INFLUENCE OF CROP GEOMETRY ON THE GROWTH AND YIELD OF RICE VARIETY JAYA

By
エ. E. USFAA
\section*{THESIS}
submitted in partial fulfilment of the requirement for the degree
\title{ fflaster of Science (Agronomy) }
Faculty of Agriculture
Kerala Agricultural University
Department of Agronomy
COLLEGE OF HORTICUlture
Vellanikkara - Trichur
1985

DECLA?ATION

I hereby declare that this thesis entitled "Influence of cron geometry on the arowth and yield of rice variety 'Jaya'" is a vonafide recors of work done by me during the course of research work and the thesis has not previously formed the basis for the avard to me of any degree, dioloma, asrociateship, felloship or other similar title of any other University or Society.

Collece of Horticulture, Vellanikkara,
 $11--5-1985 . \quad \therefore$

```
Certified that this thesis entitled
"Influence of crop geometry on the growth and yield of rice variety 'Jaya'" is a record of research work done independently by Smt. Usha. K. E.. under my guidance and sunervision and that it has not previously formed the basis for the award of any dearee, fellowshio or associateshin to her.
```

Vellanikkara,
11 --5--1985.

Dr. P. Balakxishna Pillai Professor of Agrometoorology.

CERTIFICATE

We, the undersigned members of the Advisory Committee of Smt. Usha. K.E., a candidate for the degree of Master of Science in Agriculture with major ir Agronomy agree that thesis entitled "Influence of crop geometry on the growth and yield of rice variety 'maya'" may be submitted by Smut. Usha. K.E.. in partial fulfilment of the requirements for the degree.

(Dr. C. Sreedharan) Member

$$
\text { thais } 185
$$

(Dr. A. S. Raoul)
Member

This thesis is Rumbly dedicated to the lotus feet of my God without whore grace and blessings this work mould not have been possible.

ACKNOWLEDGEMENTS

It is with a deep sense of gratitude that I acknowledge my great indebtedness to Dr. P. Balakrishna Pillai, Professor, Head of the Department of Agrometeorology, College of Forticulture, Vellanikkara for suggesting the problem and for his sustained interest, inspiring guidance, critical suggestions and constant encouragement throughout the course of the present investigation.

I had the unique previlege of getting the advice and guidance of the members of the Advisory Committee at every stage of this work. Dr. C. Sreeaharan, Professor and Head, Department of Agronomy, College of Horticulture has taken keen interest in my work with invaluable guidance and constructive criticims during the period of the study. I express my gratitude to him.

Sri. N. Rajappan Nair, Associate Director, Regional Agricultural Research Station, Pattambi was gracious enough to render me his heart-felt co-operation and help in conducting the experiment in the fields at Pattambi. The guidance he gave me and the supervision he did on my work there were far beyond the call of duty. I would like to record my deep gratitude for him.

I owe a profound sense of gratitude to
Dr. P. K. Gopalakrishnan, Associate Dean, College of Horticulture and the Kerala Agricultural University for providing the necessary facilities to carry out the study.

I thankfully acknowledqe my aratitude to Dr. A. S. Rao, Scientist, Centre for Water Resource Development and Management, Calicut for his inspiring suggestions and constructive criticisms. I express my sincere thanis to Mr. M. Sethumadhavan. Denartment of meteoroloay for the helo he has often rendered.

```
    I wish to nlace on record my sincere thanks
to the staff members of the Regional Agricultural
Research Station, Pattambi for their hely and
co-overations during the course of this investiciation.
    At the various stages of the work, the heln
and assistance of the staff and students of the
Denarement of Agronomy and my friends whese co-
onerat:on was in no small way heloful for the
successful comoletion of my work. I shall ever be
    rateful to them.
```

I thankfully acknowledge the Junior Felloshio received from the Indian Council of Agricultural Research.

I wish to record my sincere thanks to
Kun. Rajani Gonal, who took lot of pains in typing
this manuscript in proper way and Chirayath Commercial Institute, Mullakkara for providing necessary facilities for the typing.

Last, but not the least, the constant and sustained encouragement I got from my husband, parents and relatives is gratefully acknowledged.

I believe that I had all blessings of Him and I am fully satisfied that I could do as much as this in this field.

CONTENTS

1. Introduction	..	$1-3$
2. Review of Literature	..	$4-23$
3. Materials and Methods	..	$24-32$
4. Results	\ldots	$33-97$
5. Liscussion	..	$98-112$
6. Summary and Conclusions	..	$113-115$
7. References	..	$116-126$
8. Appendices	..	$1-\times \times T V$

LIST OF TABLES

1. Table 1. Height of plant on 30 th day after planting (cm)
2. Table 1.(a)Combined effect of Spacing between plants and spacing between alleys on height of plant on 30 th day after planting (cm).
3. Table 2. Feight of plant on 60 th day after planting (cm
4. Table 3. Height of plant at the time of harvest (cm)
5. Table 3.(a) Combined effect of spacing between plants and spacing between alleys on height of plant at the time of harvest (cm).
6. Table 4. Number of tillers on 30 th day after planting.
7. Table 5. Number of tillers on 60 th day after planting.
8. Table 5.(a) Combined effect of spacing between plants and spacing between alleys on number of tillers on 60th day after planting.
9. Table 6. Number of tillers at the time of harvest.
10. Table 7. Leaf area index on 40 th day after planting.
11. Table 7.(a) Combined effect of spacing between plants and spacing between alleys on leaf area index on 40 th day after planting.
12. Table 8. Leaf area index on 75th day after planting.
13. Table $8(a)$ Combined effect of spacing between plants and spacing between alleys on leaf area index on 75th day after planting.
14. Table 9. Leaf area index on 90th day after planting.
15. Table 9.(a) Combined effect of spacing between plants and spacing between alleys on leaf area index on 90th day after planting.
16. Table 10. Leaf area index at the time of harvest.
17. Table 11. Number of productive tillers
18. Table 12. Length of panicle (cm).
19. Table 12.(a) Combined effect of spacing between plants and spacing between alleys on length of panicle (cm).
20. Table 13. Jumber of grains per panicle.
21. Table 13. (a) Combined effect of spacing between plants and spacing between alleys on number of grains per panicle.
22. Table 14. Thousand grain weight (g).
23. Table 14.(a) Combined effect of spacing between plants and spacing between alleys on thousand grain weight (g).
24. Table 15. Grain Yield ($\mathrm{Kg} / \mathrm{ha}$).
25. Table 16. Straw yield ($\mathrm{Kg} / \mathrm{ha}$).
26. Table $16 .(a)$ Combined effect of spacing between plants and spacing between alleys on straw yield (Kg/ha).
27. Table 17. Drymatter Production ($\mathrm{Kg} / \mathrm{ha}$) .
28. Table 17.(a) Combined effect of spacing between plants and spacing between alleys on drymatter production ($\mathrm{Kg} / \mathrm{ha}$).
29. Table 18. Grain-Straw ratio.
30. Table 18.(a) Combined effect of spacing between plants and sacing between alleys on grain-straw ratio.
31. Table 19. Nitrogen Content (\%).
32. Table 19. (a) Combined effect of spacing between plants and spacing between alleys on nitrogen content (\%)。
33. Table 20. Phosphorous content (\%).
34. Table 20.(a) Combined effect of spacing between plants and snacing between alleys on phosphorous content (\%).
35. Table 21. Potassium content (\%).
36. Table 21.(a) Combined effect of spacing between plants and spacing between alleys on potassium content (\%).
37. Table 22. Uptake of Nitrogen ($\mathrm{Kg} / \mathrm{ha}$) .
38. Table 23. Jotake of Phosphorous (Kg/ha).
39. Table 23.(a) Combined effect of spacing between plants and spacing between alleys on the uptake of Phosphorous ($\mathrm{Kg} / \mathrm{ha}$).
40. Table 24. Uptake of Potassium (Kg/ha).
41. Table 24.(a) Combined effect of spacing between plants and spacing between alleys on the uptake of potassium ($\mathrm{Kg} / \mathrm{ha}$).
42. Table 25. 4verage day time variation of albedo on different treatments on 14-12-1983.
43. Table 26. sverage day time variation of albedo on different treatments on 28-12-1983.
44. Table 27. Average day time variation of albedo on different treatment on 11-1-1984.
45. Table 28. Average day time variation of albedo on different treatments on 25-1-1984.
46. Table 29. Average day time variation of albedo on different treatments at harvest (on 7-2-19)
47. Table 30. Total radiation, reflected radiation and albedo at different growth stages of the rice crop in different orientations.

LIST OF ILLUSTRATIONS.

Fig. 1. Weather conditions durirg the crop season.

Fio. 2. Lay out plan.

Fig. 3. Leaf area index at various orowth staoes.

Eig. 4. Yield of orain and straw-Efyect of orientetjon.

Fig. 5. Averace day time variation of albedo on 14-12-10s. Effect of row orientation.

Fig. 6. Average day time variation of albedo on 14-12-10. . Effect of spacing.

Fig. 7. Averace day time variation of alkedo on 11-1-19eA. Effect of orientation.

Fig. 8. Average day time variation of albedo on 11-1-19ei. Effect of spacirig.

Fiç. 9. Total radiation, reflected raciation and albedo at different growth stages in different orientation.

Fig. 10. Leaf area index and albedo at different growth staces in different orientation.

INTRODUCTION

Rice is the most important food crop of Kerala occupying an area of 7.78 lakh hectares. Out of this, 3.52 lakh hectares are cultivated during the second crop season. The second crop, which covers 45 percent of the area, contributes to 43 percent of the production. The average yield of rice in this season is reported to be less than that of the first and the third crop seasons. Since the cost of inputs like fertilisers, weedicides, insecticides and irrigation is increasing tremendously, it is time to make efforts to increase the yield with minimum of inputs through better crop management and by providing proper environment to the crop during its growth and development period.

Rice production during this season is affected by the integral effects of climatic factors like rainfall, solar radiation, temperature and relative humidity. Maximum yield is possible only through providing the crop a suitable combination of these factors in the optimum range. Solar radiation is one of the most important factors that determine rice yields (Van Ittersun, 1971). At the reproductive stage it has the greatest effect on grain yield;
at the ripening stage the next highest effect and at the vegetative stage an extremely small overall effect (Sato, 1956). Crop photosynthesis in the field is primarily determined by incident solar radiation, photosynthetic rate per unit leaf area, leaf area index and leaf orientation. High solar radiation is a prerequisite for high rates of photosynthesis. It has been observed that the crop canopy is well above the light saturation capacity of leaves, while the lower leaves are not photosynthesising actively for want of light. By selecting proper crop geometry it is possible to alter the radiation penetration and thereby change the micro-environment of the crop and increase the light availability to lower leaves for photosynthesis. The light utilising effeciency of leaves can be increased to a large extent for increasing crop yield and it does not involve any extra expenditure on the farmers. Keeping this in view studies were conducted with the rows oriented in four geographical directions.

Plant population increases the crop yield with increase in number of plants per unit area until the state, when light penetration in the thick crop canopy
does lot become a limiting factor and when competition among the crop plants for nutrients is not there. Experiments conducted at IRRI have shown that each variety of rice has an optimum spacing and that closer spacing is more conducive to obtain better yields especially for high yielding strains (Tanaka et al. 1966). The studies conducted by Nair (1968) showed a general trend in favour of closer sbacing for dwarf indicas. Closer spacing assures a sufficiently large leaf area index for maximum photosynthesis and the production of a large number of panicles to meet the requirements for better yield. There is very little information regarding the spacing given between alleys for the variety 'Jaya' under Kerala conditions. Therefore, plant population was introduced as a factor along with different spacing between alleys and crop orientation. The present investigation was therefore undertaken with the following objectives in view:

1. To find out the best crop orjentation, optimum spacing between plants and optimum spacing between alleys for the rice variety 'Jaya'.
2. To study the variation of albedo in different row orientation at different growth stages of rice crop. 3. To study the uptake of nutrients in different row orientations spacing between plants and that between alleys.

REVIEW OF LITERATURE

REVIEW OF LITERATURE

Rice production is considerably influenced by environmental factors of which weather factors are the most important. Climate directly influences the physiological processes that affect the rice plant's growth, development and grain formation. Radiation, temperature and rainfall are the main factors that influence the grain yield of rice directly. Experiments conducted at IRRI showed that the solar radiation was positively correlated with the grain yield. The penetration and interceotion of solar radiation greatly depend u on the crop orientation. Spacin is also an important production factor in transplanted rice. A uniform stand containing an optimum plant population is essential for proper crop development anā high grain yield.

The literature pertaining to the studies has been reviewed under the following subheads: 1. Radiation and crop growth
a) Radiation regime of plant eanopy
b) Albedo
2. Photosynthesis and yield of rice
3. Effect of row orientation
4. Effect of spacing on the growth and yield
of rice

1. Radiation and crop growth

Murata (1964) and Hanyu (1966) reported that rice yield increases with solar radiation during the ripening period. Stansel et al. (1965) suggested that the rice plant's most critical period of solar energy requirement is Erom vancle inttiation to about 10 days before maturity.

Pendleton et al. (1967) found that light appears to be the primary ecological factor, limiting the grain yield of maize crop when grown under high productive conditions.

Intensive research at IRRI has demonstrated that the quantity of solar radiation has a profound influence on rice yield particularly during the last 30 to 45 days of the ripening period Moomaw et al. 1967). Subsequent IRRI research indicated that the increase in drymatter between panicle initiation and harvest was highly correlated with grain yield (De Datta et al. 1968).

Anderson (1969) observed that net radiation within a plant stand was markedly affected by stand geometry.

Goudrain (1971) found that the fraction of radiation intercepted by a layer, with certain leaf area is proportional to the average projection and inversely proportional to the sine of the inclination of the incident radiation.

When solar radiation is incident on a well developed rice crop, about 20 percent of the total radiation is reflected into the sky (Kishida, 1973).

In an experiment by Yoshida and Parao (1976), shading during the vegetative stage had little effect on grain yield whereas shading during the reproductive stage had even greater effect than that during grain ripening. During the reproductive stage solar radiation affects spikelet number per square meter, and during ripening it affects filled spikelet percentage. Venketeswarlu et al. (1977) observe之 that yiels were progressively reduced with low light intensity appearing in succession at different growth phases, the effect beinc more critical during the ripening phase.

Vanderbilt et al. (1979) foun that increased
lint intensities increased wheat yields till plant reached its light saturation.

```
Evans and De Datta (1979) correlated yield with cumulative radiation for various periods working either forward from the date of planting or backward from the date of maturity. The slight effect on yield, of radiation in the vegetative period, and the importance of radiation both before and just after flowering, are evident.
a) Radiation regime of olant canopy
The importance of the light factor in
relation to drymatter production in plant communities
was first elucidated by Boysen Jensen (1932). He
stressed the importance of shape of canopy and of
inclination of leaves in relation to light utilisation.
Monsi and Saeki (1953) observed that the
relative radiation intensity decreases exponentially
with increasing leaf area.
```

Theoretical analysis of relations between foliage and its light interception led to the important concept of 'Optimum leaf area index' (Donald and Davision, 1958).

Tsunoda (1959) investigated 3 attributes of leaves - form, inclination and arrangement in high yielding varieties of sweet potato, soybean and rice.

Warren Wilson (1959) devised the point-quadrat methoa to estimate leaf area index, inclination of leaves and leaf arrangement. The light interception in the direction of incidence is greater with a regular arrangement of leaves, and smaller when the leaves are clustered than when they are ranamly arranged.

```
From the analysis of evapotranspiration structure of rice field it was foun that net radiation decreases exponentially with leaf area (Uchijima, 1961).
Murata (1961) and Tsunoda (1964) pointed out the importance of canopy structure for increasing rice yield.
```

Denmead et al. (1962) observed that net radiation is of basic importance in describing physical environment of the crop since it represents, amonc other thincs, the energy available for growth. Knowledge of spatial distribution of net raaiation in a crop canopy can provicle information about the possible magnitude of evaporation, transoiration and ohotosynthesis as well as information about the regions within the crop canopy which are most active in these procerses.

Isobe (1962) showed that the transmission coefficient of a rice canopy depenas not only on solar radiation but also on the composition of incident radiation.

Comparing the morohological characteristics of high and low yielding cultivars of rice, Tsunoda (1964) revealed the close correlation between the erectness of leaves and yield. He concluded that the high crop yield is generally observed for rice cultivars with erect leaves. The research results obtained in a series of his investigation led him to the "plant type concent" as a guide for breeding high yielding cultivars.

Theory and experimental evidence showed that the plant architecture leads to the maximisation of incident solar radiation (Duncan, 1971). A combination of short, erect upper leaves grading to droopy. longer lower leavee is ideal for maximum crop photosynthesis.

Shibles and Weber (1965) observed that percent net radiation interception and rate of drymatter production increased with increase in leaf area. The net radiation above vecetative
surfaces ranges between 50 to 70 percent of total short wave radiation depending mainly on the develoment of the plant canopy.

The canopy structure is specified by vertical distribution function of leaf area dencity and the orientation function i.e. the inclination and azimuth angles. Ross and Nilson (1966) studied the geometry of leaf orientation function within crop canopies and found that rice is more near vertical than erectophile. Canopy structure has been analysed more accurately in rice crops and it is revealed that the canopy structure of rice changes from a nearly ideal type before the heading stage to a quite inverse structure after the heading stage (Ito, 1969). Hayashi (1969) found that many high yielding varieties are short, erect leaved and high tillering.

Yoshida et al. (1972) have discussed the physical meaning of erect leaves in terms of light use by a plant community. Hayashi (1972) has made comprehensive studies of the canopy structure of rice cultivars in relation to the search for a plant type maximising photosynthetic energy utilisation. He showed that the value of the

Abstract

extinction coefficient varies some-what among rice varieties, depending on the leaf arrangement in rice canopy. The more erectophile varieties developed larger leaf area indices and produce more drymatter at a given leaf area.

The radiation denetration within the crop canopy to a larger extent depends on the extinction coefficient of the crop (Monteith, 1972). Udagawa et al. (1974) calculated an extinction coefficient between . 6 and . 7 for a rice canopy.

Sciecz (1974) found that the net short wave radiation rapidly diminishes with increase in the depth of the crop canopy. He stressed the importance of shape of canopy and inclination of leaves in relation to light utilisation and pointed out that the drymatter accumulation of plants may differ according to the habit of the assimilation system, even when there is no difference in leaf area or photosynthetic efficiency.

Kanda (1975) has recorded that about 3 to 5 percent of Photosynthetically Active Radiation is lost by reflection at the canopy surface.
b) Albedo (Reflection coefficient).

The albedo, defined as the percentage of incoming shortwave solar radiation that is reflected, was measured over the crop. The albedo of a vertical leaved canopy decreases drastically with sun altitude whereas that of the horizontal leaved canopy is retained at a constant value independently of sun altitude (Ross, 1962). For rice canopies it decreases rapidly with increase of solar radiation from 28 percent at $h_{O}=15^{\circ}$ to 13 percent at $h_{0}=70^{\circ}$.

Japanese researchers (Anon, 1967) found a reflection coefficient of .08 at the time of transplant and a value of .22 when the cover became dense.

Denmead (1969) observed the change in the reflection coefficient with solar elevation.

Hayashi (1972) reported that in the ripening period the albedo of a rice crop is somewhat lower. Kishica (1973) measured the albedo of rice canopy in the wave range of Photosynthetically Active Radiation and showed that the albedo for photosynthetically Active Radiation was lower than that for total shortwave radiation.

The seasonal variation in the values of albedo for a rice crop is approximately parallel to that of leaf area index. Isdu et al. (1977) established a linear relationship between albedo and leaf area index upto 95 days after sowing and also between albedo and grain yield.

2. Photosynthesis and yield of rice.

The photosynthesis during ripening contributes to grain carbohydrate by 60-100 percent under usual conditions. Grain carbohydrate depends more on accumulated carbohydrate when light intensity after heading is low because photosynthesis during ripening is reduced (Soga and Nozaki, 1957).

Takeda and Kumara (1957) compared the photosynthetic rate per rice plant in fields'p' and with that of isolated plants ' P_{O} '. P_{o} is larger than P, and the difference between them increased with increasing leaf area. They ascribed this to the mutual shading of leaves, and called the ratio $\mathrm{P} / \mathrm{P}_{\mathrm{O}}$ the light receiving coefficient.

The results of Watson and Witis (1959) suggest that the leaf arrangement and leaf angle exert a large influence on the net assimilation rate when mutual shadding of leaves occur.

