EFFECT OF COVER CROPS ON NUTRIENT DYNAMICS IN THE RUBBER PLANTATIONS

BY KPRATHAPAN

THESIS SUBM ITTED IN PARTIAL FULFILM ENT OF THE REQUIREMENT FOR THE DEGREE OF D O C T O R O F P H IL O S O P H Y FACULTY OF AGRICULTURE KERALA AGR ICU LTURA L UNIVERSITY

DEPARTM ENT OF AG RONOM Y COLLEGE OF AGR CULTURE VELLAYANI THIR UV AN A N THAP UR AM

DECLARATION

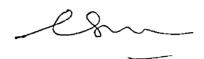
I hereby declare that this thesis entitled "Effect of cover crops on nutrient dynamics in the rubber plantations" is a bonafide record of research work done by me during the course of research and that the thesis has not previously formed the basis for the award to me of any degree diploma, fellowship or other similar title, of any other University or Society

1 Ansaye

K Prathapan

Vellayanı 31 03 1995

CERTIFICATE

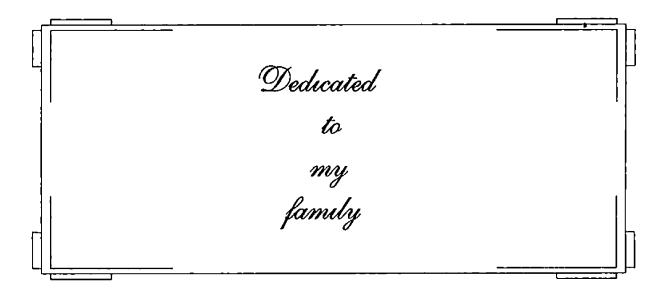

This is to certify that the thesis entitled "Effect of cover crops on nutrient dynamics in the rubber plantations" is a record of research work done independently by Shri K Prathapan under my supervision and guidance and that it has not previously formed the basis for the award of any degree, fellowship or associateship to him

Bruch

Dr C Sreedharan, Chairman Advisory Committee Dean Faculty of Agriculture Kerala Agricultural University

Vellayanı 31 03 1995 APPROVED BY

CHAIRMAN


Dr C SREEDHARAN

MEMBERS

1	Prof P CHANDRASEKHARAN Romad
2	Dr N MOHANAKUMARAN
3	Dr (Mrs) P PADMAJA
4	Dr SN POTTY ST Car S

EXTERNAL EXAMINER

Fulan-1915195

ACKNOWLEDGEMENT

I express my deep sense of gratitude and indebtedness to Dr C Sreedharan Dean Faculty of Agriculture Kerala Agricultural University and Chairman of the Advisory Committee for the guidance valuable suggestions and constant encouragement throughout the period of this investigation and preparation of the thesis

I am thankful to Dr N Mohanakumaran Director of Research Kerala Agricultural University Dr SN Potty Director of Research Indian Cardamom Research Institute Spices Board Prof P Chandrasekharan Professor and Head Department of Agronomy and Dr P Padmaja Professor and Head Department of Soil Science and Agricultural Chemistry for their valuable guidance and encouragement given as the members of the Advisory Committee

Thanks are due to Dr (Mrs) P Saraswathy Head of the Department of Agricultural Statistics for her guidance in statistical analysis and interpretation of data My thanks are also due to Shri C E Ajithkumar Junior Programmer for the help rendered in the statistical analysis of the data Sincere thanks are also due to Dr & Raghavan Pillai and Dr Muraleedharan Nair Professors Dr V L Geethakumari and Dr Pushpakumari Associate Professors and Dr K R Sheela Assistant Professor of the Department of Agronomy for their suggestions and help rendered in the course of the thesis work

The constant encouragement at various stages of thesis work given by Dr K I Punnoose Deputy Director Agronomy/Soils Division Rubber Research Institute of India is gratefully acknowledged

My heartfelt gratitude is also due to Late Rev Arch Bishop Mar Gregorious and the Bethany Estate Management for the facilities provided for the smooth conduct of the Experiments

I thank Rubber Board for the Extra Ordinary Leave granted and ICAR for the Senior Research Fellowship

Sincere thanks are due to M/s Athira Computers, Kesavadasapuram Trivandrum

The constant encouragement and moral support given by my wife Sreelu kids Achu and Pranoy and my parents are also remembered with gratitude

K Prathapan

CONTENTS

	Pages
INTRODUCTION	1-6
REVIEW OF LITERATURE	7-23
MATERIALS AND METHODS	24-51
RESULTS AND DISCUSSION	52-208
SUMMARY	209 - 213
REFERENCES	(1 - xin)
APPENDIX	I

LIST OF TABLES

Table No		Page No	
1	Physical properties and mechanical composition of soil from the experimental site	:	29
2	Chemical composition of soil from the experimental site	:	29
3	Effect of covercrops and their nutrition on the gifth increment (cm) 1991-93		54
4	Effect of covercrops and their nutrition on the height increment (m) 1991–93		54
5 5 b	Effect of covercrops and their nutrition on the soil organic carbon % 1991 1992 and 1993	:	58
6-6b	Effect of covercrops and their nutrition on the soil available N Kg ha $\frac{1}{2}$ initial 1991 1992 and 1993	6	1-62
7 - 7b	Effect of covercrops and their nutrition on the soil available P Kg ha ⁻¹ 1991 1992 and 1993	6	4-6'
8-8b	Effect of covercrops and their nutrition on the soil available K Kg ha ¹ 1991 1992 and 1993	6	7
9-9b	Effect of covercrops and their nutrition on the soil available Ca Kg ha ⁻¹ 1991 1992 and 1993	70	0
10-10b	Effect of covercrops and their nutrition on the soil available Mg kg ha ⁻¹ 1991 1992 and 1993	72	2
11-11b	Effect of covercrops and their nutrition on the Hevea leaf N % 1991 1992 and 1993	74	ł
12 12b	Effect of covercrops and their nutrition on the Hevea leaf P % 1991 1992 and 1993	76)
13 13b	Effect of covercrops and their nutrition on the Hevea leaf K % 1991 1992 and 1993	7	8
14-140	Effect of covercrops and their nutrition on the Hevea leaf (a % 1991 1992 and 1993	8	0
15 15b	Effect of covercrops and their nutrition on the Hevea leaf Mg % 1991 1992 and 1993	8 2	2

		NO
Table	Effect of covercrops and their nutrition on weed dry matter Kg	84
	their nutrition on the	84
16	Effect of covers of hard of the second secon	
	a matter Kg ha April (352	84
16 a	Weed dry matter Kg ha ⁻¹ Oct 1992	85
16b	Weed dry matter Kg ha ⁻¹ April 1993	85
16c	$r_{\rm res} h a^{-1} \text{ Oct } 1993$	•
16d 17-170	and their nutrition on the overcrops and their nutrition on the board	88-
11.110	at D-30 Cm (Jan Ser	90-
18-180		94
19-190		~
20-200	Soil moisture % at 30-60 (Jan - April, 1993)	%
21	Effect of covercrops and their nutrition on the moisture retention at (0-30 cm) -0 033 MPa	1
22	Moisture retention at (30-60 cm) -0 033 MPa	
23	Moisture retention at (0-30 cm) -1 5 MPa	
24	Moisture retention at (30-60 cm) -1 5 MPa	
25	Effect of covercrops and their nutrition on the total porosity $% (0-30 \text{ cm})$	
26	Total porogity % (30-60 cm)	
27	Effect of covercrops and their nutrition on the Bulk density (0-30 cm)	
28	Bulk Density (30-60 cm)	l
29	Effect of covercrops and their nutrition on the Aggregation 5 $(0-30 \mathrm{cm})$	
30	Aggregation % (30-60cm)	
3131d	Fffect of nutrition on the cover Biomass kg ha ⁻¹	

Page

Table No		Page No
31e	Effect of nutrition on the nutrient uptake of N kg ha ⁻¹ by cover crops	112
311	Effect of nutrition on the nutrient uptake of P kg ha ⁻¹ by cover crops	113
31g	Fffect of nutrition on the nutrient uptake of K kg ha ⁻¹ by cover crops	114
31h	Fffect of nutrition on the nutrient uptake of Ca kg ha ⁻¹ by cover crops	115
31 1	Effect of nutrition on the nutrient uptake of Mg kg ha ⁻¹ by cover crops	116
32 -32e	Effect of nutrition on the vertical penetration of root (cm) 3 6 12 18 24 and 30th month	118-12
33-33e	Effect of nutrition to cover on the weight of shoot (g) 3 6 12 18 24 and 30th month	123 12
33 f-33 k	Effect of nutrition to cover on the weight of root (g) 3 6 12 18 24 and 30th month	126 128
34	Nodule count/plant (40 DAS)	129
34a	Nodule fresh weight/plant (40 DAS)	129
3 5	Effect of covercrops and their nutrition on the microbial population of soil Bacteria x 10^4 g ¹ of dry soil	132
35a	Fungix $10^4 \overline{g}^1$ of dry soil	132
35b	Phosphate solubilizers x 10^4 \vec{g}^1 of dry soll	133
36	Fffect of covercrop and its nutrition on girth increment 1991- 1993 (cm)	135
37	Effect of covercrop and its nutrition on the virgin bark thickness 1993 (mm) of Hevea	135
38	Effect of covercrop and its nutrition on the leaf litter production of Hevea (t ha^{-1})	139
39	Effect of covercrop and its nutrition on the latex flow characteristics	139

Table No		Page No
40	Effect of covercrops and its nutrition on the yield of rubber (g tree \tan^{-1})	14
41	Effect of covercrop and its nutrition on the soil organic carbon (per cent)	14
42	Effect of covercrop and its nutriton on soil available nitrogen $(kg ha^{-1})$	15
43	Effect of covercrop and its nutrition on soil available P (kg ha 1)	15
44	Effect of covercrop and its nutriton on soil available K (kg ha^{-1})	15
45	Effect of covercrop and its nutriton on soil available Ca $(kg ha^{-1})$	14
46	Fffect of covercrop and its nutriton on soil available Mg (kg ha^{-1})	1
47	Effect of covercrop and its nutrition on Hevea Leaf N (%)	1
48	Fffect of covercrop and its nutrition on Hevea Leaf P (%)	1
49	Effect of covercrop and its nutrition on Hevea Leaf K (%)	16
50	Fffect of covererop and its nutrition on Hevea leaf Ca (%)	16
51	Effect of covercrop and its nutrition on House to a	•
52	Fffect of covercrop and its nutrition on the soil moisture $(%)$ at 0-30 cm and 30-60 cm depth (1992)) (16
53	Fffect of covercrops and its nutrition on the soil moisture (%) at 0—30 cm and 30-60 cm depth (1993)	16
53a	Fffect of nutrition on the uptake of N Kg ha ^{-1} by cover crop	
53b	Fffect of nutrition on the uptake of P Kg ha ⁻¹ by cover crop	71
53c	Fffect of nutrition on the uptake of K Kg ha ⁻¹ by cover crop	1-71
53d	Effect of nutrition on the uptake of Ca Kg ha ⁻¹ by cover crop	
53e	Effect of nutrition on the uptake of Mg Kg ha ⁻¹ by cover crop	

Table No		Page No
54	Fffect of growing covercrops on the growth of tubber richts gm^{-2} 0–7 5cm soil layer	177
55	Rubber roots gm ⁻² above ground level	178
56	Fffect of nutrition to covercrops on the growth of covererop roots 0–7.5 cm layer of soil gm 2	180
57	Fffect of nutrition to covercrop on the growth of covererop roots above grown of level g m^{-2}	181
58	Effect of cover crop on C/N ratio (1993)	182
59	Fffect of nutrition to covererop on its biomass Kg ha $^{-1}$	184
60	Fffect of covercrop and its nutrition on the weed DMP (Kg/ha)	186
61	Effect of covercrops and its nutrition on the soil moisture retention capacity at 0 033 Mpa	188
62	Fffect of covercrops and its nutrition on the soil moisture retention capacity at 1 5 MPa	189
63	Fffect of growing covererops and its nutrition on the physical properties of soil	190
64	Effect of growing covercrop and its nutrition on the microbial population of the soil x 10^4 g^{-1} of soil	(9 1
ь5	Comparison among open immature and mature situation on soil moisture percentage (Apirl 1992 & 1993)	194
66	Comparison among open immature and mature situations on soil nutrients status	197
67	Uptake of nutrients by cover crops Biomass of cover crop and Weed Dry Matter Production (Kg ha $^{-1}$)	199
68	Comparison among open immature and mature situations on soil microbial population x 10^4 g^{-1} of soil	202
69	Correlation coefficient (r) of girth and height increment as related to important characteristics (Immature Hevea)	205
70	Correlation coefficient (r) of girth and yield as related to important characteristics (Mature Hevea)	20

ITST OF FIGURES

Figure No		Between Pages
1	Lay out plan of the Experiment I	33-34
2	Lay out plan of the Experiment II	35-36
Э	Lay out plan of the Fxperiment III	38-39
4	Effect of cover crops and their nutrition on the girth increment (cm) 1991-1993	54-55
5	Effect of cover crops and their nutrition on the height increment (m) 1991-1993	56-57
6	Effect of cover crops and their nutrition on soil organic carbon (%) 1991 1993	59-60
7	Effect of cover crops and their nutrition on soil available nitrogen (kg ha ⁻¹) 1991-1993	61 - 62
8	Effect of cover crops and their nutrition on soil available phosphorus (kg ha ⁻¹) 1991-1993	65 - 66
9	Fffect of cover crops and their nutrition on soil available potassium (kg ha ⁻¹) 1991-1993	68 - 69
10	Effect of cover crops and their nutrition on the Nevea leaf nitrogen (%) 1991–1993	74 - 75
i 1	Effect of cover crops and their nutrition on the Hevea leaf phosphorus (%) 1991-1993	76 - 77
12	Effect of cover crops and their nutrition on the Hevea leaf potassium (%) 1991-1993	78-79
13	Effect of cover crops and their nutrition on weed DMP (kg ha ¹) 1991 1993	85 - 86

Figure No		Between Pages
14	Effect of cover crops and their nutrition on soil moisture (%) during 1993 summer at 0-30 cm	195- 96
15	Effect of cover crops and their nutrition on soil moisture (%) during 1993 summer at 30- 60 cm	97-98
16	Effect of nutrition to cover crops on nodule count and nodule weight (40 DAS)	129-130
17	Fffect of cover crops and its nutrition on the girth increment (cm) 1991-1993	135-136
18	Effect of cover crops and its nutrition on the leaf litter production of Hevea (t ha ⁻¹)	138-139
19	Effect of cover crops and its nutrition on the latex yield (g tree ⁻¹ tap ⁻¹)	145 - 146
20	Effect of cover crops on the soil moisturg percentage (April 1992 and 1993)	195 - 196
21	Effect of cover crops on the soil nutrient status (1993)	197 - 198
22	Fffect of cover crops on nutrient uptake biomass of cover and weed DMP (kg ha ⁻¹)	199 - 200
23	Effect of cover crops on the soil microbial population x 10 ⁴ g ⁻¹ of soil (1993) nodule count and weight plant ⁻¹ (40 DAS)	202 203

IIST OF PLATES

Plate No	Between Page
1	View of the site of Experiment I
2	View of the site of Experiment II
3	Comparision of cove rcy opped plot with absolute control (immature)
4	Comparison of covercropped plot with absolute control (mature)
5	Comparison of wintering in covercropped and absoulte control plot
6	Level 10 30 30 applied <u>Pueraria phaseoloides</u> plot
7	Level 10 30 30 applied <u>Mucuna</u> <u>bracteata</u> plot

INTRODUCTION

1 INTRODUCTION

Rubber tree (<u>Hevea brasiliensis</u> MUELL-ARG) is the most important commercial source of natural rubber, a product of vital importance obtained from its latex commonly called the Para rubber Rubber is grown predominantly in countries like ours enjoying a tropical climate This produces 99 per cent of the world s natural rubber (George <u>et al</u> 1980)

In India commercial cultivation of rubber was started in 1902 first in Kerala It s cultivation was lat er extended to parts of Tamil Nadu Karnataka and gradually to Andaman and Nicobar islands It was then introduced to the North Eastern states and to the states of Andrapradesh Goa Maharashtra and Orissa The area under rubber cultivation in India by the end of 1993-94 was 5 08 lakh ha and the production of natural rubber during the period 1993-94 was 4 35 lakh tonnes (Rubber Board 1994)

About 85 per cent of the total area under rubber cultivation is in Kerala and the three south Indian states viz Kerala Tamil Nadu and Karnataka jointly account for 92 per cent of the total area (Rubber Board 1994)

The average yield per hectare of the crop increased from 284 kg ha¹ in 1950-51 to 1215 kg ha⁻¹ in 1993-94 (Rubber Board 1994) This has been achieved through the use of high yielding clones and by the adoption of scientific cultivation practices The production and consumption of natural rubber were increasing simultaneously at a fast rate However during the last few years consumption used to overtake domestic production and this necessitated import of natural rubber to the tune of 21 000 tonnes a year (Rubber Inorder to increase the production attempts Board 1994) are being made to extend rubber cultivation to more areas in the non-traditional area. It is most important to increase total production by enhancing the production in traditional areas which are ideally suited for rubber cultivation Increase in production can be achieved by planting high yielding clones as well as by scientific cultivation practices Among these the lat er can be achieved in a shorter period

The use of cover crops interplanted with the main crop is common practice in tropical plantations their presence serving to protect the crop and soil from the most extreme climatic conditions. Studies conducted else where

have shown that leguminous ground covers help in better growth of <u>Hevea</u> during immature phase and productivity during mature phase through the improvment of soil fertility

The nutrition to cover crop is an essential agronomic practice for their better growth and improving the soil physical chemical and biological properties

The present recommendations for cover crop is 30 kg each of P and K ha⁻¹ yr⁻¹ At the same time there is no recommendation to apply N for the covercrop perceivably due to the fact that they are all leguminous crops However in a tropical situation existing in the most of the southern rubber growing states especially in Kerala, the experience is that the initial growth of cover crop in not upto the expected extend and there is scope for increasing the same This early growth is very important for a cover crop for rendering the soil full coverage at the earliest possible time till the crop is able to fix its own atmospheric There are experimental evidences available from Nitrogen elsewhere regarding the N nutrition to covercrop (Pushparajah However under Indian condition so far such evidences 1977) are lacking

The impact of covercrops on the productivity of the rubber soils especially on the physical and biological aspects have not been attempted

A thorough search of literature also indicated that there are no worthwhile study on the nutrient dynamics and improvement of physical and biological properties of soil through covercropping Also the literatures are deficient on the improvement of latex flow characteristics and yield of rubber by covercropping Since the covercropping is a must for rubber plantations and is recommended universally information on these valuable aspects are absolutely useful especially in a tropical situation where rubber is grown

Previously covercrops such as <u>Pueraria</u> <u>Calapagonium Mimosa</u> and <u>Centrocema</u> were recommended as cover crops in rubber plantations These covercrops in general had a natural disadvantage where - in leaves shed in summer and eaten by cattle Another serious disadvantage with these covers are that they wont thrive in mature plantation when the shade intensity is increased <u>Mucuna bracteata</u> is a recent introduction and its adoption as an effective cover in rubber is being extensively practised. This has got the advantage of shade tolerant as well as not being eaten by cattle. Growth is also vigorous and does not shed leaves in summer, Which helps to keep the soil always covered with green mulch

It is therefore thought worthwhile to investigate the relative merits of growing this introduced cover crop along with an extensively grown <u>Pueraria</u> on the physical chemical and biological properties of soil as well as their comparative impact on the production of natural rubber

In this circumstances the investigation is undertaken with the following objectives

- 1 To assess the effect of cover crops on the nutrient dynamics in <u>Hevea</u>
- 2 To findout the influence of cover crops on the growth characters productivity and latex flow characteristics of <u>Hevea</u>
- 3 To evaluate the impact of cover crop on the physical chemical and biological properties of soil

- 4 To standardise NPK recommendation for cover crops
- 5 To understand the moisture regime in the rhizophere of <u>Hevea</u> and cover crops
- 6 To study the impact of cover crops on weed growth
- 7 And finally to assess the importance of cover crops in maintaining the ecosystem of the rubber plantation

REVIEW OF LITERATURE

2 REVIEW OF LITERATURE

The use of cover plants interplanted with the main crop is common practice in tropical plantations their presence serving to protect the crop and soil from the most extreme climatic conditions. In tea and coffee plantations shade trees are provided to protect the plants form excessive heat and in oil palm rubber and sisal plantations a ground cover of creeping plants or upright shrub is maintained to protect the soil from insolation loss of fertility and erosion effects. Studies on the effect of cover crops on nutrient dynamics in rubber plantations are very much limited and all the possible works were reviewed in this chapter

2 1 Importance of cover crops

Studies conducted else where have shown that leguminous ground covers help in better growth of <u>Hevea</u> during the immature phase thus reduces the immaturity period and in attaining higher yield (Watson, 1961 Watson <u>et al</u>, 1964 Pushparajah and Chellapah <u>et al</u>, 1969 Chandapillai, 1968 Potty <u>et al</u> 1980 Kothandaraman^{et el} 990 and Prathapan <u>et al</u>, 1995) Nitrogen is one of the important major nutrient both for growth and yield of <u>Hevea</u> The use of legume covers to supply the considerable amount of nitrogen needed and thus enhance the vigor and performance of <u>Hevea</u> (Mainstone, 1961 Watson, 1961 Pushparajah and Chellappah, 1969 Pushparajah and Tan, 1976) Generally in addition to nitrogen, levels of phosphorous in leaves of <u>Hevea</u> were enhanced by legume covers The legume covers enhance soil organic matter (Pushparajah and Chellappah, 1969 Watson <u>et</u> <u>al</u> 1964) and improve the soil physical properties and hence rooting (Mainstone, 1961 Watson, 1961)

Establishment and maintenance of ground cover in rubber plantation is an accepted agro-management practice Cover crops help in the movement of soil structure and other physical properties (Soong and Yap 1976)

The most widely used leguminous cover crop in India is <u>Pueraria</u> <u>Phaseoloides</u> though others like <u>Calapagonium</u> <u>mucunoides</u>, <u>Centrosema</u> <u>pubesens</u> <u>and Mimosa</u> <u>invisa</u> var intermis are also grown on a limited scale (Potty <u>et al</u> 1980) An ideal cover crop should have such characters as fast growth non-competition with rubber plants shade

ଟ

tolerance high nitrogen fixing capacity etc <u>Pueraria</u> crop is highly palatable to cattle and this nature of the crop results in the indiscriminate removal of the crop from the field <u>Mucuna bracteata</u> is a recently introduced cover crop It is a wild and fast growing legume native to north eastern India and possesses most of the desirable characters expected of a cover plant. It is not preferred by cattle and tolerant to drought situations also

Crop cover is widely recognised as being of major importance in reducing the effects of raindrop impact on the soil By minimising splash erosion rates of soil detachment are reduced soil aggregates do not break down so rapidly aggregate structure is retained less surface crusting or sealing infiltration rates remain high and surface runoff is reduced (Morgan 1985)

Leguminous cover also helps in the formation of large size aggregates It facilitates good soil aeration and better root growth of rubber plants (Krishna Kumar, 1989)

Kothandaraman <u>et al</u> (1990) reported a higher biomass production by <u>Mucuna</u> as compared to Pueraria They

also observed higher shoot/root ratio and higher population of phosphate solubilising micro organisms in soils under Mucuna

Yoon (1967) indicated that the net assimilation rate of the <u>Pueraria</u> was drastically reduced under shade As a consequence of this the cover plant was eventually eliminated form its stand by the growing canopy of the rubber plants Kothandaraman <u>et al</u> (1990) also reported that the <u>Mucuna</u> was tolerant to shade and are not eliminated by growing canopy

Thus influence of legumes on productivity of rubber has been shown to be not only through its nitrogen return but also through its influence on the physical and chemical properties of soil. However, there has also been controversy over the economic value of the initial expenditure on establishment and maintanance of a stand of pure legumes With the existing vagaries in the price and availability of nitrogenous fertilizers, the greater use of legume cover becomes essential

2 2 Effect of cover crop on the organic matter content and soil structure

Most of the soils under plantations particularly those that have carried one generation of rubber trees and are due for replanting have low reserves of plant nutrients and organic matter and are of poor structure. As a result of their low permeability to rainfall such soils are susceptible to drought and erosion and cover plants are used in an effort of re-establish satisfactory soil conditions

w

Under forestry methods of cover plant control upright woody plants often develop and their use is sometimes recommended on compacted soils where their strong rooting characteristics help to break up and aerate the soil Such cover plants are controlled by periodical lopping and considerable amount of material perhaps upto 20 tons per acre can be returned to the soil in this way. The litter of fallen stems leaves and loppings protects the soil against heavy rain but erosion control is not likely to be so good as under a creeping cover plants (Haines, 1932)

Most of the cover plants could be expected to improve soil structure but wide variations in their

individual effects are found as discussed by Haines (1933) with a few exceptions Most grasses do not greatly improve the soil under rubber planting conditions Their mat of surface roots compete strongly for available moisture and the hard dry conditions observed under grass do not encourage free surface rooting by the rubber tree

Cover plants by protecting the soil surface against compaction by heavy rain and by virtue of the binding effects of their roots on soil particles safeguard and improve soil structure. The organic matter content that they add to the soil as dead leaf stem and root material also plays a very large part in the improvement of soil conditions by summation of chemical physical and biological effects as reported by Bremner (1956)

Watson (1957) reported that the creeping cover plants on the other hand leguminous or otherwise exert a marked beneficial effect upon soil structure. The observations seem to show that such cover plants return much more organic matter to the soil as dead leaf and stem material than returned by the grasses. In addition the dead material has a higher nutrient concentration than the

12

grasses The dense growth of a vigorous creeping cover ensures cool and moist conditions at the soil surface and a loose permeable top soil layer with a high organic matter content Soil erosion under such a cover is low(Page, 1939)

Soong and Yap (1976) reported that legumes and natural covers left the soil in much better conditions than grass or <u>Mikania</u> covers with lower bulk densities and higher pore space resulting in better water infilteration. They also pointed out that the effect of cover plants in improving soil structure depends particularly on the quantity of decomposable organic matter which the covers add to the soil

Apart from the energy dissipating function cover crops improve the soil physical structure so that there is increased porosity infilteration and aggregate stability and consequently reduction in run-off and soil loss Uriyo (1979) observed that under permanent vegetative cover infiltration rate was normally greater or equal to the hydraulic conductivity of the soil. In the work reported from Namlongae Uganda ten times more run off ocurred form bare plots than from grass covered plots and a grass mulch cover was twice as effective than a stone mulch in terms of run off control Increased moisture storage capacity of the soil provided by the transpiratory with-drawal of growing crops result in high infiltration rate (Venkatraman 1978)

Zein <u>et al</u> (1980) reported high hydraulic conductivity values in the vicinity of the roots of shallow rooted crops Low bulk density high porosity and increased soil aggregation were also reported by other workers in grass covered plots (Williams, 1963 and Calbrone and Staines, 1985)

2 2 1 Effect of cover crops on soil moisture

In Ceylon however a comparison of the moisture content of soil under clean weeded surface and under a cover of the creeping legume <u>Centrosema pubescens</u> showed that for the first two years after establishment of the cover there was more moisture in the first six inches of soil under the cover than in the corresponding region of the bare soil but that the reverse was true for soil below a depth of six inches (Joachim and Kandia, 1930)

With the provision of a cover run-off of rain water can be much reduced but the extra losses of moisture

14

caused by transpiration through the foliage of cover plants can in turn be appreciable. Some experiments in Malaysia have shown that the young planting of <u>Centrosema</u> <u>pubesoens</u> and <u>Mikania scandens</u> did not significantly reduce the soil moisture content to levels below those found under **a** bare surface (Belgrave 1939)

It was evident that more moisture was lost by transpiration from the cover plant than was conserved by the surface mulch it produced however during the second two years of the experiment the mulch under the cover plants develop to such an extent that eventually more moisture was found at all levels down to twenty four inches under the cover plants than under the bare surface. These findings have been confirmed by Watson (1957)

In newly planted rubber plantations the top soil in the planting row will tend to be dry and that the reserves of water in the sub soil are likely to suffer depletion by lateral diffusion into the drying subsoil under the inter row covered area Both factors will contribute drought susceptibility of the planting row and are strong arguments in favour of mulching being carried out around the young

rubber trees After the first or the second year of growth rubber roots spreading under the cover plants will be able to take full advantage of the water conserving properties of the mature cover and its litter mulch Watson (1957)

Pushpadas <u>et al</u> (1976) reported that the cover crop serves as mulch and reduces evaporation from the soil and on the other hand it depletes available moisture from the soil through transpiration. The net effects on soil moisture thus depends on evaporation or transpiration whichever is dominant. They also compared the moisture percentages in the slashed <u>Mucuna sp</u> plots with bare soil and with unslashed plots. The moisture percentages in the slashed plots were maintained at higher levels and also for a longer duration as compared to unslashed and bare soil plots

Kothandaraman <u>et al</u> (1990) observed that the soil moisture during summer months in the <u>Mucuna bracteata</u> and <u>Pueraria phaseoloides</u> grown plots were higher compared to grass cover They also noted that the thick mulch provided by <u>Mucuna bracteata</u> and its deeprooted nature and the difference in evapo-transpiration have contributed to higher soil moisture at the 0-30cm depth

In a study on moisture retention of soil Krishna Kumar <u>et al</u> (1990) revealed that the soil moisture retention capacity at -0 033 Mpa was highest in the profile under legume cover than under natural cover. Their study also highlighted that the legume cover could modify the soil moisture energy relationship by changing the desorption pattern

2 3 Nutrition and fertilizer use in cover crops

Pushparajah (1977) reported that for the efficient growth of cover crop starter doses of nutrients are essential This starter dose of N P K and Mg helped for a speedier ground cover growth and vigour

Yogaratnam <u>et al</u> (1964) reported that phosphate application to covers led to better tree girth than that was applied to the trees. It also showed higher leaf P values at the end of 6 years from planting. This increased leaf P concentration also help to improve girth and percentage of tappability of trees at the end of 6 years

Suresh (1992) observed that raising of cover crops coupled with fertilizer application resulted in higher content of available P Also he opined that the crop residues of the cover plants recycling enhanced the P supplying power of the soil

2 3 1 Effect of cover crops on the soil nutrient status

Soil nutrients will be lost from an area if the rubber trees of the first generation are cleared off the land at replanting (Page, 1939) and nutrients will be lost in the latex taken off the site Over the life of one generation of rubber trees the various losses of nutrients are evidently sufficient to lower the soil nutrient status to the point where application of complete fertilizers are essential to produce satisfactory growth in the second generation of <u>Hevea</u> Cover plants are used to offset soil deterioration particularly with a view to the maintenance of soil structure and prevention of soil erosion and they can play an important part in the soil nutrient cycle (Broughton, 1977)

Competition between cover crops are necessarily harmful over a long term period as the nutrients taken up by

0

the cover plant and rendered unavailable to the rubber tree in the first instance are eventually returned to the soil as dead plant material and will become available for uptake by either the rubber tree or cover plant roots. Such action will minimise the leaching of decaying plant material their eventual availability to the rubber tree may be increased (De Ceus, 1941)

Watson (1957) reported that cover plants can affect the soil nitrogen status by interfering with nitrification processes in the soil and symbiotically fixing atmospheric nitrogen

Leguminous creepers have been shown to mobilise greater quantities of nitrogen phosphorus and calcium than the other experimental covers during the first two years after planting Since the litter under these leguminous covers has a low C/N ratio it would be expected to mineralise rapidly with its nutrient content becoming quickly available again for uptake by <u>Hevea</u> or cover crops (Watson 1961)

A marked decrease in vigour coupled with a net return of nutrients to the soil by all covers took place

19

much higher levels of nitrogen potassium calcium and magnesium being returned form legumes This was particularly so for nitrogen Nitrogen return to the soil from legume covers between the third and fifth year after planting totalled 214 5 kg acre⁻¹ with 88 3 kg acre⁻¹ nitrogen still held in the green material and litter of the standing cover at the end of fourth year (Watson at a) , 1964 a.)

