally, the
Earth is getting warmed by 0.85" C from 1880 onwards (IPCC, 2017).

Since climate is an influential aspect in the geographic distribution of species, climate
change has a profound effect on it, and this is evinced from the fossil records and from the
well-documented research lines which provide insight on shifts across latitudes, elevations
and with the depths of the oceans (Pearson & Dawson, 2003, Pecl ef al., 2017). Due to climate
change, the species of marine, freshwater and terrestrial environments are changing their
distribution to stick on to suitable habitats. There is a positive relationship between warming
and the distance moved by the species. It is predicted that climate change may shift the
residence of species more towards higher latitudes and elevations (Parmesan ef al., 1999,
Parmesan & Yohe, 2003, Hickling er al., 2006, Parry et al., 2007, Thomas, 2010, Chen et al.,
2011). In comparison with terrestrial organisms, marine species exhibits a higher rate of
species distribution (Poloczanska et al., 2013). The meta-analysis done by Chen et al., 2011
on terrestrial species showed that the distribution of terrestrial organisms is shifting to higher
latitudes at a median rate of 16. 9 km per decade (or an average of 17.9 km per decade) and to
higher elevations at a median rate of 1lm per decade and the meta-analysis done by
Poloczanska et al. (2013) on marine species revealed that marine species move polewards at a
mean rate of 72 km per decade. The terrestrial organisms are moving upwards in order to

escape from the warming lowlands whereas the marine organisms shift from hotter sea



surfaces to deeper regions (Chen ef al., 2009; Dulvy et al, 2008). The species mainly in
temperate regions are changing their geographic distributions between glacial and interglacial
cycles. All these forced shifts will have a pervasive effect on their speciation, range size,
latitudinal patterns, minute changes in the timing of their activity and microhabitat use
(Dynesius & Jansson, 2000; Williams e al., 2008:; Bates et al., 2014). In certain species, there
might be a lag in distributional response towards climate change which may be influenced by
various factors (Poloczanska er al., 2013; Lenoir & Svenning, 2015; Williams er al., 2008).

The redistribution of species can have impacts of varying degrees. The influence of
redistribution of species is reflected in the quality of freshwater systems, marine community
assemblages, the productivity of terrestrial regions, functional traits within a community etc.
(Weed er al., 2013; Fossheim er al., 2015; Paerl & Paul, 2012: Buisson et al., 2013). It also
affects the alpha, beta and gamma diversity of a species (Ochoa-Ochoa ef al., 2012). In severe
cases, it may even lead to the alteration of the productivity of the ecosystem and cause havoc
in the carbon sequestration (Cavanaugh et al, 2014). The research world is in general
agreement that, in future, the redistribution of species due to climate change may become a
prominent reason for the extinction of species which may occur mainly due to the lack of

suitable habitat and limitations in dispersal abilities (Pease ef al., 1989; Thomas et al., 2004).

2.2 Distribution of Hard coral species across the world with an -

emphasize to those in the Indian Ocean

Corals are a bizarre group of invertebrate animals belonging to the phylum Cnidaria.
Coral reef communities are widely distributed and spread over distances of thousands of
kilometres. They are known as the architects of sea literally building cities underwater with
their hard calcium carbonate skeleton (Bermert & Ormond, 1981). Warm-water coral reefs are
found in tropical and subtropical waters within the coastal areas of the Pacific, Indian, and
Atlantic oceans typically between 30°S to 30°N latitudes where the ocean is warm, sunlit,
alkaline, clear, and relatively nutrient deficient (Kleypas et al, 1999b.). Globally there are
three major coral reef ecosystems recognized. They are the Indo-pacific, the wider Caribbean
and the Red Sea. In addition to these, there are certain minor areas too, such as in the tropical

eastern Atlantic, along with the east coast of southern Brazil and around the island of



Bermuda. There is also some pockets of coral development at eastern Pacific, off the coast of

southern Japan and Western Australia.

2.2.1 Global Distribution

It is estimated that coral reefs cover only 0.1% of the surface of the earth which is
about 250,000 sq. km (McAllister, 1995). The Carribean reefs are home to 9% of the total
coral reefs in the world covering about 20000 square miles. Most of these corals are located
in the Carribean Sea and Central American coast (Spalding & Bunting, 2004). In the Pacific
Ocean, it covers almost 110,493 sq km (Chin er al., 2011). Australia's Great Barrier Reef
covers more than 3000000 square kilometres.

India is a biodiversity-rich country and has a coastline extending over 8,000 km with
many regions are ideal for reef formation. All three major types.of the reef (atoll, fringing, and
barrier) can be seen in the Indian subcontinent. According to Muley et al. (2002), the total
area of coral reefs in India is estimated at 2,374.9 sq. km. Lakshadweep islands are the only
Atoll types, while others are fringing reefs. Barrier reefs are present in the Andaman, and
patchy reefs are found in Malvan area as well as the Kanyakumari district of Tamil Nadu.
Remote sensing survey of Indian coral reefs shows that the areal extent of Gulf of Kutch is
148.4km’ and that of Tamil Nadu coast as 64.9 km?, Lakshadweep with 140.1 km® and
Andaman and Nicobar with 813.2 km®. In addition, knolls and lagoon reefs roughly constitute

an area of 50 km? (Pillai, 1996).
2.3 Chagos

Chagos archipelago is a pristine marine ecosystem in central Indian ocean consisting
of a large group of atolls and submerged banks. Its central 200 X 300 km area consists of five
atolls with islands. It is surprisingly one of the world’s largest atoll areas with only eight
islands on its western and northern rim forming a total area of about 550000 km?2 (Sheppard et
al., 2012). The sublittoral substrate in the photic zone is calculated to be approximately 60000
km® (Dumbraveanu and Sheppard, 1999) which is a suitable habitat for coral reef formation.
But how much of this huge area actively support coral reef formation is not yet understood
because more than 95% of the territory has never been studied (Sheppard ef al., 2012). Reef
area estimation is a herculean task and has been subject to wide variations. According to
Spalding et al., (2001), the Indian Ocean has 32 000 km2 of reefs, in which the Red Sea
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region and the Gulf region forms 17 400 and 4200 km2 respectively while Chagos has 3770
km® of reefs (Rajasuriya er al., 2004). Sheppard et al., (2012) mentioned the lagoons of
Chagos has a higher hard coral coverage (63.04 = 3.19%) than the ocean facing slopes (39.69
+ 2.03%).

2.3.1 Maldives

The Maldives constitute the most extensive area of coral reefs in the Indian ocean,
comprised of 27 atolls with 1200 coral reef islands from the central part of the Chagos-
Maldives-Laccadive ridge stretching in the north-south direction (Risk and Sluka, 2000:
Gischler et al., 2014). Before the mass coral bleaching in 1998 Maldives was reported to have
the highest coral cover in the western Indian ocean with 56% to 65% (Davies et al., 1971;
Scheer, 1971). But after the 1998 incident, the hard-coral cover declined to < 10%
(McClanahan, 2000; Edwards er al, 2001: Morri et al., 2010). Lasagna et al. (2008)
undertook a detailed coral study in 2006 in the middle of South Male Atoll and Felidhoo atolls
and reported hard coral cover between 12% and 37%. A study conducted in 2010 at
Ihavandippolo atoll, which is the northernmost Maldive atoll, shows a high variability of coral
cover between 1.7% and 50% (Tkachenko. 2012). Similar studies conducted in the other
Maldivian atolls such as southern Addu, Ari and Rasdhoo atoll in 2006 also found variability

but some higher coral cover between 5% and 95% (Wallace and Zahir, 2007).

2.3.2 Thailand

As elsewhere in the world coral reefs are one of the most productive marine systems in
Thai waters, both in the Andaman Sea and the Gulf of Thailand. There are approximately 700
km coastline, 545 islands span the distance between near-shore and off-shore areas. Thailand
has a total of 153 km2 area of coral reefs in that almost 78 km? is in the Andaman Sea and 75
km? is in the Gulf of Thailand (Yeemin er al., 2006). A study by Yeemin er al., (2009)
observed live coral cover of two islands that ranged from 5.2% at Koh Samui to 64.3% at Koh
Lan, with P. lutea as the dominant coral species. Various bleaching episodes severely affected
the coral reefs of Thailand. In the 2010 bleaching event, there was a loss of 45% coral cover
and the most affected species are P. damicornis and Acropora millepora (Sutthacheep er al.,
2012).



2.3.3 Madagascar

In the western Indian Ocean, mainly between the waters of Madagascar and mainland
Africa, is located one among the world’s most biodiverse area which supports diverse coral
species.369 coral species are identified in the western Indian Ocean and there may be nearly
another 100 (Obura, 2012; Obura er al., 2012), this makes the western Indian ocean as
biodiverse as the Great Barrier reef, and behind the Coral Triangle which has almost 600
species.

2.4 Mauritius

Mauritius has a coastline of 322 km and it has 150 km of protective coral reefs
covering a lagoon area of around 243 km”. Coral diversity of Mauritius is around 159 species
of scleractinian corals (Moothien Pillay ef al., 2002). The coral reefs of Mauritius are facing
threat from climate change and ocean warming and they have lost more than 50%- 60% of

their coral cover (McClanahan et al., 2005, Moothien Pillay et al., 201 2).

2.4.1 SriLanka

Sri Lanka, situated in the south of Indian sub-continent, has a coastline of about 1585
km of which 300 km are beaches and sand dunes (Lowry and Wickremaratne, 1989, Olsen et
al, 1992). Fringing and offshore reefs are mainly seen in Sri Lanka and these have been
categorized into three main habitat types; the first one is true coral habitat consisting of life
coral reefs, then sandstone habitat and rocky habitats (Rajasuriya & De Silva, 1988: De Silva
& Rajasuriya, 1989). About 2% of the coastline contains nearshore fringing reefs (Swan,
1983). Almost 183 species of stony corals have been recorded from Sri Lanka. Growth of
coral is highly influenced by monsoons that have a major impact on the level of turbidity and
freshwater input to the sea, as a result, the extensive coral habitat is limited to areas with lower
sedimentation, which is found in the north-western and eastern coastal areas. Excess of 50%
of reef building coral cover found in some of the offshore reefs. The live coral cover on most
inshore coral reefs is less than 50% while the rocky and sandstone habitats support a
percentage of live coral less than the true coral reefs (Rajasuriya and De Silva, 1988). Almost
all of Sri Lanka's reefs are located within 40 km from the coast and they contribute

significantly to the marine fish production (Rajasuriya and White, 1995).



2.5 Tanzania

Tanzania has a coastline of over 800 km and the coral reefs are located along around
two thirds (600 km) of Tanzania’s continental shelf (Wagner, 2004). Most common reef
formations are fringing reefs and patch reefs, found on the continental shelf which is 8-10 km
wide along most of the coast (IUCN Conservation Monitoring Center, 1988). But in some
areas, it reaches a width of 35 km (Darwall & Guard, 2000). Fringing reefs of Tanzania are
often narrow and consist primarily of a reef flat, which is broken by numerous, often extensive
mangrove stands (IUCN Conservation Monitoring Center, 1988). Coral reefs are typically
found close to land due to the narrowness of the shelf of most of Tanzania. There are well-
developed barrier reefs present on the ocean-facing eastern coastline of the islands. There are
also coral outcrops and reefs along the leeward side of the islands. 1501 species of hard corals

have been reported from Tanzanian reefs (Hamilton and Brakel, 1984).

2.6 Ecological Forecasting Methods, their uses, and advantages

The rapid change in the climate coupled with anthropogenic stresses are posing severe
threats to the ecosystems such as shifting of natural habitats, invasion of new species and the
emergence of new diseases. So the modeling of the environmental dynamics with parameters
as species distribution and abundance, ecosystem variability and the community composition
contributes to the better prediction of the ecosystem movements and thereby facilitates better
management decisions, conservation, and sustainability. During earlier days’ ecologists
developed management decisions utilizing the model from mean and variances of the
observed environmental parameters. But faster reformations which occur in the ecosystem as a
consequence of climatic variations cannot be quantified precisely by mere historic
observations (Smith er al., 2009; Milly er al., 2008; Craig, 2010). Ecological forecasting
makes an attempt to derive a clue about how the environment will behave in the future, based
on the current trends and the past data. This includes forecasts of agricultural yield (Cane er
al., 1994), species distributions (Guisan & Thuiller, 20053), species invasions (Levine &
Antonio, 2003), pollinator performance (Corbet er al., 1995), extinction risk (Gotelli &
Ellison, 2006). fishery dynamics (Hare et al., 2010); disease dynamics (Ollerenshaw & Smith,
1969) and population size (Ward ef al., 2014).



There are mainly two methods for measuring the structural and physical changes
occurring in the ecosystem and for better forecasting, namely population models and species

distribution models.

2.6.1 Population Models

Models of population dynamics or the ecological population models provide a proper
perception about the dynamics and persistence of a population. This model maps the size of
population and age distribution within a population to its decline or extensive growth and
produces a better prediction regarding the status of a population. The environmental, as well
as interactions with other and similar species, may also be a deciding factor (Uyenoyama ,
2004). Crowder et al.,1994; Crouse ef al.. 1987; Caswell, 2001 developed a population model

- which helps to reverse the population diminishing of the loggerhead sea turtle. The model
discloses that the mortality of adults and subadults are the major cause of population decline
of these species. So an alternate management action had been taken by installing the TED
(Turtle Exclusion Devices) in shrimp trawls and was favorable to the growth of population
size of the turtle. Population dynamics models also link the interaction of the environmental
variation and the population growth such as the influence of the sea level rise on the extinction
of polar bears (Hunter et al., 2010). The overabundant species population is also managed by
the help of the population dynamics. Govindarajulu er al. (2005) i;ropose the measures for
controlling the population of harmful bullfrog of Vancouver Island. Elk population reduction
(Bradford and Hobbs, 2008) and potency control of the white-tailed deer (Merrill et al. 2003)
was also achieved from the results of the population model.

Even though this model is used extensively for pred icting the behavior of a population,
the amount of uncertainty in the data leads to error in prediction. The complicated biological
interactions are not flawlessly implemented by this model unless a sufficient amount of data is

supplied.

2.6.2 Species Distribution Models (SDMs)

Species distribution models (SDMs), otherwise called environmental (or ecological)
niche modeling (ENM), habitat modeling, predictive habitat distribution modeling, and range

mapping (Elith and Leathwick, 2009) are widely used in ecological and biodiversity
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conservation research for modeling how the species are distributed globally over the
geographical area. This model accommodates the tools that incorporate known species

occurrences with environmental data (Phillips et al., 2006).
2.6.2.1 Correlative SDMs

Correlative SDMs forecasts the influence of climatic variations on the geographical
distribution of data. (Thomas er al. 2004). In European diadromous fishes the linear
combination of predictor attributes best suited for the propagation of the species are developed
by Mennesson-Boisneau ef al. (2006). The statistical records of association of environment to
the species abundance and occurrence are analyzed in this SDMs for identifying the hindering
processes to the spread of the species. As per Moilanen & Wintle (2007) the ease of
implementation of the Correlative SDMs because of simplicity and the capability to model
complex interactions of the environment with less data requirement provides supremacy over
other SDMs.

