PROPAGATIONAL STUDIES ON COCOA

(Theobroma cacao L.)

ΒY

R. KESHAVACHANDRAN

THESIS

submitted in partial fulfilment of the requirements for the degree of

Master of Science in Horticulture

Faculty of Agriculture Kerala Agricultural University

Department of Horticulture (Plantation Crops) COLLEGE OF HORTICULTURE

Vellanikkara - Trichur

DECLARATION

I hereby declare that this thesis entitled "Propagational studies on cocce (<u>Theobroma cacao L.</u>)" is a bonafide record of research work done by me during the course of research work and the thesis has not previously formed the basis for the award to me of any degree, diploma, associateship, fellowship or other similar title of any other University or Society.

Vellanikkara, 17th November, 1979. K. Kerhanachandran KESHAVACHANDRAH.R.

CERTIFICATE

Certified that this thesis entitled "Propagational studies on cocca (<u>Theobroma cacao</u> L_*)" is a record of research work done independently by Shri.Keshavachandran,R. under my guidance and supervision and that it has not previously formed the basis for the award of any degree, fellowship or associateship to him.

Vellanikkara, 17th November, 1979. Dp. P.C. Sivaraman Nair, Associate Dean,

CERTIFICATE

We, the undersigned members of the Advisory Committee of Shri.Keshavachandran,R. a candidate for the degree of Master of Science in Horticulture with major in Horticulture agree that the thesis entitled "Propagational studies on cocoa (<u>Theobroma cacao L.</u>)" may be submitted by Shri.Keshavachandran,R. in partial fulfilment of the requirements for the degree.

DR.P.C 為有

ADVISOR AND GRAINMAN

(DR.P.K.GOPALAKRISHNAN) MEMBER

(DR.N. MOHANKUMAR/) MEMBER

ACRNOWLEDGEMENTS

I am greatly indebted to Dr.P.C. Sivaraman Nair, Chairman of my Advisory Committee and Associate Dean, College of Horticulture, Vellanikkara for his esteemed advice, constructive criticisms and constant encouragement during the entire course of research work and in the preparation of the thesis.

I have great pleasure in expressing my deep sense of gratitude to Dr.N.Mohankumar, Professor of Horticulture (Plantation Crops) for his valuable advice and kind help in the preparation of this manuscript.

My thanks are also due to Dr.P.K.Gopalakrishnan, Professor of Horticulture (Olericulture) and Dr.A.I.Jose, Associate Professor of Agricultural Chemistry and Soil Science for their valuable suggestions during the course of this investigation.

I wish to record my heart felt thanks to Shri.P.V.Prabhakaran, Associate Professor of Agricultural Statistics for his help in the statistical analysis.

My sincere thanks are also due to all my friends for their kind help in the preparation of this thesis.

I thank the Indian Council of Agricultural Research, New Delhi for the award of a Junior Fellowship during the course of the study:

Vellanikkera, 17th November, 1979, R. Keshawachandraw KESHAVACHANDRAN, R. CONTENTS

			Page
1.	INTRODUCTION	* •	1
II.	REVIEW OF LITERATURE	♠ ●	4
III.	MATERIALS AND METHODS	••	22
IV.	RESULTS	Q 4	33
۷.	DISCUSSION	••	188
VI.	SUMMARY	4 .	207

REFERENCES

.

-1

->

-+

Y

APPENDICES

ABSTRACT

---000----

LIST OF TABLES

- 1. Characters of the three classes of pods in different months.
- 2. Percentage of germination of cocoa seeds.
- 3a to c. Shoot growth parameters of cocoa seedlings at various intervals sown in different months. Accember sowing.
- 4a to c. Root growth parameters of cocoa seedlings at various intervals sown in different months. December sowing.
- 5a to c. Dry weight of cocoa seedlings at various intervals sown in different months. December sowing.
- 6a to c. Shoot growth parameters of cocoa seedlings at various intervals sown in different months. January sowing.
- 7a to c. Root growth parameters of cocoa seedlings at various intervals sown in different months. January sowing.
- Ba to c. Dry weight of cocoa seedlings at various intervals sown in different months January sowing.
- 9a to c. Shoot growth parameters of cocoa seedlings at various intervals sown in different months. February sowing.

- 10a to c. Root growth parameters of cocoa seedlings at various intervals sown in different months. February sowing.
- ila to c. Dry weight of cocoa seedlings at various intervals sown in different months. February sowing.
- 12a to c. Shoot growth parameters of cocoa seedlings at various intervals sown in different months. March sowing.
- 13 a to c.Root growth parameters of cocoa seedlings at various intervals sown in different months. March sowing.
- 14a to c. Dry weight of cocoa seedlings at various intervals sown in different months. March sowing.
- 15a to c. Shoot growth parameters of cocoa seedlings at various intervals sown in different months. April sowing.
- 16a to c. Root growth parameters of cocoa seedlings at various intervals sown in different months. April sowing.
- 17a to c. Dry weight of cocoa seedlings at various intervals sown in different months. April sowing.
- 18a toc. Shoot growth parameters of cocoa seedlings grown in different sizes of bags. December, February and March sowings.
- 19a to c. Root growth parameters of cocoa seedlings grown in different sizes of bags. December, February and March sowings.

- 20a to c. Dry weight of cocoa seedlings grown in different sizes of bags. December, February and March sowings.
- 21a to c. Shoot growth parameters of cocoa seedlings grown in different media. December, February and March sowings.
- 22a to c. Root growth parameters of cocoa seedlings grown in different media. December, February and March sowings.
- 23a to c. Dry weight of cocoa seedlings grown in different media. December, February and March sowings.
- 24. Germination of cocoa seeds under various conditions of storage.
- 25. Root growth of cocoa seedlings at various intervals.
- 26a. Rooting data of cocoa semi-hard wood cuttings treated with different plant growth regulators. Mist chamber method.
- 26b. Rooting data of cocoa semi-hard wood cuttings treated with different plant growth regulators. Polythene sheet method.
- 27. Budding of cocoa seedlings.
- 28. Green budding of cocoa seedlings

LIST OF FIGURES

-

1

1.	Shoot and root growth at various intervals.
2.	Dry matter accumulation at various intervals
3.	Shoot and root growth in different sizes of containers.
4,	Shoot and root growth in different potting media.
5.	Root growth at various intervals,
6.	Percentage increase in root growth,

.

LIST OF PLATES

I.	Three	classes	OÉ	pods
----	-------	---------	----	------

- II. A semi hard wood cutting prepared for rooting.
- III. Polythene sheet method of rooting cuttings.
- IV. Mist chamber method of rooting cuttings.
- V. Different stages in budding.
- VI. The cut given to the rootstock a month after budding.
- VII. Different stages of root growth.
- VIII. Root growth of seedling showing coiling of roots.
- IX. Rooted cuttings.
- X. Budded plant two months after budding.

INTRODUCTION

.

·

INTRODUCTION

Coccos is one of the most important beverage crops of the world after tea and coffee. Though coccos has been introduced to India about fifty years back, its commercial importance has been felt only during the last few years. The cultivation has been gaining ground during the last six years because of the heavy demand in the world market and the consequent high prices. The world production of coccos increased from 13,000 tonnes in 1850 to 15,00,000 tonnes in 1975. This quantity is hardly sufficient to most 50 per cent of the requirements (Nair,1979). The world demand according to the F.A.O. report is increasing at least by 3.9 per cent per annum and the consumption is likely to be increased to 2.4 million tonnes by 1985.

Out of the estimated 7981 hectares under cocoa in India, Kerala contributes around 5548 hectares followed by Karnataka with 2240 hectares and Tamil Nadu with 193 hectares. The estimated production in 1976 is around 400 tonnes while the demand by 1985 will be around 20,000 tonnes even for meeting the internal consumption. Further there are immense possibilities of exporting cocoa beans or cocoa products in view of the shortage in the world market. During 1973-74, India imported cocoa beans and cocoa products to the tune of 1134.3 tonnes valued at 240.6 lakhs of rupees. Since then, the quantity imported is being reduced mainly because of import restrictions and to a certain extent due to the increase in the internal production. Even during 1973-174, India exported 1699.8 tonnes of cocca products valued at 95.5 lakhs of rupees which indicates the immense possibilities for the export of cocca products (Nair, 1979).

In a perennial crop, the selection of planting material is very important to perpetuate high yielding, uniform quality plants. This becomes more important with cocoa which is heterozygous and highly cross pollinated. The seedlings are the main planting material at present and the production of quality seedlings has not received serions attention. Hence, standardisation of the seedling selection is essential.

Production of true-to-type progeny by resorting to vegetative methods of propagation is another way of obtaining uniform, high yielding plants. Rooting of cuttings and different methods of budding have been tried in other cocca growing countries of the world with encouraging results. Then compared with rooting of cuttings, budding has an additional advantage in that it can also be used for top working the uneconomical, inferior plants. It is therefore necessary that methods of vegetative propagation

suitable under the agro-climatic conditions of Kerala are standardised.

Standardisation of nursery practices, such as the size of pots or polythene bags to be used and formulating suitable potting medium to be used is also important.

Under the above circumstances, a study has been undertaken at the College of Horticulture with the following objectives.

- 1. To standardise the criteria for selecting the pods, seeds and seedlings.
- 2. To determine the optimum size of polythene bags and to formulate the suitable potting medium to be used in the nursery.
- 3. To standardise the methods of vegetative propagation.

REVIEW OF LITERATURE

REVIEW OF LITURATURE

Cocoa, though a comparatively new crop of economic importance to India, is one that has been investigated upon rather extensively in other important cocoa growing areas of the world. The present study deals with only the propagation aspects. An ettempt has been made to provide a brief review of the literature available on the different aspects on propagation.

1. SEED PROPAGATION

1.1 Size of Polythene Bage

Small differences exist in the various aspects of seed propagation as followed in the cocca growing countries. Size of polythene bags, thickness and colour of polythene film used constitution of potting media, method of sowing the seed, and germination process are some of the aspects that have received the attention of research workers. The size of polythene bags or pots in relation to the growth of the plant has been studied by several workers. Capriles and Gonzalo (1965) found that the growth of cocca seedlings in plastic bags of 15 cm diameter holding six kg of potting mixture was slightly better than in smaller bags containing lesser quantities of potting medium. Le Brown et al. (1967) recommended

12" x 7" size black polythene bags for raising cocoa seedlings. But according to Leach <u>et al.(1971)</u>, in Malaysia, polythene bags of 30 x 20 cm were being used when the period in the nursery was four to five months. They also found polythene bags of 23 x 18 cm or 25 x 18 cm size to be quite sufficient, if the period in the nursery was only two to two and a half months.

Shepherd (1975) had given specific recommendation on the length, width, gauge, perforation and colour of polythene bugs as well as the quantity of potting mixture that can be filled. He indicated specific types of bags that could be used depending upon the period for which the seedlings were retained in the nursery. Wood(1978) suggested the use of polythene bags of 35 x 10 i 12 icm size for retaining the seedlings in the nursery upto five months. Thus a relationship between the size of polythene bags and the duration of the nursery life of cocca seedlings has been established.

1.2 Potting Media

As in the case of other crops, attempts to formulate a suitable potting medium for cocca has been made by several workers. Pyke (1935) obtained the best germination with calcareous washed, beach sand. Whitehead (1954) reported that a mixture of seven parts loam, three parts

dried farmyard manure and two parts sand gave fairly uniform growth. According to Wessel (1966) germination was slightly better on heavy soils; but subsequent growth was better on lighter soils. Atanda and Jacob (1970) obtained higher germination percentage in sawdust. However, Shepherd (1976) suggested that bags need be filled with top soil of good stable structure; a sandy-clay loam texture being favourable to the growth of cocoa seedlings. If the sails lack organic matter, he recommended incorporating 20 per cent coarse sand and well rotted farmyard manure. Wood (1978) reported that in West Africa top soil alone was used for filling the bags.

1.3 Soulne

Cocoa seed is epigeal in its growth and the cotyledons are raised above the soil surface by the growth of the root.

It is better to plant the seeds with hilum or scar end downwards to prevent the development of distorted seedlings. The seeds can also be sown on their sides, laying them flat (Urguhart, 1961; Wood, 1978). Shepherd (1976) reported that the cocca seeds should be sown with their ling axis in a horizontal plane or with their hilum pointing downwards. According to him, sowing of seeds with

with the hilum pointing upwards was liable to distort the hypocotyl and the radicle consequent to which the seedling growth would be weak, with low recovery.

The depth of sowing is also important. Seeds should be sown no more than 1 cm below the surface of the potting medium (Shepherd, 1976; Wood, 1973).

1.4 Germination

Obtaining earlier germination, higher percentage of germination and better viability have been the problems which received the attention of investigators. Pyke(1935) obtained earlier germination by soaking the seed in water for an hour at 80°F, 95°F and 104°F; but there was little increase in percentage over unsoaked in the final results.

Escamilla <u>et al.</u> (1949) reported quicker and higher total percentage germination by removing the outer skin. Urquhart (1961) suggested that there was no need to remove the mucilage and that good seed should give not less than 80 per cent germination.

According to Boroughs and Hunter (1961), cocod seeds lost viability after 16 minutes in water at 52°C while immersion for four minutes at 20°C reduced the viability to six per cent.

Atanda and Jacob (1970) reported that the final percentage germination was negatively correlated with time

for final and 50 per cent germination. They also found that peeled made germinated quicker with batter percentage of germination.

Shepherd (1976) recommended that ended which do not germinate within 15 days should be discarded as late ger moting seeds are normally less vigorous. Wood(1978) also reported that germination of a batch of seed would be usually complete within two weeks and the rate of germination should be at least 90 per cent.

1.5 Storage

The booss seed is non-rosting and it is ready for germination when the pod it rips and cormally losss its espacity to germinate after a comparitively short period of storage. The factors involved in deterioration of pode under normal conditions are desiccation, fungal attack and sensecence which is generally marked by the germination of the beam in the pod.

In the case of low temperature storage deterioration was caused by chilling (Syke, 1934); Dyke et al. 1934). Dyke (1935) obtained 95 per cent effective germination efter 14 days of storage at an average temperature of BO°F while temperatures of SO°F and 45°F completely destroyed visbility even after two days. However, a temperature of 60°F gave beans of normal germination percentage even after twenty days. Sink and Rochelle (1964) reported that beans stored at SO°C Sailed to germinate even after 15 days while

8

those stored in ventilated glass containers with 40 per cent relative humidity had a germinating capacity of 72 per cent even after 90 days.

In trials conducted in Nigeria, mucilage free cocoa seed dried at 29°C for 8 hours, treated with Captan at a rate of 1g per 100 seeds and stored in dry charcoal at 21°C showed 35 per cent germination after four weeks storage and 14 per cent after eight weeks storage. Drying at temperature of 23 to 29°C for more than 10 hours resulted in much lower germination percentages. The viability of the seeds was rapidly destroyed by storage in a sawdust-sodiur chloride medium after drying, and by storage at temperatures below freezing point either with or without drying (Arc, 1964). Woodstock et al. (1967) reported that seeds germinated at 25 to 30°C were killed by chilling for 30 minutes in water at 2 to 4°C.

Achiru (1970) found that beans partially dried in a stream of carbondioxide or nitrogen and stored at 25 to 29°C remained viable for upto 60 days, while those dried in air lost viability within 45 days. Storage of artificially dried beans in the absence of air reduced their viability. A moisture content of about 50 per cent gave high percentage of germination within 30 days and reduced deterioration.

1.6 Root System

Zevailos (1968) found that during the four month period after germination, the relative lengths of the taproot and of the stem remained the same. After that, the stem grew more rapidly than the tap root.

Dyanat _ Nejad (1971) further found that cotyledons and the tap root most markedly influence each other during growth. They also found that the root system is determined within 15 days after germination.

2. VEGETATIVE PROPAGATION

2.1 Rooted Cuttings

Although several methods of vegetative propagation have been tried in cocca, and rooting of cuttings and budding have given encouraging results, attempts to increase the percentage of rooting, improving the take of buds and obtaining proper plant types, have been made by cocca research workers.

Pyke (1931) reported that the material for cuttings should be taken soon after the leaves had become mature, the stems being hard but still green. Six inches was suggested as a suitable length for the cutting. Cheesman and Spencer (1936) observed that the shoots of the current flush were suitable for rooting. Semihardwood cuttings were found more suitable then hardwood cuttings (Anon, 1951).

Leafless cocoa cuttings do not normally produce roots even under optimum conditions including suitable treatments with root inducing substances. In the case of the few cuttings which produce roots, the roots rot after a short period. However the leaf lamina on a cutting can be reduced by one third or two third without greatly affecting root formation (Evans, 1951).

2.1.1 Plant growth regulators.

Use of growth substances increased rooting of cocoa cuttings from 5 to 30 per cent, the concentrated dip being preferable to a 24 hour dilute dip (Anon 1946).

Richards (1948) reported that concentrated dips for one second using indoly1-butyric acid, potassium indoly1-butyrate and a mixture of indoly1 butyric acid, phenyl acetic acid and naphthalene acetic acid gave significant increases in percentage of cuttings rooted and in the mean root length.

Garcia and Naundrof (1950) tried 3-indole butyric acid (IBA), 3-indole acetic acid (IAA), & -naphthylene acetic acid (NAA) and 2,4-dichlorophenoxy acetic acid (2,4-D) for rooting cocoa cuttings. They reported that IBA markedly increased the rate and percentage of rooting as well as the number of roots produced. The dusting method of application was reported to be better than the dip method. However, Evans (1951) found the quick dip method convenient. The best treatment according to him was a mixture consisting of equal parts of NAA and IBA at a total concentration of 8 to 10 mg per ml of 50 per cent alcohol for stem cuttings and 4 to 5 mg per ml for single node or single leaf cuttings.

Alvim and Duarte (1954) recommended 0.7 or 0.8 per cent IBA in either 60 per cent alcohol or talc as the best growth substance formulation for rooting of cocoa cuttings. The addition of fungicides Phygon XL or SR-406 in powder form to the talc formulation at the rate of 1:3 significantly increased the percentage of rooting.

Garcie Brand (1954) reported that immersion of cuttings in Zineb (Dithans Z+78) solution (32g per 4 gal of water) followed by dipping their bases in IBA (5 mg per ml of 50 per cent alcohol) gave the bast results.

Edward (1961) suggested that cocoa cuttings be treated with 8000 ppm IBA for best results while Cabato (1961) recommended NAA at 8000 ppm in powder form. Bouma and Ringeling(1962) obtained 84 per cent rooting by treating with 4000 ppm IBA. But Kailasem <u>et al</u>. (1964) found a mixture of IBA and NAA at 5000 ppm to be the best for rooting.

Bhandary and Shivashankar (1974) obtained 100 per cent rooting of cocoa cuttings under intermittent mist with "Rootone" and 73 per cent with IEA 2500 ppm. They were of the view that in general the rooting percentage decreased with increase in concentration. Mowever they reported that IBA produced more roots and greater length of roots at higher levels while the roots were shorter, thicker and brittle with NAA.

2.1.2 Media and propagators.

Changing the constitution of media and using propagating units with control devices for various environmental factors are known to influence the percentage of rooting.

Pyke (1931) suggested that the cuttings be inserted in coarse sand in a solar propagator. Transpiration was checked by using cuttings with mature leaves and keeping the air around the cuttings humid by placing porous pots filled with water at one foot intervals among the cuttings. A double layer of cloth was then spread over the top and kept moist, thus enclosing the cuttings in a sort of tent. Pyke (1933) reported that cuttings were rpoted under shade in portable wooden glass lighted frames. He suggested fine white sand or medium calcareous sand, overlying successive strata of fine and cearse sand as the most successful rooting medium.

According to Cheesman and Spencer (1935,1936)cuttings must be set in six inches of calcareous sand overlying one foot of coarse gravel and large stones for obtaining better

rooting. They also pointed out the importance of maintaining a practically saturated atmosphere within the frames while providing the correct amount of light which must not be sufficiently strong to raise the temperature and increase transpiration or weak enough to retard photosynthesis. Escamilla <u>et al.</u> (1948) used soil with a 10 cm capping of organic material as the rooting medium. Palm fibre and sand was reported to be the best rooting.medium under Brazilian conditions (Anon, 1951).

Lipp (1953) used polythene for rooting cuttings, storing, stratified seeds and for wrapping balled root systems when transplanting. Floor (1954) wrapped cuttings in polythene for increased rooting and also stored plants in it without water for several weeks. Garcia (1954) obtained 66 per cent rooting with coffee silver skin and 52 per cent with sawdust as the rooting medium.

Archibald (1955) described a method of rooting cocoa cuttings in a bed of soil by covering them with a sheet of polythene. 57 per cent rooting resulted with clone S-36 compared with 75 per cent usually obtained with this clone in concrete bins. The new method had the advantage, however, of being cheap in materials and labour.

The value of polythene in rooting cuttings lies in its ability to conserve moisture while allowing diffusion of gases (McKelvie, 1957). Moreover it is thugh, chemically inert and is not attacked by fungi. He also observed that covering the cuttings with polythene sheet was cheaper, simpler and more efficient. The hardness of cuttings rooted under polythene was greater than with any of the alternative means of propagation so that there was no need for close control over the environment. The cuttings under polythene sheet were in nearly perfect condition and could tolerate greater external changes. The polythene sheet frequent attention was not needed to keep the atmosphere saturated.

Alvim (1953) used sawdust as the rooting medium while Harris (1953) suggested sawdust treated with a solution of potassium indole butyrate and potassium naphthalene acetate which gave 75 to 100 per cent strike and the roots were in clusters of 6 to 11, and 3.5 to 4.0 inches long after four weeks.

Malins-Smith (1954) described a pit 3' \times 5' \times 20" as a propagating unit. A jute cover was used and sawdust was the rooting medium. The cover was kept constantly wet. The rooting was reported to be better than in conventional propagators.

Murray (1954) described producing rooted cuttings in buskets in one operation at a substantial saving in cost. The cuttings were incerted in baskets with a central core of

rooting medium surrounded by potting soil. The baskets were kept in a glasshouse with a cetrifugal humidifier maintaining 100 per cent humidity.

Pirez (1954) comparing seven media for rooting cocha cuttings suggested that fresh and decomposed rice husks and sand gave the highest strikes of 84.5, 86.5 and 63.5 per cent followed by fresh sawdust, vegetable charcoal, decomposed wood and decomposed sawdust.

Edward (1961) reported that cuttings rooted in Leached sawdust in 28 days and then were potted in mimosa leaf mould.

2.1.3 Root initiation and rooting.

Pyke (1931) reported that the cuttings had callused and some had rooted just above the callus in three weeks when the leaves were retained. In four or five weeks, cuttings were well rooted and fit for potting. Observing on the varietal differences in the rooting behaviour of cocoa cuttings, Pyke (1933) reported that the cuttings in both Criollo and Forastero tended to fall into two groups, one with a mean rooting time of 18,9 days and the other with a mean of 39 days.

Cheesman and Spencer (1935) reported 100 per cent rooting of fan shoots in three weeks while chupons took upto 12 weeks. Bhandary and Shivashankar (1974) observed

root initiation in growth regulator treated cuttings after three weeks of planting. Wood (1978) reported that optimum conditions would lead to growth of a prolific root system within fourteen days but twentyone days was the usual duration.

2.1.4 Root system.

Differences in the nature of root system of cocoa plants resulting from rooting of cuttings have been observed by several workers. Pyke (1933) reported that there was marked dimorphism between the root systems of fan and chupon cuttings. In the fan, the characteristic type of root system in which the spread of the roots occurred at an angle between 72° and 60° to the vertical, was proctically constant. The chupon exhibited a variety of root systems ranging from the vertical to the almost horizontal. In the chupon however there was always atleast one vertical root.

2.2 Budding

Cocoa is usually grown from seed though several methods of vegetative propagation are known. Budding is an easy and cheap method of clonal multiplication and has been used as such in many countries (Rosenguist, 1952; Mabey, 1964; Ascenso, 1968; Van de Burg, 1969).

2.2.1 Methods.

Patch budding had been used for budding cocoa seedlings and for top budding cocoa trees (Van Hall, 1932; Burchardlt, 1936).

Paredes (1949) had recommended making an inverted 'U' cut with a rectangular patch bud. Keeping (1950) also suggested a modified forkert method of budding while Resenguist (1952) reported 56 to 82 per cent success with patch budding.

Topper (1956) developed an inverted-T'method, a form of shield budding, which involved the use of buds upto 4 cm long taken from mature terminal shoots.

Liabeuf (1958) tried the inverted- 'T' method for the propagation of selected clones and obtained 50 to 80 per cent success after top budding chupons growing from previously cut back eight year old trees. Urguhart (1961) reported the use of shield budding on four month old cocoa seedlings. Ascenso (1968) obtained 50 to 80 per cent success with patch budding and 77 per cent with inverted-'T' method in SaO Tome. Van de Burg (1969) found that better resulte could be obtained by the forkert method if the flap of the rind was completely cut off from the stock.

2.2.2 Budwood preparation.

Paredes (1949) recommended preparation of budsticks eight days before their removal from the trees by cutting of the leaf blades. Keeping (1950) reported that with modified forkert method, unpetioled budwood produced 44 per cent matured plants after three months and petioled budwood 38 per cent; although the latter grew out more quickly. Giesberger and Coester (1976) described a pretreatment of cutting off the leaves and the terminal end of the branch ten days before budding; but according to them this was not effective. Ascenso (1968) also suggested that the practice of budwood preparation by cutting off the leaf blades 10 days prior to collection of budwood was not to be recommended in Sao Tome as it involved extra work and brought no significant increase in budding efficiency.

2.2.3 Cutting of rootstock.

Paredes (1949) recommended that the rootstock be decapitated about 10cm above the bud at the time of budding. Topper (1957) suggested nicking and bending over of the rootstock about 10 cm above the bud when most of the buds would grow in a fortnight.

Ascenso (1968) recommended cutting off the tape used to tie the bud after 10 to 14 days. If the budding was successful, the stock could then be nicked four inches above the union and bent down to the ground where it was fastened by pegs. Giesberger and Coester (1976) reported that measures to induce the bud to shoot were required after the bud has taken and the bud patch has hardened off for a wack, failing which the apical dominance effects of the rootstocks would inhibit the sprouting of buds. They recommended slicing the stem of the rootstock to a length of two to three cm and a depth of half the diameter of the rootstock above the bud union without breaking it. The terminal part of the rootstock could also be cut off. A month later, when the bud shoot had developed its first flush of properly hardened leaves, the rootstock could finally be cut back with a slanting cut just above the bud union.

2.2.4 Green building.

Budding on much younger rootstock saves considerable cost and time. Topper (1956, 1957,1959) developed a technique of green budding on, three to four month-old-cocoa rootstocks. Hurov (1961, 1971) subsequently improved it and introduced it to Malaysia for budding two to four month old rubber seedlings.

Clesberger and Coester (1976) conducting glasshouse experiments on green budding tried 'T' budding and the

inverted 'U' or modified forkert method in two to six week-old seedlings. The modified forkert method was reported to give 90 to 100 per cent success. Green budding of very young rootstocks in the nurseries should result in the establishment of cocoa plantings from well grown buddings within five to six months.

MATERIALS AND METHODS

MATERIALS AND MUSICOS

In view of the importance of the standardisation of quality seedling selection and vegetative propagation methods in cocca, a study on the various aspacts of propagation was undertaken at the College of Horticulture from May 1978 to July 1979. The study included standardising the criteria for selecting the pods, seeds and seedlings, determination of the optimum size of polythene bags and the suitable potting medium to be used, viability of seeds in storage, the characteristics of the root, and standardisation of vegetative propagation methods. The details of the methods followed are as given below.

1. SHED PROPAGATION

1.1 Selection of Pod

Mature Forastero pods (those showing yellow colour particularly in the furrows) were horvested at monthly intervals from selected plants yielding more than 100 pods per year. Pods were collected at monthly intervals from December 1978 to April 1979. The pods were then classified into 'large', 'medium' and 'small' depending upon their size. (Plate I) Ten pods were collected in each size group during each month.

PLATE I Three classes of pods Large, Medium and Small,

•

1.2 Pod Characters

In each category, the following observations of the pods were recorded. The longth of the pod was measured in cm as the distance between the pedicel end and the apex of the pod. The girth at the thickest portion of the pod was measured in cm using a twine and a scale. The weight of the pods was recorded in gm. The volume of the pods was determined by the water displacement method and expressed in cc.

1.3 Seed Characters

1.3.1 Classification of seed based on the position.

The pods were then cut into three equal portions with a knife and the three portions were classified as the pedicel end (1/3rd of the pod near the pedicel), the 'middle' (middle 1/3rd) and the 'distal end' (1/3rd of the pod from the distal end).

1.3.2 Number and weight of the seeds.

The seeds in each of the above groups were collected separately and the following observations were recorded.

The number of good, fully formed (hard) seeds in each group and their weight. The number of incompletely formed (soft) seeds in each group. From the ten pode harvested for each group per month, the seeds were pooled seperately from each position. Thus for ten'large'sized pode harvested at one month, the seeds from the pedicel end'were pooled together as also the seeds from the middle portion and 'distal*end! Similar pooling was also done for medium'and 'cmall'sized pode.

1.4 Sowing of Seeds

1.4.1 Potting containers and media.

The pooled seeds in each category were sown in polythene bags of 23 x 15 cm lay flat size (gauge 150) containing potting medium of 1:1:1 proportion of soil sand and well decomposed farm yard manure (F%34).

1.4.2 Method of soving.

The seeds were sown flat in the potting mixture at the rate of one per bag at one cm depth. Nine treatments were replicated three times with 30 bags in each treatment per replication. The treatments were T_1 large pedicel end, T_2 -large middle, T_3 -large distal end, T_4 -medium pedicel end, T_5 -medium middle, T_6 -medium distal end, T_7 -small pedicel end, T_8 -small middle and T_9 -small distal end.

1.5 Germination

The germination was recorded every day and the total and percentage germination were calculated.

1.6 Seedling Characters

The seedling characters such as the height, the girth and the number of leaves were recorded at fortnightly intervals starting from the 15th till the 90th day after germination. The dry weight of the shoot was recorded from the 30th day till the 90th day at monthly intervals after drying in an electric oven at 70°C for three days.

1.7 Root Cheracters

1.7.1 Method of study.

The roots were studied after cutting and removing the polythene bags and placing the ball of earth in the water and carefully washing out the soil.

1.7.2 <u>length of the root number and length of leterals</u>. The length of the tep root and the longest leteral root and the number of lateral roots were recorded. The recording wes done at monthly intervals starting from 30 till 90 days after germination. Data were recorded separately from five sets of secolings soon in December 1978, January, February, March and April 1979.

1.7.3 Bry weicht.

The dry weight of the root was recorded from the 30th day till the 90th day at monthly intervals.

1.8 Size of Containers and Potting Medium

1.8.1 Size of containers.

Another experiment was carried out to determine the optimum size of polythene bags for growing the seedlings for three months. Three sizes of polythene bags namely, 23 x 15 cm (T_1) , 25 x 18 cm (T_2) , and 30 x 20 cm (T_3) were used. For each size, fifty bags were filled with standard (1:1:1) potting mixture and well developed seeds were sown at the rate of one seed per bag. The trial was repeated thrice in the months of December 1978, February 1979 and March 1979. Observations as mentioned earlier regarding the shoot and root characters were recorded.

1.8.2 Proportion of potting medium.

In order to determine the best economical potting mixture for optimum health growth of cocoa seedlings, another experiment was conducted. The treatments were $T_1 = soil$, $T_2 = soil$, sand and SYM (1:1:1) and $T_3 = soil$, sand and SYM (1:1:1) and $T_3 = soil$, sand and SYM (1:1:2).

Fifty sound seeds were sown per treatment and the trial was repeated thrice in December 1978, February 1979 and March 1979. All the observations mentioned previously were recorded.

1.9 Studies on the Viability of Seeds

To test the viability of seeds after storage, a trial was undertaken with the following treatments:

- 1) storing the pods in the room, extracting the seeds and sowing them on the 3rd, 6th, 9th and 12th day after harvest.
- ii) storing the pods in the refrigrator and sowing the extracted seeds on the 3rd, 6th, 9th and 12th day after harvest.
- iii) extracting the seeds on the same day of harvest, keeping them in polythene bags under room temperature and sowing them on the 3rd,6th,9th and 12th day after extraction.
 - iv) as in (iii); but keeping the polythene bags in the refrigerator and sowing the seeds on the 3rd, 6th,9th and 12th day after extraction.

Two pode were used for each treatment and the seeds were sown in polythene bags. The number of seeds germinated were recorded.

1,10 Root Studies

In order to study the characteristics of roots at various ages of seedlings, another experiment was carried out.

Root characters were studied for the following age groups of seedlings: 15, 30, 60, 90, 180 and 270 days after germination. Twenty seedlings were studied for each age group.

The length of the tap root and longest lateral, the number of laterals, as well as the dry weight of the root were recorded for each seedling and the mean was worked out.

2. VEGETATIVE PRODACATION

In order to standardise the vegetative propagation methods, rooting of cuttings and different methods of budding were tried as detailed below.

2.1 Rooted Cuttings

2.1.1 Prenaration of cuttings.

From selected three year old Forastero trees, semi hardwood cuttings were taken from mature fan branches of current season growth. The cuttings taken had fully hardened leaves. The bark was brown on the anterior side and green on the posterior side. Three to four leaves were retained with 1/3rd of the lamina (Plate II). The cuttings were taken early in the morning and put in buckets containing water till they were treated with growth regulators and planted.

PLATE II A semi-hard wood cutting prepared for rooting.

2.1.2 Treatment with growth regulators.

The growth regulators tried were indole-3-acetic acid (IAA), alpha-naphthalene acetic acid (NAA), indole-3-butyric acid (IBA) and a mixture of alpha-naphthalene acetic acid and indole-3-butyric acid at concentrations of 2000,4000,6000 and 8000 ppm in 50 per cent ethyl alcohol. The 'quick dip' method was used at four different dip durations of 10, 20, 30, and 60 seconds. There were 65 treatments including control, in which the cuttings were not treated with any growth regulator. Ten cuttings were used for each treatment per replication and there were three replications.

2.1.3 Method of planting cuttings.

The cuttings were taken to the nursery and given a fresh cut at the base. The water at the base of the cutting was blotted out and then the cuttings were dipped in the specific solution of growth regulators for the required time. The cuttings were slightly shaken to remove any excess growth regulator solution and planted in previously watered sand beds raised to a height of 12cm.

2.1.4 Methods of covering cuttings.

Two methods were used for covering the cuttings. After thorough watering, one set of cuttings was covered with a polythene sheet following: McKelvie's method(Plate III). The edges all around were sealed off with wet clay.

PLATE III Polythene sheet method of rooting cuttings.

... .~ .

ine cuttings were watered onde in three days by removing the polythene sheet and later replacing the sheet as before. The clay used for plastering the edges was also kept wet to prevent cracking.

In the second method, a wooden frame 2,0x1.0x0.5m in size was contructed and covered with polythene sheet (Plate IV). This frame was placed over the bed of cuttings which was first watered. The edges were sealed as before. The sand bed was watered only when needed. However, to maintain humidity, sprays of water were given once a week inside the frame by inserting the nozzle of a sprayer.

The number of cuttings rooted, the number of roots per cutting and their average length were recorded after 60 days.