Watson et al (1964) reported that the exchangeable potassium content and pH value of 0~6 inch soil under legumes were significantly lower than those under <u>Mikania</u> and there was a tendency for the exchangeable magnesium under legumes to be lower than that under grass and Mikania They also reported that when fertilizers were applied to covers, the phosphorous and exchangeable cation status of the 0-6 inch soil layer tended to be higher than where fertilizer was applied to the tree rows but this effect was only significant for total and available phosphorous There was a tendency in the legume treatments for a similar effect on phosphorous occur in the 12-18 inch soil layer indicating that some downward movement of the applied phosphate may have occured perhaps by direct leaching through the soil or by transport via the cover plants

Kothandaraman <u>et al</u> (1987) studied on the growth pattern nodulation and nitrogen fixation by <u>Mucuna bracteata</u> and confirmed that the soil fertility improvement is done by the cover crops

Mathew <u>et al</u> (1989) reported that most of the soil responded to P applications especially when soil P was low Response was greater when the tree was being tapped on virgin panel than on renewed panel Chances of response to P were greater when there was legume ground cover

Kothandaraman <u>et al</u> (1990) compared the efficiency of <u>Mucuna bracteata</u> with <u>Pueraria phaseoloides</u> and growth of <u>Hevea</u> and reported that organic carbon content was increased with cover crops There was an increase in total nitrogen under <u>Pueraria phaseoloides</u> which is due to its better decomposition as evidenced by the narrow C N ratio

2 4 Effect of cover crops on biological properties of soil

Watson (1957) reported that the bacteria of the genus Rhizobium found in the root nodules of leguminous cover crops and could modify the soil nitrogen status by absorbing nitrogen from the soil hence minimising the loss of soil nitrate by leaching

Kothandaraman <u>et al</u> (1987 1990) opined that the counts of total bacteria fungi and actinomycetes were higher in soils under <u>Mucuna bracteata</u> They also reported that the Beijerinkia the non symbiotic nitrogen fixing bacteria and phosphate solubilising micro organisms were found to be higher in the legume cover cropped area

2 5 Root development of <u>Hevea</u> and cover crops

Watson <u>et al</u> (1964) observed that the vigorous development of roots of <u>Hevea</u> took place under the legume cover and such developments were evidently favoured by the heavy mulch of dead leaves that built up under the cover crop

While studying the nature extent and distribution of the root systems of different cover plants Chanlapillai (1968) observed a more shallow rooting pattern for <u>Pueraria</u> in the form of network of fibrous roots of early decomposable nature The dry weight of the roots of a three months old individual plant was reported to be 3 22g and the mean dry weight of shoot was 1 11g. He also observed a reduction in the horizontal spread and vertical penetration of roots of the creeping covers at the twelve month sampling compared to the six month sampling

Deep penetration of the rootq of the cover plants reportedly increased the fertility of the surface soil by extracting nutrients from the deeper layers and depositing them on the surface in the organic matter of their litter (Wycherley 1963) This effect is increased by the recommended plantation practice of periodical slashing of the vigorously growing cover crops

MATERIALS AND METHODS

3 MATERIALS AND METHODS

Field experiments were carried out to study the effect of cover crops on the nutrient dynamics in rubber plantations There were three field experiments and were conducted at Bethany Estate Mukkampala Kanyakumari District from February 1991 to October 1993, They were

- I The effect of cover crops on nutrient dynamics in the immature rubber plantation
- II The effect of cover crop on nutrient dynamics in the mature area and
- III Microplot study of cover crops alone

3 1 Materials

3 1 1 Site Characteristics

Bethany Estate is situated at 8° 20 27 North latitude 77^o 21 22 East longitude and at an altitude of 105m above mean sea level 1 2 Climate

The area enjoys a typical tropical climate Monthly average values of important meteorological parameters observed during the period of experiments are furnished in Appendix I

The maximum temperature varied between 29 8°C and 35 1°C with a highest daily maximum of 37 9°C in April in all three years With regard to the minimum temperature in the first year lowest value of 18 2⁰C was recorded in January and the highest of 23 6°C in April These values were 17 9°C 18 5°C and 24 0°C 22 7°C respectively in January and June during the second and third year The lowest minimum was 17 9°C in January 1992 The most humid month recorded was June with average humidity above 85 per cent and January with most dry in all the three years In 1991 a total of 2084 mm of rain was received through 121 rainy days The corresponding values for 1992 and 1993 were 2128 2154mm and 124 119 days respectively In all the three years June received the highest rainfall and its was 780 665 715 mm

The south west monsoon peak was observed in June in all the three years with a value of 780 mm in the first year and 665 715 mm in the second and third year respectively The north east monsoon peak was observed in November in all the three years with a value of 264 mm in the first year and 322 248 mm in the second and third year respectively

3 1 3 Soil characteristics

The soils of the experimental areas were shallow well drained moderately acidic oxisol with a sandy clay loam surface texture Morphological feature of a typical profile of the experimental site are presented below

Location	Bethany Estate				
	Mukkampala				
	Kanyakumarı Dıstrıct				
Vegetation	Heavily infested with weeds such a <u>Pennisetum polystachyon</u> <u>Brachiaria mutica</u> <u>Chromolaena odorata</u> and <u>Mimosa pudica</u>				
Parental Material	Weathered Gneiss				
Topography	Undulating				
Drainage	Well drained with moderate permeability				
Ground water table	Deep > 22m				

	 Depth (cm)	Description
AP	0-30 0	Yellowish red (5YR 4/6 moist) gravelly loam moderate med- ium subangular blocky friable slightly sticky and slightly plastic common medium distinct mottles few fine distinct iron roots abundant permeability rapid gradually smooth boundary
^B 21	30 0- 60 0	Yeilowish red (5YR 4/6 moist) gravelly clay medium mod- erate subangular blocky wet sticky and plastic few medium distinct mottles roots few permeability moderately rapid diffused wavy boundary
B ₂₂	60 0-90 0	Red (2 5YR 4/8) and strong brown (7 5YR 5/8) mottles plenty initial stages of laterisation low permeability

3 1 3 1 Physical and Chemical characteristics

The physical and chemical characteristics of the soils are given in Table 1 and 2

3 1 4 Nature and cropping History

The experimental sites I and III were new areas lying fallow during the previous years The experimental site II was mature area under standing rubber trees with RRII 105 (Rubber Research Institute of India) of 8 years old planted at a spacing of 5 x 5 m

3 1 5 Crops

3 1 5 1 Experiment I

Rubber Clone RRII 105 of one year old planting Cover crops

1 <u>Pueraria phaseoloides</u> Benth

2 <u>Mucuna</u> bracteata D C

Table		sical proj perimental	perties and site	mechanic	xa.) comp	osition	of soll	from the
Soil depth	8ulk densty	Part cle density	Total porocity	M	echanıcal	composit	108	Textural class
C 11	g cc ¹	g cc)	per cent	Coarse	fine	\$1lt	Clay	
030	1 21	2 44	46 90	28 91	7 34	6 88	56 90	Clay
30 60	1 19	2 41	49 75	19 76	4 72	4 90	79 62	Clay

Table 2 Chemical composition of soil from the experimental	Table 2	a the experimental site	soil from t	composition of
--	---------	-------------------------	-------------	----------------

Orgainic carbon		Avail	able nutr	ients (kg	ha ¹)	_
per cent	N	P	K	Ca	Mg	pH
1 07	227	21	122	242	121	44

3 1 5 2 Experimant II

Rubber Clone RRII 105 of 8 years old trees under tapping

Cover Crop <u>Mucuna</u> bracteata D C alone

3 1 5 3 Experiment III

Microplot study of cover crops alone with

1 <u>Pueraria</u> phaseoloides Benth and

2 <u>Mucuna</u> bracteata D C

3 1 6 Season

All the three experiments were started from February 1991 at three locations in Bethany Estate Mukkampala Kanyakumari District of Tamil Nadu and continued upto October 1993

3 1 7 Fertilizers

In all the three experiments rubber trees received the fertilizers as per the recommendations of the Rubber Research Institute of India and the cover crops were manured is per the treatments. For Kanyakumari District the fertilizer m xtire recommended by the RRII for immature trees are 12–12–6 NPK mixtire and the year wise quantities are given below

Year of planting -	Months after planting -	Time of application	Dose per tree	Dose per ha
I year	9 months	Aprıl May	380 g	170kg
II year	15 months	Sept Oct	380g	170kg
	21 months	Aprıl-May	480g	215kg
III year	27 months	Sept Oct	480g	215kg

For mature 'rees under tapping 10 10 10 NPK fertilizer mixture were applied and the quantities are given below

		Dose per tree	Dose per ha
Every year	Аргі і-Мау	335g	150kg
	Sept-Oct	335g	150kg

31

SE

Fertilizers with the following grades were used for all the experiments

Urea 46 per cent N Mossoorie Rock Phosphate 20 per cent P_2O_5 Muriate of 60 per cent K_2O Potash

3 2 Methods

3 2 1 Experiment I

I year old RRII 105 rubber plants

Cover crops

1 <u>Pueraria phaseoloides</u>

2 <u>Mucuna bracteata</u>

Design (5 x 2) + 1 RBD (5 levels x 2 covercrops) + absolute control

Replications 3

Net plot $4 \times 3 - 12$ trees plot⁻¹ $20 \times 15 \text{ m}^2$ Gross plot $6 \times 5 = 30$ trees plot ¹ $30 \times 25 \text{ m}^2$

Layout plan is given in Fig 1

3 2 1 1 Treatments

 C_1F_0 - Rubber + Cover (1) + F_0 Crop

^c 1 ^F 1		Rubber	+	Cover (1) Crop	÷	F ₁
^C 1 ^F 2	-	Rubber	+	Cover (1) Crop	+	F2
°1 ^F 3	-	Rubber	+	Cover (1) Crop	+	F ₃
C ₁ F ₄	-	Rubber	+	Cover (1) Crop	÷	F ₄
^C 2 ^F 0	-	Rubber	+	Cover (2) Crop	+	F ₀
^C 2 ^F 1	-	Rubber	+	Cover (2) Crop	+	F1
^C 2 ^F 2	-	Rubber	+	Cover (2) Crop	+	F2
с ₂ ғ ₃	-	Rubber	+	Cover (2) Crop	+	F ₃
^C 2 ^F 4	-	Rubber	+	Cover (2) Crop	+	F ₄
с	-	Control	(11	nmature rub	ber	alone)

Levels of fertilizers to cover crops (kgha')

	N	Ρ	ĸ
^F o	0	0	0
F ₁	0	30	30
^F 2	10	30	30
F ₃	0	60	60
FĄ	10	60	60

RI	R II	R III
C ₁ F ₀	C ₂ F ₁	C ₁ F ₀
C ₂ F ₂	Control	C ₂ F ₃
C_1F_1	C_1F_1	C ₁ F ₂
Control	C ₂ F ₀	C ₁ F ₃
C ₂ F ₀	C ₂ F ₂	C ₂ F ₁
C ₁ F ₂	C ₁ F ₃	C ₁ F ₁
C ₂ F ₄	C ₂ F ₃	C ₂ F ₂
C ₁ F ₃	C ₁ F ₀	C ₁ F ₄
C ₂ F ₃	C ₁ F ₄	Control
C ₂ F ₁	C ₂ F ₄	C ₂ F ₀
C_1F_4	C ₁ F ₂	C ₂ F ₄ 25m
		- 30m -

 C_1 Pueraria phaseoloides

C₂ Mucuna bracteata

Cover crop <u>Mucuna bracteata</u> alone Design $(5 \times 1) + 1$ FRBD (Five levels x one cover crop) + one absolute control Replications 4 Gross plot $5 \times 4 = 20$ trees plot⁻¹ $25 \times 20 \text{ m}^2$ Net plot 4×3 12 trees plot ¹ $20 \times 15 \text{ m}^3$ Layout plan of the experiment is given in Fig 2 3 2 2 1 Treatments

^F 0		Rubber	+ Cover crop + ^F O
F ₁	-	Rubber	+ Cover crop + F ₁
F2	-	Rubber	+ Cover crop + F ₂
F3	-	Rubber	+ Cover crop + F ₃
F4	_	Rubber	+ Cover crop + F ₄
С	-	Control	(mature rubber alone)

Levels of fertilizers to cover crop (kgha')

	И	Р	к
F ₀	0	0	0
F ₁	Q	30	30
F2	10	30	30
F3	0	60	60
F ₄	10	60	60

ડ્ય **35**

RI	R II	R III	RIV	_
F ₀	F ₄	F ₂	F ₁	
F ₂	F ₀	F ₄	F ₃	
Control	F ₁	F ₃	Control	
F ₁	F ₂	F ₀	F ₄	
F ₃	F ₃	Control	F ₂	
F ₄	Control	F ₁	F ₀	T 20 m
	•	<u>.</u>	F 25m	1-

3 2 2 2 Planting and spacing

1 Rubber

In this experiment the rubber trees are of the age of eight years old polybag plants and tapping is going on from the seventh year onwards. The trees were planted at 5 x 5 m² spacing with 420 trees per hectare

36

11 Cover crop

<u>Mucuna</u> <u>bracteata</u> alone was grown and maintained in this experiment Mucuna seeds were planted in poly bags and planted in between rows of rubber trees

3 2 2 3 Cultural operation

The fertilizers as per the recommendation to the mature tree were applied every year in two equal split doses The first dose given in May (Pre-monsoon) and second in September (Post-monsoon) (Rubber Board 1994) The premonsoon application was done after the receipt of a few showers but before the onset of regular south-west monsoon The post-monsoon application was done after the south-west monsoon but before the onset of north east monsoon when a relatively brief rainfree period was available. Both applications were done when there was adequate moisture in the soil. The fertilizer was broadcasted in rectangular patches in between rows of trees each patch serving four trees after clearing the leaf litter on the ground. The fertilizer was then lightly forked into the soil and the leaf litter was put back to cover the fertilizer applied patches (Ananth 1966 and Rubber Board 1994)

At the experimental area incidence of Powdery mildew (<u>Oidium heveae</u>) disease occured and was controlled by sulphur dusting as a prophylatic measure

Tapping was done third daily on half spiral system The tapping panels were protected with polyethylene rain guards to facilitate tapping during rainy season. During the period of this experiment tapping was being done on the first side of virgin bark

3 2 3 Fxperiment III

In this experiment the cover crops namely <u>Puraria</u> <u>phaseoloides</u> and <u>Mucuna bracteata</u> were grown in 10 microplots ea h of 2 5 x 2m size with normal fertilizer recommendation of 0 30 30 kg ha¹ (Rubber Board 1994)

37

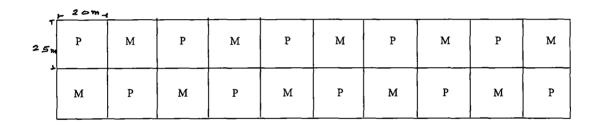
5/

Layout plan is given in Fig 3

3 2 4 Establishment of cover crop

All the three experiments were grown with cover crops The experiments I and III were grown with <u>Pueraria</u> <u>phaseoloides</u> and <u>Mucuna bracteata</u> and the II experiment was grown with <u>Mucuna bracteata</u> alone

ওপ


3 2 4 1 Sowing of cover crops

The concentrated sulphuric acid treated seeds were mixed with equal quantity of rock phosphare and sown in between the plant rows during January The patches or strips where the seeds were sown were clean-weeded and forked well The germinated seeds were sown Pueraria seeds were sown in the field and Mucuna seeds were sown in poly bag. As the succeeding months were drier months life saving irrigation was given for the germinated cover crop seedlings The Mucuna seedlings were transplanted during the Ist week of April before the pre-monsoon showers

3 2 4 2 Manuring of cover crops

As per the treatments fertilizers were broad-casted along the strips where the cover crops were planted in two

P Pueraria phaseoloides

M Mucuna bracteata

equal instalments The first instalment of fertilizers were applied one month after sowing and the second two months after the first application during the first two years of establishment of the cover crops (Rubber Board, 1994)

3 2 4 3 Control of cover crops

Excess growth of cover crops were regulated by slashing around the base of the rubber plants

3 2 5 Observations

3 2 5 1 Experiment I

3 2 5 1 1 Rubber

The following biometric observations were recorded for measuring the growth rate of rubber

3 2 5 1 2 Plant height

The plant height was recorded in meter following the method described by Dissanayake and Mithrasena (1986) Plant height is measured from the point of bud union to the growing tip of the topmost whorl 32513 Girth

The plant girth was recorded in cm following the method explained by Owen <u>et al</u> (1957) The girth was measured at 150cm above the bud union around the trunk of the plant From these data the girth increment for the period July 1991 to July 1993 was worked out

32514 Weeds

The dry matter production of weeds in the treatment plots were recorded by the method explained by Burnside and Wicks (1965) using a quadrate at random in four places outside the net plot area. The weeds removed were ovendried and weight recorded in kg ha⁻¹ This was recorded at six months interval

٥

3 2 5 2 Cover crops

3 2 5 2 1 Biomass production

The biomass production of cover crops were estimated at six months interval using a quadrate at random 3 2 5 3 1 2 Total pore space

Total pore space distrubution was determined by the following equation and expressed in percentage

42 42

```
% Total pore space 1 - bulk density
- ----- x 100
particle density
```

3 2 5 3 1 3 Aggregate analysis

This was measured by the wet-sieving method described by Russell (1949) on an apparatus modified by Low (1954) The state of aggregation or the percentage weight of aggregates in a given weight of soil was calculated for the soil samples

3 2 5 3 1 4 Water retention capacity

Water holding capacity at 0 3 bar and 15 bar were detemined using pressure plate apparatus and expressed in percentage in four places outside the net plot area and the material was dried and weighed and is expressed in t ha 1

3 2 5 2 2 Nodule count and nodule weight

The number of healthy nodules were counted per plant at 40th day after planting and the fresh weight of nodules were worked out and expressed in g

3 2 5 3 Soil

3 2 5 3 1 Physical characteristics

The following physical characteristics of the soil at two depths namely 0 30 and 30-60 cm from the treatment plots were determined at the initial and final stage of the experiment

325311 Bulk density

Bulk density measurements were made on core samples obtained by a soil core sampler (Lutz, 1947) It was expressed in g cc¹ 3 2 5 3 1 5 Soil moisture content

The soil moisture content in all the treatments were recorded gravimetrically at two depths namely 0-30 and 30-60 cm during the summer months of January February March and April of 1991 1992 and 1993 and were expressed in percentage

3 2 5 4 Chemical analysis

3 2 5 4 1 Soil analysis

Soil samples were collected from each of the treatment plots in September 1991 1992 and in 1993 just after the experiment was completed. Soil was collected from 0-30 cm depth just prior to the post monsoon fertilizer application of the respective year

32542 Organic carbon Soil N P K Ca and Mg

Organic C was determined by the dichromate-sulphuric acid digestion method (Walkely and Black 1934) The by Jkz available nitrogen was estimated Alkaline permanganate method (Subbiah and Asija 1956) For the determination of available

the soil was extracted with Bray no 2 (Bray and Kurtz Ρ 1945) reagent and the concentration of P in solution was measured in a UV spectrophotometer after developing colour using chloromoly bdic acid-stanus chloride reduction method (Hesse 1971) The soil was extracted using Morgan s reagent and available K was determined by flame photometric method (Jackson 1973) Available Ca and Mg were determined from the same extract using a GBC Double Beam atomic absorption spectrophotometer Model no 902 The organic carbon content was worked out as percentage and those of available N P K Ca

7(44

and Mg as Kg ha⁻¹

3 2 5 4 3 Leaf analysis

Leaf samples were collected from each treatment September (Shorrocks plot in 1965 Gugha <u>et al</u> 1971 and Lu He 1991 1992 and 1993 1982) Three trees were selected from each treatment plot for leaf sampling in Experiment II Three healthy disease free twings from each tree were collected (Shorrocks, 1961 and Lu and He 1982) From each twig the lowermost matured whorl was selected In the experiment I the matured leaves at the top second whorl were selected For cover crops matured leaves were

Υ·

collected The leaf lets were separated and the petioles were cut and removed and the leaf laminae secured The leaves thus obtained were dried in an oven at 70°C for three days and powdered in grinder

Nitrogen was determined by micro Kjeldhal method (Piper 1950) Phosphorous was detemined by Molybdenum blue method in a spectrophotometer (Jackson 1973) Potassium was determined in a flame photometer (Jackson 1973) Both Ca and Mg concentration were read in a GBC Double Beam atomic absorption spectrophotometer model no 902 The nutrient contents were expressed as percentage The leaf analysis of cover crops were done at six months interval

3 2 5 4 4 Biological properties

The general microbial count was taken following the method of Timonin (1940) and phosphate solublisers by that of Sperber (1958) The count of total bacteria fungi and phosphate solublising micro organisms were also undertaken and all the counts were expressed as x 10^4 g⁻¹ of dry soil

3 2 6 Experiment II

3261 Rubber

32611 Yield

The latex collected in the collecting shells after tapping was coagulated in situ using one per cent acetic acid The cup lumps from the individual trees were collected on metal hooks air dried for a week in shade and there after dried in a smoke house for 25 days After complete drying the lumps were weighed yield was similarly recorded every month (Owen <u>et al</u>, 1957) Yield recording was continued for a period for six months at the end of the experiment From these data the mean yield was worked out as initial yield and final yield and expressed as g tree⁻¹ tapping⁻¹

32612 Girth

In order to guage the growth rate the girth of trees were recorded (Dissanayake and Mithrasena, 1986) in July 91 and July 93 The measurement of girth was done at a height of 150 cm from the bud union every time (Owen <u>et al</u>, 1957) From these data the girth increment for the period from July 1991 to July 1993 were worked out

л 46 The thickness of the virgin bark and that of the renewed bark which was tapped two years ago were recorded July 1993 using a Schliper bark measuring guage (De Jonge, 1957)

3 2 6 1 3 Leaf litter

The dry weight of the leaf that fell on the ground during the annual leaf fail in February was recorded during 1991 1992 and 1993 For this four patches were selected at random by throwing a $1m^2$ quadrat and the dry weight was computed as t ha⁻¹ (Rubber Research Institute of Malaya 1972)

3 2 6 1 4 Latex flow characteristics

The characters connected with the flow of later were recorded three times viz July 1992 Oct 1992 and April 1993 corresponding to the wet moderately wet and dry seasons in one year cycle. Two trees were selected from each net plot for the recording of observation when the trees were tapped the latex obtained in the initial 5 minutes was separately collected and the volume measured. This is referred to as the initial volume After about 2-3 hours the dripping of latex was complete the entire volume of latex including the initial volume was measured for each tree and this is referred to as total volume (Milford <u>et al</u>, 1969)

The initial flow rate was worked out as initial 5 minutes volume This is expressed in mi Another parameter called Plugging index was computed form the initial flow rate and total volume and is an index of duration of latex flow after tapping (Milford <u>et al</u>, 1969 and Paardekooper and Samosorn 1969)

The dry rubber content of latex was also determined three times simultaneously with the recording of the flow characters described above When the flow of latex was over and dripping of latex ceased the latex obtained form the recording trees was pooled and 10ml of it was transferred into a weighed 50ml beaker and we weighed along with the latex was determined. The latex thus transferred was diluted with 20 ml water and coagulated by adding about 1 ml of one per cent acetic acid. The next day the coagulated lump of rubber was washed in water made into a thin film and dried in an oven at about 85° C until constant weight was obtained (Rubber Research Institute of Malaysia,1973) The weight of the dry rubber and that of the fresh content of latex is computed as

Weight of dry rubber ---- - - - - - X 100 Weight of fresh latex

3 2 6 2 Cover crops

- a Biomass production of cover crops were recorded as explained in Experiment I
- b Nodule count and fresh weight of nodules per plant were also recorded as mentioned in Experiment I at 40th day after planting

3263 Soil

Physical chemical and biological properties were worked out as narrated under Experiment I

ד 49 3264 Weeds

The dry weight of weeds in the treatment plots were also recorded as explained in Experiment I at six months interval

3 2 7 Experiment III

In the experiment III the observations are recorded from 10 plants within each microplot area

3 2 7 1 Biomass production

The biomass production of cover crops was estimated using a quadrate at random in four places as explained in Experiment I and II and expressed in t ha⁻¹

3 2 7 2 Nodulation count and fresh weight per plant

Nodule count and fresh weight of nodule per plant were recorded as explained in Experiment I and II

3273 Soil

Physical chemical and biological properties of the soil were worked out as explained in Experiment I and the values were recorded

50 50

3 2 7 4 leaf analysis

Leaf samples collected at six months interval were analysed for N P K Ca Mg as per the methods explained in the Experiment I

Weeds

3 2 7 5 DMP of weeds

The DMP of weeds were worked out as per the technique explained in Experiment I and the values were recorded at six months interval

3 2 8 Statistical analysis

The data collected were analysed statistically by applying the techn que of Randomised block design in Experiment I Factorial RBD in Experiment II and in Experiment III the mean values were compared with Experiment I and II The data were analysed as per the procedure des ribed by Panse and Sikatme (1985) where ever the results were significant (i tical difference (least significant difference) and standard error of means were worked but for the probability level of 0.05

RESULTS AND DISCUSSION

4 RFSULTS AND DISCUSSION

In order to study the effect of cover crops on soil nutrients physic) chemical properties biological changes on soil as well as growth and yield of rubber three situations representing immature phase (one year old) mature phase (8 year old) and an open area were selected. The various observations recorded were statistically analysed. The important results are presented and discussed.