The sunlit leaf area plays a very important role in canopy photosynthesis. Warren Wilson (1963) found the sunlit area index of rice crop with very erect leaves to be about '2'.

Tanaka et al. (1964) reported lower drymatter accumulation and decreased photosynthesis under shaded conditions. Stansel et al. (1965) stated that under low light intensity conditions sterility increased. taller plants were produced and yields were reduced.

According to Murata (1966) the accumulation of starch in the leaves and culms begins about 10 days before heading. Starch accumulates markedly in the grain during the 30 days period following heading. The total period of 40 days before heading may be considered as the period of grain production (Murata, 1966; Yoshida and Ahn, 1968).

The influence of leaf inclination angle on canopy photosynthesis has been reported with regard to rice by Tanaka (1972). The yield of the horizontal leaved rice canopy was about 70 percent that of the vertical leaved canooy.

Mathematical models for the evaluation of canopy photosynthetic activity of leaf, leaf amount and of radiation energy distribution in the canopy have also been developed.
3. Effect of row orientation.

Very few investigations on the effect of row orientation on yield have been made so far. These few studies, however, bring out results that are surprisingly similar with different crop growth under widely differing conditions.

In the USSR, spring wheat sown in North-South orientation produced $100-300 \mathrm{~kg} / \mathrm{ha}$ more than when sown in East - West (Perekaljski1,1951).

Dungan et al. (1955) found that maize planted in a North-South direction yielded significantly more grain and forage than when it was planted in an East-West direction. They also reported that the yield of maize fodder sown in the North-South lines was more than that sown in East-West orientation though the difference was not significant.

Pendleton and Dungan (1958) in Illinois stated that oats drilled in North-South direction yielded significantly more grain than that seeded in East-West direction, the advantage of the North-South row increased as interrow spacing increased. Further, they reported that the interception of solar radiation by differently oriented crop is dependent on season and latitude.

In Australia, 6.5 percent and 11 percent yield increase in drymatter production in wheat, were obtained in two experiments with North-South sowing as compared to East-west sowing (Santhirasegaram, 1962).

According to Yao and Shaw (1964) the different row directions with different spacing show variable radiation interception. Because of sunlight intercepted by the rice crop, plant spacing and row orientation also affect the grain yield of rice (Matsuo, 1964).

Sandhu (1964) reported that pearlmillet sown in North-South oriented rows produced taller plants and more grain yield compared to that sown in East-West direction giving higher grain, straw and protein yields.

Light penetration was predicted for East-West, North-South, North East-South West and North West-South East row orientations using row geometry of East-West wide row grain sorghum at Colorado (Allen, 1974). The model predicted $37,44,42$ and 42 percent daily interception respectively. The North East-South West row orientation might be best since the model predicted that the most light would be absorbed at $10.00 \mathrm{hr} .$, and when moisture stress would be low, and the least at $14.00 \mathrm{hr} .$, when the moisture stress would be high.

Linvill and Dale (1975) observed that both the plant density and geometry could affect net radiation of corn plants but the difference in net radiation would be small.

Pigarera and Rusanenko (1977) concluded that the effect of solar radiation were stronger on grain quality of wheat grown in North-South rows than grown in EastWest row orientation in Saratov province of USSR.

Dhillon and Kler (1981) concluded that sowing wheat in North-South direction resulted in significant increase in yield over the crop sown in East-West direction probably due to better penetration of light, thus illuminating more number of lower leaves.

Murthi (1982) recorded highest grain yield in wheat planted in North-South orientation.
4. Effect of spacing on the growth and yield of rice.

Hidayatullah and Sen (1944) reported that productive tillers and panicle length were functions of spacing. Murata et al. (1957) found that the narrower the spacing the greater the photosynthetic ability at the early to middle stage of growth. However, the relationship was reversed in the later stages.

The grain weight per unit area increases with a decrease in spacing upto a certain extent, after which
there is no change or decrease, depending on the Character of the variety (Kanda and Kakizaki, 1957). Under a fully fertilised condition, the total yield of the drymatter per unit area at harvest time became constant regardless of its density. Thus was observed the "law of constant final yield in plant growth" (Kira, 1959) .

The effect of plant density on the yield of rice for traditional varieties (Vacchani and Rao, 1959; Yin et al. 1960; Matsuo, 1964) and modern varieties (Fagade and De Datta, 1971) has been studied. The short, lodgingresistant, photoperiod-insensitive varieties such as IR-8, IR-36 etc. should be spaced 20 cm X 25 cm in the wet season regardess of soil fertility.

Vacchani et al. (1961) have recorded increased plant height in increased spacing. He obtained significantly higher yield under a close spacing of $15 \mathrm{~cm} \times 15 \mathrm{~cm}$ at CRRI, Cuttack.

Number of panicles, total number of spikelets per unit area increased and the weight per panicle and mean grain weight decreased with increase in plant density (Yamada, 1961; Anon, 1964; Tanaka et al. 1964).

Trials conducted at CRRI, Cuttack for four seasons with hich yielding varieties indicated that spacing effect or interactions with other factors were not sionificant in the majority of seasons, with the result that specific plant population requirements could not be conclusively defined (Rao, 1966).

Lei and Xi (1967) obtained greater plant height in closer spacing.

Bhan (1967) reported very little difference in the nutrient content of plant tissue as influenced by spacing and population, but drymatter production increased with increase in spacing.

Bains and Singh (1967) observed a spacing of $15 \mathrm{~cm} \times 15 \mathrm{~cm}$ and two seedlings per hill as the optimum combination to realise higher yields under low hill conditions in U.F. Kulandaivelu (1967) reported that a spacing of $20 \mathrm{~cm} \times 10 \mathrm{~cm}$ increased the yield components of each plant, but did not increase overall yield of grain due to reduction in plant population per unit area.

Results of the experiments conducted under the AICRIP during Rabi 1968 showed a spacing of $20 \mathrm{~cm} \times 15 \mathrm{~cm}$ to be good for IR - 8 (Anon, 1968).

Asbertin and Peters (1961) found that plant population and row width affect the relative amount of energy absorbed by the plants and the soil. They found slightly higher fractions of net radiation near the ground, and reported them to vary with plant density in corn. Yao and Shaw (1964) reported that the ratio of net radiation at the ground to that above the canopy in a fixed plant population showed a decrease with decrease in spacing, the closer the spacing the lower was the value.

Increase in the number of grains per panicle and number of spikelets per panicle with wider spacing were also reported (Anon, 1964; Matsuo, 1965; Ahmed and Rao, 1966).

Studies on a medium tillering, nitrogen responsive ponlai variety revealed that the modern rice plant can be transplanted at any distance from $10-35 \mathrm{~cm}$ without significant difference in yield (Anon, 1965). Chandler (1965) suggested that the short, erect leaved, heavy tillering varieties developed in South East Asia can be transplanted at distances ranging from $10 \mathrm{~cm} \times 10 \mathrm{~cm}$ to $30 \mathrm{~cm} \times 30 \mathrm{~cm}$ without any significant change in yield provided other cultural practices are ideal.

The tiller number per unit area in a rice population is largely a function of plant density. The tiller number is positively or negatively correlated with grain yield depending on the rice variety and crop environment (Kawano and Tanaka, 1968). According to Mandal and Mahapatra (1968) number of effective tillers were obtained under closer spacing.

Allen (1974) suggested that row spacing and crop cover influence the net radiation partition to a greater extent.

Closer spacing proved to be more favourable for rice production to the sunny and hot second crop season. During the second crop season $20 \mathrm{~cm} \times 10 \mathrm{~cm}$ spacing was found to be the best for PTB - 20 and RP4 - 14 (Anon, 1975).

In an experiment conducted at IARI highest yield was obtained when row and plant spacing were kept minimum at $7.5 \mathrm{~cm} \times 7.5 \mathrm{~cm}$ (Parashar, 1976).

Lerch (1976) has found that increase in plant population decreased the number of tillers and pantcles, leaf area and yiela per plant but increased the total area, drymatter production and paddy yield per square
meter and concluded that closely spaced plants utilise more solar radiation for grain production more effectively than those with widely spaced.

Effect of plant spacing and number of seedlings per hill on growth and yield of rice variety 'Jaya' was studied at PAU during 1973-174 (Shahi and Gill, 1976). No significant deflection in grain yield was observed.

Singh and Modjal (1977) observed that plant spacing did not influence grain yield. Though there was an increase in panicle number with reduced spacing the favourable effects might have been offset by decreased number of spikelets per panicle.

Venketeswarlu and Sreenimasan (1978) have reported that the yield losses due to the shading effect could be compensated to some extent by increasing population density.

Nguu and De Datta (1979) reported the effect of plant density on grain yield of rice grown with various levels of soil nitrogen. The rate of fertiliser
application affected the yield response to plant density.

Devi et al. (1981) concluded that closer spacing would be required for the second crop season while a wider spacing of $20 \mathrm{~cm} \times 15 \mathrm{~cm}$ would be suitable for the first crop season.

Field experiments conducted in dry and wet seasons showed that the drymatter of rice accumulated per unit area was slightly high (5 percent) in plots having one skip row after every two rovs planted 20 cm apart (Goutam, et al. 1984). The rows bordering the skip row produced more filled grains than the control plants, compensating for the missing rows under the skip row planting.

MATERIALS AND METHODS

MATERIALS AND METHODS

A field experiment designed to study the influence of crop geometry on the growth and yield of rice variety 'Jaya' was conducted during the second crop season of 1983 at the Regional Agricultural Research Station, Pattambi. The field selected for the experiment was under bulk crop of paddy for the previous two seasons.

1. Materials.

1.1. Site, climate and soil.

The research station is situated at $10^{\circ} 48^{\prime} \mathrm{N}$ Latitude and $76^{\circ} \quad 12^{\prime}$ E Longitude at an altitude of 25.36 m above MSL. This area enjoys a typical humid tropical climate.

The details of the meteorological observations for the period are presented in Table 1.1.1. and Figure 1.

The soil of the experimental area is sandy loam in texture.

The chemical properties of the soil are given below:

Organic carbon	1.315%
Total nitrogen	$.222 \%$
Total $\mathrm{P}_{2} \mathrm{O}_{5}$	$.0168 \%$
Total $\mathrm{K}_{2} \mathrm{O}$	$.0136 \%$
Available $\mathrm{P}_{2} \mathrm{O}_{5}$	16.11 ppm
Available $\mathrm{K}_{2} \mathrm{O}$	115.07 ppm
pH	5.4

Table 1.1.1
Mean weekly weather parameters for the crop growth period.

Duration Period	Temperature $\left(O_{C}\right)$	Rela- Total tive Rain-Humi- fall	Sunshine (hours)	Wind Velocity	Pan evaporation
	Max. Min.	${ }_{(\%)}$ dity (mm)		($\mathrm{Km} / \mathrm{hr}$)	(mm)

1.10.'83 to	7.10.183	29.8	23.7	88.7	53.4	5.4	3.0	14.2
8.10.'83 to	14.10.'83	31.2	22.0	80.0	Nil	9.2	2.3	33.4
15.10.'83 to	21.10.'83	31.5	23.0	81.5	25.2	6.9	2.1	12.0
22.10.'83 to	28.10.'83	32.5	23.5	80.4	83.2	6.1	1.6	12.7
29.10.'83 to	4.11.'83	32.3	23.4	81.2	61.4	6.0	1.8	13.7
5.11 .183 to	11.11.'83	32.3	21.8	74.9	1.5	9.0	1.5	26.9
12.11.'83 to	18.11.'83	33.1	20.0	67.5	Nil	10.2	1.6	26.0
19.11.'83 to	25.11.'83	32.1	21.7	79.5	31.7	7.5	0.9	20.5
26.11.'83 to	2.12.'83	32.4	21.9	69.0	Wil	8.7	3.3	27.3
3.12 .183 to	9.12.'83	32.7	23.0	65.5	4.0	8.2	5.2	33.4
10.12.'83 to	16.12.'83	34.0	23.0	65.0	Nil	9.6	4.4	38.3
17.12.'83 to	23.12.'83	31.7	23.3	72.5	1	9.0	4.9	30.2
24.12.'83 to	31.12.'83	31.8	22.9	77.5	38.5	7.1	2.7	11.9
1. 1.184 to	7.1 - 84	33.0	22.9	61.0	Nil	8.8	5.1	38.7
8. 1.'84 to	14.1.'84	32.2	23.0	58.5	Nil	6.8	5.3	37.7
15.1. '84 to	21.1.'84	33.7	22.0	70.5	14	7	2.9	23.6
22.1. '84 to	28.1.'84	33.7	19.5	64.5	Nil	9.8	3.6	40.6
29.1.'84 to	4.2.'84	34.1	22.7	56.5	Wil	8.2	5	38.3
5.2.'84 to	11.2.'84	34.3	24.5	64.0	Nil	5.5	5.8	42.8

1.2. Season.

The experiment was conducted during the period from October, 1983 to February, 1984.
1.3. Variety.

The variety 'Jaya' selected for the study is one of the early semi dwarf varieties developed in India which created a significant impact on rice production in the country. It is a photoinsensitive variety developed from the cross between TN - 1 and T 141. The duration of the variety is 130 days.

1.4. Manures and fertilisers.

Farmyard manure at the rate of 5000 kg per hectare was applied uniformly as basal dressing. In adition, lime (54 percent $C a 0$) was applied uniformly at the rate of 600 kg per hectare about 4 days prior to planting. Urea, Super phosphate and Muriate of potash were used as fertilisers to supply the required quantity of nitrogen (at the rate of 90 kg N per hectare), phosphate (at the rate of $45 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5}$ per hectare) and potassium (at the rate of $45 \mathrm{~kg} \mathrm{~K} \mathrm{~K}_{2} \mathrm{O}$ per hectare) respectively.
2. Methods.
2.1. Layout.

The experiment was laid out in split plot design
with three replications. The layout plan is given in Figure 2. The treatments consisted of combination of two levels of spacing between plants and three levels of spacing between alleys in the mairplot and four levels of crop orientation in the subplot. The different treatments given in the experiment are denoted by the symbols:-

1. Spacing between plants.
$\mathrm{S}_{1}-20 \mathrm{~cm} \mathrm{X} 15 \mathrm{~cm}$
$\mathrm{s}_{2}-20 \mathrm{~cm} \times 10 \mathrm{~cm}$
2. Spacing between alleys (40 cm wide)
$A_{1}-80 \mathrm{~cm}$ apart (Alleys are taken after every
4 rows of paddy).
$A_{2}-160 \mathrm{~cm}$ apart (Alleys are taken after every 8 rows of paddy).
$A_{3}-240 \mathrm{~cm}$ apart (Alleys are taken after every 12 rows of paddy).
3. Crop orientation.

$$
O_{1}-\text { North }- \text { South }
$$

O_{2} - East - West
O_{3} - Diagonal planting (North East - South West)
O_{4} - Diagonal planting (North West - South East)
Net plot size - 6 mx 4.8 m .

FIG: 2 LAYOUT PLAN
RI. \qquad R. II. \qquad R. III. \qquad $1-6 m-1$
 *

\square
$S_{1} A_{3} C_{4}$ $S_{1} A_{2} O_{1}$ $S_{2} A_{2} O_{4}$
\qquad

TREATMENTS - 24
REPLICATIONS - 3
DESIGN- RED
PLOT SIZE - GM ×4.8M

SPACING BETWEEN PLANTS

$$
=1-20 \mathrm{~cm} \times 15 \mathrm{~cm}
$$

$$
s_{2}-20 \mathrm{~cm} \times 10 \mathrm{~cm}
$$

TREATMENTS
SPACING BETWEEN ALLEYS (40 cm WIDE)
$A_{1}-80 \mathrm{~cm}$ APART (ALLEYS ARE TAKEN AFTER EVERY 4 ROWS OF PADDY)
$A 2-120 \mathrm{~cm} A P A R T$ (ALLEYS ARE TAKIN AFTER EVERY 8 ROWS OF PADDY)
A3-240 Cm APART (ALLAYS ARE TAKEN AFTER EVERY 12 ROWS $\triangle F$ PADDY)
CROP ORIENTATION - O - NORTH - SOUTH
O_{2} - EAST - WEST
OJ- DIAGONAL PLANTING (NORTHEAST - SOUTH WEST)
OH- DIAGONAL PLANTING (NORTH WEST -SOUTH EAST)

2.2. Cultural Operations.

The cultivation practices recommended for 'Jaya' by the Kerala Agricultural Unitmersity were followed.

The land was ploughed twice and the soil was brought to a puddled condition. Farmyard manure was uniformly spread all over the field before the second ploughing. Lime was applied at the rate of 600 kg per hectare in two split doses; the first dose at 350 kg per hectare as basal dressing at the time of final ploughing and the second dose at 250 kg per hectare as top dressing about one month after planting.

A uniform dose of 45 kg nitrogen, $45 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5}$ and $22 \frac{1}{2} \mathrm{~kg} \mathrm{~K}_{2} \mathrm{O}$ per hectare applied in all plots before last pudding. Remaining 45 kg of nitrogen and $22 \frac{1}{2} \mathrm{~kg}$ of $\mathrm{K}_{2} \mathrm{O}$ per hectare were topdressed 5 to 7 days prior to the panicle initiation stage.

The seeds were sown on 1 st October, 1983. The seed rate used was 80 kg per hectare. Twenty five days old seedings were transplanted with two seedings per hill. Controlled irrigation and drainage were done as and when required. The plots were handweeded twice 30 days and

45 days after transplanting. Two protective sprayings with Ekalux on 20th day after planting and Leybacid and Hinosan on 50th day after planting were given.

The stand of the crop in general was good throughout the period of growth. The crop was harvested on February 7th, 1984.

2.3. Observations.

2.3.1.Crop growth characters and yield components.
a) Height of plants.

The plant height in cm was recorded on the 30 th and 60th day after planting and at harvest. Height of plants was measured from the bottom of the culm to the tip of the largest leaf or tip of the earhead whichever was tallest.
b) Number of tillers.

Number of tillerspar sa.m. was counted on the above dates.
c) Leaf area index.

Leaf area index was recorded on 40 th, 75 th and 90 th day after planting and at harvest.
d) Number of productive tillers.

Number of productive tillers prom. was counted.
e) Length of panicle.

Length in cm from the neck to the tip of panicle was measured.
f) Number of grains per panicle.

Number of grains in each panicle was recorded.
g) Thousand grain weight.

One thousand grains were counted, weighed and the weight was recorded in gm.
h) Grain yield.

The grain harvested from each plot was cleaned. dried and weighed. From this yield in Kilograms per hectare was calculated and recorded.
i) Straw yield.

The weight of sun dried straw was recorded plotwise and from this the yield of straw in Kilograms per hectare was computed.
j) Drymatter production.

Total drymatter production in Kilograms per hectare was worked out.
K)

Grain - straw ratio.
Grain - straw ratio was also worked out.
2.3.2. Meteorological ooservations.

The daily values of meteorological parameters (maximum and minimum temneratures, rainfall, humidity, sunshine hours, winc velocity, evaporation etc.) recorcied at the meteorological observatory adjacent to the experimental site were used.

Albedo
The incominc and reflected radiations in the cro canopy were measured using an Albecometer CN 8 (Medos Comnany Pty Ltd, Midaleton Instruments, Pustralia). The instrument has the temerature comensated sensor and double glas: hemispheres. The shield which nrotects the body from incident radiation, is specially designed so that the area of the shadow cast is minjmised. The instrument head carries a spirit level and a desicoant tube is fitted in the randle.

The instrument was helc at a height of 1 m above the rice croo. The incoming and reflected radiations were measured by keeping the sensor in uo-facing and down-facing positions. The data were recoraed at 5 minutes interval. The measurements were made on clear days.

Determination of albedo was made from the formula: Albedo $=\frac{\text { Voltage output of down-facirg sensor }}{\text { Voltage output of } u p-f a c i n g \text { sensor }} 100$.

The incoming solar radiation (Rs) was also worked out using the formula $\mathrm{Rs}=(.29+.42 \mathrm{n} / \mathrm{N})$ Ra where Ra is the mean equivalent evaporation in mm per day and n / N being the ratio between actual measured bright sunshire hours and maximum possible sunshine hours. The values of N (hours) and Ra (mm/day) for the particular latitude ($10^{\circ} 48^{\prime} N$) are taken from the tables given the "Cron Water Requirement". FAO, 1977. Using these values of incoming radiation and the recorded albedo values the amount of reflected radiation was also worked out. 2.4. Chemical analysis.