2.6.2.2 Mechanistic SDMs

This model otherwise called biophysical models or process-based models because it
aims at mapping the relationship between the physiology of the species and the surroundings
which has an influence on their abundance and distribution. (Kearney & Porter., 2009). Other
than the current radius of the species, the model utilizes the processes or physiological
changes within the body of organisms with respect to climate variations and vegetation which
helps in the prediction of the future extension possibilities of species range towards a great
extent of the ecosystem levels (Porter er al., 2002; Kearney & Porter, 2009). For the complex
analysis of interactions between the environment and climatic influences in large scales, the
mechanistic SDMs will not be suitable because it requires a large quantity of variables to be
considered which makes the model computationally and time constrained to carry out both

train and validation phases.

2.6.3 Methods used in the Species Distribution Modelling

The species-specific interaction had to be studied in conservation planning measures
and the best tool available for this is species bioclimatic envelope models. They shared the

same principle of biome envelope models, in which the current distribution of species is used
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to “train’ a model for the future incorporation of predicted climatic conditions (Hannah er al.,
2002). Envelopes were constructed using the Geographic Information System (GIS) software
or by genetic algorithms or general additive modeling (Peterson ef al., 2001; Berry et al.,
2002; Midgley er al, 2002). But these models could not model dynamic transitions,
interspecific competition, herbivory, dispersal or other factors. By coupling with land-use
projection models, application of the results of bioclimatic envelope models could be used in
real-world conservation (Hannah er al., 2002). Forecasting the geographic ranges of different
species with the use of occurrence records (presence or absence) and data of environmental
variables from the same locality is the focus of Species distribution modeling (Phillips er al.,
2006: Elith and Leathwick, 2009).

2.6.4 Generalized Dissimilarity Models (GDM)

For the modeling of spatial turnover in community composition among pairs of sites as
functions of environmental differences between these sites, Generalized Dissimilarity Models
(GDM) were used (Ferrier er al., 2007). For the estimation of the probability of occurrence of
distribution of a given species, kernel regression algorithm was used within the transformed
environmental space produced by GDM (Lowe, 1995). Elements of matrix regression and
generalized linear modeling were combined which allowed the user to model non-linear
responses of the environment which captured the ecologically realistic relationships between

dissimilarity and ecological distance (Ferrier, 2002; Ferrier er.al., 2002).

2.6.5 GLM and GAM models

Non-parametric and non-linear functions were used by Generalised Linear Models
(GLM) whereas Generalised Additive Models (GAM) use parametric and combinations of
linear, quadratic or cubic terms. GAMS can model complex ecological response shapes than
GLM because of greater flexibility (Yee and Mitchell, 1991). GLM and GAM were widely
used in species distribution modeling because ecological relationships were modelled
realistically and they have strong statistical foundations (Jowett er al., 2008; Alexander, 2016:
Rezaei and Sengiil, 2018).
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2.6.6 Multivariate Adaptive Regression Splines (MARS)

For fitting non-linear responses, an alternative regression-based method called
Multivariate Adaptive Regression Splines (MARS) was used. It used piecewise linear fits
rather than smooth functions. It was very easy to use in GIS applications for making
prediction maps, faster to implement compared to GAMs and had the ability to analyze
community data (MARS-COMM) which helped in relating the variation in occurrence of
species to the environmental predictors in one analysis, and later estimating the individual

model coefficients for each species simultaneously (Leathwick er al., 2005).

2.6.7 Genetic Algorithm for Rule-set Prediction (GARP)

For the approximation of bioclim species’ fundamental ecological niches, several
approaches had been used such as BIOCLIM (Booth et al., 2014), logistic multiple regression
(Peeters and Gardeniers, 1998) and Genetic Algorithm for Rule-set Prediction (GARP).
GARP was defined by heterogeneous rules that defined the polyhedrons in the ecological
niche spaces that were assumed to be liveable by a particular species. The model quality was
assessed by dividing the occurrence points into ‘training data” used for training and “test data’
used for testing models (Fielding and Bell, 1997). GARP has two versions: DK-GARP used
widely for the modeling data from natural history collections and OM-GARP, a new open
implementation, where a group of rules for adaptations of regression and range specifications
are chosen with the use of a genetic algorithm for both these versions and hence predicted as
the best species distribution (Stockwell and Peters, 1999). GARP is a machine-learning
approach and also linked the occurrence records to the environment variables using envelope
(variables are bounded to lower and upper bounds), atomic (values are assigned to each
variable) and logistic regression rules. The algorithm used pseudo-absence localities since the
model works on presence-absence data (Stockwell and Peters, 1999). GARP included the
properties of both BIOCLIM and logistic multiple regression and it was based upon artificial
intelligence (Stockwell and Noble, 1992; Stockwell and Peters, 1999). The extensive testing
done on the GARP model showed that it has high predictive ability for species geographic

distributions (Peterson and Cohoon, 1999; Peterson et al., 2001).
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2.6.8 Boosted Regression Trees (BRT)

Boosting Regression Trees were developed in a forward stage-wise manner, where
small modifications were done in the model at each step for better fitness of data (Friedman er
al., 2000). BRT used the combination of two algorithms: regression-tree algorithm also called
as the boosting algorithm to construct a combination or “ensemble” of trees. The use of
regression-trees helped in the good selection of relevant variables and it could model
interactions. It was upon the weighted versions of data set where the observation that was
poorly fitted in the preceding model and they were accounted by adjusting the weights (Elith
et al., 2006). Overfitting of data were avoided by using cross-validation in BRT, to grow the
models progressively during the predictive accuracy testing on withheld portions of the data
(Elith et al., 2006). The correlation between the distribution of adult stage of copepod Oithona

similis was established using the Boosted Regression tree method (Pinkerton et al., 2010).

2.6.9 Maximum Entropy Modelling (MaxEnt)

According to Phillips er al., 2006, MaxEnt uses the distribution of maximum entropy.
This data was subjected to the constraint that the expected value of each environment
parameter (interactions) in the estimated distribution matched its empirical average for
estimating the distribution of species. Using the background locations and data derived
constraints, it approximated the most uniform distribution (Philips ef al., 2004; Philips et al.,
2006). In this model the complexity of the fitted functions could be chosen, if presence-only
species data were used. It was observed that Maximum entropy modeling (MaxEnt) had done
better or as well than other modeling techniques (Elith et al., 2006; Hernandez er al., 2006:
Philips er al., 2006). Compared to other algorithms, MaxEnt achieved higher success rate and
it marked the differences even at low sample sizes (Pearson et al., 2007). MaxEnt models
predicted the broader area of suitable conditions and the MaxEnt projection had the ability to
predict excluded areas also, but the model performance felt a negative impact when sample
sizes were reduced artificially (Pearson er al., 2007). However, it is observed that species-
specific model parameter tuning can enhance Maxent models efficiency (Radosavljevic and
Anderson, 2014.).

MaxEnt can create very complicated, extremely nonlinear response curves that is

possible due to the usage of various feature classes like linear, quadratic, threshold, hinge,
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product, and categorical that in turn is decided by the number of presences by default (Syfert
et al., 2013). Other than the feature class, the MaxEnt has another modifiable parameter called
the Regularization Multiplier. It is a parameter that adds new restrictions, i.e. a penalty
imposed on the model. The main objective is to avoid overcomplexity and/or overfitting by
controlling the intensity of the selected feature classes used to create the model (Morales et
al., 2017). Several studies have recorded the variability in predictions that may arise from
distinct MaxEnt background samples, with a specific focus on the extent of the location from
which they are chosen (Baasch et al., 2010; Giovanelli et al, 2010; Barve et al, 2011). The
outputs obtained from MaxEnt models fall into three categories namely, the raw output that is
interpreted in terms  occurrence rate, Cumulative output interpreted as omission rate and then
the logistic output. But the difference in the scaling of these three types of outputs plays a
crucial role in providing differently appearing prediction maps (Merow et af., 2013). Maxent
has recently been shown to be associated mathematically to log-linear modeling and differ
only in intercept terms (Renner & Warton, 2013). An attempt to test the effect of bias types,
bias intensity, and correction method on MAXENT model performance  the ability of
methods to correct the originally sampling bias varied greatly depending on bias, bias
intensity and species (Fourcade et al., 2014). Reliability on small sample size, non-essentiality
of absence data and methods to compensate the spatial bias in sampling are the reason for the
recent popularity of MaxEnt in modeling of habitat suitability and distribution of various open
sea species (Peavey, 2010).

MaxEnt had used to investigate the distributional patterns of Geckos (Uroplatus spp.)
for predicting the species distribution (Pearson et al, 2007), American black bear (Ursus
americanus) for the assessment of denning habitat (Baldwin and Bender, 2008), Bush dog
(Speothos venaticus) to appraise the excellence of protection (DeMatteo and Loiselle, 2008),
Little bastard (Tetrax tetrax) for modelling the seasonal distribution changes (Sudrez-Seoane
et al., 2008), predicting and mapping of Sage grouse’s (Centrocercus urophasianus) nesting
habitat, Asian slow lorises (Nycticebus spp.) was assessed to threats and species distribution
analyzed to find conservation urgencies (Thorn er al., 2009). MaxEnt can precisely build the
model even if there is less number of location points and it was an advantageous feature since
frequently there is a deficiency of dependable locations obtainable for mapping the spreading
of species (Baldwin, 2009).
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2.7 SDM in marine animals

Species distribution models (SDMs) has been done for a variety of organisms in the
marine environment, for effective marine biodiversity management, which includes
correlative, mechanistic and hybrid models (Robinson er al., 2011). For example, the
correlative model for the distribution of Stenella dolphins across southwestern Atlantic was
done by Do Amaral er al. (2015), mechanistic model for the distribution and abundance of a
copepod species in the North Atlantic by Melle er al. (2014) and the hybrid model for the
abundance pattern of two abalone species by Fordham et al. (2013). Many other SDMs done
on various marine lives includes those on Asian kelp Undaria pinnatifida to identify its macro
environmental determinants for the successful establishment in the northern Iberian coast
(Béez et al., 2010); marine benthos in the North Sea (Reiss, 2011); distribution of benthic
marine invertebrates at northern latitudes (MeiBner ef al., 2014); the foraging habitats of grey-
headed albatross in southern Atlantic (Scales ef al., 2016) to list out a few. SDMs for marine
species have especially focused on developing conservation and management plans, assessing
climate change impacts and spread of invasive species on marine ecosystems and to study the
relationship between organisms and their environment (Robinson ez al., 2017). Among these
objectives proposing marine protected, areas and essential fishing habitats are the focus of the
majority of marine SDMs while a less number of works targeted the invasive species and
climate change impact in the marine realm. A different group of marine animals came under
SDMs till date with those on fishes is the most common possibly due to their commercial
value and data availability followed by marine mammals due to their declining population
trends (Robinson er al., 2011). A systematic review of marine-based SDMs by Robinson et al.
(2017) found 236 SDMs having applications in the intertidal, pelagic and deep ocean
environment. More than a hundred of these studies were conducted in the northern Atlantic
Ocean followed by temperate northern Pacific and central Indo-Pacific. The least number of
SDMs (2-3) were done in temperate South America and Southern Africa. Western Indo-
Pacific that includes the marine areas of India, together with tropical Eastern Pacific and the
Arctic witnessed only 4-7 SDMs (Robinson er al., 2017).

A major issue associated with SDMs is the quality of data through the occurrence and
ecology of thousands of fish and other marine animals are available databases such as
FishBase  (http://www.fishbase.org/search.php) or OBIS (OBIS: hitp://www.iobis.ore/)
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(Robinson er al., 2011). For rare marine species, occurrence data are very few making the
prediction of their distribution quite challenging. The testing of the robustness of predictive
performance of models with decreasing occurrence data found that the thinning of occurrence
data for a species with small habitat is less undesirable to the predictive performance than a
species having larger habitats (Virgili er al., 2018). Another problem associated with marine
species modeling is the use of environmental variables having an impact on the sea surface
only is coupled with bathymetric occurrence to predict the distribution despite the striking
disparity in the environmental conditions (Duffy & Chown, 2017)

Different types of distribution modeling methods used in the marine environment are
presence-only algorithms, algorithm comparisons, 3D modeling, rare species, joint SDMs,
ensemble modeling, scale effects, null models, model selection, pseudo-absence generation
and predictor datasets (Bosch er al., 2018). Bosch et al. (2018) studied the most suitable
predictors of marine species distribution and the part of the SDM process which has the most
influence on the suitability of the predictors. They noted that the methods of marine SDMs are
highly biased towards terrestrial studies in spite of the remarkable variations in the ecological
factors existing in the marine environment that determine the spatiotemporal differences in the
distribution of animals. Recently, in contrast to the single models used in earlier studies. a
method of using multiple models and then ensemble them to reduce model uncertainty is

adopted by some modelers, for example, Jones and Cheung (2015).

2.8 Species Distribution Modelling of Hard Corals

Species Distribution Models that is used to identify vulnerable marine ecosystems and
to predict the distribution of biological functional group have been less frequently applied on
the coral reef species (Garza-Pérez et al, 2004). Different computer models are now
increasingly used to pretend the aspects of coral reef (Aigner ef al., 1989). Different species of
scleractinian coral display intraspecific variation in colony architecture among habitats
(Kaniewska et al., 2008)

The statistical modeling of species distributions needed components such as an
ecological model concerning the ecological theory, a data model concerning the collection of
the data, and a statistical model concerning the statistical theory (Austin, 2002). MaxEnt is a

statistical model, and to apply it to model species distributions successfully must consider how
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it relates to the two other modeling components (the data model and ecological model (Philips
et al, 2006). (Leathwick er al, 2008) suggested that Data from coral SDMs can be
incorporated into spatial optimization exercises for marine conservation) or for geographically
explicit threat assessments to reefs (Selkoe er al, 2009; Burke er al, 2011). Modeled
probabilities of species occurrence can easily be adjusted to projected changes in
environmental conditions on a species-by-species basis (e.g. changes in distributions of corals
with increased sediment levels owing to major coastal deforestation)

Tittensor et al. (2010) conducted studies on predicting habitat suitability for stony
corals on seamounts using MAXENT and ENFA, showed the influence of variables relating to
the chemical environment e.g. levels of nitrate, silicate, phosphate, aragonite saturation,
dissolved oxygen, and percent oxygen saturation on model predictions. Higher resolution
environmental parameters should also improve model predictions (Anderson er al., 2013) and
may also contribute to more local-scale models of coral-distribution (Dolan et al., 2008).
From SDMs, coral species can be characterized on regional scale. This characterization will
lay the foundation for spatially explicit ecosystem modelling of coral reefs along with its
marine spatial planning (Franklin ef al, 2013). Regional-scale characterization of coral
species from SDMs provides the framework for spatially explicit ecosystem modeling and

marine spatial planning of coral reefs.
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CHAPTER 3
MATERIAL AND METHODS

3.1 Study area

The area chosen for the present study is the Northern Indian Ocean. This study area
comprises of Arabian Sea, Bay of Bengal, Red Sea, the Persian Gulf, the Andaman Sea, Gulf
of Thailand, Gulf of Aden, Malacca strait etc. The Indian Ocean includes nearly 20% of the
water in the world (Fatima and Jamshed, 2015). The unique feature of the Indian ocean is that
it is a closed ocean unlike the Atlantic and Pacific Ocean, it is land-locked in the north and
does not extend to the northern hemisphere's cold climate areas. (Bouchard and Crumplin,
2010) The area of the Indian ocean selected for this study comes under the jurisdiction of
different nations.