4 1 Effect of cover crops and their nutrition on immature rubber

- 4 1 1 Growth characters
- 4 1 1 1 Girth increment

The girth increment for the two years period 1991 93 for the immature rubber is presented in Table 3. It is observed that all the treatments with cover crops were significantly superior to the absolute control where there was no cover crop. Among the levels of fertilizers to over crops the levels F_4 and F_2 were significantly superior to F_1 and F_0 . The level F_3 was on par with F_1 . F_0 was significantly

inferior to all other levels There was no significant difference between the cover crops and also no significant difference in the interaction effect

Growing of cover crops even without any fertilizer gave more girth increment than plots without any cover crops thereby showing the distinct advantage of cover crops alone The cover crops in general has increased the girth but individually there is no significant different between them This shows that there is no distinct superiority of one over the other in increasing the growth attribute (Fig 4)

a

Application of fertilizer to cover crops have further increased the girth increment over F_0 as evidenced from the treatments. The highest level of fertilizers have recorded the maximum girth. However, this is on part with fertilizer level F_2 thereby indicating the sufficiency of the later level. This shows that fertilizer application beyond 10, 30, 30 is not of any specific advantage

Growing of cover crops has increased the girth probably due to the increase in absorption of N P and K by the plants grown with cover crops This is substantiated in

Table 3 Effect of covercrops and their nutrition on the girth increment (cm) 1991-93

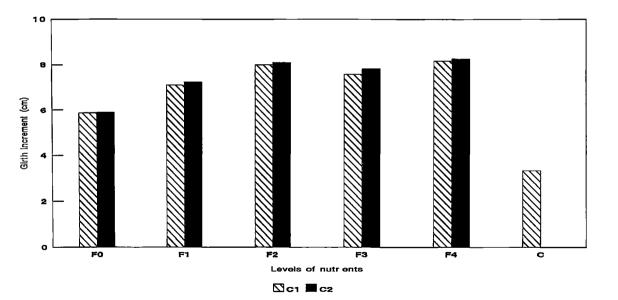

<u>-</u>	FO	Ft	F2	F3	F4	Mean C
C1	5 87	7 10	8 0 0	7 57	8 17	7 34 3
C2	5 90	7 23	8 10	783	8 27	7 47
Mean F	5 88	7 17	8 05	7 70	8 22	
				Mean of	control	3 333
CDt 1 462		t trea	tmen(
CDf 1 034		f feet	ilizer le	vels		
CD tr vs ct	i 08	tr rs ct	treat	ed (vs) C	sahol	

Table 4 Effect of covercrops and their nutrition on the height increment (m) 1991-93

	FO	F 1	F2	FЗ	F4	Mean C
C1	2 05	2 10	2 20	2 10	2 28	2 15
C2	2 07	2 15	2 18	2 15	2 28	2 17
Mean F	2 06	2 13	2 19	2 13	2 28	
				Mean of	f control	0 677

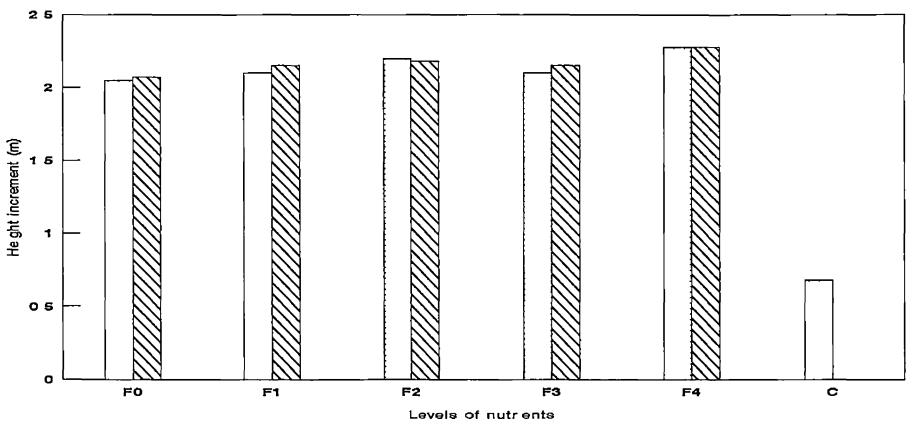
CD tr vs ct 0 514

Fig 4 Effect of cover crops and their nutrition on the girth increment (cm) 1991-1993

the Table 3 The girth increment is directly related with the major leaf nutrients namely N P and K The leaf nutrient contents of the rubber leaves were found significantly higher in plots where cover crops were grown Similar results were reported by Wycherley (1969) Yogaratnam et al (1984) and Punnoose (1993)

Application of fertilizer was found to be of additional benefit as for the girth increment is concerned It is seen from the table that growing cover crops have increased the girth from 3 33 to 5 88 cm and the girth was further enhanced to 8 05 cm in the fertilizer treatment receiving 10 30 30 This finding is in line with the findings of Pushparajah (1977)

The application of N to cover crops has benefited the girth increment inspite of the medium content of soil N (Table 2) This would have resulted in more absorption of N by rubber plants as evidenced by higher content of leaf N (Table 11) The nodule count of cover crop have also shown an appreciable increase in nodule count in the plots receiving initial dose of nitrogen This could have helped the rubber plant to absorb more Nitrogen especially in the first year The beneficial effect of N in increasing the cell size and photosynthetic rate of rubber plant were reported by Brady (1988) Own <u>et al</u> (1957) Bolton (1964) Kalam <u>et al</u> (1980) and Potty <u>et al</u> (1976) also reported high girth increment from higher level of application of N


Application of P to cover crop has given higher girth increment Phosphorus being an essential constituent of ADP ATP and several organic compounds in the plant might have promoted the metabolises of the trees and improved the growth (Sutcliff and Baker, 1974)

It is seen that application of K to cover crop improved the girth increment of rubber tree through increased leaf production as biomass of cover crop and this must have enriched the soil with K Potassium being essential for chlorophyll development and photosynthesis its application might have helped in enhanced girth increment (Brady, 1988)

4 1 1 2 Height increment

The height increment for the two years period 1991-1993 for the immature rubber is presented in Table 4. It is

Fig 5 Effect of cover crops and their nutrition on the height increment (m) 1991-1993

seen from the table that all the treatments with cover crops were significantly superior to the absolute control There was no significant difference between the cover crops as well between the levels of fertilizer to cover crops on the height It is also noted that there was no significant increment difference in the interaction effect However there was a marked increase by growing cover crop alone without fertilizer which is significant over the treatment with no fertilizer and nocover. It is also seen that increase in the fertilizer level has enhanced the height eventhough not statistically significant (Fig 5)

From the above results it is evident that growing cover crops even without any fertilizer gave more height increment than plots without any cover crops thereby highlighting the distinct advantage of cover crop alone

4 1 2 Soil nutrient status

The effect of cover crops and their nutrition on soil organic carbon and available P K Ca and Mg are presented and discussed

				_										
F			0		1		2			3		4	Me	ean C
									-					
Ci		1	003	0	990	1	010	1	1	000	1	050	1	011
C2		1	017	1	000	1	000	İ	1	020	1	040	1	027
Mean F		1	010	0	995	1	035	1	1	010	t	045		
		•		-										077
CD tr v	/s ct		0 247						Ľ	iean O		control	U	011

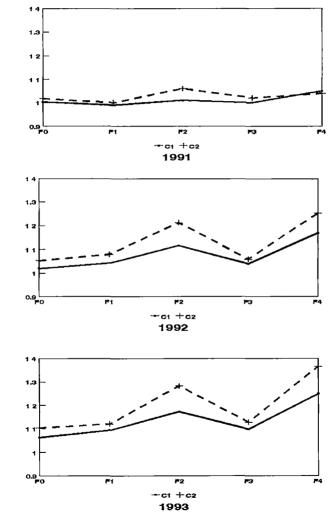
Table 5 Fffect of covercrops and their nutrition on the soil organic carbon % 1991

Table 5a Soil organic carbon % 1992

F		0		1	 _	2	. <u> </u>	3		4	M	ean C
CI	1	020	1	043	1	117	1	040	1	170	1	078
C2	1	053	1	080	1	213	ł	060	1	253	1	132
Mean F	1	037	1	062	1	165	1	050	1	212		
	_		•				 I	Mean	of c	control	0	673
CD tr vs c	Ł	0 232										

Table 5b Soil organic carbon % 1993

CD tr vs ct 0 236


F	0	1	2	3	4	Mean C
C1	1 063	i 093	1 173	8 1 097	1 250	1 135
C2	1 103	1 120	1 28:	B 1 1 27	1 367	1 200
Mean F	1 083	1 107	1 228	3 1 1 1 2	1 308	
	<u></u>			Mean	of control	0 687

4 1 2 1 Organic carbon

The results obtained from the three years observations are presented in Table 5.5b. Growing of cover crops have significantly increased the organic carbon content over the absolute control plots in all the three years of observations. Among the cover crops there was no significant difference on the organic carbon content. The levels of fertilizer applied to cover crops also did not show significant difference (Fig. 6)

In the covercropped treatment plots, the dead litter materials deposited on the surface of soil got decomposed and the soil organic carbon content might have increased in due course when compared to plots without cover crops The results also showed that there was an incremental increase of organic carbon by growing cover crops These findings are in corroborative with the observations of Watson (1961) Watson et al (1964) Broughton (1977) and Punnoose (1993)

It is also seen that addition of all nutrients helped in the gradual building and enrichment of soil organic carbon when mineral nutrients are in adequate quantity in Fig 6 Effect of cover crops and their nutrition on soil organic carbon (%) 1991-1993

Levels of nutrients

%

soil there will be better conservation of organic carbon of soil (Stevenson 1964 and Brady 1988) The gradual bilding of organic carbon in soil could be the result of continuous addition of leaf litter from cover crop

4 1 2 2 Available N

The available N content in the different years of observations are presented in Table 6 6c. The cover cropped plots recorded significantly higher available N content than the control plots during all the three years of observations

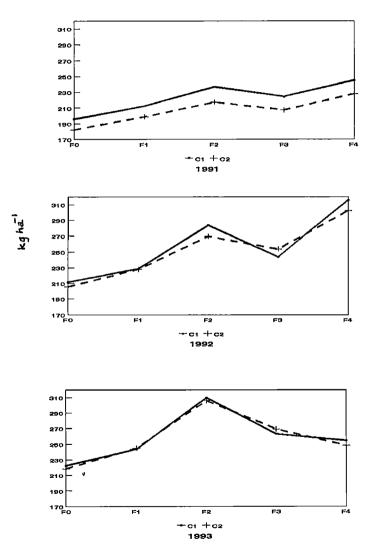
There was no significant difference noted between the cover crops on the soil available N. The levels of fert lizer to cover crops have increased the available N content significantly. The level F_4 has recorded the highest value of available N content and was on par with F_2 during 1992 Sept. The levels F_1 and F_0 were significantly inferior to F_4 and F_2 during all the three years observations (Fig. 7) Table 6 Effect of covercrops and its nutrion on the soil available N Kg ha⁻¹ 1991 initial

F	0	1	2	3	4	Mean C
C1	183 73	187 50	172 70	174 93	171 87	178 05
C2	172 37	1 7 3 87	191 97	186 13	170 36	178 94
Mean F	178 05	180 68	182 08	180 53	171 12	
	- `			Mean of	control	109 300

CD tr vs ct 37 41

Table 6a Soil available N Kg ha⁻¹ 1991 Sept

F	0	1	2	3	4	Mean C
C1	195 70	212 40	236 97	224 40	245 27	222 95
C2	182 33	198 70	217 40	207 40	227 93	206 77
Mean F	189 02	∠05 55	227 92	215 90	236 60	
				Mean of	control	111 47


CD tr vs ct 37 69

	0	1	2	3	4	Mean C
C1	211 57	228 73	283 70	243 63	315 93	256 713
C2	205 60	228 10	269 57	253 53	301 97	251 753
Mean F	20 8 58	228 417	276 63	248 58	308 95	
				Mean of	control	118 100
CDt 55	209					
CDf 39	850					
CD tr vs	ct 40 9	40				
Table 6c	Soll av	ailable l	N Kg ha	⁻¹ 1993 S	Sept	
		1	2			Mean C
C1	222 53	244 57	309	73 263	13 254	53 278 90
ር2	218 60	244 83	305 8	87 269	33 248	50 277 340
Mean F	220 567	214 700	D 307 a	800 266	233 351	30
				Mean of	control	160 02
CDt 54	078					
CDf 38	238					
CD tr vs	ct 40 1	10				

Table 6b Soil available N Kg ha⁻¹ 1992 Sept

br

Fig 7 Effect of cover crops and their nutrition on soil available Nitrogen (kg ha)1991-1993

Levels of nutrients

The increase in available N content of soil in the cover croppped plots over the control plots were mainly due to the presence of thick dead litter mulch on th soil surface. This thick mulching improved the soil organic carbon soil moisture soil physical properties and soil microbial population (Tables 5 17-20 and 35) thus enhanced the available N content Similar findings was also reported by Kothandaraman <u>et al</u> (1990)

4123 Available P

The available P content in the different years of observation are presented in Table 7-7b The cover cropped plots recorded significantly higher available P content than the control plots during all the three years of observation

There was also appreciably increase in P content in plots grown with <u>Mucuna</u> over <u>Pueraria</u> and the increase is significant for the last two years. The levels of fertilizer applied to cover crops also increased the available P content significantly. The level F_4 has recorded the highest value and was on par with F_2 alone during 1993. The levels F_1 and F_0 were significantly inferior to F_4 and F_2 (Fig. 8)

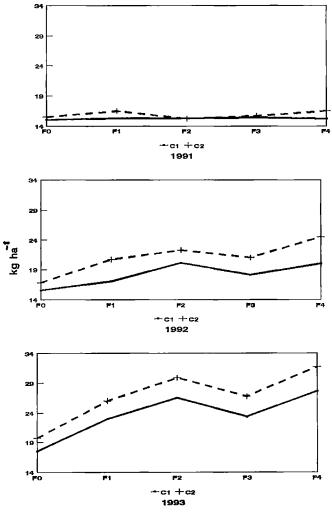
		allable		3		Mean C
	0	1				
			15 70	15 42	15 20 16 50	15 33
1	15 05	15 28	15 22	15 88	16 50 15 85	15 88
2	15 50	16 48	15 48	15 55	15 85	
iean F	15 50 15 28	15 88	10 40			
					- P - ont noi	9 97
	ct 3 332		P Kg ha		of control	
	Soll av	allable	e uet ues est ues par est est	⁻¹ 1992		
Table 7a F	Soil av	ailable 1	2	-1 1992 3	4	Mean C
Table 7a F C1	Soil av 0 15 53	17 05	2 20 12	⁻¹ 1992 3 18 15	4	Mean C 18 18
Table 7a F C1 C2	Soil av 0 15 53	2a1 lable 1 17 05 20 70	2 20 12 22 27	⁻¹ 1992 3 18 15 21 03	4 20 03 24 53	Mean C 18 18

CDf 3 111

CD tr vs ct 3 263

Table 7b Soil available P Kg ha⁻¹ 1993

	0	1	2	3	4	Mean C
C1	17 48	22 98	26 55	23 38	27 65	23 61
C2	1972	26 02	29 90	26 77	31 77	26 83
Mean F	18 60	24 50	28 23	25 08	29 71	
				Mean of	f control	11 40
CDt 5	213					
CDc 2	331					
CDf 3	686					
CD tr vs	ct 3 686					


60

The increase in the available P content of soil in the cover cropped area over the control plots was mainly due to the presence of thick dead litter mulch on the soil surface. This thick mulch improved the soil moisture content (Tables 17 20) and soil physical properties (Tables 21-30) This thick dead litter mulch also improved the soil by increased activity of microbes like bacteria and phosphate solubilisers (Table 35). Similar finding was also reported by Kothandaraman <u>et al.</u> (1990)

The increase in the available P content of soil with F_4 level was notable. It is only a direct effect of application of P fertilizer. Similar increases in P content of soil were reported by Bolton (1960) Pushpadas <u>et al</u> (1972) Pushparajah (1984) and Punnoose (1993) in rubber growing soils

4 1 2 4 Available K

The available K content of soil in different years of observation are presented in Table 8 The plots grown with cover crops recorded significantly increased available K content over the control plots There was no significant Fig 8 Effect of cover crops and their nutrition on soil available Phosphorus (kg ha) 1991-1993

Levels of nutrients

Table 8 Effect of covercrops and their nutrition on the soil available $K(Kg ha^{-1})$ 1991

F	0	1	2	3	4	Mean C
C1	118 52	121 23	120 32	122 58	119 98	120 427
C2	119 37	118 32	122 05	125 92	119 83	121 097
Mean F	118 94	119 78	121 25	124 25	119 66	
				Mean of	contro	1 80 20

CD tr (vs) Ct 26 66

Table 8a Available K(Kg ha⁻¹)1992

F	0	1	2	3	4	Mean C
C1	138 73	136 32	123 37	131 80	130 85	132 213
C2	139 92	139 93	124 82	132 72	133 18	134 115
Mean F	139 33	138 13	124 09	132 26	132 02	
				Mean of	control	94 43

CD tr (vs) ct 31 509

Table 8b Soil available K(Kg ha⁻¹)1993

F	0	1	2	3	4	Mean C
CI	160 60	165 22	134 88	147 20	134 97	148 57
C2	161 68	165 85	137 63	146 87	134 57	149 320
Mean F	161 14	165 53	136 26	147 03	134 78	
				Mean of	control	107 73

difference noticed between the levels of fertilizers for each cover crops as well as between the cover crops (Fig 8)

The increase in the available K content of soil in the cover cropped treatment is mainly attributed to the addition of cover crop litter in to the soil which contains lot of k This is all the more evidenced by the increase in the quantity of the available soil K from 91 to 1993 There was also a corresponding increase in the available K through the biomass as the growth of the cover crop is progressively increased due to the age (Table 31) The rain water interception and preventing soil erosion by the live cover crop also might have contributed to higher available soil K These findings are in corroborative with that of Watson (1961)Shorrocks (1965) Russell (1983) and Pushparajah (1984)

The increase in the available K content of soil showed a negative effect when an extra dose of 10 kg nitrogen was added (Table 8b) These findings are in corroborative with that of Watson (1981) Shorrocks (1965) and Russell (1983)

68 14

69

The increase in the available K content of soil showed a negative effect on extra dose of 10 kg nitrogen was added (Table 8b) This application of nitrogen and reduction of available K content might be due to the following reasons

Higher concentration of NH_4^+ ions especially in the lower layers would have replaced K^+ ions from the exchange sites brining more of K into the solution from where they were lost by leaching (Tisdale <u>et al</u>, 1985) Moreover the higher growth associated with application of N to cover crop have increased the plant uptake of K (Table 31f) thus reducing its level in the soil (Table 8b)

4125 Available Ca

The available Ca content of soil is presented in Table 9 The cover crop grown plots were significantly superior than the absolute control on the available Ca content There was no significant difference found between the levels of fertilizers to cover crops as well as between the cover crops (Fig 9)

The increased Ca content of soil in the cover cropped plots than the absolute control is mainly due

F) 	1 		:	2	3		4		Meaı 	n C
C1	172	08	175	43	169	63	174	67	169	62	172	69
C2	172	33	170	40	172	28	176	73	180	47	174	44
Mean F								70	175	04		
								n of	cont	rol	117	35
CD tr (vs) ct	38	66									
Table 9a	Soil	i ava	lab	le Ca	Kg l	ha ⁻¹	1992					
£) 	1		:	2	3		4		Mean	n C
Ci	202	08	235	43	219	63	274	70	271	23	240	62
C2	204	00	236	37	222	55	277	32	273	55	242	76
Mean F							276	01	272	39		
				-			Meai	n of	cont	 rol	130	73
CD tr 57	310											
CDf 40	52											
CD tr (vs) ct	42 5	0									
Table 9b	S01	ava										
F)	1						4		Меат	n C
C1	227	13	270	43	264	63	314	93	311	27	277	680
C2												
Mean F												
							 Меат	n of	conti	- <u></u>	168	50
CD tr (vs.) ct	51	305									
CDf 44	30											

There was also a build up of Ca in the soil with addition of P over the years This could be due to the continuous application of rock phosphate (Bolton 1960 Pushparajah 1966 and Punnoose 1993)

4 1 2 6 Available Mg

The soil available Mg content is presented in Table 10 The cover croped plots were significantly superior to the absolute control on the available Mg content Among the levels of fertilizers to cover crops as well between the cover crops there was no significant difference recorded

The increased Mg content of soil in the cover cropped treatments over the absolute control is mainly due to the addition of leaf litter and root materials to the soil The cower crop leaf litter contains 0 25 to 0 45% of Mg and Table 10 Effect of covercrops and their nutrition on the soil available Mg ha⁻¹ 1991

				~~~~						
F	0	1	:	2	3		4		Mear	n C
u										
C1	105 1	2 107	18 105	90	99	83	101	35	103	88
C2	107 2	2 109	40 108	00	102	03	102	80	106	220
Mean F	106 1	7 108	29 106	95	101	03	102	80		
				1	Mean	ı of	contr	·01	66	75
CD tr (vs)	) Ct	22 41								

Table 10a Soil available Mg ha⁻¹ 1992

F	0	1	2	З	4	Mean C
C1	124 37	143 42	153 33	146 72	140 52	141 67
C2	126 35	145 28	154 17	148 37	143 27	143 49
Mean F	125 36	144 35	153 75	147 54	141 89	
				Mean of	control	80 05
CD tr (vs	) Ct 32	2 36				

Table 10b Soil available Mg ha⁻¹ 1993

F	0	1	2	3	4	Mean C
C1	145 95	165 17	167 88	16 <b>7 6</b> 0	168 37	162 893
C2	147 40	165 22	160 27	153 53	158 70	157 023
Mean F	146 425	165 900	164 080	160 573	3 163 53	
				mean of	control	86 98
CD tr (vs	) Ct 28	968				

72 72

is recycled into the soil Also the root nodules which are rich in Mg added into the soil These findings are in accordance with the work of Watson (1961)

Application of K beyond 30 kg level had a negative effect on the Mg content of soil Application of K increased the concentration of  $K^+$  ions which might have replaced More of Mg⁺⁺ ions from the exchange sites into the soil solution and they were subsequently lost by leaching (Tisdale <u>et al</u>, 1985) Also more of Mg was probably removed by the rubber and cover crops when growth and biomass were improved by application of N and K

### 4 1 3 Effect of cover crops and their nutrition on the Hevea leaf nutrient contents

The results of major nutrients N P K Ca and Mg content of <u>Hevea</u> leaves are presented and discussed below

#### 4 1 3 1 Hevea leaf N content

.

The results obtained for the period from 1991 to 1993 are presented in Tables 11-11b. It is observed that there was significant difference between the mean of

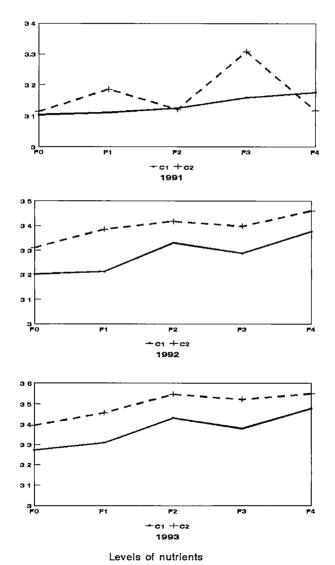
73

F		0		1		2		3		4	Me	ean C
C1	3	104	3	111	3	125	3	159	3	176	3	135
C2	3	114	3	186	3	121	3	308	3	117	3	169
Mean F	3	109	3	149	3	123	3	234	3	147		

Table 11 Effect of covercrops and their nutrition on the

#### Hevea leaf N % 1991

Table 11a Hevea leaf N % 1992


F	0		1		2		3		4	Me	an C
C1	3 20	2 3	213	3	331	3	288	3	37 <b>7</b>	3	282
C2	3 31	1 3	386	3	418	3	398	3	461	3	395
Mean F	3 25	7 3	299	3	375	3	343	3	419		

CD tr (vs) Ct 0 719

#### Table 11b Hevea leaf N % 1993

F	0	1	2	3	4	Mean C
CI	3 273	3 311	3 4 3 2 3	380 3	478	3 375
C2	3 396	3 457	3547 3	522 3	550	3 494
Mean F	3 335	3 384	3 490 3	451 3	514	
CD tr (vs)				lean of	control	2 192

Fig 10 Effect of cover crops and their nutrition on the Hevea leaf Nitrogen (%) 1991-1993



%

treatments and control plots The former recorded significantly higher leaf N content It may be seen from the table on organic carbon content was more in the treatment plots with cover crop than that of absolute control Among the levels of fertilizer there is no significant difference (Fig 10) This would have influenced the nitrogen content of <u>Hevea</u> under cover cropped situation All the benefits associated with cover crop such as moisture availability, lack of weed competition and faster mineralisation would have contributed to higher leaf nitrogen content of Hevea These findings are in line with the works of Watson (1961) Watson (1964) and Pushparajah (1977) et al

#### 4 1 3 2 Hevea leaf P content

The results of <u>Hevea</u> leaf P obtained for the period from 1991 to 1993 are presented in Table 12-12b. It is seen from the table that there was a significant difference between the treatments and control plot. The plots with cover crops recorded significantly higher leaf P content than the control plots. It is also observed that there was no significant difference between the cover crops as well as between the levels of fertilizers. There was no interaction effect found (Fig 11)

 $\gamma$ 

	Hevea le	af P%	1991			
F	0	1 	2	3	4	Mean C
Cl	0 226 0	236 0	243 0	251 0	266	0 244
C2	0 230 0	246 0	254 0	<b>267</b> 0	273	0 254
Mean F	0 228 0	241 0	249 0	259 0	270	
 CD tr (vs)	 Ct 0 045			Mean of c	ontrol	0 135

Table 12 Fffect of covercrops and their nutrition on the

Table 12a Hevea leaf P % 1992


F			0		1		2		3		4		ean C
C1		0	228	0	237	0	244	0	259	0	260	0	246
C2		0	237	0	249	0	258	0	274	0	280	0	260
Mean	F	0	233	0	243	0	251	0	267	0	270		

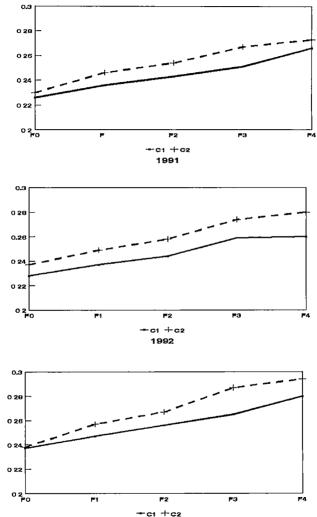

CD tr (vs) Ct 0 048

Table 12b Hevea leaf P % 1993

 F		 0		 1		- 2	-	 3		- <u>-</u> 4	 Me	an C	
C1	0	287	0	247	0	25 <b>6</b>	0	265	0	280	0	263	
C2	0	238	0	257	0	267	0	287	0	294	0	269	
Mean F	0	253	0	252	0	262	0	276	0	284			
								Mean	of	ontr	ol 0	151	

CD tr (vs) Ct 0 058





%



Levels of nutrients

All the three years of sampling the <u>Hevea</u> leaf P content in the cover cropped plots were higher due to the increased available P content of the soil this was through the increased population of phosphate solubilizing microorganisms in the soil (Table 35) The increased leaf P could be attained through the enhanced mineralisation process and increased uptake of P from Soil along with N and K for the growth and other plant metabolism This finding is in accordance with the works of Watson (1961) and Kothandaraman et al (1990)

The high soil P status might have helped in better absorption of P resulting in higher P content of <u>Hevea</u> leaves in the cover cropped treatments Shorrocks (1962) Pushpadas <u>et al</u> (1978) Yogaratnam <u>et al</u> (1984) and Punnoose (1993) also reported that application of P improved the leaf P content of <u>Hevea</u>

#### 4 1 3 3 Hevea leaf K content

The <u>Hevea</u> leaf K content for the period from 1991 to 1993 are presented in Tables 13-13b. It is noted from the tables that there was significant differences between the treatments and control plot. The treatment plots with

	Hevea	leaf K X	1991			
 F	 0	_ 1	 2		 4	Mean C
C1	1 265	1 293	1 316	1 345	1 456	1 335
C2	1 268	1 301	1 320	1 348	1 459	1 339
Mean F	1 266	1 297	1 318	1 346	1 457	
				Mean o	f contro	1 0 806

Table 13 Effect of covercrops and their nutrition on the

CD tr (vs) Ct 0 265

Table 13a Hevea leaf K % 1992

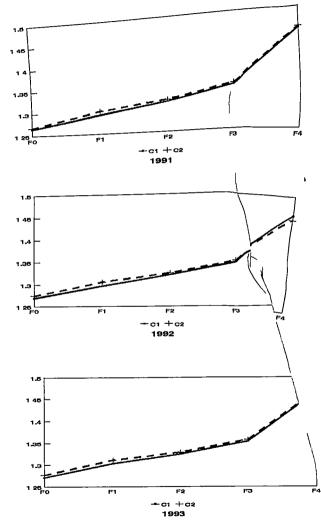

F	0	1	2	3	4	Mean C
C1	1 269	1 297	1 321	1 350	1 461	1 340
C2	1 274	1 306	1 325	1 353	1 452	1 342
Mean F	1 272	1 302	1 323	1 352	1 457	
				Mean d	of control	1 341
CD tr (vs)	Ct 0 26	6				

Table 13b Hevea leaf K % 1993

F	0	1	2	3	4	Mean C
C1	1 271	1 303	1 325	1 353	1 466	1 344
C2	1 277	1 311	1 329	1 357	1 469	1 349
Mean F	1 274	1 307	1 327	1 355	1 468	
-				Mean c	of contro	1 0 810

CD tr (vs) Ct 0 267

Fig 12 Effect of cover crops and their nutrition on the Hevea leaf Potassium (%) 1991-1993



Levels of nutrients

%

cover crop recorded significantly higher leaf K content than the absolute control. There was no significant difference between cover (rops as well as between the levels of fertilizers to cover crops. It is also noted that there was no interaction effect. (Fig. 12)

The increased K content of <u>Hevea</u> leaf in the cover cropped treatment over the absolute control is mainly due to the presence of higher quantity of available K which was obtained through the decomposed dead litter addition and the K from rainfall interception by cover crops. Moreover the higher growth associated with application of N enhanced to cover crop would have increased the plant uptake of K thus increasing its level in leaf. This finding is in line with the work of Watson (1961) Russel (1983) and Punnoose (1993)

#### 4 1 3 4 Hevea leaf Ca content

The <u>Hevea</u> leaf Ca content for the sampling period were presented in Tables 14 14b. The treatments with cover crops were significantly higher in Ca content than the absolute control. It is observed that there was no significant difference obtained between either the levels of fertilizers or between the cover crops

Table 14 Effect of covercrops and their nutrition on the

F	0	1	2	3	4	Mean C
Cl	0 403	0 463	0 487	0 477	0 500	0 465
C <b>2</b>	0 433	0 477	0 510	0 480	0 520	0 486
Mean F	0 423	0 470	0 498	0 475	0 510	

#### Hevea leaf Ca X 1991

CD tr (vs) Ct 0 073

Table 14a Hevea leaf Ca % 1992

F	0	1	2	3	4	Mean C
C1	0 450	0 490	0 523	0 510	0 553	0 507
C2	0 480	0 540	0 540	0 510	0 560	0 526
Mean F	0 465	0 515	0 537	0 510	0 557	
				Mean o	f contro	0 243
CD tr (vs.	) Ct 0 0	81				