2.2 Budding

2.2.1 Methods of budding.

Budding was done on cocoa seedlings of 7 to 11 months age. The methods tried were patch, forkert, 'T', and 'inverted-T'. Only the standard methods of budding were adopted except in the case of forkert budding where half the flap was cut and removed in the beginning itself.

PLATE IV Mist chamber method of rooting cuttings.

.

2.2.2 Selection and preparation of bud wood.

Budwood was taken from selected mother trees. Recently matured fan or chupon branches of approximately the same girth as the rootstock, growing vigorously and containing several good buds were used as budwood. The buds in the upper end were discarded. Pre curing of the budwood was done by defoliating the twigs 10 days in advance. The budwood was collected just before the budding operations and the basal ends of the budwood twigs were dipped in water till it was used for budding to avoid desiccation.

2.2.3 Budding technique.

The bud was inserted into the rootstock just below the cotyledonary mark. Polythene tape was used to completely cover the bud union from about two cm above the bud patch to two cm below (Plate V). The tape was carefully cut after 15 days. A month after budding, a cut was given to the rootstock above the bud union to about half the thickness of the stock first horizontally and then vertically extending about four to seven cm upwards(Plate VI). After two months of scion growth when the leaves had hardened, the stoch was cut back immediately above the bud union. Till the stock was cut, the scion growth was supported with twigs to prevent demage.

PLATE V Different stages in budding

PLATE VI The cut given to the root stock a month after budding.

.

.

2.2.4 Green budding.

Juvenile cocca seedlings, two to four months old, were used for green budding. Budwood was taken from chupon or fan branches which were young and green or greenish brown. The four methods tried for older root stocks were also tried in green budding.

3. STATISTICAL ANALYSIS

The data on the different characters studied were subjected to statistical analysis, following the methods suggested by Snedecor and Cochran (1967). Transformations were done wherever needed and the data analysed by the analysis of variance technique. Significant results were compared after finding out the critical differences.

RESULTS

RESULTS

1. SEED PROPAGATION

Seed propagation studies were initiated to standardise the criteria for selecting the pods, seeds and seedlings in cocca. The results of the study are presented below. The analysis of variance tables for the different characters are given in Appendix

The first phase of the study included the assessment of variation among the 'large', 'medium' and 'small' pods in the volume, weight, number and weight of sound seeds as well as in the mean weight of a sound seed. The data on the above characters are presented in Table 1.

1.1 Pod Characters

1.1.1 Volume of pod.

The volume of the pods, determined by the displacement method, was found to vary with the different classes and variation was also noticed within the classes during the different months. The large pods recorded a mean volume of 615 cc during December and February while the corresponding figures for January, March and April were 391, 466 and 497cc respectively. The medium sized pode had volumes of 445, 284, 407, 345 and 359 cc in December, January, February, March and April, respectively. The small pods recorded

Table 1. Characters of the three classes of Cocos

pods in different months.

(Mean values)

Month	Size of pod.	No.of pods stud- ied.	Length (cm)	Girth (en)	Volume (c.c.)	-		No.of sound seeds	Veight of sound seeds (cm)	Averege weight of a seed. (gm)
and and one can say the state of	Large	10	20.5	28.08	615	617	36	34.4	93.27	2.71
December	Medium	10	16,80	26.71	445	428	34.5	34.1	83.6	2.45
1978	9ma 11	10	13.85	24.65	354	294	36.4	34.3	75.5	2.20
January 19 79	Large	10	19.73	23,48	391	270	30	29	76.8	2.65
	Modium	10	16.12	23,24	284	174	35.9	34.1	68.6	2.01
	cmall	10	14.04	22.73	253	152	34.7	33.3	62.2	1.87
	large	10	18.84	27.92	615	475	42	40,5	124.3	3.07
February 1979	netton	10	15.49	25,44	407	308	35.6	35.2	104.7	2.97
	Small	10	13.33	23.41	276	192	38.2	36.7	76.95	2,10
March 1979	Large	10	16.91	26.68	466	429	40.1	39.3	115.3	2.93
	Realum	10	16.31	23. 55	345	304	40.5	37.3	96.8	2.60
	Small	10	12.3	23,42	269	236	37	35,9	91,8	2,56
	Large	10	19,45	27,41	497	535.41	40.6	39.5	119,15	3.02 /
Apr 11 1979	Redium	10 .	17.31	25,22	390	356	41.2	39.5	94.8	2.40
	Small	10	13,52	23.20	229	272	37	35.9	84.05	2.34

354 co and 276 cc in December and February while in the months of January, March and April the volumes were 253, 268 and 228 cc, respectively.

Thus it can be seen from the data presented that the volume varied among the classes of pods and also within each class in the different months. Regarding the different monthe, the pods harvested in December and February had comparitively higher volume.

1.1.2 Weight of pod.

The large pods had a mean weight of 617 g and 535.41 g in December and April while in the months of January, February and March the weights were 270 g, 475 g and 428 g, respectively.

The medium sized pods also had their highest mean weights in December and April when the weights were 428 g and 356 g. The corresponding figures for January, February and March were 174 g, 308 g and 304 g, respectively.

The small pods had a mean weight of 294 g in December and 272 g in April while in January, February and March the weights were 152 g, 192 g and 236 g, respectively.

It can thus be seen that the weight of the pods also varied among the three classes of pods and also within each class in the different months. Among the months.December and April recorded the highest weight in all the classes.

1.2 Seed Characters

1.2.1 Number of seeds.

In December, the mean number of seeds was 36 in large pods, 34.5 in medium pods and 36.4 in small pods. This indicates that there was not much variation in the number of seeds among the three classes of pods. In January, the number of seeds was 30 for large pods, 35.9 for medium pods and 34.7 for small pods while in February the corresponding numbers were 42, 35.6 and 33.2. In March, the variation was even less with 40.1 for large, 40.5 for medium and 37 for small pods. The same trend was reflected in April also where the figures were 40.6 for large, 41.2 for medium and 37 for small pods.

The number of seeds did not show much variation among the three classes of pods as also between the classes in the different months. However, comparing the different months, the number of seeds were higher in pods harvested in February, March and April. The mean number of seeds per pod taking all size groups together varied between 30 and 42.

1.2.2 Meight of sound seeds.

The sound seeds from large poss had a mean weight of 93.27 g in December, 76.8 g in January, 124.3 g in February, 115.3 g in March and 119.15 g in April. The corresponding figures for medium pods were 83.6 g, 68.6 g, 104.7 g, 96.8 g and 94.8 g while for small pods the figures were 75,50g, 62.20g, 76.95 g, 91.80g and 84.05 g, respectively.

The weight of the sound seeds in the different classes of pods varied in the different months. The weights were highest in the months of February, March and April for sound seeds from all the classes of pods.

1.2.3 Mean weight of a sound secd.

The mean weight of a sound seed from large pods varied from 3.07 g in February to 2.65 in January while in the months of December, March and April the mean weights were 2.71 g, 2.93 g and 3.02 g respectively. The medium pods gave sound seeds weighing from 2.97 g in February to 2.01 in January while in the months of December, March and April the weights were 2.45 g, 2.60 g and 2.40 g, respectively. The variation in mean weight of a sound seed from small pods was from 2.56 g in March to 1.80 g in January. The corresponding weights in the months of December, Pebruary and April were 2.20 g, 2.10 g and 2.34g.

There was wide variation in the mean weight of a seed among the three classes of pods. The seeds from the large pods had the highest weight followed by the seeds from the medium pods while the seeds in the small pods had the lowest weight. Considering all the size groups together, the mean weight of a sound seed varied between 1.87 and 3.07 g. The mean weight of a seed from large and medium pode was highest in February followed by March. Seeds from small pods weighed highest in March.

Thus from a study of various characters of the pods, it is clear that there was wide variation in the volume and the weight among the three classes of pods and also in the different months of hervest within each class. The volume and weight were highest obviously for large pode. The volume was highest in the pode harvested in December and February while the mean weight was highest in December and April. There was not much variation in the number of seeds among the three classes while among the different months the number was highest in the case of pods harvested in February, March and April. Regarding the weight of sound seeds the three classes differed in their weight suggesting differences in the average weight of individual seeds. The mean weight of a seed was highest for large pods and lowest for small pode. The mean total weight of sound seeds in a pod as well as the mean weight of a seed was highest in February, March and April.

In the second phase of the study, the germination, vegetative growth, root growth and accumulation of dry weight were studied. The large, medium and small pode were divided into three sections namely, the pedicel end, the middle portion and the distal end. Monthly soving of the secco from these position groups in the three size groups was done separately, and the germination behaviour assessed.

For analysing the vegetative growth, root growth and dry matter accumulation the identity of position groups and size groups was also maintained.

1.3 Germination

1.3.1 Number of days for germination.

The germination was found to start on the eighth day and continue upto the tenth day after sowing, for all the treatments.

1.3.2 Percentage of germination.

The mean percentage of germination for the five monthly sowings are presented in Table 2.

No significant difference in respect of the percentage of germination among the different treatments was observed in any of the monthly soulngs.

For the December sowing, the percentage of germination was highest for T_4 (89.6) followed by T_7 (89.0) and T_1 (88.9) The lowest percentage of germination was for T_8 (64.3). The percentage of germination was highest for T_7 (07.0) followed by T_6 (87.0) and T_4 (86.0) during Jenuary cowing. The lowest percentage was for T_3 (69.5). The highest percentage of germination in the February sowing was for T_8 (98.8) followed by T_5 (98.4) and T_2 (95.6). The lowest percentage was for T_1 (69.4). The maximum percentage of germination during March sowing was for T_1 (90.2) followed by T_2 (93.5).

Table 2. Percentage of Germination of Cocob seeds in different months (Mean values)

Treatments	December	Jonuary	February	March	Apr il	
T ₁ -LP	88.9 (70.53)*		69 .4 (56,41)	99.24 (85)		
T2-121	82,6 (65,38)	75.6 (60.46)	95.6 (77.97)	98.5 (83.02)	81.3 (64.4)	
r 1 .D	80.3 (63.63)	69.5 (56.5)		96.5 (69.43)	83 (69.69)	
	89.6 (71,15)	85 (68,02)	75 (60)	94.3 (76.15)		
T5-MM	71.6 (57.8)	75.3 (60.18)		97,6 (81,15)	91.4 (64.42)	
T.6-14D	75.1 (60.07)	87 (68,85)		95.9 (77.71)	80 (63.44)	
T ym SD	89 (70 .7 6)	87.8 (69,59)		91.2 (72.71)	66.9 (54.89)	
T _o -sM	64.3 (53.33)	94.6 (66.92)		97.2 (80,36)	01.0 (64.75)	
1 970)	64.6 (53.47)	76 (60+65)		89 . 1 (70 . 74)		
F - Value	0.308 ³¹⁵	0.175 ^M	0,295 ^{Ne}	°.635	^o 0.460 ^{HE}	
C.D-(0.05)18.35		31.49	25,02			

 T_4 (97.6), T_5 (95.5) and T_4 (94.3). The minimum percentage of germination was for T_3 (86.5). The highest percentage of germination during April sowing was recorded for T_1 (90.4) followed by T_3 (83.0) and T_3 (81.8). The lowest was for T_9 (61.3).

The results clearly indicate that neither the size of the pod nor the position of the seed inside the pod (pedicel end, middle and distal end) had any significant influence on the germination percentage. Hence, pode of any size and all the sound seeds in a pod can be utilised for propagation. Among the different months, disregarding the classes of pode and the position of seeds in the pode, the germination percentage was highest in March (94.35), followed by February (85.58), January (79.29), December (78.44) and April (77.46). This indicated that the pole harvested in February and March will give higher germination and those harvested in December, January and April should be avoided for propagation purposes.

1.4 Growth Studies

1.4.1 December sowing.

(1) <u>Vegetarive growth.</u>

The data on the growth parameters such as the height, the girth and the number of leaves produced under varying sizes of pods and position of seeds are presented in Table 3a.

41.

after germi- nation.	15th day				din di	45th day			
Treat- ments,	Height (cm)	Girth (cm)	No. of lea- ves.	Height (cm)		No. of loa- ves.	(ca)	Girth (cm)	No.of leaves
r ₁ -LP	15,74	1.34	3.6	18,54	1.38	4.27	20.01	1,71	6.47
P2-LM	11.54	1.34	3.53	15,46	1,36	4.4	17.07	1.66	7.07
r _ə -to	13,74	2,34	4.45	16,46	1.4	5.6	17.21	1.76	7.13
°₄-!₽	10,63	1.21	4.07	11,59	1.33	5.07	16 .6 9	1,37	7
^P 5 ⁻³⁰⁴	11.41	1.23	4.07	11,52	1,29	5.33	16.03	. 1.4	6.6
6-140	15,06	1,21	4,07	15,74	1.24	4.73	17,11	1.39	5.4
fy SD	14,98	1.13	3.93	19,60	1.26	4,27	21.01	1.65	6.2
r ₀ -sm	17.04	1.2	4.27	20,91	1.40	4,73	21.95	1.5 8	6.13
°9=SD	14,20	1,21	4.4	15,12	1.33	4.8	16,55	1.50	6 .6
-Value	3.54*	0.05 ^{NS}	³ 1.61	¹⁵ 9.92	* 0,7	⁸ 1.5	⁶ 4.32	0.68	9.87**
:D-(0.0!	5)3,77	0.30	0.60	3 2.74	0.20	5.1.2	2.74	0.21	0.62

Table 3a. Shoot growth parameters of Cocca socdlings at various intervals sown in different months, December sowing.

.

** Significant at 1% level.

Table 3a. Continued.

nster jerni- notion.	60	th Gay		75t	h day	90th day			
Treat- nents.	Height (cm)	Girth (cm)	No. of lea- ves.	Reight (cm)	Girth (cm)	No. of leaves.	Height (cm)	Girth (cm)	No.of leaves
r ₁ -LP	22,53	1,85	7,86	39,73	2.05	10,66	49,40	2,20	12.6
r1.51	22	1,88	8.96	24,19	2.05	9,73	29.63	2.22	12.2
°	19.33	1,80	9.16	27,42	1.98	11.26	27.42	1.93	11.26
T. Mp	17,04	1.45	9,03	23.03	1.8	10,73	28,56	1,91	12,26
r	15.68	1.65	8.2	33,60	2.05	11.16	33.77	2,05	11.16
r!*	20,79	1.75	7.05	24,96	2,26	10.4	29, 38	2,26	10.4
r _a -se	22.96	1,02	9.93	26.96	1,05	10.06	20.93	1.95	11.2
10-5M	24,12	1,05	7,53	25.22	2,03	9,93	30.20	2.05	10.9
.	18,72	1.67	8,26	20,13	1.70	10	25.16	2.03	10.46
é-Value	2 , 3 ⁸⁸	5,86*	[*] 13.4	2 4.93	* 1.2	1 ^{NG} 1.0 ^y	¹⁵ 0.88 ¹	¹³ 1.21 ⁸	¹⁵ 0.38 ⁶
20 (0. 05)	5.19	0,14	0,0	5 6.34	0.5	2 1.69	16,09	0.51	1.66

.

The height of the seedlings varied significantly at 50 per cent level on the 15th and 45th days and at 1 per cent level on the 30th and 75th days. There was no significant variation at the 60th and 90th days.

There was significant variation at 1 per cent level in the girth of the seedlings at the 60th day only and in the number of leaves at the 45th and 60th days.

On the 15th day after germination, the maximum height was 17.04 cm for T_8 which was significantly higher than those for T_2 , T_5 and T_4 and on par with those of T_1 , T_6 , T_7 , T_9 and T_3 . The minimum height was recorded for T_4 (10.63 cm). The girth varied between 1.13 cm for T_7 and 1.34 cm for T_1 , T_2 and T_3 while the number of leaves ranged from 3.53 for T_9 to 4.45 for T_3 .

On the 30th day, the height for T_8 (20.91 cm) was significantly higher; but this was on a par with the figures for T_7 and T_1 . The minimum height was recorded for T_5 (11.5 cm). The girth during the period varied between 1.24 cm for T_6 to 1.4 cm for T_3 and T_8 . The number of leaves varied between 4.27 for T_1 and T_7 and 5.6 for T_3 .

On the 45th day after germination, the height for T_g (21.95 cm) was significantly higher. T_g was on par with T_7 and T_1 . The lowest height at this period was recorded for T_5 (16.03 cm). The girth ranged from 1.37 cm for T_4 to 1.76 cm for T_3 . The number of leaves was significantly

higher for T_3 (7.13) which was however on par with T_2 , T_4 . T_5 and T_9 . The number of leaves was lowest for T_6 (5.4).

On the 60th day, the height varied from 16.68 cm for T_5 to 24.12 cm for T_8 . The girth for T_2 (1.88 cm) was significantly greater; though on par with those for T_8 , T_1 , T_2 , T_3 and T_6 . The lowest girth was for T_4 (1.45 cm). The number of leaves for T_7 (9.93) was significantly greater; but this was on par with the data for T_3 . The lowest number of leaves recorded was for T_6 (7.06).

On the 75th day, the height for T_5 (33.68 cm) was significantly higher. T_5 was on par with T_1 and T_3 . The height for T_9 (20.13 cm) was the minimum recorded. The girth at this interval ranged from 1.7 cm (T_9) to 2.26 cm (T_6) while the number of leaves varied from 9.73 (T_2) to 11.27 (T_3) .

On the 90th day after germination, the height of the seedlings varied from 25.16 cm (T_g) to 43.4 cm (T_1) while the girth varied from 1.81 cm (T_4) to 2.29 cm (T_1) . The number of leaves at this stage ranged from 10.4 (T_6) to 12.6 (T_1)

The data on the height, girth and number of seedlings for the different pod sizes are presented in Table 3b.

There was significant difference in the height of the seedlings on the 15th and 60th day after germination at 5 per cent level and on the 30th and 45th days at one per cent level. At these intervals, the height for the

Table 3b. Shoot growth parameters of Cocoe seedlings at various intervals sown in different months. Docember sowing.

.

,

Days Sfter Jeral- Nation,	15	th day		30 e	h đey		45th d	эy	
Treat- nents,	Height. (ca)	Cirth (cn)	No. of lea- ves.	Naight (cin)		No.02 lcovee.	0		No. of lca- ves.
large	13.67	1.34	3.86	16,82	1,38	4.7	18,10	1.71	6.09
Med Lum	12,37	1,22	4,06	12.95	1,,39	5.04	16.61	1.38	6,30
Small .	15.40	1,10	4.2	18,54	1:33	4. 6	19,84	1,58	6.31
-Value	4.32	2.03 ND	1.79 ^{NS}	28.78*	1.29 ^N	[©] 0.93 [%]	^{IC} 9,19	14,	** 7.4
en la as	5)2.17	Ó.17	0,37	1,58	0.11	⊙,69	1.99	Ő.	12 0.3

Days After germi- nation	69	th day		75th	day	9	loth de	/	₩≷479
Treot- acnts.		Cirth (cm)		Height (cn)		od 100- (V03.	cm)	(cm) (of Lea- Ves
large	21,28	1.84	9,66	27.44	2,03		33,48		
Midum	10,17	1,61	7.76	27.28	2.04	10.76	30.24	2,04	11,27
Small	21,93	1.78	8.97	24.07	1,39	20.00	20,10	1,01	10,82
P-Value	3,97*	16,54	1=* 0.99	3** 2,23	NG0.62 ^E	102 . 44 MC	³ 0,63 ²³	° 0,60	, ^{no} s, d
co (0.0	5)2.90	0,03	0.49	3.66	0,30	0,97	9.74	0,29	9 0 . 9

- 115 *
- Not significant Significant at 9% level. Significant at 1% level. * *

.

seedlings from small pods was significantly higher. But on the 75th and 90th days there was no significant variation. The girth was significantly different on the 45th and 60th days only when the girth of seedlings from large pods was significantly higher. Here also, by the 75th and 90th days there was no significant variation. The same trend was reflected for the number of leaves produced as well. Therefore, it can be seen that the benefits of growth were not significant when the seedlings are three months old isrespective of the size of the fruit.

The data on the height, girth and number of leaves for the three positions of seed (pedicel end, middle portion and distal end) are presented in Table 3c. There was significant difference in the height of the seedlings only on the 45th day when the height was significantly higher for 'pedicel end' which was on par with 'middle'. There was no significant difference in the girth and number of leaves produced at any of the intervals.

Therefore, the data indicate no significant difference in growth characters when the seedlings are three months old irrespective of the position of the seed within the pod.

(11) Root growth.

The data on the length of the tap root, the longest lateral root and the number of lateral roots are given in Table 4a.

4ð

ester oczni- nation		15th d	Jay		304	i day		45th	day
Trat.	1.00			Moight (cm)			Holoht (cm)	Olrth (cm)	No. og len ves
Padicel end,		1.22	3.86	16,58	2 - 2 - 2 2 - 2 - 2 2 - 2 - 2	4,53	19,23	1.55	6.5
141601e	13,33	1.26	3,95	15.96	1,35	4.92	18,35	1,5	46,6
Distai end.	14:33	1,25	4,30	15.70	1.32	5,04	16,96	1.85	6.3
F-Value	0.47 ¹³	³ 0,08 ¹		⁶⁷ , 0, 61 ¹	³⁰ 0,13	²⁶³ 1.2 ¹	^{is} 4,61*	0.1 7	а. 9 . 9
éd (0.0	5)2,17	0,17	0+37	1.59	0.11	0.69	1,58	9.12	0.3

. .

Table	30.	shoot growth parameters of Cocoa seculings
		at various intervals soon in different months. December scaing.

Table 3c. Continued

.

Days ofter germi- nation.)th day	7 	نىۋىۋە مۇر مۇر مىلەر 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 -	75th	day		90th	day
Treat- monte,	Height (cn)	Girth (cm)	No. of lea- ves.	Neight (cm)	Girth (cn)	No. of lea- bee.	Height (cm)	Girth (cm)	tio.of lca- ves.
Dedicel end.		1.71	G . 61	26.87	1.93	10.45	33.63	2,01	12.02
Middle	20,93	1.79	8,23	27.70	2,04	10,27	31.20	2.11	11.33
Distal End.	19.61	1,74	8,16	24.17	1.98	10,55	26.90	2.09	10.71
F-Vəlue	0.53 ^{6%}	³ 2,23 ¹³	⁰ 2,09	⁰³ 2,23	° 0, 38	G 0.1	9 ^{BC} 1.0	4 ¹³⁶ 0.1	24 ¹³³ 4•10
co (o. 05) 2,99	0.08	0.49	3,66	0.30	0,9	7 9.7	4 0.1	29 0 . 96

•

Deye after germi- nation.	30)th day	innen skile og til skile	60	th dey		90th		
		of ion-	later- al	of tap root.	Length of longest lateral root.	later-	of top root.	th	og 1a- ter- al
na nje pod dok na vrte nje do	(cm)	(cm)		(cn)	(cm)	a men stada dagini satu dagini nati	(cm)		ts.
T ₁ -LP	11.95	2.93	21.67	12,41	6.27	72	23.00	7.25	147.6
² 2 ¹⁴	11,24	3,13	20.6	12.71	4,31	75.66	21,11	10.21	99,60
73-10	12,17	3.47	24.8	14.20	5.25	79,3 3	19.67	9,93	120
T - 11	9.7	3,73	25,93	12.51	4,7	72.33	14,44	7.16	106.6
r	12.66	2.77	22.47	13.61	4.3	82,66	13.92	8,99	130.00
6-120	13,51	2.67	21,67	15	4	71.66	18.54	6,43	137.60
ESP	12,79	3,49	22.87	17	5.09	61.66	23.44	6.47	64.3
₽ ₈ →GM	13,42	3.79	23,47	15.3	6.55	59	19,98	5.13	67.0
⁷ 9~ ⁶⁰	12,02	2.67	21.13	16.35	3.93	51,4	16.93	7,93	71.3
F-Value	3,19*	2.27 ^{NS}	1.32 ^{NS}	2.13 ^{MS}	23.94**	0.35 ⁸⁸	1.21 ^{NG}	1.63	101.97
CD (0.05)	2.25	1.09	5.77	1,82	0.617	26,30	7,53	3.63	42.4

.

Table 4a. Root growth parameters of Cocoa scedlings at various intervals com in different months. December newing. The length of the tap root showed significant variation only at the 30th day while there was significant variation in the length of the longest lateral root at the 60th day only. There was no significant variation in the number of lateral roots at any of the intervals. On the 30th day the length of the tap root was maximum for T_6 (13.51 cm) and minimum for T_4 (9.7 cm). T_6 was on par with T_8 , T_7 , T_5 , T_3 , T_9 and T_1 . The length of the longest lateral root varied from 2.67 cm (T_5 and T_9) to 3.79 (T_6) while the number of lateral roots ranged from 20.6 (T_2) to 25.93 (T_4).

On the 60th day the length of the tap root varied from 12.41 cm (T_1) to 17 cm (T_7) . The length of the longest lateral root was significantly higher for $T_8(6.55 \text{ cm})$ which was on par with T_1 . The lowest value was obtained for T_9 (3.93 cm). The number of lateral roots for this period varied from 51.4 (T_9) to 82.66 (T_5) . The length of the tap root ranged from 13.92 cm (T_5) to 23.44 cm (T_7) on the 90th day. The length of the longest lateral root varied from 5.13 cm (T_8) to 10.21 cm (T_2) while the number of lateral roots varied from 64.33 (T_7) to 147.66 (T_1) .

Considering the effect of pod size on the root growth (Table 4b) there was significant difference in the length of the tap root at 1 per cent level on the 60th day when the length was significantly higher for 'small' and at 5 per cent

at various intervals sown in different months. December soving. Days ofter 69th day 30th day creimi-90th Cay nation. Treat- Length Length No. of Length Length No. of Length Length No. of ments. of tap of later-of tap of later- of of later-root. longest al root. longest al tap longest al lateral roots. lateral roots.root. lateral roots. root. root. root. (cm) (cm) (cm) (cm) (cm) (cm) 3.17 22.35 13.10 5.27 76.66 21.28 8.99 122.44 Large 11.78 Medium 11.96 3.05 23.35 13.70 4.5 75.95 15.63 7.54 124.8 Small 12.74 3.31 22.48 16.21 5.18 57.02 19.60 6.53 67.57 N-Value 1.35^{NS} 0.39^{NS} 0.23^{NS}21.61** 12.5** 4.66* 3.99* 3.1^{NS} 15.43* CD (0.05)1.30 0.62 3.33 1.05 0.36 15.18 4.34 2.09 24.49 NS Not significant Significant at 53 level

Table 4b. Root growth parameters of Gocoa seeflings

** Significant at 1% level.

on the 90th day when the longth was significantly higher for 'large'. The length of the longest lateral root showed significant variation only on the 60th day, the length being significantly higher for 'large' which was on par with 'small'. The number of lateral roots varied significantly on the 60th day, the number being significantly higher for 'large' (on par with 'medium') and on the 90th day, the number being significantly higher for 'medium' which was on par with 'large'.

Taking into account of the position of the seed alone (Table 4c) the length of the tap root varied significantly only on the 60th day when the length was significantly higher for 'distal end'. The length of the longest lateral root varied significantly only on the 60th and when the length was significantly higher for 'pedicel end'. There was no significant variation in the number of lateral roots at any of the intervals.

(111) Dry weight.

The data on the mean dry weight of the shoot, root and the total dry weight are presented in Table 5a.

Significant variation in the dry weight of the shoot was obtained on the 60th day only while for the dry weight of the root as well as the total dry weight there was no significant variation at any of the intervals.

Table 4c. Root growth parameters of various intervals sown in different wonths. December sowing.

,

hation		39th d	ay	and the state of the state	60th da	У	99t	h day	Destruction in anti-
freat. Nants		Length of Longest Lateral root.	loter-c al r	ne tep Noot.	of 1	lator-c al 1	ng tap noot.	of Longe:	late-
	(cm)	(cn.)		(cin)	(em)		(cm)	(cm)	-
Pedice end.		3,39	23.40	13,97	5,35	69,66	20,29	6,95	106,22
1 0010	12.44	3,23	22,17	13.07	5.21	73,11	18,00	8,11	98,93
dicto] end	•	2,93	22 .53	15,18	4,39	67,46	16.39	7,99	109,66
s-Valu	e 1.84 ¹	¹⁶ 1,19 ¹⁷	^S 0, 36 ⁸	^{IS} 4,22	* 18 . 83	**0, 33 ¹	¹⁹ 0.70	ⁿ &əf	0.44 ^{N8}
D(0.0	5)1.30	0,62	3,33	1,05	0,36	15.18	4,34	2:09	24,69

Days after germination	Die.	Wth		60th			90th		
Treetennts	Shoot (ag)	floot (mg)	Total (cg)	Shoot. (ng)	Root (ng)	Sotal (mg)	Shoot (ag)	Rost (mg)	20:21 (23)
Ť <u>i</u> -SP	906	249.33	1155, 33	1007.33	307.33	1314.66	2751,66	425.16	3176.83
T2-121	3144	265.66	1409.66	1568	354	1922.00	2946,66	428	3374,66
™₃− ₽⊅	720.66	200	920. 65	1247	316.3 3	1563.33	3100	472	3572.00
T4-MP	350	277,66	1127,66	1016	38 5 . 30	1401.33	2510	410	3020.00
¹⁷ 5-184	803.33	252.60	1056.00	1126	290	1416.00	3033,33	513.66	3552.00
T110	658.66	223,66	832.33	1046,66	294.66	1341.33	2766.66	392.66	3159,33
7 ~ 90	726.66	256.66	993.33	1123	346	1469.00	2350	413.33	2763,33
T	339.66	269.33	1103.00	1194	352,05	1556.66	2540	336	2926.00
T-3/0	634	243.66	877.66	1034	333,00	1417.00	2260	373,66	2632.66
P-Volue CD (0.05)	0.99 ³⁶⁵ 257.97	0.21 ¹¹⁰ 102.92	0.87 ^{MS} 321.03	4.8** 199.57	0.94 ^{NS} 117.44	3.49* 257.71	9.2 24 ^{DS} 394 ,1	0.85 ⁵⁷⁸ 158,57	9, 35 ¹¹⁸ 955, 29

Table 5a. Dry weight of Cocoa seedlings at various intervals sown in different months. December sowing

110

Not significant. Bignificant at 5% level. Dignificant at 1% level. 1

黄杏

The dry weight of the shoot ranged from 634 mg (T_9) to 1144 mg (T_2) while that of the root varied from 200 mg (T_3) to 277.66 mg (T_4) . The total dry weight for the same period varied from 877.66 mg (T_9) to 1409.66 mg (T_2) . On the 60th day the dry weight of the shoot was significantly higher for T_2 (1569 mg). The lowest weight recorded was for T_1 (1007.33 mg). The dry weight of the root varied from 290 mg (T_5) to 362.66 mg (T_8) while the total dry weight varied from 1314.66 mg (T_1) to 1922 mg (T_2) . On the 90th day the dry of the shoot ranged from 2260 mg (T_9) to 3033.33 mg (T_5) while that of the root ranged from 372.66mg (T_9) to 518.66 mg (T_5) . The total dry weight for the same period varied from 2632.66 mg (T_9) to 3572 mg (T_2) .

Considering effect of the pod size alone (Table 5_b) the dry weight of the shoot showed significant variation among the pod sizes on the 30th and 60th days when the weight for 'large' was significantly higher. The dry weight of the root did not show any significant variation at any of the intervals while the total dry weight showed significant variation only on the 60th day, the weight for 'large' being significantly higher.

Taking into account the effect of the position of the seed (Table Sc) the dry weight of the shoot was significantly different on the 30th day, and 60th day, the

Days after genaination) 30th		· .	601	90th				
Treatments	- (my)	8/30£ (mg)	202al (33)	Shoot. (mg)	Root (ng)	Lesoz (25)		Root (mg)	Total (ng)
Lorge	923,55	238. 33	1161.98	1274,11	325.83	1600.00	2932.70	441.72	32 74.5 0
icalum	770.66	251.33	1022,00	1062.89	323,33	1386,22	2770.00	440,44	3210.44
fina li	733.11	256. 55	989.66	1133.66	347,22	1430.83	2363,30	390 +6 6	2774.00
P-Value	4.04*	0.22 ^{11S}	2.15	8.9 **			2.7 ¹⁷⁸	0,39	NS2.6205
CE.(0.05)	143.94	59.42	105.35	107.14	67.80	148.79	510,43	91.5 5	560.35

Significant at 50 level.
Significant at 10 level.

.

•

Reys after cosmination	•	th	•	601	h		20th		
Treatmints	Shoot (mg)	1005 (UJ)	Total (rxg)	Shoet (07)	Root (ng)	Total (ng)	Shoot (mg)		otal mg)
Pedicel and	627,55	261.22	1033.77	1043.78	346.22	1395.00	2537.22	416.16	2953,38
Midale	923.66	262.55	1191.22	1296.00	335.59	1631.5 5	2840.00	444.22	3284.20
cistal end	671.11	222,44	893,55	1125,89	314.66	1440.55	2703,89	012.44	3121.33
F-Volue	6.7**	1.29 ^{NS}	5,87*	12.3**	0,49 ^{%%}	6.23**	0.78 ²¹⁸	0.31 ^{TT}	0.74
CD(0.05)	148.94	59.42	385.35	107.14	67.30	143,79	510,43	\$1. 55	563.85

Table Sc. Dry weight of Cocca scellings at various intervals soun in different conthe. December cowing.

.

SIS.

.

*

Not significant. Significant at 5% level. Significant at 1% level. ****

.

weight for 'medium' being significantly higher, while there was no significant difference in the dry weight of the root at any of the intervals. The total dry weight was significantly higher for 'medium' on 30th and 60th day.

1.4.2 January sowing.

(1) Vegetative growth.

The data on the height, girth and number of leaves of the seedlings are presented in Table 6a.

There was no significant difference in the height, girth and the number of leaves produced in the seedlings at any of the intervals of recording. The height of the seedlings varied between 12.87 cm (T_2) and 16.59 cm (T_4) on the 15th day after germination. The girth during the period varied between 1.21 cm (T_9) and 1.46 cm (T_2) while the number of leaves was minimum in T_7 (3.73) and maximum in T_9 (4.13).

On the 30th day the height of the seedlings varied between 15.68 cm (T_2) and 18.29 cm (T_5) while the girth varied from 1.48 cm $(T_1 \text{ and } T_7)$ to 1.55 cm (T_3) . The number of leaves produced ranged from 4.27 (T_6) to 5.7 (T_2) . On the 45th day after germination the maximum height was 19.01 cm (T_6) and the minimum 16.26 cm (T_9) . The girth for the period ranged from 1.52 cm (T_9) to 1.63 cm (T_1) and the number of leaves from 6.87 (T_1) to 8 (T_2) .