ADUOE SO0"0TE BO"00E T000E B0"OTE 0'00E 100°00°E

INDIAN OCEAN

Fig. 1 Map of the study site - The Northern Indian Ocean
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3.2 Species Occurrence Data

The corals selected for the study are:

Acropora muricata: They are considered as "Nearly threatened’ species (Carpenter ef al.,
2008). They can be found in tropical to subtropical regions and also in Indo — Pacific regions
(Veron, 2000). They grow at a rate of 3.7-7.6 cm per year. (Yamano ef al., 2011). According
to the studies, they are the architects of the reefs of Indopacific regions (Hongo & Kayanne,
2011).

Pocillopora damicornis: It is also known by the common name *Cauliflower Coral’. It is a
cosmopolitan species and it is widely distributed in the Indo — Pacific region (Veron, 2000;
Torres & Ravago-Gotanco, 2018). It is characterized by the absence of a true verruca (Veron
and Pichon, 1976).

Favia pallida: One of the most common faviids, it is widely distributed in its own range. It
can be seen in shallower and deeper parts of the reefs of the tropical region (DeVantier er al.,
2014)

Platygvra daedalea: The common name of P. daedalea is “Brain Coral’. This species is very
common and can be found in various reef environments. They may form colonies of diameter
of about one meter or more (DeVantier ef al., 2014)

Porites lutea: 1t belongs to the family ‘Poritidae’. It is a common species and can be seen in
large numbers in the Red Sea. It forms huge colonies with diameters of 3 to 5m (Sheppard et
al., 2014).

The occurrence records of these five different coral species were collected from open source
databases like GBIF, OBIS and other published literature. The distribution points of the

species were plotted using ArcGIS software

3.3 Selection of environmental layers

The environmental predictors were obtained from the Bio-oracle and GMED which are
available online. This study used 13 potential predictors that are capable of influencing the
occurrence of the selected coral species. These include Mean Sea Surface Temperature (Mean
temperature), Maximum Sea Surface Temperature (Max temperature), Sea Surface Salinity
(SSS), Bathymetry, Chlorophyll-a, Ocean current, Photosynthetically Active Radiation (PAR),

pH. Calcite, Phosphate, Nitrate, Diffusion attenuation coefficient and Dissolved oxygen.
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Distance from the shore was avoided to achieve the lowest collinearity among predictors. The
climatology data of mean and maximum SST were collected from MODIS-Aqua (Moderate
Resolution Imaging Spectroradiometer (EOS PM) satellite) with a spatial resolution of 4x4
km and were downloaded from ocean color web database maintained by NASA (Feldman &
McClain, 2010). SSS data of Simple Ocean Data Assimilation ocean/sea ice reanalysis
(SODA) (Carton er al, 2008) of 1/4 x 1/4-degree resolution were utilized. The gridded
bathymetric data of 30 arc-second was obtained from GEBCO (General Bathymetric Chart of
the Ocean) Global ocean & land terrain models hosted by the British Oceanographic Data
Centre (BODC). The chlorophyll-a data with 4 km x 4 km Spatial resolution was taken from
the Ocean color web database (Feldman & McClain, 2010). Ocean current data was taken
from HYCOM Global with 1/12-degree spatial resolution (Bleck, 2002). The monthly
climatology data of PAR (5 arc-minute spatial resolution) was taken from Bio-Oracle
(Feldman & McClain, 2010). The Calcite, Phosphate, Nitrate, pH, Dissolved oxygen and
Diffusion attenuation coefficient with a spatial resolution of 5 arc-minute were gathered from
GMED (Global Marine Environment Datasets, version 2.0) (Basher et al, 2014). Using
ArcGIS version each variable was reprojected to GCS_WGS_1984 coordinate system and
clipped to the same extent. The variables of coarse resolution were interpolated using Inverse
Distance Weighting (IDW) with a mask polygon, which covers the occurrence data. All the
covariate rasters were resampled to get the same extent and resolution (9 x 9 km). The rasters
were finally converted into ASCII using conversion tools in ArcMap.

The environmental variables used for the prediction of coral occurrence under the
three different RCP scenarios (RCP 4.5, RCP 6 and RCP 8.5) were Maximum SST, Mean
SST, SSS and ocean currents. Bio-oracle also offers future variables based on predictions
produced by the Intergovernmental Panel on Climate Change (IPCC) for 2100 with different
levels of RCP scenarios. These variables have been trimmed to our research area and re-
sampled for a resolution of 5 arc minute (~ 9 km). The predicted concentration scenarios for
greenhouse gas (GHG) such as RCP 4.5, 6.0, and 8.5 were chosen for the expected periods
2040-50 and 2090-2100.

3.4 Predicting Hard Coral Distributions

Maximum Entropy modeling is a machine learning strategy that involves the

correlative modeling of a species ' spatial distribution relative to the environmental factors that
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determine the species ' niche. MaxEnt is a technique for modeling geographic distributions of
species on a grid as a function of that grid's environmental predictors and species occurrence.
It estimates the probability of species existence by establishing the connection between
variables and species occurrence. Although there is no need for absence data as a modeling
input for a species, this method utilizes other independent background variables for the entire
study region. We developed background rasters for each species to enhance the model's
precision as well as prevent the sampling bias. A regularization feature is used to prevent
model overfitting (Philips, 2006) and value (B) was set as one so that the model will give the
highest test AUCs (Area Under the Curve) among various trials (Warren and Seifert, 2011).
The data should be entered in the necessary format in the software. Species data have been
transformed into '.csv ' format and the bioclimatic layers should be *. asc™ format. The
software was programmed to a suitable level in accordance with our requisites for a run under
settings options. The recommended default values were used for the convergence threshold
(10-5) and maximum iterations (1000). The random test percentage has been set as 30%,
which decreases the bias from the entire model outcomes when using the single set of points.
Sub-sampling has been chosen for replication because it does not encourage the incorporation
of noise variables and has been shown to create a stable model (Meinshausen and Buhlmann,
2006). This utilizes all thresholds to discriminate between appropriate and noise variables. A
background raster of coral occurrence was developed using AreGIS and used in the model to
decrease bias and uncertainty in the samples.

Based on the ROC curve, the different models predicted under different settings were
analyzed and high AUC values were used to measure the model's capacity for discrimination
(Philips et al., 2006). An AUC value of 0.5 showed that the output of the model was no better
than random, while values close to 1.0 showed the better output of the model. Twenty-five
percent of the occurrence data were used as test data and the rest were used for training the
model. To quantify the contribution of each environmental parameter to the model and its
efficiency, the Jackknife analysis (Pearson er al, 2007) and in order to analyse the
contribution of each environmental parameter to the model and its efficiency, single variable
response curves were used. AUC's Jackknife helps to know the largest contribution of the
environmental predictor and the least influence on hard coral distribution in the present

research region. The most appropriate is the expected maps with pixel values of | and the least
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suitable are cells with values near to 0. Appropriate habitats were then split into 2
classifications to demonstrate appropriate habitat gradation. The area of suitable habitat

predicted was estimated in the GIS environment.

3.5 Prediction of Future Distribution

In MaxEnt model, the trained environment layers are projected to another available set
of environmental layers containing the future climatic data in order to predict the species
distribution of the five selected hard coral species in the future. The projection layers should
have trained layers which were mutually compatible but the conditions will be different. The
name of the layers and the map projection should be the same as that of the trained data. A
model was trained on the environmental variables which corresponded to the current climatic
conditions and was projected into a separate layer based on the future environmental data.
Models of different RCPs ie., RCP 4.5, RCP 6.0 and RCP 8.5 were done for the years 2040-
30 and 2090-2100 using ten replicates and test percentage of 30. The projection was done

using subsampling method of replication.
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CHAPTER 4
RESULTS

We predicted the current spatial distribution of five major hard coral species viz., A.
muricata, F. pallida, P. daedalea, P. damicornis and P. lutea in the Northern Indian Ocean.
The environmental suitability is indicated on the map by the legend from yellow to red. Red
represents highly suitable habitat whereas yellow represents the least. The predicted habitat
suitability of each species for different climatic scenarios was represented as maps using a

legend from blue, green to red according to the increasing order of species habitat suitability.

4.1 Acropora muricata

4.1.1 Prediction of the current distribution
4.1.1.1 The Model Performance and variable contributions

The model performance is assessed by using the average test AUC value for 10
replicates was 0.943 (SD= 0.014). The sensitivity vs. I-specificity graph shows the area under
the Receiver Operating Characteristic (ROC) curve or AUC. The test omission rate and AUC
curve (Fig. 2 & Fig.3) was found fit in this model. The Fig.3 shows that the mean omission
line on the test data was passing through the predicted omission line. In the Fig. 2 the AUC

line was passing through the left top of the random prediction.
4.1.1.2 Contribution of predictor variables

The relative contribution of each predictor variable is given by the MaxEnt output and
it is shown in Table 1. Among all the variables, bathymetry showed a significantly higher
contribution of 70.2 %, followed by Nitrate (7.6%) and Phosphate (5.6%). The dissolved
oxygen is the only variable with no contribution in this particular model developed for A.
muricata. For the Permutation importance, for each environmental variable, the values of that
variable in training presence as well as in background data were randomly permuted. The
variable having high permutation importance (83.9) were bathymetry and the diffusion

attenuation coefficient by 4.3 percent.
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Table 1 Percent contribution and permutation importance of all environmental variables to the
model for A. muricata

Variable Percent Permutation
- n, 'l 3 contribution importance
Bathymetry 70.2 83.9
Nitrate \ 7.6 2.3
Phosphate 5.6 2.5

Kd 4.1 4.3
Calcite 3.1 0.5

pH 25 1.3
Current 1.5 0.3
Chlorophyll 1.3 2.6
Mean Temperature 1.2 0.9
Salinity 1.1 0

PAR 1 1

Max. Temperature 0.9 0.1

DO 0 0.1

The Jackknife of AUC for A. muricata shows the environmental variable that decreases the

gain the most when it is omitted is bathymetry, which therefore appears to have the most

Fig. 6 The predicted distribution of A. muricata in the Northern Indian ocean
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information that isn't present in the other variables. Also dissolved oxygen shows a lesser

gain, lower than 0.50.

The response curves for the A. muricata model (Fig. 5) showed the change in predicted
probability when the corresponding variable is used in isolation and averaged for 10
replicates. These plots demonstrate the dependence of predicted suitability on the selected
variables as well as on the dependencies induced by correlations between each variable and

other variables.
4.1.1.3 Prediction of the present distribution of the A. muricata

Fig. 6 shows that the predicted distribution of 4. muricata in the Northern Indian
ocean with suitability ranging from 0.30 to 0.99, low to high indicated by a legend of yellow
to red. The A. muricata shows higher environmental suitability (80-99%) along the Maldives,
Chagos, Gulf of Mannar, Andaman & Nicobar Islands, Southwestern boundary of Northern
Indian Ocean, Northwestern boundary of Madagascar Island as well as in the islands and
seamounts (which lies in between), the Western islands and boundaries of Sumatra. A medium
to high suitability (50-80%) was predicted in Lakshadweep Islands, Gulf of Kutch, Gulf of
Thailand, Malacca Strait, boundaries of Red Sea, along the Seychelles-Mauritius Plateau and

along the South-western coast of India.
4.1.2 The Future distribution of 4. muricata under different Climate Scenarios

Models prepared using the optimized variables under three different Representative
Concentration Pathways (RCP) such as RCP4.5, RCP6 and RCPS8.5 gave the prediction for
future distribution of the A. muricata in the Northern Indian Ocean for the years 2040-2050
and 2090-2100.

4.1.2.1 Future distribution of A. muricata under RCP 4.5 for years 2040-50 and 2090-2100

4.1.2.1.1 The model performance and contribution of variables

The average test AUC value averaged over 10 replicates for the years 2040-50 and
2090-2100 were 0.922, (SD= 0.059) and 0.97(SD=0.053) respectively (Fig. 7).
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4.1.2.1.2 Contribution of predictor variables

Table 2 Percentage contribution and permutation importance of all environmental variables to the
model for A. muricata under RCP 4.5 for the decades of 2040-2050 and 2090-2100.

Variable Percent Permutation Percent Permutation
contribution importance contribution importance
RCP4.5 (2040- RCP 4.5 (2040- RCP4.5 (2090- RCP 4.5 (2090-
2030) 2050) 2100) 2100)

Bathymetry 57.9 - 763 62.5 67.8 H_ !

Mean Temperature | 24 17.1 23.6 27

Salinity 9.4 ThSE 7.6 1A ]

Current 8.5 | o 3.-.:5_ 59 3.7

Max Temperature | 0.2 I 0.5 PR =07 =

Among these variables, bathymetry showed a significantly higher contribution of 57.9
% and 62.5% for the years 2040-50 and 2090-2100 respectively under RCP 4.5, followed by
Mean Temperature (24% & 23.6%) (Table 2). The Maximum Temperature has the least
contribution in this particular model developed for 4. muricata. For the Permutation
importance, the variable having high permutation importance for both periods were
bathymetry with 76.3% & 67.8% and the Maximum temperature shows no contribution to this

scenario.

The Jackknife of AUC for A. muricata shows environmental variable with the highest
gain when used in isolation is Mean Temperature followed by bathymetry for both periods
under the RCP 4.5 (Fig. 8). The values shown are averages over 10 replicate runs. The
environmental variable that decreases the gain the most when it is omitted is mean
temperature, which therefore appears to have the most information that isn't present in the

other variables, whereas salinity shows a lesser gain, lower than 0.55.
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4.1.2.1.3 Response curves of variables used in both models
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Fig. 9 The Response curve of each variable for 2040-50 and 2090-2100
The response curves for the A. muricata model under the RCP 4.5 for the years 2040-
50 (Fig. 9a) and 2090-2100 (Fig. 9b) showed the change in predicted probability when the

corresponding variable is used in isolation and averaged for 10 replicates.

4.1.2.14 The predicted habitat suitability of A. muricata under RCP 4.5

(b)
Fig. 10 Map showing the predicted habitat suitability of A. muricata in the northern Indian Ocean
in present condition (a) and for 2040-50 (b) under RCP 4.5
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Based on current environmental variables the model predicted maximum distribution
in regions such as the Gulf of Kutch, Western coast of Madagascar, the entire stretch of
Seychelles - Mauritius Ridge (SMR) and the Chagos Archipelago. Other regions of low
plausibility of occurrence include south-eastern Africa, coast of Arabian Peninsula, western
central and eastern coast of India, the islands of Andaman & Nicobar and the Gulf of
Thailand. However, the occurrence of corals predicted as per the RCP 4.5 for 2040-2050
shows the disappearance of reef ecosystems from all the above-mentioned regions except the

southern part of SMR, Gulf of Kutch and north-eastern Madagascar.

The prediction of coral distribution for 2090-2100 based on the RCP 4.5 (Fig. 11) is
somewhat similar to that for 2040-2050. The reason can be inferred from the similarity in the

temperature range for decadal periods.

4.1.2.2 Future distribution of 4. muricata under RCP 6.0 for years 2040-50 and 2090-2100

4.1.2.2.1 The model performance and contribution of variables

The average test AUC value averaged over 10 replicates for the years 2040-50 and
2090-2100 were 0.917, (SD= 0.047) and 0.941 (SD= 0.050) respectively (Fig. 12).

4.1.2.2.2 . Contribution of predictor variables

Table 3 Percentage contribution and permutation importance of all environmental variables to the
model for 4. muricata under RCP 6.0 for the decades of 2040-2050 and 2090-2100.