Table 14b Hevea leaf Ca % 1993

 F	 	1 	2	3	4	Mean C
C1	0 483	0 520	0 560	0 <b>56</b> 0	0 617	0 548
C2	0 513	0 523	0 597	0 577	0 633	0 579
Mean F	0 498	0 547	0 578	0 568	0 625	
				Mean o	f control	0 273

CD tr (VS) Ct 0 093

The increased leaf Ca content is due to the increased quantum addition of dead leaf and twig litter materials into the soil. This addition of Ca into the soil might have helped in better absorption of Ca resulting in higher C& content in leaf of <u>Hevea</u> This finding is in line with the work of Watson (1961) and Pushparajah (1968)

#### 4 1 3 5 <u>Hevea</u> leaf Mg content

The <u>Hevea</u> leaf Mg content during the experiments were presented in Tables 15-15b. The treatments with cover crops were significantly superior than the absolute control on the leaf Mg content. There was no significant difference between the levels of fertilizers. It was noted that there was no significant difference between the cover crops

The increased Mg content of <u>Hevea</u> leaf in the cover cropped treatment plots are mainly due to the addition of dead leaf stem and root litter of cover crops which are good source of Mg This added litter enhanced the mineralisation process and imported the uptake of Mg by <u>Hevea</u> The N P K addition gradually improved the uptake of Mg by <u>Hevea</u> as well as cover crops also Similar findings were reported by Watson (1961) and Punnoose (1993)

K

qν

Table 15 Effect of covercrops and their nutrition on the Hevea leaf Mg % 1991

	 0	 1	2 -	3	4	Mean C
C1	0 252	0 254	0 225	0 259	0 260	0 256
C2	0 252	0 255	0 257	0 262	0 265	0 258
Mean F	0 252	0 255	0 256	0 260	0 262	
				Mean o	f contro	01 0 164

CD tr (vs) Ct 0 054

Table 15a Hevea leaf Mg % 1992

F	0	1	2	3	4	Mean C
		- <u>-</u>	• • • • • • • • • • • • •	•		
C1	0 254	0 255 0	258 0	263 0	270	0 260
C2	0 256	0 261 0	263 0	267 0	271	0 263
Mean F	0 255	0 258 0	<b>26</b> 0 0	265 0	271	
				tean of c	control	0 166
CD tr (vs)	Ct 0 0	055				

Table 15b Hevea leaf Mg % 1993

F			0		1		2		3		4	Me	ean C
C1		0	253	0	255	0	258	0	261	0	267	0	259
C2		0	255	0	258	0	259	0	261	0	269	0	260
Mean	F	0	254	0	256	0	258	0	261	Ú	268		
									 lean	of	control	0	165

CD tr (vs) Ct 0 055

The quantity of weed drymatter produced in Kg ha⁻¹ in the experiment is analysed and the same is presented and discussed below. The recording of week DMP were under taken at six monthly interval

It is also seen from the Tables 16-16d that during the first year of the experiment there was no significant difference noted in the weed DMP between the treatments and absolute control. There was significant difference from April 1992 to October 1993 between the treatments and absolute control on the weed DMP during all the recordings There was no significant difference found between the cover crops. However in the case of fertilizer treatments there was a drastic reduction in weed DMP when the level of fertilizers were increased. This reduction was significant in April 1993 (Fig. 13)

During the first year of the experiment the cover crops were just establishing in the treatment plots that might be the reason for not showing any significant

くろ

84

Table 16 Effect of covercrops and their nutrition on weed

F	0	1	2	3	4	Mean C
Ci	1168 3	870 0	687 6	775 0	556 0	811 40
C2	1196 7	915 0	628 3	810 0	589 3	827 867
Mean F	1182 5	892 0	<b>658</b> 0	<b>792</b> 5	572 7	
				Mean of	control	1200 00

dry matter Kg ha⁻¹ Oct 1991

CDf 402 050

Table 16a Weed dry matter Kg ha⁻¹ April 1992

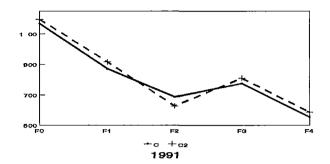
		-	~									
F	0		1		2		3		4		Mean	С
				-								
C1	945	0	668	3	476	7	616	7	453	00	632 (	0
L2	825	0	605	0	413	3	53	30	396	0	554 <del>(</del>	67
Mean F	885	0	636	7	445	0	575	0	475	0		
					-		Mea	n of	con	trol	1073 3	33
$(T)$ to $(y_{0})$	C+	271	220									

CD tr (vs) Ct 371 230

Table 16b Weed dry matter Kg ha⁻¹ Oct 1992

						•		
F	0	1		2		3	4	Mean C
C1	1156	7 871	7	683	3	818 3	655 (	0 837 00
C2	1021	7 798	3	618	3	730 0	<b>5</b> 55 (	) 744 67
Mean F	1089	2 835	0	650	8	774 2	605 (	)
					-	Mean d	of conti	rol 1285 00

CD tr (vs) Ct 405 230


Table 16c Weed dry matter Kg ha⁻¹ April 1993

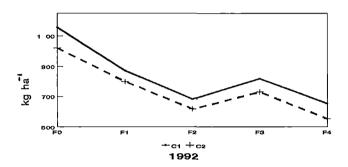

_____ 1 2 3 4 F 0 Mean C -----------C1 978 3 688 3 476 6 568 3 451 7 632 7 C2 813 3 588 3 368 3 401 7 360 0 506 3 Mean F 895 8 638 3 422 5 485 0 405 8 _____ _ _ _ Mean of control 990 00 CD tr (vs) Ct 339 800 CDf 323 983


Table 16d Weed dry matter Kg ha⁻¹ Oct 1993

	0 	 1		3	4	Mean C
Ci	1061 7	790 0	515 0	573 3	458 3	689 6
C2	858 3	598 3	401 6	456 6	393 3	541 7
Mean F	960 0	694 2	515 0	515 0	450 8	
<b></b>				Mean of	control	1208 3
CD tr (vs)	Ct 413	352				

Fig 13 Effect of cover crops and their nutrition on weed DMP (kg ha) 1991-1993







Levels of nutrients

d fference between the absolute control and cover crop grown plots on the weed DMP From April 1992 there was a significant reduction on the weed DMP between the absolute control and cover crop grown plots. From April 1992 there was significant reduction of weed DMP in the treatment plots over absolute control. This might be due to the smothering effect of cover crops on the weed growth in the cover crops grown treatments. These findings are in accordance with the observations of Potty <u>et al</u> (1980) and Kothandaraman <u>et al</u> (1987)

When the three observations in October are examined it can be seen that the control plots have recorded almost same quantity of DMP of weeds where as the treatment plots (cover cropped plots) there was a drastic reduction in the DMP as the time is passed. The same trend is also seen between the observations during April 92 and April 1993 whilter in the reduction in DMP is nearly 50%. This is attributed to the distinct beneficial effect of cover crops in the reduction of weed growth

In the first year of the establishment the cover crop <u>Mucuna</u> had a tentancy to grow very slowly and those plot with that rover crop recorded highest weed DMP during October 1991 Afterwards it has grown profusely and suppressed the weed growth and recorded least quantity of weed DMP. This finding is corroborative with the work of Kothandaraman et al. (1990)

It may further seen that there is also appreciable difference noticed in the weed DMP between the seasons. The April month coincided with summer season and the cover cropped plots recorded comparatively reduced DMP than that of wet season in October. This is due to the smothering effect of the cover crop on weed growth. The competition for moisture also must have reduced the weed population since the cover crops are of robust nature.

# 4 1 5 Effect of cover crops and their nutrition of soil mositure

The soil moisture content for summer months viz January Febriary March and April of 1992 and 1993 were estimated analysed and discussed below

From the Tables 17 20c at is seen that luring the J year top  $s_{2}$  (0.30 cm depth of soil) soil moisture in the

F	0	1	2	3	4	Mean C
C1	15 25	15 10	15 98	15 16	15 10	15 50
ር 2	15 57	16 77	17 16	16 98	18 07	17 01
Mean F	15 908	15 933	16 567	15 82	17 040	
				Mean o	f control	8 033

CD tr (vs) ctrl 2 66

CDc 1 47

Table 17a Soil moisture % at 0-30 cm (Feb 1992)

F	0		2	3	4	Mean C
C1	14 15	14 27	14 97	14 17	15 47	14 60
C2	15 20	15 58	16 57	15 32	17 77	16 0 <b>9</b>
Mean F	14 .675	14 93	15 77	14 74	16 620	
				Mean o	f control	7 333
CD tr (vs)	ct 2 44					

94

2 3 4 0 1 Mean C -----12 30 13 33 14 38 13 30 14 97 13 657 13 13 13 95 15 91 14 27 17 03 14 760

Mean Γ 12 717 13 39 15 15 13 78 16 00 ___ _ _ Mean of control 6 366 CD tr (vs) ct 2 177

CDc 1 076 CDf 2 018

F

C1

C2

___

Table 17c Soil moisture % at 0-30 cm (April 1992)

2 3 F 0 1 4 Mean C 11 45 12 20 13 43 12 37 13 93 12 677 CI C2 12 13 12 58 14 97 13 27 16 18 13 827 Mean F 11 39 12 39 14 20 12 82 15 06 ____ Mean of control 5 48 CD tr (vs) ct 1 817 CD t 2 451 CDc 1 096 CDf 1 733

90

40

Table 18 Soil moisture % at 30-60 cm (Jan 1992)

Table 18a Soil moisture % at 30-60 cm (Feb 1992)

F		0		1		2		3		4	Mea	an C
CI	15	30	15	42	15	98	15	22	16	63	15	710
C2	16	48	16	73	17	73	16	47	18	93	17	270
Mean F	15	8 <b>9</b>	16	075	16	858	15	842	17	783		
								an o	f co	ontrol		617
CD tr (vs)	ct	2	747									
CDc 1 460												

F	0	1	2	3 4	Mean C
C1	13 177	14 10	15 33	13 85 15	60 14 410
C2	14 55	14 45	16 80	15 13 18	05 15 797
Mean F	13 858	14 28	16 07	14 49 16	83
				Mean of co	ntrol 7 268
CD tr (vs)	ct 2 4:	31			
CDc 1 287	,				
CDf 2 217	,				

Table 18b Soil moisture % at 30-60 cm (March 1992)

Table 18c Soil moisture % at 30 60 cm (April 1992)

F	0	1 	2	3	4	Mean C
C1	12 45	13 25	14 46	13 37	15 28	13 76
C2	13 18	13 70	15 43	14 25	17 43	14 80
Mean F	12 817	13 47	14 95	13 81	16 36	
				Mean o	f control	62
CD tr (vs)	ot 21	77				
CDc 1 017	,					
CDf 2 076	3					

**q**1

over cropped plots were more than the absolute control Fertilizer application also increased the moisture content and the combined effect of both is more principled and significant As the period of observation is advanced the difference between cover crops are also more pronounced Among the cover crops  $C_2$  is significantly superior than  $C_1$ From March 92 onwards fertilizer treatments were also showing definite advantage. Higher dose of fertilizer applied treatments recorded maximum moisture content followed by  $F_2$  which is significantly superior to  $F_0$ . During April 92 also the same trend is observed and  $F_2$  is significantly superior to  $F_0$  and  $F_1$ 

92

During the first year for the bottom soil (30 60 cm depth) the soil moisture in the cover cropped plots were more than the absolute control Among the cover crops Puereria is superior than <u>Mucuna</u> Fertilizer levels also improved the soil moisture at latter months  $F_2$  level is found sufficient as the levels  $F_2$  and  $F_4$  are on par with each other

During the second year of observation the soil moisture content in the top soil did not show any significant difference between the cover crops The fertilizer levels exhibited same trend as the first year of observation where in the effect was noticed from March to April (Peak summer months) During March and April  $F_2$  is superior than  $F_3$   $F_1$  and  $F_0$ 

During the second year of observation in the lower depth of soil the cover cropped plots recorded more moisture than the absolute control Among the cover crops <u>Pueraria</u> is superior than <u>Mucuna</u> The fertilizer levels responded as in the case of I year (Fig 14)

The cover (ropped treatments registered highest soil moisture per cent than the absolute control The cover crop covered over the soil surface like a thick mat and might have intercepted the precipitation to the maximum extent reduced runoff losses avoided the loss through evaporation and there by improved the water retention capacity of the soil (Tables 21-24) This might be the reason for the highest soil moisture content in the cover cropped plots In contrast the absolute control plots were infested with weeds completing there life cycle in short span and the process was continuous and this resulted least soil 

 r
 0
 1
 2
 3
 4
 Mean C

 C1
 16
 25
 16
 20
 16
 82
 16
 15
 16
 92
 16
 47

 C2
 17
 53
 17
 73
 18
 10
 17
 42
 18
 95
 17
 95

 Mean F
 16
 892
 16
 967
 17
 46
 16
 783
 17
 93

Mean of control 7 500

CD tr (vs) ct 2 489

___ ---

Table 19a Soil moisture % at 0-30 (Fed 1993)

F	(	)		 l 		2	3	3			Mea	an C
C1	15	98	15	38	16	72	15	47	16	50	16	010
C2	16	27	16	62	17	95	16	75	18	68	17	253
Mean F	16	125	16	000	17	333	16	108	17	592		
							Me	en of	 C (	ontrol	8	067

CD tr (vs) ct 2 687

qk

 F
 0
 1
 2
 3
 4
 Mean C

 C1
 13
 23
 14
 227
 15
 38
 14
 45
 15
 93
 14
 643

 C2
 14
 17
 14
 47
 16
 78
 15
 43
 17
 72
 15
 713

 Mean F
 13
 700
 14
 342
 16
 083
 14
 942
 16
 825

 Mean of control 6
 383

 CD tr (vs) ct
 2
 162

 CDf
 2
 061

Table 19b Soil moisture % at 0-30 (March 1993)

Table 19c Soil moisture % at 0-30 (April 1993)

F	0	 1 	2	3	4	Mean C
C1	12 30	13 117	15 35	12 97	16 03	13 953
C2	13 13	13 817	16 57	14 28	17 25	15 010
Mean Г	12 71	7 13 470	15 958	13 625	16 64	
				Mean o	f control	5 45
CD tr (vs)	ot 1	857				
CD t 25	505					
CDf 1 7	71					

٩Ś

Fig 14 Effect of cover crops and their nutrition on soil moisture percentage during 1993 summer at 0 30 cm

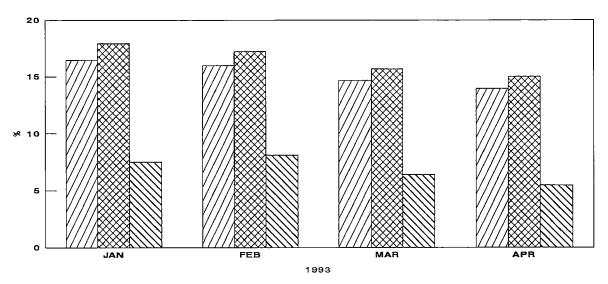



Table 20 Soil moisture % at 30-60 (Jan 1993)

F	0	- <u>-</u> 1	2	3	4	Mean C
Cl	17 89	18 48	18 59	18 79	19 75	18 70
C2	17 50	17 40	17 50	17 10	18 25	17 55
Mean F	17 695	17 940	18 045	17 945	19 000	
				Mean o	f control	8 725
CD tr (vs)	ctrl 2	945				
CDc 1 65	7					

Table 20a Soil moisture % at 30-60 (Feb 1993)

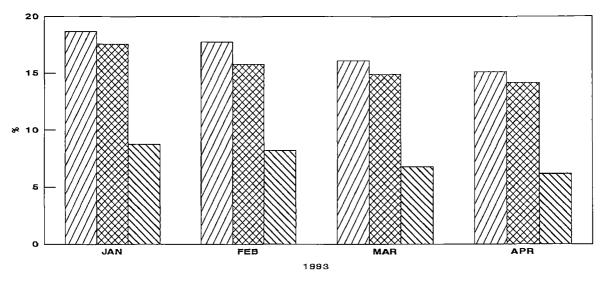
F	0	1	2	3	<u>4</u>	Mean C
C1	17 23	15 60	18 73	17 45	19 77	17 757
C2	15 48	15 42	15 93	15 40	16 68	15 78 <b>3</b>
Mean F	16 358	15 508	17 333	16 425	18 225	
			•••	Mean o	f control	8 216
CD tr (vs)	ct 29	72				
CDc 1 79	92					

96

**9**b

Table 20b Soil moisture % at 30-60 (March 1993)

F			2	3	 4 	Mean C
C1	14 67	14 80	17 42	15 60	18 03	16 103
C2	13 63	14 65	15 70	14 85	15 65	14 897
Mean F	14 150	14 725	16 558	15 225	16 842	
		<b>→→</b> −		Mean o	f control	6 783
CD tr (vs)	ct 2 03	27				
CDc 1 90	)5					
CDf 1 9:	33					


### Table 20c Soil moisture X at 30-60 (April 1993)

F		1	2	3 	4	Mean C
Cl	13 82	14 08	16 43	14 50	16 88	15 143
C2	12 72	13 77	14 72	13 63	15 88	14 143
Mean F	13 267	13 925	15 575	14 067	16 383	
				Mean o	f control	6 133
CD tr (vs)	ct 22	16				
CDc 1 9	45					
CDf 2 i	12					

97

yX

Fig 15 Effect of cover crops and their nutrition on soil moisture percentage during 1993 summer at 30 60 cm



98

moisture These findings are in line with the work of Soong et al (1976)

During the first and second year of observation the top soil moisture in the <u>Mucuna</u> cover cropped plots were higher because the thick mat of mulching by the cover alone is there in this zone Active rhizophere of <u>Mucuna</u> is below 45 cm depth where as the <u>Pueraria</u> roots are active at top 45 cm layer hence there was least moisture content (Fig 15)

In contrast, the lower depth soil moisture content of <u>Pueraria</u> is higher than <u>Mucuna</u> (Fig 14). It is because of the active rhizophere of <u>Pueraria</u> at 45 cm of top soil layer. Hence the soil moisture below 45 cm is higher in <u>Pueraria</u> where as in the case of <u>Mucuna</u> its active rhizophere is below 45 cm depth and recorded least soil moisture at deeper depth. These findings are in confirmative with the work of Kothandaraman et al. (1990)

#### 4 1 6 Soil physical characters

The effect of cover crops and their nutrition on moisture retention total porosity bulk density and aggregation percentage at two depths viz 0-30 and 30-60 cm are presented and discussed below

11

רד

#### 4 1 6 1 Soil moisture retention capacity

The moisture retentive capacity was worked out at the begining and end of the experiment at -0.033 MPa and at 1.5 Mpa pressure at two depths viz 0-30 and 30.60 (m and are presented in Tables 21.24 At -0.033 Mpa growing of cover crops have significantly increased the moisture retentive capacity over the absolute control at both the depths Among the cover crops <u>Mucuna</u> grown plots have significantly superior moisture retentive capacity than <u>Pueraria</u> grown plots in the 0-30 cm Soil depth. Whereas when the depth was increased there was no significant difference in soil moisture retention. The levels of fertilizers applied to cover crops had significant effect on the moisture retention at both depths. Among the levels  $F_4$  has recorded the highest moisture retention followed by  $F_2$ ,  $F_3$ ,  $F_1$  and  $F_0$ .

In the cover cropped treatments the dead litter materials deposited on the surface of soil and form a thick mat like structure and reduced the evaporation losses and

<b>F</b> 0	)	l	2 3		4 M →	ean C
C1 24	83 25	10 26	25 25	75 26	43 2	5 673
C2 25	05 25	15 26	88 25	55 26	86 2	5 899
Mean F 24	94 <b>2</b> 25	125 26	567 25	650 26	447	
CD       t       0       1314         CD       cf       0       131         CD       c       0       059         CD       f       0       093         CD       tr       vs       ct       0	098		Me	an of C	ontrol 2	4 833

Table 21 Effect of covercrops and their nutrition on the moisture retention at (0-30 cm) -0 033 MPa

Table 22 Moisture retention at (30-60 cm) -0 033 MPa

<i>F</i>	0	1	2	3	4	Mean C
CI	28 90	29 13	30 07	29 67	30 15	29 583
C2	28 23	29 08	30 60	29 07	30 81	29 553
Mean F	28 567	29 107	30 333	29 367	30 482	
		<u></u>		Mean	of contro	1 28 70
CD t 0 3	74					
CD c 0 1	87					
CD f 0 2	65					
CD cf 0 3	74					

....

18 48	18 97	19 45 19 <b>6</b> 7		19 40	18 553
		19 67	19 00		
18 208			15 00	19 95	19 213
	18 408	19 558	18 567	19 675	
7					
et 028	4				
oisture	retentic	on at (30	)-60 cm)	-1 5 MPa	
C	et 028	et 0 284	et 0 284	Mean of	

Table 23	Moisture	retention at	(0-30 cm)	-1 5	MPa.
----------	----------	--------------	-----------	------	------

F	0	1	2	3	4	Mean C
Ci	22 05	22 75	23 35	22 88	23 65	22 937
C2	22 48	22 80	23 75	22 95	23 87	23 170
Mean F	22 267	22 775	23 550	22 917	23 758	
CD t 0 20 CD c 0 09 CD f 0 14 CD cf 0 20 CD tr (vs)	22 6			Mean o	13	22 017

143×

improved the infiltration of rain water into the soil Organic matter addition in the cover cropped plots were very high when compared to control plots. This organic matter added got decomposed and increased the total porocity (Table 25) Increased biomass of cover crops as evidenced from Table 31 and increased soil microbial population (Table 35) were also contributed for the higher moisture retention These might be the reasons for the highest soil moisture retention at both depths under both pressures in <u>Mucuna</u> grown plots These findings are in line with the work of Soong (1971) Soong et al (1976) and Krishnakumar et al (1990)

Regarding the levels of fertilizers the higher dose has produced increased quantum of organic carbon by increased quantity of biomass. Hence higher moisture retention at higher fertilizer level

#### 4 1 6 2 Total porosity

The soil was analysed for its total porosity at the beginning and end of the experiment at two depths viz 0-30 and 30-60 cm and are presented in Tables 25 and 26 The total porosity of the soil at 0-30 cm depth was significantly

---10**7** 

F	0	1	2	3	Mean C
C1	45 08	46 83	48 50	47 93	49 00
C2	16 13	47 18	48 78	47 95	49 10
Mean F	45 608	47 008	48 642	47 942	
			Mean	of contro	ol 44 83

Table 25 Effect of covercrops and their nutrition on the total porosity % (0-30 cm)

CD tr (vs) ct 0 162

Table 26 Total porosity % (30-60 cm)

F	0	1 1	2	3	4	Mean C
C1	47 70	<b>49 1</b> 0	47 12	49 80	50 80	48 904
C2	48 15	49 12	50 88	39 80	51 23	47 837
Mean F	47 925	49 108	49 002	44 800	51 017	
CD t NS				Mean o	f control	47 85
CD c NS						
CD f NS						
CD of NS CD tr (vs) (	et ns					

higher in the cover cropped treatment plots than the absolute control plots There was no significant difference found between the cover crops as well as between the levels of fertilizers Also there is no significant difference observed at lower depth of soil

In the cover cropped treatment plots the dead litter materials of cover crop deposited on the surface of soil and got decomposed This decomposed organic matter might have improved the organic carbon content and there by the pore spaces were improved The studies made elsewhere relate such differential effects to the amount of the organic matter returned to the soil and also the vigour of the root system The ramifications made by the cover crop roots and the organic matter added in the top soil might have contributed to the increased total pore space These findings are in corroborative with the works of Harris <u>et al</u> (1966) Soong <u>et al</u> (1976) and Krishnakumar (1989)

#### 4 1 6 3 Bulk density

The bulk density of the soil from the experimental area was analysed and is presented in the Tables 27 and 28 The bulk density of the soil did not show either any

o Ø

F	 0 	 	2	3		5	Mean C
C1	1 25	1 26	1 23	1 23	1 23	1 23	1 242
C2	1 24	1 23	1 25	1 24	1 24	1 29	1 253
Mean F	1 247	1 247	1 243	1 237	1 237	1 263	
		_		– – – พ	ean of	control	1 236

Table 27 Effect of covercrops and their nutrition on the Bulk density (0-30 cm)

CD tr (vs) t 0 007

Table 28 Bulk Density (30-60 cm)

<u>F</u>	⁰	1	2	3	4	Mean C
C1	1 37	1 197	1 18	1 20	1 19	1 227
C2	1 22	1 22	1 20	1 19	1 18	1 202
Mean F	i 292	1 208	1 19	1 95	1 187	
CDt NS				Mean of	control	1 217
CDc NS						
CDf NS						
CDcf NS						
Cd Ct NS						
CD tr (vs)	ct NS					

significant difference among the cover crops or any among the levels of fertilizers applied to the cover crops

In normal case the effect of cover crops on the bulk density of the soil could be occurred at a long span of time This finding is in relation with the work of Soong et al (1976)

#### 4 1 6 4 Aggregation percentage

The results of aggregation analysis done at the beginning and end of the experiment is presented in the Tables 29 and 30 The aggregation percentage was found to be higher in the topsoil (0-30 cm depth) than the bottom soil (30-60 cm depth) The cover cropped treatment plots recorded significantly higher aggregation percentage over the control plots at both depths. Among the cover crops there is no significant difference observed Regarding the levels of fertilizers applied to cover crops  $F_4$  and  $F_2$  were on par and these levels were significantly superior than the other levels

In the cover cropped plots the dead litter materials added have improved the organic carbon content and

Table	29	Effect	of	covercrops	and	their	nutrition	on	the
		Aggreg	gat 1	on % (0-30ci	n )				

F		1	2	3	4	Mean C		
CI	87 23	86 77	89 50	88 50	88 60	88 120		
C2	87 37	87 40	89 37	88 47	89 63	88 447		
Me <b>an</b> F	87 300	87 083	89 43	88 483	89 117			
					control			
	_			Mean OI	control	07 133		
CD _C f 0 555	ō							
CDc 0 348	3							
CDf 0 393	3							
CD tr (vs)	st 0 41	2						
Table 30 /	Addredati	on ¥ (30	-60cm)					
Table 30 #	Aggregati	on X (30	-60cm)					
Table 30 #	Aggregat 1 0 	on <b>%</b> (30	-60cm) 	3	4	Mean C		
	0		2	 3 				
 F	0	1  80 53	2  82 60		82 63	81 613		
F	0  80 73 80 87	80 53 80 77	2 82 60 81 06	81 56 81 60	82 63 80 70	81 613		
F C1 C2	0  80 73 80 87	80 53 80 77	2 82 60 81 06 81 833	81 56 81 60	82 63 80 70 81 667	81 613 81 000		
F C1 C2	0 80 73 80 87 80 800	80 53 80 77	2 82 60 81 06 81 833	81 56 81 60 81 583	82 63 80 70 81 667	81 613 81 000		
F C1 C2 Mean F	0 80 73 80 87 80 800	80 53 80 77	2 82 60 81 06 81 833	81 56 81 60 81 583	82 63 80 70 81 667	81 613 81 000		
F C1 C2 Mean F  CD cf 0 444	0 80 73 80 87 80 800	80 53 80 77	2 82 60 81 06 81 833	81 56 81 60 81 583	82 63 80 70 81 667	81 613 81 000		

total pore space and there by improved the aggregation percentage The vigorous root growth and its ramification process also might have contributed to better pore space and aggregation percentage Same line of observations were reported by Harris <u>et al</u> (1966) Soong (1971) Soong <u>et al</u> (1976)

#### 4 1 7 Covercrop Biomass production kg ha⁻¹

Biomass of cover cropsproduced from October 91 to October 93 were recorded at six monthly interval analysed and discussed below

During the early stage October 1991 <u>Pueraria</u> recorded significantly highest biomass From April 1992 onwards Mucuna is overtaking <u>Pueraria</u> <u>Mucuna</u> produced almost double the quantity of biomass at latter stage Among the levels of fertilizers, F2 is found superior in earlier stage as the growth is limited Addition of 10 kgN has increased the nodules count with that the biomass At this stage F2 is sufficient and cover crops has no capacity to utilize 60 kg P and K. As the time passes more uptake of P and K is noticed and from first year onwards F4 is superior and is followed by F2

Ł

								s		Octo	ober	• 1991	
		FO				F2					 1 	Mea	n C
с _і		352	67	378	33	478	33	435	00	483	33	425	53
с ₂		325	00	380	00	451	67	381	67	423	33	392	33
		338											 
CD t CD c CD f	19	799											
Table	<b>9 3</b> :	1a 								Аргіі	199	€2	
		FO									4	Mea	n C
с ₁		423	33	465	00	581	67	500	00	646	67	523	33
^C 2		818	33	841	67	1090	00	928	99	1143	33	964	33
		620											 
CD c CD f CD t	54	53 <b>7</b>											
Table	B 3	1b								Octob			
		F0						F	 3 		4	 Mea	n C
с ₁		962	667	988	33	1088							
د <b>ء</b>		1543	33	1651	67	2183	33	1680	00	2336	66	1879	00
Mean		1253	00	1370	007	1635	83	1380	00	1745	83		
CD c CD f	39 63	977 209	CD d CD t	cf 89 : 89	39 39						-	-	

Table 31 Effect of nutrition on the cover Biomass kg ha

### Covercrop biomass Kg ha⁻¹

Table 3	81c					Aprıl	1993	
F0			F1	F2	F3	F4	Mean C	
c _i	1365	00	1421 67	1601 57	1498 33	1610 00	1499 33	
⁽ 2	2090	00	2175 00	2628 33	2275 00	2861 67	2406 00	
Mean F	1727	5	1798 33	2115 00	1886 87	2235 83		
CD c 57 CD t 11		CD	f 81 231	CD cf 11	4 877			