The N, F, K contents of rice plants at harvest were determined.

The nutrient uptake per hectare was also calculated. 2.5. Statistical analysis.

The data recorded for plant growth characters, yield and yield attributes, nutrient contents of plant etc. were subjected to statistical analysis by applying the analysis of variance technique for split olot design as suggested by Panse and Sukhatme (1954).

RESULTS

RESULTS

The results of the experiment conducted to study the influence of crop geometry on the growth and yield of rice variety 'Jaya' are furnished below: 1. Plant height.

The observations on height of plants taken on 30th and 60th day after planting and at harvest were taken and analysed separately and the analysis of variance tables are presented in Appencices I, II and III respectively. The mean heights are presented in Tables 1, 2 and 3.

On the 30 th day the effect due to orientation was found to be highly significant. From Table 1 it is seen that among the different crop orientations, the plant height of $\mathrm{N}-\mathrm{S}$ oriented crop was the maximum (56.4 cm). The E-w oriented crop recorded the lowest value (53.4 cm). The mean height of the NW-SE and NE-SW orjented plants were on par.

Among the various interactions, that of S_{2} spacing $X_{A_{1}}$ alley was found to be highly significant. The maximum height for this combination was 56.2 cm . The least value of plant height (53.2 cm) was in the $\mathrm{s}_{1} \times \mathrm{A}_{1}$.

Table 1
Height of plant on 30th aay after planting (cm).

	O_{1}	O_{2}	O_{3}	O_{4}	Mean
S_{1}	55.28	53.10	54.11	55.71	54.55
S_{2}	57.52	53.70	54.44	54.41	55.02
A_{1}	57.98	53.52	52.85	54.40	54.69
A_{2}	55.40	53.27	54.75	55.27	54.67
A_{3}	55.82	53.42	55.23	55.52	55.00
$S_{1} A_{1}$	55.40	52.60	51.10	53.70	53.20
$S_{1} A_{2}$	54.50	53.30	55.60	55.70	54.92
$s_{1} A_{3}$	56.00	53.40	55.70	57.10	55.55
$\mathrm{S}_{2} \mathrm{~A}_{1}$	60.60	54.40	54.60	55.10	56.18
$S_{2} \mathrm{~A}_{2}$	56.30	53.20	53.90	54.30	54.43
$\mathrm{S}_{2} \mathrm{~A}_{3}$	55.70	53.40	54.80	53.90	54.45
Mean	56.40	53.40	54.28	55.06	---
Spacing : $\mathrm{SE}_{\mathrm{m}}= \pm .93$					
Alleys : $\mathrm{SE}_{\mathrm{m}}= \pm .93$					
Orientat	: SE_{m}	. 48 C	.05) $=1$	$\mathrm{O}_{1} \quad \underline{O_{4}}$	$\mathrm{O}_{3} \quad \mathrm{O}_{2}$

Table 1 (a)
Combined effect of Spacing between plants and spacing between alleys on height of plant on 30th day after planting (cm).

Table 2

Height of plant on 60th day after planting (cm).

Table 3

Height of plant at the time of harvest (cm).

	O_{1}	O_{2}	O_{3}	O_{4}	Mean
S_{1}	71.44	69.68	70.21	69.78	70.28
S_{2}	70.87	66.50	68.13	68.20	68.43
A_{1}	71.90	68.20	69.75	69.02	69.72
A_{2}	71.80	69.98	70.32	70.30	70.60
A_{3}	69.77	66.08	67.45	67.65	67.74
$S_{1} A_{1}$	72.10	69.50	70.93	69.50	70.71
$S_{1} A_{2}$	72.23	70.93	70.00	70.20	70.84
$S_{1} A_{3}$	70.00	68.60	69.70	69.63	69.48
$S_{2}{ }^{\text {A }}$	71.70	66.90	68.57	68.53	68.93
$\mathrm{S}_{2} \mathrm{~A}_{2}$	71.37	69.03	70.63	70.40	70.36
$\mathrm{S}_{2} \mathrm{~A}_{3}$	69.53	63.57	65.20	65.67	65.99
Mean	71.16	68.09	69.17	68.99	---
Spacing:	$S E_{m}=$	C.L) =		
Alleys :	$S E_{m}=$	C.D) =	${ }_{+}{ }_{2}$	
Orientation: $\mathrm{SE}_{\mathrm{m}}= \pm 2.74$					

Table 3 (a)

Combined effect of spacing between plants and spacing between alleys on height of plant at the time of harvest (cm).

	${ }^{\text {A }} 1$	A_{2}	A3	Mean
S_{1}	70.50	70.80	69.50	70.30
S_{2}	68.90	70.40	66.00	68.40
Mean	69.70	70.60	67.80	-
m	(.05) $=$	$\mathrm{A}_{2} \mathrm{~S}_{1}$	$\mathrm{S}_{1} \mathrm{~A}_{3}$	$\mathrm{S}_{2} \mathrm{~A}_{3}$

From Table 2, it is seen that on the 60th day the effect of various orientations on height was significant. The N-S orientation showed the maximum height $(68.7 \mathrm{~cm})$. E-W oriented crop had the lowest value (65.1 cm).

The data also reveal that the difference in
height of plants due to spacing was highly significant, the maximum being 68.0 cm in S_{1} spacing ($20 \mathrm{~cm} \times 15 \mathrm{~cm}$). The difference in the interactions was not found to be significant.

The data in Table 3, show that at the time of harvest the effect due to spacing between plants on height was highly significant. The maximum height (70.3 cm) was observed in the S_{1} spacing ($20 \mathrm{~cm} \times 15 \mathrm{~cm}$).

The effect due to different spacings between alleys was significant. The A_{2} (ie; 160 cm apart) recorded the maximum height (70.0 cm) followed by A_{1} and A_{3} respectively.

Regarding treatment combinations, S_{1} spacing (20 cm X 15 cm) with A_{2} alley (160 cm apart) showed the maximum height (70.8 cm) . The lowest value (66.0 cm) was observed in $S_{2} X A_{3}$ combination.
2. Number of tillers.

The analysis of variance tables corresponding to the observations on number of tillers on 30 th and 60 th
day after planting and at harvest are given in Appendices IV, V and VI respectively. The mean number of tillers per $s q \cdot m$. at each observation is presented in Tables 4, 5 and 6.

The data show that on the 30 th day the difference in the number of tillers due to orientation is highly significant and also due to spacing. The N-S oriented crop recorded the maximum bumber of tillers (482). NE-SW orientation showed the least value (404).

The interaction effects were not significant.

From Table 5, it is seen that on the 60th day the effect due to orientation was highly significant. The number of tillers produced in $\mathbb{N}-S$ orientation was significantly higher (577). E-W and NW-SE orientations were on per and the NE-SW orientation showed the lowest value (449) . As compared to $E-W$ and $N W-S E$ orientations, the N-S oriented crop produced 17.7% more number of tillers.

The table also shows that the difference in the number of tillers due to spacing is also highly significent. The value of S_{1} is the highest (553) while that of S_{2} is 453.

Table 4

Number of tillers per square meter on 30th day after planting.

	O_{1}	O_{2}	O_{3}	O_{4}	Mean
S_{1}	520	478	442	463	475
S_{2}	443	451	365	425	421
A_{1}	523	479	420	440	443
A_{2}	464	454	389	444	438
A_{3}	459	460	402	447	440
$S_{1} A_{1}$	540	490	450	475	489
$S_{1} A_{2}$	505	495	435	480	479
$S_{1} A_{3}$	515	495	440	425	469
$S_{2} A_{1}$	505	470	390	405	443
$\mathrm{S}_{2} \mathrm{~A}_{2}$	425	415	340	410	398
$\mathrm{S}_{2} \mathrm{~A}_{3}$	400	470	365	460	424
Mean	482	465	404	444	--
Spacing: $\mathrm{SE}_{\mathrm{m}}= \pm 33.0 \mathrm{C} . \mathrm{D}(.05)=60.17$					
Alleys : $S E M_{m}= \pm 33.0 \mathrm{C.D}(.05)=60.17$					
Orientati	ion:	± 26	C.D ($=31$	O_{2}

Table 5

Number of tillers per square meter on 60 th day after planting.

	O_{1}	O_{2}	O_{3}	0_{4}	Mean
S_{1}	676	525	474	537	553
s_{2}	478	462	424	449	453
A_{1}	621	507	457	463	512
A_{2}	586	514	474	531	526
A_{3}	524	460	417	484	471
$S_{1}{ }^{\text {A }} 1$	705	514	479	507	551
$S_{1}{ }^{\text {A }} 2$	679	582	549	559	592
$S_{1} A_{3}$	644	479	395	545	516
$\mathrm{S}_{2}{ }^{\mathrm{A}} 1$	537	500	435	419	473
$S_{2}{ }^{\text {A }} 2$	494	445	399	504	461
$\mathrm{S}_{2} \mathrm{~A}_{3}$	403	442	439	424	427
Mean	577	494	449	493	--

Spacing: $S E_{m}= \pm 16.0 \quad C . D(.05)=25.5$
Alleys : $\mathrm{SE}_{\mathrm{m}}= \pm 16.0 \quad \mathrm{C} . D(.05)=25.5{\overline{A_{2}}}^{A_{1}} \mathrm{~A}_{3}$
Orientations $S E_{m}= \pm 32.0 \mathrm{C} . \mathrm{D}(.05)=37.0 \quad \mathrm{O}_{1} \overline{\mathrm{O}} 2 \mathrm{O}^{\mathrm{O}_{4}} \mathrm{O}_{3}$

Table 5 (a)

Combined effect of spacing between plants and spacing between alleys on number of tillers per square meter ${ }_{\wedge}{ }^{\circ} 60$ th day after planting.

Table 6

Number of tillers per square meter at the tine of harvest.

	O_{1}	O_{2}	03	O_{4}	Mean
S_{1}	486	460	437	450	548
S_{2}	447	415	362	385	402
A_{1}	449	436	408	431	431
A_{2}	461	437	404	424	432
${ }^{+}$	489	439	389	398	429
$S_{1} A_{1}$	487	437	445	442	453
$S_{1}{ }^{\text {A }} 2$	404	465	432	490	448
$S_{1} A_{3}$	507	489	435	419	463
$S_{2}{ }^{\text {A }} 1$	459	419	370	420	417
$S_{2} A_{2}$	459	419	375	359	403
$S_{2} A_{3}$	472	390	342	377	395
Mean	467	438	400	418	
Spacing: $\mathrm{SE}_{\mathrm{m}}= \pm 14.5 \mathrm{C.D}(.05)=23$					
Alleys : $\mathrm{SE}_{\mathrm{m}}= \pm 14.5$					
Orientation: $\mathrm{SE}_{\mathrm{m}}= \pm 26.5 \quad \mathrm{C} . \mathrm{D}(.05)=31 \overline{0}$					$\overline{\mathrm{O}}_{2} \overline{\mathrm{O}} 4{ }^{3}$

It is also seen that the difference due to alleys too, is highly significant. The highest value (526) is seen due to A_{2} alleys.

The interaction effect of $S X O$ and $S X A$ showed significant differences. The maximun effect is perceived $\operatorname{in} S_{1} \times o_{1}(676)$.

Among the S X A combinations the highest value (592) was for $\mathrm{S}_{1} \mathrm{~A}_{2}$.

From Table 6 . it is seen that at the time of harvest the effects due to various orientations and due to spacing were highly significant.

The data indicate that $\mathrm{N}-\mathrm{S}$ oriented crop produced significantly more number of tillers (467). The least value was observed in the NE-SN oriented crop (400).

The S_{1} spacing produced the maximum number of tillers (458) and the S_{2} had a value of 402 .

However, the interaction effects were not significant.

A considerable reduction in the total number of tillers was also noticed during the period from 60th day after transplanting to the time of harvest.

3. Leaf area index.

The analysis of variance tables for the leaf area index at different stages as stated before are presented in Appendices VII, VIII, IX and X and the mean values in Tables $7,8,9$ and 10 respectively.

Appendix VII shows that the variation in leaf area index due to orientation is highly significant. From the Table 7 it is seen that on the 40 th day after planting the leaf area index in $\mathbb{N}-S$ orientation was highest (7.4). E-W orientation recorded the least value (4.1).

It is also seen that the effect of spacing is also highly significant. Spacing S_{2} recorded the maximum leaf area index (6.2).

The effect of alleys is found to be significant. The maximum value of leaf area index turnes out to be 6.3 for A_{2}.

Among the interactions only S X A and S X A X O were significant. $S_{2} \times A_{2}$ showed the highest value (6.5) among the $S \mathrm{XA}$ combinations. Regarding $\mathrm{S} X \mathrm{~A} X \mathrm{O}$ combinations $S_{2} X A_{2} X O_{1}$ recorded the highest value (8.2).

On the 75 th day after planting the orientation effect was found to be highly significant. N-S oriented

Table 7
Leaf area index on 40 th day after planting

Table 7 (a)

Combined effect of spacing between plants and spacing between alleys on leaf area index on 40 th day after planting.

	A_{1}	A_{2}	A_{3}	Mean
S_{1}	4.87	6.05	5.49	5.47
S_{2}	6.20	6.54	5.88	6.21
Mean	5.54	6.30	5.69	---
SE_{m}	. ${ }^{\text {(}}$.	$\mathrm{S}_{2} \mathrm{~A}_{2}$	$S_{1} A_{2}$	$A_{3} S_{1}$

Leaf area index on 75 th day after planting

	O_{1}	O_{2}	O_{3}	O_{4}	Mean
S_{1}	7.14	3.70	5.68	5.63	5.54
S_{2}	7.95	5.46	6.39	6.32	6.28
A_{1}	7.22	4.00	5.68	5.72	5.66
A_{2}	7.89	4.21	6.62	6.55	6.32
A_{3}	7.53	4.03	5.80	5.66	5.78
$S_{1}{ }^{\text {A }} 1$	6.53	3.71	4.80	4.84	4.97
$S_{1} A_{2}$	7.63	3.77	6.46	6.55	6.10
$S_{1}{ }^{\text {A }} 3$	7.27	3.62	5.78	5.48	5.54
$S_{2}{ }^{\text {A }} 1$	7.91	4.28	6.56	6.59	6.34
$S_{2}{ }^{\text {A }} 2$	8.15	4.67	6.78	6.55	6.54
$\mathrm{S}_{2} \mathrm{~A}_{3}$	7.79	4.44	5.82	5.83	5.97
Mean	7.55	4.08	6.04	5.97	---
Spacing: $8 \mathrm{E}_{\mathrm{m}}= \pm .04 \mathrm{C.D}(.05)=.06$					
Alleys : $S E_{\text {m }}= \pm .04$.05) $=.0$	${ }^{3} 3$	A_{1}
Orientation: $S E S_{m}= \pm .03 \mathrm{C.L}(.05)=.04$				$\mathrm{O}_{1} \mathrm{O}_{3}$	O_{2}

Table 8 (a)

Combined effect of spacing between plants and spacing between alleys on leaf area index on 75 th day after planting.

Table 9

Leaf area index on 90th day after planting.

	O_{1}	O_{2}	O_{3}	O_{4}	Mean
$>_{1}$	5.11	2.74	3.92	4.10	3.97
s_{2}	6.34	3.29	4.85	4.85	4.83
A_{1}	5.28	3.00	4.18	4.30	4.19
A_{2}	6.11	3.02	4.57	4.62	4.58
A_{3}	5.79	3.03	4.41	4.50	4.43
$S_{1} A_{1}$	4.44	2.49	3.62	3.80	3.59
$S_{1} A_{2}$	5.71	2.91	4.19	4.36	4.29
$S_{1} A_{3}$	5.18	2.83	3.95	4.13	4.02
$\mathrm{S}_{2} \mathrm{~A}_{1}$	6.12	3.52	4.73	4.79	4.79
$\mathrm{S}_{2}{ }_{2}$	6.51	3.14	4.94	4.88	4.87
$S_{2}{ }^{4} 3$	6.40	3.23	4.87	4.87	4.84
Mean	5.73	3.02	4.39	4.39	--
Spacing: $\mathrm{SE}_{\mathrm{m}}= \pm .02 \mathrm{C.D} \cdot(.05)=.03$					
Alleys :	SEm	C	5) =	A_{2}	

Table 9 (a)

Combined effect of spacing between plants and spacing between alleys on leaf area index on 90 th day after planting.

	A_{1}	${ }^{4} 2$	${ }^{\text {A }} 3$	Mean
s_{1}	3.59	4.29	4.02	3.97
S_{2}	4.79	4.87	4.84	4.83
Mean	4.19	4.58	4.43	---
SEm	C.	3	S_{2}	${ }^{S} 1$

Table 10
Leaf area index at the time of harvest.

	O_{1}	O_{2}	O_{3}	O_{4}	Mean
S_{1}	3.54	1.18	2.98	3.00	2.68
S_{2}	3.67	1.33	2.99	3.00	2.75
${ }^{\text {A }} 1$	3.59	1.22	2.86	2.85	2.63
A_{2}	3.67	1.30	3.13	3.18	2.82
A_{3}	3.56	1.25	3.00	2.97	2.69
$S_{1}{ }^{\text {A }} 1$	3.49	1.11	2.83	2.86	2.57
$S_{1} A_{2}$	3.61	1.23	3.17	3.18	2.80
$S_{1}{ }^{\text {H }}$	3.51	1.20	2.95	2.98	2.66
$S_{2}{ }^{4}$	3.68	1.33	2.89	2.35	2.69
$S_{2}{ }^{\text {A }} 2$	3.72	1.36	3.10	3.19	2.84
$\mathrm{S}_{2} \mathrm{~A}_{3}$	3.62	1.29	2.99	2.96	2.72
Mean	3.61	1.26	2.99	3.01	
Spacings:	$S E_{m}$	C.D) =		
Alleys :	SE_{m}	C. D) =	$A_{2} \quad A_{3}$	
Orientati	n: SE	$2 \mathrm{C} . \mathrm{D}$	$=$	$\mathrm{O}_{1} \quad \overline{\mathrm{O}_{4}}$	O_{2}

crop showed the maximum value (7.6) and the minimum being in the $E-W$ orientation.

The effect of spacing as well as alleys was also significant. S_{2} spacing recorded the highest value (6.3). Regarding alleys, A_{2} gave the maximum value (6.3).

Among the interactions, S X A and $S X A X O$ were significant. $S_{2} \times A_{2}$ had the highest value (6.5) among the S X A combinations. $S_{2} X A_{2} X O_{1}$ possessed the maximum leaf area index (8.2) among the S X A X o combinations.

On the 90th day after planting the orientation effect was highly significant. The N-S orientation showed the maximum value (5.7), the lowest (3.0) being in the E-W orientation.

Spacing as well as alleys significantly affected the leaf area index. S_{2} spacing recorded the maximum value (4.8). The highest value (4.6) was observed for A_{2} alleys.

Only the S X A interaction was found to be significant. $S_{2} X A_{2}$ had the highest value (4.9) of leaf area index.

The analysis of variance table on the day of harvest shows that the effect of orientation was highly significant. The maximum leaf area index (3.6) was obtained in N-S orientation, the lowest value (1.3) being in the $E-W$ orientation.

The effects of spacing and alleys were also significant. The leaf area index in S_{2} was the hiohest (2.8). Regarding alleys the highest value (2.8) was found in A_{2}.
4. Number of productive tillers.

The analysis of variance table for the number of productive tillers is presented in Appendix XI and the mean values in Table 11.

The effect due to the different orientations was observed to be significant. Maximum number of oroductive tillers (375) was found in the N-S orientation. The lowest value (325) was in the NE-SW orientation.

The effect due to spacing was also highly significant. The mean number of productive tillers was the maximum ($\mathbf{\$ 5 3}$) in S_{1}.

The effect of alleys was significant and the A_{2} alleys recorded the maximum value (353) while the lowest (333) was in A_{3}.

Table 11

Number of procuctive tillers per square meter.


```
None of the interactions was found to be significant.
5. Length of panicle.
```

The analysis of variance table for the length of panicle is presented in Appendix XII and the mean lengths of panicles in Table 12.

The effect due to orientation was highly significiant. Among the various orientations the maximum length of panicle (24.1 cm) was noticed in the $\mathrm{N}-\mathrm{S}$ orientation and the least value (10.9 cm) in the E-W orientation.

The effects due to soacing and alleys were found to be highly significant. The maximum (22.4 cm) was recorded in S_{1}. Regarding alleys the highest value $(22.6 \mathrm{~cm})$ occured in A_{1} and the lowest (21.8 cm) in A_{2}.