Variable Percent Permutation Percent Permutation
contribution importance contribution importance
(RCP 6.0 2040- (RCP 6.0 2040- (RCP 6.0 2090- (RCP 6.0 2090-
50) 50) 2100) 2100)

Bathymetry | 564 59.4 56.6 W75

Mean 279 26.7 27.5 19.3

temperature

Salinity 85 391 R e

Current 6.5 9.9 7.4 3.1

Max 0.6 0.1 02 i 0

temperature |
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Among these variables, bathymetry showed a significantly higher contribution of 56.4
% and 56.6 % for the years 2040-50 and 2090-2100 respectively under RCP 6.0, followed by
Mean Temperature (27.9 & 27.5%) (Table 3). The Maximum Temperature has the least
contribution in this particular model developed for A. muricata. For the Permutation
importance, the variable having high permutation importance for both periods were
bathymetry with 59.4% & 75.7% and the Maximum temperature shows the least contribution
(0.1 & 0%) for this scenario in both periods.
The Jackknife of AUC for A. muricata shows environmental variable with the highest gain
when used in isolation is bathymetry followed by mean temperature for the first decadal
period whereas the Jackknife analysis for 2090-2100 shows that the mean temperature
exceeds bathymetry under the RCP 6.0 (
Fig. 13). The values shown are averages over 10 replicate runs. The salinity shows a lesser
gain in both cases that just above 0.55 and about 0.50 for the period 2040-50& 2090-2100

respectively.

4.1.2.2.3 Response curves of variables used in both models

The response curves for the A. muricata model under the RCP 6.0 for the years 2040-
50(Fig. 14a) and 2090-2100 (Fig. 14b) showed the change in predicted probability when the

corresponding variable is used in isolation and averaged over 10 replicates.

4.1.22.4  The predicted habitat suitability of 4. muricata under RCP 6.0

Based on RCP 6.0 the distribution of A. muricata in the present condition is predicted in the
entire Indian coast with a higher probability of presence on the northern coast of Maharashtra
and the nearby regions of Gujarat coast followed by north-western Madagascar; the SMR and
the Chagos Lakshadweep ridges, and also on the southern cape regions of Indian peninsula.
However, the Andaman Nicobar Islands and the surrounding regions are predicted poorly for
the presence of this species. The distribution becomes more reduced for the decade of 2040-
2050 under RCP 6.0 in which the entire Andaman and Nicobar Islands, Lakshadweep islands
and the east and west coast of India are predicted with no A. muricara. Its distribution is also
diminished on the SMR, the Red Sea and the Persian Gulf regions. An increase in the coral

population density is predicted for the southern part of SMR and south-eastern Africa.
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(b)

(a)

Fig. 15 Map showing the predicted habitat suitability of A. muricata in the Northern Indian Ocean in present condition (a) and for 2040-
2050 (b) under RCP 6.0.



(@) (b)

Fig. 16 Map showing the predicted habitat suitability of A. muricata in the Northern Indian Ocean in present condition (a) and for 2090-
2100 (b) under RCP 6.0.
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When compared with the prediction given for 2040-2050 under RCP 6.0 remarkable
differences can be seen in the predicted distribution for this species in 2090-2100 (Fig. 16).
Here it is completely absent in two island groups of India and its entire coast expect Gujarat.
The population vanished in the north-western parts of Madagascar and the SMR while a
comparatively good presence is retained in the eastern coast of Madagascar and southern part
of SMR. Distribution is predicted but in new regions along the coast of the Arabian Peninsula.

A notable feature is the almost complete absence of the species in the Red Sea.

4.1.2.3 Future distribution of A. muricata under RCP 8.5 for years 2040-50 and 2090-
2100

4.1.2.3.1 The model performance and contribution of variables

The average test AUC value averaged over 10 replicates for the years 2040-50 and
2090-2100 were 0.922 (SD= 0.061) and 0.925 (SD= 0. 046) respectively (Fig. 17).

4.1.23.2 Contribution of predictor variables

Table 4 Percentage contribution and permutation importance of all environmental variables to the
model for A. muricata under RCP 8.5 for the period of 2040-2050 and 2090-2100.

Variable Percent Permutation Percent Permutation
contribution imporiance contribution importance
RCP 85 (2040- RCP 835 RCP 8.5 RCP-8.5 (2090-
2050) (2040-2050) (2090-2100) 2100)

Bathymetry 59.1 71.1 54.6 ' 65.6

Mean Temperature | 25.2 20.2 282 248

Salinity 85 S{ER 92 N6

Current 7.1 3.7 : 1.5 33

Max Temperature | 0.1 0 AT 0.1

Among these variables, bathymetry showed a significantly higher contribution of 59.1 % and
54.6% followed by Mean Temperature (25.2 & 28.2%) for the years 2040-50 and 2090-2100
respectively (Table 4). The Maximum Temperature has the least contribution in this particular
model developed for A. muricata. For the Permutation importance, the variable having high

permutation importance for both periods were bathymetry with 71.1% & 65.6% and the
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Maximum temperature shows the least contribution for the year 2040-2050 and has no

contribution for 2090-2100 during this scenario.

The Jackknife of AUC for A. muricata (Fig. 18) shows environmental variable with
the highest gain is bathymetry when used in isolation, followed by mean temperature for both
periods under the scenario RCP 8.5. The values shown are averaged over 10 replicates. The
environmental variable that decreases the gain the most when it is omitted is bathymetry,
which therefore appears to have the most information that isn't present in the other variables.

Whereas salinity shows a lesser gain in both periods similar to the other scenarios.

4.1.2.3.3 Response curves of variables used in both models

bathymetry meantemper ature bathymetry meanismperature
8 Tl =i T == T 1OF T
0s 0st 0s b b =
0a L L F ] oo ook
e m nm 050 4708 Lo nm 30 150
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o (b)

Fig. 19 The Response curve of each variable for 2040-50 and 2090-2100.

The response curves for the A. muricata model under the RCP 8.5 for the period of
2040-50 (Fig. 19a) and 2090-2100 (Fig. 19b) showed the response of each variable in
determining the distribution of the species created using only the corresponding variable,

averaged for 10 replicates.
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4.1.2.3.4 The predicted habitat suitability of A. muricata under RCP 8.5

() (b)

Fig. 20 Map showing the predicted habitat suitability of A. muricata in the Northern Indian Ocean
in present condition (a) and for 2040-2050 (b) under RCP 8.5.

Under RCP 8.5 the predicted distribution of A. muricata (Fig. 20) for the present
condition is almost similar to that under RCP 4.5 and 6.0. For the 2040-2050 decade, the

prediction is more similar to that under RCP 4.5.

(a) (b)

Fig. 21 Map showing the predicted habitat suitability of A. muricata in the Northern Indian Ocean
in present condition (a) and for 2090-2100 (b) under RCP 8.5.

Here the range of A. muricata for 2090-2100 (Fig. 21) is just confined to the
northernmost coast of the Persian Gulf, the coast of Oman, eastern Madagascar and southern

SMR, however to a lesser degree.
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4.2 F. pallida

4.2.1 Prediction of the current distribution

4.2.1.1 The Model Performance and variable contributions

The model performance assessed by using the average test AUC value for 10
replicates was 0.933 (SD= 0.025). The sensitivity vs. 1-specificity graph shows the area under
the Receiver Operating Characteristic (ROC) curve or AUC. The test omission rate and AUC
curve (Fig. 22 & Fig 23) was found fit in this model. The Fig. 22 shows that the mean
omission line on the test data was passing through the predicted omission line. In theFig. 22,

the AUC line was passing through the left top of the random prediction.
4.2.1.2 Contribution of predictor variables

Table 5 Percentage contribution and permutation importance of all environmental variables to the
model for F. pallida

Variable Percent contribution Permutation importance
Bathymetry 62,3 80.7
Calcite 7.9 0.9
pH 6.3 3
Nitrate 6.1 39
Current 4.9 0.5
Kd 3.2 23
Phosphate 2.1 i1t
PAR 1.9 25
Mean temperature Lz L7
Chiorophyil 1.3 1.4
Salinity 1.2 13
Max temperature 0.6 03
DO 0.5 0.1

The relative contribution of each predictor variable is given by the MaxEnt output and
it is shown in Table 5. Among all the variables, bathymetry showed a significantly higher
contribution of 62.3 %, followed by Calcite (7.9%) and pH (6.3%). The dissolved oxygen
shows the least contribution of 0.5 % in this model developed for F. pallida. For the
Permutation importance, for each environmental variable, in turn, the values of that variable in

training presence as well as in background data were randomly permuted. The variable
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having high permutation importance (80.7%) were bathymetry and the nitrate by 3.9

percentage.

Jackknife of AUC for Favia_pallida
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Fig. 24 Jackknife analysis of AUC for the F. pallida using all the variables

The Jackknife of AUC for F. pallida (Fig. 24) shows environmental variable with the
highest gain when used in isolation is bathymetry, followed by calcite and diffusion
attenuation coefficient (Kd), which therefore appears to have the most useful information by
itself. The values shown are averages over replicate runs. The environmental variable that
decreases the gain the most when it is omitted is bathymetry, which therefore appears to have
the most information that isn't present in the other variables. Also, the mean temperature

showed the least gain

The response curves for the F. pallida model (Fig. 25) showed the change in predicted
probability when the corresponding variable is used in isolation and averaged for 10
replicates. These plots demonstrate the dependence of predicted suitability on the selected
variables as well as on the dependencies induced by correlations between each variable and

other variables.
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Fig. 25 The response curves of each variable for the F. pallida model

4.2.1.3 Prediction of the present distribution of the F. pallida

b
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Fig. 26 The predicted distribution of F. pallida along the Northern Indian Ocean.

Fig. 26 shows that the predicted distribution of F. pallida in the Northern Indian ocean
with suitability ranging from 0.30 to 0.99, low to high indicated by a legend of yellow to red.
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The F. pallida shows higher environmental suitability (80-99%) along the Lakshadweep
islands, Maldives, Chagos, Gulf of Kutch, Northern region of Gulf of Thailand, Southwestern
boundary of Northern Indian Ocean, North-westem coast of Madagascar as well as in the
islands and seamounts (which lies in between), the Western coast of Sumatra. A medium to
high suitability (50-80%) was predicted in Andaman and Nicobar Islands, Gulf of Mannar and
Srilanka coast, Mergui archipelago, boundaries of Red Sea, Persian Gulf, the entire stretch of

Seychelles-Mauritius Plateau and along the South-western coast of India.

4.2.2 Future distribution of F. pallida under different Climate Scenarios

Models prepared using the optimized variables under three different Representative
Concentration Pathways (RCP) such as RCP4.5, RCP6 and RCP8.5 gave the prediction for
future distribution of the F. pallida in the Northern Indian Ocean for the years 2040-2050 and
2090-2100.

4.2.2.1 Future distribution of F. pallida under RCP 4.5 for years 2040-50 and 2090-
2100

4.2.2.1.1 The model performance and contribution of variables

The average test AUC value averaged over 10 replicates for the years 2040-50 and
2090-2100 were 0.924 (SD = 0.011) and 0.911 (SD = 0.026) respectively (Fig. 27).

4.22.1.2 Contribution of predictor variables

Among the variables, bathymetry showed the highest contribution of 84.1% and 86.1%
for the years 2040-50 and 2090-2100 respectively under RCP 4.5, followed by the current (8.6
& 7.1%) (Table 6). The Maximum Temperature has the least contribution in this particular
model developed for F. pallida. For the Permutation importance, the variable having high
permutation importance for both periods were bathymetry with 89.9% & 93.1% and similar to
the contribution, maximum temperature also shows the least permutation importance (4.1% &

0.9%) in this scenario.
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Average Sensitivity vs. 1 - Specificity for Favia_pailida
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Fig. 27 ROC curve of variable optimization for the F. pallida under RCP 4.5 for the years 2040-50

(a) and 2090-2100 (b)

Table 6 Percentage contribution and permutation importance of all environmental variables to the
model for F. pallida under RCP 4.5 for the decades of 2040-2050 and 2090-2100.

Variable Percent Permutation Percent Permutation
contribution importance contribution importance
RCP4.5 (2040- RCP 4.5 RCP4.5 (2090- RCP 4.5
2050) (2040-2050) 2100) (2090-2100)

Bathymetry 84.1 89.9 86.1 93.1

Current 8.6 1.6 7.1 0.6

Mean 3 3.5 3.1 29

temperature

Sa[fnity 2.3 0.8 2.3 2.4

Max 2 4.1 1.4 0.9

temperature
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Fig. 28 Jackknife analysis of AUC for the F. pallida using variables according to RCP 4.5 for
years 2040-2050 (a) and 2090-2100 (b)

4.2.2.1.3 Response curves of variables used in both models
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Fig. 29 The Response curve of each variable for 2040-50(a) and 2090-2100(b).

The Jackknife of AUC for F. pallida shows environmental variable with the highest
gain when used in isolation is bathymetry followed by maximum temperature for the period of
2090-2100 whereas the current and max temperature shows maximum contribution in 2040-50
under RCP 4.5 (Fig. 28). The environmental variable that decreases the gain the most when it
is omitted is bathymetry, which therefore appears to have the most information that isn't
present in the other variables. Whereas mean temperature shows a lesser gain, lower than

0.50. The values shown are averages over 10 replicate runs.

49



The response curves for the F. pallida model under the RCP 4.5 for the years 2040-50 (Fig.
29a) and 2090-2100 (Fig. 29b) showed the change in predicted probability when the
corresponding variable is used in isolation and averaged for 10 replicates. For both periods of

projection, each variable follows a similar pattern of response to the particular model.

Fig. 30 Map showing the predicted habitat suitability of F. pallida in the Northern Indian Ocean in
present condition (a) and for 2040-50 (b) under RCP 4.5.

On comparing the predicted distribution of F. pallida under RCP 4.5 (Fig. 30) for the
present situation and for 2040-2050, the range of this species get diminished for 2040-50, in
some parts of the Bay of Bengal, i.e. in the Gulf of Mannar region; in the Andaman sea: the
Red Sea and in the Maldives and Lakshadweep archipelago. The high degree of presence is
retained for both cases in the eastern coast of Africa followed by a lesser degree of presence in

the entire western coast of India and the SMR.
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Fig. 31 Map showing the predicted habitat suitability of F. pallida in the Northern Indian Ocean in
present condition (a) and for 2090-2100 (b) under RCP 4.5.

No remarkable reduction in the range of this species is predicted for the decade 2090-2100
under RCP 4.5 (Fig. 31) when compared with its range predicted for 2040-50. However, a slight
degree of increase in its presence can be noted for the coast of western India and Bangladesh.
4.2.2.2 Future distribution of F. pallida under RCP 6.0 for years 2040-50 and 2090-

2100

42221 The model performance and contribution of variables

The average test AUC value averaged over 10 replicates for the years 2040-50 and 2090-2100

were 0.924 (SD=0.011) and 0.911 (SD= 0.026). respectively (Fig. 32(a) and Fig. 32 (b)).
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Fig. 32 ROC curve of variable optimization model of the F. pallida under RCP 6.0 for the years
2040-50 (a) and 2090-2100 (b).
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42222 Contribution of predictor variables

Among the variables, bathymetry showed a significantly higher contribution of 83.8 % and
84.5 % for the years 2040-50 and 2090-2100 respectively under RCP 6.0, followed by the
current (8.8 & 9.4%) (Table 7). The Salinity has the least contribution in this particular model
developed for F. pallida. For the Permutation importance, the variable having high
permutation importance for both periods were bathymetry with 93.6 % & 90.6 % and the

Salinity itself shows minimum permutation importance in this scenario.