Table 6a. Choot growth parameters of cocoa secdlings at various intervals sown in different months. January sowing.

a a	15th di	¥.	3)th day	7	450	n đay	
(cm)	(cm)		Height (cm)			Height (cm)	Girth (ca)	No.05 lca- ves:
13.89	1,38	4	15.85	1.49	<u>C</u>	37.33	1.63	6,87
12.87	1.46	3,93	15,69	1.52	5.7	17.28	1.58	8
14.87	1.39	3.0	16.88	1.55	4,6	16.98	1.96	7.13
16.59	1,38	3.8	19.02	1.6	5.27	18,26	1.6	7.07
15,22	1.30	4	18,29	1,52	4.6	18,92	1,59	7.3
14.1	1.31	3,93	19.08	1.51	4.27	19.01	1.50	6,97
13,43	1.25	3.73	17,12	1.49	5.07	17.14	1.50	7,27
14.33	1.34	4.13	16,89	1.53	5,13	18,40	1.56	7.6
13.07	1,21	3.87	15.99	1.51	5	16.26	1,52	7.33
	Height (cm) 13.89 12.87 14.87 16.59 15.22 14.1 13.43 14.33	Height Girth (cm) (cm) 13.89 1.38 12.87 1.46 14.87 1.39 16.59 1.38 15.22 1.38 15.22 1.38 14.1 1.31 13.43 1.25 14.33 1.34	Height Girth No.of (cm) (cm) lea- ves. 13.89 1.38 4 12.87 1.46 3.93 14.87 1.39 3.0 16.59 1.38 3.8 15.22 1.38 4 14.1 1.31 3.93 13.43 1.25 3.73 14.33 1.34 4.13	Height Girth No.of Height (cm) 184- (cm) (cm) 13.89 1.38 4 15.85 12.87 1.46 3.93 15.68 14.87 1.39 3.8 16.93 16.59 1.38 3.8 19.02 15.22 1.33 4 19.29 14.1 1.31 3.93 10.03 13.43 1.25 3.73 17.12 14.33 1.34 4.13 16.89	Height Girth No.of Height Girth (cm) Ida- (cm) (cm) <t< td=""><td>Height Girth No.of Reight Oirth No.of (cm) Reight Oirth No.of (cm) 13.89 1.38 4 15.85 1.49 5 13.89 1.38 4 15.85 1.49 5 12.87 1.46 3.93 15.68 1.52 5.7 14.87 1.39 3.0 16.93 1.55 4.6 16.59 1.38 3.8 19.02 1.6 5.27 15.22 1.30 4 18.29 1.52 4.6 14.1 1.31 3.93 19.03 1.51 4.27 13.43 1.25 3.73 17.12 1.49 5.07 14.33 1.34 4.13 16.89 1.53 5.13</td><td>Height Girth No.of Height Girth No.of Height (cm) Ica- (cm) (cm) Icaves (cm) 13.89 1.38 4 15.85 1.48 5 17.33 13.89 1.46 3.93 15.68 1.52 5.7 17.28 14.87 1.39 3.0 16.98 1.55 4.6 16.98 16.59 1.38 3.8 19.02 1.6 5.27 18.26 15.22 1.30 4 19.29 1.52 4.6 16.92 14.1 1.31 3.93 19.08 1.51 4.27 19.01 13.43 1.25 3.73 17.12 1.48 5.07 17.14 14.33 1.34 4.13 16.89 1.53 5.13 18.40</td><td>Height Girth No.of Height Girth No.of Height Girth (cm) Ida- (cm) (cm) Ida- (cm) (cm) Ida- (cm) (cm) Ida- (cm) (cm)</td></t<>	Height Girth No.of Reight Oirth No.of (cm) Reight Oirth No.of (cm) 13.89 1.38 4 15.85 1.49 5 13.89 1.38 4 15.85 1.49 5 12.87 1.46 3.93 15.68 1.52 5.7 14.87 1.39 3.0 16.93 1.55 4.6 16.59 1.38 3.8 19.02 1.6 5.27 15.22 1.30 4 18.29 1.52 4.6 14.1 1.31 3.93 19.03 1.51 4.27 13.43 1.25 3.73 17.12 1.49 5.07 14.33 1.34 4.13 16.89 1.53 5.13	Height Girth No.of Height Girth No.of Height (cm) Ica- (cm) (cm) Icaves (cm) 13.89 1.38 4 15.85 1.48 5 17.33 13.89 1.46 3.93 15.68 1.52 5.7 17.28 14.87 1.39 3.0 16.98 1.55 4.6 16.98 16.59 1.38 3.8 19.02 1.6 5.27 18.26 15.22 1.30 4 19.29 1.52 4.6 16.92 14.1 1.31 3.93 19.08 1.51 4.27 19.01 13.43 1.25 3.73 17.12 1.48 5.07 17.14 14.33 1.34 4.13 16.89 1.53 5.13 18.40	Height Girth No.of Height Girth No.of Height Girth (cm) Ida- (cm) (cm) Ida- (cm) (cm) Ida- (cm) (cm) Ida- (cm) (cm)

NG Not significant,

Table 6a. Continued

germi- nation,	60th day			7	ith da	Y	90th day			
Treat- Ments.	Height (cm)	Girth (cm)	No.02 lco- ves.	Holght (cm)	Girth (cm)	No.of lea- ves.	Helcht (cm)		Noto Lea- Vas	
1 . 192	19,77	1,65	8,0	20.91	1.69	9.4	21,25	1.70	9,6	
T ₂ -LH	17.33	1,55	9.66	20,34	1.66	10.4	21.37	1.79	12.13	
T ₃ -LD	21,12	2.64	9,73	21.12	1.68	11.53	25, 34	1.76	13,71	
Te-MP	19.10	1,57	8.45	21,01	1.70	10.2	25.76	1.72	11,03	
T5-031	22,28	1.68	8,93	23.01	1.72	10,53	25	1.72	11.7	
^T 6- ^{MD}	19.63	1,59	8.6	25,84	1,60	10,06	25.97	1.67	10,46	
T,-60	22,21	1.58	8.8	22,54	1.62	10,66	23,65	1.63	10,73	
7. - SM	21, 57	1.63	9.53	21, 57	1.63	10.6	23,72	1,69	11.06	
Tg-SD	18,96	1,67	8.33	19.96	1,61	9.3	21,84	1,64	10,53	
R-Value	0.66 ⁸³⁵	0.93	³ 0,39 ^{1%}	0.64 ^{NO}	0. 32 ^R	¹⁰ 0,93 ¹¹	1.02 ¹⁷	0.32 ^N	⁸¹ 1, 39 ⁷	
CD(0.05)	7.87	0,16	1,90	7.05	0.20	2.8	5.03	0,19	3.41	

•

NG Not eignicieant,

The height of the seedlings varied between 17.33 cm (T_2) and 22.28 cm (T_5) on the 60th day after germination. The girth during the period varied from 1.55 cm (T_2) to 1.68 cm (T_5) while the number of leaves varied from 8.33 cm (T_9) to 8.73 (T_3) . The maximum height recorded at 75th day after germination was 26.84 cm (T_6) and the minimum 20.34 cm (T_2) . The girth for the same period ranged from 1.60 cm (T_6) to 1.72 cm (T_5) while the number of leaves T_3 .

The maximum height observed was 25.97 cm (T_6) and the minimum 21.25 cm (T_1) on the 90th day. The girth during the period varied from 1.63 cm (T_7) to 1.76 cm (T_3) while the number of leaves varied from 9.6 (T_1) to 13.71 (T_3) .

Considering the effect of pod size alone (Table 6b) there was no significant difference in the height and number of leaves at any of the intervals while the girth was significantly higher for 'large' on the 15th day only.

Taking into account effect of the position of the seed (Table 6c) there was no significant difference in the height and girth of the seedlings at any of the intervals of recording while the number of leaves produced was significantly higher on the 45th day for Middle.

Reye ofter gormi- nation.		5th Ge	Â	301	30th day			45th day			
ments.	(cn)	(cm)	lea- ves.	Height (cm)	(cm)	16a- Vog.	(cm)	(en)	lee- Ves.		
Large	1		• •	16,14	•				•		
Medium	15.30	1.35	3.91	18,13	1,54	4.71	18.73	1.59	7.11		
2mal 1	13.61	1,27	3,91	16,83	1,51	5.06	17,27	1.53	7.4		
5-Value	3,64	° 3,09	*0,008	27 ¹¹⁰ 2,44	^{NS} 0.41	1 ⁸¹⁸ 1,55	3 ¹⁸⁰ 2.61	2.69	^c o.93 ¹		
cd (0. 09)1.65	0.10	0.34	1,97	0,08	1 0,50) 2.61	0.06	0.49		

Table 6b. Shoot growth parameters of cocca socilings at various intervals soun in different months. January sowing.

Significant at 5% level.

rable	6b.	Continued	

.

Days after germi- nation,		60th	gbà.		75th	day	19 49 Think and a fig	90th	doy
				Height (cm)				(cn)	
Lerge	19.40	1.62	9.40	20.79	1.67	10,44	22.65	1,72	11.81
Medium	20,34	1.61	8.66	23.55	1.67	10,26	25,58	1.70	11,06
Small	20.91	1.59	8,03	21,30	1,62	10,18	23.07	1.63	10,77
F-Value	0.24 ^{ESS}	⁵ 0,12 ¹	⁴⁶ 1.02 [[]	⁸⁰ 1.12 ^{NE}	³ 0.63 ¹	⁷⁶ 0.05 ^N	^S 2,61 ^N	^s ö.97	^{NS} 0.65
CD (0.05	14.54	0.10	1.10	4.03	0.11	1.61	2.90	0.10	1.97

•

Table	6C.	Shoot gr	outh paras	netero	О£	00008 68	odlings
		various	intervalo	som.	1:1	diggerent	months.
		Jenuozy	cowing.				

after germin 15th day nation.					30th day			45th day		
							Neight (cm)			
Pedicel end.		1,33	3,84	17.00	1.52	5.11	17.56	1.59	7.06	
ML601e	14.14	1.40	4.02	16.95	1.52	5,13	18.20	1.53	7,63	
Distal end.	14.01	1.30	3,87	16,95	1.52	4.62	17.38	1.55	7,14	
F-Value				80.0 ^{2 N}			v:0.81 ⁸²⁵	0.41 ³³	³ 4.05	
CD (0,05)1.45	0.10	0.34	1.97	0.08	0.50	1.61	0.06	0.45	

NS *

Not significant Significant at 3% level.

Table 6g Continued.

`.

Day a after germi- nation	60th	dey.		75	ch day	90th day			
Treet- monta,									
Pedicol and,	29, 36	1.60	8.63	21,49	1.67	10,08	23,59	1,60	10,4
14166 1 0	20, 39	1.62	9,37	21,99	1.67	10.51	23,36	1,70) 11.6
Distal end.	19,90	1.60	8,69	22,20	1.63	10,30	24.39	1,69) 11.5
F-Veluc	0.03 ⁽¹⁶	0.07 ¹	³⁰ 0.91		° 0.42	⁹⁷⁵ 0,15 ⁸³	. 30 ⁶¹⁵	0.04	¹¹⁴ 0.9
CD10.05	14.54	0.10	1.10	4,03	0.11	1.61	2.90	9.10	1.9

(11) Root growth.

The data on the mean length of the tap root, length of longest lateral root and the number of lateral roots are given in Table 7a,

There was no significant difference in the length of the tap root and the length of the longest lateral root at any of the intervals while the number of lateral roots showed significant variation on the 90th day only.

The maximum length of the tap root on the 30th day after germination was 14.09 cm (T_5) end the minimum was 12.65 (T_9) . The length of the longest lateral root for the period varied from 3.11 cm (T_6) to 4.73 cm (T_5) while the number of lateral roots ranged from 29.33 (T_1) to 39 $(T_3)_*$

On the 60th day after germination the maximum length of the tap root observed was 16.5 cm (T_5) and the minimum 13.55 cm $(T_1 \text{ and } T_2)$ while the longest lateral root varied in length from 3.93 cm (T_1) to 5.93 cm (T_5) . The number of lateral roots for the period varied from 31.33 (T_1) to 44 (T_5) .

The tap root varied in length from 14.08 cm (T_g) to 17.38 cm (T_5) on 90th day, while the longest lateral root varied in length from 4.16 cm to 8.24 cm. The number of lateral roots was significantly higher in $T_4(54)$. T_4 was

Daye after germi- netion	;	30th day	7	6()th day		90th d	ay	
			-later- al	of tap root.	Length of lon- gest laterol root.	later-c		of bn- gest latera	• o2 lat=
	(cm)	(cm)	. Li útrati se bei	(cm)	(cm)		(cm)	(cm)	
T1-12	13.37	3.87	29. 33	13,55	3,93	31.33	14.76	4.16	43,66
T2-LM	12.78	4.43	30, 33	13.55	4.55	38,66	15.43	8.24	48.33
T3-LD	13.1	4.42	39	16.04	5,10	42	16.81	7.28	43.93
T ₄ -MP	13.19	4,10	34	14.11	4,24	39	15,40	4.92	S 4
T5-121	14.09	4.73	35,66	16.5	5.93	44	17.38	7.19	40
T6-10	12,95	3,11	33.66	14,51	4.36	30.33	14,02	4.40	47
Toy to be	13.11	9.24	95 , 93	14,33	4.02	36	15.49	6.61	47,30
Te-SH	13.96	4.52	34,33	14,73	4.6	36	14.82	5.61	8 0.3 3
7 - 51)	12,65	9 .28	33, 33	13,59	4.52	34.65	14 .0S	6.69	47.66
F-Value	e 0,28 th	³ 1.36 ⁸¹⁶		18 <mark>0. 42</mark> M	³ 0.46 ^{NO}	0.77 ^{ISS}	0.76 ^{N2}	0.79 ²²	
CD (0.05	3)2,00	1.24	7.55	5,89	2,50	12.30	4,13	4.96	5.77

Table 7a. Noot growth parameters of cocoa secolings at various intervals soun in different

* Significant at 5% level.

on par with T_3 , T_2 , and T_3 . The number observed was lowest for T_1 (43.66).

Taking into account the size of the pod only (Table 7b) there was no significant difference in any of the root characters at any of the intervals of recording.

Considering the position of the cool alone (Table 7c) there was no significant difference in the length of the tap root and the number of the lateral roots at any of the intervals of recording. The length of the longest lateral root was significantly higher for 'middle' on the 30th day only.

(iii) Dry weight.

The mean dry weight of the shoot and the root and the total dry weight are presented in Table 8a.

There was no significant difference in the dry weight of the shoot and the root as well as the total dry weight at any of the intervels.

On the 30th day after germination the mean dry weight of the shoot varied from 750 mg (T_3) to 1056.22 (T_3) while that of the root varied from 194.66 mg (T_6) to 249 mg (T_1) . The total dry weight for the same period ranged from 869.33mg (T_7) to 1390.39 mg (T_8) .

The dry weight of the shoot was highest for T_5 (1956.66 mg) and lowest for T_9 (1966.66 mg) while that of

Root growth parameters of cocos seedlings at various intervals sown in different Table 7b. months. January sowing.

.

Pays after germi~ notion	30	Sch day		69th	day	-	90th	day	2018-000 11 -000 12-000
		Length of lon- gest latersl root.	later	-of tap root.	of ion-	-lator 81	-of tap root.		- late- ral
纎 鱡 औ """""""""""""""""""""""""""""""""""""	(cm)	(cm)	• 100 500 100 200 40 0 400	(cm)	(ea)		(an)	(cm)	t Saya ang Print and aligned
Large	13.08	4.26	32,88	14.38	4,55	37.33	15.66	5.23	46,77
Medium	13.41	3.98	34,44	15,04	4.84	40,64	15.87	7.03	49,66
erell	19.94	3,69	34,33	14.25	4, 38	35, 55	14,80	6.12	48,44
P-Volue	6.09 ^[9]	**************************************	° 0, 34 ^{9.}	^S 0 , 13 ^{NI}	⁸ 0,23 ⁸²	1.07	^{NE} 0,50 ¹	¹⁰ 0.92 ¹	⁰ 1.66 ⁷
ento os)1	0.72	4.35	3.40		7.10	2	2.85	3.33

Days after germi- nation		36 th d	ay	60	ith day		90e1) đey	
ments.	of tep	of lon-	later	-of top root.	Length of lon- gest loteral root.	leter- 61	-of tap rout.	of ion-	-later- al
	(ca)	(c:a)	100 (Jan 1996)	(ca)	(cn)	an sile sile sine same	(ca)	(cm)	
Pedicel and.		3,74	32,88	14.01	4.06	35,44	19,22	6+56	40, 30
MG316	13.61	4.58	33.44	14,94	5.0 3	39,55	15,87	5.50	48.83
Distal end.	12,90	3 _* 60	35 *33	16.71	4,69	38, 33	15.24	6.37	47.6 0
F . Value	0,32	^{NS} 4.7 9*	0.7 6 ^N	S 0.17	³⁰ 1.03 ^{NS}	0.77	³³ 0.21	³⁹ 0 . 36¹	¹⁰ 0,29 ¹
ce (0. 05) 1.61	0.71	4.35	3.40	1.44	7.10	2.36	2.96	3.33

Table 7c. Root growth parameters of cocca secdlings at various intervols soum in different months. January souing,

.

.

. .

.

NS Not significant.

after gerninction.	30th da	30th day		60th Bay			99th day		
Treatments	Shoot (mg)	Root (mg)	Total (mj)	Shoot (ng)	Root (ng)	Total (cg)	Shoat (mg)	Root (mg)	Total (mg)
7 LP	908.82	249	1157.82	1353, 33	266, 33	1619.66	1597.5	317, 33	1914.83
1 ₂ -1.4	980.67	195,66	1177, 3 3	1250	241,66	1491.66	1803,33	437, 33	2240.66
T10	750	210,66	960,66	1417,5	266,83	1684.33	1636.66	436,66	2073.33
r	877, 33	224.03	1102,16	1365,66	293	1664.66	1096,66	439.33	2335.00
	945	236.65	1181,66	1556,66	334,66	1991, 32	1002	548	2350.03
r - 090	870	194.66	1064.66	1503,33	307	1910.33	1541.66	317.66	1859,33
r ,- -59	661.67	207.65	869.33	1412.5	224.16	1636.66	1766.66	417, 33	2194.00
	1056.22	234.66	1290.89	1494	244.66	1738.66	1758.09	356.66	2115.55
r en	853.66	221	1074,66	1166.66	241,33	1403	2100	367.33	2467, 33
F-Value	2.42 ^{DG}	0.435	1.7223	0.634 ^{NS}	0.32 ^{1%}	.65⁶³⁶¹	0,923 ^{ma}	0.76	0,81²
CD(0.05)	210.55	106.1	279.16	518.03	89,47	558,93	663, 37	290,50	

Table 8a, Dry weight of coca sectings at various intervals sown in different months. January soulng.

NS Not significant

يو^ي،

the root was highest for $T_5(334.66 \text{ mg})$ and lowest for T_7 (224.16 mg) on the 60th day. The total dry weight for the same period varied between 1403 mg for T_9) and 1891.32 mg for T_5 .

On the 90th day after germination the maximum dry weight of the shoot was obtained for T_{g} (2100 mg) and the minimum for T_{6} (1541.66 mg) while corresponding figures for the root was obtained for T_{5} (543 mg) and T_{1} (317.33 mg). The total dry weight for the same period varied from 1359.33 mg for T_{6} and 2467.33 mg for T_{6} .

Taking into account of the effect of poll size alone (Table 8b) there was no significant difference in the dry weight of the shoot and the total dry weight at any of the intervals of recording. The dry weight of the root was significantly higher for 'medium'.

Considering the effect of seed position by itself (Table Oc) the dry weight of the shoot varied significantly on the 30th day only when the weight was significantly higher for 'middle' while there was no significant difference at any of the intervole of recording. The total dry weight was significantly higher for 'middle' on the 30th day alone.

Days after germination	14	30th day			60th day			90th day			
Treatments.	^{\$} hoot (mg)	Root (mg)	Total (mg)	Shoot (mg)	Root (mg)	Total (mg)	Shoot (mg)		tal mg)		
Large	879.83	218.77	1098.60	1340+27	258.27	1598.55	1679.16	397.12	2 07 6,27		
Medium	897.44	218.72	1116,16	1475,55	313.22	1788.77	1746.77	434.66	2191.44		
Small	857.18	221.11	1078.29	1357.72	236.72	1594,55	1975.10	380.44	2255.63		
F-Value	0.24 ^{NS}	0.0043 ^{NS}	-	·				0.81 ^{NS}			
CD(0.05)	121.55	61.25	161.17	299.08	51.66	322.70	382.99	167.72	485.59		

.

Table 8b. Dry weight of cocea seedlings at various intervals sown in different months. January sowing. .

.

x

Significant at 5% level. \$

			crvais souin mary souin		erent no	17.119 ₉					
Days after germination											
Treatments	Shoot (mg)	Acet (mj)	Total (my)	Shoot (mg)	Root (mg)	Totel (mg)	Choot. (mg)	Rost (mg)	Total (mg)		
pediecl and	815.94	227.16	1043.10	1377.5	262.83	1640.33	1753.61	391.00	21-4.61		
Middle	993.96	222,66	1216,63	1433.55	273,66	1707.22	1733.07	447.33	223 5.40		
Distal and	924.95	208,77	1033.33	1362,5	271.92	1634.33	1759.44	373.88	2133.33		
F-Valus CD(0.05)	6,02** 121,55	0.21 ^{NO} 61.25	3.61* 161.17	0.13 ^{NB} 299.03	0.11 ^{NS} 51.66	0.13 ^{NS} 322.70	393 °3 8 0°05 ₁₁₂	0.46 ^{NS} 167.72	0.12 ⁸³⁹ 486.59		

Table Sc. Dry weight of cocca scodlings at various intervals som in different rombhs.

23

1

Not significant. Cignificant at 5% loyel. Significant at 1%level. .

**

1.4.3 February soulng.

(1) Vegetative growth.

The data on the height, girth and number of leaves of the seedlings are presented in Table 9a and Figure 1.

There was no significant difference in the height as well as the number of leaves at any of the intervals of recording while there was significant difference on the girth on the 90th day only. The height of the seedling ranged from 15.23 cm (T_7) to 17.41 cm (T_1) while the girth renged from 1.33 cm (T_9) to 1.49 cm (T_8) . The number of leaves produced during the period varied from 3.67 (T_8) to 4.07 (T_2) .

On the 30th day after germination the maximum height observed was 21.54 cm (T_5) and the minimum height observed 17.7 cm (T_9) . The girth varied from 1.34 cm (T_9) to 1.55 cm (T_3) while the number of leaves varied from 5.47 (T_9) to 7 (T_5) . The height of the seedling ranged from 19.5 cm (T_7) to 23.48 cm (T_6) on the 45th day after germination while the girth for the same period ranged from 1.40 cm (T_9) to 1.56 cm (T_2) . The number of leaves produced was highest for 76 (7.87) and lowest for $T_1(6.53)$.

On the 60th day the maximum height observed was 26.48 cm (T_2) and the minimum 21.45 cm (T_1) while the girth ranged from 1.52 cm $(T_1 \text{ and } T_4)$ to 1.66 cm (T_3) . The maximum number of leaves produced was 10.46 (T_5) and the

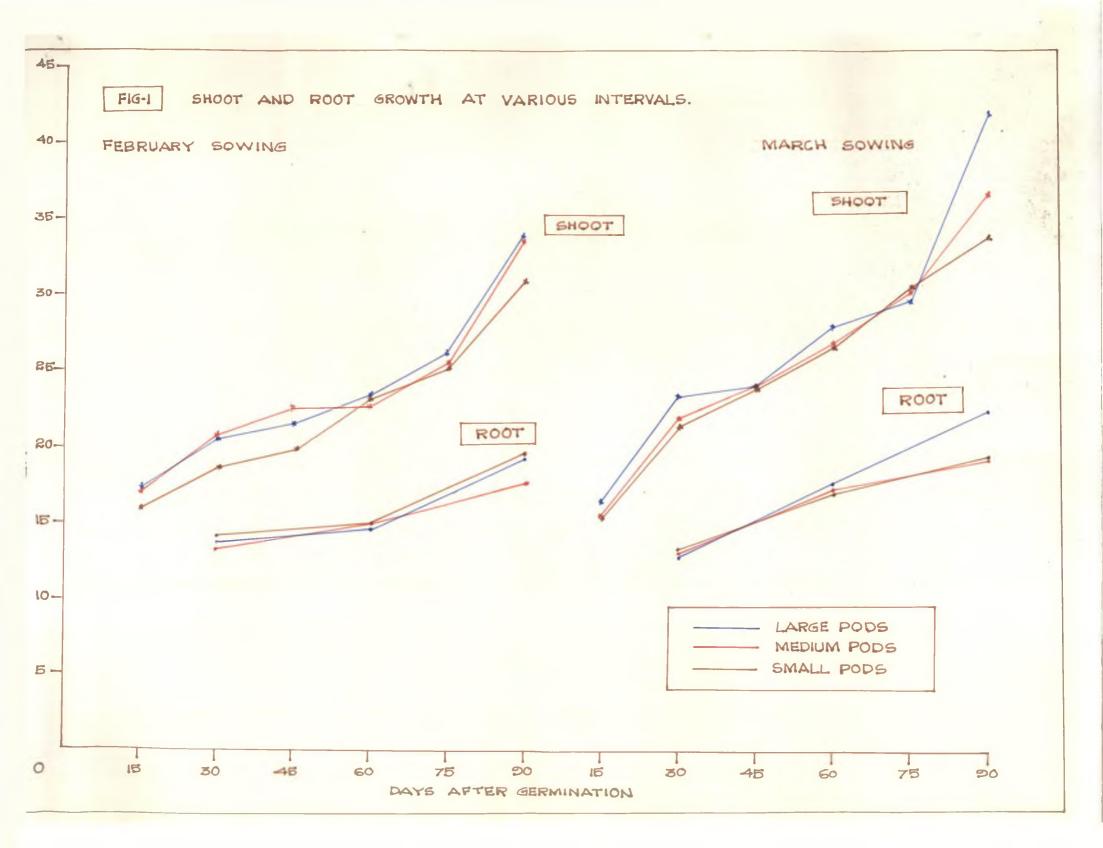
		ſ
8	host growth parameters t various intervals in ebruary sowing.	

i.

· .

.

germi- nation Treat- ments.	15th day			30th day			45th day		
	Height (cm)	Girth (cm)	No.of lea- ves.	fleight (cm)		No.of lca- ves.	Height (cm)	Girth (cn)	110.01 16a- ves.
r _i -tr	17.41	1,43	3,93	20,12	1.44	5.97	21,24	1.47	6,53
2-LM	17,23	1,39	4.07	20.68	1.51	6.53	21.98	1,56	7.93
T3=12	17,14	1.38	3.8	20,80	1.55	5.07	21,42	1,54	7.9
T	16,93	1.37	3,93	20.58	1.49	6.53	21,96	1.51	7.53
T - 144	17, 33	1.39	3.87	21,54	1.49	7	22.28	1.54	7.2
1 12	17,23	1.39	3•8	19.62	1.5	6.27	23,48	1.5	7.87
r,-89	15,23	1,35	3.8	19,32	1.42	5.83	19,5	1.46	7.13
ro-CM	16.53	1,49	3.67	10,96	1.42	6,13	20.6	1.54	6.6
2 - 33) 9	16.07	1,33	3.73	17,7	1,34	5,47	19,6	1.40	6.67
5-Value	0.15 ^{NS}	0.60	o.15 ¹¹	⁵ 0.17 ^{NS}	1.49	0.27 ¹¹	°0.20 ⁸³	0.46 ^W	³ 1.24 ⁱ
ca (0,05	12.94	0,21	0.71	5,02	0.12	0.62	4.03	0.17	1,35


Table 9a. Continued

`

Doys after germi- nation. Treat- ments.	60th doy				75th day		90th day		
	Neight (cm)	Girth (cm)	No.of lea- ves.	Height (cm)	Cirth (cn)	No.of lea- ves.	Neight (cm)	Cirth (cm)	
T1-12	21,45	1.52	7.96	26.34	1.64	10.08	36.9	2.12	12.67
12-11	26.49	1.61	10.4	27.91	1,61	11.8	3 1.39	1.73	11,9
T. I.D	22.36	1.66	8,93	24.57	1.71	10.53	33.27	2.04	12.23
T ₄ MD	22,07	1.52	8.3	23, 26	1.64	10.9	36,19	1.95	12,93
T ₅ -MM	22,56	1,60	10,46	29.55	1.8	11.8	29,37	1,97	12.97
T ₆ -HD	23.74	1.60	8.9	24.69	1.64	10.4	39,69	2.14	13,8
T6P	22.09	1,62	8,56	24,20	1.63	10, 33	31.71	2.04	12.33
Te-Sti	24,41	1.60	9.03	25.04	2.64	9,8	33,24	1.96	11,13
T9-SD	23,08	1.55	9,16	26,36	1.61	10.26	28,25	1.98	11.73
P-Value	0.83 ^{US}	0,69 ¹¹	So.\$4 ^{II!}	^S o.79 ¹³³	0.67 ¹¹	0.02 ^M	9 0.42^{NS}	2.95*	0.35
CD (0.05)	4.67	0.19	2.36	6.54	0.24	2.15	13.94	0.10	2.1

.

NS. Not significant. * Significant at 5%level.

minimum 7.96 (T.).

The height ranged from 23.26 cm (T_4) to 29.55 cm (T_5) on the 75th day. The maximum girth observed for the period was 1.71 cm (T_3) and the minimum 1.61 cm $(T_2 \text{ and } T_9)$. The number of leaves produced varied from 9.8 (T_8) to 11.8 (T_5) .

The height of the seedling ranged from 28.25 cm (T_9) to 36.9 cm (T_1) on the 90th day after germination. The girth was significantly higher in $T_6(2.14 \text{ cm})$. T_6 was on par with T_1 . T_3 . T_7 . T_9 . T_5 and T_8 . The minimum girth was observed for $T_2(1.78 \text{ cm})$.

Considering the main effect of pod size by itself (Table 9b) there was no significant difference in the height of the seedlings at any of the intervals while the girth and number of leaves produced showed significant variation only on the 30th day after germination. The girth was significantly higher for 'large' while the number of leaves produced was significant, for 'medium' during this period.

Based on the position of the seed alone (Table 9c) there was no significant difference in the height at any of the intervals of recording while the girth was significantly higher on the 90th day only for distal end. The number of leaves produced was significantly higher for 'middle' only on the 30th day.

Table 9b. Choot growth parameters of cocos sectings at various intervals in different months. Pebruary scuing.

.

.

· ·

.

.

,

Doy s after germi- nat ion .	15th d	loy		30th	day		450	n day	
Troat- monts.	Height (cm)	Oirth (cm)	108- Ves.	(cm)	(cm)	108- Veș,	Nelght (cm)	(cm)	lca- vee
Large	17.25	1.4	3,93	20,53	1.5	6.08	21.55	1.52	7.28
Meaium	17,16	1.39	3.86	20,58	1.49	6.6	22.54	1.51	7.93
Small	15,94	1,38	3.73	18,66	1.39	5,81	19.90	1.46	6.8
FeValue	1.64 ^{NS}	0.049	^{7/3} 0,55 ¹	⁸⁶ 1,25 ^N	⁸ 6.61*	*11,02	**2,89 ¹²¹	9 0. 89 ^N	2.01 ^N
CD (0.05))1.69	0,11	0.4	2*89	0.06	0.35	2,32	0.09	0.78

.

ي .

ر

.

Doye ofter germi- nation	óoth	(18 7 -		75	th đay		ç Tiliş in series ser as	ooth da	y Y
Treat- Nenta.		(cm)	1 N N N N N N N N N N N N N N N N N N N	Height (cm)					
Large	23,43		-	26.27	1,65	10.8	33,05	1.96	12.23
Medium	23.79	1,57	9.22	25,83	1,69	11,00	33,74	2.02	13.2
Small	23,19	1.59	8,92	25.20	1.63	10,13	31,06	1,99	11.73
F-Value	0,12 ^{NS}			6.18 ²⁰⁰			¹⁹ 0,33 ⁸¹	⁸ 6, 33 ^W	⁹ 3, 33 ¹¹
2D (0. 03)2,69	0,11	1,36	3.77	0,14	1.24	8.04	0,10	1.21

,

.

•

Table 9c. Shoot growth parameters of coces seedlings at various intervals sown in different months. February sowing.

.

.

· ,

Daye after gesmi- nation:	15	th day		, 30ti	n day		45th	ථෘද	•••••
Treas- monto.							No1qint (cm)		No.0 158- V68.
Pedicel	16.52	1.30	3,09	20,00	1,49	6.07	20.97	1.43	7.06
1189 10	17.03	1,42	3,86	20, 39	1.47	6.55	21,62	1.54	7,11
end	16,61	1,36	3.77	19, 37	1.46	5,06	21.50	1.49	7.44
F-Velue	1.97,10	0,43	⁰ 0.18 ¹³	So. 27 ⁸¹⁸	0.18 ^N	² 8,57*	* 0.26 ¹⁰	⁰ 1,29 ³³	°0.68
co(0.05)1.69	0,11	0.4	2.89	0.06	0.35	2.32	0.09	0.78

HS 食 会

:

i. Ita

Not significant. Significant at 17 level. · .

Days after germi- nation	601	th day		7	šth dag	7	90th	day	
Treat-			lean Vea	Height (cm)	(cm)	lea- ves.	(cm)	(cm)	10a- Ves.
edical end.	21.67	1.55		24,62					12.64
11661e	24,48	1.60	9,96	27,50	1.69	11.13	31,33	1,91	11.93
Notal end.	23.06	1,60	9,60	25,17	1.65	10,4	32.4	2.05	12.58
-Value	2.05	0,65	⁸ 3 , 39^M	⁹ 1.44 ¹⁰³	0.23 ^m		³ 0,46 ^{1%[3}		
D(0.05)	2.69	0.11	1,26		0,14	1.24	8.04	0.10	1.21

t.

Table 9c. Continued

.

,

(11) Root growth.

The data on the length of the tap root, the length of the longest lateral root and the number of lateral roots are presented in Table 10a and figure 1. The graphical representation for the root growth for February and March is presented in figure 1.

There was no significant difference at any of the intervals of recording for any of the root characters. On the 30th day after germination the length of the tap root varied from 12.56 cm (T_4) to 14.7 cm (T_8) while the length of the longest lateral root varied from 3.03 cm(T_8) to 5.24 cm (T_2). The mean number of lateral roots varied from 30.66 (T_7) to 42.33 (T_2).

On the 60th day the maximum length of tap root was observed for $T_5(16.36 \text{ cm})$ and the minimum for $T_4(13.9 \text{ cm})$ while the longest lateral root varied from 3.64 cm to 5.65 cm (T_2) . The number of lateral root produced was highest for $T_3(57)$ and lowest for $T_8(38)$.

The maximum length of the tap root produced on the 90th day after germination was 20.59 cm (T_1) and the minimum 16.43 cm $(T_5)_{*}$ The length of the longest lateral root varied from 5 cm (T_7) to 10.14 cm $(T_1)_{*}$ The number of lateral roots produced was highest for T_5 (64.86) and lowest for T_6 (48.66).

Table 10a. Root growth parameters of cocoa seedlings at verious intervals sown in different months. February sowing.

.

i.

.