All the interactions except S X A were not significant. The maximum value (23.0 cm) was recorded in $S_{1} \times A_{1}$ and the minimum (22.1 cm) in $S_{2} \times A_{1}$. 6. Number of grains per panicle.

The analysis of variance table for the number of grains per panicle is given in Appendix XIII and the mean values in Table 13.

Table 12
Length of panicle (cab

	O_{1}	O_{2}	O_{3}	O_{4}	Mean
s_{1}	24.44	21.13	22.37	21.80	22.22
S_{2}	23.83	20.69	21.68	21.46	21.92
A_{1}	24.83	21.22	21.78	22.37	22.55
A_{2}	23.72	20.03	22.03	21.25	21.76
A_{3}	23.87	21.48	22.25	21.28	22.22
$S_{1} A_{1}$	24.63	21.60	22.37	23.30	22.98
$S_{1} A_{2}$	24.37	19.87	22.67	21.67	22.15
$S_{1} A_{3}$	24.33	21.93	22.07	20.43	22.19
$S_{2}{ }^{\text {A }}$	25.03	20.83	21.20	21.43	22.12
$S_{2} A_{2}$	23.07	20.20	21.40	20.83	21.38
$S_{2} A_{3}$	23.40	21.03	22.43	22.13	22.25
Mean	24.14	20.91	22.03	21.63	---
Spacing: $S E_{m}= \pm .27 \mathrm{C.D}(.05)=.4$					
Alleys : $\mathrm{SE}_{\mathrm{m}}= \pm .27$			$=.4$	A_{3}	
Orientation: $\mathrm{SE}_{\mathrm{m}}{ }^{\prime \prime} \pm .75 \mathrm{C} . \mathrm{D}(.05)=.38 \mathrm{O}_{1} \overline{\mathrm{O}_{3}} \mathrm{O}_{4} \quad \mathrm{O}_{2}$					

$$
\text { Table } 12 \text { (a) }
$$

Combined effect of spacing between plants and spacing between alleys on length of panicle (cm).

Table 13
Number of grains per panicle

	o_{1}	O_{2}	O_{3}	O_{4}	Mean
S_{1}	130.80	111.77	124.11	124.40	122.77
S_{2}	111.73	100.05	106.02	107.40	106.35
A_{1}	125.83	115.80	121.45	121.20	121.07
${ }^{+}$	120.65	101.05	114.62	115.28	112.90
${ }^{\text {A }}$	117.32	100.87	109:13	111.22	109.64
$S_{1} A_{1}$	137.77	130.90	134.63	133.07	134.10
$S_{1} A_{2}$	127.27	101.03	121.80	121.33	117.86
$S_{1}{ }_{3}$	127.37	103.37	115.90	118.80	116.36
$S_{2}{ }^{\text {a }}$	11.3 .90	100.70	108.27	109.33	108.05
$\mathrm{S}_{2} \mathrm{~A}_{2}$	114.03	101.07	107.43	109.23	107.94
$\mathrm{S}_{2} \mathrm{~A}_{3}$	107.27	98.37	102.37	103.63	102.91
Mean	121.27	105.91	115.07	115.90	
Spacing: $\mathrm{SE}_{\mathrm{m}}= \pm .54 \mathrm{C} . \mathrm{D}(.05)=.84$					
Alleys : $\mathrm{SE}_{\mathrm{m}}= \pm .54 \mathrm{C.D}(.05)=.84 \mathrm{~A}_{1} \quad A_{2} \quad A_{3}$					
Orientation: $S E_{m}= \pm 2.94 \quad C . D(.05)=3.43 \quad O_{1} \quad \overline{O_{4}} \quad \mathrm{O}_{3} \quad O_{2}$					

$$
\text { Table } 13 \text { (a) }
$$

Combined effect of spacing between plants and spacing between alleys on number of grains per panicle
$\left.\begin{array}{lllll} & A_{1} & A_{2} & 117.86 & 116.36\end{array}\right) 122.77$

The effect of orientation was observed to be highly significant. The $\mathbb{N}-S$ oriented crop produced the highest number of grains per panicle (121). The lowest value was found in the E-W orientation (106). N-S oriented crop had about 15% more number of grains than that of E-W orientation.

The effect due to spacing as well as alleys were highly significant. The highest value (123) was in S_{1}. Regarding alleys A_{1} recorded the maximum number of grains (121).

Among the interactions, only S X A combination was found to be significant. The highest mean value (134) was in $S_{2} A_{2}$.
7. Thousand grain weight.

Appendix XIV gives the analysis of variance of the thousand grain weight and Table 14 the mean values.

The effect due to orientation and $S X A$ interaction alone were highly significant. The N-S orientation had the highest value (28.1 g) while the E-W orientation showed the lowest value (26.6 g).

Among the $S X A$ combinations $S_{2} X A_{2}$ interaction recorded the highest weight (28.0 g) of thousand grains.

Table 14

Thousand grain weight (g)

	0_{1}	O_{2}	O_{3}	${ }^{\circ} 4$	Mean
S_{1}	28.07	26.17	27.41	26.72	27.09
s_{2}	28.16	26.98	27.40	26.60	27.29
${ }^{\text {A }} 1$	28.35	26.80	27.45	25.93	27.13
A_{2}	27.73	25.90	27.95	26.98	27.14
${ }^{4}$	28.25	27.02	26.82	27.07	27.29
$S_{1}{ }^{\text {A }} 1$	29.43	26.77	27.60	26.43	27.56
$S_{1} A_{2}$	26.27	24.57	27.57	26.50	26.23
$S_{1} A_{3}$	28.50	27.17	27.07	27.23	27.49
$S_{2} \mathrm{~A}_{1}$	27.27	26.83	27.30	25.43	26.71
$\mathrm{S}_{2} \mathrm{~A}_{2}$	29.20	27.23	28.33	27.47	28.01
$\mathrm{S}_{2} \mathrm{~A}_{3}$	28.00	26.87	26.57	26.90	27.09
Mean	28.12	26.58	27.41	26.66	

Spacing: $S E_{m}=.44$
Alleys : $\mathrm{SE}_{\mathrm{m}}=.44$
Orientation: $\mathrm{SE}_{\mathrm{m}}=.64 \mathrm{C} \cdot \mathrm{D}(.05)=.75 \quad \mathrm{O}_{1} \quad \overline{\mathrm{O}_{3}} \quad \mathrm{O}_{4} \quad \mathrm{O}_{2}$

Table 14 (a)

Combined effect of spacing between plants and spacing between alleys on thousand grain weight (g)

8. Grain yield.

The analysis of variance table for the grain weight is presented in Appendix XV and the mean values in Table 15.

The table shows that the effect due to orientation was highly significant. Maximum yield (3062 kg/ha) was obtained in $N-S$ orientation. The next lower value was observed in NE-SW orientation. NW-SE and NE-SW orientations were on par with regard to the grain yield. The lowest value was found in the E-W orientation ($2744 \mathrm{~kg} / \mathrm{ha}$) . The grain yield in N-S was about 12% more than that in E-W. In NE-SW and NW-SE it was 6 - 7\% more than the lowest figure. The grain yleld of $\mathrm{N}-\mathrm{S}$ orientation indicated that it was highest in almost all treatments of soacing between plants and spacing between alleys in comparison to E-W treatments.

Spacing between plants also significantly affected the grain yield. The maximum value ($2903 \mathrm{~kg} / \mathrm{ha}$) was recorded in S_{2}.

The interaction effect did not show any significant difference.
9. Straw yield.

The analysis of variance table for straw weight is presented in Appendix XVI and the mean values in Table 16.

Table 15
Grain yield ($\mathrm{Kg} / \mathrm{ha}$).

	O_{1}	O_{2}	O_{3}	O_{4}	Mean
S_{1}	3014.25	2708.32	2858.78	2827.91	2852.32
S_{2}	3109.55	2777.76	2905.07	2920.51	2903.22
${ }_{1}$	3078.68	2799.52	2910.66	2957.16	2936.51
${ }_{2}$	3101.83	2725.68	2881.93	2829.84	2884.82
A_{3}	3005.19	2737.25	2853.20	2835.63	2857.82
$S_{1}{ }_{1}$	3043.96	2719.89	2858.78	2939.80	2890.61
$S_{1} A_{2}$	3043.96	2711.65	2916.65	2727.76	2862.51
$S_{1} H_{3}$	2954.84	2696.74	2800.91	2766.19	2804.67
$S_{2} \mathrm{~A}_{1}$	3113.41	2812.48	2905.07	2974.52	2951.37
$\mathrm{S}_{2} \mathrm{H}_{2}$	3055.54	2777.76	2962.94	2905.07	2925.33
$\mathrm{S}_{2} \mathrm{H}_{3}$	3159.70	2743.04	2847.20	2881.93	2907.97
Mean	3061.90	2743.60	2881.93	2874.22	
Spacing: $\mathrm{SE}_{\mathrm{m}}= \pm 20.66 \mathrm{C} . \mathrm{D}(.05)=32.54$					
Alleys : $\mathrm{SE}_{\mathrm{m}}= \pm 20.66$					
Orientation: $\mathrm{SE}_{\mathrm{m}} \pm \pm 37.14 \mathrm{C}$.			$C . L(.05)=53.080_{1}$		$3 \mathrm{O}_{4} \quad \mathrm{O}_{2}$

Table 16
Straw yield (Kg/ha).

	O_{1}	O_{2}	O_{3}	O_{4}	Mean
s_{1}	4039.21	3549.59	3846.12	3873.75	3827.17
s_{2}	4245.85	3793.91	3915.64	3954.10	3977.38
A_{1}	4249.19	3788.15	3917.70	4077.88	4008.23
A_{2}	4160.56	3889.32	3936.76	3912.98	3924.91
A_{3}	4017.85	3537.77	3788. 18	3750.92	3773.68
$\mathrm{S}_{1}{ }_{1}$	4212.93	3734.73	3903.67	4143.49	3998.71
$S_{1} A_{2}$	4085.62	3602.29	4037.47	3937.93	3915.83
$S_{1}{ }^{4}$	3819.08	3311.75	3597.21	3539.84	3566.97
$s_{2}{ }^{\text {A }}$	4285.45	3841.38	3931.72	4012.26	4017.75
$\mathrm{S}_{2} \mathrm{~A}_{2}$	4235.49	3776.36	3836.05	3888.03	3933.98
$\mathrm{S}_{2} \mathrm{~A}_{3}$	4216.62	3763.79	3979.14	3962.01	3980.39
Mean	4142.53	3671.75	3880.38	3913.93	--
Spacing: $S E_{m}= \pm 6.58$ Alleys : $S E_{m}= \pm 6.58$					
Orientation: $\mathrm{SE}_{\mathrm{m}}= \pm 7.82 \mathrm{C} . \mathrm{D}(.05)=9.12 \quad \mathrm{O}_{1} \quad \mathrm{O}_{4}$					

Table 16 (a)
Combined effect of spacing between plants and spacing between alleys on straw yield (Kg/ha).

From the table it is seen that the effects due to orientation, spacing and alleys were highly significant. Among the different orientations N-S yielded significantly higher straw yield ($4143 \mathrm{~kg} / \mathrm{ha}$) followed by $N W-S E$ and NE-SW orientations. The least value (3672 kg/ha) was observed in the E-w orientation. The straw weight in N-S was about 13% more than that in $E-W$ orientation. In NW-SE and NE-SW it was $6-7 \%$ higher than the lowest value.

Regarding the spacing, S_{2} attained the highest straw yielc ($3977 \mathrm{~kg} / \mathrm{ha}$) 。 A_{1} alleys recorded the maximum value ($4008 \mathrm{~kg} / \mathrm{ha}$).

Among the interactions, only that of S X A was found to be significant. The highest value ($4018 \mathrm{~kg} / \mathrm{ha}$) was observed in $S_{2} X A_{1}$.
10. Drymatter production.

The final drymatter produced in all the treatments was analysed and the analysis of variance table is given ir the Appendix XVII and the mean values in Table 17.

It is seen that the effect of orientation is highly significant. The N-S oriented crop recorded the maximum ($7204 \mathrm{~kg} / \mathrm{ha}$) drymatter production. The least value ($6415 \mathrm{~kg} / \mathrm{ha}$) was observed in the E-W orientation.

Table 17
Drymatter Production ($\mathrm{Kg} / \mathrm{ha}$).

	O_{1}	O_{2}	O_{3}	O_{4}	Mean
S_{1}	7053.47	6257.46	6759.79	6697.67	6692.10
S_{2}	7355.40	6571.69	6931.82	6874.61	6933.38
A_{1}	7327.87	6554.34	7048.63	7029.03	6989.97
A_{2}	7262.39	6414.37	6818.69	6742.83	6809.57
A_{3}	7023.04	6275.02	6670.10	6586.55	6638.68
$S_{1} A_{1}$	7256.89	6454.62	6927.14	7071.29	6927.48
$S_{1} A_{2}$	7129.58	6309.27	6954.12	6715.69	6777.17
$S_{1}{ }^{\text {A }} 3$	6773.92	6008.49	6398.12	6306.02	6371.64
$S_{2}{ }^{\text {A }} 1$	7398.85	6654.06	7170.13	6986.78	7052.46
$s_{2} \mathrm{~A}_{2}$	7395.19	6519.46	6683.25	6769.96	6841.97
$\mathrm{S}_{2} \mathrm{~A}_{3}$	7272.16	6541.55	6942.08	6867.08	6905.72
Mean	7204.44	6414.58	6845.81	6786.14	---
Spacing: $S E_{m}= \pm 16.23$ C.D(.05) $=25.57$					
Alleys : $\mathrm{SE}_{\mathrm{m}}=$		16.23	(.05)	$5.57 \mathrm{~A}_{1}$	$\mathrm{A}_{2} \quad \mathrm{~A}_{3}$
Orientation: $\mathrm{SE}_{\text {m }}$		$= \pm 13.7$	C.D (.05)	$15.04 \mathrm{O}_{1}$	$\mathrm{O}_{3} \mathrm{O}_{4}$

Table 17 (a)
Combined effect of spacing between plants and spacing between alleys on drymatter

$$
\text { Production (} \mathrm{Kg} / \mathrm{ha} \text {). }
$$

	A_{1}	A_{2}	A_{3}	Mean
S_{1}	6927.48	6777.17	6371.64	6692.10
S_{2}	7052.46	6841.97	6905.72	6933.38

$$
\begin{array}{ll}
S E_{m}= \pm 16.23 & C . D(.05)=25.57 \\
& S_{2} A_{1} \overline{S_{1} A_{1} S_{2} A_{3}} S_{2} A_{2} \quad S_{1} A_{2} \quad S_{1} A_{3}
\end{array}
$$

The drymatter production in N-S was about 9% more than that in the E-W orientation.

The effect due to spacing and alleys were found to be highly significant. The hiohest value ($6933 \mathrm{~kg} / \mathrm{ha}$) was found in S_{2}.

Regarding alleys the maximum ($6990 \mathrm{~kg} / \mathrm{ha}$) was found in A_{1}.

Among the interactions S X A combination showed significant difference. The maximum value ($7053 \mathrm{~kg} / \mathrm{ha}$) was found in $S_{2} X A_{1}$ and the lowest ($6372 \mathrm{~kg} / \mathrm{ha}$) in $S_{1} \times A_{3}$.
11. Grain-straw ratio.

The analysis of variance table for the grain-straw ratio is presented in Appendix XVIII and the mean values in Table 18.

The effect of alleys and S X A interaction were only sionificant.
A_{3} alleys recorded the maximum value (.76) of grain-straw ratio. Among the S X A combinations, $S_{1} \times A_{3}$ obtained the highest ratio (.79).
12. Nitrogen content.

The analysis of variance table for the nitrogen content is presented in Appendix XIX and the mean values in Table 19.

Table 18
Grain/Straw ratio

Table 18 (a)

Combined effect of spacing between plants and spacing between alleys on grain/straw

ratio.

Table 19
Nitrogen Content (\%) .

	O_{1}	O_{2}	O_{3}	O_{4}	Mean
S_{1}	$\begin{gathered} .92 \\ (66.42) \end{gathered}$	$\begin{gathered} .87 \\ (60.16) \end{gathered}$	$\begin{gathered} .92 \\ (66.42) \end{gathered}$	$\begin{gathered} .93 \\ (68.99) \end{gathered}$	$\begin{gathered} .91 \\ (65.50) \end{gathered}$
S_{2}	$\begin{gathered} .93 \\ (68.99) \end{gathered}$	$\begin{gathered} .87 \\ (60.16) \end{gathered}$	$\begin{gathered} .90 \\ (63.85) \end{gathered}$	$\begin{gathered} .90 \\ (63.85) \end{gathered}$	$\begin{gathered} .90 \\ (64.21) \end{gathered}$
${ }^{\text {A }} 1$	$\begin{gathered} .93 \\ (67.70) \end{gathered}$	$\begin{gathered} .87 \\ (60.16) \end{gathered}$	$\begin{gathered} .90 \\ (63.85) \end{gathered}$	$\begin{gathered} .93 \\ (67.70) \end{gathered}$	$\begin{gathered} .91 \\ (64.85) \end{gathered}$
A_{2}	$\begin{gathered} .95 \\ (71.56) \end{gathered}$	$\begin{gathered} .87 \\ (60.16) \end{gathered}$	$\begin{gathered} .90 \\ (63.85) \end{gathered}$	$\begin{gathered} .90 \\ (63.85) \end{gathered}$	$\begin{gathered} .91 \\ (64.86) \end{gathered}$
A_{3}	$\begin{gathered} .90 \\ (63.85) \end{gathered}$	$\begin{gathered} .87 \\ (60.16) \end{gathered}$	$\begin{gathered} .93 \\ (67.70) \end{gathered}$	$\begin{gathered} .93 \\ (67.70) \end{gathered}$	$\begin{gathered} .91 \\ (64.85) \end{gathered}$
$S_{1}{ }^{\text {A }} 1$	$\begin{gathered} .90 \\ (63.85) \end{gathered}$	$\begin{gathered} .87 \\ (60.16) \end{gathered}$	$\begin{gathered} .90 \\ (63.85) \end{gathered}$	$\begin{gathered} .95 \\ (71.56) \end{gathered}$	$\begin{gathered} .91 \\ (64.86) \end{gathered}$
$S_{1} A_{2}$	$\begin{gathered} .95 \\ (71.56) \end{gathered}$	$\begin{gathered} .87 \\ (60.16) \end{gathered}$	$\begin{gathered} .90 \\ (63.85) \end{gathered}$	$\begin{gathered} .90 \\ (63.85) \end{gathered}$	$\begin{gathered} .91 \\ (64.86) \end{gathered}$
$S_{1} A_{3}$	$\begin{gathered} .90 \\ (63.85) \end{gathered}$	$\begin{gathered} .87 \\ (60.16) \end{gathered}$	$\begin{gathered} .95 \\ (71.56) \end{gathered}$	$\begin{gathered} .95 \\ (71.56) \end{gathered}$	$\begin{gathered} .92 \\ (66.78) \end{gathered}$
$S_{2} \mathrm{~A}_{1}$	$\begin{gathered} .95 \\ (71.56) \end{gathered}$	$\begin{gathered} .87 \\ (60.16) \end{gathered}$	$\begin{gathered} .90 \\ (63.85) \end{gathered}$	$\begin{gathered} .90 \\ (63.85) \end{gathered}$	$\begin{gathered} .91 \\ (64.86) \end{gathered}$
$\mathrm{S}_{2} \mathrm{~A}_{2}$	$\begin{gathered} .95 \\ (71.56) \end{gathered}$	$\begin{gathered} .87 \\ (60.16) \end{gathered}$	(63.85)	$\begin{gathered} .90 \\ (63.85) \end{gathered}$	$(64 . .81)$
$\mathrm{S}_{2} \mathrm{~A}_{3}$	$\begin{gathered} .90 \\ (63.85) \end{gathered}$	$\begin{gathered} .87 \\ (60.16) \end{gathered}$	$\begin{gathered} .90 \\ (63.85) \end{gathered}$	$\begin{gathered} .90 \\ (63.85) \end{gathered}$	$\begin{gathered} .89 \\ (62.93) \end{gathered}$
Mean	$\begin{gathered} .93 \\ (67.71) \end{gathered}$	$\begin{gathered} .87 \\ (60.16) \end{gathered}$	$\begin{gathered} .91 \\ (65.14) \end{gathered}$	$\begin{gathered} .92 \\ (66.42) \end{gathered}$	---

Spacing: $\mathrm{SE}_{\mathrm{m}}= \pm 1.33 \mathrm{C.D}(.05)=2.11$
Alleys : $\mathrm{SE}_{\mathrm{m}}= \pm 1.34$
Orientation: $\mathrm{SE}_{\mathrm{m}}= \pm 2.17 \mathrm{C} . \mathrm{D}(.05)=2.53 \quad \overline{\mathrm{O}_{1}} \quad \underline{\mathrm{O}_{4}} \quad \mathrm{O}_{3} \quad \mathrm{O}_{2}$

Note: Transformed data in brackets.