Table 7 Percentage contribution and permutation importance of all environmental variables to the
model for F. pallida under RCP 6.0 for the decades of 2040-2050 and 2090-2100.

Variable Percent Permutation Percent Permutation
contribution importance contribution importance
(RCP 6.0 2040- (RCP 6.0 2040- (RCP 6.0 2090- (RCP 6.0 2090-
2050) 2050) 2100) 2100)

Bathymetry | 83. 8I | 93.6 84.5 90.6

Current 88 0.9 9.4 2.3

Mean 3 ] e 2.4 3.8 4.1

temperature |

Max 2.4 1.8 1.8 25

temperature

Salinity 198 1.1 | 0.5 - 06

The Jackknife of AUC for F. pallida (Fig. 33) shows environmental variable with the
highest gain when used in isolation is bathymetry followed by the current for 2040-2050
decade under RCP 6.0. The values shown are averages over 10 replicate runs. The
environmental variable that decreases the gain the most when it is omitted is bathymetry,
current and maximum temperature which therefore appears to have the most information that

isn't present in the other variables. Whereas mean temperature shows a lesser gain, lower than

0.50.
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The response curves for the F. pallida model under the RCP 6.0 for the years 2040-50

(Fig. 34a) and 2090-2100 (Fig. 34b) showed the change in predicted probability when the

corresponding variable is used in isolation and averaged for 10 replicates.



(a) (b)

Fig. 35 Map showing the predicted habitat suitability of F. pallida in the Northern Indian Ocean
in present condition (a) and for 2040-50 (b) under RCP 6.0.
The distribution forecast of F. pallida under RCP 6.0 for the two time periods is similar to that under

RCP 4.5.

Compared to the species’ range for 2040-50 the population constricted in most regions
for 2090-2100 such as, along the entire coast of India, it’s two island groups and the Maldives
from where it is completely disappeared. Its range over the Red Sea and the Persian Gulf is
also shown to be reduced except in the northern parts. The northern regions of SMR also show
reduced presence while even more percentage of presence can be seen on the entire east

African coast.

Fig. 36 Map showing the predicted habitat suitability of F. pallida in the Northern Indian Ocean in
present condition (a) and for 2090-2100 (b) under RCP 6.0.



4.2.2.3 Future distribution of F. pallida under RCP 8.5 for years 2040-50 and 2090-

4223.1

Senaiivity (1 - Omiasion Rate)
o = =3 =
-~ o ™ -4

=]
ad

2100

The model performance and contribution of variables

The average test AUC value averaged over 10 replicates for the years 2040-50 and

2090-2100 were 0.932 (SD=0.025). and 0.940 (SD= 0.011) respectively (Fig. 37).
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Fig. 37 AUC curve of variable optimization model of the F. pallida under RCP 8.5 for the years
2040-50 (a) and 2090-2100 (b)
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Contribution of predictor variables

Table 8 Percentage contribution and permutation importance of all environmental variables to the
model for F. pallida under RCP 8.5 for the decades of 2040-2050 and 2090-2100.

Variable Percent Permutation Percent Permutation
contribution  importance contribution importance
RCPS8.5 RCP8.5 (2040- RCP8.5 (2090- RCPS8.5 (2090-
(2040-2050)  2050) 2100) 2100)

Ba [h_wne[ ry 86.3 87.6 85.2 929

Curren{ 6.7 12 8.1 JL1

Mean 3.7 5.5 3.2 35

temperature
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S
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Max 2.1 49 1.8 1.4
temperature
Salinity 1.3 0.8 1.8 1.1

Among these variables, bathymetry showed a significantly higher contribution of 86.3
% and 85.2% for the years 2040-50 and 2090-2100 respectively under RCP 8.5, followed by
current (6.7 & 8.1%) (Table 8). The salinity has the least contribution in this particular model
developed for F. pallida. For the Permutation importance, the variable having high
permutation importance for both periods were bathymetry with 87.6% & 92.9% and the

salinity shows the least importance to this scenario.
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Fig. 38 Jackknife analysis of AUC for the F. pallida using variables according to RCP 8.5 for
vears 2040-2050 (a) and 2090-2100 (b)

The Jackknife of AUC for F. pallida (Fig. 38) shows environmental variable with the
highest gain when used in isolation is bathymetry followed by maximum temperature for both
periods under the RCP 8.5. The values shown are averages over 10 replicate runs. The
environmental variable that decreases the gain the most when it is omitted is bathymetry,
which therefore appears to have the most information that isn't present in the other variables.

Whereas the mean temperature shows a lesser gain, about 0.50.
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42233 Response curves of variables used in both models
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Fig. 39 The Response curve of each variable for 2040-50(a) and 2090-2100(b).
The response curves for the F. pallida model under the RCP 8.5 for the years 2040-50
(Fig. 39a) and 2090-2100 (Fig. 39b) showed the change in predicted probability when the

corresponding variable is used in isolation and averaged for 10 replicates.

4.2.234 The predicted habitat suitability of F. pallida under RCP 8.5

Under RCP 8.5, F. pallida are projected to have an extreme degree of presence in

almost all regions where it is predicted in the present situation (

Fig. 40). The exception is seen in the two island groups of India and in the southern Red Sea.
The presence is estimated with an extreme degree in the northern Persian Gulf; the coast of
Oman, Gujarat, Bangladesh, entire East Africa and Madagascar, and the SMR. Northern parts

of the Red Sea are also projected with its good presence.

The presence of F. pallida predicted for 2090-2100 under RCP 8.5 (Fig. 41) is
strikingly different from that of 2040-50. Here its entire range has dwindled especially on the
coasts and islands of India without a single point of presence. A smaller degree of presence is
projected for the continental coast and islands in the western part of the north-western Indian

ocean.
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4.3 P. daedalea
4.3.1 Prediction of the current distribution

4.3.1.1 The Model Performance and variable contributions

The model performance assessed by using the average test AUC value for 10
replicates was 0.936 (SD=0.019). The sensitivity vs. 1-specificity graph shows the area under
the Receiver Operating Characteristic (ROC) curve or AUC. The test omission rate and AUC
curve (Fig. 42 & Fig. 43) was found fit in this model. The Fig. 43 shows that the mean
omission line on the test data was passing through the predicted omission line. In the Fig. 42,

the AUC line was passing through the left top of the random prediction.

Average Sensitivity vs. 1 - Specificity for Platygyra_daedalea
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Fig. 42 AUC curve of variable optimization model of the Platygyra deadalea
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Fig. 43 the Test omission rate and predicted area as a function of the cumulative threshold,

averaged over the replicate runs for Platygyra deadalea

4.3.1.2 Contribution of predictor variables

Table 9 Percentage contribution and permutation importance of all environmental variables to the

model for P. daedalea

Variable Percent contribution Permutation importance
Bathymetry 64.5 82.9 N
Calcite 8.6 1.4

Current 7.1 1.3

pH 5 1.9

Nitrate 43 19

Kd 23 1

Mean temperature 2 1.4

PAR | 1.3
Chlorophyll 1.5 2.1
Phosphate 1.4 1.7

Salinity 0.6 1.2

Max temperature 0.6 0.9

DO 0.4 1.1
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The relative contribution of each predictor variable is given by the MaxEnt output and it is
shown in Table 9. Among all the variables, bathymetry showed a significantly higher
contribution of 64.5 %, followed by calcite (8.6%) and current (7.1%). The dissolved oxygen
is the variable with the least contribution in this model developed for P. daedalea. For the
Permutation importance, for each environmental variable one by one, the values of that
variable in training presence as well as in background data were randomly permuted. The
variable having high permutation importance (82.9) were bathymetry and the chlorophyll by
2.1 %.

The Jackknife of AUC for P. daedalea (Fig. 44) shows environmental variable with
the highest gain when used in isolation is bathymetry, which therefore appears to have the
most useful information by itself. The values shown are averages over replicate runs. The
environmental variable that decreases the gain the most when it is omitted is bathymetry,
which therefore appears to have the most information that isn't present in the other variables.

Whereas, nitrate shows a lesser gain, lower than 0.50.

The response curves for the P. daedalea model (Fig. 45) showed the change in
predicted probability when the corresponding variable is used in isolation and averaged for 10
replicates. These plots demonstrate the dependence of predicted suitability on the selected
variables as well as on the dependencies induced by correlations between each variable and

other variables.
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Jackknife of AUC for Platygyra_daedalea
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Fig. 45 The response curves for the P. daedalea model
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4.3.1.3 Prediction of the present distribution of the P. daedalea
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Fig. 46 The predicted distribution of P. daedalea along the Northern Indian Ocean.

Fig. 46 shows the predicted distribution of P. daedalea in the Northern Indian ocean
with suitability ranging from 0.30 to 0.99, low to high indicated by a legend of yellow to red.
The P. daedalea shows higher environmental suitability (80-99%) along the Maldives,
Southwestern boundary of Northern Indian Ocean, North-western boundary of Madagascar
Island as well as in the islands and seamounts (which lies in between), and the northern region
of the Gulf of Thailand. A medium to -high suitability (50-80%) was predicted in
Lakshadweep Islands, Gulf of Kutch, Andaman and Nicobar Islands, boundaries of Red Sea,
along the Seychelles-Mauritius Plateau and along the Gulf of Mannar and the coasts of

Srilanka.
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4.3.2 The Future distribution of P. daedalea under different Climate Scenarios.

Models prepared using the optimized variables under three different Representative
Concentration Pathways (RCP) such as RCP4.5, RCP6, and RCP8.5 gave the prediction for
future distribution of the P. deadalea in the Northern Indian Ocean for the years 2040-2050
and 2090-2100.

4.3.2.1 Future distribution of Platygyra deadalea under RCP 4.5 for years 2040-50
and 2090-2100

4.3.2.1.1 The model performance and contribution of variables
The average test AUC value averaged over 10 replicates for the years 2040-50 and 2090-2100
were 0.959 (SD=0.011) and 0.955 (SD=0.011). respectively (Fig. 47).
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Fig. 47 AUC curve of variable optimization model of the P. daedalea under RCP 8.5 for the years
2040-50 (a) and 2090-2100 (b)
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4.3.2.1.2 Contribution of predictor variables

Table 10 Percentage contribution and permutation importance of all environmental variables to the
model for P. daedalea under RCP 4.5 for the decades of 2040-2050 and 2090-2100.

Variable Percent Permutation Percent Permutation
contribution importance contribution importance
RCP4.5 (2040- RCP4.5 (2040- RCP4.5 (2090- RCP4.5 (2090-
2050) 2050) 2100) ' 2100)

Bathymetry | 78.5 81.6 76.7 85.1

Mean 11.8 6.8 13.9 7.2

temperature

Salinity 4.5 1.8 3.7 0.6

Max- 3.1 9 2.9 54

temperature

Current 2 0.8 2.8 1.8

Among these variables, bathymetry showed a significantly higher contribution of 78.5
% and 76.7% for the years 2040-50 and 2090-2100 respectively under RCP 4.5, followed by
Mean Temperature (11.8 & 13.9%) (Table 10). The ocean current has the least contribution in
this model developed for P. daedalea. For the Permutation importance, the variable having

high permutation importance for both periods were bathymetry with 81.6% & 85.1% in this

scenario.
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Fig. 48 Jackknife analysis of AUC for the P. daedalea using variables according to RCP 4.5 for
years 2040-2050 (a) and 2090-2100 (b)
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The Jackknife of AUC for Platygvra deadalea (Fig. 48) shows environmental variable
with the highest gain when used in isolation is bathymetry followed by maximum temperature
for both periods under the RCP 4.5. The values shown are averages over 10 replicate runs.
The environmental variable that decreases the gain the most when it is omitted is bathymetry,
which therefore appears to have the most information that isn't present in the other variables.

Whereas salinity shows a lesser gain, lower than 0.55.

4.3.2.1.3 Response curves of variables used in both models
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Fig. 49 The Response curve of each variable for 2040-50(a) and 2090-2100(b).

The response curves for the P. daedalea model under the RCP 4.5 for the years 2040-
50 (Fig. 49a) and 2090-2100 (Fig. 49b) showed the change in predicted probability when the

corresponding variable is used in isolation and averaged for 10 replicates.

67



432.14 The predicted habitat suitability of P. daedalea under RCP 4.5

(b)

Fig. 50 Map showing the predicted habitat suitability of P. daedalea in the Northern Indian Ocean
in present condition (a) and for 2040-50 (b) under RCP 4.5.

The predicted distribution of P. daedalea under RCP 4.5 for the current and 2040-50
period shows significant population reduction around the coasts of the Bay of Bengal and
Andaman sea (Fig. 50). On the west coast of India, its presence gradually decreased towards
the south for the 2040-50 decade as is the case in Lakshadweep and Maldive group of islands.

Another major population constriction in the decade is in the Persian Gulf.

(@) (b)

Fig. 51 Map showing the predicted habitat suitability of P. daedalea in the Northern Indian Ocean
in present condition (a) and for 2090-2100 (b) under RCP 4.5.

68



No major difference in the range of P. daedalea is forecasted for the 2090-2100

decade when compared to its range in the 2040-2050 period.
4.3.2.2 Future distribution of Platygvra deadalea under RCP 6.0 for years 2040-50
and 2090-2100

4.3.22.1 The model performance and contribution of variables

The average test AUC value averaged over 10 replicates for the years 2040-50 and
2090-2100 were 0.960 (SD= 0.018). and 0.960 (SD= 0.019). respectively (Fig 52).

Average Sensitivity vs. 1 - Specificity for Platygyra_daedalea
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Fig. 52 ROC curve of variable optimization model of the P. daedalea under RCP 6.0 for the

years 2040-50 (a) and 2090-2100 (b)
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432272 Contribution of predictor variables

Table 11 Percentage contribution and permutation importance of all environmental variables to the
model for P. daedalea under RCP 6.0 for the decades of 2040-2050 and 2090-2100.

Variable Percent Permutation Percent Permutation
contribution  importance contribution importance
(RCP  6.0- (RCP 6.0- 2040- (RCP 6.0 2090- (RCP 6.0 2090-
2040-50) 50) 2100) 2100)

Bathymetry | 773 90.9 76.2 88.4

Mean 14.1 4.2 13.7 43

temperature

Max 3.6 35 4.9 K57

temperature

Salinity 3.5 0.7 3.2 3.7

Current 1.5 0.7 2 1.9

Among these variables, bathymetry showed a significantly higher contribution of 77.3

% and 76.2% for the years 2040-50 and 2090-2100 respectively under RCP 6.0, followed by

Mean Temperature (14.1& 13.7%) (Table 11). The ocean current has the least

contribution in this particular model developed for P. daedalea. For the Permutation

importance, the variable having high permutation importance for both periods were

bathymetry with 90.9% & 88.4 % and the current show the least importance for the year 2040-

50 whereas Max temperature has the least importance (1.7%) during 2090-2100 for this
scenario.