Deys aftor germi- nation,	30th	clay	a tanàna ao amin'ny fisiana amin'ny fisiana	63	ith day		. Linux, and Albertin in which	90th day		
Treat- ments,		oc lor gost	1 Marof 1-later- al, 11 roots.	of tar root.) of longe- st la- teral	late-	og tap root.	Longth of lon- gest lateral rost.	-lato- rel	
	(അ)	(cn)		(cm)	cost. (cm)		(cm)	(cm)		
T ₁ -LP	12.75	9 . 46	31,66	14, 32	4.74	46.33	20,59	10.14	55, 33	
7LM	14.46	5,24	42.33	14.65	5,65	47.33	17.95	7.94	54,66	
T -1 10	13.94	6 . 44	34	15,10	4.67	57	19,46	7.60	64.33	
TMP	12,58	3,64	39	13,9	4,14	51,66	18.73	8,65	51,66	
T148	14,43	5,06	36 .33	16,36	5.21	45.33	16,43	6.41	64.86	
T em	13,74	4,22	35.60	14.07	4,67	40.33	18,35	8.32	55.33	
T,-52	13,56	3, 38	30,66	15,20	3,64	39,66	17.14	\$	46,33	
To-SM	14.7	3.03	36.66	15.42	4.15	313	20,37	8,05	51	
To-SD	13.91	3,40	38	14.04	3,94	38.33	20.29	5.57	48,66	
F-Velue	0.04 ³³⁵	1.10 ⁵¹	² 1, 19 ND	0.21 ^{MG}	0.23210	1.77 ¹³⁶	1.05 ^{ES}	1.91 ^{MB}	0 . 79 ³³⁵	
co.05)3.64	1.60	7.55	5,62	1.78	12.54	4.92	3.77	16,92	

Regarding the effect of pod size alone (Table 10b) there was no significant difference in the length of the tap root at any of the intervals of recording while the length of longest lateral root was significantly higher for 'large' only on the 30th day after germination.

The number of lateral roots produced showed significant variation only on the 60th day when the number was significantly higher for "large". On the 90th day there was no significant difference for any of the root characters.

Considering the main effect of seed position only (Table 10c) there was no significant difference in the length of the tap root or that of the longest lateral root at any of the intervals of recording while the number of lateral roots produced showed significant difference only on the 30th day when the number was significantly higher for middle.

(iii) Dry weight.

The mean dry weight of the shoot and the root and the total dry weight are presented in Table 11a and figure 2.

There was no significant difference in the dry weights of the shoot and the root and the total dry weight at any of the intervals. On the 30th day the dry weight of the shoot varied from 741.66 mg (T_g) to 1213.33 mg (T_5) while that of the root varied from 177.33 mg (79) to 229.33 mg (T_5) .

Days aftor gèrm i- nation.	,	30th d	ay	:	soth d	ey.		90th da)Y
Treat- mente.	Length of tap root,	o£	lot-	Length of tap root.	of lon gest 1	1	of tap	ne inn	lat. eral
	(en)	(cm)	and and and and the	(ca)	(en)		(em)	(65)	
Large	13.71	4.38	36.00	14.71	4,95	50.22	19.33	8.56	50,11
liedium	13,58	4.31	35.00	14.77	4.67	45,77	17,03	8,02	57.20
Sma ll	14,06	3.27	35.11	14.89	3.91	39.66	19,28	6,2	49.66
-Value									2 .53 ²³⁵
co(c.os)	12.10	¢.9	4, 41	3.24	1.03	7,24	2.63	2.17	. 76

,

Table 10b. Root growth parameters of cocos seedlings at various intervals soon is different months. February souing.

.

.

NS Not significant

. 1

, '

.

Algnicident at 5% level.

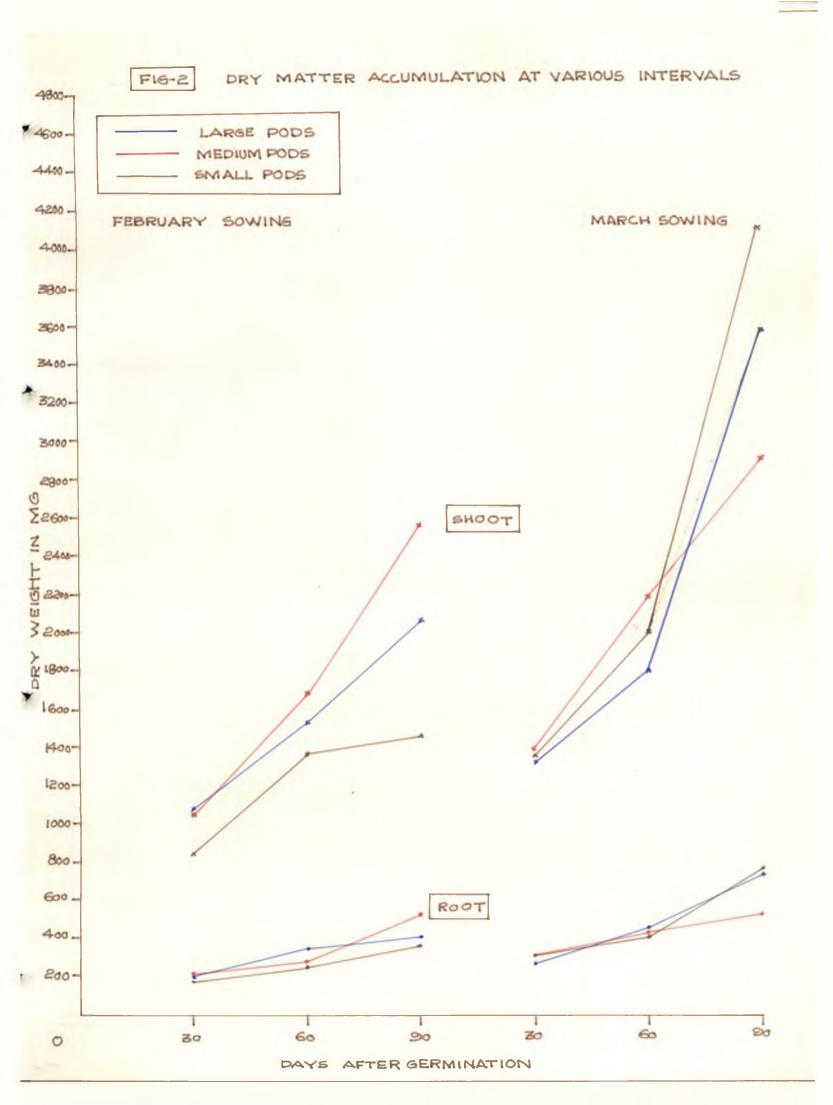
.

.

Days after germi= notion.		30th di	уY		60th d	lay	Š	Poth de	y
Treat-	of tas	Length of	late-	Length of tap	Length of lon- geot later- al root.	·lat-	of tap	of lor	-lat-
	(cm)	(cm)	() bin ni tin ni tin ti	(cm)	(cm)		(em)	(cm)	
Pediecl end.	12,96	3,49	31.77	14.47	4.13	45,00	18.92	7.99	51.11
Middle	14,53	4.44	38,44	15.48	5.00	43.55	18,25	7.86	56.94
Dictal end.	13.86	4.02	35,80	16,43	4,36	45,22	19,36	7.33	56.11
F - Value	1.22 ⁸⁰⁰	2.369	5 . 11*	0,29	77 1.5 5	°.24	°0,33 ^{N©}	0.23 ⁸¹	0 ,90 80
39(6.0 5)	2,10	0.9	4;41	3.24	1.03	7.24	2.03	2.17	9.76

Table 10c. Rost growth parameters of cocoa seedlings at various intervals soun indifferent months. February soulng.

.


NS Not elemicicant * Significant at 5% level.

Doys after germination.	301	h day		60	ith day		soth	day	
Free Coents.	Stoot (m3)	Root (mg)	Total (ag)	Shoot (mg)	Root (mg)	Sotal (my)	Shoot (cg)	Root ing}	Total (77;)
r ₁ -LP	933.33	193.33	1131.66	1537	343.33	1680.33	2303.73	441.73	2745.46
r2-14	1153.75	211.66	1370.41	1679.33	314.66	1994	1967, 33	359.33	2326,66
r3-10	1292	206,33	1408.33	1423,33	401,65	1825	1928,66	409	2337.66
	943.33	165.65	1133.00	1444	258	1702	1859.33	424	2323.33
rM1	1213, 33	229, 33	1442,66	1833, 33	284	2122,33	3102,33	603,33	3705.66
6- 232	1030	194.33	1224,33	1777.5	301.06	2703.96	2643.66	572.65	3221.33
°j−9₽	874.66	2 01	1075.66	1325	258, 33	1583.33	1494.66	369.33	1864.00
°-514	920	197.66	1117,66	1404.33	278.66	1683	1444.65	366.66	1011.33
⁶ 9-99	741.66	177.33	919.00	1393.33	263,66	1647.	1449,33	330	1849.33
-Value	1.78 ²¹⁵	1.5 ⁴⁸	1.97 ²⁰⁵	0.91 ^{US}	1.64	0.74 ^{NE}	1.21 ^{NG}	1.02	1.24
CD (0.05)	240.74	32.003	254.13	339.55	78.57	417.73	1137.93	202.09	1303.92

Table 11a. Dry weight of cocco seedlings at various intervols soom in different conths. February sowing.

06

. . :

The total dry weight varied from 919 mg (T_9) to 1442.66 mg (T_6) .

The dry weight of the shoot ranged from 1325 mg (T_7) to 1839.33 mg (T_5) while that of the root ranged from 258 mg (T_4) to 401.66 mg (T_3) on 60th day. The total dry weight for the same period varied from 1583.33 mg (T_7) to 2122.33 mg (T_5) .

At the 90th day after germination the maximum dry weight of the shoot obtained was 3102.33 mg (T_5) and the minimum 1444.66 mg (T_8) . The dry weight of the root varied from 359.33 mg (T_2) to 603.33 mg (T_5) . The total dry weight for the period ranged from 1811.33 mg (T_8) to 3705.66mg (T_5) .

Nith respect to the effect of the pod size (Table 11b) the dry weight of the shoot was significantly higher for 'large' on the 30th day and for 'medium' on the 60th and 90th day while that of the root was significantly higher for 'large' on the 60th day and for 'medium' on the 90th day.

The total dry weight was significantly higher for 'large' on 30th day and for 'medium' on the 60th and 90th days.

With regard to the effect of seed position (Table 11c) the dry weight of the shoot and the total dry weight were significantly higher for 'middle' on the 30th day only while there was no significant difference on the dry weight of the root at any of the intervals of recording.

Days After germination					-				
Treatmonts	Shoot (ng)	Root (mg)	Total (cg)	Shoet (mg)	loot (mg)	Total (mg)	Sixost (mg)	Root (ng)	Total (mg)
lərge	1099.69	203.77	1303,47	1546.55	353,22	1399,77	2066.57	403.35	2469.9
Redium	1062.22	204.44	1235.66	1686.61	281,15	19 57 .76	2550.11	533. 33	3093.4
Small	845.44	,192.00	1037,44	1370,83	256,03	1637.77	1462,58	372.00	1841,5
F-Value	9 .5 812	1.26 ^{NS}	8.52**	4.36*	9,13**	\$. 6*	6.06**	4.74*	6.00*
CD(0.05)	128.99	13.52	146.72	224.91	45.36	241.17	656,93	116,67	752,02

· .

.

Table 11b. Dry weight of cocos secdings at various intervals soun in different months. February soulds.

-

.

Significant at 5% level
Significant at 14 level.

. .

Days after germination		30 days			60 dayı	3		න එහුෂ	
Treatments	Shoet (ng)	Root (mg)	Tota) (119)	Shoot (ng)	Rook (ag)	Total (ag)	Shoot (stj.)	Rost (115)	Total (mg)
Pediceland	918.77	194.66	1113,44	1435.33	286.55	1721.83	1899,24	411.63	2310.9
41601e	1097.36	212.66	1310,25	1 64 0.66	292,44	1933.13	2171.44	443.11	2614.3
Distal end	991.22	192,66	1193.83	1529.00	522.26	1090, 32	2008.98	452.03	2469.4
-Velue	3.68*	3.19 ¹¹⁵	4.07*	1,64 ¹³⁸	1.57 ⁸⁸	1.71 183	0, 33 ^{ME}	0.31 ^{NS}	0 . 35 ^{₩3}
CD(0.05)	138.98	18.52	146.72	224.91	45.35	241.17	656.98	116.67	752.62

,

Table 11c. Dry weight of cocoe seedlings at various intervals soom in different months. February soming.

NS

Not elgalficant Significant at 5% level. *

1.4.4 March sowing.

(1) Vegetative growth.

The data on the height, girth and number of leaves of the seedlings are presented in Table 12a and Eigure 1.

There was no significant difference in the height, girth and number of leaves at any of the intervals of recording. The height of the seedling on the 15th day after germination varies from 14.69 cm (T_5) to 16.91 cm (T_2) . The girth for the same period varied from 1.4 cm (T_A) to 1.48 cm (T₁ and T₂). The maximum number of leaves were produced in $T_{q}(3.47)$ and the minimum in $T_{q}(2.93)$. On the 30th day the maximum height of the seedlings was recorded for T_2 (23.76 cm) and the minimum for $T_{\rm A}$ (20.97 cm) while the girth varied from 1.46 cm (T_4 and T_6) to 1.52 cm (T₂ and T₂). The number of leaves produced varied from 5.93 (T₆) to 7.6 (T₅). The maximum height recorded was 25.39 cm (T_4) and the minimum 23.3 cm (T_7) on 45th day. The girth for the same period varied from 1.53 cm (T_5) to 1.77 cm (T_0) while the number of leaves produced were highest in T_0 (10.06) and lowest in T_6 (8.83).

On the 60th day the height of the seedlings varied from 24.81 cm (T₉) to 29 cm (T₁) while the girth varied from 1.64 cm (T₃) to 1.85 cm (T₈). The number of leaves for the same period ranged from 9.93 (T₄) to 10.93 (T₂).

after jerm i- hat ion .	÷.	15th	15th Jay		ith day	7	45th day			
Freat-	Height (cm)	Girth (cm)	No.of lea- ves.	Height (cm)	Girth (cm)	No.of lea- vea.	Height (cm [°])	Cirth (om)	No.01 18+ Ves.	
rinan na ar F _a as ip	16,55	1,48	3,03	23.3	1.50	6.67	23, 31	1,62	9,13	
F2-LM	16,91	1,48	3.2	23,76	1.49	7,53	24,88	1.64	9,46	
P ₃ -LD	16.07	3, 45	2,93	23,56	1,52	7,27	24,74	1.54	9.66	
r - MP	15.70	1.4	3,13	21.10	1.46	6.47	25.39	1.62	9.86	
rim	16,37	1.46	3,47	23.10	1,50	7.6	24,22	1.53	10.00	
r ₆ -19	14,69	1,42	3.2	21.66	1.46	5.93	23,35	1.57	8,81	
r-80	16,72	1,44	3.4	21,19	1.50	6,87	23,30	1,56	9.66	
r614	14.76	1.44	3,33	20,97	1.50	7.2	23,93	1,63	9,60	
2.1					1.52	7.13	24.32	u units and	10.00	

r

,

Table 12a. Shoot growth parameters of cocce secdlings at various intervals sown in different months. March sowing.

NS Not eignificant.

.

. ·

.

.

•

•

Table 12a. Continued.

١

after germ i- netion.	•	6027	n day	-	7th (ley	90)th day	1
Treat- mente.	Height (am)	Girth (cm)	No.of 10a- ves.	Haight (cm)		No.of lea- vea.	fleight (cm)	Gleth (cm)	No.of lea- ves.
T ₁ -1.9	29	1,84	10.2	31,51	1.94	11.06	41,95	2,19	14,4
7LM	27.00	1.74	10,93	29,51	2,02	11,13	43,6	2,62	13,53
T ₃ -ID	27.66	1.64	20.53	28.59	1.97	10,73	40,95	2,09	12,8
T140	26,34	1.67	9.93	30.07	1.01	11,33	37,73	2,25	13.09
T5-MM	26,74	1.69	10.26	33,03	1,03	11.13	36,06	2.15	13,2
T6-160	27,93	1.76	10.53	20,35	1,83	10.73	36 _* 91	2,15	12,8
r,-sp	26,65	1,71	10.53	31.04	1,90	11,6	33.07	2,12	12.6
T - 231	28,75	1.95	10,53	31.51	1,09	11.53	37, 31	2,13	15,19
Tg-SD	24.81	1.91	10.53	29, 35	1,83	10,86	31,78	2.09	12,27
F-Valu		1.04?3	^S o. 12 ¹³	⁶ 0, 36 ¹¹	⁶ 0.41 ^N	2	³ 0.42 ¹⁷		
CD (0,0	3)5.05	0,26	1,95	6,53	0,15	2.65	8,2	0.41	3.45

. .

..

NG Not significant.

. , The maximum height recorded on the 75th day after germination was 33.03 cm (T_5) and the minimum 23.35 cm (T_6) . The girth for the same period ranged from 1.81 cm (T_4) to 2.02 cm (T_2) while the number of leaves produced varied from 10.73 $(T_3 \text{ and } T_6)$ to 11.6 (T_7) . On the 90th day after germination the maximum height recorded was 41.55 cm (T_1) and the minimum 31.78 cm (T_9) while the girth varied from 2.09 cm $(T_3 \text{ and } T_9)$ to 2.62 cm (T_2) . The number of leaves produced for the same period ranged from 12.27 cm (T_9) to 15.19 cm (T_8) .

Considering the effect of pod size by itself (Table 12b) the height was significantly higher for 'large' on the 15th, 30th and 90th days after germination. The girth was significantly higher for 'large' on the 75th day only while there was no significant difference in the number of leaves produced at any of the intervals of recording.

Regarding the effect of seed position alone (Table 12c) there was no significant difference in the height and girth of the seedlings at any of the intervals of recording while the number of leaves produced was significantly higher for 'middle' on the 30th day only.

(11) Root growth.

The data on the mean length of the tap root, the length of the longest tap root and the number of lateral roots are presented in Table 13a and Figure 1.

Days after germ i- nation	15	Sth day	7	30t)	n day		45th (Nay	
Tzeat- nonts.	Hoight (cm)	from V		Height (cm)			Weight (cm)		No.of 10a- Ves.
lerge	16.5	1.47	3.05	23,54	1,50	7,15	24, 31	1,6	9,42
Nectum	15,61	1,42	3,26	21.98	1,47	6.66	24.32	1.57	9,56
Small	15,54	1,43	3.3	21.43	1,51	7,06	23,65	1,65	9,77
F-Valuo	1.36 ^{NS}	2.67	⁵ 0.67 ^{1/1}	⁷ 3483*	0.51 ⁹¹	⁹ 1.,36 ¹¹) 0.0 5 ^{1/1}	1,48	°∂.23 ^ℓ
ed(0.05)	1,36	0,04	0,48	1,65	0,07	0.66	2, 65	.0,106	r.09

. .

.

,

.

Table 12b. Continued.

.

germi- nation,	60th	Cay		7:	ich day	7	,	90th	đay
Treat- ments.				fleight (cm)					
Lerge	28,15	1.74	10,55	29,06	1,98	10.97	42,03	2,30	13.57
Medium	27.00	1.71	10.24	30,43	1.62	11.06	36.90	2.10	13.03
Small	26.74	1.79	10,53	30,63	1.97	11,33	34,05	2,11	13,35
F-Value	0.58	0,63 ¹¹¹	⁰ 0.20 [%]	⁵ 0 , 102 ¹	³⁶ 7.05	**0.13	ND 6,44*	*1.47	²⁰ .16 ¹
CD(0.05)	2,91	0,15	1,13	3 .77	0.08	1.53	4,73	0.23	1,99

.

۰.

Days after germ i ~ nation.	15th	<i>े</i> ay		3	Oth day	7	4	Sth day	1
Treat-	Height (cm)		No.of leaves						
Pedicel end.	16,34	1,44	3,18	21.09	1.49	6.66	24.00	1.6	9,55
NL2010	16.01	1,45	3.33	22,61	1,50	7.44	24,34	1.6	9,69
Distal end	15.3	1,43	3.1	22,45	1,50	6,77	24,14	1.62	9.52
F-Volue	1*35 ^{NO}								
CD(0.05)	1.36	0.04	0.49	1,65	0.07	0,66	2.65	0,106	1.09

Table 12c. Shoot growth parameters of coca secolings

.

* Significant at 5% level.

Table 12c. Continued.

a intra atta

Do ye aftar go mi . nation,	601	th day			7 Sth (Зау	g	loth da	-
TEUQ (m	entent.	Girth	10.0E	-				L OARTS	No.ol leave
nente.	(en)	(cm)	leaves.		(cn)	leaves		(en)	3.4 D D L
Pediccl end.	27,33	1.74	10,22	30.87	1.83	11.33	37,45	2.19	13,36
Middle	27.76	1.76	10,57	32.34	1.91	11.26	33.99		13.97
Distai end	26.30	1.74	10.53	28.76	1.00	10,77	96.54	2.10	12,62
7-Value	0.24		So.25 ^{NQ}	1.17 ¹³⁰	0.42	6,30	10.6 ⁽²⁾	1.43	1.02
ca to. .05) 3.91	o . 15	1.13	3,77	0.09	1. 53	4.73	0.33	1.99
	900 Dan 1889 Saint S	मेन का होन सम्बद्ध कि करना ।	19- 19- 19- 19- 19- 19- 19- 19- 19- 19- 19- 19- 19-	urnan saya helistani, Aresinga il	le un cardente der		grade, 400 fille inde gaar this 🕮	1 sta 1869 Sep Set werden	tinge af gaat

MS Not aloni Leant

Table 13a. Root growth parameters of cocoa secolings at various intervals soun in Different months. March sound.

Deye after germ 1 - nation.		ch đay		601	sh day		90th d	ру	
Treat-	Length of tap root.	longth of lon- gest latera root,	late- ral 1 roo-	of tap	of lon gest	- 1at-	of tay root.	og lor	roote
-	(cn)	(cm)		(em)	(cm)		(em)	(cm)	
t1.P	12,77	3,73	31,33	16,81	5.95	37.66	21.77	12.13	57,33
PLM	13,91	4.99	34.4	18.71	6,33	40,66	23,23	13.2	56. 33
° -L0 3	11, 33	3.57	36	17, 78	6.45	41.33	22,49	9.62	50, 3 3
(11,61	3.33	29, 33	20.57	7.03	41.33	21.98	10.98	56.33
r MH	13,94	3,92	31.33	15,77	7.09	44,66	18,29	8,59	54.33
6 - MD	13,29	3.24	34,33	15,53	8.04	41.00	17.46	8.17	50,33
r,-sp	12,11	3.5	33	17.67	4.92	39,66	10,35	11.07	47,67
e-cn	13,33	3.3	34	18,52	8,13	39 . 66	19,1	10.75	50,67
'9 -ED	14.07	3.66	32,33	15,56	7.16	33.66	20, 35	10.55	54.67
P-Valu	3 1,11 ^{N/}	⁹ 2.18 ⁸⁸⁶	0. 30 ^{N.}	3 1.69^{PC}	0.24 ¹⁴⁰	3.32*	0.99 ^{MS}	0,18 ⁵³	1.72 ^{N®}
:D(0.0!	5)3.01	0.95	7.95	4.57	4.75	4.11	5.6	7.76	9.06

-

.

There was no significant difference in the length of the tap root and that of the longest lateral root while for the number of lateral roots there was significant difference only on the 60th day after germination. On the 30th day after germination the length of the tap root was maximum in T_9 (14.07 cm) and minimum in T_4 (11.61 cm) while the longest lateral root varied in length from 3.24cm (T_6) to 4.99 cm (T_2) . The maximum number of lateral roots was produced in T_3 (36) and the minimum in T_4 (29.33).

The length of the tap root varied from 15.53 cm (T_6) to 20.57 cm (T_4) and the length of the longest lateral root from 4.92 cm (T_7) to 8.10 cm (T_8) on 60th day. The number of lateral root produced was significantly higher for $T_5(44.66)$. T_5 was on par with T_3 , T_4 , T_6 and T_2 . The lowest number of lateral roots produced was for $T_9(33.66)$. The length of the tap root varied from 17.46 cm (T_6) and 23.23 cm (T_2) on the 90th day after germination while that of the longest lateral root varied from 0.17 cm (T_6) to 13.2 cm (T_2) . The number of lateral root varied from 9.17 cm (T_6) to 13.2 cm (T_2) .

Considering the effect of pod size alone (Table 13b) the length of the tap root and that of the longest lateral root did not vary significantly at any of the intervals of recording while the number of lateral roots was significantly higher for 'medium' only on the 60th day.

Taking into account of the main effect of seed position alone (Table 13c) there was no significant variation

	•	at varie			secclings Eferent
•		months,			

Days after gormi- nation.	30 t)	ı day	a vici any air an bring of the	60th (Зау	annan an in an an an an	90th o]o y	12
Treat- ments,	of tap	of lon- gest	-lot- erel	of tap root.	of ion gest 1	mlute-	of top rot,	of lor gest	al al
	(cm)	(cm)	Majing addited to g a	(ca)	(cm)	Nitrite alfanção dest	(en)	(eni)	t ngi ala din si ndigi
larg e	12,66	4,09	33,91	17,76	6,24	39.88	22,49	11.65	54.66
Medium	12.94	3.49	31,66	17,28	7,66	42,33	19,24	9,24	53.66
Small	13,17	3.48	32.77	17.24	6,75	37, 33	19,26	11,05	51.00
F-V alue	0,18					9,80**			
en (0.05)	1.73	0.55	4.59	2.63	2.74	2.37	3,23	4.49	5,23

,

NS 48

.

.

тń,

Not significant Significant at 1% level.

105

Table 13c. Root growth parameters of cocos seedlings at various intervals soun in different months. March sowing.

.

1

0

.

.

.

.

•

nation.)th day		. 6	ioth đay	*		90th da	Y
ments.	length of tap root,	of lon-	-lat- eral	of tag root.	Longth of lo- ngest later- al root.	· lat- (oral)	os tay root s ,	of ion-	lat- ral
	(em)	(cm)	• •	(cm)	(cm)	<u></u>	(cm)	(cn)	unter stie some skriftende
Pedlecl end.		3.51	30. 38	10,34	5,98	39,55	20.7	11.66	53,7
Ml3dle	13,72	4,06	33,24	17,66	7,46	41,33	20,20	10.84	53.7
Distal end,	12.89	3.49	34,22	16,29	7.21	39,56	20+1	9,44	51,7
9-Value	1.69	3.03 ^M	3 1°5 3 ₁	¹⁴³ 1.39 ¹	¹⁰ 0.74 ⁸	2,09 ^N	° 0,096	^{BS} 0.55 ^N	¹⁰ 0,43
CD(0.05)1.73	0,55	4,59	2.63	2.74	2.37	3,23	4:48	5.23

in any of the root characters at any of the intervals.

(111) Dry weight.

The mean dry weight of the shoot and the root and the total dry weight are presented in Table 14a and Elgure 2.

There was significant difference in the dry weight of the shoot and the total dry weight on the 90th day after garmination while there was no significant difference in the mean dry weight of the root at any of the intervals of recording. On the 30th day after garmination the dry weight of the shoot varied from 1105.33 mg (T_{γ}) to 1568 mg (T_{5}) while that of the root varied from 228.15 mg (T_{4}) to 398 mg (T_{5}) . The total dry weight ranged from 1439.03 mg (T_{γ}) to 1966 mg (T_{5}) .

The maximum dry weight of the sheet obtained was 1678.65 mg (T_1) and the minimum 2262 mg (T_6) while that of the root varied from 360 mg (T_7) to 526 mg (T_2) . The total dry weight ranged from 2116.66 mg (T_1) to 2693.32 mg (T_4) .

The dry weight of the shoot on the 90th day after germination was significantly higher for $T_2(4924.66 \text{ mg})$ which was on par with T_8 and T_7 . The lowest dry weight was recorded for $T_4(2614.66 \text{ mg})$. The dry weight of the root varied from 490.33 mg (T_4) to 896.66 mg (T_8) . The total dry weight for the same period was significantly

Cays after gernination		30th 6	lay	6	Oth day		90	90th day			
Treatment	Shoot (mg)	Peot (mg)	Total (my)	Shoot (cg)	Ront (ng)	Total (og)	Shoot: (mg)	Reat (:3g)	Total (ng)		
7 . -1.2	1238.66	265, 56	1504.33	1678,66	439	2116.66	2020.66	716	3536.65		
To-LM	2377	262	1639	1998.66	526	2514.66	4924.66	872	5796.66		
T10	1363	300,66	1669.66	1713.33	439,33	2152.66	2072	622	3494,00		
	1360.11	228.15	1539.27	2236.66	456.66	2693.32	2614.66	490,33	3105.00		
r:#1	1568	398	1966	2031	453.66	2484.66	2743.66	498	3246,66		
r -910	1216	275.33	1493.33	2262	307	2643.00	3316	593.33	3909.33		
r 7- 319	1105.33	334	2439, 33	1873.33	360	2233.33	3919,33	542	4461.33		
ro-sta	1427.66	282.16	1709,82	1996,66	461.33	2458.00	4632	886.65	5513,66		
F	1505,33	255, 33	1760,5 0	2125,33	430.66	2356.00	3730.66	795.33	4526.00		
F-Value	1.62178	2,55	1,34133	1.2452	1.70	1.43 ¹⁷⁵	3.62 *	2.03 ^{IN}	3.24*		
CD(0.05)	347.9	119,15	401.01	430.41	91.62	471.79	1097.55	252.39	1268,80		

Table	14a.	Dry	orthe bear	Ø?	5000 g	seedling	jo et	t V	ncious	intervals	COVIN	
		10	differen	76	concha.	March	50M	ing	÷.			
					متبيب بلاية معمينين بقطه بسراء	يكر بعد دمر بالمحتر المحتر المحتر المحتر المحتر			أسر شعب محمدين بمترجب فيتراج	فستغتب بالعب تعتله معلاه بشخيطه والمعادية	والمتحديد وأباد ومحتجز والمحتجز والمحادث	

-

239

.

.

_

Not cignificant. Significant at 58 level. .

.

,

107

ς.

higher for T_2 (5796.66 mg). T_2 was on par with T_8 . The lowest total dry weight was obtained for T_4 (3105 mg). Taking into account the effect of pod size only (Table 14b) the dry weight of the shoot was significantly higher for 'medium' on the 60th day and for 'small' on the 90th day while that of the root was significantly higher for `small' only on the 90th day. The total dry weight did not show any significant variation at any of the intervals.

Considering the effect of seed position alone (Table 14c) the dry weight of the shoot was significantly higher for 'middle' on the 90th day only while that of the root was significantly higher for 'middle' on the 60th day only. There was no significant difference in the total dry weight at any of the intervals of recording.

1.4.5 April sowing.

(1) Vecetative growth.

The data on the height, girth and the number of leaves are presented in Table 15a.

There was no significant difference in the height, girth or number of leaves at any of the intervals. The mean height of the seedlings ranged from 13.74 cm (T_7) to 16.43 cm (T_3) on the 15th day ofter germination. The girth at the same period varied from 1.36 cm (T_6) to 1.46 cm $(T_2 \text{ and } T_4)$ and the number of leaves produced ranged from 3.78 $(T_2 \text{ to } 4.33 \ (T_5)$. The maximum height recorded on the

Treatne nts	Shoot. (ng)	Rost (ng)	Tetal (cg)	Shoot (mg)	Root (mj)	Total (575)	Shoot (mg)	Root (mg)	Total (mg)
Lorge	1327.83	276.11	1604.00	3793,55	467.79	2261, 33	2539,11	735.66	4275,77
Vedium	1302.03	300.5	1622.53	3176.55	432,44	2609.00	2893.11	527.22	3420, 33
11em	1346,11	290.5	1636,61	1993,44	417,33	2615,77	4694,00	741.33	4835,33
-Value	0,16 ^{NS}	0.28 ¹¹⁵	0.25 ^{N3}	5.25*	1.55 ¹¹⁵	8.61*	7.94 **	6.21 **	8.35**
m(0.05)	206.85	68.79	231,52	268.49	52.00 2	.72.39	633.67	145.72	732.54

· · · · · ·

.

,

Table 14b. Dry weight of coses seedlings at various intervals soun in different months. March souling.

.

Days after 301 germination		30th Gay	. ,		60th	•	90th day		
Treatments	Shoot (rg)	Root (ng)	Yotal (ng)	Choot (mg)	Roots (mg)	Total (mg)	Shoot (cz3)	Root (cz)	Total (mg)
Pedieci end	1234,70	275.94	1510.64	1929.55	5 418,22	2347.77	3118,22	582 .77	.3701.00
uiddle	1437.55	314.05	1771.61	2005.44	480.33	2485.77	4301.77	752,22	4854.00
Motal end	1369.77	277,31	1640,88	2033.55	419.00	2452.55	3306 . 22	670 •22	3976.44
-Value				0.41					
D(0.05)	200.85	68,79	231.52	248,49	52.90	272.38	633.67	145.72	732.54

Table 14c. Dry veight of cocca seedlings at various intervals soun in different months. March sowing.

Table 15a. Shoot growth paramoters of cocoa secdlings at various intervals corn in different months. April soming.

after jørni- nation.	15th day				30th day			45th day		
Freat- ments.	Height (cm)				Girth					
°2=L9	14.32	1.40	4,23	16,23	1.49	5.63	19,57	1.51	7,33	
rL4	15.98	1.46	3 .7 8	16,72	1.48	5.93	21.03	1.96	7,06	
TLD	16 ₂ 43	1,42	4	17,98	1,44	5.53	19,83	1.6	6.6	
rMP	15,82	1.46	4.13	17.01	1,49	5,73	17,64	1,50	6.6	
P_101	15,60	1.44	4.33	21,16	1,53	5,26	21.37	1,55	7.4	
PMD	16.20	1.36	3.93	18,84	1.45	6,2	19.2	1,46	6.2	
1 - 82	13.74	1.40	4.13	18,19	1.45	5.23	19, 33	1.51	5.76	
r _{e-sm}	16,12	1.40	4	20.29	1,49	6.9	20.59	1.50	7,93	
°	15,24	1.41	4.2	17.23	1.47	6,56	17.84	1.48	7.4	

NS Not significant.

•

Day s after gore i- nation	Ċ	oth d	оў		75th day		90th day		
Treat- mente.	Neight (cm)	(Cirth (cm)	No.of 1ea- Ves.	Height (cm)		No.of lea- ves.	Height (cm)	Cirth (cm)	No.of lea- vcs.
7 ₁ -1.9	22,93	1.57	8.06	28.3	2,02	8.8	28,49	2,13	10.66
T2-IM	23,12	1,65	9.6	27,12	2.06	9.73	30.27	2.09	10.73
T_LD	22.11	1,60	7,6	25,43	1.92	10,33	27.41	2.06	10.8
r ₄ -mp	19.86	1.66	7.46	20.50	1.66	S.96	27,77	2.1	11.4
r ₅ -194	21.51	1.60	8,26	24.7	1,93	10,86	27,49	2.04	11.46
6-MD	20,68	1.57	6,66	22 .49	1.6	9#86	26,72	2.01	10.86
r,-sp	19.79	1,59	7,51	21.85	1.75	9, 76	27,57	2.07	10.4
r 94	22.48	1.56	8,93	25,96	1,91	10.46	26.55	2.04	11.93
(9- 92)	22,56	1.62	8.06	23.00	1,3	8.23	20,65	2.07	11.2
-Value	0.49 ¹	¹⁰ 0, 90 ¹	⁹⁶ 0,27 ¹	³⁷ 0,42 ¹³	? 0.60 ¹	^{1**} 1.84 ¹	^{v-} °• 46 ¹³	So.09 ¹¹	0 .1 6 ¹
a(0.05) 3.73	0.24	2.31	7.56	0.29	2.00	5.84	0.23	3.41

NG Not significant.