Table	31	d						(	Octobe	r J	993	
		F0		F1	F2	<u> </u>	F:	3	F4		Mea 	n C
с ₁		2625	0	2663	33 3068	33	2670	00	3245	00	2854	333
с ₂		3065	0	3265 (	00 3868	33	3768	33	4676	67	3728	667
Mean	F 	2845	- -	2964	17 3468	33	3219	167	3960	83		
CD c	65	141		CDf 98	751 CD	cf	127 41	CD	t 127	4	L	

During the early stage <u>Pueraria</u> grown faster and <u>Mucuna</u> is a slow grower As time passed <u>Mucuna</u> picked up the growth and overtook the other

This finding is in line with the work of Kothandaraman <u>et al</u> (1990) Regarding the levels of N P and K at the early stage, F2 level is sufficient and same type of reporting was done by Pushparajah (1977) During the latter stages of growth the level F4 is required because of increased biomass addition and its increased P and K requirement is met by the F4 level

## 4 1 7 1 Effect of nutrition on the uptake of nutrients by cover crops Kg ha⁻¹

The uptake of N P K Ca and Mg in the different years of observations are presented in Table 31e-311 In the first year of observation there was no significant differences observed between the covercrops and among the levels,  $F_2$  and  $F_4$  were on par with each other During the second and third year of observations Mucuna recorded significantly higher uptake of N Among the levels,  $F_2$  and  $F_4$ were on par This showed the sufficiency of the level 10 30 30 for both covercrops

		1.5 Ma 07	00101 01	opo		
					October	1991
	FO	F1	F2	F3	F4	Mean C
c,	8 22	9 22	11 89	10 56	12 03	10 35
د <b>ء</b>	7 75	9 52	11 55	949	10 87	981
Mean	F 7 985	9 37	11 72	10 03	11 45	
	2 565					
					October	1992
	FO			F3		Mean C
с ₁	23 23	24 70	27 20	27 08	29 79	26 40
^ر 2	38 68	43 05	58 07	43 34	62 61	49 35
Mean	F 30 955	38 875	42 635	35 210	46 200	
	7 425 10 265					
					October	1993
	F0	F1				
с ₁	64 49	68 44	80 90	68 <b>9</b> 7	83 57	73 674
°2	78 37	86 75	103 28	99 59	125 79	99 156
Mean	F 71 43	73 595	92 09	84 28	104 68	
CD c	8 40 12 125					

Table 31e Effect of nutrition on the nutrient uptake of N kg ha⁻¹ by cover crops

1

					October	1991
	F0		F2	F3	F4	Mean C
C ₁	0 53	0 41	0 84	0 66	0 80	0 688
с ₂	0 54	0 63	0 87	0 67	084	0 702
Mean F	- 0 535	0 620	0 855	0 665	0 815	
CD c CD f	0 065 0 210					
					October	1992
	F0	F1	F2	F3	F4	Mean C
c ₁	3 25	390	4 98	4 01	602	4 432
с ₂	3 42	4 05	5 49	4 55	7 01	4 104
Mean F		3 975	5 235	4 28	6 515	
CD c CD f	0 400 1 502					
					October	1993
	F0	F1	F2	F3	 F4 	Mean C
c _i	5 15	598	8 65	7 01	9 10	7 178
<u> </u>	5 45	6 40	9 31	7 45	10 55	7 802
Mean F	7 5 30	6 19	8 98	7 23	9 825	
CD c CD f	0 605 1 720					

Table 31f Effect of nutrition on the nutrient uptake of P kg ha⁻¹ by cover crops

13

					October	1991
	F0	F1	F2	F3	F4	Mean C
c ₁	6 <b>92</b>	8 05	975	9 05	9 65	8 684
۲ <b>2</b>	7 19	8 15	10 80	9 50	10 65	9 258
- Mean	F 5 634	8 10 	10 275	9 275	10 15	
, 1 GJ	3 450				October	1992
	F0	F1	F2	F3	F4	Mean C
c _i	30 92	36 51	46 59	38 45	54 65	41 30
°2	34 45	38 05	52 45	42 45	60 65	45 63
Mean	F 32 435	37_33	49 475	40 45	51 65	
	2 751 6 450					
					October	• 1993
_						
-	 F0	F1	F2	F3	F4	
- 			F2 F2 59 45		F4	Mean (
-	39 15	42 5		46 55	F4 70 3	Mean C

# Table 31g Effect of nutrition on the nutrient uptake of K kg ha⁻¹ by cover crops

					October	1991
	F0	F1	F2	F3	F4	Mean C
с ₁	2 05	2 15	3 05	2 60	3 15	2 60
с ₂	2 25	2 35	3 23	2 71	3 25	2 66
Mean I	F 2 15	2 25	3 14	2 41	3 20	
CD c CD f	NS NS					
					October	1992
	F0	F1	Г2		F4	Mean C
°1	7 45	9 45	13 25	11 25	19 45	12 17
د2	11 85	12 55	19 45	16 25	23 40	16 69
Mean I	F 9 65	10 98	16 35	13 75	21 43	
CD c : CD f :						
					October	1993
	F0	F1	F2	F3	F4	Mean C
^د 1	14 30	15 40	24 15	20 42	26 5	20 154
^ر 2	17 20	19 15	30 45	24 5	33 40	24 94
Mean J	F 15 75	17 28	27 3	22 46	29 95	
CD c CD f						

Table 31h	Effect of nutrition on the nutrient uptake o	of Ca
	kg ha ⁻¹ by cover crops	

吗

F1 0 65 0 85 0 75 F1	1 05	0 90	i 15 October	0 95
0 85	1 05 0 98	0 90	1 25 1 15 October	0 95
0 75	0 98	0 81	i 15 October	
			October	- 1992
		 F3		· 1992
F1	 F2			· 1992
F1	F2	F3	E 4	
			F4	Mean C
3 45	5 15	4 75	645	4, 57
4 32	6 45	5 25	8 01	5 51
3 89	5 80	5 00	7 23	
			October	19 <b>9</b> 3
F1	F2	F3	 F4	Mean C
5 20	7 45	7 05	942	6 65
6 35	7 75	8 15	12 25	8 35
5 78	8 60	7 60	10 84	
	4 32 3 89  F1 5 20 6 35	4       32       6       45         3       89       5       80         F1       F2         5       20       7       45         6       35       7       75	4       32       6       45       5       25         3       89       5       80       5       00         F1       F2       F3         5       20       7       45       7       05         6       35       7       75       8       15	4       32       6       45       5       25       8       01         3       89       5       80       5       00       7       23         October         F1       F2       F3       F4         5       20       7       45       7       05       9       42         6       35       7       75       8       15       12       25

CD f 3 265

Table 311 Effect of nutrition on the nutrient uptake of Mg kg ha⁻¹ by cover crops

116

Reasons for the increased uptake of nutrients by covercrops as the growth progressed were mainly due to the increased biomass production (Table 31-31d) When 10 kg extra dose of N was not given to covercrops it might have improved the early establishment and better vegetative growth For supporting these growth increased P K Ca and Mg uptake were observed This findings in confirmation with the work of Pushparajah (1977)

#### 4 1 8 Root studies of cover crops

The cover crop root analysis for the measurements like vertical root penetration, shoot weight and root weight were worked out presented and discussed in this chapter

The vertical root penetration measurements taken from 3rd month to 30th Month after sowing were presented in Tables 32-32e During the 3rd month observation, the cover crop C1 found significantly superior over the cover crop  $C_2$ Among the levels of fertilizers, level F4 and F2 were on par and superior than  $F_3$   $F_1$  and  $F_0$  In the 6th month of observation the cover crop  $C_2$  was found significantly superior over  $C_1$  Among the levels, there is no difference Table 32 Effect of nutrition on the vertical penetration of root (cm) 3rd month

					-			-					
	FO		F1	L	1	72		J	F3	]	F4	Me	ean C
	•						-	-					
с _і	<b>3</b> 5	13	36	53	42	55	3	88	09	43	19	39	094
°2	26	20	27	69 _	32	89	2	28	86	33	46	29	819
Mean F	30 -	663	32	108	37	72	3	33	48	<b>3</b> 8	31		
CDc 0	100 492												
CDf 0	778												

LUCI

Table 32a Vertical penetration of root (cm) 6th month

<u></u>						
	ГО	F1	Γ2	F3	Г4	Mean C
-						
c _i	68 50	67 78	74 23	68 73	75 80	69 009
°2	71 70	72 68	75 14	73 23	79 07	73 967
Mean -	F 70 10	70 23	74 69	70 99	76 43	
CDf	2 200					

CDc 0 984 CDf 1 886

	 F0			 F1		 F2	 -			 F4	 l	 M/	 ean	 C
					<u> </u>		 							
c ₁	74	63	76	<b>6</b> 0	84	217	82	42	ε	15	82	80	74	
د <b>ء</b>	103	32	106	21	114	22	103	14	12	21	01	109	58	
Mean	F 88	975	91	405	99	217	 92	78 	10	)3	42			
CDc	1 746													

Table 32b Vertical penetration of roots (cm) 12th month

Table 32c Vertical penetration of roots (cm) 18th month	Table 32c	Vertical	penetration	of	roots	(cm)	18th mont	h
---------------------------------------------------------	-----------	----------	-------------	----	-------	------	-----------	---

		]	FO			]	F2	]	F3	]	F4	Mea	an C
c _i		81	92	84	25	91	5 <b>2</b>	90	83	92	77	88	75
с ₂		137	40	142	60	165	50	146	97	169	50	152	393
Mean	F	109	66	113	43	128	51	118	89	131	13		
CDt CDc CDf CDf	0 1	487 665 051 501											

c

	-	I	70		F1	]	F2	 	73		F4	Mea	n C
c ₁		85	27	88	60	103	22	98	47	105	38	96	19
_C2	_	176	50	187	77	203	30	194	17	212	47	194	84
Mean F	•	130	88	130	18	153	26	148	317	158	93		
CDc CDf	3 2	051 365 157 051											

Table 32d Vertical penetration of roots (cm) 24th month

1

Table 32e Vertical penetration of roots (cm) 30th month

	F0			 F1		-	F2		 F3		F4		4	Mean C		
c _i		88	70		95	19		109	42	100	07	114	1	23	101	52
с ₂	1	187	30	2	200	07		247	43	 198	63	250	3	00	217	89
Mean	F :	138	00	t 	147	<b>8</b> 3		178	43	 149	35	18	5	12		
CDt CDc CDf CDcf	4 : 1 : 3 : 4 :	913 094														

noted During 12th 18th 24th and 30th month of observation it is noted that cover crop  $C_2$  is significantly superior over  $C_1$  and among the levels  $F_4$  was found superior over all the other levels followed by  $F_2$   $F_3$   $F_1$  and  $F_0$ 

At 3rd month the cover crop  $C_1$  has recorded higher root length than  $C_2$  The cover crop  $C_1$  has the tendency to produce root system deeper at the very beginning stage. This cover crop  $C_1$  is a fast growing one in the initial months than  $C_2$ . This finding is in line with the work of Chandapillai (1968). From 6th month onwards the cover crop  $C_2$ is overtaking  $C_1$  on root length. Penetration of  $C_2$  is double at latter stages of observation. Since the root length of <u>Mucuna</u> is deeper than rubber roots there is no competetion observed between <u>Mucuna</u> and Rubber

Regarding the levels of fertilizers, for better root penetration level  $F_2$  is better upto 6th month  $\Gamma 4$  is required from 12th month onwards  $F_4$  is significantly superior because  $C_2$  required high P K for proportionately higher biomass (Table 31-31d) production is why interaction is significant from 12th month onwards 12

4 1 8 1 Shoot and Root weight

The weight of shoot and root were worked out from 3rd month to 30th month of the study and found that during all the stages of cover crop growth, <u>Mucuna</u> recorded significantly higher quantity of shoot and root weight Regarding the levels of N P and K applied to cover  $F_4$  level has recorded maximum weight of shoot and root followed by  $F_2$ Among the levels the  $F_0$  level has recorded the least quantity of shoot and root weight 120

The reason for the luxurious growth of <u>Mucuna sp</u> is genetical Regarding the levely,  $F_4$  and  $F_2$  were given with 10 kg extra dose of nitrogen which would have helped in better uptake by cover crops (Table 31e-31i) and better quantity biomass of cover crops (Table 31-31d) This finding is in line with the report of Kothandaraman <u>et al</u> 1987 and 1990

## 4 1 8 2 Cover crop root nodules count and fresh weight

The root nodule count were taken on 40 days after sowing of cover crops The nodule weight per plant were also worked out and presented in the Table 34 and 34a The root

	FO	F1	F2	F3	F4	Mean C
с _і	5 807	11 200	12 710	13 390	15 133	11 448
с <b>2</b>	7 040	12 760	14 500	14 387	15 530	12 843
Mean F	6 423	11 980	13 605	13 888	14 832	
CDt	1 074					
CDc	0 480					
CDf	0 759					
	N					

Table 33 Effect of nutrition to cover on the weight of shoot (g) 3rd month

Table 33a Weight of shoot (g) 6th month

e

	F0		F1		 Γ2		F3		Γ4		 Mea	n C	
c _i			617 96 180		180	11	D 88	89	25	113	40	100	865
°2		102	<b>3</b> 50	113	850	126	77	115	69	128	11	117	254
Mean	F	97	983	105	015	118	575	102	47	120	755		
CDt CDc CDf	3	859 962 264											

Table 38b Weight of shoot (g) 12th month

	]	 FO 	 F	 71 	F2	 ? 	 F3	 } 	F4		Mea	n C
с ₁	369	88	403	580	457	24	400	43	473	57	420	941
с <b>2</b>	488	40	498	96	545	28	507	36	575	52	523	105
CDt	F 429 25 33 11 32 17 91	 2 9	- 451 	275 	501	26	453	89	524	55		

Table 33c Weight of shoot (g) 24th month

			FO		F1		F2		F3		F4	Mer	an C
ci		624	967	624	170	745	5 64	651	78	750	12	679	322
с <b>з</b>		852	28	855	77	938	3 38	870	09	1023	03	907	911
Mean	F	738	62 	739	94	842	01	760	94	886	57		
	6 10	746 595 427 745											

Table 33d Weight of shoot (g) 18th month

	F0	F1	F2	F3	F4	Mean C
c _i	539 46	548 34	640 35	541 93	546 51	563 317
^C 2	651 27	672 25	751 75	655 93	771 04	700 447
Mean	F 595 36	610 29	696 05	598 93	658 78	
CDt	95 697					
CDc	42 797					
CDf	67 668					
vef	Q					

∕

Table 32e Weight of shoot (g) 30th month

	FO	Г1	Г2	F3	F4	Mean C
c _i	657 04	667 63	779 45	703 62	796 93	720 935
<b>2</b>	942 50	960 30	1252 36	1006 48	1333 90	1099 120
Mean F 	799 770	813 97	1015 90	855 05	1065 42	
CDt 1	9 684					
CDc 8	3 803					
CDf 1:	3 918					
CDcf 19	9 684					

Table 33f Weight of root (g) 3rd month

	FO	Г1	F2	F3	F4	Mean C
с ₁	0 937	1 807	2 050	2 160	2 28	1 847
<b>2</b>	1 067	1 933	2 197	2 100	2 35	1 946
Mean F	1 002	1 870	2 123	2 170	2 317	
		_				
CDt (	D 168					
CDc (	0 075					
CD <b>f</b>	0 119					

Table 33g Weight of root (g) 6th month

										·	
	1	FO	1	-1	1	F2		F3		Γ4	Mean C
					·						
c ₁	14	93	15	27	17	60	14	17	18	00	15 993
_C2	14	93 -	16	50	18	30	16	77	18	57	17 013
Mean F	14	9 <b>3</b>	15	88	17	50	15	47	18	28	
								-	<u> </u>		
CDt 1	424										
CDc 0	637										
CDf 1	007										

Table 33b Weight of roots 12th month

	-												
		1	0		F1		F2		F3		F4	Me	ean C
	-		-	-					-				
c ₁		5 <b>3</b>	83	58	50	66	27	58	03	68	63	61	053
_د <u>ء</u> _		_67	83_	69 	_30_	- 78	03	70	47	79	93	73	113
Mean	F	60	833	63	900	72	: 15	64	250	74	283		
		-											
CDt	2	799											
CDe	1	252											
CDf	1	979											

Table 33. Weight of roots (g) 18th month

	<u> </u>				-	-		 					
		F	70		F1		F2	J	<b>5</b> 3	]	74	Mee	in C
_				-				 _	_				
C,		73	50	74	10	84	53	73	23	87	37	78	547
- R		• -											
с <b>2</b>		73	17	75	53	84	47	73	70	86	63	78	700
<u></u>		·				<u> </u>		 					
Mean	F	73	333	74	82	84	50	73	47	87	00		
	•						-	 			~ ~-		
CDt	26												
		) J I											
CDc	NS												
CDf	i 8	860											
_ <b>.</b>													

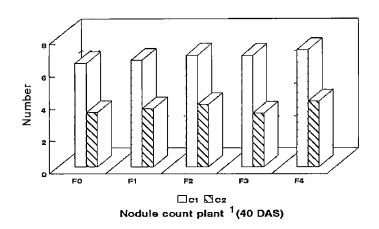
Table 33 J Weight of root (g) 24th month

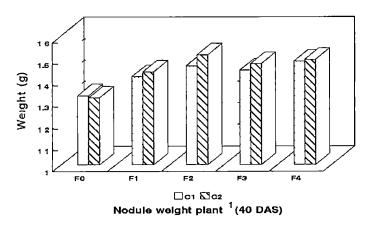
										F4 Mean C			
		3	FO	1	F1	2	F2	F:	3	F	4	Mear	n C
	-	-			-			-					
C ₁		74	40	75	43	88	77	78	23	89	30	81	227
C ₁ C ₂		86	83	88	53	96	90	89	70	105	47	93	487
						•		-		-		~	
Mean	F	80	617	81	983	92	833	83	967	97	383		
	-	-				-	-			-			-
CDL	1	478											
CDc	0	661											
CDf	1	045											
CDcf	1	478											

Table 33k Weight of root (g) 30th month

		•													-
		J	FO		F1		Г	2	]	ГЗ	1	F4	Me	ean C	
						-									-
^د 1		76	40	77	63		90	63	81	70	92	67	83	807	
°2		75	30	97	00		126	50	101	63	132	63	110	613	
				-	-	-					·		• •		-
Mean	F	85	85	87	32		108	57	91	67	112	65			
											<u> </u>		-		-
CDt	0	767													
CDc	0	343													
CDf	0	542													
CDcf		767													

									 		 -			
		I	70	]	F1		I	72	ł	F3	)	F4	Me	ean C
		-					-	-		-	 -			
с ₁		6	<b>4</b> 0	6	60		6	90	6	87	7	23	6	800
_C2		3	37	3	60	_	3	87	 3	33	 4	07	3	647
Mean F		4	883	5	10		5	38	5	10	5	65		
	-	-							 	-	 -			
CDt (	) 34	11												
CDe 0	) 15	53												
CDf (	) 24	11												


## Table 34 Nodule count/plant (40th DAS)


# Table 34a Nodule fresh weight/plant

~**

	·	F0 		F1	 ]	[ ²	 ]	F3 	;	F4	Me	ean C
с ₁	1	32	1	41	1	46	1	44	1	48	t	422
°2	1	31	1	43	1	51	1	47	1	49	1	442
Mean F	1	315	1	420	1	485	1	455	1	485		
CDc NS	109 130											

Fig 16 Effect of nutrition to cover crops on nodule count and nodule weight (40 DAS)





Levels of nutrients

nodules count for the <u>Pueraria</u> <u>sp</u> was found to be significantly higher than <u>Mucuna</u> <u>sp</u> Regarding the weight of nodule per plant is concerned there was no significant difference found Among the levels of NPK,  $F_4$  and  $F_2$  were significantly superior and on par with each other for the nodule count these levels were on par with all the other levels except  $F_0$  (Fig 16)

The reasons for the increased nodule number in <u>Pueraria sp</u> is purely genetical and regarding the levels  $F_4$   $F_2$  were given with extra dose of 10 kg N, which would be highly beneficial for the leguminous cover crop for its early vigourous establishment As far as the nodule weight per plant is concerned, the NPK fertilizer application is essential for the better nodular weight These findings were in corroborative with Pushparajah (1977) and Kothandaraman et al (1990)

4 1 9 Microbial population in soil

The microbial population of the soil were analysed

for the generalised count of Bacteria fungi and phosphate solubilisers at the end of the experiment. The data were analysed and presented as  $10^4$  g⁻¹ of dry soil(Table 35) All the microbial species count were increased over the initial count. The microbes namely bacteria fungi and phosphate solubilisers were increased in their population under the cover cropped plots over the absolute control tremendously Among the levels of fertilizers  $F_4$   $F_2$  and  $F_3$  were found to be good for bacterial population and phosphate solubilisers  $F_1$   $F_2$   $F_4$  and  $F_3$  were found to be better for fungi Among the cover crop <u>Mucuna sp</u> recorded significantly higher percentage of increase

The reasons for the increase in the population of microbes are due to the increased biomass production and increased quantity of soil moisture in summer under <u>Mucuna</u> <u>sp</u> and the level  $F_2$  has improved much on the organic carbon c content and cover crop biomass. This must have cumulatively attributed to increased microbial population. These findings are in line with the report of Kothandaraman <u>et al</u> (1990)

			FO		F1		F2		F3		F4	Me	ean (	;
				-		-	-							
с _і		29	067	30	<b>8</b> 00	33	80	34	77	36	40	3 <b>2</b>	967	
د <b>ء</b>		35	633	36	433	42	47	41	47	45	97	40	393	
Mean	F	32	350	33	617	38	133	38	117	41	183			
								Me	an of	con	trol	28	933	
CDt	1	380												
CDc	0	617												
CDf	0	976												
CDef	1	022												

Table 35 Effect of covercrops and their nutrition on the microbial population of soil Bacteria x 10⁴  $g^{1}$  of dry soil

Table 35a Fungi x  $10^4$  g¹ of dry soil

						-					-					
			FO		I	F1		F	2		F3		F4	Me	ean C	;
		•		-	-						_					-
°,		9	67		10	30		10	23	9	60	:	967	9	893	
с ₂		9	90		10	10		9	70	10	20	10	) 27	10	033	
Mean ]	F	9	783		10	200	)	9	86 <b>7</b>	9	900	9	967	9	963	
		-	~							Me	an o	רב- רסי	ntrol	8	130	
CDt CDc CDf	0200	96														

CDf 0 152 CD tr vs ct 0 215 Table 35b Phosphate solubilizers x  $10^4 \ \tilde{g}^1$  of dry soil

	FO	F1	F2	F3 F4	Mean C
^C 1	4 68	482	5 21 5	20 5 133	5 045
с ₂	649	6 13	7437	15 7 700	6 981
Mean F	<b>5</b> 585	5 475	63226	17 <b>5</b> 6 507	

Mean of control 4 440

CDt	0	613
CDc	0	274
CDf	0	433
CDcf	0	454

4 2 Experiment II

Effect of cover crop and its nutrition on mature rubber

١

4 2 1 Growth characters

## 4 2 1 1 Girth increment

The girth increment for the two years period 1991-1993 for the mature rubber is presented in Table 36. It is observed that all the treatments with cover crops were significantly superior to the absolute control where there was no cover crop. Among the levels of fertilizers to cover crop,  $F_4$  and  $F_2$  were on par and significantly superior to  $F_3$   $F_1$  and  $F_0$ . The level  $F_0$  is significantly inferior to all other levels (Fig. 17)

Growing of cover crop even without any fertilizer has given more girth increment than plots without any cover crop thereby showing the distinct advantage of cover crop alone

Application of fertilizer to cover crops has further increased the girth increment over  $F_0$  as evidenced from the treatments The highest level of fertilizers have recorded the maximum girth, however this is on par with

Treatments (	 31rth _	increment in (cm)
Fo		3 90
F ₁		5 01
F ₂		5 29
F ₃		5 10
F ₄		5 32
L		2 63
SE		0 054
CD		0 161
		S**

# Table 36 Effect of covercrop and its nutrition on girth increment 1991-1993 (cm)

S** Significant at P = 0 01 level

# Table 37Effect of covercrop and its nutrition on the virgin<br/>bark thickness 1993 (mm) of Hevea

Treatments	VBT (mm)
Fo	7 87
F ₁	8 02
F ₂	8 82
F ₃	8 06
F ₄	8 29
С	6 94
SE	0 243
CD	0 372
	S**

S** Significant at P - 0 01 level

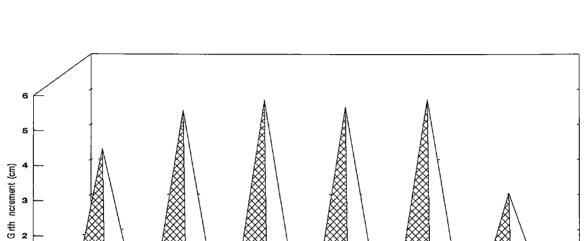


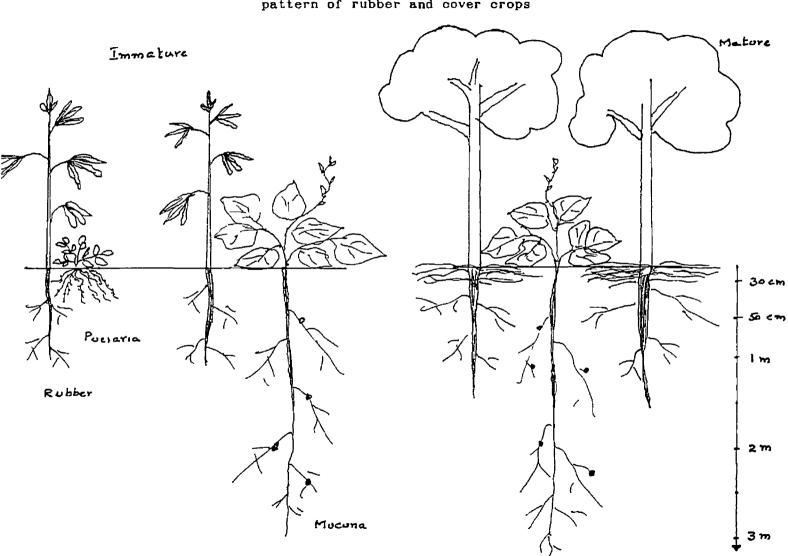

Fig 17 Effect of cover crop and its nutrition on the girth increment (cm) 1991 1993

Levels of nutrents

F3

F4

¢


F2

1

ο

FO

F1



Diagramatic representation of rooting pattern of rubber and cover crops

fertilizer level  $F_2$ , there by indicating the sufficiency of the later level This shows that fertilizer application beyond 10 30 30 has not any specific advantage

The reasons for the girth increment through cover crop and nutrition have been already discussed in the Experiment I

The other reasons for the girth increment are by the absorption of nutrients form the lower levels and bringing the same to the surface and insitu incorporation in the surface would have definitely benefited the main crop

Maximum absorbing roots are present in the interow area and fertilizers applied in the rubber trees are benefited by the direct application on the surface as well as through the indirect application through the deposition of drymatter of cover crop Diagram presented also shows that there is no competetion between rubber and <u>Mucuna</u> because the feading zones are entirely different

# 4 2 1 2 Effect of cover crop and its nutrition on virgin bark thickness

Growing of cover crop significantly increased the virgin bark thickness (Table 37) over the absolute control

13/2

plot Among the levels of fertilizers to cover rop  $F_4$  has recorded the maximum bark thickness and also on par with  $F_2$ All the other levels except  $F_0$  were on par with each other

It is seen that growing of cover crop significantly improved the virgin bark thickness over the absolute control This improvement of bark thickness is due to the addition of nutrients through the litter added from the cover crop and the moisture conserved in the soil (Tables 52 and 53) The positive response obtained here in the virgin bark thickness was in agreement with the findings of Watson (1961) The favourable effects of different levels of nutrition to cover crop on the bark thickness is also in agreement with the findings of Dijkman (1951) and Samsidar BTE Hamzah and Mahmood (1975)

It may also be noted that the positive effect of cover crop and applied nutrition on bark thickness were also reflected on the girth increment already discussed. The girth of the tree is a measurement which also included the thickness of the bark and a greater bark thickness to a certain extent can lead to a higher girth of the trunk (Owen et al. 1957)

# 4 2 2 Effect of cover crop and its nutrition of the leaf litter production of <u>Hevea</u>

The leaf litter production of <u>Hevea</u> was influenced by the growth of cover crop and its nutrition during 1992 and 1993 and are presented in Table 38. It is seen that growth of cover crop in the plots had influenced the leaf litter products significantly (Fig 18) All the treatments with cover crop have produced significantly higher quantity of leaf litter over absolute control during both years Among the levels of nutrition to cover crop  $F_{A}$  was significantly higher than all other levels followed by  $F_2$   $F_3$   $F_1$  and  $F_0$ From the visual observation during the last year, the wintering was delayed 26 days in the cover cropped plots (Plates 5 and 6) there by giving 10 extra tapping days N P and K are the elements related to growth and their application to cover crop has resulted in the enhancement of foliage of cover and <u>Hevea</u> (Brady 1988) This increased folliage by cover crop and its addition through insitu incorporation and decomposition might have improved the nutrient status of soil and inturn more uptake of nutrients by the cover crop (Table 52a-52e) thus resulting in significantly higher quantity of leaf litter produced