Table 19 (a)

Combined effect of spacing between plants and spacing between alleys on nitrogen content (\%).

Note: Transformed data in brackets.

The effect due to orientation was found to be significant. Among different crop orientations mean nitrogen content was the highest (.93\%) in N-S orientation and the lowest (. 87%) in the E-W orientation.

The effect due to spacing was also significant. The spacing S_{1} recorded the highest value (.91\%).

Among the interactions S X A and S X O were significant. $S_{1} X A_{3}$ recorded the highest nitrogen content (.92\%) among the $\mathrm{S} X \mathrm{~A}$ combinations. $\mathrm{S}_{2} \mathrm{X} \mathrm{O}_{1}$ recorded the maximum value (.93\%) regarding S X 0 combinations.
13. Fhosphorous content.

The analysis of variance table corresponding to the phosphorous content is given in Appendix $X X$ and the mean values in Table 20 .

The effect due to different orientations was observed to be significant. The $N-S$ oriented crop had the maximum value of phosphorous content (.43\%), the E-W having the minimum (. 31%).

The effect of spacing as well as alleys were also significant. S_{2} spacing gave the highest phosphorous content (. 38%) . A_{3} alleys showed the maximum value (. 39%) regarding alley treatments.

Table 20
Phosphorous content (\%).

	O_{1}	O_{2}	O_{3}	O_{4}	Mean
s_{1}	$\begin{gathered} .40 \\ (23.32) \end{gathered}$	$(17 . .60)$	(20.75)	$\begin{gathered} .38 \\ (22.28) \end{gathered}$	(20.36)
S_{2}	$\begin{gathered} .43 \\ (25.70) \end{gathered}$	$\begin{gathered} .31 \\ (18.06) \end{gathered}$	$\begin{gathered} .36 \\ (21.10) \end{gathered}$	$\begin{gathered} .42 \\ (34.64) \end{gathered}$	$\begin{gathered} .38 \\ (22.38) \end{gathered}$
A_{1}	$(24 . .31)$	$\begin{gathered} .32 \\ (18.46) \end{gathered}$	$\begin{gathered} .36 \\ (21.31) \end{gathered}$	$\begin{array}{r} .38 \\ (22.33) \end{array}$	$\begin{gathered} .37 \\ (22.60) \end{gathered}$
A_{2}	$\begin{gathered} .38 \\ (22.57) \end{gathered}$	$\begin{gathered} .28 \\ (16.36) \end{gathered}$	$\begin{gathered} .34 \\ (19.69) \end{gathered}$	$\begin{gathered} .38 \\ (22.15) \end{gathered}$	(20.35)
A_{3}	$\begin{gathered} .45 \\ (26.65) \end{gathered}$	$\begin{gathered} .32 \\ (18.66) \end{gathered}$	$\begin{gathered} .37 \\ (21.72) \end{gathered}$	$\begin{gathered} .44 \\ (25.90) \end{gathered}$	$\begin{gathered} .39 \\ (23.23) \end{gathered}$
$S_{1} A_{1}$	(25.436)	$(18 . .32)$	$\begin{gathered} .38 \\ (22.13) \end{gathered}$	(22.384)	(22.38)
$S_{1}{ }^{\text {a }} 2$	$\begin{gathered} .34 \\ (19.88) \end{gathered}$	$\begin{gathered} .27 \\ (15.46) \end{gathered}$	$\begin{gathered} .31 \\ (17.86) \end{gathered}$	$\begin{gathered} .34 \\ (19.68) \end{gathered}$	$\left(\begin{array}{c} .32 \\ (18.22) \end{array}\right.$
$S_{1} A_{3}$	(24.82)	$\begin{gathered} .32 \\ (18.66) \end{gathered}$	$\begin{gathered} .38 \\ (22.13) \end{gathered}$	$\begin{gathered} .42 \\ (24.62) \end{gathered}$	$\begin{gathered} .39 \\ (22.56) \end{gathered}$
$\mathrm{S}_{2} \mathrm{~A}_{1}$	$\begin{gathered} .40 \\ (23.37) \end{gathered}$	$\begin{gathered} .31 \\ (18.26) \end{gathered}$	$\begin{gathered} .35 \\ (20.49) \end{gathered}$	$\begin{gathered} .38 \\ (22.13) \end{gathered}$	$\begin{gathered} .36 \\ (21.06) \end{gathered}$
$\mathrm{S}_{2} \mathrm{~A}_{2}$	$\begin{gathered} .42 \\ (25.26) \end{gathered}$	$\begin{gathered} .30 \\ (17.26) \end{gathered}$	$\begin{gathered} .37 \\ (21.51) \end{gathered}$	$\begin{gathered} .42 \\ (24.63) \end{gathered}$	$\begin{gathered} .38 \\ (22.17) \end{gathered}$
$\mathrm{S}_{2}{ }^{\text {A }}$	$\begin{gathered} .48 \\ (28.47) \end{gathered}$	$\begin{gathered} .32 \\ (18.66) \end{gathered}$	$\begin{gathered} .36 \\ (21.31) \end{gathered}$	(27.46)	(23.41)
Mean	$(25 . .73)$	$\begin{gathered} .31 \\ (18.06) \end{gathered}$	$(21.36$	$\begin{gathered} .42 \\ (24.64) \end{gathered}$	
Spaci	$\mathrm{SE}_{\mathrm{m}}=$. 27 C.D	5) =		
Alley	- $S E_{m}=$. 27 C.D	5) $=$ -	A3 A	A2
Orientation: $\mathrm{SE}_{\mathrm{m}}= \pm .28$			$(.05)=$.	$O_{1} \quad O_{4}$	$3 \mathrm{O}_{2}$

Note: Transformed data in brackets.

Taiole 20 (a)
Combined effect of spacing between plants and spacing between alleys on phosphorous content (\%).

	${ }^{\text {A }}$	${ }^{\text {a }} 2$	A_{3}	Mean
S_{1}	$\begin{gathered} .38 \\ (22.15) \end{gathered}$	$\begin{gathered} .32 \\ (18.22) \end{gathered}$	$\begin{gathered} .39 \\ (22.56) \end{gathered}$	$\begin{gathered} .36 \\ (20.98) \end{gathered}$
S_{2}	$\begin{gathered} .36 \\ (21.06) \end{gathered}$	$\begin{array}{r} .38 \\ (22.17) \end{array}$	(23.41)	$\begin{gathered} .38 \\ (22.38) \end{gathered}$
Mean	$\begin{gathered} .37 \\ (21.60) \end{gathered}$	$\begin{gathered} .35 \\ (20.20) \end{gathered}$	$\begin{gathered} .39 \\ (23.23) \end{gathered}$	---
$S \mathrm{E}_{\mathrm{m}}=$	C.D (.0	$\mathrm{S}_{2} \mathrm{~A}_{3}$	$\mathrm{S}_{2} \mathrm{~A}_{2} \mathrm{~S}_{1}$	$S_{1} A_{2}$

Note: Transformed data in brackets.

All the interactions were found to be significant. $S_{1} X A_{3}$ recorded the maximum phosphorous content (. 41%) among $S \mathrm{XA}$ combinations. $\mathrm{S}_{2} \times \mathrm{O}_{1}$ showed the highest value (. 43%) regarding $S X 0$ combinations. Among $A \mathrm{X} O$ interactions $\mathrm{A}_{3} \mathrm{X}_{\mathrm{O}}^{1}$ got the highest phosphorous content (. 45%) . $\mathrm{S}_{2} \times \mathrm{A}_{3} \times \mathrm{O}_{1}$ had the maximum value (.48\%) among S X A X O.
14. Potassium content.

The analysis of variance table for the potassium content is presented in Appendix XXI and the mean values in Table 21.

The data reveal that the effect due to orientation was highly significant. N-S oriented crop recorded the maximum value of potassium content (. 38%) . The lowest value (.61\%) was seen in the E-ir orientation.

The effect of spacing was also significant. The spacing S_{2} showed the maximum value of $.77 \%$.

The effect due to alleys was highly significant. A_{1} had the highest potassium content (.75\%).

All the interactions were also found to be significant. Among S X A combinations $S_{2} X A_{2}$ showed

Table 21
Potassium content (\%).

Note: Transformed data in brackets.

Table 21 (a)

Combined effect of spacing between plants and spacing between alleys on potassium content (\%).

	A_{1}	A_{2}	${ }^{\text {A }} 3$	Mean
S_{1}	$\begin{gathered} .77 \\ (51.16) \end{gathered}$	$\begin{gathered} .85 \\ (59.62) \end{gathered}$	$\left(\begin{array}{c} .69 \\ (43.62) \end{array}\right.$	$\begin{gathered} .78 \\ (51.46) \end{gathered}$
S_{2}	(45.42)	(49.75)	(54.85)	(49:38)
Mean	$\begin{gathered} .75 \\ (48.29) \end{gathered}$	$\begin{gathered} .82 \\ (54.65) \end{gathered}$	$\begin{gathered} .76 \\ (49.24) \end{gathered}$	--
$S E_{m}= \pm 1.45 \mathrm{C} . \mathrm{D}(.05)=2.28 \quad \mathrm{~S}_{1} \mathrm{~A}_{2} \mathrm{~S}_{2} \mathrm{~A}_{3} \overline{S_{1} A_{1}} \mathrm{~S}_{2} \mathrm{~A}_{2} \mathrm{~S}_{2} \mathrm{~A}_{1} \mathrm{~S}_{1} \mathrm{~A}$				

Note: Transformed data in brackets.
the maximum value $(.35 \%)$. $s_{2} \times o_{1}$ recorded the highest content of potassium (.92\%) among the S X O combinations. $A_{1} X O_{1}$ gave the highest value (. 91%) among the A X O interactions. The maximum value $(.94 \%)$ was obtained in the $S_{2} \times A_{1} \times O_{1}$ among the combinations.
15. Uptake of nitrogen in the harvested crop.

The analysis of variance table coresponding to the uptake of nitrogen is given in Appendix XXII and mean values in Table 22.

The effect due to orientation was observed to be highly significant. $N-S$ oriented crop showed the maximum uptake of nitrogen $(66.5 \mathrm{~kg} / \mathrm{ha})$, the minimum ($55.0 \mathrm{~kg} / \mathrm{ha}$) being in the E-W orientation.

The effect of spacing as well as alleys was also significant. S_{2} spacing recorded the highest value ($62.3 \mathrm{~kg} / \mathrm{ha}$). Regarding allevs A_{1} gave the maximum uptake of nitrogen ($63.1 \mathrm{~kg} / \mathrm{ha}$).

Among the interactions $\mathrm{S} X \mathrm{O}, \mathrm{AX} \mathrm{O}$ and S X A X O were observed to be significant. $S_{2} \times O_{1}$ recorded the highest value ($68.4 \mathrm{~kg} / \mathrm{ha}_{\mathrm{a}}$) among s X o combinations. Fegarding $A X O$ interaction $A_{2} X O_{1}$

Table 22
Uptake of Nitrogen ($\mathrm{Kg} / \mathrm{ha}$).

	O_{1}	O_{2}	O_{3}	O_{4}	Mean
S_{1}	64.46	54.23	61.0 6	62.29	60.66
S_{2}	68.44	56.94	62.12	61.64	62.29
A_{1}	67.56	56.79	63.14	64.79	63.07
${ }^{\text {a }} 2$	68.80	55.60	61.12	60.48	61.50
A_{3}	62.98	54.36	61.40	60.62	59.84
$S_{1}{ }^{\text {A }} 1$	65.10	55.95	62.07	66.92	62.51
$S_{1} A_{2}$	67.51	54.68	62.32	60.25	61.19
$S_{1} A_{3}$	60.75	52.05	60.39	59.70	58.27
$S_{2} A_{1}$	70.02	57.63	64.20	62.66	63.63
$S_{2}{ }^{\text {A }} 2$	70.09	56.52	59.93	60.72	61.82
$\mathrm{S}_{2} \mathrm{~A}_{3}$	65.20	56.67	62.22	61.54	61.41
Mean	66.45	55.59	61.89	61.97	---
Spacing: $\mathrm{SE}_{\mathrm{m}}= \pm 1.79$ C.D(.05) $=1.62$					
Alleys : $\mathrm{SE}_{\mathrm{m}}= \pm 1.79 \mathrm{C.D}(.05)=1.62$					O_{3}

showed the maximum uptake of nitrogen ($68 . \varepsilon \mathrm{kg} / \mathrm{ha}$). Among the $S X A X O$ combinations, $S_{2} X A_{2} X O_{1}$ was found to have the maximum value $(70.1 \mathrm{~kg} / \mathrm{ha}$. . 16. Uptake of phosphorous in the harvested crop.

The analysis of variance table for the uptake of phosphorous in presented in Appendix XXIII and the mean vaiues Table 23 .

The effect due to orientation was observed to be highly significant. The highest value was recorded in the $N-S$ orientation and the lowest being in the E-W.

Spacing as well as alleys had a sicnificant effect on the untake of phosphorous. S_{2} spacing had the highest value ($26.5 \mathrm{~kg} / \mathrm{ha}$) . Regarding alleys A_{3} recorded the maximum uptake of phosphorous ($26.3 \mathrm{~kg} / \mathrm{ha}$).

All the interaction effects were found to be significant. $S_{2} X A_{3}$ showed the maximum value (28.1 kg/ha) among S X A combinations. Regardinc $S \mathrm{X} 0$ combinations $S_{2} X O_{1}$ had the hichest value (31.9 $\mathrm{kg} / \mathrm{ha}$) of phosphorous uotake. Among the A X O interactions $A_{3} \times o_{1}$ recorded the highest value $(31.6 \mathrm{~kg} / \mathrm{ha})$. $S_{2} X A_{3} X \quad O_{1}$ gave the maximum value ($34.7 \mathrm{~kg} / \mathrm{ha}$) of phosphorous uptake among the S X A X O combinations.

Table 23
Uptake of Phosphorous ($\mathrm{Kg} / \mathrm{ha}$).

	O_{1}	O_{2}	O_{3}	O_{4}	Mean
S_{1}	27.38	18.91	23.84	25.33	23.99
S_{2}	31.36	20.38	24.95	28.0 3	26.46
A_{1}	30.15	20.77	25.61	26.71	25.81
A_{2}	27.90	18.08	22.91	25.41	23.56
A_{3}	31.56	20.09	24.65	28.32	26.28
$S_{1} A_{1}$	30.96	20.67	26.10	27.10	26.21
$S_{1} A_{2}$	24.24	16.83	21.31	22.60	21.25
$S_{1} A_{3}$	28.45	19.23	24.10	26.28	24.52
$\mathrm{S}_{2} \mathrm{~A}_{1}$	29.35	20.87	25.13	26.32	25.42
$\mathrm{S}_{2} \mathrm{~A}_{2}$	31.55	19.34	24.50	28.21	25.30
$\mathrm{S}_{2} \mathrm{~A}_{3}$	34.67	20.94	25.20	31.37	28.05
Mean	29.87	19.65	24.40	26.98	--
Spacing: $S E_{\text {m }}= \pm 2.00 \mathrm{C.D} \mathrm{(.05)}=2.1$					
Alleys : $S E_{m}= \pm 2.60 \mathrm{C} . \mathrm{D}(.05)=2.1$				$\bar{A}_{3} \quad A_{1} \quad A_{2}$	
Orientation: $S E S_{m}= \pm 1.05 \mathrm{C.D}(.05)=1.23 \quad O_{1} 0_{4} O_{3} O_{2}$					

Table 23 (a)

Combined effect of spacing between plants and spacing between alleys on the uptake of phosphorous ($\mathrm{Kg} / \mathrm{ha}$).

	A_{1}	A_{2}	A_{3}	Mean
S_{1}	26.21	21.25	24.51	23.99
S_{2}	25.42	25.90	28.05	26.46

Mean $25.31 \quad 23.56 \quad 26.28 \quad-$

$$
S E_{m}= \pm 2.00 \quad C . D(.05)=2.1 \quad 1 \quad \begin{array}{llll}
S_{2} A_{3} \underline{S_{1} A_{1}} S_{2} A_{2} \quad S_{2} A_{1} \quad S_{1} A_{3} & S_{1} A_{2}
\end{array}
$$

Uptake of potassium in the harvested croo.

The analysis of variance table is given in Appendix XXIV and the mean values in Table 24.

The effect of orientation was highly signi-
ficant. N-S oriented crop showed the hichest value ($63.5 \mathrm{~kg} / \mathrm{ha}$) , the lowest being ir the E-w ($38.9 \mathrm{~kg} / \mathrm{ha}$).

The effect due to alleys was also significant. A_{2} alleys recorded the maximum value $(54.8 \mathrm{~kg} / \mathrm{ha})$.

All the interactions were observed to be significant. $S_{1} X A_{2}$ gave the maximum value ($58.0 \mathrm{~kg} / \mathrm{ha}$) among the $S X A$ combinations. $A_{1} X O_{1}$ recorded the highest value ($66.5 \mathrm{~kg} / \mathrm{ha}$) among the A X O combirations. Regarding $S X 0$ interaction $S_{2} X O_{1}$ had the maximum uptake of potassium ($67.0 \mathrm{~kg} / \mathrm{ha}$) . $\mathrm{S}_{2} \times \mathrm{A}_{1} \times \mathrm{O}_{1}$
combination attained the highest value of potassium uptake ($69.8 \mathrm{~kg} / \mathrm{ha}$) due to the $\mathrm{S} \times \mathrm{A} X$ O interaction. 18. Albedo.

Observations on cron albedo were recorded at fortnightly intervals from the completion of the vegetative phase onwards and are presented in Tables 25 to 29 and depicted graphically in Figures 5 to 8 .

Table 24
Uptake of Potassium ($\mathrm{Kg} / \mathrm{ha}$).

	O_{1}	O_{2}	O_{3}	O_{4}	Mean
s_{1}	59.95	41.01	49.37	56.45	51.82
S_{2}	67.03	36.86	54.78	50.52	52.30
A_{1}	66.49	35.90	49.33	52.63	51.09
A_{2}	64.98	41.99	55.44	56.74	54.79
A_{3}	58.99	38.91	52.20	51.09	50.30
$S_{1}{ }^{\text {d }}$	63.16	40.01	52.00	59.39	53.64
$S_{1} A_{2}$	65.35	48.37	55.63	62.02	57.37
$S_{1} A_{3}$	50.83	34.64	42.01	47.93	43.35
$S_{2} A_{1}$	69.32	31.79	46.71	45.87	48.55
$S_{2}{ }^{4}$	64.12	35.61	55.24	51.46	51.61
$\mathrm{S}_{2} \mathrm{~A}_{3}$	67.14	43.17	62.38	54.24	56.73
Mean	63.49	38.94	52.33	53.49	---
Spacing: $S E S_{m}= \pm 1.30 \mathrm{C} . \mathrm{D}(.05)=2.33$					
Alleys : $S E_{m}= \pm 1.80 \mathrm{C} . D(.05)=2.83$				$\overline{A_{1}} \bar{A}_{3}$	

Table 24 (a)

Combined effect of spacing between plants and spacing between alleys on the uptake of potassium ($\mathrm{Kg} / \mathrm{ha}$).

Table 25
Average day time variation of albedo on different treatments on 14-12-19836\%sthys afte. Elartiry

Table 26
Average day time variation of albedo on different treatments on 28-12-1983.

Table 27
Average day time variation of albedo on different treatments on 11-1 1984.