· ·

30th day after germination was 21.16 cm (T_5) and the minimum 16.42 cm (T_1) . The maximum girth produced for the same period was 1.53 (T_5) and the minimum 1.44 cm (T_3) . The number of leaves produced varied from 5.23 (T_7) to 6.8 (T_8) .

On the 45th day after germination the height of the specifing varied from 17.64 cm (T_4) to 21.37 cm (T_5) while the girth ranged from 1.46 cm (T_6) to 1.6 cm (T_5) . The number of leaves produced at the same period varied from 5.76 (T_7) to 7.93 (T_8) .

On the 60th day after germination the maximum height produced was 23.12 cm (T_2) and the minimum 19.79 cm (T_7) . The maximum girth obtained at the same partial was 1.66 cm (T_2) and the minimum 1.56 cm (T_2) . The number of leaves produced ranged from 7.46 (T_4) to 9.6 (T_2) .

On the 75th day after germination the sociling height varied from 20.5 cm (T_4) to 28.3 cm (T_1) while the girth varied from 1.6 cm (T_6) to 2.06 cm (T_2) . The number of leaves produced for the same period ranged from 8.23 (T_9) 10.86 (T_5) . The seedling height on the 95th day varied from 26.55 cm (T_8) to 30.27 cm (T_2) . The girth for the same period ranged from 2.01 cm (T_6) to 2.12 cm (T_1) while the number of leaves varied from 10.4 (T_7) to 11.93 (T_6) .

Considering the effect of pod size alone (Table 15b) there was no significant difference in the height and number of leaves of any of the intervals of recording while the girth was significently higher for 'large' on the 7th day.

after germi- nation.	1!	ith Cay	t	30th day			45th day		
Treat- mente,							Noight (cm)		
Large	15, 57	1.43	4,00	17.04	1,47	5.70	20.17	1.95	7.00
sedium.	15.94	1.42	4.13	19.00	1.49	5.73	19.40	1.50	6.73
Saall	15.04	1,40	4,11	19.56	1.47	6.20	19,25	1,50	7,03
Value	0,46 ^{NG}	0.44 ^N	0.31 ¹¹	³ 0.61 ^N	^S 0.23 ^{IR}	⁶ 0.84 ^{1/3}	0.3 5 ⁶⁰	9 1.61 ^{17.}	³ 0.1 ¹
De(0.05)1,98	0.05	0.36	4.18	0.06	0.90	2,36	0.07	1.43

Table 15b. Shoot growth parameters of code seedlings at various intervals soon in different months. April coving. Table 15b. Continued.

after germ l- nation,	6(oth day	7		75th	day	Soth dey			
Trat- Bonta.				Nolght a (cm)	dirth (cm)	No.of Leaves	Height (ca)	Glzen (cm)	leaves	
Lorge	22.69	1.61	8,42	26,95	2.00	9.62	20.72	2.09	10.60	
Nealum	50 . 63	1.61	7.46	22.56	1.73	9,90	27.92	2.05	11.24	
Smo ll	21.61	1,99	8.17	29,60	1.82	9 . 48	27.65	3•06	11.01	
	1.86 ⁸⁸⁵					0, 23^{01/2}	0.43 ⁰²⁰	0.24 ⁸⁰⁰	0.69	
:D (0. 05)2.10	0.14	1.33	4,36	0.16	2.15	3.37	0,12	1.39	

* Significant at 54 level.

,

Taking into account the effect of seed position alone (Table 15c) there was no significant differences in any of the shoot characters at any of the intervals.

(11) Root growth.

The data on the mean length of the tap root, the longest lateral root and the number of lateral roots are presented in Table 16a.

There was no significant difference in the length of the tap root and the number of lateral roots at any of the intervals, while there was significant variation in the length of the longest lateral root on the 90th day.

On the 30th day after germination the length of the tap root varied from 11.6 cm (T_6) to 13.84 cm (T_9) . The longest lateral root varied in length at the same period from 3.22 cm (T_1) to 5.25 cm (T_5) . The largest mean number of lateral roots was produced in T_2 (38) and the smallest number in T_7 (28.33).

On the 60th day after germination the length of the tap root varied from 12.76 cm (T_6) to 14.71 cm (T_4) while the length of the longest lateral root varied from 4.45 cm (T_1) to 5.68 cm (T_5) . The number of lateral roots for the same period varied from 34 (T_5) to 40.66 (T_2) .

The length of the tap rost ranged from 14.63 cm (T_7) to 18.07 cm (T_6) on the 90th day after germination. The

Table 15c. Shoot growth parameters of cock seedlings at various intervals sown in different months. April sowing.

٠

Days after germi- nation.		15th da	JY		30th (Joy	4	isth d	ay
						No.of lcaves.			
Pediesi end.		1.42	4.16	17.20	1,48	5,53	18,84	1,51	6.56
Middle	15,97	1.43	4,03	19.39	1.50	6.00	21.01	1.54	7,46
Distal end,	15,96	1.40	4,04	18.03	1.45	6,10	18,96	1.51	6,73
P-Value	1.32	⁵ 0.75 ^t	^{NS} 0. 34 ^{III}			^{NB} 0.93 ^{NB}	2. 34 ¹³	³ 0,41 ¹	¹³³ 0.97 ⁸⁹
CD (0.05)1.98	0.05	0.36	4.18	0,06	0,90	2,35	0.07	1.43

.

Table 15c. Continued

ľ

germi- nation.		601	th day	and a constant of the second second	75th	day	ų s	90th đi	уу
			No.of leaves.						
Pediaci end.		1.61	7.68	23,55	1,91	9.17	27.94	2.09	10.95
Madle	22.37	1.60	8.93	25,92	1.97	10.35	29,10	2.06	11.37
Distal end.	21.78	1.60	7.44	23.64	1.77	9.47	27,66	2.05	19,62
-Valuø	1.12	³⁶ 0.11 ¹	¹⁵³ 3.16 ^{Ne}	0.83 ^{NO}	3.34 ²⁹	⁵ 2,46 ¹¹	⁵ 0.03 ^N	^G O. 32 ¹³¹	6 . 38^{.77}
m(0.05) 2,18	0.14	1.33	4.36	0 ₅ 16	1.15	3.37	0.12	1.39

119

,

.

Table 16a. Root growth parameters of cocca seedlings at various intervals cown in different months. April sowing.

,

Days after germi- nation.		soth day)th day			eh day	·
Treate	Length	Length of lon- gest lateral root.	No.of late- ral	Length of tap root.	Length of lon-	No.of -late- ral	Length of tap root.	Length of lor gest	No.de I-lat-
	(cm)	(cm)		(ca)	(cm)		(cm)	(cm)	
	13.4	3,22	35,66	14,22	4,45	45.66	16.70	4,54	36,33
T2-1M	13.37	4.30	38	14,10	5.63	40,66	15,79	7.05	41
T3-10	13.4	4.49	34,66	14, 34	5,38	35.5	16,96	10.19	36.33
	12.42	4,03	34,66	14,71	5.59	37.33	14.76	6,69	39,66
T5-191	12,03	5.25	30,66	14.00	5.68	34	15.29	6.93	36.33
T6-MD	11.6	4.57	33,66	12.76	4.65	35	18.07	4.93	35.66
T7-8P	12,91	4.69	28,33	14.34	4.98	36, 33	14.63	5.22	37.33
T _o -SM	12.08	4,34	34,66	14,59	5,22	36,56	17,56	6.32	37
T 80	13.84	4.18	36	14,44	5,00	36.33	16.15	5,59	37
F-Value	0.23 ^{Ne}	3 1.86 ^{NS}	2,94 ^{NS}	0.32 ^{Ni}	a 0.69 ¹¹⁵	⁵ 1.16 ^{NE}	0.64	¹⁹ 3,62	· 2.03
co(o.os)4.67	1.16	5.61	3,16	1.74	6.11	4,91	3.06	4.46

.

.

.

length of the longest lateral root was significantly higher for $T_3(10.19 \text{ cm})$. The minimum length was observed for T_1 (4.54 cm). The number of lateral roots for the same period varied from 35.66 (T_6) to 41 (T_2).

Considering the main effects of pod size and seed position separately (Table 16b and 16c) there was no significant difference in any of the root characters studied at any of the intervals.

(111) Dry weight.

The mean dry weight of the shoot and the root and the total dry weight are presented in Table 17a.

There was no significant difference in the dry weight of the shoot and the total dry weight at any of the intervals of recording. The dry weight of the root showed significant variation on the 60th day only.

On the 30th day after germination the dry weight of the shoot varied from 640 mg (T_6) to 955.33 mg (T_5) while that of the root ranged from 117.33 mg (T_4) to 223.33 mg (T_8) . The total dry weight for the same period varied from 772.66 mg (T_6) to 1087 mg (T_5) .

On the 90th day after germination the dry weight of the aboot varied from 1325.33 mg (T_4) to 2769.33 mg (T_9) while that of the root ranged from 221.33 mg (T_6) to 716 mg (T_8) . The total dry weight for the same period varied from 1548 mg (T_6) to 3426 mg (T_9) .

121

.

Table	16b.	Root growth parameters of cocoa seedlings
		at various intervals sown in different months. April sowing.
		a that a set of the

Days after germi- nation,		3 0th da	у		th day		90th	doy	
monts,	of top	of ion gest	1-later	Length of tep root.	Length of lon- geat lateral root.	No.of late- ral	of tap root.	of Ic	n-cf la rai ci
	(cn)	(cm)		(cm)				(cm)	
Lorge	13,39	4.00	36,11		5.15				
Medium	12,30	4.62	33.00	13.82	5,31	35.44	16.04	6,20	97.
Snall	13.94	4,40	33,00	14.45	5,03	36.44	16,11	5.70	37.
F-Value	0,36 ^{31/}	⁵ 1.89 ^{RI}	⁵ 2.71 ^{NB}	0.26 ^{MS}	0.16 ^{NS}	0.59 ^{NG}	0.06 ^{MS}	1.70 ⁸¹	0.23
	10. 190.	a. 67	3.34	1.92	1.00	3.52	2.94	1.76	2.57

Table 16c. Root growth parameters of coca secdlings at various intervals sown in different months. April sowing.

.

.

.

/

e.

• •

.

.

Day s after germ i- nation		30 th á	loy		60th de	у	90	th day	
		Length of lon- gest lateral root.	· loter al	-of tay root.) OÉ	late-	of tap root.	of lor gest	1- 1a-
	(cm)	(cm)	-	(cm)	(cn)		(cm)	(cm)	antanta sala an atalah bi biyanga
Pedicel end.		3.93	32,60			36,44	15,36	5,48	37.77
MLCO1e	12,78	4.63	34.44	14,22	5.51	37.11	16.21	6,78	39.11
Distal end.	12,95	4.41	34.77	13,84	5.01	25,61	17,06	6.90	36,33
p-Value	0.10 ^{NE}	³ 2,14 ^{NA}	0.85 ^K	^{ig} 0.55,	¹⁶ 0.77 ¹¹⁵	0.40 ^t	¹⁵ 0,78 ¹	³⁵ 1.74 ¹	^{1,9} 1,16 ¹⁷⁷
ed (o. 09	12.70	0.67	3,24	1.32	1.00	3.52	2,84	1.76	2.57

geraliation		30th a	ey		69th day			90th Cay		
Treatmonts	Shoot (my)	Root (mg)	Total (my)	Shoot (mg)	Root (mg)	Total (mg)	Shoot (ng)	floot (mg)	Total (mg)	
r ₁ -rp	717.33	172.33	389.66	1185.33	246.66	1432.00	1672	299.33	1971.33	
T14	752.66	157	909.66	1274.60	254	1523.66	1376.66	339.33	1716.00	
	785.33	186,66	972.00	912.66	251.33	1164.00	1365.66	337.66	1704.33	
	768	117.33	895,33	1236,66	199,33	1436.00	1325.33	i 233.33	1550.66	
r _s -Mi	955.33	131.66	1087.00	1294.66	266	1560.66	1372.66	278	1650.66	
6-300 ·	640	132,66	772.65	1250.66	210	1460.66	1326,66	221.33	1549.00	
r,-sp	676.66	171.00	847.66	1133.33	318	1451.33	2047.33	370.66	2518.00	
r a- 5M	757	223,33	980,33	1052.66	302	1354-66	2272	716	2933.00	
g-SD	713.33	210,66	924.00	917.33	51 8	1135.33	2769.33	656,66	3426.00	
-Value	0.83 ^{NS}	1.14 ^{17/5}	0.94 ⁸¹⁵	2,68	3.08 ⁷³⁵	2,36 ¹⁷⁰	0,50 ND	0.36 ^{NS}	0.43 ¹¹⁸	
D(0.05)	290.61	43,32	299.75	172.16	59,42	202.84	1136,04		1419.19	

•

Table 17 a. Dry weight of cocce seelings at various intervals soun in different months. April sceing.

ns:

Not significant. Significant at 58 level. *

· _

.

123

· .

Taking into account the effect of pod size alone (Table 17b) there was significant difference on the 60th day when the weight was significantly higher for 'medium' and on the 90th day when the weight for 'medium' and on the 90th day when the weight for 'small'was significantly higher. The dry weight of the root was significantly higher for 'small' on the 30th, 60th and 90th days after germination. The total dry weight showed significant difference on the 60th day when the weight for 'medium' was significantly higher and on the 90th day uhen the weight for 'small' was significantly higher.

Considering the effect of seed position by itself (Table 17c) there was significant difference in the dry weights only on the 60th day when the dry weight of the shoot and root, and the total dry weight was significantly higher for 'middle'.

1.5 Size of Containers

A detailed study of the growth characters upto 90 days under varying sizes of polythene bags (30 x 20, 25 x 18 and 23 x 15 cm) was carried out by soving seeds during December 78, February and March 1979 and the results of the investigations are presented below. The analysis of variance tables for different characters are given in Appendix.

124

Days after germination		30th day			60th day			90th day		
Trestments	Shoot (ng)	100A ((m)	Cotal (mg)	Shoct (rg)	R301. (83)	Total (mg)	Chock (mg)	Root (og)	Tosal (mg)	
Large	751.77	172.00	923.77	1124,22	250.66	1374.69	1471.77	325.44	1791.22	
Meðium	707.77	127.22	915.00	1260.65	225.11	1485.77	1341.55	246.22	1585.77	
Sma ll	715.66	201.66	917.32	1034.44	279. 33	1313.77	2362.83	614.44	2977.33	
5-Value	0.40 ^{NS}	15,92**	o.10 ^{NS}	11.59**	5.52*	4.89*	6,34*	9.80	** 7.4**	
CD(0.05)	167.73	27,90	173.00	99.40	34.30	117.11	655.89	104.6	3 813,79	

Table 175. Dry weight of cocca seedlings at various intervals soun in different months. April Souing.

NS

.

Not significant. Significant at 5% level. Significant at 10% level. S. 者

Days efter golmination	30th	day	-	sou	i dey		90:1	i day	· · ·
Treatmente	Shoot (mg)	Root (ng)	Sotal (mg)	Shoot (mg)	Root (mj)	Total (mg)	Sheot (Eg)	Root (mg)	Total (mg)
Redicci end	720.66	153,55	374.21	1185.11	254,66	1439.77	1691.59	334.4	\$ 2016.0
Middle	821.66	170.66	992, 32	1207.33	274.00	1491.03	1673.71	444.4	1 2113.2
Distal end	712.68	176.66	889,54	1076.93	226.44	1353.33	1920.00	105,2	2226,1
E-Value	1.15 ²³⁵	1.63	1.22 ¹⁰⁵	8,65**	4,28*	9.49**	0.14 ^{MS}	C.80 ³¹⁰	3 0.34
(20.05)	167.79	27,90	173.00	99,40	34.30	117.11	655.09	194.63	610.79

Table 17c. Dry weight of cocce seedlings at various intervals corn in different months. April couing. . . .

98 Not significant • Significant at 15 level • Significant at 15 level.

1.5.1 Shoot characters.

Data of the height, girth and number of leaves of the seedlings are presented in Tables 18 a to c and Figure 3,

(1) <u>Height</u>.

a) December sowing.

There was significant variation at 1 per cent level between treatments on the 15th $\frac{2}{3}$ 90th and at 5 per cent level on 90th day after sowing while on the 30th, 45th and 60th day there was no significant variation among treatments. At all these intervals maximum height was recorded for 30 x 20 cm size bag.

On the 15th day T_3 was significantly superior to T_1 but was on par with T_2 . The maximum height was 13.5 cm in T_3 and the minimum 5.14 cm in the case of T_1 . The maximum height was 20.24 cm for T_3 and the minimum 14.38 cm for T_1 on the 30th day. On the 45th day the maximum height was 21.16 cm for T_3 and the minimum 16.64 cm for T_1 . The maximum height was 21.52 cm for T_3 and the minimum 10.36 cm for T_1 on the 60th day.

On the 75th day, T_3 was significantly superior to T_2 and T_1 which were on par. The maximum height 29.9 cm was recorded for T_3 (30 x 20 cm) while the minimum height 18.82 cm was recorded for T_1 (23 x 15 cm).

On the 90th day again T_3 was significantly superior to T_2 and T_1 which were on par. The maximum height recorded

grown in different clas of bags. December sowing. in in the side of the side in the Daya 30th Gay 15th day 4Sth day aster germLnation. -----Treat- Height Girth No. of Height Girth No. of Height Girth No. of 108-108mente. 1ca-(cm) (cm) (cm) (cm)(cm) ves. (cm) ves. ved. 5,14 1,18 2,40 14,38 1,26 4,20 16,64 1,39 5.00 **T**1 (23x15cm)^T2 12,80 1,28 3,40 18,94 1,40 5,40 18,93 1,44 6,80 $(25 \times 18 \text{ cm})$ 73 13.50 1.32 3.80 20.24 1.56 4.60 21.16 1.56 7.00 (30x20cm) F-Value 9.89** 1.18^{NS}9.75** 3.45^{NS}1.76 2.43^{NS}2.48^{NS} 1.53^{NS}3.87^N CD(0.05) 4.79 0.20 0.71 5.10 0.34 2.20 4.42 0.32 1.72 مين في مان من عن عن جي الله عليه عليه عن عن عن جي تي المانية الله عن عن عن عن عن عن عن الله عن الله عليه الله 115 Not significant. ** elonicicant at 1% level.

Table 19s. Shoot growth parameters of cocce seedlings

Table 18a. Continued.

Daya after germi- nation,	60th (ley		75	th day			doth de	зу
Treat- Bonte.		Cirth (cm)	No.of lea- ves.	Height (cm)	Girth (cm)	No.cf lea- ves.	Neight (cm)	Cirth (cm)	
ini ale an	18.36	1.32	6.4	18,82	1.40	C0,8	19,36	1.64	8,90
23x15cm)			• .	• '					
⁷⁷ 2	39.98	1.48	7.00	20,56	1.72	9.50	21,02	1,96	10,20
25x18cm)									
	21.52	1.66	8.2	29,9	1.92	10,80	30.34	2.18	11.60
30x20cm)								, 	
F-Value	1.38 ¹⁹⁵	3,55 ^{N.}	⁵ 1,68 ⁸⁷	⁵ 6 .1 5*	9.05*	*1.49	⁸ 7,92**	9,78+	*7.00
CD (0.05)	4.13	0.27	2,17	7.39	0,26	2.54	6.47	0.26	1.63
and the set of the set of the set	in an sin sin sin in the sing of		na iya iyi tara sa i	in the same and the same of	ili in the factor	AB 44.94 MARINE		19.86 () 19.86 () 19.86 ()	nî dijî din tê dijî din t
NS N	ot sign:	Leican	Ċ.						
* G	ignicic	ent at	591 1 01	vel.					

129

.

· · · ·

.

Table 10b. Shoot growth parameters of eccea sectings grown in different sizes of bags. February sowing.

Days efter germi-15th day 30th day 45th day nation. الله بالادرارية، أولد عود الله عن عن عن عن ا نتها ينتر احذ حاله Treat-Height Girth No. of Height Girth No. of Height Girth No. of 10a-109ments. 108-(an)(cm) ves. (cn) (cm)(cm) (cm) ves. Ves 14.18 1.28 3.80 14.44 1.30 4.40 16.68 1.42 5.00 ⁷1 (23x15cm) ng i 16.14 1.32 4.00 18,90 1.46 4.40 20.40 1.49 6.80 (25x18cm) T a 17.25 1.35 4.00 20.50 1.50 5.20 21.00 1.56 7.00 (30x20on) ini dan merakat dan bisi dak juk wina pan ing tam dan digi 19 mila 198 F-Value 2,96^{NO} 0.75^{NS}1.00^{NS}4.76* 4.42* 1.14^{NS}3.52^{HO}0.60^{NS}5.68* CD(0.05) 2.78 0.14 0.35 4.43 0.15 1.33 3.83 0.27 1.42 Not significant. RG. <u>ن</u> Algnificant at 5% level.

-

Table 18b. Continued.

•

after germi- nation.	60	th day		7:	ith day	7	9	oth day	Ý
Treat- mento.				Height (cm)					
T ₁ 23x15om)	-	1.86	11.00	28.08	2.00	13.40	31.00	2.02	13.40
^T 2	28,13	1,96	11,60	29.70	2.04	12,60	38,54	2.22	13.60
25 x1 8cm)								
7 3	36,32	2.14	12.40	38.76	2.22	13.40	39,64	2.32	15.40
30×20cm))								
F-Value	ie vincia anticha agrica.	nte mar distant. Attinist i		198 1	an a	NS.		117	
F-Value	13,26*	* 2,02	1,12	3,67	1.4:	2````0,32	2,66	2.3	9~~2,10
	7.11	0.30	2.04	9,25	0,3	> 2.85	7.94	0.3	0 2.30

.

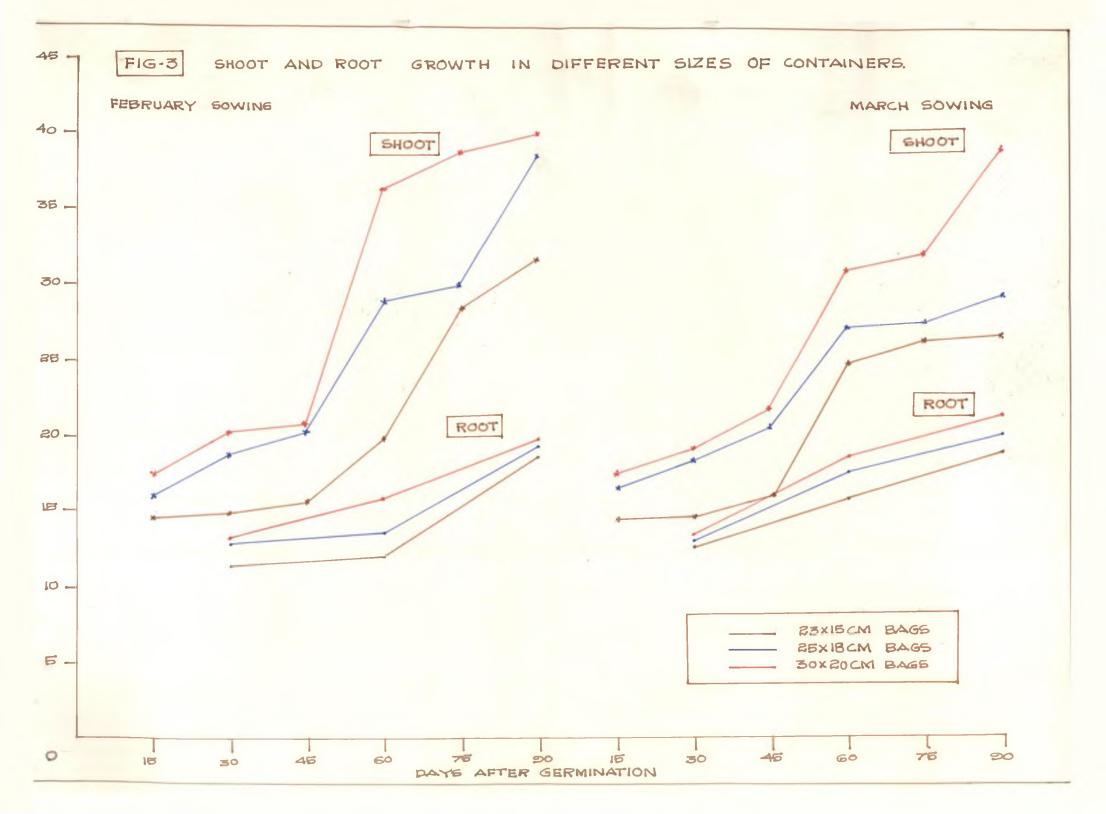

.

Table 18c. Shoot growth parameters of cocca seedlings grown in different sizes of bags. March coving.

Davs after . 20th day 45th day 19th day cernination, المحمد فتعتد وتعادد وتعديد وتحمد وتتكل Treat- Height Cirth No. of Height Cirth No. of Height Cirth No. of (cm) lea- (cm) (cm) lea-(cm) (cm) 108monts. (cm)ves. ves. VC8. 14.30 1.20 2.60 14.38 1.28 4.40 15.82 1.36 7.00 Ŧ. $(23 \times 15 \text{cm})$ 20.34 1.50 8.00 18.24 1.48 4.40 12 16.34 1.30 3.40 (25x18cm) 17.20 1.32 3.80 18.8 1.56 4.60 21.4 1.60 9.60 T. (30x20cm)E-Value 3.71^{NS}1.31^{NS}7.00** 1.98^{NO} 9.75**0.28^{NS} 3.12^{NS} 5.12* 1.93^{NS} CD(0.05) 2.38 0.17 0.71 5.26 0.14 1.33 5.16 0.3 2.9 ns Not significant. ÷ Significant at 5% level. 影会 Significant at 10 level.

Table 18c. Continued.

Days after ... germi-75th day 60th day 90th day nation. Treat- Height Girth No. of Height Girth No. of Height Cirth No. of 168-108mente. 108-(cm) (cm) (cm)(cm)(cm)(cm)Verves. ¥63. ⁷1 24.6 1.74 9.60 25,99 1.78 9.80 26.30 1.80 13.40 \$. . (23x15cm)27.03 1.94 11.00 28.82 1.96 11.80 T₂ 26,85 1,94 10,20 . (25x18cm) Ť, 30,60 1,94 11,60 31,28 2,08 11,80 38,62 2,12 12,00 (30x20cm) F-Value 0.98^{NS} 0.89^{NS} 0.74^{NS} 1.55^{NS} 1.76^{NS} 3.89* 6.80** 2.02^{NS} 0.18^{NS} CD(0.05)9,40 0,37 3.67 6.91 0.34 1.57 7.69 0,34 2.17 the six is a real and the six and Not significante NG ÷. Significant at 5% level. 黄资 Significant at 12 level.

was 30.34 cm for T_3 while the minimum was 19.36 cm for T_1 . Bigger size bag showed 58 per cent height than the lowest size bag (23 x 15 cm).

b) February sowing.

Significant variation between treatments was noticed on 30th and 60th day while on the 15th, 45th, 75th and 90th day there was no significant variation. However the maximum height at all intervals was noticed for T_3 (30 x 20 cm),

On the 30th day T_3 was significantly superior to T_1 but was on par with T_2 . The maximum height recorded for T_3 was 20,5 cm and the minimum was for T_1 (14.44 cm). On the 60th day T_3 was again significantly superior to T_2 and T_1 . The maximum height recorded was 36.22 cm for T_3 and the minimum was 19.5 cm for T_1 . Although there was no significant difference on 90th day, the maximum mean height 39.64 cm was recorded in case of T_3 which was about 26 per cent more than the height of T_1 .

c) March sowing,

Significant variation among treatments was observed only on the 90th day. At all other intervals the maximum height was recorded for T_{γ} (30 x 20 cm).

On the 90th day T_3 was significantly superior to T_2 and T_1 which were on para. Under treatment T_3 the mean height was 38.62 cm which was 46 per cent more than that of T_1 which was the minimum (26.3 cm).

Thus the results clearly indicates the superiority of T_3 (30 x 20 cm) with regarda to the height of the seedlings when they are 3 months old.

(11) Girth.

a) December sowing.

Significant variation at 1 per cent level between treatments was observed on the 75th and 90th day. At all other intervals the maximum girth was shown by seedlings under T_2 (30 x 20 cm).

On the 75th day, T_3 showed significant superiority over T_1 and was on a par with T_2 . The maximum girth was observed for T_3 (1.92 cm) and the minimum for T_1 (1.4 cm). Again T_3 showed significant superiority over T_1 on 90th day and was on a par with T_2 . The maximum girth observed was for T_3 (2.18 cm) and the minimum for T_1 (1.64 cm).

b) February sowing.

At all the intervals the maximum girth was noticed in T_3 (30 x 20 cm). Significant variation was noticed only on 30th day when T_3 was superior to T_1 and was on par with T_2 . The maximum girth observed was 1.5 cm for T_3 and the minimum 1.3 cm for T_1 . On 90th day T_3 showed maximum girth (2.32 cm) in this case alone as against 2.02cm in T_1 although the difference was not significant.

135

c) March sowing.

The maximum girth was observed for T_3 (30 x 20 cm) here also. Significant variation was noticed on 30th and 45th day.

On the 30th day the maximum girth observed was 1.56cm for T_3 and the minimum 1.28 cm for T_1 . The maximum girth observed was 1.8 cm for T_3 and the minimum 1.36 cm for T_1 on 45th day. On 90th day T_3 showed maximum girth (2.12 cm) in this case also as against 1.8 cm in T_1 .

The results showed that T_3 (30 x 20 cm) showed superiority in respect of the girth of the seedling. The variation in girth was 33 per cent, 15_{15}^{0} per cent higher in case of large size bags during December, February and March sowing.

(111) Number of leaves.

a) December sowing.

The highest number of leaves was recorded for T_3 (30 x 20 cm) and the minimum for T_1 (23 x 15 cm) at all the intervals, Significant variation was observed on the 15th day and on the 90th day:

b) February souling.

At all the intervals the highest number of leaves was recorded for T_3 (30 x 20 cm). Significant variation was observed only on the 45th day when T_3 was found superior to T_1 and it was on par with T_2 . The maximum mean number observed was 7 for T_3 and the minimum 5 for T_1 . On 90th day the mean number of leaves was 15.4 in case of T_3 and 13.4 in case of T_4 .

c) March sowing.

The highest number was noticed for T_3 (30 x 20 cm) at all the intervals. There was significant variation between treatments only on 15th day, when T_3 was found superior to T_1 and was on a par with T_2 . The highest mean number was 3.8 for T_3 and the lowest 2.6 for T_1 . On 90th day the T_3 showed a mean number of 12 leaves as against 11.4 in case of T_1 .

In case of height, girth and number of leaves the bigger sized bags (30 x 20 cm) was superior in all the three months (December, February and March). When comparing the growth parameter among the three months February was found to be the best for sowing for better heights, girth and for more number of leaves. This is closely followed by March. The February sowing has got an advantage that the seedlings will be ready by the middle of May with a height of around 40 cm and this is the congenial period for planting cocea under Kerala conditions.

1.5.2 Root characters.

The length of the tap root length of the longest lateral root and the number of lateral roots are given in Table 19 a to c.

137

Table	198.	Root growth parameters of cocoa secolings
		grown in different sizes of bags.
		December sowing.

•

-

Treat- ments.	Length og tap root.		· late- ral	of tap root.	Length of lon- gest lateral root.	- late- ral	of tap root.	0£ 10
	(em)	(cm)		(cm)	(cm)		(cm)	(cm)
	12,32	2.78	17.20	13,76	4.38	36,00	15.26	4.86
(23x15en	n)							
72	12,70	3,30	23,00	15.30	5.70	44.00	16,00	7.26
(25x18e	a)							
⁷ 3	13,52	3,70	23,60	16.10	4.86	55.00	16.39	11.40
(30x20cm	n)							
P-Velue	e 0.42¹²⁰	1.39 ^{NS}	24.99*	*1 .1 9 ¹¹⁸	0.77 ^{NS}	8.5 3**	0.11 ^{NS}	5,11*
	n it in the second	1 50	2.17	7. 26		16.06	7.9	1.5n

Days after germi- nation.)th day	• .	Ġ)th day		9:)th day	
Treat- ments,			lota- ral	of tap root.	of lon-	-late- ral	of tap root.	og lon	-lat roc
	(em)	(cm)		(cm)	(cn)		(en)	(en)	
T1	11.32	2,78	16.80	11.94	3.42	38.00	19,56	6.46	44
23x15cm	1)								
^T 2	12694	3, 32	23.00	14,64	6,16	39,00	19,12	7, 36	47
25x18cm)								
^T 3	13,30	3.76	23,60	19,60	7.28	39.00	19,46	10,52	49,
30x20cm	1)	•	u						
F-Value	1.67	⁹ 1,05 ^{NO}	18.48**		⁹ 4.12*	0,04 ^N	⁰ 0,03 ⁰⁸	2.64 ⁰¹⁸	0.6
onin or) 2.51	1_11	2.69	4.90	3,01	8.15	4,87	4.04	9.4

Table 195. Root growth parameters of cocca scedlings grown in different sizes of bags. February scwing.

Table 196. Noot growth parameters of cocoa seadlings grown in different sizes of bags. March soving.

Days after germi- nation.)th day	a polity with a first from party of a	60tl	ı day		. 90th	day	مەرىپىيە بىرىغ
Troat- ments.	of tap	Length of lon- gest lateral root.	late- ral	os tap reot.		·late- ral	of tap root.	of lon-	- lato. ral
	(cn)	(cn)		(cm)	(etu)	1 ang 20 ang	(cm)	(cm)	
31	12.54	2.78	17.60	15,49	4,36	34.00	18,58	6.60	35.00
23x15cm)								
T2 .	12.70	2,98	23,00	17,16	7,84	37.00	19.90	8,64	49.00
25x18c)								
7 3	13.38	3,58	23,20	18,52	8.50	40,00	21.00	8.96	\$1,00
30x20en	1)								
F-Value	0.29	2.01 ^{NS}	18,92*	*0,74 ^{NS}	5.ýý*	0.51 ^{NS}	0.26 ND	0.31 ^{N//}	2 .69 ¹³¹
CD (0.05)2.55	0.9	2.25	5,42	2,79	12,69	7.29	6.42	16,35
NS N	lot signi		a Till and ann dan anlar a	a a Dani an 15 Vicado i	19 14 19 18 19 19 19		a an an an an an	n, dagi anga sini anga diga	ini ay ini ya ka
	1gn1£1ct			1.					
	ignisica								

.

.

л

140

(1) Length of tap root.

a) December cowing.

No significant variation between treatments was observed. The maximum value was however obtained for T_3 (30 x 20 cm) on 30th, 60th and 90th days. The mean length of tap root mean number of laterals and the length of longest lateral root were 16.38 cm, 73 and 11.4 cm respectively in case of T_3 and on 90th day.

b) February sowing.

The maximum value was obtained for T_3 (30 x 20 cm) at all intervals. But there was no significant difference between tpeatments at any of the intervals. The tap root, length, number of laterals and length of longest laterals were 19.46, 49 and 10.52 cm respectively on 90th day.

c) March sowing.

The longest tap root was noticed at all intervals for T_3 (30 x 20 cm). No significant difference between treatments was however obtained. On 90th day the tap root length was 21 cm and the number of laterals was 51 and the length of lateral was 8.96 cm in case of T_3 .