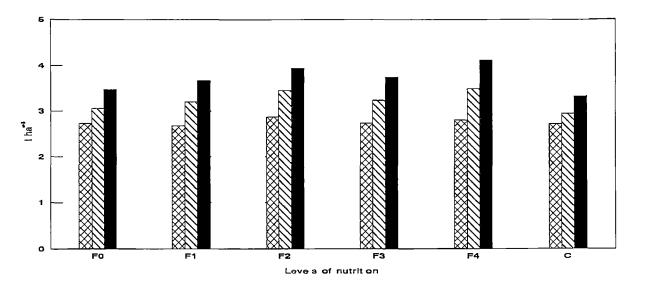

Treatments	1991	1992	1993
Fo	2 730	3 060	3 473
F ₁	2 675	3 202	3 665
F <b>2</b>	2 875	3 447	3 938
F ₃	2 740	3 230	3 745
F ₄	2 800	3 490	4 118
C	2 715	2 940	3 323
SE	0 068	0 035	0 036
CD		0 104	0 109
	NS	S**	S**
S** Signif	icant at P 0		Not significant
			-

Table 38 Effect of covercrop and its nutrition on the leaf litter production of Hevea (t ha⁻¹)

Table 39 Effect of covercrop and its nutrition on the latex flow characteristics

Treatment	Initial flow rate (ml min ⁻¹	Total Vol (ml) )	Plugging index	Dry rubber content (per cent)
	3 473	133 32	2 708	37 19
F1	3 665	144 45	2 783	37 98
F ₂	3 938	146 96	2 730	38 37
- F3	3 745	145 09	2 768	38 0 <b>8</b>
F4	4 118	150 06	2 745	38 53
c	3 223	127 59	2 853	36 19
SE	0 036	5 239	0 004	0 132
CD	0 109	15 787	0 012	0 398
	S**	S*	S**	S**

S* Significant at P = 0 05 level S** Significant at P = 0 01 level Fig 18 Effect of cover crop and its nutrition on the leaf litter production of Hevea (t hai)



⊠ 1991 ⊠ 1992 ■ 1993

Among the levels of nutrition to cover crop, 10 kg nitrogen and 60 kg each of P K has produced significantly higher quantity of leaf litter Nitrogen is the chief nutrient related to growth and its application to cover crop has resulted in the enhancement of foliage (Brady 1988) Though the N content of the soil in the site was not low, it would not have been sufficient to support optimum growth Application of P has increased the production of leaf litter phosphorous is also important for growth and its application has lead to production of more foliage Application of K also has helped in increasing the leaf litter production The role of K in dry matter production and growth is very important (Brady 1988)

# 4 2 3 Effect of cover crop and its nutrition on latex flow characteristics

The latex flow characteristics viz the initial flow rate total volume plugging index and dry rubber content of latex were recorded in october 1993 During the period under reporting the yield is higher and leaves are fully grown and have more or less steady status of nutrients

140

## 4 2 3 1 Initial flow rate

Growing of cover crop has improved the initial flow rate of <u>Hevea</u> over a period of time (Table 39) over the absolute control plot Regarding the levels of nutrition to cover crop  $F_4$  has recorded significantly highest initial flow rate followed by  $F_2$  which was also higher than  $F_3$   $F_1$ and  $F_0$  The control plot recorded the least initial flow rate

Growing of cover crop has improved the soil nutrient status (Tables 41-46) soil moisture content during summer months (Tables 52 and 53) and thus improved the initial flow rate The level of nutrition  $F_4$  and  $F_2$  recorded the highest initial flow rate of latex. The initial flow rate has of course a small contribution to the total yield since it is the average of the initial flow minutes flow The positive effect of applied nutrients on this parameter was reflected in the yield of rubber also to certain extent These findings are in line with the work of Pushparajah (1977) and Punnoose (1993)

#### 4 2 3 2 Total volume

Cultivation of cover crop in the mature plantation has significantly increased the total volume of latex over the absolute control Among the levels of N,P,K  $F_4$ registered highest content of total volume and was on par with  $F_2$   $F_3$  and  $F_1$  The absolute control plot has recorded the least

The reasons for the increased production of total volume in cover cropped plots are similar to that explained in the initial flow rate

It is seen that application of all the nutrients to cover crop had a favourable effect on the total volume of latex. The total volume of latex is the component which has the closest positive relationship with the yield of rubber These nutrients through their role in improving photosynthesis and metabolic activity of the tree might have helped the synthesis of more latex as reported by Punnouse (1993)

#### 4 2 3 3 Plugging index

In the mature plantation, growing of cover crop has significantly reduced the plugging index over the control plot As for the levels of fertilizers are concerned,  $F_2$  and

 $F_4$  has recorded the least plugging index and are on par with each other  $F_0$  has recorded the highest plugging index next to absolute control plot Plugging index has generally a negative response or relation with yield

Reduction in the plugging index in cover cropped plots might be due to the reasons already explained under initial flow rate Application of N and K to cover has reduced the plugging index. The increasing in yield with application of N and K in the experiment could be to some extent related to the effect of these nutrients in lowering plugging index. That is the reason why the levels  $F_4$  and  $F_2$ registered a low plugging index This observation is corroborative with the thoughts of Pushparajah (1981) Yeang and Paranjothy (1982) and Punnoose (1993)

#### 4 2 3 4 Dry rubber content

The dry rubber content of the latex from the cover cropped plots were significantly higher than that of control plot The plot without cover crop recorded the least dry rubber content Among the levels of fertilizers to cover crop  $F_4$  and  $F_2$  were on par and significantly superior over  $F_0$   $F_2$  is on par with  $F_3$  and  $F_1$ 

It is noted that growing of cover crop under mature plantation has improved the dry rubber content The reasons for the improvement are already explained in the initial flow It is also noted that the dry rubber content of latex rate has been increased by application of the various nutrients This could be the result of the favourable effect of these nutrients in improving the conditions of the rubber tree to The volume of latex remaining constant the produce latex yield is directly dependent on the dry rubber content of The favourable effect of the various applied latex nutrients in increasing the dry rubber content of latex has been reflected in the yield of rubber also This finding is in line with the work of Punnoose (1993)

4 2 4 Effect of cover crop and its nutrition on the yield

The mean yield expressed as g tree⁻¹ tapping⁻¹ for 1991-1993 period is presented in Table 40

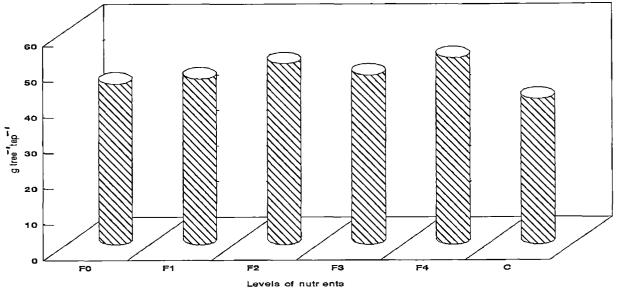

In the mature plantation growing of cover crop has improved the yield of rubber significantly over the absolute control where there was no cover crop The level  $F_4$  and  $F_2$ were recorded significantly higher yield than  $F_3$   $F_1$  and  $F_0$ 

Table 40	Effect of	covercrops and its nutrition on the yield $(g \text{ tree}^{-1} \text{ tap}^{-1})$	1
	of rubber	(g tree ⁻¹ tap ⁻¹ )	

Treatments	Y1eld
Fo	45 10
F ₁	46 51
F ₂	50 77
F ₃	47 49
F4	52 42
с	40 79
SE	0 897
CD	2 703
	S**

S** Significant at P = 0 01 level

Fig 19 Effect of cover crop and its nutrition on the latex yield (g tree' tap')



and are on par with each other Ferrusal of yield attributing characters like girth increment, bark thickness and latex flow characters have clearly broughtout the superiority of  $F_4$  and  $F_2$  in influencing the performance of above attributes. It is to be particularly mentioned that all other levels like  $F_3$   $F_1$  and  $F_0$  are inferior to  $F_4$  and  $F_2$ . Addition of 10 kg N to the cover crop over the recommended dose of 30 kg each P and K had definitely produced a substantial yield increase of rubber. Increasing the level of P and K to 60 kg each in the absence of nitrogen has resulted in drastic reduction of yield (Fig. 19)

The addition of 10 kg N supplemented with 60 kg each of P and K didn t produce any increase in yield over 10 30 30 Application of N has significantly increased the yield. The role of N in increasing the rate of photosynthesis and metabolism is an established phenomenon (Sutcliff and Baker 1974 and Bidweil 1979). This might have resulted in direct increase in yield with application of N. This is further supported by the significant increase in leaf litter production (Table 38) with application of N. The tables on soil organic carbon and <u>Hevea</u> leaf N clearly showed that these parameters were significantly higher in N applied plots ( $F_2$  and  $F_4$ ) It is also seen from Table 39 that the total volume and dry rubber content were significantly higher at  $F_2$  and  $F_4$  levels Positive responses to applied N were reported by Owen <u>et al</u> (1957) Guha (1975) Potty <u>et al</u> (1976) and Punnoose (1993)

Phosphorous is important as a structural part of many compounds in the plant notably nucleic acids and phospholipids and has important role in photosynthesis and energy metabolism (Bidwel 1979) Application of P to cover crop might have improved the rate of photosynthesis of the tree and thereby increased the yield indirectly The significant increase in soil available P and leaf P content (Tables 43 and 48) in the P applied plots further supports the response to P application (Yogaratram and Weerasuriya (1984) Mathew <u>et al</u> (1989) and Punnoose (1993))

Potassium is an activator in enzyme systems and has a definite role in the transport of ATD-ase (Sutcliff and Baker 1974) It is important for the development of chlorophyll and for photosynthesis Table 38 indicates that leaf litter production was significantly increased by the addition of K at 60 kg The available K as well as the leaf

148

K contents were significantly improved by the addition of 60 kg K to cover crop Direct response in yield obtained to application of K also be reported by Angkapradipta <u>et al</u> (1986) and Punnoose <u>et al</u> (1993)

4 2 5 Soil nutrient status

The effect of cover crop and its nutrition on soil organic carbon and available N P K Ca and Mg are presented and discussed

#### 4 2 5 1 Organic carbon

The results obtained from the three years are presented in Table 41 As time progresses the growing of cover crop has significantly increased the organic carbon content over the absolute control plots Among the levels of fertilizers applied to cover crop,  $F_4$  and  $F_2$  were significantly superior to other levels and these two levels were on par with each other during 1992 During the end of the experiment,  $F_4$  and  $F_2$  were significantly higher to other levels and are significantly different from one another During the entire period of the experiment the absolute control plots recorded significantly lesser organic carbon content

Treatments	1991	1992	1993
^F o	1 028	1 083	1 143
F ₁	1 050	1 108	1 165
F2	1 030	1 183	1 288
^F з	1 055	1 118	1 183
F4	1 048	1 210	1 308
С	1 055	1 048	1 083
SE	0 009	0 006	0 005
CD		0 019	0 017
	NS	S**	S**

## Table 41 Effect of covercrop and its nutrition on the soil organic carbon (per cent)

S** Significant at P - 0 01 level

NS Not significant

In the cover cropped treatment plots the dead litter materials deposited on the surface of soil and insitu incorporation resulted in the progressive increase in the organic carbon content when compared to plots without cover crop These findings are in line with the observation of Watson (1961) and Watson <u>et al</u> (1964b)

It is also noted that by addition of all the nutrients are in adequate supply in soil there will be better conservation of organic content of soil (Stevenson 1964 and The gradual buildup of organic carbon in the Brady 1988) soil could be the result of continuous addition of leaf litter from the trees and cover crop The effect of N on the organic carbon status is well known In rubber grown soil it is all the more enhanced Hence it is not discussed in detail Reports of Rubber Research Institute of Malaysia (1976) indicated that application of fertilizers especially N increased the level of organic carbon in the soil

#### 4252 Available N

The available N content in the different years of observations are presented in Table 42 The cover crop plots recorded significantly higher available N content than the

Treatments	1991	1992	1993
^F 0	182 45	209 45	230 88
^F 1	186 45	230 42	259 52
F2	189 70	<b>285</b> 65	315 35
F ₃	190 45	245 25	265 20
F ₄	185 32	292 30	326 45
c	186 45	202 85	215 65
CD	30 350	33 450	36 420
	NS	S**	S**
S** Signific	cant at P 0 (	Di level	

## Table 42 Effect of covercrop and its nutriton on soil available nitrogen (kg ha⁻¹)

NS Not significant

 $\Im$  control plots during the second and third year of observations Available N content in the F₄ and F₂ levels were on par and significantly higher than all other levels

The reasons for the increased available N content in soil were already explained in Experiment 1

#### 4 2 5 3 Available P

The available P content in the different years of observations are presented in Table 43. The cover cropped plots recorded significantly higher available P content than the control plots during the second and third year of observation. Available P content in the  $F_4$   $F_2$  level applied plots were significantly higher than all other levels.

#### 4 2 5 4 Available K

The available K content of soil in different years of observations are presented in Table 44. As in the Experiment I it is noted that in Experiment II also cover cropped plots recorded significantly higher available K content in the soil over the control plots. Among the levels,  $F_3$  recorded significantly higher soil available K

Treatments		991	1992	1993
Fo	20	170	22 565	30 508
F1	20	288	25 685	31 883
F2	20	233	27 715	37 740
^F З	20	205	26 448	32 413
F4	20	313	28 768	38 010
C	20	248	21 470	25 413
SE	0	220	0 091	0 245
CD			0 275	0 738
	NS		S**	5**

## Table 43 Effect of covercrop and its nutrition on soil available P (kg ha⁻¹)

S** Significant at P = 0 01 level

NS Not significant

Treatments	1991	1992	1993
F ₀	128 098	159 098	194 668
F ₁	131 048	155 340	191 843
^F 2	129 293	148 840	169 368
F ₃	130 660	147 493	187 768
F ₄	129 183	146 638	160 120
C	129 115	150 755	190 053
SE	2 2 <b>3</b> 9	2 404	3 113
CD	6 623	6 819	9 383
	NS	S**	S**

#### Table 44 Effect of covercrop and its nutriton on soil available K (kg ha⁻¹)

١

S** Significant at P - 0 01 level

NS Not significant

The reasons for this increase were also already narrated in Experiment I

145

It was observed that application of K significantly increased the available K content of soil as also opined by Pushpadas <u>et al</u> (1978) Lau (1979) and Dissanayake and Mithrasena (1986)

4 2 5 5 Available Ca

The available Ca content of the soil are presented in Table 45 Covercrop grown plots were significantly superior than the absolute control on the available Ca content The levels of fertilizers  $F_3$   $F_4$  are found superior than other levels and were on par with each other Control plots recorded the least value

The reasons for the increased quantity of available Ca content in the cover cropped plots and in the  $F_3$  and  $F_4$ levels were already explained in Experiment I

#### 4 2 5 6 Available Mg

The available Mg content in the soil are presented in the Table 46 The available Mg content of cover cropped

Treatments	1991	1992	1993
F ₀	212 045	280 21	319 33
F ₁	213 97	305 71	355 35
^F 2	221 035	302 38	362 09
F3	213 698	365 58	426 57
F ₄	212 22	363 12	424 85
C	214 948	263 01	288 39
	<b>_</b>		
SE	0 345	0 418	0 536
CD	1 039	1 260	1 616
	S*	S**	S**
S* Significant	at P = 0 05 leve	I	
S** Significan	$\mathbf{t}$ at $\mathbf{P}$ = 0 01 leve	e l	
NS Not sıgnıfı	cant		

Table 45		covercrop, and	ıts	nutriton	on	<b>so</b> 1l
	available	Ca (kg ha ⁻¹ )				

Treatments		1992	1993
Fo	118 57	138 09	157 97
F ₁	120 51	156 64	179 14
F2	118 11	164 63	174 82
F ₃	112 63	158 72	171 08
F ₄	114 77	154 02	169 06
С	116 61	136 91	155 08
SE	0 315	0 349	0 356
CD	0 948	1 052	1 074
	S**	S**	S**

## Table 46 Effect of covercrop and its nutriton on soil available Mg (kg ha⁻¹)

Significant at P 0 01 level S**

plots were significantly higher over the absolute control. Among the levels  $F_1$  has recorded the highest value followed by  $F_2$   $F_3$   $F_4$  and  $F_0$  These levels were significantly differing from one another

### 4 2 6 Effect of cover crop and its nutrition on the <u>Hevea</u> leaf nutrients contents

#### 4 2 6 1 <u>Hevea</u> leaf Nitrogen contents

The reults obtained from 1991 to 1993 are presented in Table 47 It is observed that there was significant difference between the levels of treatments and absolute control The cover cropped plots registered significantly higher leaf N content It may be also seen from the Table on organic carbon that in all the three years the organic carbon content was more in the cover crop grown plots than that of control plot Among the levels of fertilizers applied to cover crop,  $F_4$  and  $F_2$  recorded significantly higher <u>Hevea</u> leaf N

The reasons for the higher leaf N content of <u>Hevea</u> under cover cropped area were already discussed in Experiment I

Treatments	1991	1992	1993
Fo	3 216	3 320	3 427
F ₁	3 285	3 434	3 569
F2	3 419	3 626	3 711
F ₃	3 305	3 529	3 663
F ₄	3 424	3 655	3 906
C	3 0 <b>43</b>	3 074	3 102
SE	0 002	0 066	0 002
CD	0 005	0 199	0 006
	S**	S**	S**
S** Signific	ant at P = 0 01	level	

## Table 47 Effect of covercrop and its nutrition on Hevea Leaf N (per cent)

Regarding the levels of NPK, the increase in the <u>Heven</u> leaf N content in  $F_4$   $F_2$  are due to the application of 10 kg extra nitrogen. This application of N has increased the soil organic carbon (Table 41) which might have lead to greater absorption of N and increased N content of leaf Similar increase in the leaf N content of <u>Hevea</u> from application of N fertilizers were reported by Shorrocks (1962) and (1964) Kalam <u>et al</u> (1980) Sivanadyan (1983) and Punnoose (1993)

#### 4 2 6 2 Hevea leaf P content

The results of <u>Hevea</u> leaf P obtained for the period from 1991 to 1993 are presented in Table 48 The treatments with cover crop recorded significantly higher leaf P content than the control plots

The reasons for the increased <u>Hevea</u> leaf P content in the cover cropped plots were already discussed in detail in the Experiment I

Among the levels of NPK,  $F_4$  recorded significantly higher quantity of leaf P content followed by  $F_2 = F_3 = F_1$  and  $F_0$  and they were on par with each other

160

Treatments	1991	1992	1993
Fo	0 227	0 234	0 237
F ₁	0 236	0 244	0 264
^F 2	0 244	0 255	0 274
F ₃	0 238	0 249	0 260
F ₄	0 251	0 264	0 314
С	0 223	0 225	0 228
SE	0 001	0 002	0 011
CD	0 005	0 005	0 032
	S**	S**	S**

#### Table 48 Effect of covercrop and its nutrition on Hevea Leaf P (per cent)

S** Significant at P = 0 01 level

Application of P has significantly increased the P content of leaf It was already seen that there was significant increase in the soil P level from application of P fertilizers The high P status of soil might have helped in better absorption of P resulting in high P content of *and* leaf Shorrocks (1962) Pushpadas <u>et al</u> (1978), Yogaratnam <u>et al</u> (1984) also reported that application of P improved the leaf P content of <u>Hevea</u>

#### 4 2 6 3 Hevea leaf K content

The results of <u>Hevea</u> leaf K content for the period from 1991 to 1993 are presented in Table 49 It is observed that all the treatments with cover crop registered significantly higher leaf K content than the control plots The reasons are already explained in Experiment I

Among the levels  $F_4$  has recorded significantly higher value followed by  $F_3$   $F_2$   $F_1$  and  $F_0$  and these values were significantly differing from one another. It was already seen that there was significant increase in the soil K level from application of K fertilizers. The high K status of soil might have helped in better absorption of K resulting

Treatments	1991	1992	1993
^F O	1 269	1 306	1 349
F ₁	1 304	1 350	1 429
г ₂	1 319	1 331	1 475
F3	1 347	1 496	1 606
F <b>4</b>	1 459	1 531	1 695
С	1 209	1 235	1 279
SE	0 002	0 033	0 002
CD	0 006	0 009	0 006
	S**	S**	S**

#### Table 49 Effect of covercrop and its nutrition on Hevea Leaf K (per cent)

in high K content of leaf (Shorrocks (1961a) Yogaratman et al (1984) Yogaratman and Mel (1985) and Punnoose (1993)

#### 4 2 8 4 Hevea leaf Ca content

The results of <u>Hevea</u> leaf Ca content for the period from 1991 to 1993 are presented in Table 50. It is observed that all the treatments with cover crop recorded significantly higher value over the absolute control and the reasons are already explained in Experiment I

The level  $F_4$  has recorded significantly higher value followed by  $F_3$   $F_2$   $F_1$  and  $F_0$  and these values were significantly differing from one another. The significant increase in the leaf Ca content with application of P could be the result of addition of rock phosphate which also contains Ca. This is in agreement with the reports of Shorrocks (1961a)  $3 \pm 3$  Pushparajah (1969) and Punnoose (1993)

#### 4 2 8 5 <u>Hevea</u> leaf Mg content

The results of <u>Hevea</u> leaf Mg content for the period from 1991 to 1993 are presented in Table 54 It is noted that

Treatments	1991	1992	1993						
 ^F о	0 823	0 829	0 852						
F 1	0 865	0 894	0 923						
F2	0 874	0 892	0 933						
F3	0 874	0 922	0 969						
F ₄	0 877	0 946	0 981						
С	0 816	0 821	0 833						
 SE	0 002	0 002	0 002						
CD	0 006	0 005	0 005						
	S**	S**	S**						
S** Significant at P = 0 01 level									

Table 50	Effect of covercrop and its nutrition on Hevea Leaf	
	Ca (per cent)	

16.5

Treatments	1991	1992	1993
Fo	0 348	0 374	0 395
F ₁	0 348	0 375	0 399
F2	0 350	0 383	0 407
^F з	0 344	0 381	0 398
F4	0 351	0 383	0 408
C	0 342	0 365	0 381
SE	0 002	0 002	0 002
CD	0 006	0 006	0 008
	S**	S**	S**

Table 51	Effect of covercrop and its nutrition on Hevea Leaf
	Mg (per cent)

S** Significant at P 0 01 level

cover cropped treatments registered significantly higher <u>Hevea</u> leaf Mg content

The levels  $F_2$   $F_4$  were significantly higher on <u>Hevea</u> leaf Mg and on par with each other and followed by  $F_3$  $F_1$  and  $F_0$ 

4 2 7 Effect of cover crop and its nutrition on soil moisture

The soil moisture content in summer months viz January February March and April 1992 and 1993 were estimated analysed and discussed below

From the table it is seen that during the first year for the shallow depth, the soil moisture in the cover cropped plots were higher than absolute control Nutrition to cover crop also increased the moisture content combined effect of both is more pronounced and is significant. The level  $F_4$  recorded higher soil moisture content followed by  $F_2$  during the all the summer months These two levels were on par with each other. These two levels were followed by  $F_3$   $F_0$  and  $F_1$ 

Treatme	ent Ja	n	Feb		Mar	ch	April		
	0-30	30-60	0-30	30-60	0-30	30-60	0-30	30-60	
F ₀	<b>17 2</b> 3	16 39	14 96	15 44	15 29	14 74	15 24	14 28	
F ₁	17 10	16 18	16 68	15 61	15 68	14 <b>9</b> 5	15 58	14 68	
F <b>2</b>	17 9 <del>9</del>	17 00	17 30	16 35	16 10	15 50	16 04	15 10	
F ₃	17 16	16 25	17 20	15 64	15 74	15 09	15 78	14 73	
F ₄	18 01	16 78	17 48	16 46	16 20	15 74	16 25	15 34	
С	11 86	12 21	11 15	11 51	922	11 61	914	10 35	
SE	0 111	0 146	0 070	0 099	0 066	0 108	0 122	0 094	
CD	0 335	0 439	1 838	0 216	0 020	0 326	0 367	0 283	
	S**	S**	S**	S**	S**	S**	S**	S**	

Table 52	Effect of covercrop and its mitrition on the soil moisture
	(per cent) at 0-30 cm and 30-60 cm depth (1992)

S** Significant at P 0 01 level

Treatm	ent Ja	n	Fe	Ъ	Маг	ch	Apr	11
	0-30	30-60	0 30	30-60	0–30	30-60	0-30	30-60
F ₀	17 23	16 05	16 55	15 68	16 25	15 16	16 18	14 88
F1	17 35	16 27	16 69	15 83	16 39	15 19	16 50	14 <del>9</del> 5
^F 2	18 21	17 15	17 69	16 55	17 10	16 16	17 04	15 78
F3	17 83	16 36	16 60	16 08	16 70	15 34	16 55	15 04
F <b>4</b>	18 04	17 19	17 74	16 65	17 26	16 33	17 19	<b>16</b> 10
C	12 63	12 58	12 06	12 08	10 15	11 35	10 01	11 05
SE	0 099	0 072	0 052	0 072	0 094	0 044	0 056	0 057
CD	0 298	0 217	0 157	0 222	0 283	0 1 <b>3</b> 3	0 169	0 172
	S**	S**	S**	S**	S**	5**	S**	S**

Table 53	Effect of covercrops and its nutrition on the soil moisture
	(per cent) at 0-30 cm and 30-60 cm depth (1993)

S** Significant at P = 0.01 level

During first year, for the bottom depth the cover cropped plots recorded significantly higher soil moisture over absolute control Nutrition to cover crop also increased the soil moisture content at later months  $F_2$ levelwas found sufficient on these two levels were on par with each other

During the second year of observation the soil moisture content in the top soil and bottom soil exhibited the same trend as that of the first year. The cover cropped plots recorded significantly higher soil moisture content over the absolute control. The levels  $F_4$  and  $F_2$  have registered a higher value than other levels. These levels were on par with each other and followed by  $F_3$ ,  $F_4$  and  $F_0$ 

The reasons for the increase in the soil moisture content in the cover cropped treatments as well as the nutritional effects were already explained in Experiment I

# 4 2 8 Effect of nutrition on the uptake of nutrients by cover crop Kg ha⁻¹

The nutrients uptake by cover crops were presented in Table 53a 53e

170

Treatment	0ct	1991	0ct	1992	Oct 1993
Fo	7	90	38	52	55 980
F ₁	8	69	40	92	64 200
^F 2	11	74	57	41	91 94
F3	10	25	45	40	69 <b>8</b> 3
F ₄	11	68	67	83	100 88
SE	0	810	0	810	09
CD		470	2	470	2 774
		<u>S</u> "*		<u>s</u> **	<u>S^*</u>

# Table 53a Effect of nutrition on the uptake of N Kg ha⁻¹ by covercrop

Treatment	0ct	1991	Oct 1992	Oct 1993
Fo	0	54	3 39	5 420
F ₁	0	63	4 14	6 380
F ₂	0	86	5 68	9 210
F ₃	0	68	4 58	7 290
F ₄	0	83	694	10 470
SE	0	20	0 50	0 80
CD	1	541	1 541	2 470
		<u>s</u> ^^	<u>S**</u>	<u>\$</u> **

Table 53b	Effect of	nutrition	on	the	uptake	of	Р	Kg	$ha^{-1}$	by
	covercrop									

Treatment	Oct	 1991 _	Oct	1992	Oct 1993	
Fo	7	18	33	45	52 2 <b>2</b>	
F ₁	8	11	38	06	45 83	
F 2	10	75	51	41	83 <b>35</b>	
F ₃	9	44	41	49	64 78	
F4	10	59	60	64	91 28	
SE	1	700	1	30	14	
CD		NS	4	006	4 314 د ^م "	
				<u>s^`</u>	S	

## Table 53c Effect of nutrition on the uptake of K Kg ha⁻¹ by covercrop

Treatment	Oct	1991	0ct	1992	Oct 1993
F ₀	2	15	11	71	17 19
F ₁	2	25	13	61	19 04
F2	3	23	18	54	29 30
F ₃	2	68	15	09	22 72
F4	3	18	22	34	32 51
SE	0	80	1	<b>2</b> 0	1 1
CD	N	5	3	698 <u>5</u> ^	3 389 

.