Jackknife of AUC for Platygyra_daedalea Jackknife of AUC for Platygyra_daedalea
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Fig. 53 Jackknife analysis of AUC for the P. daedalea using variables according to RCP 6.0 for
years 2040-2050 (a) and 2090-2100 (b)
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The Jackknife of AUC for P. daedalea (Fig. 53) shows environmental variable with
the highest gain when used in isolation is bathymetry followed by max temperature for both
periods under the RCP 6.0. The values shown are averages over 10 replicate runs. The
environmental variable that decreases the gain the most when it is omitted is bathymetry,
which therefore appears to have the most information that isn't present in the other variables.

Whereas salinity shows a lesser gain, lower than 0.55.

4.3.2.2.3 Response curves of variables used in both models

The response curves for the P. daedalea model under the RCP 4.5 for the years 2040-50 (Fig.
54a) and 2090-2100 (Fig. 54b) showed the change in predicted probability when the

corresponding variable is used in isolation and averaged for 10 replicates.

43224 The predicted habitat suitability of P. daedalea under RCP 6.0

Here also the projected range and extremity of the population is similar to that shown
under RCP 4.5 for the same period. For 2040-50, under RCP 6.0, the predicted distribution of P.

daedalea is somewhat similar to the range given under RCP 4.5 for the same period.
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Fig. 54 The Response curve of each variable for 2040-50(a) and 2090-2100(b).
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4.3.2.3 Future distribution of P. daedalea under RCP 8.5 for years 2040-50 and 2090-
2100

4.3.2.3.1 The model performance and contribution of variables

The average test AUC value averaged over 10 replicates for the years 2040-50 and
2090-2100 were 0.953 (SD= 0.015) and 0.942 (SD= 0.018) respectively (Fig. 57 (a) and Fig.
57 (b)).
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Fig. 57 AUC curve of variable optimization model of the P. daedalea under RCP 8.5 for the years
2040-50 (a) and 2090-2100 (b)

43.23.2

Table 12 Percentage contribution and permutation importance of all environmental variables to the

Contribution of predictor variables

model for P. daedalea under RCP 8.5 for the decades of 2040-2050 and 2090-2100.

Variable Percent Permutation Percent Permutation
contribution  importance contribution importance
RCP8.5 RCP8.5 (2040- RCP8.5 (2090- RCP8.5 (2090-
(2040-2050)  2050) 2100) 2100)

Bathymetry | 78.9 85.6 759 88.6

Mean 11.9 6.7 12.7 1.3

temperature

Salinity 4.1 2l 5.1 1.4

Max 2.6 4.1 3.9 1.8

temperatire

Current 24 1.5 2.6 0.9

Among these variables, bathymetry showed a significantly higher contribution of 78.9

% and 75.7 % for the years 2040-50 and 2090-2100 respectively under RCP 8.5, followed by
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mean temperature (11.9 & 12.7%) (Table 12). The current has the least contribution in this
particular model developed. For the Permutation importance, The variable having high
permutation importance for both periods were bathymetry with 85.6% & 88.6% and the

current has the minimum importance in this scenario.

The Jackknife of AUC for P. daedalea (Fig. 58) shows environmental variable with
the highest gain when used in isolation is bathymetry followed by maximum temperature for
both periods under the RCP 8.5. The values shown are averages over 10 replicate runs. The
environmental variable that decreases the gain the most when it is omitted is bathymetry,
which therefore appears to have the most information that isn't present in the other variables.

Whereas the salinity shows a lesser gain, about 0.55.

43233 Response curves of variables used in both models

The response curves for the P. daedalea model under the RCP 8.5 for the years 2040-
50 (Fig. 59a) and 2090-2100 (Fig. 59b) showed the change in predicted probability when the

corresponding variable is used in isolation and averaged for 10 replicates.

43234 The predicted habitat suitability of P. daedalea under RCP 8.5

As clear from the map (Fig. 60), almost complete disappearance of the species is
predicted in the entire study region for the decade 2040-50 though population size of very

lesser degree is shown to have remained in the islands of Maldives, Chagos, and Andaman.

Here the range of distribution is shown to reappeare in some regions in 2090-2100 from where
it is predicted to be absent for the 2040-50 period. A major population can be seen on northern
Persian Gulf, Oman, Gujarat, and the SMR (Fig. 61).
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4.4 P. damicornis

4.4.1 Prediction of the current distribution

4.4.1.1 The Model Performance and variable contributions

The model performance assessed by using the average test AUC value for 10 replicates
was 0.880 (SD= 0.056). The sensitivity vs. l-specificity graph shows the area under the
Receiver Operating Characteristics (ROC) curve or AUC. The test omission rate and AUC
curve (Fig. 62 & Fig. 63) was found fit in this model. The Fig. 63 shows that the mean
omission line on the test data was passing through the predicted omission line. In the Fig. 62,

the AUC line was passing through the left top of the random prediction.
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Fig. 62 ROC curve of variable optimization model of the P. damicornis
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Average Omission and Predicted Area for Pocillopora_damicornis
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Fig. 63 Test omission rate and predicted area as a function of the cumulative threshold, averaged
over the replicate runs for P. damicornis

4.4.1.2 Contribution of predictor variables

Table 13 Percent contribution and permutation importance of all environmental variables to the
model for P. damicornis

Variable Percent contribution — Permutation importance
Bathymetry 415 64.8
Chlorophyll 13.6 3
Nitrate 12 7
Calcite 10.6 2
Mean temperature | 9.9 11.1
Phosphate 5.1 34
Current 4.1 1.9
Max Temperature | 1.3 0.3
pH 0.8 2.8
Kd 0.7 0.7
DO 0.3 3.1
salinity 0 0
PAR 0 0
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The relative contribution of each predictor variable is given by the MaxEnt output and
it is shown in Table 13. Among all the variables, bathymetry showed a comparatively higher
contribution of 41.5 %, followed by chlorophyll (13.6%) and nitrate (12%). The salinity, as well
as par, shows no contribution in this particular model developed for P. damicornis. For the
Permutation importance, for each environmental variable one by one, the values of that
variable in training presence as well as in background data were randomly permuted. The
variable having high permutation importance (64.8) were bathymetry and the mean

temperature by 11.1 percent.

Jackknife of AUC for Pocillopora_damicornis
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Fig. 64 Jackknife analysis of AUC for the P. damicornis using all the variables

The Jackknife of AUC for P. damicornis (Fig. 64) shows environmental variable with
the highest gain when used in isolation is bathymetry, which therefore appears to have the
most useful information by itself. The values shown are averages over replicate runs. The
environmental variable that decreases the gain the most when it is omitted is bathymetry,
which therefore appears to have the most information that isn't present in the other variables.

Also, salinity shows a lesser gain, lower than 0.45.
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71

The response curves for the P. damicornis (Fig. 65) model showed the change in
predicted probability when the corresponding variable is used in isolation and averaged for 10
replicates. These plots demonstrate the dependence of predicted suitability on the selected
variables as well as on the dependencies induced by correlations between each variable and

other variables.

4.4.1.3 Prediction of the present distribution of the P. damicornis

Fig. 66 The predicted distribution of P. damicornis along the Northern Indian Ocean.

Fig. 66 shows that the predicted distribution of P. damicornis in the Northern Indian
ocean with suitability ranging from 0.30 to 0.99, low to high indicated by a legend of yellow
to red. The P. damicornis is a species which shows lower environmental suitability in the
northern Indian ocean compared with other selected coral species. The map shows

environmental suitability ranging from 50 to 99% along the islands in the Mozambique
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Channel, Chagos, Gulf of Kutch, Gulf of Aden, Andaman & Nicobar Islands, Mergui
Archipelago, Southwestern boundary of Northern Indian Ocean, North-western boundary of
Madagascar Islands, northern waters of the Gulf of Thailand, boundaries of Red Sea, and
Mauritius,

442 The Future distribution of P. damicornis under different Climate

Scenarios.

Models prepared using the optimized variables under three different Representative
Concentration Pathways (RCP) such as RCP 4.5, RCP 6.0 and RCP 8.5 gave the prediction
for future distribution of the P. damicornis in the Northern Indian Ocean for the years 2040-

2050 and 2090-2100.

44.2.1 Future distribution of P. damicornis under RCP 4.5 for years 2040-50 and
2090-2100

44.2.1.1 The model performance and contribution of variables

The average test AUC value averaged over 10 replicates for the years 2040-50 and
2090-2100 were 0.932, (SD= 0.042) and 0.947 ( SD= 0.036) respectively (Fig. 67).

Average Sensitivity vs. 1 - Specificity for Pocillopora_damicornis Average Sensitivity vs. 1 - Specificity for Pocillopora_damicornis
10F 1ob
0s a9
o8 os 1
éﬂ" 7 éﬁ?
5 5
HL 1 208
E E
Zas 4 Zos
Ent 1 gul
: ]
B3 go:
02 ] 82
o1k Mean UC=0830® 4 ool it e g
Maan & ons giddey = Maan +- ong siddey ®
ook Randem Pradiction @ | a8 Randam Pradiction ® |
[T L [ 03 o4 as o8 o7 08 oy 12 e o1 02 03 o4 05 08 D07 0B 0 10
1- Spacificy (Fractonal Pradicted Area) 1 - Specticiy (Fractional Predicted Area)

(s ®

Fig. 67 ROC curve of variable optimization model of the P. damicornis under RCP 4.5 for the
years 2040-50 (a) and 2090-2100 (b)
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44212 Contribution of predictor variables

Table 14 Percent contribution and permutation importance of all environmental variables to the
model for P. damicornis under RCP 4.5 for the decades of 2040-2050 and 2090-2100.

Percemt Permmutation  Percent Permutation
contribution  importance contribution  importance
Variable RCP4.5 RCP 4.5 RCP4.5 RCP 4.5 (2090-
(2040-2050)  (2040-2050) (2090-2100)  2100)
Bathymetry 1 65.9 60.2 655 696 )
Mean 199 181 21.4 147
temperature - - o
Current 8.1 13.2 7.1 83 '
Salinity 5.1 7.1 5 3.7
Max 1 1.5 0.9 37
temperature .

Among these variables, bathymetry showed a significant contribution of 65.9 % and

65.5% for the years 2040-50 and 2090-2100 respectively under RCP 4.5, followed by Mean

Temperature (19.9 & 21.4%) (Table 14). The Maximum Temperature has the least

contribution in this model developed for P. damicornis. For the Permutation importance, the

variable having high permutation importance for both periods were bathymetry with 60.2% &

69.6% and the Maximum temperature shows the least contribution to this scenario.

The Jackknife of AUC for P. damicornis (Fig. 68) shows environmental variable with

the highest gain when used in isolation is bathymetry followed by mean temperature for both

periods under the RCP 4.5. The values shown are averages over 10 replicate runs. The

environmental variable that decreases the gain the most when it is omitted is bathymetry,

which therefore appears to have the most information that isn't present in the other variables.

Whereas salinity shows a lesser gain, lower than 0.40.
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44.2.1.3 Response curves of variables used in both models

The response curves for the P. damicornis model under the RCP 4.5 for the years
2040-50 (Fig. 69a) and 2090-2100 (Fig. 69b) showed the change in predicted probability when

the corresponding variable is used in isolation and averaged for 10 replicates.

44.2.1.4 The predicted habitat suitability of P. damicornis under the RCP 4.5 Scenario

(b)

Fig. 70 Map showing the predicted habitat suitability of P. damicornis in the Northern Indian
Ocean in present condition (a) and for 2040-50 (b) under RCP 4.5

For P. damicornis the distribution will get diminished across the Bay of Bengal, the
west coast of India and the Chagos, Maldives and Lakshadweep group of islands for the
period 2040-50 under RCP 4.5. The population is shifted to new areas across the Red Sea. the
Persian Gulf and through the Oman coast with not much difference in the strength of

occurrence(Fig. 70).

(a) (b)

Fig. 71 Map showing the predicted habitat suitability of P. damicornis in the Northern Indian
Ocean in present condition (a) and for 2090-2100 (b) under RCP 4.5
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No remarkable difference in the distribution of P. damicornis is predicted for 2090-

2100 under RCP 4.5 in comparison to 2040-50.

4.4.2.2 3.4.2.2 Future distribution of P. damicornis under RCP 6.0 for years 2040-50
and 2090-2100

44221 The model performance and contribution of variables

The average test AUC value averaged over 10 replicates for the years 2040-50 and
2090-2100 were 0.917(SD= 0.043) and 0.955 (SD= 0.012). respectively (Fig. 72 (a ) and Fig.
72(b))
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Fig. 72 ROC curve of variable optimization of the P. damicornis under RCP 6.0 for the years
2040-50 (a) and 2090-2100 (b)

4.4.2.2.2 Contribution of predictor variables

Table 15 Percentage contribution and permutation importance of all environmental variables to the
model for P. damicornis under RCP 6.0 for the decades of 2040-2050 and 2090-2100.

Variable Percent Permutation Percent Permutation
contribution importance contribution importance
(RCP 6.0 2040- (RCP 6.0 2040- (RCP 6.0 2090- (RCP 6.0
50) 50) 2100) 2090-2100)

Bathymetry 61 65.2 62.8 519
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Mean 234 22.9 23.3 20.2
temperature

Salinity 7.9 6.6 7.3 18.9
Current 7.2 4.1 5.6 1.5
Max temperature | 0.5 1.2 1 1.6

Among these variables, bathymetry showed a significantly higher contribution of 61 %
and 62.8 % for the years 2040-50 and 2090-2100 respectively under RCP 6.0, followed by
Mean Temperature (23.4 & 23.3%) (Table 15). The Maximum Temperature has the least
contribution in this model developed for P. damicornis. For the Permutation importance, the
variable having high permutation importance for both periods were bathymetry with 65.2 % &
51.9 % and the Maximum temperature shows the least contribution (1.2 & 1.6 %) for this

scenario in both periods.

Jackknife of AUC for Pocillopora_damicornis Jackknife of AUC for Pocillopora_damicornis
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Fig. 73 Jackknife analysis of AUC for the P. damicornis using variables according to RCP 6.0 for
years 2040-2050 (a) and 2090-2100 (b)

The Jackknife of AUC for P. damicornis (Fig. 73) shows environmental variable with the
highest gain when used in isolation is bathymetry followed by mean temperature. The values

shown are averages over 10 replicate runs. The salinity shows a lesser gain in both periods is

about (0.45.
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44223 Response curves of variables used in both models
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Fig. 74 The Response curve of each variable for 2040-50 and 2090-2100.

The response curves for the P. damicornis model under the RCP 6.0 for the years
2040-50 (Fig. 74a) and 2090-2100 (Fig. 74b) showed the change in predicted probability when

the corresponding variable is used in isolation and averaged over 10 replicates.

44224 Predicted habitat suitability of P. damicornis under the RCP 6.0

(a) (b)

Fig. 75 Map showing the predicted habitat suitability of P. damicornis in the Northern Indian
Ocean in present condition (a) and for 2040-50 (b) under RCP 6.0
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The extent of distribution of P. damicornis under RCP 6.0 for the 2040-50 decade is

also similar to distribution projected for the same period under RCP 4.5.

(a) (b)

Fig. 76 Map showing the predicted habitat suitability of P. damicornis in the Northern Indian
Ocean in present condition (a) and for 2090-2100 (b) under RCP 6.0

Here the extent is further decreased and the species is predicted to be vanished from
eastern Indian ocean regions of this study and from the west coast of India and the
Lakshadweep archipelago. In addition, further decrease is projected in the Red Sea, Persian
Gulf, Maldives, Chagos and northern SMR region.