The results thus indicate that, though no significant difference was observed between treatments, the length of the tap root was maximum in 30 x 20 cm size bags. The maximum root growth was observed in February and March sowing which also indicated the desirability of sowing seeds in February

(11) Length of the longest lateral roots.

a) December sowing.

The longest lateral root was obtained for T_3 at all intervals. However significant variation between treatments was noticed only on the 90th day. The maximum length 11.4 cm was for T_3 (30 x 20 cm) and the minimum 4.86 cm for T, (23 x 15 cm).

b) February gowing.

Significant difference at 5 per cent level between treatments was observed on 60th day. T_3 was superior to T_1 and was on a par with T_2 . The length of the longest lateral root was maximum for T_3 (30 x 20 cm) which was 7.28 cm and minimum for T_1 (23 x 15 cm) which was 3.42 cm. However the longest lateral roots were observed for T_3 on the 30th (3.76 cm) and 90th day (10.52) as well.

c) March sowing.

Here also significant difference at 5 per cent level between treatments was obtained on the 50th day when T_3 (30 x 20 cm) was found superior to T_1 and was on a par with T_2 . The length 8.5 cm was maximum for T_3 and minimum for T_1 (4.36 cm). At other intervals also the longest length was observed for T_3 (30 x 20 cm). From the results it can there be said that the longest lateral roots are seen in cocoa seedlings grown in 30 x 20 cm sized bags.

(111) Number of lateral roots.

a) December sowing.

There was significant variation between treatments on 30th, 60th and 90th day. At all these intervals the maximum value was in T_3 and the minimum in T_1 . On the 30th day T_3 was significantly superior to T_1 and on a par with T_2 . The largest number of lateral roots (23.6) were produced in 30 x 20 cm bags and the smallest number (17.2) in 23 x 15 cm bags. On the 60th day T_3 was superior to T_2 and T_1 which were on a par. The largest number was noticed for in T_3 (55) and the smallest number in T_1 (36). The same treatment was superior to T_1 and was on a par with T_2 . The largest number of lateral roots were obtained in T_3 (73) and the smallest for T_1 (54).

b) February sowing.

Significant variation between treatments was obtained only on 30th day where T_3 was superior to T_1 and was on a par with T_2 . The number of lateral roots were highest for T_3 (23.6) and lowest for T_1 (16.8). On the 60th and 90th day also the number of lateral roots was highest in the care of seedlings grown in 30 x 20 cm bays.

c) March sowing.

Here also significant variation was obtained between treatments only at the 30th day. T_3 was found superior to T_1 and was on a par with T_2 . The highest number of lateral roots were obtained in $T_3(23.2)$ and the lowest number in T_1 (17.6).

Daya after germination.	Ŕ	30th da	Y	601	60th Cay			90th day		
Treatments.	Shoot (mg)	Root (mg)	lotal (mg)	Shoot (mg)	Reat; (ag)	Total (ng)	Shoot (mg)	Root (eg)	Total (mg)	
7.1	891	254	1145	1560	280	1860	1610	284	1894	
23x15cm)										
1 m.	859	292	1147	1680	554	2034	1680	371	2051	
25::18em)										
en 3	722	335	1057	1890	397	2277	1960	430	2440	
301:20cm)							. Ma Minana Minana Minana an		ministra un standarman anti	
F-Volue	3 .10^{MS}	0.43^{22S}	0.49 ^{MS}	0.72 ^{VG}	3.13 ^{NS}	1. 31 ^{MS}	0.53 ^{MS}	8.96**	1.16 ^{NS}	
CD(0.05)	155.71	183.70	224.34	572.09	95.39	562.47	781.81	101.06	801.19	

Table 20a. Dry weight of cocca seedlings grown in different sizes of hags. December sowing.

.

Significant at 17 level. 唐黄

.

· ···

.

Ð in the second

Coys efter germination.				60th day			soth day		
Tostanics.	Shoot (mg)	Root (mg)	Socal (m3)	Shotet (mg)	Rost (mg)	Total (mj)	Shoet (mg)	Root (my)	Total (ng)
	720	380	1060	149<	285	1779	1604	346	1950
23x15cm) ^T 2	848	358	1205	1660	360	2020	1856	364	5350
25x13cm) ¹ 3	876	376	1252	1862	470	2332	1916	480	2396
30x20cm)			i da da sin san san san san san san	Alle And Millions and Anni And Alle at D.Y. 1997	S Z (ma dipi kiliki) judiy L ini dimi yay	ini manta di Anglistik da. 2/3		**	
F-Value CD(0.05)		1.72 ^{NO} 119.74	-	0.89 ^{NS} 593.60	·				

فصح С 10

Table 20b. Dry weight of cocoa secolings grown in different size of bags. February soving.

Significant at 5% level. *

Days after germination.	. 30tł	ı day	60th Gay				90th day			
Treatments	Shoot (mg)	Root (mg)	Total (mg)	Sheot (mg)	Reot (mg)	Total (mg)	Shoot (mg)	Rost (mg)		
T ₁	721	246	967	1275	292	1567	1798	332	2130	
23x15cm)										
T2	848	308	1156	1526	334	1843	2046	370	2416	
25x18cm)										
^у з	855	366	1221	1630	366	1996	2116	386	2502	
30x20cm)	12 and 100 arts with 100-100 arts	in jaan ahin indistrii kun asi, ami	1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 -	ali vi 11 100- siste er ta stati data dijan	di diyetang demokratiyan ya 1997 1988	iye ediyalik distaista ama aya	and utilized which it is the		ga dadi mata saga dan sasa si sa ada	
F-Value	3,5 ^{NS}	1.14 ^{NS}	2.85 ^{NS}	0.8 ^{NS}	0.98^{NS}	1.18 ¹¹³	0.30 ^{N3}	0. 61 ¹	^{NF} 0.42 ^{NE}	
CD(0.05)	124.2	172.73	235.60	624.16	115.52	616.11	938,78	108.7 6	919.36	

Table 20c. Dry weight of cocoa seedlings grown in different sizes of bags. March sowing.

NS Not significant.

1,46

- ----

On the 60th and 90th day as well as the number of lateral roots were highest in the case of seedlings grown in 30 x 20 cm bags. Thus the results show that seedlings grown in 30 x 20 cm bags have the largest number of lateral roots.

1.5.3 Dry weight.

try weight of the shoot, root and the total dry weight are presented in Table 20 a,b,c. The analysis of variance tables are given in Appendix.

(1) pry weight of shoot.

There was no significant difference between treatments in case of December, January and February sowing. The highest values were however obtained at all intervals in the case of T_3 (30 x 20 cm). The values for 90th day were 1960 mg in December, 1916 mg in January and 2116 mg in February. The highest values in all the three months were obtained for T_{a} .

Thus from the tables it is clear that the dry weight of shoot was highest for seedlings grown in 30 x 20 cm bags.

(11) Dry weight of root.

a) December sowing.

Significant variation between treatments was observed on 90th day. T_3 was superior to T_2 and T_1 which were on a par. The dry weight of the root for T_3 was 480 mg and that for \mathbf{T}_1 204 mg. On the 30th and 60th day also the highest dry weight were obtained for seedlings grown in 30 x 20 cm bags.

b) February sowing.

On 30th and 90th day there was no significant variation between treatments though the highest weights were obtained for T_{3^*}

On the 60th day T_3 was found significantly superior to T_1 and on a per with T_1 . The highest weight was obtained for T_2 (470 mg) and the lowest weight for T_1 (285 mg).

c) March sowing.

There was no significant variation between treatments though the highest weights were seen in T_3 at all the intervals.

Thus it can be clearly seen that the dry weight of root was highest for seedlings grown in 30 × 20 cm bags. Among the different puriods of souing the maximum dry weight of the root was observed in December and February (480 mg) which was 386 mg in case of March sowing, when the seedlings ware 90 days old.

(111) Total dry weight.

a) December sowing.

The highest weights were obtained at all intervals for T_3 (30 x 20 cm) though there was no significant difference.

b) February cowing.

There was significant variation in total dry weight on 30th day. T_3 was superior T_1 and was on a par with T_2 . The highest total dry weight was obtained for T_3 (1252 mg) and the lowest for T_1 (1000 mg).

On the 60th and 90th day also the highest total dry weight was obtained for T_3 though there was no significant difference.

c) March sowing.

The total dry weight was highest for T_3 on the 30th 60th and 90th days though there was no significant difference.

Thus the results show that the total growth as measured by dry weight of shoots and roots was maximum in case of T_3 (30 x 20 cm) and among the months of sowing the maximum observed in March sowing (2502 mg)followed by December (2440 mg) and February (239.6 mg). However maximum root growth by way of dry weight was observed in case of February and December sowing (480 mg each) as against 386 mg in March.

1.6 Potting Medium

The results of the detailed study of the growth characters of cocoa seedlings in different potting mixtures are presented below. The analysis of variance tables for the different characters are given in Appendix.

1.6.1 Shoot characters.

The height, girth and number of leaves of the cocos seedlings are given in the Table 21a to c.and Figure 4.

(1) Height.

(a) December sowing.

The maximum height was in T_2 (1:1:2 mixture) at all intervals. Significant difference between treatments was obtained at 1 per cent level on the 30th day, at 5 per cent level on 45th and 75th day. At these intervals T_2 was significantly superior to T_3 (soil) and was on a per with T_1 . On 30th day, the maximum height was 19.16 cm in T_2 and the minimum 14.08 in T_3 . On the 45th day again the maximum height was 20.5 cm in T_2 and the minimum 17.02 cm in T_3 . The maximum height on 75th day was 27.54 cm in T_2 and the minimum 18.54 cm in T_3 . On the 90th day the maximum height was 34.18 cm in T_2 and the minimum 26.16 cm in T_3 .

b) February sowing.

The maximum height was obtained for T_2 at all the intervals. There was significant variation between the treatments at 5 per cent level on the 15th and at 1 per cent level on the 30th day. On the 15th day, T_2 was significantly superior to T_1 and T_3 which were on par. The maximum height was 18.38 cm for T_2 and the minimum 14.16 cm for T_3 . On the 30th day T_2 was significantly superior to T_3 and was on par with T_1 . The height 19.36 cm for T_2 was the

	Te	able 21a	see		grown	in dii	rs of co ffere n t		•
Days after germi- nation.		15th day	₩ 140 000 000 000 000 000 000 000 000 000		30th (jay		45th	day
Treat- ments.	Height (cm)	t Girth (cm)	No.of lea- ves.	Height (cm)	Girth (cm)	No.of lea- ves.	Height (cm)	Girth (cm)	No.of lea- ves.
T ₁ (1:1:1)	14.30	1.24	4.20	18,90	1.34	4,20	19,16	1.62	7.00
^T 2 (1:1:2)	14.80	1,32	4,40	19,16	1.34	4.60	20+50	1,72	7.40
^T 3 (Soil)	14,30	1.06	4.00	1 4 . 80	1,32	4.20	17.02	1.5	6.60
F-Value	0.06 ^{NS}	1.05 ^{NS}	1.20 ^N	^S 7.59**	0.06 ^N	S 0.1 9 ^{N:}	³ 4.50 *	1.59 ^N	So. 58 ^{NS}
CD (0 .05)	3,39	0.40	0.56	3,19	0#11	1,63	2.54	0,26	1.61
* Sig	: signii gnifican gnifican	nt at 59					क कड़ी गरंग तथ 100 थरी थे।		

、

Days after germi- nation.	60t	ch day	ا هم محد مد مد می می می م 	751	th day	199 (199 (199 - 209 (199 (199 (199 (199 (199 (199 (199 (1	90tł	n day	
Trea t- ments,	Height (cm)		No.of lea- ves.	Height (cm)		No.of lea- ves.	Height (cm)		No.of lea- ves.
T1 (1:1:1)	23.22	2.06	7.20	25.36	2.06	8.20	32,98	2,08	12,60
^T 2 (1:1:2)	23.88	2.14	9,80	27.54	2.16	11,20	34.18	2,.22	13.80
^T 3 (Soil)	19.86	1 <u>.</u> 76	7,00	20 °•54	1,88	7, 20	26.16	1.90	9.80
F-Value	1.96 ^{NS}	5.05*	12.62	**6, 8*	2.45 ^N	^S 3.49 ¹	^{NS} 7: 32*	*0.76 ^N	^S 2.98 ^{NS}
CD (0+05			·		0.27	3, 43	4.92	0,56	3.66
* Sic	t signif gnificar gnificar	nt at 5	% leve	L					.

COVD after 19th Cay 30th dov 65th Jay ocraiaction. Treat- Height Cirth No. of Height Cirth Da. of Meight Cirth No. of monto. (cm) (cm) Loa- (cm) (cm) loa- (cm) (cm) 1ca-VCB. V0.9. VOD. 15.96 1.34 4.30 17.43 1.40 4.20 19.16 1.62 6.30 654 6 7 (1:1:1)1 53 13.33 1.34 4.40 19.36 1.44 4.40 20.40 1.72 7.40 (1:1:2)3 14.16 1.92 3.60 15.7 3.38 4.23 17.10 1.5 6.60 (2021) P-Value 5.73* 0.06¹¹³ 3.25¹¹³ 13.66**0.93¹¹ 0.06¹¹³ 3.19¹¹³ 2.04¹¹³ 0.56¹¹ CD(0.05)2.72 0.14 0.71 1.69 0.09 1.42 2.67 0.33 1.62 and had the and the same we have been and the set of the same has been and the same and NO NOL CLADICICONA Block Leont at 9 1 levol.

2/ 3

Clynleicene de 17 lovel.

Table 21b. Shoot growth percenters of cours scoulings grown in different modia. Rebrary southg. Table 21b. Continued,

Days after gero i- nation.	60th	day		7	Sth day	Ŷ	4	90th da	зу
Treat- monts.	Reight	Girth (cm)	No.05 103- V68.	Noléht (ca)	Girth (cm)	No.02 1ea- Vos.	Height (cn)	Girth (cm)	No.of 163- ves.
T1 (1:1:1)	26.03	1.64	11.20	28,22	2,02	13.20	40,58	2,12	13.69
⁸ 2 1:1:2)	25.16	1,74	12,20	29.26	5.44	14.00	41,24	2.24	14.60
T ₃ - (Soll)	83 ⁰ 00 j	1,59	ĕ ₊4 0	25,10	1.92	11.00	37,90	1.94	12.20
Pavalue	0.51 ^{MS}	0.90 ^{NS}	2.74 ^{13!}	o,29 ¹¹³	0.90 ^{PR}	⁶⁾ 2.54 ⁸³³	0.13 ^{NO}	1.64	⁶ 1,15 ¹⁰
CD(0.05)	10,18	0.26	3.66 1	2.29	0.35	2,94	13.15	0.36	3.44

NG Not alguificant.

Days after germi- nation.	151	n day	1	30th (Jay		49ti	a day	
Treat- monte.							(cm)		
T ₁ (1:1:1)	14, 30	1.24	4,20	17.46	1.34	4,20	18.12	1,54	6.83
^T 2 (1:1:2)	14.70	1,20	4.40	20.5	1.34	4.60	21.10	1,72	7.60
7 ₃ (so11)	14,30	1.03	4.00	14,18	1.32	4.20	16.03	1.50 -	5,80
F-Velue	0.05 ^{NS}	0.9 ^{NS}	1.20 ²³	⁹ 10,9**	0.06 ^N	0.19 ¹¹	1.66211/3	•.79 ^{D1}	0.80
CD (0.05)	3.06	0.36	0.96	2.96	0.14	1.60	5.07	0.40	3.10

Teble 21c. Shoot growth parameters of goods soullings grown in different media. Harch sould:.

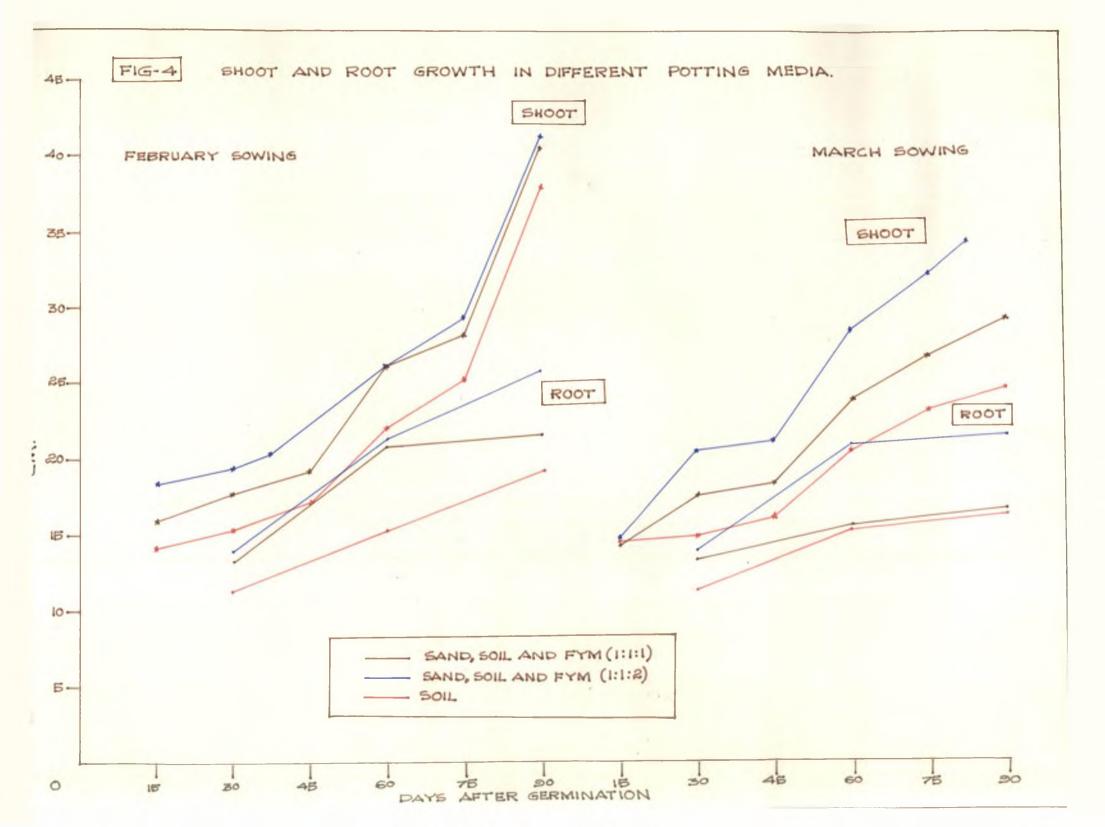
.

.

.

.

~


Table 21c. Continued.

after germi- nation.	(50th da	У	,	75th đi	σĀ	9 ()th day	
Treat- monte.			No.of lea- vec.	Height (cm)			Height (cn)		
^T 1 (1:1:1)	23.70	1.55	8,30	26.42	1.89	10.80	29.00	1, 90	12.0X
^T 2 (1:1:2)	25,29	1,04	11.00	32,02	1.90	13.00	34.04	1,96	14.4
73 (2011)	20,40	1.50	8.00	22.94	1.68	10.09	24.66	1,86	19.4
r-Value	2,06 ^{NO}	1.40	2.76 ^N	3,26 ¹²³	1.03 ³⁷	² 2.30 ¹¹	2.40 ^{MG}	0 . 53 ^{11/}	³ 3, 35
cb (0,05)3.43	0,47	3.66	7.31	0.35	3.15	9,10	0.21	3,33

-

•

NS Not significant

maximum and 15.3 cm obtained for T_3 was the minimum. The maximum height was 41.24 cm in case of T_2 with soil sand and FYM in the proportion of 1:1:2.

c) March sowing.

The height obtained for T_2 was the highest at all the intervals. Significant variation at 1 per cent level between the treatments was obtained only on the 30th day when T_2 was significantly superior to T_1 and T_3 . The maximum height was 20.5 cm for T_2 and the minimum 14.18 cm for T_3 . On the 90th day 34.04 cm height was recorded in T_2 and it was only 24.66 cm in T_3 and 29 cm in case of T_3 .

Thus in all the three sowings the maximum height has been observed in seedlings grown in soil, sand and dried form yard manure in the ratio of 1:1:2.

(11) Girth.

a) December gowing.

The seedlings under T_2 (1:1:2 mixture) showed the maximum girth at all intervals. Significant variation at 5 per cent level was obtained on the 60th day. T_2 was significantly superior to T_3 (soil) and was on a par with T_1 (1:1:1). The maximum girth was 2.14 cm for T_2 and the minimum 1.76 cm for T_3 .

b) February sowing.

Though no significant variation between treatments was obtained, the girth was found maximum for the seedlings in T_2 (1:1:2) and minimum for those in T_3 (soil) e) March sowing.

Here also no significant variation between the treatments was found. But T_2 had the maximum girth and T_1 the minimum.

The results conclusively proove that the seedlings grown in 1:1:2 potting mixture had the maximum girth.

(111) Number of leaves.

a) December sowing.

The number of leaves produced were highest for T_2 (1:1:2) at all the intervals and the lowest for T_3 (soil). Significant variation at 1 per cent level was obtained on 60th day. The mean number of leaves produced for T_2 was 9.8 which was significantly superior to T_1 (7.2) and T_3 (7). T_1 and T_3 were on a par.

b) February souring.

The highest number of leaves were produced for T_2 and the lowest for T_3 . No significant variation was however obtained.

c) March sowing.

The number of leaves was highest for T_2 and lowest for T_3 at all the intervals, though there was no significant difference.

From the results obtained it is quite evident that the height, girth and the number of leaves produced were higher for the seed sown in the potting mixture of soil, sand and dried farm yard manure in the ratio of 1:1:2. Among the different months of sowing February recorded the maximum growth by height (41.24 cm) girth(2.24) cm and number of leaves (14.6) when the seedlings are 90 days old.

1.6.2 Root characters.

The mean values of the length of the tap root, the length of the longest lateral root and the number of lateral roots are presented in Table 22 a to c.

(1) Length of the tap root.

a) December sowing.

The length was greatest for T_2 (1:1:2) and shortest for T_3 (soil) on the 30th, 60th and 90th day. There was no significant variation between the treatments.

b) February sowing.

 T_2 produced the maximum length and T_3 the minimum at all the intervals. There was no significant variation at any of the intervals.

c) March sowing.

The longest tap roots were produced in T_2 (1:1:2) and the shortest in T_3 (soil). However there was no significant variation.

(11) Length of the longest lateral root.

a) <u>December powing</u>.

The longest lateral roots were produced for T_2 (1:1:2) and the shortest for T_3 (soil). There was no significant Table 22a. Root growth parameters of cocoa seedlings grown in different media. December sowing.

.

Days after germi- nation	301	ch day		60t)	n day		90th	day	and and a second second second
Treat- 1 ments, (of lon- gest	later- al roots,	of tap root.	of longest	No.of -late- ral L roots.	of tap root.	of ic gest	n-late ral alrost
1111 1111 - 112 9 <u>14</u> 415 241 123 1	(cm)	(cm)	(beligt tille interiod) dags and	(cm)	(cm)		(cm)	(cm)	
T ₁ 1:1:1)	13.84	2.98	23.00	15,72	6.06	51.00	16,10	8.36	56.00
T ₂ 1:1:2)	13,20	3.48	25,80	16,36	6,58	64,00	24.12	11.09	81.00
T 3 (2011)	10,79	2.76	20.00	12,78	5.42	49.03	15.7 2	6.08	54.00
F-Value	1.43 ^{NS}	1.44 ^{NS}	3.30 ¹¹⁸	2.71 ^{N.3}	.54^{NS}	1.03 ^{NS}	3.40 ^{NG}	1.15	¹⁶ 3,66 ³
CD (0.05)4.26	0.94	4,91	3.57	2.42	24.71	7.92	7.17	24,23

160

.

Days a2ter 60th day 90th day germi-30th day nacion. Treat- Length Length No. of Length Length No. of Length Length No. of ments, of tap of lon-later- of tap of lon- late- of tap of lon-lateroot. gest al root. gest ral root. gest ral lateral roots. lateral roots. lateral roo lateral root: root. root. root. (cm) (cm) (cm)(cm) (cm)(cm) 13.38 2.93 23.00 20.95 6.64 40.00 21.62 12.95 53.00 7. (1:1:1)T2 13.94 3.48 25.80 21.24 9.56 41.00 25.72 13.88 53.00 (1:1:2)11.29 2.76 20.00 15.18 6,56 37.00 19.30 7.46 50.00 T₃ (6011)والمحكي الملا بشاريقة بالأحماد ويستله وتبر بمدونها بالحمال والمحماد الأرجار الأراجات والاختيار D=Value 1.39^{NS} 1.49^{NS} 3.39^{NS} 2.60^{NC} 1.45^{NS} 0.19^{NS} 1.31^{NC} 16.03**0.32^{NC} CD(0.05)3.56 0.93 4.85 6.53 4.37 14.61 6.73 2.67 9.41 \mathbf{M} Not significant ÷ 🔅

Significant at 1% lovel.

Table 22b. Root growth parameters of cocca seedlings grown in different media. February soving.

Days after germi- nation,	30th	day		60)th day		90	th day	
Treat-) ments. (of tap		late- ral	of tep root.	of lon-	· late- ral	of tag root.	o os lo	n- of late 1 al
andre allen villen state en il este en er a	(ca)	(cm)		(cm)	(cm)	nani wa nazi wa sali uku wa	(en)	(cm)	
T1 [1:1:1]	13,38	2,98	23,09	15.10	5,87	37.00	16.5	6.24	37,00
⁷ 2 1:1:2)	13,98	3.48	25 ₀ 80	20.76	7.44	44.00	21,28	8.00	52.00
^Т з 5011)	11.22	2.76	20.00	14.98	5,12	30.00	16,4	5,12	37.0
F-Value	1.59 ¹⁷⁵⁵	1.66 ^{NB}	4,91*	2.15 ^{NS}	1,03 ^{NS}	5.34*	4.09*	1.34	3 , 02 ⁶
co (0. 05)3,45	0,03	4,03	6,99	3.61	9,32	4.26	3.85	19,35

Table 22c. Root growth parameters of cocos socdlings grown in different media. March sowing.

•

.

Significant at SY1 level.

difference between the treatments either on 30th, 60th or 90th day.

b) February cowing.

The seedlings in T_2 had the longest lateral roots and the shortest in T_3 . Significant difference between the treatment at 1 per cent level was obtained on 90th day. The length of 13.68 cm obtained for T_2 was on par with T_1 (12.96 cm) and significantly superior to T_3 (7.46 cm).

c) March soulng.

The longest lateral roots were produced in $T_2(1:1:2)$ and the shortest in $T_3(soil)$. No significant variation between treatments was observed.

(111) Number of lateral roots.

a) December sowing.

The number of lateral roots were highest in T_2 and lowest in T_3 . No significant difference between treatments was however noted.

b) <u>Pebruary sowing</u>.

In this cowing also the largest number of lateral roots were seen in $T_2(1:1:2)$ and the smallest number in T_3 (soil). No significant difference between treatments was noted.

c) <u>March cowing</u>.

Significant variation between treatment was obtained on the 30th and 60th days. On the 30th day, T_{g} (25.8) was significantly higher than T_{g} (20) and was on per with T_{f} (23). T_1 and T_3 were also on a par. On the 60th day again, T_2 (44) was significantly higher than $T_3(30)$ and was on a par with $T_1(37)$, T_1 and T_3 were also on par.

From the results it can be seen that the length of the tap root, number of laterals and the length of the longest laterals were highest in case of T_2 and closely followed by T_1 (1:1:1). The least growth was recorded in T_3 (in soil). Among the months of sowing February sowing recorded the maximum length of tap root (25.72 cm) and laterals (13.88 cm). But the maximum number of laterals were observed in December (81) when the seedlings were 90 days old.

1.6.3 Dry weicht.

The mean dry weight of the shoot, root and the total dry weight of cocoa seedlings grown in the three potting mixtures are presented in Tables 23a to c.

(1) Dry weight of shoot.

a) December souing.

The dry weight of the shoot was highest in $T_2(1:1:2)$ and lowest in T_3 (soil). Significant difference between treatments was obtained on the 60th day. $T_2(1:3:4 \text{ mg})$ was significantly superior to T_1 (1090 mg).

b) February cowing.

The highest dry weight were obtained for T_2 and the lowest for T_3 . No significant variation between treatments was however obtained.

Pays aftor germi- nation.		30 t h	day	Q	idth day	7	90th	day	
Troat- monts,	Shoot (mg)	Root (ng)	766a) (ng)	Choot (mg)	Root (mg)	(mg)	(mg)	(mg)	Total (mg)
T ₁ 1:1:1)	724	235	95 9	1090	249	1339	2750	380	3130
^T 2 11112)	892	243	1135	1334	304	1639	2900	5 7 6	3478
T ₃ So11)	714	171	835	1056	243	1394	2080	362	2442
P-Value	1,59 ¹	¹⁹ 2 .04 ¹	¹⁹ 2.24 ¹⁰⁰	5,03 *	0 ,4 8 ^N	⁶ 5.43*	0.91	2.03 ^[3]	~1.14 ^{0^}
CD (0.05)	244.9	5 84,95	6 264.03	208,33	141.09	236,65	1405.56	255.4	93 1 517.

.

Table 236. Dry weight of cocoa seedlings grown in different media. December sowing.

.

.

.

.

Days after germi- nation.	30th day			6()th day	n ' ann ann an fallinna den anna	90th day		
Treat- ments.	Shoet (mg)	Root (mg)		Choot (mg)		Total (mg)	, -	Cast (mg)	
^T 1 (1+1+1)	710	240	950	1770	390	2160	2016	434	2450
^T 2 (1:1:2)	863	246	1109	2120	432	2552	2139	650	2 7 96
^T 3 (S011)	707	180	88 7	1580	330	1910	1836	390	22 26
F-Value	1.73 ^{NS}	1.74	^{NG} 3,29 ^{[3}			[,] 1.70 ¹¹⁰			•
CD(0.05))205.97	85.05	232.77	749,93	157,06	763,84	595,67	223,84	566,29

Table 23b. Dry weight of cocca easdlings grown in different media. Pobruary sowing.

NG Not significant.

,

Table 23c. Dry weight of cocoa seedlings grown in different media. March sowing.

Treat- mants.	Shoot. (mg)	Root (mg)	Total (mg)		Roat (mg)			Nout (mg)	201. (9)
T 1	724	353	946	1204	240	1444	2132	325	2457
(1:1:1)									
⁵ 2	902	246	1148	1779	334	2113	2556	372	2938
(1:1:2)									
~ 3	716	168	834	1055	209	1263	2110	246	2356
(Sot1)			·						
F-Value	1.46 ^{NS}	2.72	^{IO} 1,95 ^N	¹⁰ 3.96*	2,16 ^N	⁸³ .90*	0.51 ^{NS}	2.22	¹² 0.7
CD(0,05);	263.03	74.51	304,15	591.9	197.00	698,26	1103,97	131.4	6 1 10

. • • •

.

The highest dry weights were obtained for $T_2(1:1:2)$ and the lowest for $T_3(soil)$. Significant difference between treatments was obtained at the 60th day when T_2 (1779 mg) was significantly superior to T_3 (1055 mg) and was on a par with T_1 (1204 mg). T_1 and T_3 were also on par.

(11) Dry weight of root.

a) December souing.

The dry weight of the roots was highest for T_2 (1:1:2) and lowest for T_3 (soil). No significant variation between treatments was obtained.

b) February cowing.

Though no significant variation between treatments was noted, the roots in T_2 had the highest and those in T_3 the lowest dry weights.

c) March sowing.

The dry weight was highest in T_2 and lowest in T_3^* . No significant variation was however, obtained,

(111) Total dry weight.

a) December sowing.

At all the intervals, the total dry weight was highest for T_2 (1:1:2) and lowest for T_3 (soil). Significant difference between the treatments at 5 per cent level was obtained on 60th day. T_2 (1639 mg) was significantly superior to T_1 (1339 mg) and T_3 (1304 mg) which were on par.

b) February sowing.

The total dry weight was highest for T_2 (1:1:2) and lowest for T_3 (soil). There was no significant difference either on 30th, 60th or 90th day.

c) March sowing.

The total dry weight was highest for T_2 and lowest for T_3 . Significant variation between treatments at 5 per cent level was obtained on 60th day. T_2 (2113 mg) was significantly superior to T_3 (1263 mg) and was on par with T_1 (1444 mg). T_1 and T_3 were also on par.

Thus it can be seen from the results that the dry weight of the shoot and the root and the total dry weight were higher in case of the 1:1:2 medium and lowest in the soil medium. Among the different periods the total dry weight (3478 mg) and the dry weight of shoot (2900 mg) were higher in December sowing while the dry weight of the roots was maximum (658 mg) in Pebruary sowing.

1.7 Viability of Seeds in Storage

The data on the percentage of germination for the various treatments are presented in Table 24.

Pods kept as such in the room conditions showed the maximum germination. After three days the germination percentage was 78.02 and after 12 days 23.33 per cent. The seeds extracted and kept at room temperature, showed germination upto the 6th day of storage though the percentage

Table 24. Germination of cocoa secds under various conditions of storage (Mean percentage)

.

_

3

.

an a	Room tem	garature	Refrigerated conditio				
Days after hervest.	In the pod	Extracted		Entracted			
3	78.02	44.44	N 11	51 1 1			
6	66.29	20.00	Mil	N11			
9	33,99	11 4.1 ,	17 1.1	1111			
12	23.33	19 1 1	ML 1.	7 11 1			

. Marina wa wakao wanazia wakao was very low (20). The pods and the seeds kept under refrigerated conditions did not show any germination even on the 3rd day.

1.8 Root Growth Studies

The data on the root characters studied are presented in Table 25 and the different stages of root growth in Plate VII and VIII.

The root characters of 15,30,60,90, 180 and 270 day old, seedlings were studied. The mean length of the tap root was 13.12 cm when the seedlings were 15 day old and 29.93 cm when 9 months old. The mean length of the longest lateral of 15 day old seedlings was 2.73 cm and that of 270 day old seedlings 29.93 cm. The mean numbers of lateral roots of 15 days and 270 days old seedlings were 34.5 and 78.0 respectively. The mean dry weight of the root was 161mg when the seedlings were 15 days old and 4.69 g when 270 days old. The same is presented graphically in Figure 5.