Table 53d Effect of nutrition on the uptake of Ca Kg ha⁻¹ by covercrop

Treatment	Oct		Oct	1992	Oct 1993
Fo	0 0	31	3	54	5 12
F ₁	0 8	30	4	25	6 38
F <b>2</b>	1 0	99	6	28	9 56
F ₃	0 9	95	4	93	7 07
F ₄	1 3	30	7	81	11 42
SE		50		80	0 5
CD	NE			1 2	NS

Table 53e Effect of nutrition on the uptake of Mg Kg ha⁻¹ by covercrop

During the first year all the nutrients except N there was no significant differences noted between the treatments. From the second year onwards among the levels  $F_2$  and  $F_4$  were on par for the P uptake. For all the other nutrients the level  $F_4$  was found significantly superior over  $F_2$   $F_3$   $F_1$  and  $F_0$ 

Reasons were already explained in Experiment I

### 4 2 9 Effect of cover crop and its nutrition on the growth of <u>Hevea</u> roots and cover crop roots

The effect of cover crop and application of nutrition to cover crop on the growth and development of <u>Hevea</u> root and cover crop root were analysed and presented in Table 54-57 The weight of roots were expressed as  $g \, \vec{m}^2$ 

4 2 9 1 Hevea roots at 0-7 5cm soil layer

Covercrop grown treatments recorded significantly higher weight of <u>Hevea</u> roots than under no cover Among the levels,  $F_4$  has recorded significantly higher root weight than  $F_2$  and followed by  $F_3$   $F_1$  and  $F_0$ 

Treatment	1991		199	)3
F _O	312 30	18	411	013
F ₁	331 96	3	432	770
F ₂	326 38	0	487	875
F ₃	331 04	5	471	238
F ₄	338 93	1	514	83
С	245 01	3	248	388
				·
SE	8 01	2	5	438
CD	24 14	5	16	389
	S**	r	:	5**
S## Sidnificent	at P _ 0 01 le	ave l		

## Table 54 Effect of growing covercrops on the growth of rubber roots $(gm^2)$ 0-7 5cm soil layer

S** Significant at P - 0 01 level

Table 55 Rubber roots $(gm^{-2})$ above ground leve	Table 55	Rubber	roots(gm ⁻² ) above	ground	level
-----------------------------------------------------	----------	--------	--------------------------------	--------	-------

Treatment	1991 	1993
Fo	123 450	159 8
F ₁	135 588	177 013
۲ ₂	142 978	209 5
F ₃	144 233	202 463
F ₄	154 638	220 163
C	74 813	112 595
SE	2 885	6 168
CD	8 694	18 587
	S**	S**

S** Significant at P 0 01 level

#### 4 2 9 2 <u>Hevea</u> roots above ground level

The situation is similar to that at 0-7 5cm soil layer The reasons for the vigorous development of surface roots at both 0.7 5cm and above ground level under legume cover are due to the heavy mulch of dead leaves that built up under cover crop (Table 54) This would have increased the soil moisture content (Tables 52 and 53) Under the absolute control treatment there was no cover crop and fully infested with weeds predominately by grasses These grasses rooted vigorously on surface and hence least <u>Hevea</u> root development occured in the control treatment Similar finding was observed by Watson <u>et al</u> (1984)

# 4 2 9 3 Covercrop roots at 0-7 5cm soil layer and above ground level

Among the levels  $\Gamma_4$  and  $F_2$  had recorded significantly higher weight of cover crop roots than all the other levels  $F_4$  and  $F_2$  were on par with each other. This might be due to the direct effect. At  $F_4$   $F_2$  levels the biomass of cover crop (Table 59) were also highest and hence better rooting under these levels

Treatments	1991	1993
Fo	15 275	67 868
^F 1	17 175	66 968
^F 2	18 583	73 993
Гз	18 075	69 868
F4	19 198	81 900
SE	1 801	2 810
CD	5 427	8 469
	S*	S**
S* Significant	at $P = 0$ 05 level	
S** Significant	at P = 0 01 level	

### Table 56 Effect of nutrition to covercrops on the growth of covercrop roots 0-7 5 cm layer of soil ( $gm^2$ )

Treatments	1991	1993
F ₀	6 943	37 270
F ₁	9 <b>56</b> 5	42 370
F2	10 615	46 278
F ₃	9 100	41 243
F4	10 825	81 593
SE	0 278	1 549
CD	0 838	4 667
	S*	S** \

### Table 57 Effect of nutrition to covercrop on the growth of covercrop roots above ground level( $g = \frac{2}{3}$ )

S* Significant at P = 0 05 level

S** Significant at P = 0 01 level

Treatment	C N 1	at10
FO	14	35
F ₁	13	38
F2	11	40
F ₃	13	30
F ₄	11	18
С	26	68
SE	1	056
CD	3	181
		5**

S** Significant at P = 0 01 level

# 4 2 10 Effect of cover crop and its nutrition on the C/N ratio

The impact of cover crop and its nutrition on the C/N ratio are presented in Table 58

Among the treatments the cover crop grown plots recorded significantly lower C/N ratio where as the control plot recorded the highest C/N ratio Among the levels,  $F_4$  and  $F_2$  recorded least value and are on par with all other levels grown with cover crop

Leguminous creaper has been shown to mobilise greater quantities of nitrogen phosphorus and calcium than the control plots Since the litter from the cover crop has a low C/N ratio, it would be expected to mineralise rapidly with its nutrient content becoming quickly available again for uptake by <u>Hevea</u> or cover crop itself. These results are in conformative with the work of Watson (1981)

## 4 2 11 Effect of cover crop and its nutrition on the biomass production of cover $\operatorname{crop}(\operatorname{Kg} \operatorname{ha}^{-1})$

Biomass of cover crop produced from October 1991 to October 1993 were recorded at six monthly interval analysed and discussed below

	19	991			1992	992		1993		
Treatment	Oct	1991	Apı	-11 9	2 Oc	-t 92	Ap1	·11 93	3 Oc	;t 93
Fo	324	50	791	50	1457	75	1773	50	2277	25
^F i	359	00	841	25	1635	00	2043	50	2573	50
^F 2	460	50	1100	00	2143	75	3170	75	3476	00
F ₃	413	00	992	50	1774	75	2265	25	2770	75
F ₄	451	00	1176	75	2495	50	3492	5 <b>0</b>	3767	25
SE	14	547	10	73 <b>9</b>	20	708	15	231	15	341
CD	44	827	33	094	63	814	46	937	47	273
	S,	**	S	**	S	\$ <b>*</b>	2	5**	5	3**
<b></b>										

S** Significant at P - 0 01 level

During the early stage Ort 91  $F_2$  was found to be superior as the growth is limitted addition of 10 Kg Nitrogen has increased the nodule count with that higher biomass. At this stage  $F_2$  is sufficient and cover crop has no capacity to utilize 60 Kg P and K. As the time passed more uptake of P and K is noticed and from first year onwards  $F_4$  is superior and is followed by  $F_2$ 

The reasons were already explained the Experiment I

### 4 2 12 Effect of cover crop and its nutrition on weed drymatter production

The quantity of weed drymatter produced in Kg ha⁻¹ in the experiment is analysed and the same is presented and discussed. The recording of weed drymatter production were undertaken at six monthly interval

It is noticed from the table that during all the three years form October 1991 to Oct 1993 there was significant difference found between the treatments and absolute control on the weed DMP There was a drastic reduction in weed DMP when the level of fertilizers to

189

								•		
Treatment	199 Oct 1		Арг		992 Oct	92	Apr		993 Ocl	: 93
F ₀	501	75	766	50	1095	00	903	25	873	00
Fi	405	00	659	00	960	25	781	50	769	50
F2	605	00	504	75	789	75	568	00	494	25
F ₃	5 <b>2</b> 5	75	638	25	888	50	758	50	742	75
F4	287	<b>2</b> 5	458	25	765	00	620	75	499	00
C	1010	25	1489	25	18 <b>3</b> 0	75	1713	50	1921	75
SE	25	123	37	556	31	036	42	<b>53</b> 9	19	367
CD	75	713	113	185	93	5 <b>3</b> J	128	198	58	365
	:	5**	:	5**	S	**	S,	**	S	**

Table 60	Effect of covercrop	and	ıts	nutrition	on	the	weed
	DMP (Kg ha)						

S** Significant at P 0 01 level

cover crop were increased The level  $F_2$  was found to be optimum in 1993 where as  $F_2$  and  $F_4$  were found on par in 1991 and 1992

The reasons were already explained in Experiment I

#### 4 2 13 Soil physical characters

The effect of cover crop and its nutrition on soil moisture retention total porosity bulk density and aggregation percentage at two depths viz 0-30 and 30-60 cm are presented and discussed below

#### 4 2 13 1 Soil moisture retention capacity

The moisture retentive capacity of the soil was worked out at the beginning and end of the experiment at -0 033 Mpa and at -1 5 Mpa pressures at two depths viz 0-30 and 30-60 cm and are presented in Tables 61 and 62 Soil moisture retention was higher in the cover cropped plots than absolute control At -0 033 Mpa and at -1 5 Mpa pressure the final analysis of soil moisture retention of shallow depth were significantly differing each other Among the levels at

			en der			 0 - 60		
Treatment	1991	initial						
Fo	28	853	27	075	29	050	30	475
F ₁	26	600	27	375	28	863	31	195
F2	25	688	28	875	28	575	32	100
F3	26	575	27	938	29	<b>2</b> 00	31	138
F ₄	26	438	28	913	29	350	32	500
ι	26	188	26	350	29	438	29	813
SE	1	103	0	252	0	377	0	388
CD	1	NS	0	758	i	NS	И	IS
				5*				
S* Signi	fican	tat P =	0 05	level				

Table 61	Effect of covercrops and its nutrition on the soil
	moisture retention capacity at 0 033 Mpa

NS Not significant

Treatment	1991				30 1991			
Fo	19	463	20	650	22	050	23	763
F ₁	18	938	20	800	23	238	24	800
F2	19	125	21	825	23	880	25	588
F ₃	19	138	21	338	23	500	24	700
F ₄	19	113	22	013	23	438	25	800
С	19	013	19	263	22	475	22	850
SE	0	253	0	192	0	254	0	259
CD	1	NS	0	358	]	NS	ł	15
			;	S**				

#### Table 62 Effect of covercrops and its nutrition on the soil moisture retention capacity at -1 5 MPa

S** Significant at P = 0 01 level

NS Not significant

shallow depth,  $F_4$  was found on par with  $F_2$  at both pressures At deeper depth there was no significant change observed

The reasons were already explained in Experiment I

### 4 2 13 2 Total porosity bulk density and aggregation percentage

The soil was analysed for its total porosity bulk density and aggregation percentage at the end and begining of the experiment at two depths viz 0-30 and 30-60 cm and were presented in Table 63 All three characters of soil at 0 30 cm depth were significantly higher in the cover cropped treatments than the absolute control At shallow depth of soil these physical properties were improved by cover cropping Among the levels,  $F_4$  and  $F_2$  were on par with each other

The reasons for the above results were already explained in Experiment I

### 4 2 14 Effect of cover crop and its nutrition on the microbial population in soil

The microbial population of the soil were analysed for the generalized count of bacteria fungi and phosphate

190

Treat	ment	Total por	osity 1	Bul	lk density	gcc 1	Aggregat	tion 2
	0	30	30 60	σ	30	30 50	0 30	30 60
	1991	1993	1991 199	93 1991	1993	1991 1993	1991 1993	1991 1993
F ₀	46 51	47 9	48 71 49	16 1 21	1 20	126 125	85 63 88 60	79 48 80 93
F ₁	46 89	48 93	48 71 60	65 1 21	1 20	1 26 1 24	85 18 89 55	79 18 80 23
F ₂	47 66	49 51	48 79 52	66 1 22	1 19	1 26 1 24	66 25 92 35	78 88 80 05
F ₃	48 23	49 65	48 75 61	43 1 21	1 20	1 25 1 24	85 93 90 83	79 78 80 <b>93</b>
F4	47 64	49 79	47 89 52	70 1 21	1 19	1 25 1 24	79 08 <b>91</b> 95	79 43 80 48
C	46 58	47 38	48 30 49	53 1 21	1 21	1 26 1 25	86 80 87 35	79 8 80 60
SE	0 360	0 267	0 299 4	04 0 010	0 0 0 0 6	0 005 0 005	0 709 0 326	0 849 0 304
CD	NS	0 805	NS 1	NS NS	0 014	ns ns	NS 0 982	NS NS
		522			<b>S11</b>		S##	

```
SII Significant at P = 0 01 level
```

NS Not significant

Table 64 Fffect of growing covercrop and its nutrition on the microbial population of the soil x 10⁴ g⁻¹ of soil

 Treatme		er18	 Fungı		Phosph solubl	
			Initial F		Initi <b>al</b>	Final
Fo	27 025	37 800	9 750 11	503	4 638	6 538
F 1	28 650	<b>38 6</b> 25	10 075 12	600	4 620	7 500
<b>F</b> 2	28 675	49 375	9 <b>750</b> 1 <b>3</b>	563	4 543	7 333
Fз	28 175	46 825	10 125 13	280	4 700	7 675
F ₄	27 650	49 050	10 025 13	918	4 543	7 813
с	27 450	<b>29</b> 85	9 875 10	888	4 355	4 488
SE	0 463	0 938	0 675 0	082	0 1 <b>03</b>	0 061
CD	NS	<b>2 8</b> 56	NS O	246	NS	0 185
		S**		S**		S**

S** Significant at P = 0 01 level

NS Not significant

(Table 64) All the microbial population were increased over the initial count in the cover cropped plots which was found significantly higher than the absolute control

Among the levels,  $F_4$  and  $F_2$  were found to be on par with each other and significantly higher in the bacteria and fungi count Phosphate solublizers were higher in  $F_4$ level followed by  $F_3$   $F_1$   $F_2$  and  $F_0$ 

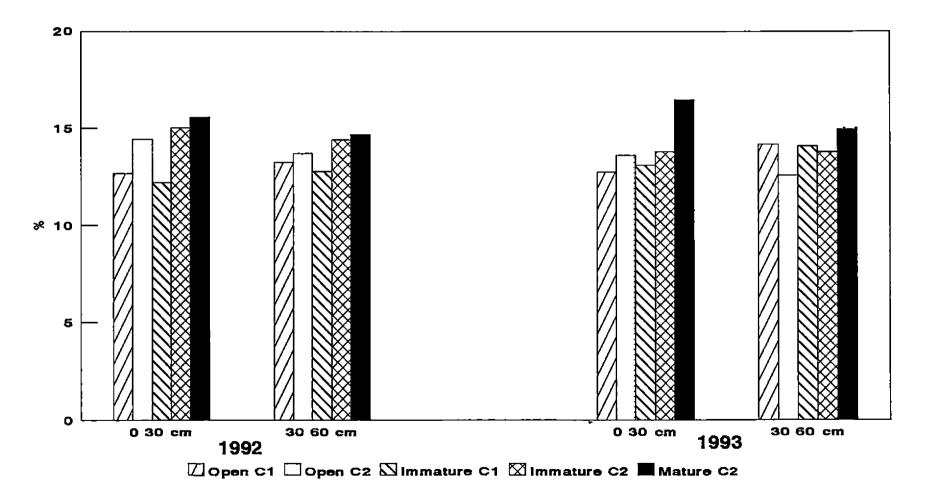
The reasons were already explained in Experiment I

#### 4 3 Experiment III

Inorder to study the comparative effect of cover crops alone and that of cover crops with rubber a series of microplots were put under <u>Pueraria</u> and <u>Mucuna</u> The cover crops were retained for 3 years and various biometric observations moisture content at different depths nutrient uptake soil status of available nutrients and microbial activities were studied The data obtained from these microplots were compared with cover crops grown with immature rubber as well as that of mature In mature plot only <u>Mucuna</u> was grown as cover crop These datawaye complied from three different experiments and hence statistical interpretation is not attempted

4 3 1 Soil moisture percentage

The data of soil moisture in percentage is presented in Table 65


In the second year of observation (1992) at shallow depth, <u>Mucuna</u> ( $C_2$ ) has recorded more moisture than <u>Pueraria</u> ( $C_1$ ) in both pure cover cropped area as well as cover crop grown with immature rubber. More or less same trend is noted at deeper layer also. In 1993 April, at 0-30cm depth also the trend is somewhat simillar. Where as at 30 60cm depth  $C_2$  has recorded lesser moisture content than  $C_1$  under both pure and immature rubber situation. In the initial stages of cover crop  $C_2$  has more moisture percentage because of more soil cover. However in the deeper layer  $C_2$  has recorded lesser moisture content in both situations probably because of its deep roots and would have obsorbed more moisture from the deeper layers. The performance of  $C_2$  in mature rubber

			-	tage (Apırl
	 19	 92 April		
	0-30 cm	30 60 cm	0-30 cm	30-60 cm
Open				
с ₁	12 66	13 25	12 75	14 19
°.2	14 45	13 70	13 62	12 59
Immture				
C ₁	12 20	12 78	13 12	14 08
د <b>ء</b>	15 05	14 42	13 82	13 77
Mature				
с ₂	15 58	14 68	16 50	14 95

Table 65 Comparison among open, immature and mature

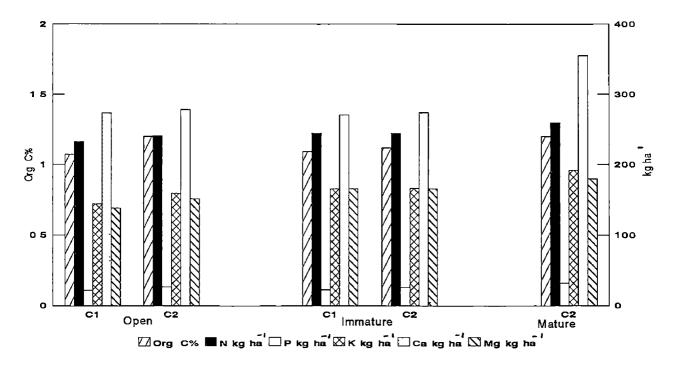
195

# Fig 20 Effect of cover crops on the soil moisture percentage (April 1992 & 1993)



showed that at 30-60 cm depth there was reduction of soil moisture content than shallow depth. This decreased soil moisture percentage at lower depth by  $C_2$  has no way affected the girth of rubber and is seen from girth increment height increment latex yield (Tables 36 37 and 40). This shows that there was no competetion for moisture at deeper depth by growing <u>Mucuna</u> ( $C_2$ )

#### 4 3 2 Soil nutrient status


The data of soil available nutrients viz organic carbon (%) mitrogen phosphorus potash calcium and magnesium (kg ha⁻¹) are presented in Table 66

Organic carbon nitrogen phosphorus potash calcium and magnesium are at a higher level in the mature area than the other two situations (Fig 21) Among the cover crops,  $C_2$  has registered higher values of all the available nutreints than  $C_1$  under both pure as well as in the immature stage The table on the leaf litter production under mature condition showed that a huge quantity of <u>Hevea</u> leaf litter is added at every year which contains lot of nutrients This phenomenon is lacking under the pure as well as in the immature stage Among the vover crops,  $C_2$  has

	Organic carbon %	N kg ha ⁻¹	 P kg ha ¹	K Kg ha ¹	Ca Ca kg ha ⁻¹	Mg kg ha- ⁻¹
Open						
° _i	1 072	232 740	21 805	<b>194 23</b> 0	273 220	137 695
^ر ء	1 201	240 610	26 800	158 470	277 885	151 635
Immatu	re					
c ₁	1 093	244 570	22 980	165 220	270 43	165 170
⁽ 2	1 120	244 830	2 <b>6</b> 020	165 850	273 87	165 220
Mature						
۲2	1 200	259 520	31 883	191 843	355 350	179 82

Table 66Comparison among open immature and mature situation on<br/>soil nutrient status

Fig 21 Effect of cover crops on the soil nutrient status (1993)



produced more of dead leaf litter which is added insitu and incorporated. This might have contributed to the increased available nutrients over C₁ under pure and immature situations

#### 4 3 3 Uptake of nutrients by cover crops

The uptake of nutrients by cover crop is presented in Table 67

Uptake of nutrients under open and immature situations are higher than that under mature situation (Fig 22) Among the cover crops,  $C_2$  has taken highest quantities of nutrients than  $C_1$  and thus produced higher biomass and lesser weed DMP Uptake of nutrients by cover crops under open and immature situations are more or less similar Higher biomass production of cover crops under open and immature situations might have contributed to the increaseduptake of nutrients

### 4 3 4 Blomass of cover crops kg ha-1

The biomass produced by cover crop is presented in Table 67 Table 67 Uptake of nutrients by cover cropsBiomass ofcover cropandWeedDryMatterProduction(Kg ha⁻¹)

	N1 1	trogen		nos– norus		otash				agne-	Bio mass		Weed DMP	d) 
Ope <b>n</b>														
c _i	68	75	5	95	64	80	20	19	3	76	2805	00	776	1
с ₂	92	75	7	92	83	85	26	26	8	89	3598	00	617	9
Immatur	e													
c _i	68	44	5	98	42	50	15	40	5	20	2663	33	790	C
с ₂	86	84	6	40	46	50	19	15	6	35	3265	00	598	C
Mature														
с ₂	64	20	6	38	45	83	19	04	6	38	2573	5	769	5

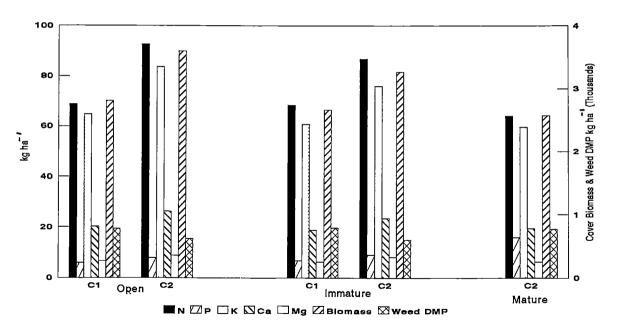



Fig 22 Effect of covercrops on nutrient uptake, Biomass of cover and weed DMP (kg ha⁻) Biomass of cover crops produced under pure stand is higher than that under immature situation (Fig 22) The cover crop  $C_2$  has produced more quantities of biomass which is comparable with  $C_1$  under immature and pure situation The,  $C_2$  under mature situation is comparitively lesser over the other two situations

N0°

Under pure stand there  $\omega_{4}$ s no shade effect and hence better quantum of biomass which  $\omega_{4}$ s absent under immature situation. Under immature situation partial shade from young rubber plants might have reduced the biomass of cover crop. The cover crop C₂ is genitically vigours in growth and has produced more biomass. C₂ can be recommended as a good cover crop under mature plantation. Under mature situation canopy of <u>Hevea</u> is fully closed and light penetration is limitted hence biomass of C₂ is comparitively lesser than the other two situations

4 3 5 Weed drymatter production

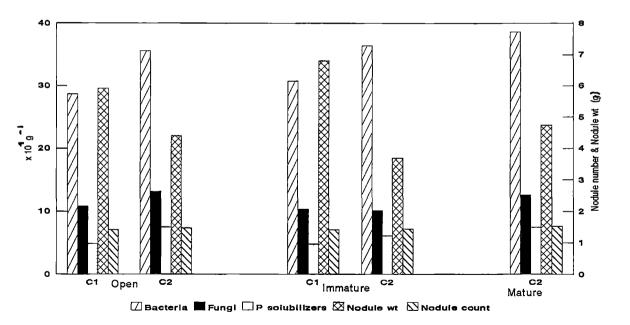
The weed drymatter production is presented in Table 67



Weed drymatter produced under all the three situations are similar (Fig 22) Among the cover crops  $C_2$ has registered lowest quantity of weed dry matter under pure as well as immature situation proving its efficiency in smothering weeds

4 3 6 Soil microbial population

The data of soil microbial population is presented in Table 68 The general count of bacteria fungi and phosphate solubilizers were under taken and discussed with respect of the situation (Fig. 23)


The microbial count of the soil showed that the count under mature situation is higher than the other two situations. Among the pure and immature stand there was not much difference. The cover crop  $C_2$  has recorded higher count of microbes over  $C_1$  under all the situations.

The soil moisture content and the organic carbon content (Tables 65 and 66) were higher under mature situation This might be the reason for the increased microbial population Among the cover crops, under  $C_2$  the

Table 68 Comparison among open immature and mature situations on soil microbial population  $x = 10^4 \text{ g}^{-1}$  of soil machile count and weight ( $9^{-2}$ )

		Bacteria		Fung 1		Phosphate		Nodule				
	-								Count No			
Open C ₁		28	71	10	787	4	860	5	920	1	410	
^ر ء		35	57	13	175	7	505	4	400	1	475	
Immture	с ₁	30	800	10	30	4	82	6	800	ł	422	
	^C 2	36	433	10	10	6	13	3	700	1	442	
Mature	[¢] 2	38	625	12	600	7	500	4	750	1	525	
								-				

Fig 23 Effect of covercrops on the soil microbial population  $x 10^4$  g of soil (1993) Nodule count and weight plant (40DAS)



biomass addition of cover litter higher soil moisture content and organic carbon content might have increased the soil microbial activities

#### 4 3 7 Nodule count and weight $plant^{-1}$

Nodule count and weight are presented in the Table 68 The nodule count of  $C_1$  is higher than  $C_2$  The weight of nodules under  $C_1$  are comparable with  $C_2$  The reason is that the nodule size of  $C_2$  is bigger than  $C_1$  (Fig 23)

#### 4 4 Correlation studies

In order to explain the relationship between some of the important characteristics with girth and height increment of cover crop under immature and girth and yield under mature situations correlation studies were attempted The correlation coefficients have been worked at on all possible relationships however only the important and relevant correlations are presented and discussed in the text

### 4 4 1 Correlation of girth with other characteristics of $C_1$ and $C_2$ under immature situation

Table 69 indicated that girth was significantly and positively correlated with cover crop biomass nutrient uptake soil available nutrients soil moisture contents <u>Hevea</u> leaf nutrients and significantly and negatively correlated with weed dry matter production under both  $C_1$  and  $C_2$  grown conditions

It is noted that N content of soil and leaf were positively correlated with girth increment and the correlation was significant. It has already been noticed that application of N increased the girth increment (Tables 63 and 67) as well as the N contents in leaf (Table 47) Application of N has enhanced the girth increment because of the effect of this nutrient on vegetative growth characters This is evidenced by the correlation obtained between girth increment and N contents of leaf and soil. The increased N content in the <u>Hevea</u> plant might have helped in enhancing the girth

The girth increment was also correlated with the P and K content of soil and leaf This could be due to the

			1991 1993	1941	1993				
Characteristics	G	irth inci	1991 (993 rement (r)	Height 1991 (993 Height Increment (r)					
Cover crop biomass	0	6611**	0 7920**	0 7959**	0 7764				
Cover crop nutrier	-								
И		9592 ^{**}	0 8130**	0 7 <b>516^{**}</b>	0 6718*				
Р		8483**	0 8018**	0 6016**	0 6048*				
K		4574**	0 7743**	0 4675**	0 6677**				
Ca		6512 ^{**}	0 6215**	0 6212**	0 6055*'				
Mg	0	8 <b>0</b> 10 ^{**}	0 7916**	0 7560**	0 7422**				
Soil available org	anic								
С	0	6003**	0 6470 ^{**}	0 7962**	0 5723**				
N	0	9497**	0 9480 ^{**}	0 7835**	0 7370**				
Р	0	8065 ^{**}	0 7734**	0 7570 ^{**}	0 6197*				
к	0	8250 ^{**}	0 8402**	0 8561**	0 7256*'				
Ca	0	7544**	0 7956**	0 4808**	0 5680*				
Mg	0	9019 ^{**}	0 5418 ^{**}	0 5785 ^{**}	0 3078*				
Soil Moisture Ja	<b>,</b> 0	8601**	0 8876**	0 7342**	0 6192**				
030 cm F.	60	7394**	0 8591 ^{**}	0 6253**	0 5977*				
M	v 0	8609**	0 7185 ^{**}	0 7539**	0 7172*				
Aş		8035 ^{**}	0 8578**	0 7288**	0 6888*				
30-60 Ja		6991**	0 8293 ^{**}	0 7289 ^{**}	0 7428*				
F		6008**	0 5206**	0 6894**	0 6709*				
м	LV 0	3854 ^{**}	0 7611 ^{**}	0 5110**	0 7119*				
A		8894 ^{**}	0 7907**	0 8093**	0 7754*				
Hevea leaf nutrier									
N	0	8035 ^{**}	0 8102**	0 8127**	0 7117*				
Р		6376 ^{**}	0 6244**	0 8391**	0 5986*				
К		4738 ^{**}	0 4823 ^{**}	0 7003**	0 3508				
Ca		9598 ^{**}	0 7704**	0 8294**	0 6922*				
Ma		8088**	0 6508**	0 9031**	0 7465*				
Weed dry matter p	oduc	tion							
-		6215 ^{**}	-0 7321**	-0 7145 ^{**}	-0 7040*				

Table 69 Correlation coefficient (r) of girth&height increment as related to important characteristics (Treature Rever.)