	Time							
	7.30	9.00	10.30	12	13.30	15.00	16.30	Mes
O_{1}	33.8	25.3	17.7	17.4	17.6	18.1	23.4	2.
O_{2}	27.0	22.8	16.0	15.8	16.6	17.1	20.2	
O_{3}	30.9	24.1	17.0	16.3	16.9	17.8	21.7	27.
O_{4}	30.5	23.8	17.0	15.9	16.7	18.C	22.0	20.
S_{1}	33.5	26.5	25.6	23.1	19.9	21.4	22.5	24.
S_{2}	40.2	34.0	30.0	22.8	20.8	22.6	25.2	$2 \cdots$.
A_{1}	36.7	28.9	27.2	21.6	19.5	20.8	24.4	25.
A_{2}	37.8	31.8	29.1	25.0	21.4	21.4	24.8	27.
A_{3}	36.2	30.2	27.2	22.4	20.1	21.9	23.0	25.

Table 28
Average day time variation of albedo on different treatments on 25-1-1984.

	7.30	9.00	10.30	Time $12 . \mathrm{CO}$	13.30	15.00	$16.30 \mathrm{Mea*}$
0_{1}	29.3	20.9	19.9	18.2	14.8	16.0	19.010.
O_{2}	27.0	19.1	18.4	15.6	13.5	15.0	16.217.
O_{3}	28.3	19.7	19.1	16.8	14.0	15.5	17.318.
${ }^{\circ} 4$	27.5	19.4	18.9	16.1	13.8	15.8	18.0 18.
S_{1}	28.0	23.7	20.4	18.0	15.4	16.9	18.9 20.
S_{2}	34.3	22.4	20.2	18.9	16.0	19.2	19.621.
A_{1}	32.6	22.4	20.2	17.8	14.5	17.7	19.0 20.
A_{2}	31.8	26.4	21.8	19.8	17.7	18.8	20.622.
A_{3}	29.2	20.5	19.0	17.3	14.9	17.3	18.319.

Table 29
Average day time variation of albedo on different treatments at harvest (on 8-2-1984).

7.30	9.00	10.30	12.00	13.30	15.00	16.30

o_{1}	27.3	23.0	14.8	14.3	15.4	16.0	17.419
O_{2}	27.3	23.0	14.8	14.3	15.4	16.0	17.41%
O_{3}	27.3	23.0	14.8	14.3	15.4	16.0	17.418
O_{4}	27.3	23.0	14.8	14.3	15.4	16.0	17.41%
s_{1}	27.3	23.0	14.8	14.3	15.4	16.0	17.410
S_{2}	27.3	23.0	14.8	14.3	15.4	16.0	17.410.
${ }^{\text {A }} 1$	27.3	23.0	14.8	14.3	15.4	16.C	17.419
A_{2}	27.3	23.0	14.8	14.3	15.4	16.0	17.419.
A_{3}	27.3	23.0	14.8	14.3	15.4	16.0	$17.418 \cdot$

Table 30
Total radiation, reflected radiation and alledo at different growth stages of the rice crop in different orientations.
$14.12 .83 \quad 28.12 .83 \quad 11.1 .34 \quad 25.1 .34 \quad 7.2 .34$

Total radiation

Reflected radiation

0_{1}	2.18	1.61	1.82	1.75	1.59
0_{2}	1.39	1.35	1.61	1.67	1.59
0_{3}	2.05	1.46	1.72	1.66	1.59
0_{4}	2.02	1.45	1.71	1.62	1.59

Albedo

0_{1}	25.6	23.0	21.9	19.7	18.3
0_{2}	22.2	19.3	19.4	18.3	18.3
0_{3}	24.1	20.3	20.7	18.7	18.3
0_{4}	23.3	20.7	20.6	18.2	18.3

Total radiation, reflected radiation and albedo at different growth stages in different orientations are presented in Figure 9. Variation of albedo and the leaf area index at different growth stages in also given in Figures 10.

It is seen that albedo varies with time of the day as well as with the pregress of the crop. During the day the albedo is the maximum at 0730 hr . for all orientations and decreases to a minimum after 12 noon and increases again thereafter. The maximum albedo was observed over the N-S oriented rows and the minimum over the E -w oriented rows.

The albedo before the heading stage was 25.6 percent and it decreased to 18.3 percent at harvest. The albedo values gradually decreased as the crop matured and attained almost constant values for all orientations during maturity and harvest.

When the albedo over the spacing between plants and spacing between alleys are considered, it is seen that the values, while keeping the usual pattern of variation during the day exhibit the maximum over S_{2} and A_{2} and the minimum over S_{1} and A_{1}.

DISCUSSION

The results of the observations made in the investigation on the influence of crop geometry on the growth and yield of rice are discussed below:

1. Crop growth characters.
1.1. Height of plants.

The results indicate that at all the stages of the observations the plants in $N-S$ orientation were significantly taller than those in other orientations. Increase in height in these plants might be due to more uniform distribution of radiation. This is in agreement with the findings of Florell(1929) and Dhanil (1966). In the E-W orientation plant height is comparitively less. Here in the morning the plants on the east end of the line shade their adjacent plants in their immediate west while in the evening the situation is reverse. This could be the possible reason for lesser utilisation of solar radiation and thereby reduced plant height in the E-W orientation. Meaium height of plants in NW-SE and NE-SW orientations could be due to moderate and partial capture of solar radiation in these orientations. Similar results were obtained in
the studies of Dungan et al. (1955), Shekhawat et al. (1966) and Dhillon and Kler (1981), and Murthy (1982).

Regarding the spacing effects, as the plant density increased, the height also increased on the 30 th day after planting. Since the plants are grown closely sunlight cannot reach the base of the plants and this leads to accleration of internodal elongation in the early stages. Similar results are recorded at Indian Agricultural Research Institute (Anon 1968).

On the 60th day after planting and at the time of harvest wider spacing $20 \mathrm{~cm} \times 15 \mathrm{~cm}$ produced significantly taller plants. In these plants the competition for nutrient absorption per plant being low, it might have been in excess of the quantity actually required for the growth. The nutrients might have been utilised for the vegetative growth of plants resulting in the height increase in the later stages. This confirms the findings of Tanaka et al. (1964).

2. Number of tillers.

The results clearly point out that the number of tillers were more in $N-S$ orientation as comparied to E-W, NW-SE and NE-SW orientations at all stages of
crop growth. Tillering in N-S oriented plants is favoured by more unlform distribution of radiation. The results are in agreement with the findings of Khalil (1956) and Rawson (1971).

The number of tillers was maximum with S_{1} spacing ($20 \mathrm{~cm} \times 15 \mathrm{~cm}$). It was also found that $S_{1} X O_{1}$ combination was most beneficial with regard to tiller production. In wider spacing overcrowding and competition for nutrients were reduced and the light transmission was better. Similar results were obtained in the experiments conducted at the Regional Agricultural Research Station, Pattambi (Anon 1975). This also confirms the findings of Shahi et al. (1977).

The mean number of tillers was increasing till about 60 days after planting and there was a decrease in the number subsequently. This decrease might be due to overcrowding and serious mutual shading which resulted in the death of many weak tillers and lower leaves, because of their failure in getting sufficient light and nutrients. Similar results were observed by Matsushima (1957) and Izhizuka and Tanaka(1963).
3. Leaf area index.

There is an optimum leaf area for maximum production above which increase in leaf area has no positive effect on productivity (Dhillon et al. 1978). The higher leaf area helps in better absorption of radiation and thus in higher drymatter production and yield. Experimental results (Tables 7, 8, 9 and 10) show that among all the orientations N-S oriented crop increased the leaf area index at all stages of crop growth. More uniform distribution of radiation in the $\mathrm{N}-\mathrm{S}$ oriented plants increased the leaf area index. This is in agreement with the findings of Osada et al. (1972).

Closer spacing has contributed to an increase in leaf area index. It assures a leaf area index sufficiently large for maximum crop photosynthesis. 4. Number of productive tillers.

Number of productive tillers has a positive correlation with grain yield. The results reveal that the number of productive tillers were more in $\mathrm{N}-\mathrm{S}$ orientation in comparison with other orientations. The possible reason to produce more effective tillers is the uniform utilisation of solar energy. The results closely agree with the findings of Khalil (1956) and Rawson (1971).

FIG: 3 LEAF AREA index AT VARIOUS GROWTH STAGES SCALE $\quad 2 C M=1$

An increase in number of productive tillers was noticed at wider spacing. This too might be attributed to the proper utilisation of solar energy unlike in the case of closer spacing. The results are similar to the findings in Regional Agricultural Research Station, Pattambi (Anon 1973).
5. Length of panicle.

Length of panicle also was maximum in the $\mathrm{N}-\mathrm{S}$ orientation. This might be due to better exposure of crops to solar radiation in $N-S$ direction.

The length of panicle increased with wider spacing. Decrease in plant population density assured a better light transmission which in turn has contributed to a remarkable increase in panicle length. Stuđies by Hedayatullah and Sen (1944), Vacchani et al.(1961) and Mahapatra and Paddalia (1963) also reveal the same results.
6. Number of grains per panicle.

Number of grains per panicle, one of the important components of yield, was significantly higher in the N-S oriented rows than in others. As in the case of other characters the $N-S$ orientation has helped to attain greater efficiency in proper utilisation of radiant
energy which resulted in more number of grains per panicle.

Wider spacing also significantly enhanced this component. Smaller population density enabled better exposure to sunlight and hence better overall growth and development of plant. Tanaka (1958) observed the existence of a relationship between overcrowding of fields and reduction in the number of grains per panicle. At closer spacing and subsequent overcrowding, the carbohydrate requirement of the plant is not fully met and the number of grains per unit area is adjusted to the number which is just adequate to store the substances produced by the plant. Yamada (1961) recognised that the proportion of nonphotosynthetic area in the plant was increased by plant density and the amount of starch in the plant body was low and filling percentage was decreased. Similar results have also been obtained in studies conducted at Regional Agricultural Research Station, Pattambi (Anon 1973).
7. Thousand grain weight.

The thousand grain weight is a reliable index of seed development and consequently of grain yield and its quality. When compared with other orientations, it
was significantly higher in the $N-S$ orientation. Better exposure of crops to solar radiation in this direction resulted in higher grain weight. The results confirm the findings of Dhillon et al. (1978) and Dhillon and Kler (1981).
8. Grain yield.

Analysis of the data indicated that orientation of rows had a significant effect on grain yield. It was the highest in $N-S$ orientation and the lowest in the E-W oriented crop. The yield figures from the NW-SE and NE-SW orientations were in between these two.

In rice, all the leaves from the flag leaf down to the third leaf from the top export assimilates to the panicle while the lower leaves send their assimilates to the roots (Tanaka 1958). In the $N-S$ orientation there was greater advantage in the effective utilisation of solar radiation. Elag leaves, the main suppliers of photosynthates to earhead, were more exposed to sunlight which resulted in increased grain yield. Sandhu (1964), Sharma and Sing (1971) and Murthy (1982) have reported similer results in wheat. The better growth and development of the plants in the $N-S$ oriented crop is evident from the greater leaf area index, greater number of productive tillers, longer panicles, more number of filled grains per panicle etc. On the other
hand the plants grown in $E-W$ orientation were less developed and of reduced vigour.

Among the spacing treatments S_{2} spacing $(20 \mathrm{~cm} X 10 \mathrm{~cm})$ was significantly superior to S_{1}. Spikelet number, which is one of the yield components, was increased by increasing plant density. At closer spacing, the yield per plant is less, kut this is compensated by greater number of plants per unit area. Moreover. closer spacing has proved to be more favourable for rice production during the second crop season (Anon 1975). The results also agree with the findings of Lerch(1976). 9. Straw yield.

N-S oriented crop recorded significantly higher value of straw yield in comparison with other orientations. This may be attributed to better vegetative growth under conditions of effective utilisation of light as decribed earlier. Similar results have been reported by Dungan et al. (1955) and Dhillon et al. (1978).

Closer spacing have significantly increased the straw yield. Here, more number of plants might have contributed to an increase in the straw yield. This also agrees with the findings at Regional Agricultural Research Station, Pattambi (Anon 1975).

FIG: 4 YIELD OF GRAIN AND STRAW
成FFECT OFORIENTATION
scals + cm $=250 \mathrm{~kg} /$ hectare.

4250
4000
$N-5$

10. Drymatter production.

Analysis of the final drymatter brought out the significant difference in production by the different orientations. The N-S oriented crop has accumulated more drymatter than the others. Better development of both vegetative and reproductive phases of plant has ultimately reflected in higher accumulation of drymatter. The results confirm the findings of Dungan et al. (1955) and Dhillon et al. (1978) who observed around 20 percent more drymatter production in $\mathrm{N}-\mathrm{S}$ orientation than that in the E-w orientation.
S_{2} spacing, A_{2} alleys and $S_{2} \times A_{2}$ combiration were significantly superior with regard to drymatter production. This may be attributed to the high leaf area index in closer spacing, which resulted in more drymatter accumulation. The findings of Singh(1966), Tomar and Mathur (1966) and Lerch (1976) also confirm this.
11. Grain - Straw ratio.

Grain - Straw ratio did not show any significant difference due to orientation as well as spacing. However, It was significantly influenced by alleys, the maximum being in A_{3}. Although the overall development in A_{3} was less than that of others, the weight of grain
in relation to that of straw seems to have increased resulting in an increase in the grain - straw ratio. 12. Nitrogen, phosphorous and potassium contents. Orientation and soacing significantly influenced the nutrient contents of plants. $N-S$ oriented crop has the highest contents of nitrogen, phosphorous and potassium. Effective utilisation of radiation might have contributed to the better growth and development in those plants which in turn increased the nutrient content.

The nutrient availability per plant have increased with wider spacing resulting in high nitrogen content. On the other hand, closely spaced plants showed the hicher values of phosphorous and potassium contents. 13. Uptake of nutrients.

Uptake of nutrients was also significantly influenced by orientation and spacing. Maximum values have been observed in the $N-S$ orientation and S_{2} spacing. Here again, the optimum conditions for the better growth and development of plants in the N-S orientation favoured the nutrient uptake. Increased plant density has also contributed to increased uptake of nitrogen, phosphorous and potassium.
14. Albedo.

A part of the radiation falling on the canopy is reflected back to space, the amount of which is determined by the albedo. It depends on the absorption
coefficient and scattering function of leaves, their orientation and depth of crop stand. Cron alkedo in fact is the combination of both crop and soil albedo. The change in the albedo during the growing season mairily depends upon the geometry and structure of the plant population.

The maximum alcedo observed (Tables 25 to 29 and Figures 5 to 8) over the $N-S$ oriented rows could be attributed to the denser canopy which is due to better growth and development of plants. The crop cover in these rows were substantial, thereby offering larger reflecting surface. The plant in the EW orjentation were less developed and hence the albedo values were smaller.

As the crop progressed in age, substantial changes occured in the canopy structure. The change in albedo during the rice growing season will depend unon the reflectance of the crop material mainly the leaves, the area of the flooded soil which is exposed to the sky, the leaf arrangement of the crop and solar elevation. The decrease in the albedo by the canony according to the growth stage may be attributed to the decrease in the leaf area index, height and to such

FIG: 7 AVERAGE DAY TIME VARIATION OF ALBEDO ON 11-1-1984

FIG: 8 AVERAGE DAY TIME VARIATION OF ALBEDO ON 11-1-1984

changes in the structure of the crop stand (Vamadevan, 1971). The albedo before the heading stage was 25.6 percent and it decreased gradually after heading to reach 18.3 percent at harvest (Table 30). During maturity period the leaves shrank in size and changed their colour slowly towards yellow and remained constant subsequently. As a result the albedo values did not very significantly between the treatments and the values showed similar pattern of variation with time within the day. These results are in full agreement with the findings of Goudrain (1977); who found that the fraction of radiation intercepted by a layer with certain leaf area is proportional to the average projection and inversely proportional to the sine of inclination of the incident radiation. The albedo values gradually decreased as the leaf area decreased (Ficures 10). This is in agreement with the findings of Murata et al. (1968) .

Spacing also has got a profound influence on the albedo. The hicher values of albedo in closely spaced treatments can be attributed to denser canopy develonment. The relation between incident radiation and net photosynthesis by crops depends on the leaf area index and canopy structure. As is evident from Tables

7, 8, 9 and 10 leaf area index is higher in closely planted plots. The higher leaf area helps in better absorption of radiation, thus higher drymatter production and yield. This is in agreement with the findings of Asbertin and Peters (1961).
15. Influence of weather elements on crop performance.

At Patさambi the weather conditions during the entire growth period of the crop were more or less normal and congeneal. Hazardous weather was not experjenced at all. A brief discussion of the influence of the individual meteorological factors on the crop performance is presented below:

1.. Temperature.

During the period of its growth, the present crop experienced temperature varying from about $20^{\circ} \mathrm{C}$ minimum to $34^{\circ} \mathrm{C}$ maximum and which according to Owen (1971) is the ootimum range of temperature for rice. The optimum temperature for height and leaf development are $30^{\circ} \mathrm{C}$ and $25^{\circ} \mathrm{C}$ respectively while the requirement for tillering is 32 to $34^{\circ} \mathrm{C}$ (Mastsuo, 1959). These conditions prevailed during the vegetative periods and so the growth in height, leaf develoment and tiller production were quite normal. The temperature during panicle initiation and anthesis ranged from

23 to $33^{\circ} \mathrm{C}$ which is about the optimum for these physiological processes (Best, 1959; Owen, 1971). During ripening the temperature ranged from 19 to $34^{\circ} \mathrm{C}$ which again is about the optimum for ripening according to Ebata and Negata (1967).

2. Sunshine.

The weather data reveals that the crop could enjoy bright sunny weather throughout its life except the initial stages soon after transplanting. The sunny weather, especially during flowering, was very helpful, because most of the grain yield comes from the post-flowering photosynthesis (Sato,1956). 3. Humidity.

Rice crop requires fairly high humidity for proper growth. Flowering is reported to be best when it is about 70 to 80 percent relative humidity and this crop experienced more or less similar humidity conditions during that time. 4. Rainfall.

The critical growth stages for water needs of rice are tiller initiation, primordial initiation and flowering (Srinivasan and Banerjee, 1973);

Choudhery and Ghildyal (1976); Subha Rao et al. (1976). It is seen that the crop under study received sufficient rainfall during these stages. The few days before harvest were marked by the absence of rainfall, during which the period the grain could mature properly in bright sunny weather with hich temperature.
5. Wind.

An examination of Table 1 shows that throughout the life period of the crop wind velocity was never too high to cause adverse effect.

SUMMARY AND CONCLUSIONS

SUMMARY AND CONCLUSIONS

An experiment was conducted at the Regional Agricultural Research Station, Fattambi during the second crop season of 1983 to study the influence of crop geometry on the growth and yield of rice variety 'Jaya'.

Plant characters like height, number of tillers and leaf area index at different stages of growth and yield attributes like number of productive tillers, length of panicle, number of grains per panicle, thousand grain weight and yield of grain and straw were observed and recorded. Nitrogen, phosphorous and potassium contents of plants were also determined and the uptake was worked out. The day time variation of albedo over different treatments was also recorded.

The main firdings are summarised as follows:

1. Fieight of plants at all stages of its crop growth in the N-S orientation was significantly higher than those of other orientations. Wider spacing of $20 \times 15 \mathrm{~cm}$ produced significantly taller plants.
2. Tiller production was maximum in the $N-S$ oriented rows. There was significant increase in tiller production at wider spacing of 20 X 15 cm .
3. Significantly higher leaf area index was observed in the $N-S$ orientation. Closer spacing of 20 X 10 cm
increased the leaf area index.
4. An increase in the number of productive tillers was noticed in the $N-S$ orientation. Wioer spacing of 20 X 15 cm recorded significantly more number of productive tillers.
5. There was significant increase in the length of panicle with $N-S$ orientation. Wider spacing of 20 X 15 cm was significantly superior in increasing the length of panicle.
6. N-S orientation and wider spacing gave the hichest number of grains per panicle.
7. The maximum weight of thousand grains was recorded in the $N-S$ orientation. Closer spacing of $20 \times 10 \mathrm{~cm}$ also showed the maximum weight of thousand grains.
8. Highest arain yield was obtained from the $N-S$ orjented plots. Closer spacing also helped to increase the grain yield.
9. Straw yield was also higher in the N-S orientation. Among the spacing treatments $S_{2}(20 \times 10 \mathrm{~cm})$ spacing gave the maximum. increase in the drymatter production with closer spacing of $20 \times 10 \mathrm{~cm}$.
10. Grain-straw ratio increased with wider spacing between alleys.
11. N-S oriented plants had the hichest contents of nitrogen, phosphorous and potassium. Significant increase in nitrogen content was observed with wider soacirg while phosphorous and potassium contents were maximum with closer spacing of 20 X 10 cm .
12. Maximum uptake of nutrients was observed in the N-S orientation. There was significant increase in the uptake of nutrients with closer spacing ($20 \times 10 \mathrm{~cm}$).
13. The maximum albedo was recorded over the N-S oriented plots and also with closer spacing of 20 X 10 cm .