Thus from the Table it can be seen that the growth of the tap root and the laterals was at a faster rate upto 15 days by which time the tap root grew 43.8 per cent of the growth upto 270 days and the number of laterals was 44.2 per cent. By the time the seedlings are 30 days old, 57.2 per cent growth of the tap root was completed and the number of laterals increased upto 70.7 per cent. The rate of tap root growth and the production of laterals were comparatively

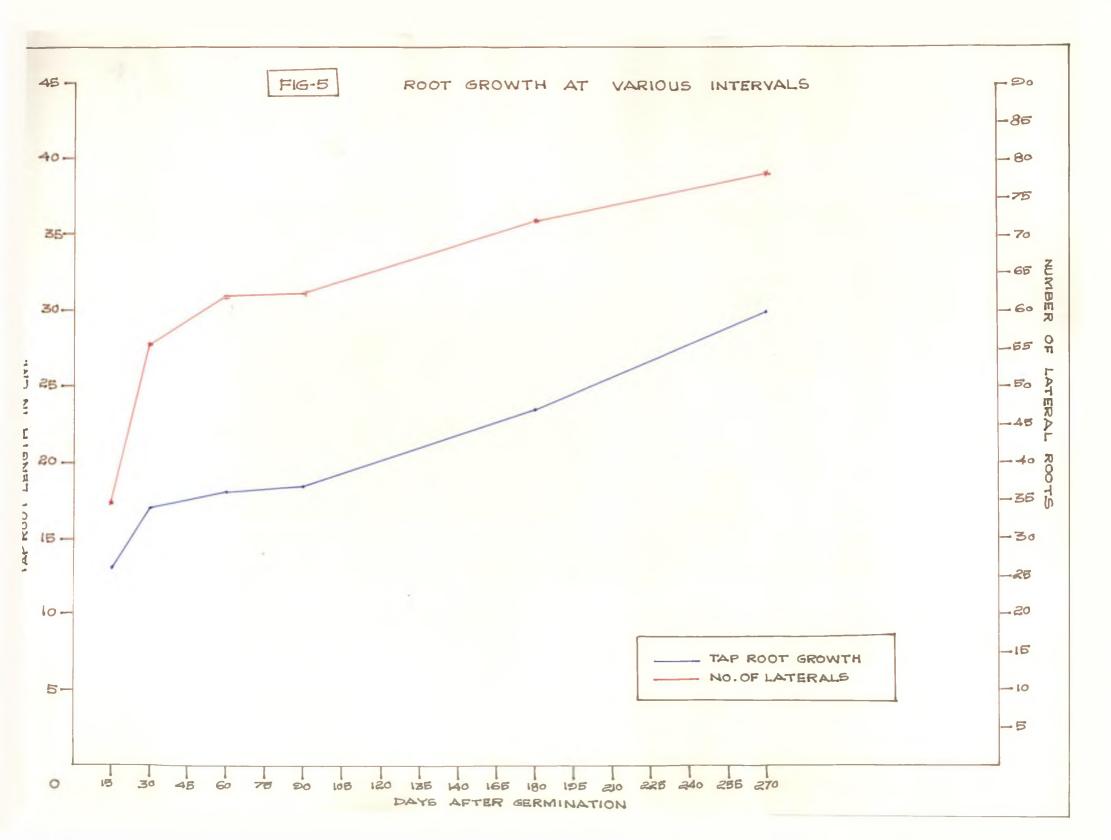
171

Table 35. Root growth of cocca seedlings at various intervals. (Rean of 20 seedlings)

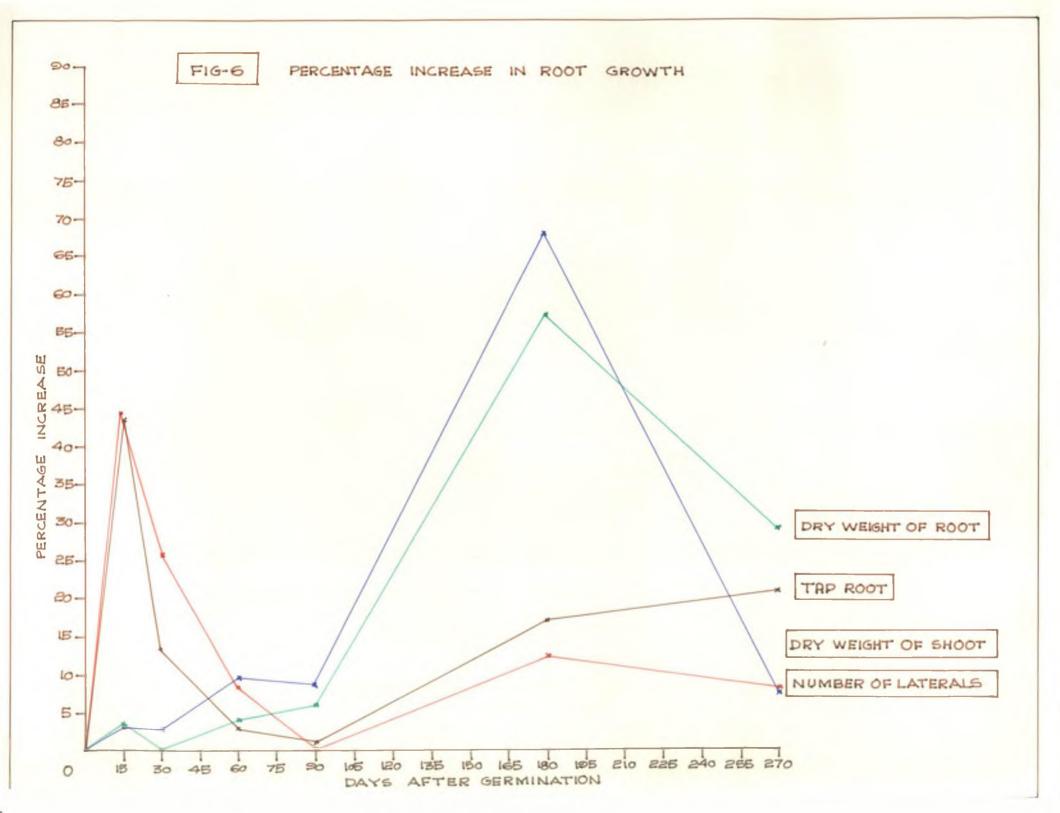
Age of secdlings	-	Percentage of increase in tap rost growth	longest	Percentage of increase in length of longest lateral root	No.of lateral roots	Percentage of increase in number of lateral roots	Dry sweight of root		w ei ght of	Percen- tage increase in dry weight of shoot
inger offen some weise gant some men interferet veri	(cn)	In the state of the state and the state of the	(ca)	an tan Talang Marine Ang Marine ang Marine		us die aus aus gestuur 410 auge uur aug ander	(133)	a dia ina dika ina dia dia dia dia	(cog)	ani da ana ana ana da shafta (sa
15 Coys	13.12	43,80	2.78	15.20	34.50	44.20	161.00	3.40	359.30	3.21
30 days	17.11	13.30	3.18	2.20	55.15	26.50	161.25	0.01	655.50	2.64
60 days	18.05	3.10	3.54	2,50	61.30	8.50	352.00	4.10 1	730.00	9.59
90 days	18.37	1, 10	8.18	24.80	62.15	0.50	536 ₈₀ 00	6.10	2720.00	8.94
180 days	23,45	17.00 1	6.94	47.90	71.75	12.30 33	314,50	57,09	0350.00	68.13
270 days	59.93	21.70 1	8.29	7.40	79,00	8.03 46	689.00	29.30 3	1200.00	7.59

Note: The percentage increase is based on the values for the 270th day:

PLATE VII Different stages of root growth.


.

.


PLATE VIII Root growth of seedlings showing colling of roots,

slow during the period between 30 and 90 days of growth, thereafter it gradually increased upto 90 days. But the rate of increase in growth was faster between 90 and 180 days thank from 180 to 270 days. The same is presented in Figure 6.

Figure 6 also makes clear that the increase in the growth rate and the increase in dry weight of the shoot and root were alternated. In other words when the percentage of increase of tap root and number of laterals were higher, the percentage of accumulation of dry matter was less and vice versa. The accumulation of dry matter was more in shoots than in roots and the percentage of increase in dry matter accumulation was also more in shoots till 180 days after germination. Thereafter the dry matter accumulation was at a faster rate in roots than in shoots upto 270 days. Since the root growth from 90 to 120 days is guite low it will be advisable that the plants are transplanted during this period for better establishment. The length of tap root and the number of lateral roots are also not too large during this time so that it can be easily accompodated without coiling in a polythene bag of 30 x 20 cm.

2. VEGETATIVE PROPAGATION

2.1 Rooting of Cuttings

The data on the percentage of rooting, average number of roots and the average length of the roots, 60 days after potting in the nursery are presented in Table 26a and 26b.

2.1.1 Mist chamber method.

(1) Percentage of rooting.

Statistical analysis showed that there was significant variation at 1 per cent level in the percentage of rooting. The percentage of rooting was significantly higher for T_{12} (96.3) followed by $T_{24}(94.9)$, $T_1(84.3)$, $T_{15}(81.6)$, $T_{14}(80)$, T_{13} and $T_{11}(70.8)$. The lowest percentage of rooting was obtained for T_{60} (1.1) which was lower than the control(3.7).

(11) Number of roots.

Statistical analysis showed significant variation at 1 per cent level. The mean number of roots was significantly higher for $T_{25}(10.76)$ followed by $T_{26}(9.63)$ and $T_{30}(7.64)$. The number of roots was lowest in $T_{55}(0.28)$ and $T_{60}(0.30)$. The number of roots obtained for control was 0.30.

(111) Length of roots.

The mean length of the roots was maximum for $T_2(5.7 \text{ cm})$ followed by $T_3(5.35 \text{ cm})$, $T_1(5.34 \text{ cm})$, $T_9(5.06 \text{ cm})$ and T_{27} (4.25 cm).

		Tab.			Ropting data of doces semi-hardwood cuttings treated with different plant growth regulators. Mist chamber method.						
		Tree	tman	18		Perco of ro	entage @ ecting	15 00	r no ts(cm) @@@		
1		2000		•			(66,63)				
2	ina	2000	pon	20	80C	36,6	(37.23)	2,31	(1,82)	5;7	
3	IAA	2000	pən	30	860	50.1	(45.08)	4,57	(2,36) 5,35	
4	IAA	2000	1997A	60	øec	36.6	(37,22)	3,49	(2.12) 3,33	
5	IM	4600	ppm	10	sec	29.2	(32.70)	6,78	(2,79) 3,53	
6	ina	4000	pon	20	ðec	60.6	(51,14)	2.09	(1.76) 3,60	
7	Тал	4000	D[A	30	sec	60.6	(51,14)	4,43	(2+34) 2:60	
8	iaa	4000	151213	60	sec	33.3	(35,21)	4.19	(2,28) 2,23	
9	taa	6000	$p_{l}m$	10	sec	63.4	(52.77)	4,38	(2.32) S.06	
10	iaa	6000	<u>Dixu</u>	20	600	56.8	(48,93)	3.84	(2.20) 4.21	
11	IAA	6000	jopm	30	960	70.3	(57,29)	4,80	(2,41	3.72	
12	taa	6000	poni	60	860	96.3	(78,93)	4.06	(2.25)) 3,37	
13	T 3,8	8000	p.m	10	eec	70.8	(57,29)	3, 50	(2.14) 2:31	
14	iaa	8000	jir.	30	sec	80.0	(63.44)	5,30	(2.51) 1,53	
15	tha	8000	H.	30	80C	31.6	(64.63)	5.81	(2,61)	2:17	
16	IM.	8000	97a	60	88 C	66.7	(54.78)	6.13	(2.67) 3,15	
17	MA	2000	pon	10	890	56.7	(49.84)	2,53	(1.83) 3,10	
13	NAA	2000	1912M	20	sec	50,5	(45,29)	4.96	(2,42)) 3.21	
19	B AA	2000	(MCM)	30	88C	39.7	(39.06)	3.00	12.00) 3.20	
20	ыла	2090	Dim	6 9	Sec	43.3	(41.15)	4.48	(2.34)) 2,19	
21	NAA	4000	prm	10	sea	36.4	(37.14)	4,90	(2.43)	3,41	
22	NP5	4000	<u>Si u</u>	20	sec	30,0	(33.21)	5.00	(2.45)) 2.21	
23	13/1A	4000	(2 D 2 N	30	sec	50.0	(45,00)	3.62	(2,15)) 2.04	
24	MA	6000	運用	60	86¢	94.9	(76,92)	5.71	(2,59)) 2,52	

Server of a state part water and a state of a stat

Table 26a. Continued.

		eatmo		-		Percentage of rooting	Mean number of roots	gth of roots(c
25		6000				46.0(42.70)	10.76(3.43)	
26	NAA	6000	mqq	20	Sec	39,3(39,85)	9,63(3,26)) 2,+66
27	MAA	6000	ppm	30	sec	23,2(28,77)	3.04(2.01	4,25
28	мла	6000	mcra	60	sec	39.3(38.85)	2,61(1,90)	1.84
29	naa	3000	ppm	10	sec	53,3(46,92)	2.30(1.95) 2.54
30	NAA	8000	neid	20	sec	26,5(30,99)	7.64(2.94)) 2,25
31	NAA	8000	mqq	30	sec	43.3(41.15)	3.12(2.03	2.74
32	NAA	8000	ppm	60	sec	30.0(33.21)	3.04(2.01) 2.50
33	IBA	2000	ppn	10	sec	36.4(37.14)	2.03(1.74)	1,99
34	IBA	2000	ppm	20	sec	53,3(46,92)	4.90(2.43) 2,43
35	IDA	2000	ppm	30	sec	66.7(54.78)	4.76(2.40	3,40
36	IDA	2000	mag	60	Sec	43.2(41.07)	6.02(2.65) 1.78
37	IÐA	4000	ppm	10	sec	39.7(39.06)	2.28(1.81) 1.51
38	IDA	4000	ppm	20	980	30.0(33.21)	5.60(2.57) 2.17
39	i ba	4000	ppm	30	36 C	43.2(41.07)	5.10(2.47)) 2.46
40	IBA	4000	ppm	60	66 C	56.8(48,93)	3.49(2.12	1.31
41	IBA	6000	ppm	10	sec	22.4(28.28)	3,12(2,03) 2,31
42	IBA	6000	ppm	20	990	26,2(30,79)	2.46(1.66)	1,95
43	IBA	6000	ppm	30	sec	28,5(32,30)	3.54(2.13) 1.75
44	IBA	6000	nqa	60	88 C	36.4(37,14)	-3.64(2.01	3.07
45	IBA	8000	ppm	10	sec	15.7(23,36)	1.31(2.52) 0,87
46	tea	8000	pşm	20	580	26,2(30,78)	2,35(1.83) 2.30
47	IDA	8000	1212xII	30	eec	23,2(28,77)	6.40(2.72)	2.46
48	IBA	8000	ppm	60	800	18.3(25.37)	4.02(2.24) 2.83

Table 26a. Continued.

		atm			<u></u>				octing	Mean number of roots	Mean len- gun of roots(cm
49				2000						4.71(2.39)	2,40
50	naa	and	TDA	2000	pon	20	sec	26.2	(30.78)	5.71(2.59)	1.58
51	NAA	and	IBA	2000	ppm	30	sec	13.0	(21.14)	2.24(1.80)	1,93
52	NAA	and	IDA	2000	mad	60	sec	21.0	(27.29)	1.22(1.49)	1,99
53	NAA	and	tha	4000	pan	10	89C	26.5	(30,99)	2.35(1.83)	1.67
54	NAA	and	IBA	4000	blau	20	sec	26,2	(30.78)	2.13(1.77)	2.50
55	NAA	and	ida	4000	<u>n</u> cicī	30	86C	2.4	(8,85)	0.28(1.13)	0.37
55	NAA	anc	IDA	4000	Den.	60	sec	32,9	(35.00)	1.46(1.57)	1.47
\$ 7	naa	anð	TEA	6000	ine <u>r</u> ci	10	sec	2.4	(8,85)	0.69(1.30)	0.50
53	NAA	and	tea	6000	ppm	20	sec	10.0	(18,44)	2.13(1.77)	0.63
59	NAA	and	IBA	6000	<u>p</u> jan	30	sec	9.2	(17.70)	0.77(1.33)	1,83
60	naa	and	194	6000	D[M	60	Sec	1.1	(8.14)	0.30(1.14)	1,17
61	NAA	and	TDA	8000	pen	10	sec	9.2	(17.70)	1.96(1.69)	0,71
62	Пал	and	iða	8000	prm	20	Sec	10.0	(18.44	6.56(2.75)	1.59
63	мла	and	iba	8000	Dim	30	sec	5,3	(12,29)	1.22(1.49)	1.42
64	NAA	and	ТЛА	3000	DOU	60	sec	9,2	(17.70)	1.50(1.59)	0,53
	Co	ontro)					3.7	(11.07)	0,30(1,14)	0 ,33
	a lue	18 YAN BUS 24 Y	و څه ولوايم ه	ine ware, with last objectiv	lational Pills State in	يد والله جيمل جي	wine of an app	2,68	; ★ ★	13,03**	માં શેર્ણ ન્યુ: હાલુ કરેલું છેલ્લ ગ્લાદકરે છે છેલ
CD(0,05)					15.36		G _e 33				

** Significant at 1% Level.

@ The values in parenthesis denote angular transformed ones.

00 The values in parenthesis are expressed as /x+1.

600 Not analysed statistically as there was no rooting in certain replications which resulted in incomplete data.

			met	hod.					
ارت میرد میرو میرو میرو میرو میرو	Treatments				ofire	ntage@ xting	of re	ots@@	Meen len- gth of reots(cm) asa
1	IAA 2000	ppm	10	sea	77,6	(61.71)	2,53	(1.88)	3.31
2	TAA 2000	p pm	20	58C	33,3	(35.21)	2.13	(1.77)	4.46
3	INN 2000	pem	30	sec	60.3	(50.93)	4,29	(2.30)	6.39
4	TAA 2000	pym	60	sec	33.3	(35.21)	2.35	(1.83)	3.57
5	IAA 4000	DD W	10	sec	53.0	(46.71)	4.15	(2,27)	5.72
6	IAA 4000	DDW	20	86 C	70.8	(57.29)	2,80	(1.95)	5,83
7	IAA 4000	ppm	30	sec	76.2	(60,78)	3.84	(2.20)	3.41
8	IAA 4000	ppn	60	sec	43,2	(41.07)	3.24	(2.06)	4.93
9	IAA 6000	bbu	10	880	66.7	(54,78)	3,33	(2.03)	5,62
10	IAA 6000	ppa	20	sec	43,2	(41.07)	4.06	(2.25)	2,14
11	IAA 6000	b'au	30	8eC	60.6	(51,14)	5,05	(2.46)	3.07
12	IAA 6000	b by	60	sec	85.8	(67,86)	3.08	(2.02)	2,33
13	IAA 8000	p ph	10	96C	60 , 6	(51.14)	2,53	(1,83)	3.00
14	IN 8009	pian	20	sec	89.0	(63.44)	3.04	(2.01)	2.76
15	INA 8000	DDU	30	8eC	39.7	(39,06)	3.16	(2.04)	2.37
16	IAA 8000	DDW	60	89C	63,4	(52,77)	3.80	(2.19)	3,70
17	NVY 5000	pp m	10	060	36,4	(37.14)	2.24	(1.80)	4.24
18	NAA 2000	рул	20	sec	57.2	(49,14)	5.55	(2.56)	3,13
19	NAA 2000	ppm	30	58C	43.2	(41.07)	3.84	(2.20)	3.80
20	NAA 2000	ppm	60	sec	46.6	(43:07)	9.43	(3,23)	4.50
21	NAA 4000	nkiq	10	9 9 0	43,2	(41.07)	7.00	(2,83)	3.07
22	NAA 4000	Diw	20	99C	30.0	(33.21)	5.15	(2,48)	2.73
23	NAA 4000	Maga	30	sec	50,0	(45.00)	7,18	(2.86)	3,28
24	NAA 4000	Dim	50	sec	80.6	(63.84)	4.15	(2.27)	2,87

Table 26b.	Rooting data of cocoa semi-hardwood
	cuttings treated with different plant growth regulators, Polythene sheet method.

:

Table 26b. Continued.

.

	Treatments		Percentage of rooting	den number of rosts	Mean len- gth of roots(cm) 4.94
25	11/A 6000 pm	10 880	32.3 (34.63)	11.89(3.59)	
26	NAA 6000 mpm	20 sec	29.2 (32.70)	5,30(2,51)	6.15
27	NAA 6000 mm	30 sec	53.0 (46.71)	4.15(2.27)	3,19
23	112.A 6000 Sigm	60 esc	23.2 (28.77)	6,29(2,70)	4.31
29	NAA 8000 pom	10 666	46.9 (43.97)	2.65(1.91)	2.28
30	NAA 9000 Eyra	20 900	15.7 (23.36)	3.00(2.00)	1.59
31	NAA BOCO DOM	30 sec	46.5 (43.07)	4.29(2.30)	2.51
3.5	NAA DOCO FRM	60 580	15.7 (23.36)	3.03(2.00)	1.64
3 3,	IDA 2000 ppm	10 sec	43,2 (41.07)	5,40(2,53)	4,51
34	192 2000 Biu	20 cec	39.7 (39.96)	7,53(2.92)	3.79
35	ION 2000 7.20	37 220	50.1 (45.09)	5.35(2.52)	2.91
36	zba 2000 pom	60 sse	39,8 (39,14)	6,34(2,71)	2.34
37.	IBA 4000 2730	10 sec	49,9 (44,91)	2,83(1.97)	3,34
36	IBA 41200 pipa	20 ésc	30.0 (33,21)	6.40(2.72)	2,58
39	zoa acco pom	30 860	36.4 (37.14)	3.49(2.12)	4.27
40 .	ten 4000 ppm	60 860	63.6 (82,36)	5,60(2,57)	5.30
42.	IDA 6000 prin	10 eec	15.7 (23,36)	1.13(1.46)	2,10
42	IDA 6030 pym	20 660	32.9 (35.00)	4.76(2.40)	5.91
43 .	IBA 6000 ppm	30 sec	18.4 (25.37)	3,00(2,00)	4.20
40 .	198 6000 <u>Rot</u>	60 353	43.2 (41.07)	2.57(1.99)	4.23
45	103 8000 pan	10 880	26,5 (30,99)	3.28(2.97)	1.57
46	IDA 8960 pm	20 666	32.9 (35.00)	4.48(2.34)	3,32
47.	104 8080 p.m.	30 sec	26.5 (30.99)	6,04(2,90)	2,54
48	130 0000 pm	60 ees	28.6 (32.30)	6,73(2.79)	3.03

Table 26b. Continued.

Slockware Slockware Andream						Percontage of rosting			(tean	number	Mean lon- gth of roots (cm)	
49	an a NAR	and	tda	2000		10	.	16.4	(23.85)	3,49	(2.12)	2,70
50	MAA	and	TBN	2000	DTX)	30	sec	52.9	(35,00)	7.00	(2.93)	3.64
51	N. A. A.	anc	хBл	2000	Diau	30	sec	16.4	(23.05)	2.05	(1,75)	4.92
52	Nan	and	851A	2005	mgg	60	20C	34.8	(26.14)	2,65	(1.91)	3.63
53	017,14	ané	104	4000	ppn	40	sec	23.2	(29,77)	S., 35	(1.83)	2.57
54	naa	onci	IDA	4000	<u>texu</u>	20	560	32.9	(35.00)	4.02	(2.24)	3.04
55	ØAA	and	хdа	4000	<u>p</u> jan	30	sec	9,3	(17.70)	1.16	(1.47)	2.02
96	1133	and	2:DA	4000	dî w	60	sec	26.2	(39,73)	6.24	(2.69)	6,16
57	NAR	end	IDN	6000	pom	10	sec	9.31	(17,70)	1,28	(1.51)	2,12
53	11.20	end	төл	6000	100 M	20	sec	10.01	(13,44)	2.72	(1.93)	1,57
59	nan	end	EFA	6000	Din	30	seci	2.4	(2,05)	0.42	(1.19)	1,03
60	1.(.)A	cnu	TD A	6000	p jm	60	geq	0.01	(0)	0.0	(1.00	0,00
61	MAA	end	tea	300)	ey an	10	5 6 C	2,41	(0.95)	0,28	(1.13)	0.47
63	IIAA	end	İba	0000	pym	20	.00C	10.01	(18,44)	0 , 9 9	(1.41)	2.00
63	和小	end	zea	6000	<u>than</u>	30	sec	1.1	5(6,14)	1,25	(1.45)	0 , 33
66	ØLA	anki	IBN	6000	Diw	60	860	2.4	(8,65)	0.61	(1.27)	0.33
	1999 - 1996 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 -	Canl	•								(1.53)	0.71
na sense and an							2,39*		6.04*			
cD(CD(0.05)							16.25			0.40	
1 10 6 3.000	10-10-19-2 0 -3	() # 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1	4 44 443394	a the isle this to be	17 - in 18 - 19 1 2 -	1 () , at a	i di stitu		t çê Mêşîş Meşî Kar	18 mij (19 mir 19 s	4. 19-19: 19-19: 19-19: 19-19: 19-19: 19-19: 19-19: 19-19: 19-19: 19-19: 19-19: 19-19: 19-19: 19-19: 19-19: 19	eras markana ana ang markana ang marka Na kasa ng kasa

Pr. Significent at 1% lovel.

.

9 The values in parenthesis denote angular transformed ones. 60 The values in parenthesis are expressed as /x+1. 60(Not analysed statistically as there was no rooting in certain replications which resulted in incomplete data.

2.1.2 Polythene sheet method.

(1) Percentage of rooting.

Statistical analysis showed significant variation at 1 per cent level. The percentage of rooting was significantly higher for $T_{12}(85.8)$ followed by $T_{24}(80.6)$ and $T_{14}(80)$. The percentage of germination was lowest for T_{60} where there was no rooting. The control showed 8.8 per cent rooting.

(11) Number of roote.

Statistical analysis showed significant difference at 1 per cent level. The mean number of roots was highest for T_{25} (11.89) followed by T_{20} (9.43), T_{23} (7.18), T_{21} and T_{50} (7.00), T_{47} (6.84) and T_{48} (6.73).

(iii) Length of roots.

The average length of the roots was highest in T_3 (6.39 cm) followed by T_{56} (6.16 cm) and T_{26} (6.15 cm). The lowest average length was recorded for T_{63} (0.30 cm) and T_{64} (0.33). The control recorded 0.71 cm.

Among the two methods i.e. the 'mist chamber' and the 'polythene sheet' method, the highest percentage was obtained with the mist chamber method. The rooting percentage was 11 per cent more. However the average number of roots (11.89) was highest in the 'polythene sheet' method compared to the 'mist chamber' method (10.76). Similarly the average length the root was also more in 'polythene sheet' method (6.5) than the 'mist chamber' method (5.7). However, both methods can be adopted under our conditions depending upon the situations. In the case of the polythene shoet mothod the percentage will be slightly low; but the number of roots per cuttings will be higher. The question of survival of the rooted cuttings have to be ascertained before suggesting a single method.

Among the treatments it was found that IAA at 6000 ppm concentration treated for 60 sec gave the maximum percentage rooting of 96.9. In certain replications the percentage of rooting was even 100 per cent for this treatment. MAA at 4000 ppm treated for 60 sec gave 94.9 per cent rooting with 100 per cent in certain replications.

However, when the number of roots and the average length of roots were also taken into account NAA at 4000 ppm treated for 60 sec is slightly superior. Therefore IAA at 6000 ppm or NAA at 4000 ppm for 50 sec are suggested for rooting of cocca cuttings (Plate IX). IPA, though in general is more effective for rooting, is not found producing the effect in this case. Though synergetic effect is empected by the combination of NAA and IBA the same was not found very effective in the present investigation.


PLATE IN Rooted cuttings.

.

Ŷ

.

2.2 Budding

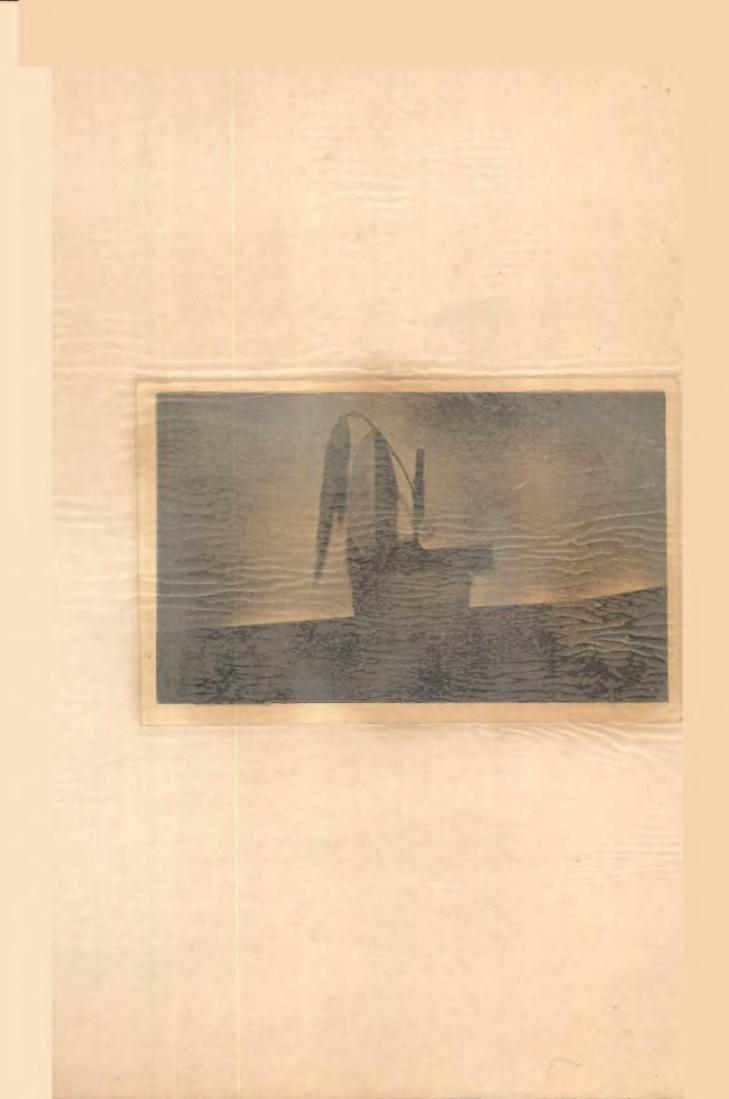
The results of the four methods of budding carried out are presented in Table 27. The 'T', 'inverted=T', patch and forkert methods of budding were carried out on 7 to 11 months old root stocks from January to May 1979.

In January the percentage of success was 35 for the 'T' and 'inverted-T' methods and 30 for patch budding while the forkert method gave 50 per cent success.

In February the percentage of success increased to 40 and 45 for the 'T' and 'inverted-T' methods respectively and 35 for patch budding. The forkert method gave 60 per cent success.

In March 45 per cent success was obtained for the 'T' and 'inverted-T' methods while for patch and forkert the corresponding percentage of success were 40 and 60 respectively.

In April 35 per cent success was obtained for 'T' and patch budding while for the 'inverted-T' method it was 30 per cent. The forkert method gave 55 per cent success.


Thus among the four methods of budding carried out, the forkert method gave the maximum success while the 'inverted-T' and patch methods ranged next. The maximum success was obtained in February and March when the budding was done on eight and nine months old root stocks. Plate X shows a budded plant.

かまたが 4500 mm 、 当 二 22 か い う む C D		· JAIDANY			FEGRIMAN		19 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5					LUI LUI			
873 07		7	na originali najeli da originali		8	nange stale stale stale stale in a)		10			11	in the state of the	distant Ant alter
	Number budded	Runber of take		Nupber Endded	of talic		Runber Budded			Junker buddad		Sorce ntage of oucc- ass.	ioar ioad-	der of	Per- cen- tage of auco- ges
tçt buðd- lag.	20	7	35	20	3	40	20	9	45	20	7	35	20	7	35
inver- ted tyt	20	7	35	50	9 ·	45	20	9	45	20	6	30	20	7	35
Daten	20	6	30	20	7	1	20	8	40	20	7	33	20	0	40
formert	: 23	12	50	20	12	60	20	12	60	23	13	50	20	11	55

Table 27. Sudding of cocca secolings.

PLATE X Budded plant two months after budding.

.

· 2.3 Green Budding

The data on green budding is presented in Table 28. The percentage of success was 40 in all the methods for two months old root stock using green buds. But when the buds were taken from greenish brown coloured twings, the percentage of success was 60 in case of forkert method. while it was only 40% in other methods.

On three month old root stocks are of green buds gave 40 per cent success for 'T' and 'inverted-T' methods, 20 per cent for patch and 60 per cent for forkert. Using buds from greenish brown coloured twings, 100 per cent success was obtained in the forkert method and 80 per cent in the 'inverted-T' method. But the success was only 40 per cent for 'T' and patch budding.

When four months old root stocks were used 20 per cent success was obtained in all the methods using green buds The success was 40 per cent for 'T' and patch budding and 80 per cent for the inverted-T and the forkert methods when the buds were taken from greenish brown coloured twigs.

The data, therefore indicates that 100 per cent

MONTHIN	•	MARU			ا ي 11	11AX 4			
MCC OF R.C	TRACING OF CALLSON OF			. 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 199 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -	i de Miteria de Alixa da				
Yestnents	Lunder Laided	20	Parcen- Lage of auccess	Number busded	Numbor Of take	Percen- tage of success	Number buddeð	Number of take	Porcentage of success
T'budoine	ti diraja taing tain taing ta Taing taing br>Taing taing tai	na naha tang dapi makanaka	14 H 3 H 44 H 44 H 44 H 44 H	a a an	. anharib and 199,415	in die serei in die serei matrice in die soort daer d	ing sing ang ang init in an init init. Init init init init init init init init	i daga in Mandalah Mandalah Mandalah Anger Kalaka Anger Ang	nan giring an
Green Greenich	5	2	40	5	2	40	5	1	20
brown	5	2	40	5	2	40	5	2	40
Inverted" Green	5 5	2	40	sin in an	2	49	5	1	20
Greenish brown	5	2	40	S	4	80	5	4	80
Patch Sceen	5	2	40	5	1	20	5	-49 -49 -49	20
Greenish brown	5	2	40	5	2	40	5	2	40
Forhert Sreen Sreenish	5	2	40	5	in the same near the same same same same same same same sam	60	na na dia mpika na na mpika na Ci	- 140 12 HINES THE IN THE OFFICE OF	20
orgeniusia Orgeniusia	5	3	60	5	5	100	5	4	80

Table 28. Breen budding of cocoa seedlings.

success can be obtained by the forkert method when three to four months old root stocks are used for budding during the months of March and April with the buds taken from the twigg which are greenish brown in colour. Buds taken from green twigs are found to be less successful. 60 per cent success can be obtained by the forkert method even when the root stocks are two months old.

DISCUSSION

In view of the popularisation of large scale cultivation of cocca in Kerala it has been necessitated to standardise the production of quality seedlings and also the vegetative propagation methods in order to obtain quality, high yielding progenies. Therefore, a study on the above aspects was made and the results of the present investigations on the various aspects of quality seedling production and vegetative propagation methods are discussed below.

1. SEED PROPAGATION.

1.1 Fod characters, Seed characters and Germination

The result of the present investigation indicated that the volume and weight of the pod varied among the classes of pods (large, medium and small) and also within each class in the different months. The pods harvested in December and February had comparatively higher volume while the pods harvested in December and April recorded the highest weight in all the classes. The volume and weight were highest for large pode which is quite natural because of its size. The variation in volume and weight in the different months may be due to the climatic and the environmental factors prevalent during the critical period of growth of the pods. There was not much variation in the number of seeds among the three classes; but variation was noticed in the number of seeds produced in the different months with maximum in February followed by March and April.

The average weight of the seed has highest for large pods and lowest for small pods. The average weight of the seed was also found to be highest in February followed by March and April. The fact that there was not much variation in the number of seeds produced in the different classes indicated that the pods of any size can be utilized for seed purposes; but the fact that the average weight of the seed was lowest in small pods indicates that the small pods may be avoided to produce more vigorous seedlings. In general, number of seeds and the mean weight of sound seeds were higher during February to April suggesting that the pods harvested during these months will be more desirable for raising the nursery.