****** Significant at P 0 01 level

favourable effect of applied P and K on these characters There was positive correlation between girth increment and Ca contents of leaf and soil Calcium 19 very important for growth as it is constituent of the cell wall (Sutcliff and Baker 1974) Similar correlation between girth increment and soil N and P were reported by Pusharajah et al (1984) and correlation between girth increment and leaf N by Sivanadyan (1983) and Weerasuriya and garatnam (1988)

The girth increment and heiler vere also correlated with soil moisture content during er months moisture content during summer months positively correlated with girth and h reasons may be correlation of girth increments The bid with other

4 4 2 Correlation of girth and characteristics of C₁ and C₂ und ^{1 th} other ^{situation} Table 70 indicates that girt significantly and positively correlated wild were uptake of nutrients by cover crop It may ^{af} and application of N P and K to cover crop mit the

70-

-	Girth (r)	Yield (r)
ter	0 8312**	0 8154**
N	0 7108**	0 8710**
Р	0 7288 ^{**}	0 8550**
К	0 6841**	0 5602**
Ca	0 7215**	0 5382**
Mg	0 7799**	0 7539**
rients		
N	0 8351**	0 8486**
Р	0 6225**	0 6884**
ĸ	0 7196**	0 6586**
Ca	0 8986 ^{**}	0 6480 ^{**}
Mg	-0 60 <b>93^{**}</b>	-0 6242**
J	0 2589	0 3577**
Feb	0 3764**	0 4925 ^{**}
Маг	0 7264 ^{**}	0 9167 ^{**}
Apr	0 8143**	0 8830**
Jan	0 4731**	0 7756**
Feb	0 5162 ^{**}	0 5724**
Mar	0 6149**	0 8449 ^{**}
Арг	0 6152**	0 8837**
7	-0 7731**	-0 8307**
na 33	0 7778**	0 8891**
	ts	
MTM	0 7409 ^{**}	0 8729**
Р	0 6333**	0 6548 ^{**}
K	U 7032 ^{**}	0 8409**
Ca	0 5814**	0 6894**
	0 7582**	0 8206**
	N P K Ca Mg lents N P K Ca Mg J Feb Mar Apr Jan Feb Mar Apr Jan Feb Mar Apr Jan Feb Mar K K	-       -       -       -       -         Ser       0       8312**       N       0       7108**         N       0       7108**       N       0       7288**         K       0       6841**       0       0       7215**         Mg       0       7215**       Mg       0       7799**         Stents       N       0       8351**       N       0       8351**         N       0       8351**       N       0       8351**         P       0       6225**       N       0       0       0         Ca       0       8986**       Ng       -0       6093**       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0

Table 70Correlation coefficient (r) of girth and yield as<br/>related to important characteristics (Mature Hevea)

the soil leaf nutrients resulting in a significant and positive correlation Similar relations were also obtained between soil moisture and the above characteristics, girth and yield, moisture content during summer months

Weed dry matter production was significantly and negatively correlated with the girth and yield of <u>Hevea</u>

The reports of Shorrocks (1962) Pushparajah (1969) and Pushparajah (1977) also indicated positive correlation between girth and yield with nutrient contents of soil and leaf Negative relations of Mg were also reported by Yip (1990)

## **SUMMARY**

#### 5 SUMMARY

Field experiments were conducted to study the effect of cover crops on the nutrient dynamics in rubber plantations There were three field experiments and were conducted at Bethany Estate Mukkampala Kanyakumari District from February 1991 to October 1993, they were

- 1 The effect of cover crops on the nutrient dynamics in the immature rubber plantation
- 2 The effect of cover crop on the nutrient dynamics in the mature plantations and
- 3 Microplot study of cover crops alone

η

In Experiment I there were two cover crops viz Pueraria phaseoloides and Mucuna bracteata and five levels of 0 30 30 10 30 30 0 60 60 and 10 60 60 with 0 0 0 NPK V1Z one year old RRII-105 replicated thrice and statistically laid in RBD In Experiment II there was one cover crop Mucuna sp alone with five levels of NPK as above with 8 years old RRII-105 replicated 4 times and statistically laid in RBD In Expt III there were 10 microplots with both The results of the investigations are cover crops summarised below

704

#### Salient findings

- (1) N P K Ca Mg content of both <u>Hevea</u> and cover crops were increasing as the crops growth progressed Fertilizer application to cover crops improved the <u>Hevea</u> leaf nutrient content than the absolute control Among the levels, 10 30 30 was found optimum <u>Mucuna</u> was found better than <u>Pueraria</u> in increasing the <u>Hevea</u> leaf nutrient content
- (2) Girth increment was better with 10 30 30 This was found to be optimum under both experiments. More height increment was observed in this level as well as in cover cropped treatments when compared to absolute control
- (3) Biomass production of cover crops were maximum at10 60 60 followed by 10 30 30 under both experiments
- (4) Root weight and length were higher in <u>Mucuna</u> and it was found increasing as the crop growth progressed
- (5) Nodule count was higher in <u>Pueraria</u> and the fresh weight of nodule per plant was higher in <u>Mucuna</u> as the size of its nodule was found bigger

(8) Soil moisture retention capacity was found higher under cover cropped plots at both shallow (0-30cm) and deeper (30-60 cm) soil depths at -0 033 and -1 5 MPa pressures Pore space and aggregation percentage than control were improved where as bulk density decreased Among the levels of NPK, 10 30 30 was found optimum in improving the soil physical properties The percentage of improvement was found greater at shallow depth of soil than deeper Soil moisture content during summer months were improved in the cover cropped area The _ the top soil (0-30cm) was lesser soil moisture in than the bottom soil (30 80cm) in <u>Pueraria</u> grown plots This trend was reverse in the case of Mucuna Reason for this trend is attributed to the deep rooted nature of Mucuna

ø

- (7) Growing of cover crops improved the microbial population of bacteria fungi and phosphate solubilising organisms The level 10 30 30 was found optimum for the better microbial activity
- (8) 10 30 30 was found optimum for better yield and Latex Flow Characteristics Covercropping has increased the latex yield by 15-20%

- (9) 10 30 30 was optimum for better leaf litter production of <u>Hevea</u> In cover cropped plots the leaf litter production was higher and wintering was delayed by 28-30 days over the control This has enhanced 10 additional tapping days
- (10) Girth is positively correlated with cover crop biomass nutrient uptake soil available nutrients soil moisture contents and <u>Hevea</u> leaf nutrient contents Strongest correlation for girth was found with <u>Hevea</u> leaf N content and uptake of N by cover crops suggesting the importance of foliar diagnosis Yield was negatively correlated with Mg content of soil

#### Conclusion

- 1 Growing of cover crop is beneficial and absolutely essential in rubber plantations
- 2 Best cover crop for rubber is <u>Mucuna</u> self generating fast growing shade tolerant and not eaten by cattle and performs well under immature and mature phase of <u>Hevea</u>

- 3 Optimum level of nutrition for cover crop is 10 30 30 from the point of its contribution to the rubber plants are concerned
- 4 Soil physical chemical and biological properties were improved by growing cover crops
- 5 There was absolutely no competition for moisture between cover crops and main crop
- 6 Weed growth was suppressed to a greater extent
- 7 Yield and Latex Flow Characteristics were greatly enhanced by the cover crops
- 8 Wintering was delayed to an extent of 30 days thereby giving 10 extra tapping days
- 9 Growing of cover crops are absolutely essential for maintaining higher productivity of the rubber soil especially in a tropical situation like ours where rainfall is very high

## REFERENCES

### RFFFRFNCFS

- Ananth K (1966 Manuring of rubber an outline <u>Rubb</u> <u>Bd Bull</u> 8 15 18
- Angkapradipta P Tuti-warsito and Nurdin M S 1986 Testing the N P and K fertilizer recommendation rates for clone GTI on latosol <u>Menara Perkebunan</u> 54 111-119
- Belgrave E N C 1939 The effect of covercrops on soil moisture <u>Malay agric</u> J 18 492
- Bidw()] R G S 1979 <u>Plant Physiology</u> Mac millan Publishing Co Inc New york pp 247-556
- Bolton J 1960 The effect of fertilizers on pH and the exchangeable cations of some Malayan soils <u>Pric</u> <u>Nat Rubb Res Conf</u> Kuala Lumpur Part II pp 70-80
- Bolton J 1964 The response of immature <u>Hevea brasiliensis</u> to fertilizers in Malaya 1 Experiments on slate derived soils J <u>Rubb Res Inst Malaya</u> 18 67 79
- Brady N (1988 <u>The Nature and Properties of Soils</u> Furasia Publishing House (P) Itd New Delhi pp 137 779

冿

Bray R H and Kurtz U T 1945 Determination of total organic and available forms of phosphates in soils <u>5</u> Soil Sci 59 39-45

- Bremner J M 1956 Some soil organic matter problems <u>Soil</u> <u>and Fert</u> 19 115
- Bioughton W J 1977 Effect of various covers on soil fertility under <u>Hevea</u> <u>brasiliensis</u> and on growth of tree <u>Agro Frosystems</u> 3 147-170
- Burnide O ( and C A Wicks 1985 Effect of hurbicides and cultivation incatments on yield components of dryland sorghum in Nebraska <u>Agron J</u> 57 21-24
- Chandapilla M M 1968 Studies of root systems of some cover plants <u>J Rubber Res Inst Malaya</u> 20 (3) 117-129
- Colbrone G J N and Staines S J 1985 Soil erosion in South Somerset J <u>Agric Sci U K 104</u> (1) 107 112
- De Ceus I & 1941 Over dougden en on deugden Van het legumenous endek <u>Bergeultures</u> 15 152
- De Jonge P 1957 Stimulation of bark renewal of <u>Hevea</u> and its effect on yield of latex <u>J Rubb Res Inst</u> <u>Malaya</u> 15 53-71
- D Jkman M T 1951 <u>H vea Thirty Years of Research in the</u> <u>Far Fast</u> University of Miami Press Coral cables Florida p 329
- Dissanayake D M A P and Mithrasena U 1986 Influence of fertilizers on growth and mineral composition of <u>Hevea</u> seedlings growth in the field nursery <u>J</u> <u>Rubb Res Inst Sri lanka</u> 65 32 46

- George P J Perma Kumarı D Markose V C and Panıkar A O N 1980 The rubber trees (<u>Hevea brasıliensis</u> MUELI ARG) In Pillay P N R (ed ) Hand book of Natural Rubber Production in India Rubber Research Institute of India Rubber Board Kottayam pp 25 29
- Guha M M Singh M M and Chan H Y 1971 Use of appropriate fertilizer for rubber based on soil and leaf nutrient survey <u>Q J1 Rubb Res Inst</u> <u>Ceylon</u> 48 160-167
- Haines W B 1932 The effect of covers and cultivation methods on growth of young rubber III <u>J Rubb</u> <u>Res Inst Malaya</u> 4 123
- Haines W B 1933 Fffect of fertilizers and covers on growth of young rubber IV <u>J Rubb Res Inst</u> <u>Malaya</u> 5 78
- Harris R F Chesters G and Allen O N 1966 Dynamics of soil aggregation <u>Adv Agron</u> 18 107
- Hesse P R 1971 <u>A Text Book of Soil Chemical Analysis</u> John Marry Iondon 520 pp
- JacksonM I1973SoilChemicalAnalysisPrinticeHallofJudiaPvtItdNew Delhi498pp
- Joachim A W R and Kandia S 1930 The effects of green manures and covercrops on soil moisture <u>Trop</u> <u>Agriculturist</u> 74 3

- Kalam M A Karthikakutty Amma M Punnoose K I and Potty S N 1980 Effect of fertilizer application on growth and nutrient content of some important <u>Hevea</u> clones <u>Rubb</u> <u>Bd</u> <u>Bull</u> 16 19-29
- Kothandaraman R Jacob Mathew Krishna Kumar A K Jayaratham Kochuthresiamma Joseph K and Sethural MR (1990) Comparative efficiency of Mucuna bracteata and pueraria phaseoloides on soil nutrient enrichment microbial population and growth of <u>Hevea</u> Indian J Nat Rub Res 2 (2) 147-150
- Kothandaraman R Premakumarı D and Sıvasankara Panıcker P K 1987 Studies on growth nodulation and nitrogen fixation by <u>Mucuna bracteata</u> <u>Proceedings</u> <u>of the Sixth Symposium on Plantation Crops</u> 1987 Kottayam 283-288
- Krishnakumar A K 198) <u>Soils under Hevea in India, a</u> <u>physical, chemical and mineralogical study with a</u> <u>reference to soil moisture and cation influence on</u> <u>yield of Hevea brasiliensis</u> PhD Thesis Indian Institute of Technology Kharagpur
- Krishnakumar A K Datta B and Potty S N 1990 Moisture retention characteristics of soils under <u>Hevea</u> in India <u>Indian J Nat Rubb Res</u> 3 9-21
- Lai C H 1979 Fffect of potassium and aluminium treatments on growth and nutrient uptake of rubber seedlings and on soils <u>J Ribb Res Inst Malaysia</u> 27 92-103

- Low A 7 1954 The study of soil structure in the field and the laboratory  $\underline{J}$  Soil Sci 5 57
- lu Xingzheng and He Xiangdong 1982 Fertilizer application based on nutrient diagnosis of rubber trees <u>Chin</u> <u>J trop Crops</u> 3 27-39
- Lutz J F 1947 Apparatus for collecting undisturbed soil samples J <u>Soil Sci</u> 64 399
- Mainstone B J 1961 Fffects of ground cover and continuity of nitrogenous fertilizer treatment upon growth to tappable matirity of <u>Hevea</u> <u>brasiliensis</u> <u>Proc</u> <u>Nat Rubb Res Conf</u> Kuala Jumpur 1960 362
- Mathew M Punnoose KI Potty SN and George ES 1989 A study on the response in yield and growth of rubber grown in association with legume and natural ground cover during the immature phase <u>J</u> <u>Plant Crops</u> 16 433-441
- Milferd GFJ Paardekooper EC and Ho Chai Tee 1969 Latex vessel plugging its importance to yield and clonal behaviour <u>J Rubb Res</u> <u>Inst Malaya</u> 21 274
- Morgan R P C 1985 International workshop on soil erosion and its counter measures Conclusions and recommendations <u>ASPAC Fxtn Bulk</u> No 218 1-9
- Owen G Westgarth D R and Iyer G C 1957 Manuring Effect of fertilizers on growth and yield Hevea of mature rubber trees J Rubb Res Inst Malaya 15 29 - 52

- Paarickooper F.C. and Samosorn S. 1969. Clonal variation in latex flow pattern <u>J. Rubb</u> <u>Res. Inst. Malaya</u> 21. 264
- Page H J 1939 The chemical combination of rubber trees in relation to problems of nutrition and manuring <u>J Rubb Res Inst Malaya</u> 9 14
- Panse VG and Sikhaime PV 1985 <u>Statistical Methods for</u> <u>Agri iltural Workers</u> Indian Council of Agriculture Research New Delhi pp 145-164

*

- Pij r C S 1950 <u>Soil and Plart Analysis</u> Academic Press New York
- Potty S N Abdul Kalam M Punnoose K I and George C M 1976 Response of <u>Hevea</u> to fertilizer application in relation to soil fertility characteristics <u>Rubb</u> <u>Bd</u> <u>Bull</u> 13 48 54
- Potty S N Punnoose K I Karthikakutty Amma M and George C M 1980 Fffect of fertilizers on growth yield and nutrient status of four <u>Hevea</u> clones Paper presented in <u>International Rubber</u> <u>Conference</u> Kottayam India 1980
- Prathapan K Sreicharan C and Potty S N 1995 Effect of legumionus covercrops on the growth of immature rubber plants <u>Proceedings</u> of the 7th Kerala <u>Science Congress</u> Palakkad Kerala pp 177-178

- Prose KT 1993 <u>Inter relationship of applied nutrients</u> <u>on growth</u>, <u>productivity</u> and <u>latex</u> <u>flow</u> <u>haracler stis</u> <u>of Hevea brasiliensis</u> Ph D Thesis Kerala Agricultural University
- Pushpalas M.V. Poity S.N. George C.M. and KrishnaKumar M. 1972 Effect of long term application of NPK fertilizers on pH and nutrient levels of soil and leaf in <u>Hevea brasiliensis</u> J <u>plant</u> <u>crops</u> 1 38-43
- Pushpadas M V M Mathew and K V Mohanan 1976 Fffect of slasting cover(rops (<u>Mucuna sp</u>) on soil moisture during simmer <u>Rubb</u> <u>Bd</u> <u>Bull</u> 13 36 37
- Pushpadas MV Subbarayalu G and George CM 1978 Studies on correlation between nutrient levels in soil and leaf and yield of <u>Hevea brasiliensis</u> <u>Rubb</u> <u>Bd Bull</u> 15 11-22

*

- Pushparajah F 1966 <u>Studies on the effects of rock</u> <u>phosphates on growth and yield of Hevea</u> <u>brasiliensis</u> M Agric Sci Thesis University of Malaya
- Pushparajah E 1969 Response of growth and yield of <u>Hevea</u> <u>brasiliensis</u> to fertilizer application in Rengam Series soil <u>J Rubb Res Inst Malaya</u> 21 165-174
- Pushparajah E and Chellappah K 1969 Manuring of rubber in relation to covers <u>J Rubb Res Inst Malaya</u> 21 (2) 126-132

- Rubber Resear h T st tute of Malaysia 1976 Influence of fortilizers and covers on fert lity of sils under <u>Hevea Pir s Bill Rubb Res Inst Malaysia</u> 142 8-13
- Russell (F 1983 <u>Nutrient cycling and productivity n</u> <u>nat ve and plantation forests in Jari Florestal,</u> <u>Para Brazil</u> Ph D Thesis Institute of Fcology University of Georgia Athens
- Russell M B 1949 Methods of measuring soil structure and aggregation <u>Soil Sci</u> 68 29
- Sams dar BTF Hamzal Abdul Azız Mohmood Sıvanadyan K arl Gomez JB 1975 Fffect of mineral difficiences on bark anatomy of <u>Hevea</u> <u>brasillensis</u> <u>Proc</u><u>Int</u> <u>Rubb</u> <u>Conf</u> <u>Kuala Iampur</u> Malaysia pp 165-180
- Sutcliff JF and Baker DK 1974 <u>Plants</u> and <u>Minerals</u> <u>Salts</u> Osford and IBH publications New Delhi pp 11 25
- Shorrocks V M 1961a Leaf analysis as a guide to the nutrition of <u>Hevea</u> <u>brasiliensis</u> I Sampling technique with mature trees principles and observations on the variations in leaf nutrient composition with position on the tree <u>J Rubb</u> <u>Res Tist Malaya</u> 17 1 13
- Shorrocks V M 1962 leaf analysis as a guide to the nutrition of <u>Hevea brasiliensis</u> V A leaf sampling technique for mature trees <u>J Rubb Res</u> <u>Inst</u> Malaya 17 167 190

- Sh rrocks V M 1965 Mineral nutrit o growth and nutrient yele f Hevea Growth and nutrient contert <u>J</u> <u>Ribl R s Inst Malaya</u> 19 32
- Svaralyr k 1983 Manur ig of mature <u>Hevea</u> Recert ev derces and a possible new ort took <u>Proc Rubb</u> <u>Res Inst Malaysia</u> Pir s Cont Kuala Lumpur pp 286-312
- Soong NK 1971 A <u>study of the root distribution of</u> Hevea bras liensin <u>in relation to its nutrition and</u> <u>growth on some typical malayan soils</u> Thesis a bmiltel for the legies of MAgi Sc. University of Malaya
- Soong N K and Yap W C 1976 Fffect of cover management on physical properties of rubber growing so is <u>Journal of Rubber Research Institute of Malaysia</u> 24 (3) 145 159
- Sperber I 1358 The incidence of apatite solubilising organisms in the chizosphere soil <u>Journal of</u> <u>Agriilture Research</u> 9 777-781
- Stevenson I I 1964 Biochem stry of soil In <u>Chemistry of</u> <u>the soil</u> Bear R E (ed) Oxford and IBH p blishing Co Calcutta pp 242-287
- Subbiah BV and Asija II 1956 A rapid procedure for the estimation of available nitrogen in soils <u>Curr S</u> 25 259-260

- S rest P R 1992 <u>Iffluence of sources of phosphalic</u> <u>fort 1 2019 and cover crops on the management of</u> <u>ihosphate nutrition under rubber plantations</u> Thesis submitted for the degr e of Ph D Indian Agri Res Inst tute New Delhi
- Stliff JF and Baker DK 1974 <u>Planty</u> and <u>Minerals</u> <u>Salts</u> Oxford and IBH piblications New Delhi pp 11-25
- Timonin M I 1940 The interaction of higher plants and soil micro organisms Study of the microbiai population of the rhizosphere in relation to resistance of plants to soil borne disease <u>Canadian Journal of Research</u> 18 446-456
- Tisdale SI Nelson WI and Beaton JO, 1985 <u>Soil</u> <u>Fertility</u> and <u>Fertilizers</u> Mac millan Publishing Company New York pp 249 349
- Uriyo A P 1979 Monitoring soils in agroforestry i Physical properties <u>In Expert Consultation in</u> <u>soil Research in Agroforestry Nairobi Kenya 1979</u> <u>Pioceedings</u> (Eds Mongi H O and Huxley P A ) ICRAF Nairobi Kenya pp 413-437
- Venkataraman 5 1978 Use and requirements of agrometeorological data for quantifying crop moisture stress and needs In Proceedings Agroclimatological Research Needs of the Semi Arid Tropics (Fds Shaw RH Siva kumar мчк and Virmany S.M.) pp 170-181

- Walkley A J and Black T A 1934 Fstimation of soil orgin arbon by the chromic acil digest on method 521 Sci 37 29 38
- Wats GA 1957 Cover plants in rubber cultivation J <u>Rull Res Inst Maliya</u> 15 2
- Walson G A 1961 Cover plants and soil nutrient cycle in <u>Hevea cultivation Proc Nat Rubb Res Conf</u> Kuala Lumpur 1960 352
- Wats) (A D & Phi Wing and Na ayanan R 1964 Effect of cover plants on soil nutrient status and on growth (f Hevca TV leguminous Creepers compared with grasses Mikania cordata and mixed indigenous covers on four soil types <u>【 Rubb</u> <u>Res Inst</u> <u>Malaya</u> 18 (3) 123 145
- Watson G A Wong P W and Narayanan R 1964a Fffect of cover plants on growth of <u>Hevea</u> JII A comparison of leg minous creepers with grass and <u>Mikania</u> <u>cordata</u> J <u>Rubb</u> <u>Res</u> <u>Inst</u> <u>Malaya</u> 18 30
- Watson G A Wong PW and Narayanan R 1964b Fffects of cover plants on sol nutrient status and on growth of Hevea V Loss of nitrale nitrogen and os cations inder bare sil conditions. A progress report on results from a small scale trial <u>J Rubb Res</u> <u>Itst of Malaya</u> 18 (4) 181

*

- Werzz ya SM ad Yogaratham N 1988 Fffect of Jolazz mal magiz um or growił of young <u>Hevea</u> <u>braz i ciziz II Ribb Riz Inst Srilanka</u> 54 27220
- Williams R T B 1963 A rew method for measuring soil stability <u>Chemistry and Industry</u> No 25 1032-1033
- Wy herley P R 1963 The range of cover plants <u>Plr 9 Bull</u> <u>Rubb Res Inst Malaya</u> 68 117
- Wy herley P R 1969 Breed ng of <u>Hevea brasiliensis J of</u> <u>Rubb Res Inst of Malaya</u> 21 38 55
- Yeans H Y and Paranjothy K 1982 Some primary determinants of seasonal yield variation in clone RRIM 632 <u>J Rubb Res Inst Malaysia</u> 30 131-147
- Y garatnam N Silva F P W and Weerasuryia S M 1984 Recent developments in the nutrition of <u>Hevea</u> in Sr Lanka <u>Proceedings of International Rubber</u> <u>Conference</u> <u>75 years of Rubber Research Srilanka</u> 1984 Colombo 1 207-247
- Y gariinam N and Weerasuriya S M 1984 Fertilizer responses in mature <u>Hevea</u> under Srlanka condition <u>J Rubb Reg Ingi Sri Lauka</u> 62 19-39
- Y garatnam N and De Mcl JG 1985 Effect of fert lization on leaf composition of NPK in some <u>Hevea</u> cultivary <u>J1 Rubber Rey Ingt Sri Lanka</u> 63 15 24

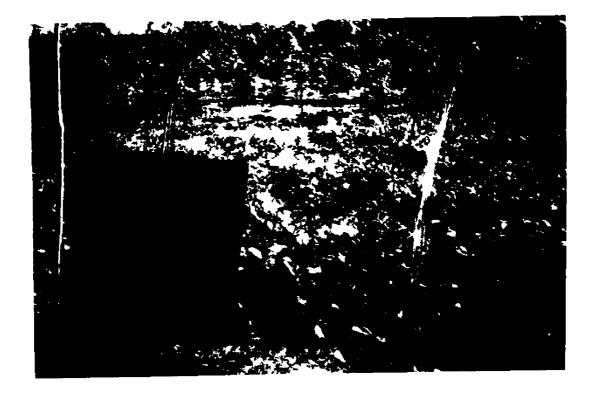
- $Y_{I} = 1390$  (long) characterisation of latex and rubber properties <u>J Nat R bl Res</u> 5 52.80
- Y) P K ng 1987 Pr vale commun cation Rubber Research T st 1 te f Malaya
- 7en I A Sławky M F and Zaughloul K F 1980 <u>A</u> <u>imparative study on the effect of plant systems on</u> <u>some physical properties of soil desert calcereous</u> <u>soil</u> In <u>Research Bulletin No</u> <u>1243</u> Faculty (f Agr cluture Ain shams University pp 1-22

* Originals not seen

# APPENDIX

Г

### APPFNDIX I


Weather data during the period of the Experiment and means of previous 25 years (1966 1990) at the Experiment site (Kulasekaram)

		-									
Total Rianfall (mm) No of rainy days											
Months	1964-90	1991	1992	1993	1964-90	1991	1992	1993			
							5				
January	31	32	21	27	5	4	5	6			
February	38	54	47	48	4	3	4	3			
March	85	47	85	56	6	4	3	4			
April	178	176	105	182	9	9	11	9			
May	230	111	148	140	12	14	16	11			
June	322	780	665	715	22	28	26	23			
July	196	15 <b>0</b>	195	175	14	12	16	14			
August	90	54	38	115	7	3	4	13			
Septmber	183	138	265	170	8	9	4	7			
October	318	248	195	242	18	19	21	16			
November	274	264	322	248	14	14	11	10			
December	86	30	42	36	3	2	3	3			
Total	2031	2084	2128	2154	122	121	124	119			

Maximum Temperature				Minim	un Ten	perature	Relative Humidity				
Honthly mean (*C)					Hont	hly mea	an (*C)	Monthly mean (%)			
Months	1966 90	1991	1992	1993	1966 90	1991	1992 1993	1966 90 1991	1992 1993		
January	31 7	91 B	31 6	31 9	18 4	18 2	17 9 18 5	68 5 68 5	670 690		
February	338	33 8	33 4	34 0	19 9	19 2	191 182	690 <b>7</b> 00	596 70 5		
March	34 5	34 2	34 2	34 5	22 6	22 0	20 5 21 7	735795	74 0 72 5		
April	35 1	33 8	34 6	34 2	23 4	23 6	17 9 18 5	686 686	670 690		
May	31 2	31 6	31 5	<b>31 0</b>	23 5	22 9	21 6 23 5	80 0 79 5	81 0 80 5		
June	<b>30 2</b>	30 8	31 0	30 6	24 0	23 4	24 0 22 7	86 6 87 0	85 5 86 0		
July	30 1	29 8	30 5	30 2	22 8	22 5	22 6 23 7	86 0 85 <del>0</del>	86 5 86 0		
Auguet	30 5	30 5	33 1	30 3	23 5	23 4	23 8 21 9	83 5 83 5	84 0 85 0		
September	32 1	32 3	32 5	32 4	22 2	22 3	23 0 21 8	81 0 82 0	81 5 82 0		
October	<b>32</b> 0	32 1	32 6	32 0	22 0	22 <b>2</b>	21 8 22 0	83 5 85 0	84 0 85 0		
November	31 0	30 5	31 2	31 5	23 0	22 5	21 9 21 2	82 0 83 0	82 5 81 0		
December	32 0	31 I	31 8	31 8	21 5	20 9	20 2 20 2	72 5 75 5	73 5 74 0		

Plate 1 View of the site of Experiment I

Plate 2 View of the site of Experiment II





### Plate 3 Comparision of covercyopped plot with absolute control (immature)

Plate 4 Comparison of covercropped plot with absolute control (mature)





Plate 5 Comparison of wintering in covercropped and absoulte control plot





Plate 6 levol 10 30 30 applied <u>Pueraria phaseoloides</u> plot

Plate 7 level 10 30 applied <u>Mucuna bracteata plot</u>





### EFFECT OF COVER CROPS ON NUTRIENT DYNAMICS IN THE RUBBER PLANTATIONS

ΒY

K PRATHAPAN

ABSTRACT OF THE THES S SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENT FOR THE DEGREE OF DOCTOR OF PHILOSOPHY FACULTY OF AGRICULTURE KERALA AGRICULTURAL UNIVERSITY

DEPARTMENT OF AGRONOMY COLLEGE OF AGR CULTURE VELLAYANI THIRUVANANTHAPURAM

### ABSTRAC Γ

Three field exper ments were conducted at Bethany Estate Mukkampala kanyakumari District from February 1991 to October 1993 to study the effect of cover crops on the nutriest lynamis in immature mature rubber plantation and in as ten area

In Experiment I there were two cover crops viz <u>Pueraria phaseoloides</u> and <u>Mucuna bractædita</u> and five levels of NIK v z ) U O ) 30 30 10 30 30 0 60 60 and 10 60 60 with one year old RRII 105 repli ated thrice and statistically laid in RBD In Experiment II there was one cover crop <u>Mucuna sp</u> alone with five levels of NFK as above with 8 years ld RRII 105 replicated 4 times and statistically laid in RBD In Expt III there were 10 microplots with both cover rops

N F K (a Mg content of both <u>Hevea</u> and cover crops were increasing as the crops growth progressed Fertilizer application to cover crops improved the <u>Hevea</u> leaf nutrient content than the absolute control Among the levels 10 3( 3) was f nd optimum <u>Mucuna</u> was found better than Pueraria in increasing the Hevea leaf nutrient content (if the newer twag better with 10 30 30 This was)
(if the optimum inler both experiments More height
in rement wag obgerved in thig level aq well aq in cover
ropped treatments when compared to absolute control
Biomass production of cover crops were maximum at
Biomass production of cover crops were maximum at
i) bit 60 followed by 10 30 30 under both experiments
Biomass form increasing ag the crcp growth
incores and it was form increasing ag the crcp growth
incores and it was higher in <u>Pueraria</u> and the freeh
weight of notule per plant was higher in <u>Mucuna</u> as the gize

Soil moistire retention capacity was found higher

nder cover cropped plots at both shallow (0 30cm) and despen (36 b0cm) soil depths at 0 033 and 1 5 MFa pressures than control Pore space and aggregation percentage were improved where as bulk density decreases. Among the levels of Nik 10 30 30 was f uni optimum in improving the soil phys a propert es. The percentage of improvement was found greate at shallow depth of soil than deeper. Soil meisture content during summer months were improved in the cover cropped area. The soil moisture is than the top soil (0 30cm) was lesser that the bottom soil (30 60cm) in <u>Pueraria</u> grown plots. This trend was reverse in the case of <u>Mucuna</u>. Growing f cover rops improved the microbial populat n of the terial fingi and phosphate solubilising (rgan 9m9. The level 10/30/30 was found optimum for the letter mirial activity

10-3) 30 was found optimum for better yield and Latex Flow (hara teristics (overcropping has increased the latex yield by 15-20%

10 30 30 was opt mim for better leaf litter production of <u>Hevea</u>. In cover cropped plots the leaf litter production was higher and wintering was delayed by 26 30 days over the control. This has enhanced 10 additional tapping days

( rth is positively correlated with over crop biomass nutrient uptake soil available nutrients soil moisture contents and <u>Hevea</u> leaf nutrient contents Strongest correlation for girth was found with <u>Hevea</u> leaf N content and uptake of N by cover crops suggesting the importance of foliar diagnosis. Yield was negatively correlated with Mg content of soil