From this study, it can be concluded that rice in Kerala during the second crop season can be grown most successfully if planted at a spacing of 20 X 10 cm and oriented in $\mathrm{N}-\mathrm{S}$ direction.

REFERENCES

Ahmed, N.K. and Rao, F.S. 1966. The influence of cultural practices on panicle in japonica x incica hybrid rice. Ind. J. Agron XI (2): 115-118.

Allen, L.f. 1974. A model of light penetration into a wide row cron. Agron. J. 6巨: 41-47.

Ancierson, M.C. 1969. A comarison of two theories of scattering radiation in crons Agri. Met. 6 (6): 399-406.

Anonymous, 1964. Annual renort. International Rice Research Institute, Philippines.

Anonymous, 1965. Annual report. International Rice Research Institute, Philippines.

Anonymous, 1967. Radiation balance of nadiy field. J. Acr. Met. 3 (2): 99-102.

Anonymous. 1973. Nitrogen viariety spacing trials. Prooress report of the All India Co-ordinated Rice Improvement Project.

Anonymous, 1973. Annual renort. Regional Agricultural Research Station, Pattamui.

Anonymous, 1975. Annual report. Regional Agricultural Research Station, Pattanbi.

Asbertin, G.M. and Peters, D.B. 1961. Net radiation determination in a corn field. Agron. J. 5 : 269-272.

Bains, K.s. and Singh, S.P. 1967. Effect of fertiliser, spacinc and number of seedlinos ner hill on baddy yield under low hill concitions. In. I. Agron. XII (2):

Best, R. 1959. Dhotoperiodism in rice. Field Crop Abstracts. $\underline{\underline{12}}$ (2): 85-93.

Bhan, V.M. 1967. Effect of spacing on grain crops. Ind. J. Agron XII (2) : 145-150.

* Boysen Jensen, P. 1932. Die Soffproduktion der pflanzen. Fisher. Jena : 108.

Chandler, R.F. 1965. Factors affecting rice yields. Rice News Teller ${ }_{\underline{1}}^{\underline{3}}: 2$ 。

Chaudhary, T.N. and Ghildayal, B.P. 1976. Influence of submerged soil temperature regime on growth, yield and nutrient composition of the rice plant. Agron. J. $\underline{\underline{6}} \underline{\underline{2}}$: 281-285.

De Datta, S.K. Tauro, A.C. and Balaoing, S.N. 1968. Effect of plant type and nitrogen level on the growth characteristics and yield of indica rice in the trooics. Agron. J. 60: 643-647.

* De Datta, S.K. and Zarate, P.M. 1970. Environmental conditions affecting growth characteristics, nitrogen response and grain yield of tropical rice. Biometeorology $4=71-89$.

Denmead, O.T., Fritschen, L.J. and shaw, R.H. 1962. Spatial distribution of net radiation in a corn field. Agron. J. 54 : 501-510.

Denmead, O.T. 1969. Comparitive micrometeorology of a wheat field and a forest of Pinus radiata. Agromet. 6 : 357-361.

Devi, G.D., Vijayagopal, P.D. and Sasidhar, V.K. 1981. Effect of levels of nitrogen and spacing on the yield of rice. Agri. Res. J. Kerala. 19 (2) : 96-97.

Dhillon, G.S. Kler, D.S., Waalia, A.S. and Randhawa, S.S. 1978. Utilisation of solar energy for crop production. Absts. Symposium on biological application of solar energy. Madhurai. on 5th December 1978: 13-14.

Dhillion, G.S. and Kler, D.S. 1981. Relation of shape of canopy to interception of radiation and yield of wheat. J. Agric. Sci. Camb. 97: 135-142.

* Donald. C.M. and Davison, J. L. 1958. The grovith of svards of subterranean clover with particular reference to leaf area. Aust. J. Agr. Res. 9: 53-72.
*Duncan, W.G. 1968. Cultural manipulation for higher yields. Physiological aspects of crop yields. ed. J.D. Eastin et al. American society of Agronomy, Wisconsin: 327-339.

Duncan, W.G. 1971. Leaf angle, leaf area, and canony photosynthesis. Crop Sci. 11: 482-485.

Dungan, G.fi., Sisodia, U.S. and Singh, G.D. 1955. The benefit of sowing maize for fodder in North and South lines. Allahabad Farmer. 29: 8-13.

Ebata, M. and Negata, K. 1967. Ripening conditions and grain characteristics of rice. IRC. Newsletter, special Issue: 10-15.

Fagade, S.C. and De Datta, S.K. 1971. Leaf area index, tillering capacity and grain yield of tropical rice as affected by plant density and nitrogen level. Agron. J. $\underline{=}=$ 3: 503-506.

* Florell, V.H. 1929. Effect of date of sowing on yield. lodging, maturity, and nitrogen content in cereal varietal experiments. J. Amer. Soc. Agron. 21 : 724-731.
*Goudrain, J. 1971. Crop micrometeorology a stimulation study: A simulation study centre for agricultural publishing and documentation Wageningen: 249.

Goutam, D.E., Dasmahapatra, A.N. and Chatterjee, B.N. 1984. Transplanting of rice with skip rows. Indian. J. Agric. Sci. $5 \underline{\underline{4}}$ (4): 280-283.
*Hanyu, J. 1966. Bull. Tohoku. Agr. Exp. St. Part -1. 34 : 27-36.

```
* Kishida, Y. 1973. Agrometeorological studies on utilisation
    of radiant energy under cultivated field
    conditions. Bull. Kyushu. Agric. Exp. Stn.
    27: 1-79.
    Kulandaivelu, R. 1967. Studies on the response of \(A D P-27\)
        rice to graded doses of nitrogen and spacing.
        MSc (Ag) Dissertation. University of Madras,
        unoublished.
* Lei, H.S. and Xi, D.B. 1967. On tillering rate of rice
        olant. Acta. Biol. Exp. Sinica. § (1): 35-44.
    *Lerch, G. 1976. Effect of some climatic and agronomic
        factors on yield formation in rice cv. IR-8
        in Cuba. Kulturpflanze. 24: 13-51.
    Linvill, D.E. and Dale, R.F. 1975. Population density and
        sampling location effects on Net Radiation
        measurements over corn. Agron. J. 67 (4):
        463-468.
    Mahapatra, I.C. and Paddalia, C.R. 1963. A note on spacing
        and plant population in rice. Oryza. \(1(2)\).
    Mandal, B.B. and Mahapatra, I.C. 1968. Studies on the
    cultural and manurial requirements of some
    varieties of rice. Oryza. 5: 10-19.
* Matsuo, T. 1959. Rice culture in Japan. Pub. Min. Agr.,
    Japan.
* Matuso, I. 1964. Varietal responses to nitrogen and spacing.
    Proceedings of a symposium at the International
    Rice Research Institute, February 1964, Marylana:
*Matsushima. S. 1957. Analysis of development factors
    determining yield and yield prediction in lowland
    rice. Bull. Nat. Inst. Agr. Sci. Jap. A. 5:
    1-271.
    Monteith, J.L. 1972. Solar radiation and productivity in
        tropical ecosystems. J. Appl. Ecol. 9:747-766.
```

Monsi. M. and Saeki, T. 1953. Uber den Licht faktor in den planzengeselle chaften und Saine Bedevtung fur die stofforoduktion. Jap. J. Bot. 14: 22-52.

Moomaw, J.C., Baldazo, P.G. and Lucas, L. 1967. Effects of ripening period environment on yields of tropical rice. Int. Rice. Comm. Newsl : 18-25.
Murata, Y., Osada, A. and Iyama, J. 1957. Studies on the photosynthesis in rice plant. Proc. Crop Sci. Soc. Jap. 26: 159-164.

* Murata, Y. 1961. Studies on the photosynthesis of rice plants and its culture significance. Bull. Nat. Inst. Agr. Sci. D. 9: 1-169.
* Murata, Y. 1964. On the influence of solar radiation and air temperature upon the local differences in the productivity of paddy rice in Japan. Proc. Crop Sci. Soc. Jap. 35: 59-63.

Murata, Y. 1966. On the influence of solar radiation and air temperature upon the local differences in the productivity of paddy rice in Japan. Int. Rice Comm. Newsl. 15: 20-30.

Murthi, V.R.K. 1982. A study of the role of meteorological factors in wheat crop sroduction in the Punjab. M.Sc. Thesis, Punjab Agricultural University, Ludhiana.

Nair, P.K.R. 1968. Studies on the comparitive performance of three high yielding varieties of rice (IR -8 . Tainan-3 and PTB-9) at varying levels of nitrogen and spacing under Trivandrum conditions. M.Sc. Thesis, Kerala University, Unpublished.

Nguu, N.V. and De Datta, S.K. 1979. Increasing effeciency of fertiliser nitrogen in wet land rice by manipulation of plant density and olant geometry. Field Crops Res. $\stackrel{2}{=}$ 19-34.

Monsi, M. and Saeki, T. 1953. Uber den Licht faktor in den olanzengeselle chaften und Saine Bedevtung fur die stofforoduktion. Jap. J. Bot. 14: 22-52.

Moomaw, J.C., Baldazo, P.G. and Lucas, L. 1967. Effects of ripening period environment on yields of tronical rice. Int. Rice. Comm. Newsl : 18-25.
*Murata, Y., Osada, A. and Iyama, J. 1957. Studies on the photosynthesis in rice plant. Proc. Croo Sci. Soc. Jap. 26: 159-164.

* Murata, Y. 1961. Studies on the photosynthesis of rice plants ana its culture significance. Bull. Nat. Inst. Agr. Sci. D. 9: 1-169.
* Murata, Y. 1964. On the influence of solar radiation and air temperature upon the local differences in the productivity of paddy rice in Japan. Proc. Crop Sci. Soc. Jap. 35: 59-63.

Murata, Y. 1966. On the influence of solar radiation and air temperature upon the local differences in the productivity of paddy rice in Japan. Int. Rice Comm. Newsl. 15: 20-30.

Murthi, V.Z.K. 1982. A study of the role of meteorological factors in wheat crop production in the Punjab. M.Sc. Thesis, Punjab Agricultural University, Ludhiana.

Nair. P.K.R. 1968. Studies on the comparitive performance of three high yielding varieties of rice (IR -8 , Tainan-3 and PTB-9) at varying levels of nitrogen and spacing under Trivandrum conditions. M.Sc. Thesis, Kerala University, Unpublished.

Nguu, N. Y. and De Datta, S.K. 1979. Increasing effeciency of fertiliser nitrogen in wet land rice by manioulation of plant density and olant geometry. Field Crops Res. 2: 19-34.

```
* Osada, A., Nara, M., Dhammanuvong, S., Rahony, M. ana
                                    Gesorosert, M. 1972. The effect of seasons
                                    on the growth of indica rice in tropical
                                    area. Proc. Grop Sci. Soc. Jap. 41(2):
                                    87-88.
    Owen, P.C. 1971. The effect of temperature on the growth
        and develomment of rice - A review. Field Cron
        Abstracts. 24: 1-8.
    Panse, V.G. and Sukhatme, P.V. 1954. Statistical methods
        for agricultural workers. ICitR Publication.
    Parashar, K.S. 1976. Effect of spacing on the yield of rice.
    Ind. J. Agron. 21(4): 467-468.
*Perekaljskii, F.M. 1951. Direction of the drills of a sown
    area. Selek Semonovod. 18: 70-73.
    Pendleton, J.W. and Dungan, G.H. 1958. Effect of row
        direction on spring Oat yielas. Agron. J.
        50: 341-344.
    Pendleton, J.W., Egti, D.B. and Peters, D.B. 1967. Response
        of zea mays to a "Light rich" field environ-
        ment. Agron. J. 59: 395-397.
Rao, M.V. 1968. Fertiliser needs and plant population requirements of high yielding rice varieties. Symposium on Agronomy of New Crop Varieties. pantnagar. 1968.
* Ross, Ju. 1962. On theory of albedo of plant canopies. Nauch. Soobshch. Inst. Geologii Geogr. Akad. Nauk. SSR. 13: \(15 \overline{=1-164 .}\)
*Ross, Ju. and Nilson, T. 1966. Spatial orientation of leaves in plant canopy and its determination. Photosynthetic systems with high productivity. ed. A.A. Nichiporovich: 51-58.
```

Sandhu, A.S. 1964. Effect of row orientation on the growth and yield of Bajra. Ind. J. Agron. 9: 19-32.
*Santhirasegaram. 1962. Thesis. Waite Inst. Univ. of Adelaide. Adelaide.
*Sato, S. 1956. The ontimum conditions of climate for rice culture in the warm districts of Japan. Agri. Met. Jap. 12: 24-26.

Sciecz, G. 1974. Solar radiation for wheat plant growth. J. anol. Ecol. 11: 617-636.

Shahi, H.N. and Gill, P.S. 1976. Effect of number of seedings jer hill and spacing on growth and yield of rice. Ind. J. Agron. $21(4): 392-395$.

Sharma, K.C. and Singh, M. 1971. Response of dwarf wheats to row direction and row spacing. Ind. U. Agron. 16: 396-400.

Shekhawat, G.S., Sharma, D.C. and Gupta, M.B. 1966. Wheat growth and production in relation to row spacing and direction of sowing. Ind. J. Agron. 11: 62-65.

Shibles, R.M. and Weber, C.R. 1965. Leaf area, solar radiation interception and drymatter production by soybean. Crop SCi. 5(6): 575-579.

Singh, R.P. and Modgal, S.C. 1977. Responce of indica rices to nitrogen and plant spacing. Ind. J. Agron. 22 (2): 82-86.
*Soga, Y. and Nozaki, M. 1957. Studies on the relation between seasonal changes of carbohydrates accumulated and the ripening at the stage of generation of growth in rice plant. Proc. Crop SCi. Soc. Jap. 26: 105-108.

Sreenivasan, P.S. and Banerjee, J.R. 1973. The influence of rainfall on the yield of rice at Karjat. Agri. Met. 11: 285-292.

Stansel, J.W., Bollich, C.N., Thysell, J.R. and Hall, V.L. 1965. The influence of light intensity and nitrogen fertility on rice yield components. Rice J. $\underline{\underline{68}(4): 34-35,49 .}$

Subha Rao, K., Venkataraman, S. and Sarkar, R.P. 1976. Evapotransoiration of paddy cron in relation to nan evaooration at Nellore and Canning. Pre - pub. Sci. Report No. 76/12. Inaia Meteorological Department.

Takeda, T. and Kumara, A. 1957. Proc. Cron. Sci. Soc. Jap. $26(2)$.
*Tanaka, A. 1958. Studies on the characteristics of the physiological function of leaf of definite position on stem of the rice plant. J. Sci. Soil Manure. Jap. 29: 329-333.

Tanaka, A., Navasero, S.A., Garcia, C.V., Parao, F.T. and Ramirez, E. 1964. Growth habit of the rice plant in the tropics and its effect on nitrogen response. Technical Bulletin-3. International Rice Research Institute, Philiopines: 45-47.

Tanaka, A., Kawano, K., and Yamaguchi, J. 1966. Photosynthesis, resoiration, and plant type of the tropical rice olant. Int. Rice Res. Inst. Iech. Bull. 7.

Tanaka, T. 1972. Stuaies on the light curves, curves of carbon assimilation of rice plants - The interrelation among the light - curves, the plant type and the maximizing yield of rice. Bull. Nat. Inst. Agr. Sci. A. 19: 1-100.

Tomar, P.s. and Mathur, O.P. 1966. Time of sowing and seed rate on yield of wheat under canal irrigation in Rajasthan. Ind. J. Agron. 11:
16-69.

```
Tsunoda, S. 1959. A developmental analysis of yieluing
    ablity in varieties of eil: crons. I. TaO.
    I. Breed. 9: 161-168.
*Tsunoda, S. 1964. A developmental analysis of yielding
    ability in varieties of fiela cros. Nichon-
    Gakajitsu - Shinkokaj. Maruzen nublisting
    Company, Tokyo: 135.
*Uchijima, Z. 1961. On characteristics of heat balance
    of water layer under paddy plant cover.
    Bul1. Nat1. Inst. Agric. Sci. A. 8: 243+265.
*Udagawa, T. , Ito, A. and Uchijima, Z. 1974. Phytometrical
    studies of cron canopies. proc. Croo Sci.
    Soc. Jan. 仓3\ 180-195.
    Vacchani, M.V. and Rao, M.V. 1959. Influence of coacing
        on blant characters and yiels of transnlanted
        rice. Froceedings of seminar Recent Agvances
        in Agronomy and Soil Science and treir
        Application to Increase Cron production,
        June 1959, ICAR : 4.
    Vacchani, M.V., Upadhya, S.R. an< Rao, M.V. 1961.
        Influence of spacing on plant characters and
        yielc of transolanted rice. Rice News Teller.
        g (2): 15.
    Varnadevan, v.r. 1971. Measurement of albede in the rice
        fi\inlC. Idojaras. 3-4:219-22%.
    Vanderbilt, V.C., Tauer, N.E. and Silva, T.T. 1979.
    Prediction of solar irractance distribution in
    a wheat canopy using a laser tenhrique. Agri.
    Met. 20:147-160.
*Van Ittersun, A. 1971. A calculation of potential rice
    yields. Netherlands I. Agri. Sci. 19: 10-21.
    Venketeswarlu, F., Prasad, V.V.S.S. and Rac, A.Y. 1977.
    Effects of low light intersity on Eifferent of
    **w growth phases in rice. plant and soil.
    47 (1): 837-847.
    =-- (1) & 837-847.
```

Venketesmarlu, B. and Sreenivasan, T.C. 1978. Influence of low light intensity on growth and productivity in relation to population pressure and varietal reaction in irrigated rice. Ind. J. Pl. Phy. XXI (2) : 162-170.

* Warren Wilson, J. 1959. Analysis of spatial distribution of foliage by two dimensional point quadrats. New Phytol. 58 : 92 - 101. =
* Warren Wilson, J. 1963. Estimation of foliage denseness and foliage angle by inclined point quadrats. Aust. J. Bot. 11 (1) : 95-105.

Watson, D.J. and Witis, D.J. 1959. The net assimilation rates of wild and cultivated beets. Ann. Bot. 23 : 431-439.

Yamada, N. $\begin{gathered}\text { 1961. On the relationship between yield and } \\ \text { spacing in rice. Agri. and Hort. } 36 \\ 13-18,311-316 .\end{gathered}$ (1):

* Yamada, N. 1963. Spacing. Theory and oractice of growing rice. Ministry of Agriculture and Forestry. Tokeyo, Japan : 172-182.

Yao, A.V.M. and Shaw, R.H. 1964. Effect of plant population and planting pattern of corn on distribution of net radiation. Agron. J. 56: 165-169.

Yin, H.Z. Wang. T.D., Li, Y.Z. Qiu, G.X., Yang, S.Y. and Shen. G.M. 1960. Communty structure and light utilisation of rice fields. Sci. Sinica. 9 : 790-811.
Yoshida, S. and Ahn, S.B. 1968. The accumulation process of carbohydrate in rice varieties in relation to their response to nitrogen in the tropics. Soil Sci. Plant Nutr. (Tokyo). 14 : 153-161.
Yoshida, S., Cock ${ }_{\text {q }}$ J.H. and Parao, F.T. 1972 Physiological aspects high yields. Rice Xex世xaxk breeding. International Rice Research Institutw, Philiopines: 455-469.

Yoshida, S. and Parao, F.T. 1976. Olimatic influence on yield and yield components of low lenc rice in the tropics. Climate and rice. Internationas Kice Research Institute, Erilippines: 471-494.

* Originals not seen.