44.2.3 3.4.2.3 Future distribution of P. damicornis under RCP 8.5 for years 2040-50
and 2090-2100

4.423.1 The model performance and contribution of variables

The average test AUC value averaged over 10 replicates for the years 2040-50 and
2090-2100 were 0.956 (SD= 0.044) and 0.924 (SD = 0.043). respectively (Fig. 77(a) and Fig.
77 (b)).
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Fig. 77 the AUC curve of variable optimization of the P. damicornis under RCP 8.5 for the years
2040-50 (a) and 2090-2100 (b)

4.423.2 Contribution of predictor variables

Table 16 Percentage contribution and permutation importance of all environmental variables to the
model for P. damicornis under RCP 8.5 for the period of 2040-2050 and 2090-2100.

Variable Percent Permutation Percent Permutation
contribution importance contribution importance
RCP 8.5 RCP 85 RCP 85 (2090- RCP 85 (2090-
(2040-2050) (2040-2050) 2100) 2100)

Bathymetry 62.1 74.2 65.2 76.3

Mean 23.8 14.2 21.6 15.7

Temperature

Salinity 7.4 4.9 7 3.6

Current 6.2 53 5.1 2

Max 0.6 1.5 1.1 24

Temperature

Among these variables, bathymetry shows highest contribution of 62.1 % and 65.2%

followed by Mean Temperature (23.8 & 21.6%) for the years 2040-50 and 2090-2100
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respectively (Table 16). Maximum Temperature has the least contribution in this particular
model developed. For the Permutation importance, the variable having high permutation
importance for both periods were bathymetry with 74.2% & 76.3% and the Maximum
temperature shows the least contribution for the year 2040-2050 and 2090-2100 during this
scenario.
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Fig. 78 Jackknife analysis of AUC for the P. damicornis using variables according to RCP 8.5
for years 2040-2050 (a) and 2090-2100 (b)

The Jackknife of AUC for P. damicornis (Fig. 78) shows environmental variable with
the highest gain is bathymetry when used in isolation, followed by mean temperature for both
periods under the scenario RCP 8.5. The values shown are averaged over 10 replicates. The
environmental variable that decreases the gain the most when it is omitted is bathymetry,
which therefore appears to have the most information that isn't present in the other variables.

Whereas salinity shows a lesser gain in both periods similar to the other scenarios.
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44.2.3.3 Response curves of variables used in both models
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Fig. 79 The Response curve of each variable for 2040-50 and 2090-2100.

The response curves for this species under the RCP 8.5 for the period of 2040-50 (Fig.
79a) and 2090-2100 (Fig. 79b) showed the response of each variable in determining the
distribution of the P. damicornis created using only the corresponding variable. averaged for

10 replicates.
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44234 Predicted habitat suitability of P. damicornis under the RCP 8.5

(@) (b)

Fig. 80 Map showing the predicted habitat suitability of P. damicornis in the Northern Indian
Ocean in present condition (a) and for 2040-50 (b) under RCP 8.5

Here, for the 2040-2050 decade (Fig. 80), the species is completely absent in the Red
sea and the two island groups of India. It is retained only in small degree across Gujarat coast,
Chagos, eastern Madagascar, islands off Somalia, Oman, North-eastern Arabian Peninsula and

south SMR.

(b)

Fig. 81 Map showing the predicted habitat suitability of P. damicornis in the Northern Indian
Ocean in present condition (a) and for 2090-2100 (b) under RCP 8.5

For the decade 2090-2100 the species shows further drop in the percentage distribution

when compared to the projection for 2040-50 as it is completely absent in the Chagos,
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northern SMR and entire eastern Africa (Fig. 81). However, the population remains in the

northern Persian Gulf and Oman coast in a moderate degree.

4.5 P. lutea

4.5.1 Prediction of the current distribution

4.5.1.1 The Model Performance and variable contributions

The model performance is assessed by using the average test AUC value for 10
replicates was 0.933 (SD = 0.016). The sensitivity vs. I-specificity graph shows the area under
the Receiver Operating Characteristic (ROC) curve or AUC. The test omission rate and AUC
curve (Fig. 82 & Fig. 83) found to fit into this model. The Fig. 83 shows that the mean
omission line on the test data was passing through the predicted omission line. In the Fig. 82,

the AUC line was passing through the left top of the random prediction.
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Jackknife of AUC for Porites_lutea

T T
bathymetry
calcite
chiarophyll
current
DO
Kd
maxtemperature
meantemperatura
nitrate
PAR

Environmental Variable

pH
phosphate

salinity

1 I i 1 i 1 1 L 1

4 Withoutvariable =
With only variable ®
- With allvariables ®

050 055 060 065 070 075 080 0B85 090
AUC

085

Fig. 84 Jackknife analysis of AUC for the P. damicornis using all the variables

Fig. 85 The response curves for the P. lutea
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4.5.1.2 Contribution of predictor variables

Table 17 Percent contribution and permutation importance of all environmental variables to the
model for P. lutea

Variable Percent contribution  Permutation importance
Bathymetry 714 , 889

Current 8.2 0.9

Nitrate 7 e T
pH 4.4 23

Phosphate 24 : 29

Calcite 2.2 0.9

Chlorophyll T2E i 0.7 i
Kd 1.2 0.3 -
Max 0.5 0.2 e " M
Temperature '

PAR 04 0.2

Mean 0.4 0.2

Temperature 3
DO 0 0.2

Salinity 0 0.1

The relative contribution of each predictor variable is given by the MaxEnt output and
it is shown in Table 17. Among all the variables, bathymetry showed a comparatively higher
contribution of 71.4 %, followed by current (8.2%) and nitrate (7.9 %). The salinity, as well as
DO, shows no contribution in this particular model developed for P. lutea. For the
Permutation importance, for each environmental variable one by one, the values of that
variable in training presence as well as in background data were randomly permuted. The
variable having high permutation importance (88.9) were bathymetry and the phosphate
(2.9%).

The Jackknife of AUC for P. lutea (Fig. 84) shows environmental variable with the
highest gain when used in isolation is bathymetry, which therefore appears to have the most
useful information by itself. The values shown are averages over replicate runs. The
environmental variable that decreases the gain the most when it is omitted is bathymetry,
which therefore appears to have the most information that isn't present in the other variables.

The PARshows a lesser gain, lower than 0.45.

The response curves for the P. lutea showed the change in predicted probability when

the corresponding variable is used in isolation and averaged for 10 replicates (Fig. 85). These
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plots demonstrate the dependence of predicted suitability on the selected variables as well as

on the dependencies induced by correlations between each variable and other variables.

4.5.1.3 Prediction of the present distribution of the P. lutea

;

10°00°8

Fig. 86 The predicted distribution of P. lutea along the Northern Indian Ocean.

Fig. 86 shows that the predicted distribution of P. lutea in the Northern Indian ocean
with suitability ranging from 0.30 to 0.99, low to high indicated by a legend of yellow to red.
P. lutea is a species which shows lower environmental suitability in the northern Indian ocean
compared with other selected coral species. The map shows environmental suitability ranging
from 80 to 99% along the islands in the Mozambique Channel, the entire seychelles Mauritius
ridge, Lakshadweep, Maldives Chagos, Gulf of Kutch, Gulf of Aden, Southwestern boundary
of Northern Indian Ocean, Northwestern boundary of Madagascar Islands, northern waters of
the Gulf of Thailand, boundaries of Red Sea. A medium suitability of about 50-80% were
observed at Andaman and Nicobar Islands, Mergui Archipelago, Gulf of Mannar, Malacca

strait and in the Persian Gulf.
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4.5.2 The Future distribution of P. lutea under different Climate Scenarios.

Models prepared using the optimized variables under three different Representative

Concentration Pathways (RCP) such as RCP4.5, RCP6.0 and RCP8.5 gave the prediction for

future distribution of P. lutea in the Northern Indian Ocean for the years 2040-2050 and 2090-

2100.

4.5.2.1 Future distribution of P. lutea under RCP 4.5 for years 2040-50 and 2090-

2100

45.2.1.1

The model performance and contribution of variables

The average test AUC value averaged over 10 replicates for the years 2040-50 and

2090-2100 were 0.950(SD = 0.009) and 0.931 (SD = 0.012) respectively (Fig. 87).
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Fig. 87 the ROC curve of variable optimization model of the P. lutea under RCP 4.5 for the years

2040-50 (a) and 2090-2100 (b)
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4.5.2.1.2  Contribution of predictor variables

Table 18 Percent contribution and permutation importance of all environmental variables to the
model for P. lutea under RCP 4.5 for the decades of 2040-2050 and 2090-2100.

Percent Permutation Percent Permutation
contribution importance contribution importance
Variable RCP4.5 (2040- RCP 4.5 (2040- RCP4.5 (2090- RCP 4.5 (2090-
2050) 2050) 2100) 2100)
bathymetry 75.5 85.2 844 946
Mean 15.3 10.7 13.7 3.5
temperature
current 34 1.8 1.1 0.8
salinity 3.2 2 ' 0.5 1
Max 25 0.2 0.2
temperature

Among these variables, bathymetry showed a significant contribution of 75.5 % and
84.4% for the years 2040-50 and 2090-2100 respectively under RCP 4.3, followed by Mean
Temperature (153 & 13.7%) (Table 18). The Maximum Temperature has the least
contribution in this model developed for P. lutea. For the Permutation importance, the
variable having high permutation importance for both periods were bathymetry with 85.2% &

94.6% and the Maximum temperature shows the least contribution to this scenario.

The Jackknife of AUC for P. lutea (Fig. 88) shows environmental variable with the
highest gain when used in isolation is bathymetry followed by max temperature for both
periods under the RCP 4.5. The values shown are averages over 10 replicate runs. The
environmental variable that decreases the gain the most when it is omitted is bathymetry,
which therefore appears to have the most information that isn't present in the other variables.
Whereas salinity shows a lesser gain, which is lower than 0.35 in 2040-2050 whereas the

mean temperature shows the lowest value for 2090-2100 decade.

102

g =



W\

Jackknife of AUC for Porites utea : Jackknife of AUC for Porites lutea
s byl 7 Wilhout raiatis ¥ .
: Wtz 3
: cumend | Whalwaties® T
> S
7 matimperss ‘ !
1]
]
%mmﬂﬂ 1 E
£ g
i um
055 080 085 70 Q75 80 0% (W 0% 055 080 085 010 OFF QM 085 GO0 095
AC AIC
(a (b}

Fig. 88 Jackknife analysis of AUC for the P. lutea using variables according to RCP 4.5 for years
2040-2050 (a) and 2090-2100 (b)
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Fig. 89 The Response curve of each variable for 2040-50(a) and 2090-2100(b).

45.2.1.3 Response curves of variables used in both models

The response curves for the P. lutea model under the RCP 4.5 for the years 2040-50
(Fig. 89a) and 2090-2100 (Fig. 89b) showed the change in predicted probability when the

corresponding variable is used in isolation and averaged for 10 replicates.
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45214 The predicted suitability of P. lutea under the RCP 4.5

(b)

Fig. 90 Map showing the predicted habitat suitability of P. [lutea in the Northern Indian Ocean in
present condition (a) and for 2040-50 (b) under RCP 4.5

The predicted distribution of P. lutea under RCP 4.5 for the 2040-50 period shows
marked reduction when compared to the current situation. Entire coast of India and Andaman
group of islands shows either reduction or complete decline of the species. However, it is
predicted with a good degree of presence in the Lakshadweep, Maldives and Chagos islands;

the east African coast and the Red Sea than its presence in these areas in the present condition.

(a) (b)

Fig. 91 Map showing the predicted habitat suitability of P. lutea in the Northern Indian Ocean in
present condition (a) and for 2090-2100 (b) under RCP 4.5

For the projection obtained under RCP 4.5 for 2090-2100 the species shows a notable

increase in its range as it 1s then present in the Bay of Bengal regions from where it is absent
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for 2040-50 decade. In addition, the species shows a strong foothold in the eastern coast of

Africa, Red Sea and Oman; around Madagascar and entire SMR.

4.5.2.2 Future distribution of P. lutea under RCP 6.0 for years 2040-50 and 2090-
2100

4.522.1 The model performance and contribution of variables

The average test AUC value averaged over 10 replicates for the years 2040-50 and

2090-2100 were 0.916 (SD = 0.022) and 0.925 (SD = 0.015). respectively (Fig. 92).

45.22.2 Contribution of predictor variables

Table 19 Percentage contribution and permutation importance of all environmental variables to the
model for P. lutea under RCP 6.0 for the decades of 2040-2050 and 2090-2100.

Variable Percent Permutation Percent Permutation
contribution  importance contribution importance
(RCP 6.0 (RCP 6.0 2040- (RCP 6.0 2090- (RCP 6.0 2090-
2040-50) 50) 2100) 2100)

Bathymetry | 85.7 93.1 : 82.5 ) 94.9 )

Current 12.2 44 153 33

Mean [ = - = ) 1.3 Ll

Temperature

Max 0.8 1.1 0.5 0.6

Temperature ‘

Salinity 0.3 0.2 03 0.6

Among these variables, bathymetry showed a significantly higher contribution of 85.7
% and 82.5% for the years 2040-50 and 2090-2100 respectively under RCP 6.0, followed by
the ocean currents (12.2 & 15.3%) (Table 19). The salinity has the least contribution (0.3%) in
this model developed for P. lutea. For the Permutation importance, the variable having high
permutation importance for both periods were bathymetry with 93.1% & 94.9 % and the

salinity shows the least contribution (0.2 & 0.6 %) for this scenario in both periods.
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Average Sensitivity vs. 1 - Specificity for Porites_|utea

Average Sensitivity vs, 1 - Spacificity for Porites_lutea
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Fig. 92 the ROC curve of variable optimization of the P. lutea under RCP 6.0 for the years 2040-

50 (a) and 2090-2100 (b)
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Fig. 93 Jackknife analysis of AUC for the P. lutea using variables according to RCP 6.0 for years

2040-2050 (a) and 2090-2100 (b)

The Jackknife of AUC for P. lutea (Fig. 93) shows environmental variable with the
highest gain when used in isolation is bathymetry followed by the current. The values shown

are averages over 10 replicate runs. The mean temperature shows a lesser gain in both periods

is about 0.45.
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45.2.2.3 Response curves of variables used in both models
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Fig. 94 The Response curve of each variable for 2040-50 and 2090-2100.

(b)

The response curves for the P. lutea model under the RCP 6.0 for the years 2040-50
(Fig. 94a) and 2090-2100 (Fig. 94b) showed the change in predicted probability when the

corresponding variable is used in isolation and averaged over 10 replicates.

4.5.2.2.4 The predicted habitat suitability of P. lutea under RCP6.0

Under RCP 6.0, for the period 2040-50 the distribution of P. lutea resembles its range
predicted under RCP 4.5 for 2090-2100 (Fig. 95)

In this case, the range of occurrence of P. lutea is diminished in lesser degree in all

regions where it is predicted for the 2040-50 period (Fig. 96). However, it remains the same

for the east African coast, Madagascar and SMR.
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4.5.2.3 Future distribution of P. [utea under RCP 8.5 for years 2040-50 and 2090-
2100

4.5.2.3.1 The model performance and contribution of variables

The average test AUC value averaged over 10 replicates for the years 2040-50 and 2090-2100
were 0.924 (SD = 0.016) and 0.931 (SD = 0.023). respectively (Fig. 97).

Average Sensitivity vs. 1 - Specificity for Porites_lutea Average Sensitivity vs. 1 - Specificity for Porites _lutea
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Fig. 97 the AUC curve of variable optimization model of the P. lutea under RCP 8.5 for the years
2040-50 (a) and 2090-2100 (b)

4.5.2.3.2 Contribution of predictor variables

Table 20 Percentage contribution and permutation importance of all environmental variables to the
model for P. lutea under RCP 8.5 for the decades of 2040-2050 and 2090-2100.

10

Variable Percent Permutation Percent Permutation
contribution importance contribution importance
RCP8.5 (2040- RCP8.5 (2040- RCPS.5 (2090- RCPS.5
2050) 2050) 2100) (2090-2100)

Ba[hymgtr'\' 84.5 933 85.1 95.8

Current 12.6 4.3 12.2 23

Mean 1.7 1.4 1.4 1

Temperature

Max 0.8 0.8 0.7 0.5

Temperature

Salini 1y 04 02 0.6 0.4
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Among these variables, bathymetry showed a significantly higher contribution of
84.5% and 85.1 % for the years 2040-50 and 2090-2100 respectively under RCP 8.5, followed
by current (12.6 & 12.2 %) (Table 20). The salinity has the least contribution in this particular
model developed for P. lutea. For the Permutation importance, the variable having high
permutation importance for both periods were bathymetry with 93.3% & 95.8 % and the

salinity shows the least importance to this scenario.

The Jackknife of AUC for P. lutea (Fig. 98) shows environmental variable with the
highest gain when used in isolation is bathymetry followed by ocean currents for both periods
under the RCP 8.5. The values shown are averages over 10 replicate runs. The environmental
variable that decreases the gain the most when it is omitted is bathymetry, which therefore
appears to have the most information that isn't present in the other variables. Whereas mean
temperature in the first decade and max temperature in the second decade shows the least

gain.

45233 Response curves of variables used in both models

The response curves for the P. Jutea model under the RCP 8.5 for the years 2040-50
(Fig. 99a) and 2090-2100 (Fig. 99b) showed the change in predicted probability when the

corresponding variable is used in isolation and averaged for 10 replicates.

For 2090-2100 decade, the probability of distribution of P. lutea is restricted to Oman,
East Africa, northem Red Sea, eastern Madagascar, southern SMR. It is not predicted to be

present across the entire Indian coast except Gujarat (Fig. 101).

Under RCP 8.5 the probability of distribution of the species is found to be increased in
the whole of the Persian Gulf, eastern Africa and the Andaman sea while slight reduction is

noted in the Red sea; Chagos, Maldives and Lakshadweep group of islands (Fig. 100).
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Fig. 98 Jackknife analysis of AUC for the P. lutea using variables according to RCP 8.5 for years
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CHAPTER 5
DISCUSSION

Coral reefs are among the world's most intricate as well as economically important
ecosystem that function as a single unit and provides ecosystem services that are vital to
human societies and industries. However, coral reefs have continued to deteriorate because of
human impacts in the decade since the inaugural International Year of the Reef in 1997. The
rapid increase in greenhouse gas emission may be the ultimate insult to this living community
by accelerating global warming as well as ocean acidification. This study clearly portrays the
current response of hard coral species towards various environmental parameters, predicted
the environmentally suitable habitat in the northern Indian ocean and the future changes in
coral distribution using three RCP emission scenarios viz., RCP 4.5, RCP 6.0 and RCP §.5.

The criteria used in the study to assess model performance are Area Under the Curve
(AUC). which is independent of thresholds (Fielding and Bell, 1997; Philips et al., 2006). As
per the suggestions put forwarded by Lobo et al., (2008) the sensitivity Vs 1- specificity were
taken into consideration to account the relative significance of commission and omission
error, along with AUC. All 35 models used in this study gives excellent performance as the
AUC value for all models shown above 0.88. The contribution of each variable in each model
for different species were analysed separately using the Jack-knife of AUC as well as the

response curves.

The bathymetry remained as the major predictor in all models since the erowth of

coral reefs is always facilitated, as the corals tend to grow at shallow waters in order to
harness the available sunlight. Corals also prefer a hard bottom substrate to which the corals
attached. In the case of models that predicted the present distribution of the five species, the
nutrients like Calcite, Phosphate, Nitrate, and diffusion attenuation coefficient holds the place
of other contributors in the models. Calcite is the major structural compound of a reef
ccosystem. Based on the correlation between current coral reef distribution and aragonite
saturation state of the surrounding ocean waters, Kleypas et al. (1999a.) observed the
importance of calcite for the calcification of coral reefs. The nutrients like phosphate and
nitrate should be discussed with caution that it may be misinterpreted of having a directly
proportional influence with coral reefs. According to Fig. 5 the influence of nitrate and
phosphate is found to be increasing slightly up to a point after which it declines. The first

inclination may not be really indicating a positive association but can be due to the greater

115



impact of these nutrients in the shallow waters near the coast which are fed by terrestrial run
offs having high concentration of these chemicals. According to some earlier studies,
(Marubini & Davies, 1996) nitrate can increase the zooxanthellae symbiont density but
reduces the skeletogenesis of corals. Phosphate also has the same effect on corals (Rosset et
al., 2017). The diffusion attenuation coefficient (Kd), a measure of turbidity is the next
contributor to coral flourishment. Scleractinians always prefer clear waters, which only can
pave a smooth path for light through the water column. In the models of future predictions,
mean temperature is the major influencing variable after bathymetry. This may be because of
the rise in sea surface temperature coupled with increased greenhouse gas emissions in future

scenarios.

The future distribution of five species of scleractinian corals in the northern Indian
Ocean shows the varying percentage probability of occurrence under various RCPs such as
4.5, 6.0 and 8.5. No particular similarity in the future occurrence for these species can be
observed from the results obtained as the species show varying percentage of occurrence in
different regions in the study area. Individual reefs respond differently to disturbances based
on the community composition, population structure, climatic parameters and level of coral
recruitment (Hatcher, 1997). For example, pocilloporids and acroporids are more affected by
elevated temperature than that of other massive corals (Marshall & Baird, 2000). The northern
Indian Ocean is home to some of the rich coral ecosystems such as the Red Sea, Madagascar,
the Lakshadweep-Maldives and Chagos group of islands on the North-western part while the
islands of Andaman Sea on the eastern part of Indian Ocean. These ecosystems are under the

action of different physicochemical variables having a varying degree of influence.

In the case of A. muricata, a higher probability of occurrence is shown for the regions such as
north-western India, Madagascar and the Seychelles-Mauritius Ridge for the two different
decades (2040-2050 and 2090-2100) under RCP 4.5 and 6. Its occurrence for different periods
under these two RCP is more or less similar, with slight variations, in different regions.
However, the situation is grim under RCP 8.5 for the decade 2090-2100 in which the species
is narrowed to Oman coast and the northern Persian Gulf only with minimal possibility while
completely absent in all other regions. A similar plight can be seen for P. damicornis under
the same RCP for the same period. P. daedalea, for the 2040-50 decade under RCP 8.5, have
an occurrence, with a very low percentage of presence, only in the Maldives, Chagos and

Andaman Islands while showing total absence in remaining study areas.
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Another remarkable observation is the predicted presence of all five species along the
Indian coasts under all the three RCPs, with a few exceptions. This is especially true for all
five species except A. muricata. Under RCP 8.5 for the period 2040-50, F. pallida shows the
highest percentage of occurrence all along the Indian coast. The Andaman and Nicobar along
with other islands in that region indicate greater vulnerability in the future existence of the
species in various scenarios. The same is true in the case of the Red Sea that is now a major
reef ecosystem in the world. The LMC archipelago and the SMR in the north-western study
region are also pregnable to the future changes in the variables influencing corals. In the case
of F. pallida, a change in this situation is observed in which the species is found to be less
probable to occur in these regions for the period 2090-2100 under RCP 8.5 and 6.0. However,
P. daedalea is found to have a good percentage of occurrences under all RCPs in every time
period studied. The status of occurrence of P. lutea is remarkably high in all regions except
for the period 2090-2100 under RCP 8.5 and for 2040-50 under RCP 4.5 in which it showed
absence around Indian coast and the Andaman Sea. The Red Sea and the Persian Gulf exhibit
a very low percentage of occurrence probability for A. muricata, P. damicornis and P.
daedalea while the other two species managed to maintain a comparatively moderate

percentage of distribution.

In the existing scenario of accelerated warming of the global oceanic waters, the
current study shows a bleak future of the vulnerable sessile organisms like the hard corals.
The current rate of development in the business as usual scenario that is the RCP 8.5 will be a
sure nemesis for the coral reefs of Northern Indian Ocean. The decrease in the spatial diversity
can in turn reduce the minimum stocking biomass and connectivity. Such cascading effects
will make the coral reefs to reach a point of no return. The wider oceanic biodiversity who are
depending directly or indirectly on the coral reefs also will definitely take the heat. A need to
acknowledge the global warming and there by controlling the carbon emissions is an
imminent requirement and the countries across the world should have already taken measures
towards this. In addition, it is also important to reduce and manage the secondary stressors that
can cause the decline of coral reefs after each bleaching event. Conserving the most resilient
coral reefs and keeping the major source reefs of coral larvae alive will help these sensitive
ecosystems to thrive against the oddities and continue sustained provisions for human

wellbeing.
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CHAPTER 6
SUMMARY

Global warming and climate change are terms for the observed century-scale rise in
the average temperature of the earth’s climate system and its related effects. Climate change
prior to the industrial revolution can be explained by natural phenomena. Anthropogenic
climate change has a significant impact on the physical and biological systems all over the
globe. The multiple components of climate change are anticipated to affect all the levels of
biodiversity, from organism to ecoregions. Researches have been done in identifying the
factors affecting species distribution and analysing their current and future distribution
pattern. Species are affected in a different manner; the species niche is migrated northward
from the tropics with the elevation in ocean temperature. The northern Indian Ocean is
landlocked and further extension of suitable habitat towards north seems impossible in this
region. The shift in habitat suitability is directly associated with the environmental variables
like sea surface temperature, sea surface salinity, chlorophyll, pH, ocean currents, PAR,
diffusion attenuation coefficient, and nutrients like calcite, phosphate, nitrate etc. The present
study is a supporting element for the above statements. The spatial and temporal distribution
of selected hard coral species was studied with respect to the changing climate. Certain warm
water coral species having greater incidence as well as importance in Indian ocean such as
Acropora muricata, Favia pallida, Platvgyvra daedalea, Pocillopora damicornis and Porites
lutea are selected for the study. For analysing the distribution of different species,
environmental niche modelling (ENM) or species distribution modelling (SDM) was done.
The best-suited niche model used is the maximum entropy based model i.e., MaxEnt. This
predictive niche model provided very good results for modelling the hard-coral species’
distribution for present conditions as well as predictions for future scenarios. Using these
SDMs it is able to identify the potential places of their occurrences and helpful in executing
conservation steps to protect them in the changed habitat. Using the current occurrence data
collected from GBIS and OBIS database and the climate data acquired from the GMED and
Bio-Oracle database, the modelling for the present condition was done. Then utilising the
current distribution analysis, it would project the distribution of the coral species into the

future by converging it to the maximum entropy probability distribution. To carry out the
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modelling process for the future prediction, the same current environmental layers along with
the future predictor layers for different RCPs such as RCP 4.5, RCP 6.0 and RCP 8.5 were

utilized.

The study revealed the current and projected distribution patterns of the selected hard
coral species for the years 2040-2050 and 2090-2100 under different RCP projections. The
nature of the relationship between each environmental variable and coral species were
analysed using this model technique. The models developed shows that the variables like
bathymetry, calcite, diffusion attenuation coefficient, nitrate and phosphate have a great deal
with the coral distribution in the northern Indian ocean in present condition. Looking into the
future changes, the Mean temperature and current become major contributors after
bathymetry. The salinity shows lower variable contribution as its gradient in this tropical
region is very narrow but its contribution is evident in the waters of Persian Gulf, the region

with extreme fluctuations in salinity (Wilson et al., 2002).

All the reef ecosystems in the study region are found to be at risk because of the
changing climate and its effects on environmental factors affecting species. Under different
RCPs and time periods the five selected study species show varying degree of distribution and
occurrence probability. For the majority of future estimates of occurrences, all these corals are
noted in new areas which are now devoid of coral reefs. These include mainly the entire
Indian coast and the east African coast. Two species viz., P. daedalea and P. lutea, reveal a
high percentage of future and current occurrence in all the regions except for the lesser
percentage of distribution possibility for P. /utea in two different time periods. A. muricata is
found to be the most vulnerable species under all the three RCPs. Different regions exhibit
varying degrees of response to species distribution with the changing environmental variables
in different time periods. Red Sea, Persian Gulf and Indian coasts are found to be more

exposed to the vagaries of climate change regarding coral distribution.
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ABSTRACT \J

The global climate change is pushing marine ecosystems towards extinction. The
sensitive ecosystems like coral reefs will be the first few to take the imminent impacts of an
increase in temperature. Unlike any other oceans, Northern Indian Ocean (NIO) is thought to
be highly vulnerable due to its typical topography with the massive Eurasian Continent in the
north. The Indian Ocean is the warmest among all tropical oceans and more vulnerable in the
era of climate change. The ecosystems of this landlocked sea will not permit the migration of
the organisms to cooler waters as the years™ progress. Scleractinians, the Hard Corals, are
sessile and are very sensitive to the shifts in biogeochemical variables. The hard corals in the
northern Indian Ocean are increasingly susceptible to elevated anthropogenic stressors,
including impacts from climate change, overfishing, runoft, and ocean acidification. In order
to study the precise impact of such stressors, the knowledge about the existing extent of hard
coral distribution is necessary. The wider distribution and their growth in the oceanic remote
islands and ridges makes their complete distribution unknown to science. With the emergence
of new powerful statistical techniques and GIS tools. the development of predictive habitat
distribution models has become easier. In this study. climate envelope modeling is carried out
using maximum entropy principle (MaxEnt) to predict the occurrence of five hard coral
species viz., Acropora muricata, Favia pallida. Platygyra daedalea, Pocillopora damicornis
and Porites lutea by correlating their point observations of data with gridded environmental
variables. The statistical model that expresses the correlation and the species threshold to
different independent variables is thus employed to create maps of predicted occurrence by
applying the model to maps of the environmental parameters. The future distribution of each
species was delineated using the IPCC emission scenarios, RCP 4.5, RCP 6.0, and RCP 8.5
for the period of 2040-50 and 2090-2100. The study unveils possible distribution areas of
these hard-coral species’ in the northern Indian Ocean and their vulnerability towards elevated
greenhouse gas emissions in the future decades. Much of future estimates of occurrences, all
these corals are noted in new areas that are now devoid of coral reefs mainly the entire Indian
coast and the east African coast. A. muricata is found to be most vulnerable species under all
the three RCPs. It is also found that the Red Sea, Persian Gulf and Indian coasts are found to
be more exposed to the vagaries of climate change regarding coral distribution. The nature of
the relationship of coral distribution with the climatic parameters as predicted by this study
can also help conservators and marine protected area managers well prepared for expected but
sudden environmental changes. Prediction of future shifts in the hard-coral occurrence will
provide a guideline to the management actions either to decrease the impact or prevent
possible extinction events.