APPENDICES

APPENDIX I

Analysis of variance

Height of plant on 30th day after planting (cm)

Source	S.S	df	M.S	F
Total	498.02	71	---	---
Block	2.06	2	1.03	. 4
S	3.97	1	3.97	1.54
A	1.11	2	. 56	. 22
$S \mathrm{XA}$	58.26	2	29.13	11.29 *
Error (1)	25.75	10	2.58	----
0	87.48	3	29.16	4.42**
S X O	28.43	3	9.48	1.44
A X O	45.33	6	7.56	1.15
$S \times \mathrm{AXO}$	8.54	6	1.42	. 22
Error (2)	237.09	36	. 59	----

** Significant at . 01 level.

APPENDIX II

Analysis of variance
Height of plant on 60th day after planting (cm)

Source	S.S	$d f$	M.S	F
Total	769.3	71	----	-----
Block	4.26	2	2.13	. 54
S	51.68	1	51.0 8	13.18**
A	3.25	2	1.63	. 42
$S X A$	21.88	2	10.94	2.79
Error (1)	39.16	10	3.92	----
0	118.32	3	39.44	3.79 *
S X O	14.38	3	4.8	. 46
A XO	7.54	6	1.3	. 13
$S \mathrm{XAXO}$	134.57	6	22.43	2.16
Error (2)	374.26	36	10.4	--

** Significant at .O1 level.

* Significant at . 05 level.

APPENDIX III

> Analysis of veriance

Height of plant at the time of harvest. (cm)

Source	S.S	df	M.S	F
Total	1152.58	71	----	----
Block	2.22	2	1.41	. 71
S	61.79	1	61.79	$31.05^{* *}$
A	103.13	2	51.57	$25.91{ }^{* *}$
S X A	27.8	2	13.9	$6.98{ }^{*}$
Error (1)	19.85	10	1.99	----
0	90.22	3	30.07	1.37
5×0	15.78	3	5.26	. 23
A X 0	8.73	6	1.46	. 07
S X A X O	14.33	6	2.39	. 11
Error (2)	808.13	36	22.45	---

** Significant at . 01 level.

* Significant at . 05 level.

APPENDIX IV
Analysis of variance
Number of tillers on 30 th day after planting.

Source	S.S	df	M.S	F
Total	290950	71	---	---
Block	12175	2	6087.5	1.85
S	55000	1	55000	16.76**
A	10725	2	5362.5	1.63
$S \mathrm{XA}$	7100	2	3550	1.08
Error (1)	32825	10	3282.5	---
0	61850	3	20616.7	9.65**
S X 0	9150	3	3050	1.43
$\mathrm{A} \times 0$	9375	6	1562.5	. 73
$5 \times$ A ${ }^{\text {S }} 0$	15875	6	2645.8	1.24
Error (2)	76875	36	2135.4	---

** Significant at . 01 level.

> APPENDIX V
> Analysis of variance
> Number of tillers on 60 th day after planting.

Source	S.S	df	M.S	F
Total	625300	71	---	---
Block	1875	2	937.5	1.20
S	178500	1	178500	228.85**
A	38825	2	19412.5	24.38**
S X A	9600	2	4800	6.15*
Error (1)	7800	10	780	---
0	154050	3	51350	16.96**
S X O	61325	3	20441.7	6.75 *
$A X 0$	25400	6	4233.3	1.40
$S \mathrm{XAXO}$	38950	6	6491.7	2.14
Error (2)	108975	36	3027.1	--

** Significant at . 01 level.

* Significant at . 05 level.

APPENDIX	VI
Analysis of	variance
Number of tillers at the time of harvest.	

```
APPENDIX VII
Analysis of variance
Leaf area index on 40 th day after planting
```

Source	S.S	df	M.S	F
Total	128.41	71	---	---
Block	. 02	2	. 01	. 5
S	9.81	1	9.81	490.5**
A	7.75	2	3.88	194 **
S X A	3.22	2	1.61	$80.5^{* *}$
Error (1)	. 19	10	. 02	----
0	100.4	3	33.47	$371.89^{* *}$
S X O	. 39	3	. 13	1.45
A X O	1.26	6	. 21	2.33
S X A X O	2.13	6	. 36	$4^{* *}$
Error (2)	3.24	36	. 09	----
** Significant at . 01 level				
* Signifi	at . 05			

APPEIDIX VIII				
Analysis of variance				
Leaf area index on 75 th day after planting				
Source	S.S	df	M.s	F
Total	133.58	71	-	----
Block	. 02	2	. 01	. 09
S	9.9	1.	9.9	$90^{\text {** }}$
A	6.14	2	3.07	27.91**
S XA	3.47	2	1.74	$15.82^{* *}$
Error (1)	1.05	10	. 11	----
0	103.91	3	34.64	$247.43^{* *}$
5 X 0	. 04	3	. 01	. 25
A X O	1.49	6	. 25	1.79
$\mathrm{S} X$ is X 0	2.49	6	. 42	3^{*}
Error (2)	5.09	36	. 14	-----

[^0]APPENDIX IX
Analysis of variance
Leaf area index on $90 t h$ day after planting

Source	S.S	df	M.S	F
Total	85.15	71	---	---
Block	0	2	0	0
S	13.5	1	13.5	6750 **
A	1.88	2	. 94	470**
S X A	1.19	2	. 60	300**
Error (1)	. 02	10	. 002	---
0	60.17	3	22.06	11.8 **
S X O	1.12	3	. 37	2.18
A X O	1.04	6	. 17	1
S XAX 0	. 18	6	. 03	. 18
Error (2)	6.05	36	. 17	----

** Significant at . 01 level.

APPENDIX X

Analysis of variance
Leaf area index at the time of harvest

Source	S.S	df	M.S	F
Total	56.45	71	---	---
Block	. 01	2	. 005	. 42
S	. 1	1	. 1	$8.33{ }^{*}$
A	. 46	2	. 23	19.17**
$S X A$	0	2	0	0
Error (1)	. 12	10	. 012	----
0	52.46	3	17.49	$218.63^{* *}$
5 X 0	. 08	3	. 03	. 38
$\therefore \mathrm{XO}$. 15	6	. 03	. 38
$S X A X O$. 03	6	. 01	. 13
Error (2)	3.04	36	. 08	-----

** Siçificant at . 01 level

* Significant at . 05 level

APPENDIX XI
 Analysis of variance
 Number of productive tillers

Source	S.S	df	M.S	F
Total	81700	71	--	--
Block	775	2	387.5	. 76
S	6800	1	6800	13.40**
A	4900	2	2950	5.81 *
$S X A$	375	2	187.5	. 37
Error (1)	5075	10	507.5	---
0	28800	3	9600	$13.82^{* *}$
5×0	4975	3	1658.33	2.39
AXO	2500	6	416.67	. 60
SXAX S^{0}	2500	6	416.67	. 60
Error (2)	25000	36	694.44	---

Significant at . 01 level:

* Significant at . 05 level.

APPENDIX XII

Analysis of variance
Length of panicle (cm)

Source	S.S	df	M.S	F
Total	206.85	71	---	---
Block	1.06	2	. 53	2.79
S	4.86	1	4.86	$25.58^{* *}$
A	7.59	2	3.80	$20^{* *}$
$S X A$	3.72	2	1.86	9.79 **
Error (1)	1.89	10	. 19	----
0	103.88	3	34.63	20.49**
S X O	. 34	3	. 11	. 07
A X O	9.46	6	1.58	. 94
5 XAX X	13.38	6	2.23	1.32
Error (2)	60.67	36	1.69	-

** Significant at . 01 level

```
                    APPENDIX XIII
    Analysis of variance
    Number of grains per panicle
```

Source	S.S	df	M.S	F
Total	11167.49	71	----	---
Elock	4.19	2	2.10	2.44
S	4882.37	1	4882.37	$5677.17^{* *}$
A	1666	2	833	$968.61^{* *}$
$5 \times \mathrm{A}$	862.1	2	431.05	$501.22^{* *}$
Error (1)	8.58	10	. 86	---
0	2194.72	3	731.6	$28.23 * *$
5×0	144.83	3	48.28	1.86
$A \times 0$	195.57	6	32.6	1.26
$S X A X O$	276.08	6	46.01	1.78
Error (2)	933.05	36	25.92	----

[^1]```
APPENDIX XIV
Analysis of variance
Thousand grain weight (g)
```

| Source | S.S | df | M.S | F |
| :---: | :---: | :---: | :---: | :---: |
| Total | 140.54 | 71 | --- | --- |
| Block | 2.78 | 2 | 1.39 | 2.44 |
| S | . 66 | 1 | . 66 | 1.16 |
| A | . 36 | 2 | . 18 | . 32 |
| S X A | 34.84 | 2 | 17.42 | $30.56^{* *}$ |
| Error (1) | 5.72 | 10 | . 57 | --- |
| 0 | 28.01 | 3 | 9.34 | 7.59** |
| 5 X 0 | 2.41 | 3 | . 8 | . 65 |
| A X 0 | 13.83 | 6 | 2.31 | 1.88 |
| SXAXO | 7.68 | 6 | 1.28 | 1.04 |
| Error (2) | 44.25 | 36 | 1.23 | --- |

** Significant at . 01 level.

> APPENDIX XV
> Analysis of variance
> Grain yield ( $\mathrm{Kg} / \mathrm{ha}$ ).

| Source | S.S | df | M.S | F |
| :---: | :---: | :---: | :---: | :---: |
| Total | 305800 | 71 | --- | --- |
| Block | 5200 | 2 | 2600 | 2.03 |
| S | 10300 | 1 | 10300 | $8.05 *$ |
| A | 3800 | 2 | 1900 | 1.48 |
| $S \mathrm{X}$ A | 2000 | 2 | 1000 | . 78 |
| Error (1) | 12800 | 10 | 1280 | ---- |
| 0 | 92600 | 3 | 30866.67 | 7.46 ** |
| S X O | 800 | 3 | 266.67 | . 06 |
| A X O | 6000 | 6 | 1000 | . 24 |
| S X A X O | 3300 | 6 | 550 | . 13 |
| Error (2) | 149000 | 36 | 4138.89 | --- |

** Significant at . 01 level.

* Significant at . 05 level.

APPENDIX XVI

> Analysis of variance Straw yield (Kg/ha).

| Source | S.s | df | M. S | F |
| :---: | :---: | :---: | :---: | :---: |
| Total | 48000 | 71 | --- | --- |
| Block | 200 | 2 | 100 | . 77 |
| 5 | 4100 | 1 | 4100 | $31.54 * *$ |
| A | 6800 | 2 | 3400 | 26.15** |
| $S X A$ | 6200 | 2 | 3100 | $23.85 * *$ |
| Error (1) | 1300 | 10 | 130 | ---- |
| 0 | 20100 | 3 | 6700 | $36.55^{* *}$ |
| 5 X 0 | 1000 | 3 | 333.33 | 1.82 |
| $A X 0$ | 700 | 6 | 116.67 | . 64 |
| $S \times \mathrm{AXO}$ | 1000 | 6 | 116.67 | . 91 |
| Error (2) | 6600 | 36 | 183.33 | --- |

[^2]

APPENDIX XVIII

> Analysis of variance Grain/Straw ratio

| Source | S.S | df | M.S | F |
| :---: | :---: | :---: | :---: | :---: |
| Total | 1.99 | 71 | -- | -- |
| Block | . 016 | 2 | . 008 | . 49 |
| S | . 022 | 1 | . 022 | 1.34 |
| A | . 138 | 2 | . 069 | 4.21* |
| $S X A$ | . 15 | 2 | . 08 | $4.88^{*}$ |
| Error (1) | . 164 | 10 | . 0164 | --- |
| 0 | . 017 | 3 | . 006 | . 154 |
| $5 \times 0$ | . 04 | 3 | . 013 | . 333 |
| $\mathrm{A} \times \mathrm{O}$ | . 028 | 6 | . 005 | . 128 |
| S X A X O | . 018 | 6 | . 003 | . 77 |
| Error (2) | 1.4 | 36 | . 039 | --- |

# APPENDIX XIX <br> Analysis of variance <br> Nitrogen content (\%) 

| Source | S.S | df | M.S | F |
| :---: | :---: | :---: | :---: | :---: |
| Total | 1837.92 | 71 | --- | ---- |
| Block | 34.31 | 2 | 17.16 | 3.18 |
| S | 29.70 | 1 | 29.70 | $5.5^{* *}$ |
| A | 0 | 2 | 0 | 0 |
| $S \mathrm{XA}$ | 59.39 | 2 | 29.70 | $5.5^{* *}$ |
| Error (1) | 53.96 | 10 | 5.40 | --- |
| 0 | 588.80 | 3 | 196.27 | 13.92** |
| 5 X 0 | 148.48 | 3 | 49.49 | $3.51{ }^{\text {* }}$ |
| A X 0 | 296.97 | 6 | 49.50 | 3.51 |
| $S X A X O$ | 118.78 | 6 | 19.80 | 1.40 |
| Error (2) | 507.53 | 36 | 14.1 | --- |
| ** Significant at . 01 level. |  |  |  |  |
| * Significant at . 05 level. <br> Note: Data analysed after $\mathrm{Sin}^{-1}$ transformation. |  |  |  |  |

```
APPENDIX XX
Analysis of variance
Phosphorous content (\%)
```

| Source | S.S | df | M.S | F |
| :---: | :---: | :---: | :---: | :---: |
| Total | 773.1 | 71 | --- | --- |
| Block | . 78 | 2 | . 39 | 1.80 |
| S | 35.36 | 1 | 35.36 | 162.95** |
| A | 111.02 | 2 | 55.51 | 255.81** |
| $S \mathrm{XA}$ | 75.86 | 2 | 37.93 | 174.79** |
| Error (1) | 2.17 | 10 | . 217 | --- |
| 0 | 479.04 | 3 | 159.68 | $682.39^{* *}$ |
| S X O | 16.92 | 3 | 5.64 | $24.52^{* *}$ |
| A X O | 26.18 | 6 | 4.36 | $18.96{ }^{* *}$ |
| S X A X O | 17.35 | 6 | 2.89 | $12.57{ }^{\text {** }}$ |
| Error (2) | 8.42 | 36 | . 23 | ---- |
| ** Sionificant at . 01 level. |  |  |  |  |
| Note: | a analy | er | ansforma |  |

## APPENDIX XXI

Analysis of variance
Potassium Content (\%)

| Source | S.S | df | M.S | F |
| :---: | :---: | :---: | :---: | :---: |
| Total | 9987.34 | 71 | --- | --- |
| Block | 8.78 | 2 | 4.39 | . 70 |
| S | 39.52 | 1 | 39.52 | 6.28* |
| A | 564.79 | 2 | 282.40 | 44.90 * |
| $S \mathrm{X} A$ | 1507.92 | 2 | 753.96 | $119.87^{* *}$ |
| Error (1) | 62.92 | 10 | 6.29 | --- |
| 0 | 5713.07 | 3 | 1904.36 | $204.77^{* *}$ |
| 5 X 0 | 991.77 | 3 | 330.59 | 35.55 ** |
| A X O | 433.97 | 6 | 72.33 | $7.78 *$ |
| SXAXO | 329.73 | 6 | 55.00 | $5.91{ }^{\text {** }}$ |
| Error (2) | 334.87 | 36 | 9.30 | --- |
| ** Significant at . 01 level. |  |  |  |  |
| * Significant at . 05 level. |  |  |  |  |

# APPENDIX XXII <br> Analysis of variance <br> Uptake of nitrogen( $\mathrm{Kg} / \mathrm{ha}$ ) 

| Source | S.S | df | M.S | F |
| :---: | :---: | :---: | :---: | :---: |
| Total | 1930 | 71 | --- | --- |
| Elock | 16 | 2 | 8 | . 83 |
| S | 47 | 1 | 47 | 4.90* |
| A. | 125 | 2 | 62.5 | $6.51{ }^{*}$ |
| S X A | 21 | 2 | 10.5 | 1.09 |
| Error (1) | 96 | 10 | 9.6 | --- |
| 0 | 1076 | 3 | 358.67 | $63.61{ }^{* *}$ |
| 5 X 0 | 61 | 3 | 20.33 | 3.61* |
| A X O | 92 | 6 | 15.33 | $2.72 *$ |
| S X A X O | 193 | 6 | 32.17 | 5.70 ** |
| Error (2) | 203 | 36 | 5.64 | --- |

** Significant at. 01 level

* Sianificant at .05 level


## APPENDIX XXIII

Analysis of variance
Uptake of Phosphorous ( $\mathrm{Kg} / \mathrm{ha}$ )

| Source | S.S | df | M.S | F |
| :---: | :---: | :---: | :---: | :---: |
| Total | 14825 | 71 | --- | --- |
| Block | 16 | 2 | 8 | . 39 |
| s | 1095 | 1 | 1095 | 53.94 |
| A | 1004 | 2 | 502 | 24.73** |
| $S X A$ | 992 | 2 | 496 | $24.43^{* *}$ |
| Error (1) | 203 | 10 | 20.3 | ---- |
| 0 | 10162 | 3 | 3387.33 | 1017.22** |
| 5 X 0 | 261 | 3 | 87 | $26.13^{* *}$ |
| A X O | 222 | 6 | 37 | $11.11^{* *}$ |
| S X A X O | 750 | 6 | 125 | 37.54** |
| Error (2) | 120 | 36 | 3.33 | --- |

** Significant at . 01 level.

> APPENDIX XXIV
> Analysis of variance
> Uptake of Potassium ( $\mathrm{Kg} / \mathrm{ha}$ )

| Source | S.S | de | M.S | F |
| :---: | :---: | :---: | :---: | :---: |
| Total | 8555 | 71 | --- | --- |
| Block | 27 | 2 | 13.5 | 1.39 |
| S | 4 | 1 | 4 | . 41 |
| A | 276 | 2 | 138 | 14.23 ** |
| $S \mathrm{XA}$ | 1390 | 2 | 695 | $71.65 * *$ |
| Error (1) | 97 | 10 | 9.7 | --- |
| 0 | 5461 | 3 | 1830.33 | $2056.55^{* *}$ |
| 5 X 0 | 65 | 3 | 21.67 | $24.35^{* *}$ |
| A X O | 238 | 6 | 39.67 | $44.57^{* *}$ |
| $S X A X O$ | 935 | 6 | 155.83 | $175.09^{* *}$ |
| Error (2) | 32 | 36 | . 89 | ---- |

** Significant at . 01 level.

# INFLUENCE OF CROP GEOMETRY ON THE GROWTH AND YIELD OF RICE VARIETY JAYA 

## By

K. E. USEMA

ABSTRACT OF A THESIS<br>submitted in partial fulfilment of the requirement for the degree fflaster of Brience (Agronomp)<br>Faculty of Agriculture Kerala Agricultural University

Department of Agronomy
COLLEGE OF HORTICULTURE
Vellanikkara - Trichur

## ABSTRACT

Influence of crop geometry on the growth and yield of rice variety 'Jaya'.

An experiment was conducted in the Regional Agricultural Research Station, Pattambi during the second crop season of 1983 to study the influence of crop geometry on the growth and yield of rice variety 'Jaya'. The experiment was laid out in split plot with three replications. The treatments consisted of six treatment combinations of two levels of spacing between plants ( $20 \mathrm{X} 15 \mathrm{~cm}, 20 \mathrm{X} 10 \mathrm{~cm}$ ) and three levels of spacing between alleys $(80 \mathrm{~cm}, 160 \mathrm{~cm}$ and 240 cm apart) in the main plot and four levels of crop orientation (North-South, East-West, diagonal planting North East - South West and diagonal planting North West - South East) in the sub plot.

Observations on weather factors such as temperature, relative humidity, rainfall, sunshine hours, wind velocity and evaporation were recorded daily. Crop growth characters like height, number of tillers, leaf area index were recorded at different stages of development of the crop and yield components like number of productive tillers, length of panicle, and yield of grain and straw were noted during the harvest.

The day time variation of albedo was also measured at frequent intervals.

N-S oriented crop was significantly superior to others with regard to crop growth characters as well as yield components. Height, number of tillers, number of productive tillers, length of panicle and number of grains per panicle were influenced by the $20 \times 15 \mathrm{~cm}$ spacing while the 20 X 10 cm spacing showed the maximum drymatter production, maximum thousand grain weight and the highest value of grain and straw yields. The grain yield was not significantly influenced by the alley treatments.

It was found that proper spacing and orientation had significant effect on overall growth and yield of the crop. Highest grain yield was recorded in plots with N-S orientation and with 20 X 10 cm spacing. The best performance is attributed to more effective utilisation of solar radiation with the uniform exposure of plants to sunlight.

The albedo measurements were also higher over the closely spaced and $N-S$ oriented plots indicating the better growth and performance of the cron.

Results of the present investigation indicate that rice in Kerala during the second crop season can be grown most successfully if planted at a spacing of 20 X 10 cm and oriented in $\mathrm{N}-\mathrm{S}$ direction.


[^0]:    ** Significant at . 01 level.

    * Significant at . 05 level.

[^1]:    ** Sicnificant at . 01 level

[^2]:    ** Significant at . 01 level.