The germination studies indicated clearly that neither the size of the pod nor the position of the seed within the pod (pedicel end, middle and distal end) had any influence on the germination percentage. Hence, pods of any size and all sound seeds in a pod can be selected, if germination alone is taken into consideration.

Among the different months, without considering the classes of pods and the position of seeds in the pods, the germination percentage was highest for March sowing (94.5) followed by February (05.58) January (79.29), December (78.44) and April (77.46). This indicates that the pode harvested in February and March will be better for obtaining higher germination than the pode harvested in December, January or April. More number of seedlings can also be expected from the pode harvested in February and March as the number of seeds and the mean weight per seed are found to be more in the pode harvested during these months. Therefore, the study indicates that for better germination and for more number of seedlings, the pode harvested in February and March will be desirable. This season will be suitable for raising the nursery for planting three to five month old seedlings from the middle of May to the end of Jume which will be the best period for planting corea under Kerela conditions.

The data on the above factors suggested that large and madium sized pode collected in February and March will be most suitable for producing more number of seedlings and also to produce the optimum aged plants for planting in May and June.

1.2 Vegetative Grouth

During the December sowing significant difference in the height was observed on the 15th, 30th, 45th and 60th day after germination. The girth varied significantly only on the 60th day after germination while the number of leaves differed significantly on the 45th and60th day. There was no significant difference in height, birth and the number of

leaves on the 90th day after germination when the size of the pods as well as the position of seeds within the pod were taken into consideration.

In general there was no correlation between the height of the plant at 15 days after germination and different fruit characters such as length, girth, volume and weight of the pods. There was also no correlation between the volume and weight of the pode and number of sound seeds recorded per pod. Nowever in February and March in the case of large pods, the girth and the weight of the pod were found to be positively correlated with the height of the plant on 90th day. In the case of bods harvested in March, under 'large! size, the volume and weight of the pod was found to be positively correlated with the height of the plant on 90th day. In the case of medium' sized pode hervested in April, the girth and volume was found to be negatively correlated with the height of the plant on 90th day, Thefefore the results indicate no general correlation between the you and seed characters and the height of the seedlings on 15th and 90th day.

The seeds extracted from small pods produced shorter seedlings (20.1 cm) while the height of seedlings was 30.49 cm in the case of large pods and 30.24 cm in case of medium pods. Although no significant differences in the height, girth and number of leaves produced were observed on the 90th day, the readings were higher for large and medium size pods

191

indicating the suitability of such pode for the production of seedlings than the small pods. The height, girth and number of leaves produced on the 90th day were 33.48cm, 2.16 cm and 12.02 cm respectively for large pods and 30.24 cm, 2.04 cm and 11.27 cm respectively for medium pods.

Summing up, the growth marameters such as the hoight, the girth and the number of leaves per plant are not found to vary significantly when the seeds are separated on the basis of pod size and position of seed within the pod. Though significant difference in height was observed on the 15th to 60th day after germination the difference was not significant thereafter. Such variations were also found in other characters. However, it is pertinent to point out that on the 90th day after germination there was no significant difference in any of the characters studied including the root characters. The differences in these characters, when taking into account of the position withins a particular class of pod, was not found to vary much in all the five months of sowing indicating thereby that the position of seeds within a fruit is not important in the production of quality seedlings.

1.3 Root Growth

The number of lateral roots of the seedlings obtained from different sizes of pods varied significantly on the 60th day, the number being significantly higher for 'large' (76.66) and it was on par with 'medium' (75.55). However,

192

there was no significant difference on the 75th day. On the 90th day, the number of lateral roots again differed significantly with maximum in 'medium' (124,80) which was on par with that of 'large' (122,44).

Although no significant difference was noticed in the dry weight, the maximum total dry weight (3.37 g) was highest in 'large' which was closely followed by 'medium' (3.20 g). The total dry weight was only 2.72 g in case of 'small'. The above data clearly indicated the superiority of seedlings produced from 'large' and 'medium' sized pods over that of 'small'.

The same trend as observed in the December sown sedlings was noticed in the growth parameters during January to April also, except that the height was more in March and lowest in January. The length of tap root was higher in case of 'large' in all the months studied. But in case of 'medium' it was found to be higher than 'small' during the month of January alone. In all other months 'small' produced longer tap root. But the number of lateral roots were always higher in 'medium' compared to 'small'. The dry weight of root was also higher in general in the case of 'large' and 'medium' compared to the 'small'. Therefore, when taking into account of the growth parameters studied the seedlings produced from large and medium pods are found to be superior to those from small. This suggests that large and medium sized pods (weighing more than 350 g, with volume of not less than 400 cc) may be selected for propagation.

Data also suggest sowing in February and March for obtaining better seedlings. The earlier studies also indicated a better germination during this period. Additionally, the seedlings raised in February and March will be ready for planting in May and June which is the main planting season under Kerala conditions.

From the different growth parameters studied a set of selection criteria based on the height and the number of leaves produced is suggested. The seedlings should have not less then 30 cm height and not less than 10 leaves when they are 90 days old. Those which are below this standard should be rejected. However, the above criteria can be proved only after the bearing performance of the plants of varied groups are studied for which the seedlings have been planted in the field.

This result agrees with that of Cardosa (1963) who had studied the germination and growth of plants from the seeds taken from different position (top, center and bottom) in the pod. He also observed no difference in germination or in development of the secolings based on the position of the seed within the pod.

1.4 Size of Containers

In the studies conducted in December, February and March with different sizes of containers (polythene Lags), the height, the girth and the number of leaves produced were maximum for the seedlings grown in 30 x 20 cm bags and minimum for those grown in 23 x 15 cm bags. The growth was higher in February and March sowing.

<u>194</u>

Analysic of the data on root growth revealed that the tap root growth and lateral root production were maximum in the case of 30 x 20 cm bags and minimum in 23 x 15 cm bags. The dry matter accumulation in the shoot and the root were highest for the seedlings grown in 30 x 20 cm bags and lowest in those grown in 23 x 15 cm bags.

Thus it can be clearly said that the largest bug tried (30 x 20 cm lay flat) is most suitable for growing the seedlings in the nursery up to three months, as maximum vegetative growth and root growth as well as the dry matter accumulation was observed in the case of seedlings grown in these bogs. This is natural because of the larger area for the root growth in big bags. The root extension growth data also reveal that the optimum size is 30 m 20 cm. Migher size naturally will be more expensive and hence not economical.

Several workers had investigated the optimum size of polythene bags or pots in relation to the growth of the plants. Capriles and Gonzalo (1965) found that the growth of cosea seedlings in plastic bags of 15 cm diameter holding 6.0 kg of potting mixture was slightly better than that in smaller bags. LeBrown <u>et al.(1967)</u> recommended 12" x 7" (30 x 17.5cm) size polythene bags for raising cosea seedlings. Leach <u>et al.</u> (1971) found polythene bags of 30 x 20 cm size as optimum in Malaysia when the pariod in the nursery was four to five months. They also recommended smaller size (23 x 18 cm or 25 x 18 cm) when the pariod in the nursery was two to two and a half months. Shepherd (1976) had given specific

<u>195</u>

recommendations on the size of the bags to the used depending upon the period to be retained in the nursery. According to him the optimum size would be 30 x 20 cm with 30 perforations for four to five months in the nursery and 25 x 18 cm with 20 perforations for three to four months in the nursery. Wood (1978) suggested 25 x 12 cm size for the seedlings upto five months in the nursery.

The present investigation agrees with the lindings of Le Brown et al. (1967), Leach et al. (1971) and Shepherd (1976) but records slight variation from that of Capriles and Conzalo (1965) and the suggestion of Vood (1978). In case of Capriles and Gonzalo (1965) the plastic bog is quite long as it has to hold 6.0 kg mixture which will be uneconomical under our conditions. The present investigation has taken into . account not only the vegetative growth but also the root growth which is important in fixing the size of the polytheme bags to be used in the nursery. If the polythene bag is smaller in size, the tap root will coil at the bottom of the bag and there will not be proper development of lateral roots which is quite evident from the Table ?5. Under Kerala conditions, the seadlings are to be grown for a period of three to five months depending upon the planking time. Therefor for the best growth of plants an optimum polythene bag size of 30 x 20 cm is recommended.

1.5 Potting Medium

The statistical analysis of the vegetative growth characters under different addie showed that the height, gifth and number of leaves use significantly higher in becember sozing and the height alone was significantly higher in March sozing in the seedlings grown in potting mixture composed of soil and and farm yard manure in the proportion of 1:1:2. Though there was no significant difference in the growth characters of the February coulde, the maximum growth was recorded in the came treatment.

The data on root growth indicated that the top root length and the lateral root production were medimum for seedlings grown in the 1:1:2 potting mixture although it was not statistically significant. The dry matter accumulation in the root and the choot was also highest for the seedlings grown in the same treatment.

The better growth recorded in soil and and WHI minture in the proportion of 1:1:2 is natural because of the better texture and resulting better drainage and acration of the soil as well as the higher matrient content in the medium. In soil medium, perhaps lack of sufficient matrients, acration and drainage limits the growth. But in case of the medium with low WEA (1:1:1) the low natrient content may be responsible for comparatively low growth.

Only few workers have attempted to formulate a suitable potting mixture for the cocoa nursery, Pyke (1935) obtained best germination in calcareous send. Thitehead (1954)

reported that a mixture of seven parts of loam, three parts of dried farm yard manure and two parts of sand for fairly uniform growth of scedlings. Nessel (1966) found better germination in heavy soils; but the subsequent growth was better in light soils. Shepherd (1976) suggested a sandy-clay loam texture and a stable structure for the potting mixture to be used for cocoa seedlings. He also suggested incorporation of 20 per cent coarse sand and well decomposed STA, Wood(1978) reported that in Nest Africa top soil alone was used for filling the bags. The above findings clearly indicate that the propertion of soil, send and farm yard manure varied depending upon the coll types. But it reveals that a sandy loan texture with high percentage organic matter will be most suitable. The present study also, therefore, agrees in principle with the above findings. Considering our soil types a normal mixture of coil, sand and farm yard senure in the proportion of 1:1:2 is more suitable than the soil alone or a 1:1:1 mixture.

1.6 Viability of Seeds in Storage

Cocoa seed is non-resting and then the pod is ripe the seeds are also ready for germination. Cocoa seeds normally less their viability after a comparitively short period of storage.

As against the normal germination in fresh cowing the present results showed that the seeds taken from the pods kept as such under room conditions showed the maximum

germination (78.02%) as compared to the normal germination when sown on the day of horvest after three days of storage. The germination was reduced to 66.29, 33.89 and 23.33 per cent 6, 9 and 12 days after harvest respectively.

The seeds extracted and then kept in polythene bags under room conditions showed 44.44 per cent germination after three days of storage and 20 per cent after six days. The seeds extracted and stored in polythene bags did not germinate after 9 days of storage.

There was no germination under refrigerated conditions even after three days when the pode were kept as such and also when the seeds were extracted and kept in polythene bags.

Few workers have studied the viability of cocoa seeds after storage. Fyle (1935) reported 95 per cent germination fourteen days after storage at an average temperature of 80°P. But storage at 50°F and 45°F destroyed viability even after two days, while a temperature of 60°F gave normal percentage of germination even after twenty days. We also suggested that the deterioration of pods under normal conditions are mainly due to desiccation, fungal attack and senescence. Zink and Rochelle (1964) obtained 72 per cent germination after 90 days when stored in ventilated glass containers with 40 per cent relative humidity, while the beams stored at 50°C failed to germinate even after 15 days. Modstock <u>et al.</u>(1967) reported that the germinated sceeds were killed by chilling

at 2 to 4°C for 30 minutes. The non-germination of the seeds stored under refrigerated conditions may be due to chilling as suggested by Pyke (1934), Pyke <u>et al.</u>(1934) and Woodstock <u>et al.(1967)</u>. The present study indicates that it is better to sow the seed on the same day of extraction for obtaining higher percentage of germination; but the pode can be stored under room conditions even upto six days with upto 66 per cent germination.

1.7 Root Growth Studies

The root characters studied revealed that the growth of the tap root was at a faster rate up to 15 days (43.8.3) and thereafter the growth rate decreased at slow rate up to 30th day. The growth from 30th to 90 days was comparatively very slow. Thereafter the growth was faster but at low rate than the first 15 days. The increase in the number of laterals also followed the same trend. The length of the lateral roots increased only gradually up to 60 days and thereafter at a much faster rate. The increase in dry matte accumulation in the root was at a slow rate up to 30 days and thereafter the increase was at a much faster rate up to 30 days and thereafter the increase was at a much faster rate up to 180 days. Then the rate of increase was reduced. The growth of roots and accumulation of dry matter in shoots and roots followed alternatively.

The slow root growth during the period between 90 and 120 days suggest that it will be advisable to plant the seedlings during this period for better and early growth in the field. The tap root growth and the number of laterals at this stage will be reasonable to accompodate in the polythene bag or pot of the size 30 x 20 cm. The study also indicate that keeping the plants in the nursery in small bags, is not advisable as they become 'pot bound' by that time and it may lead to casualities in the main field.

Zevallos (1963) compared the growth of the shoot and root in the nursery and found that during the four months in the nursery, the relative length of shoot and root remained the same thereafter the shoot grew more rapidly. The present study reveals that the dry matter accumulation of the shoot was almost three times than that of the root. The height of the seedlings was always more than the tap root length at least by 25 to 83.5 per cent.

2. VEGETARIVE PROFIGATION

In order to standardise the methods of vegetative propayation, rooting of cuttings using plant growth regulators and four methods of budding were tried.

THRISSUR 680 654

2.1 Rooting of Cuttings

The highest percentage of rooting in the 'mist chamber' method (96.3) was obtained for IAA 6000 ppm treated for 60 sec, closely followed by NAA 4000 ppm treated for 60 sec (94.9°). These two treatments though on par were significantly superior to the rest. In the polythene sheet method also the highest percentage of rooting was obtained for IAA 6000 ppm 60 sec (85.8%) followed by NAA 4000 ppm 60 sec (30.60) which were also significantly higher. The mean number of roots were 3.37 cm and 2.53 for IAA 6000 ppm and NAA 4000 ppm, respectively.

The number of roots was significantly higher for 6000 ppm NAA treated for 10 sec., but the percentage of rooting was very low (46). The mean number of roots were also found to vary significantly among the treatments. The mean number of roots increased with the concentration of plant growth regulators treated, upto 30 seconds and decreased thereafter except in a few cases. The average length of roots vas found to be more in case of low concentration at short period of treatments (10 sec.) and decreased as the concentration was increased and time of treatment was prolonged.

The concentrations and time of treatments were found to be optimum for higher rooting at a particular level (6000 ppm IAA for 60 seconds, 4000 ppm NAA for 60 seconds) above which the percentage of rooting was found to decease. This is natural because the plant growth regulators have specificity in this action with reference to concentration and conditions under which treated.

Several workers have tried different plant growth regulators for increasing the rooting of cocoa cuttings. Richards (1948) found that IBA and NAA were effective in increasing the percentage of rooting and mean root length. According to Garcia and Naundorf (1950) IDA markedly increased the percentage of rooting and the number of roots. Evans (1951) suggested quick dip method to be more convenient. According to him, the mixture of equal parts of NAA and IBA between 8000 and 10000 ppm were found more effective. Alvim and Duarte (1954) recommended 0.7 or 0.8 per cent IBA, while Ediwards (1961) recorded best results with 8000 ppm TBA Cabato (1961) recorded best results with 8000 ppm TBA Cabato (1961) recommended NAA at 8000 ppm in powder form. Bouma and Ringling (1962) obtained 84 per cent rooting with 4000 ppm IDA while, Mailaram <u>et al</u>. (1964) obtained best results with a mixture of TBA and NAA at 5000 ppm.

The present investigation differs with those of the above workers with regards to the concentration and the type of plant growth regulator used. However, it agrees with the findings of Cabato (1961) who found NAA at 6000 ppm more suitable. The variation can be explained by the fact that the plant growth regulators are specific in their action at different concentrations under different conditions. Taking into account the higher procentage of rooting, optimum number of roots produced and the average length of roots a 'quick dip' method for 60 seconds in 4000 ppm of NAA or 6000 ppm of TAA is recommended.

Among the two methods tried the 'mist chember' and the polythene sheet method (D.A.C.R.I. method) the percentage of rooting was higher for the 'mist chember' method but the average number of roote and the average length of the roots were higher for the polythene sheat method. The 'mist chamber' method requires spraying of water once a week while in the 'polythene sheet method' the watering has to be done once in three days. Thus though the initial investment in the mist chamber method is comparatively higher, the recurring expenditure will be less than in the polythene sheet method. Thus the 'mist chamber' method is recommended although both the methods can be used.

2.2 Budding

Four methods of budding, namely the 'T', the inverted 'T', the patch and the forkert methods were tried on seven to eleven month old root stocks. Among the methods tried, the forkert method gave the highest percentage of success (60.0) in February and in March when the budding was done on eight and nine month old root stocks followed by the inverted 'T' (45%) and the patch (40%).

Rosenquist (1952) reported 56 to 32 per cent success with patch budding. Topper (1956) developed an inverted 'T' budding and Liabeuf (1958), testing this method, obtained 50 to 80 per cent 'take' after top budding Chupons growing from previously cut back eight year old trees. Urguhart (1961) reported the use of shield budding on four month old cocca seedlings. Ascenso (1963) obtained 50 to 80 per cent success with patch budding and 77 per cent with inverted 'T' method in Sao Tome. Van de Burg (1969) found that better results could be obtained by the forkert method if the flap was completely cut off from the stock. The

204

present finding also prove the superiority of forkert method over the other method and the percentage of success can further be improved by experience.

2.3 Green budding

The four methods of budding were also tried on younger root stocks of two to four months old.

The highest per cent of success was obtained by using buds from greenish brown twigs than from green buds. The highest per centage of success on budding done on two month old root stocks in March was 60 for forkert method. Hundred per cent success was obtained by forkert method on three month old root stocks and eighty per cent for 'inverted-T' in April while on four month old root stocks the highest per cent of success (30) was obtained for forkert and 'inverted-T' methods in May.

Topper (1959) developed a technique of greenbudding on three to four months old codea root stocks. This method was subsequently improved by Eurov (1961,1971) and used in Malaysia for budding of two to eight month old rubber seedlings. Thirion (1939), Paredes (1949), Are (1965,1967) Van de Eurg (1969) and Magethaes (1974) found that cocea can be budded successfully on four to five months old seedlings. According to Glesberger and Coester (1976), forkert method is successful to the extent of 80 to 100 per cent in Netherlands under glesshouse conditions on

six weeks old root stocks. He suggested that four to five months old seedlings can be used as root stocks under tropical conditions. The present investigation has clearly proved that forkert method can be successfully adopted for green budding on three to four months old stocks during the months of April and May, the best period being April. The green budding has added advantage that the period in the mursery is considerably reduced.

SUMMARY

SUMMARY

A detailed study was conducted during the period from May 1978 to July 1979 at the College of Horticulture, Vellanikkara, on different aspects of propagation of cocoa. The objectives of the investigations were (1) to standardise the criteria for selecting the pods, seeds and seedlings (ii) to find out the optimum size of polythons bags and to standardise the suitable potting medium for the nursery and (iii) to standardise the best vegetative propagation method. The results are summarised below.

- The volume and weight of the pods varied among the three classes of pode namely, 'large', 'medium' and 'small' and also among the months of harvest.
- 2. The pods collected in December and February had comparatively higher volume and the pods harvested in December and April the highest weight.
- 3. The volume and weight were highest for large pods followed by medium and small.
- There was not much variation in the number of seeds among the three classes of pode. The mean number of seeds per pod varied between 30 and 42.

5. The number of soeds were highest in pods harvested in February followed by March and April.

- 6. The weight of sound seeds as well as the mean weight of a nound poed were highest for 'large' pods followed by 'medium' and 'small' pods.
- 7. The weight of the cound seeds and the average weight of a sound seed were highest in pods harvested in Pebruary Sollowed by March and April.
- 8. The size of the pod and the position of the seeds (pedicel end, middle and distal and) had no significant influence on the germination percentage.
- 9. The germination percentage was highest in March followed by Pebruary, January, December and April.
- 10. There was no significant difference, in general, by the third month in the vegetative granth parameters, root growth parameters and the dry matter accumulation when considering the size of pods and the position of the seed in the pod. There was, in general, no correlation between the height of the seedlings on 15th and 90th day after germination and the pod characters such as length, girth, volume and weight of the rode. But the 'large' and 'medium' nods showed comperatively better shoat and rest growth. Therefore large and medium sized pode weighing more than 350g each with not less than 400 cc volume should be selected for raising nursery during the months of Pebruary and March.

208

ŝ

- 11. From the different growth parameters studied based on the height and the number of leaves produced, a selection criterion is suggested for selecting quality seedlings. The seedlings should have not less than 30cm height and not less than 10 leaves when they are three months old.
 - 12. Polythene bags of 30cmx20cm lay flat size are most suitable for growing the seedlings in the nursery for three to five months compared to 23 cm x 15 cm and 25cm x 18 cm sizes as the seedlings grown in these bags are superior in height, girth and the number of leaves produced. These seedlings are also found to produce better root system.
 - 13. A normal mixture of soll, sand and farm yard manure in the proportion of 1:1:2 is recommended for growing seedlings in the nursery.
 - 14. The seeds may be sown on the same day of extraction for maximum percentage of germination. The percentage of germination is decreased as the days after harvest is advanced. But the pods can be stored up to six days under room conditions with 66 per cent germination.
 - 15. The root growth studies conducted periodically on seedlings upto nine months had indicated that the root growth is maximum during the first fortnicht

209

· .

after germination and thereafter the rate of growth is comparatively decreased and the growth was very slow between 30 to 90 days. The possibility of taking advantage of slow growth of roots between three to four months for planting was discussed.

- 16. The root growth and the dry matter accumulation was found to be alternated, that is, when high shoot growth rate was recorded, the accumulation of dry matter was low and the same was increased considerably when the shoot growth was slow.
- 17. Taking into account of the higher percentage of rooting, optimum number of roots produced and the average length of roots, a 'quick dip' method for 60 sec in 4000 ppm NAA or 6000 ppm IAA is recommended for producing rooted cuttings.
- 19. The merits and demerits of the two methods, that is, the 'mist chamber' and 'polythene sheet method' were discussed and the 'mist chamber'method is recommended.
- 19. Among the different method of budding tried, 60 per cent success was obtained in forkert method when budded on eight to nine month old root stocks. The best time for budding was found to be between February to April.

210

5

20. Green budding on three to four months old cocoa seedling stock was found to give 80 to 100 per cent success with forkert method. April and May were found to be the best time for green budding with 100 per cent success in April. Hence green budding in April and May on three to four months old seedlings is recommended.

REFERENCES

.

.

. .

REFERENCES

*Alvim, P.De T. (1953). New propagators for rooting cocoa cuttings. <u>Cacao.</u>2 (47 & 48) :1-2.

*Alvim, P. De T., and Duarte, O. (1954). Majoris preparaciones hormonales para enraizamiento de las estacas de Cacao (The best growthsubstance formulation for rooting cocoa cuttings). (<u>Proc</u>) <u>V</u> <u>Reunion Com.tec.interamer.</u> <u>Cacao.1</u>:12

Anon: (1946), Annual Report W.A.C.R.I., Tafo: 59

Anon. (1951). Notes on current investigations, April to June, 1951. Cacao. <u>Malay.agric.J.</u>34:134-5

Anon. (1951). Annual Report M.A.C.R.I. Tafo:84

Archibald, J.F. (1955). The propagation of Cocoa by cuttings. Tech. Bull, M.A.C.R.I. (3)

Are,L. (1964), Drying treatments to keep cocca seeds viable in storage, pap.Ist sess.Tech.work party cocca.prod...Roma.64(4):6

Ascenso, J.C. (1968), Cacao budding in Sao Tome. Trop. Agric. 45(4): 323-9

Ashiru, C.A. (1970). Viability of cacao beans. <u>Exp. Aoric.</u> 6:341-4

Atanda, O.A., and Jacob, V.J. (1970), Bean germination studies in <u>Theobroma cacao</u> L.<u>Cacao</u> <u>Inst.Interameti.</u> <u>Cienvias Agr.15</u>(4):13-8

Ehandary, K.R., and Shivashankar, Y.T. (1974). Mist propagation of Cacao <u>J.Pln.Crops</u>. 2(1):20-22

Boroughs, H., and Hunter, J. H. (1961). Effects de la temperature dokre el crecimiento de semillar de cacao (The effect of temperature on the germination of cocos seeds) Turrialba. <u>11</u>:160

*Bouma,D, and Ringeling, G. (1962). A new method of taking cuttings of cocoa in Surinam.<u>Surinam.Land</u> L.10:40-46

Burchardt, H. (1936), Grafting and budding, Cocoa, Trop. Agric. 13:186

Cabato, T.H.Jr. (1961). A study on the propagation of cocoa <u>Theobroma cacao.L.</u>) by stem cuttings.<u>Aranata.</u> <u>J.Agric.8</u>:110-131

*Capriles, R.L.; and Conzalo, A.E. (1965). Trops.de potes mar convenientes para propagation de cacao (Types of pots most suitable for cocea propagation). <u>Cacao, Bol.inf. Estae.exp.Cacao, Caucagua.2</u>(162): 3-8

*Cardosa, M. (1963). Influencia da posicao das sementes no fruto Lo cacauciro sobre a germinacao c desenvoluimento das mudas. (Influence of seed location in cocoa fruit on germination and seedling growth). Bragantia, 22:461-464

Cheesman, E.E: and Spencer, G.E.L. (1935). General notes on technique with cuttings. <u>Pifth annu-Rep.on</u> <u>cocoa Research, I.C.T.A. Trinidad</u>.

Cheesman, E.E., and Spencer, G.E.L. (1936). The propagation of cuttings in tropical climates. <u>Trop.Agric</u> 13:201-3

Coester, N.A., and Ohler, J.G. (1976). Cashew propagation by cuttings. Trop. Agric. 53(4): 353-358

Dyanat-Nejad, H. (1971)

Relationship interfering in the morphogenesis of the cocea and root system.<u>Cafe.Caceo</u>. <u>15</u>(2):105-14

Eady.G.H. (1930). Vegetative reproduction in caceo. Year book of the Dept. Agric. Gold Coast.

Edward, I.X. (1961), Clonal Cacao at Keravat, Part II. Papua New Guinea Agric.J.14:16-37

Escamille, G.; Paredes, A., and Von Buchwald, A. (1948). Propagation of cacao. Methods and problems. <u>Cacao Inf. Bull.1</u> (14):1-2

Evans, H. (1951), Recent investigation on the propagation of cacao, <u>Rep. Cacao</u> <u>Res. Imp. Coll. Trop. Agric</u>. 29-37

*Floor, J. (1954), Planten in plastic.<u>Meded.Inst.Verd.</u> Tuenbouwgen.

*Garcia,C., and Naundorf,G.(1950),Ensays comparatives Con las diversar fitohormonas en el enralzamento de estacas de cacao(comparative trials with various growth substances for the rooting of cacao cuttings, <u>Agron</u>, <u>Falinora,3</u>:191-4

*Garcia, B.C., and Naundorf, G(1953). Algunos apundles para el transplante de estacar decacao. primera nota (some notes on transplanting cocoa cuttings) <u>Gacao en colomb</u> 2:17-20 *Garcia, R.F. (1954). Ensays comparative entre pergamim de cafe Y aserrin de madera. Como medias de enraizamiente para estacar de cacao. (comparison of coffee silver skin and sawdust as rooting media for cocoa cuttings) <u>Proc.V. Reumion Com. the interamer.</u> <u>Cacao.1</u>:3

*Garcia Brand, J.R. (1954). Effecto del Dithane Z-78 Y del acido 3-indole butirico en el enraizamiento de estacar de cacao (Effect of Dithane-Z-78 and indole butyric acid on the rooting of cocoa cuttings. <u>Cacao en colomb</u> 3:157-66

Glesberger, G., and Coester, W.A. (1976). Glasshouse experiments on green budding and grafting of cocca (<u>T.cacao.L.</u>)<u>Trop.Agric.53</u>(4):359-72

Harris, R.J. (1953). Vegetative propagation of cacao from greenwood cuttings at the Lowland Agriculture Experiment station.<u>Kerevat.Papua.New Guinea.</u> <u>Agric.gaz.8</u>:7-18

Hurov, H. R. (1961). Green bud strip budding of two-to-eight month old rubber seedlings. <u>Proc.Nat.Rubber</u> <u>Res.conf.Kuala Lampur.</u> 419-528

Hurov, H.R. (1971) Investigations in budding seedlings of the rubber tree. <u>Plant Bropage 17</u>(4):16-20

Keilasem, A., Paulos, D., and Kuppuswamy, B.S. (1964). A measure of vegetative propagation trials on cocoa at Kallar Fruit station, <u>Madras</u>, <u>agric.J.51</u>:77

Keeping.G.S. (1950). The vegetative propagation of cocos. Malay.agric.J.33 27-31

Leach, J. R., Shepherd, R. and Turner, P.D. (1971) Underplanting coconuts with cocea in <u>Malaya</u>, <u>Proc.</u> 3rd <u>Internat. Cocoa. Res. Conf. Accra.</u> 1969.346-55 LeBrown, D.A., Reidy, J.G., and Chok, D.K.K. (1967). Establishment and maintenance of cocoa on Borneo Abaca Limited's estates. Part I. Establishment. <u>Cocoa grower's Bull</u>. (9):9-14

*Liebeuf,J. (1958), Etude des methodes de multiplication des clones de cacaoyers selectronnes a la station de Nkoemvone, <u>Sept.Conf.Interam</u>, <u>Cocoa.Palmira.Colombia</u>:52 4-33

Lipp, C. P. (1953). New methods in plant propagation. Arnoldia 13:61

Mabey, S.E. (1964). The bud-grafting of cocoa in Uganda. Past Afric. Agric. For.J. 30(1):49-53

*Magalhass, N. S. (1974). Reproducao assexuada do cacausiro cacau. Alualidades: 11(1):21-23

*Malins-Smith.R.K. (1954). The pit method of rooting cacao. <u>Proc.V.Reumion</u> <u>Com.Ee'c.interamer.Cacao.2:4</u>

McKelvie, A.D. (1957). The polythene sheet method of rooting cacao cuttings. Trop. Agric. 34(4):260-65.

Murray, D.B. (1954). A new technique in the vegetative propagation of cacao.<u>A.R.Cacao.Res.I.C.T.A.</u> 53-55

Nair, P.C.S. (1979), Agricultural Research in Kerala, <u>Status</u> <u>Dapers.K.A.U., Vellanikkara</u>:43

Paredes, L.A. (1949), Propagation of cacao by budding, <u>Cacao</u> <u>Inf, Bull</u>, 1(21:5)

*Pirez,J.M.O.(1954). Experimentos comparatives entre suite medios de enfaizamento para estacas de cacao. (Experiments on seven methods of rooting cocoa cuttings) <u>Cacao en Colomb.</u> 3:75-91

Pyke, E.E. (1931). Cacao propagation. The vegetative propagation <u>Theobrona cacao</u> by soft wood cuttings. <u>Trop.</u> <u>Acric. 8</u>:249

Pyke, E.E. (1933). The vegetative propagation of cacao IV. Propagation by soft wood cuttings under estate conditions. <u>Third Ann.Rept.on Cocoa</u> <u>Research for 1933 I.C.T.A. Trinidad</u>:7-8

Pyke, E. B. (1934). The vegetative propagation of cacao.111. Observations on varietal differences in the rooting behaviour of cocoa cuttings. <u>Third</u> <u>Ann.Rept.on Cocoa Research for 1933.I.C.T.A.</u>. <u>Trinidad:4-7</u>

Pyke, E. E., Leonard, E.R. and Wardlaw, C.W. (1934). On the viability of cocoa seeds after storage. <u>Frop.</u> <u>Agric.XI-12</u>

Pyke, E. E. (1935). On the germination of cacao beans with special reference to storage and transport problems. <u>Fourth.Ann.Rept.on Cocoa Research</u> for 1934 <u>I.C.T.A. Trinidad.33-40</u>

Richards, D.A. (1948). Notes on the vegetative propagation of cocoa cuttings. J. hort. Sci. 24:192

Rosenquist, E.A. (1952). Notes on the inverted 'U' method budding of Cocoa. Malay.agric.J. 35(1):78-84

Shepherd, R(1976), Establishment and maintenance of cocoa seedling nurseries. <u>Cocoa grower's Bull</u>.(25)

Snedacor, G. W., and Cochran, W. G. (1967). <u>Statistical Methods</u> Oxford and IBH Publishing Co., New Delhi.

*Thirion,F. (1939). Notes sur quedques facteurs susceptiblesd influencer le success de la graffe du cacaoyer en congo. <u>VII.Congr.Int.Agric.Trop.Subtrop</u>. 1937:165-168

Topper, B.F. (1956). A new method of vegetative propagation for Cocoa. Leafl. Dept. Agric. Jamaica: 1-5

Topper, B.F. (1957). New method of vegetative propagation for cocoa. <u>Mord crops 9</u> (1):38-39

Topper, B.F. (1959). The buddage of cocoa and rootage of scionlings. <u>7th Conf. Interam. Cocoa. Palmira.</u> 1958:539-45

Urguhart, D.H. (1961), Cocoa, Longmans, London: 70-97

Van de Burg, B(1969) Cocoa budding - a neglected technique. <u>Morld crops</u>. (21 (2):105-7

Van Hall, C.J.J. (1932) Caceo, Macmillan and Company, London,

Wessel, M. (1966) Effect of potting soil on germination and growth of cocoa seedlings.<u>Ann.Rep.Cocoa.Res.</u> <u>Inst.Nigeria</u>:1964-65:87-88.

Whitehead, C. (1954) Cocoa propagation in Malaya with special reference to cocoa nursery techniques, <u>Malay</u>. <u>agric.J.37</u>:203-10

Mood, G.A.R. (1978). Cocoa. Longmans, London: 64-73

Woodstock,L.W.,Reiss,B.,and Combs,M.F.(1967). Inhibition of respiration and seedling growth by chilling treatments in <u>Theobroma Cacao Plent.cell</u>. <u>Physiol.8</u>:339-42

*Zevallos, A. Cadima (1968). Influence of the soil on the development of the roots of cocoa. <u>Cacau.</u> <u>Alualidades 5</u>:2-5

*Zink, E, and Rochelle, L.A. (1964). Estudos Sobre a Conserva cao de sementes. XI.cacau (secó storage studies. XI.Cacao) <u>Bragantia. 23</u>:111-16

* Originals not seen.

APPENDIX - I

ĩ

Analysis of variance for percentage of germination in different months.

Source	đ£		ice Management			
			and a state of the	Month of so	ving	ungan an an an star an
		December	January	February	March	April
Pod size	2	120,93	164.92	165,71	47,84	238,64
Seed position	2	422 <u>.</u> 48	26,05	1008 ,56	194, 39	44,26
Interact.	ton 4	35 _* 29	58,99	60 <u>*</u> 59	74 ,17	94,65
Brfor	18	114,43	337 .06	212.76	116,78	203.19

APPENDIX - II

Analysis of variance for height of seedlings at various intervals.

			<u></u>		Mean	squares	المح افة عند المحافظ ال	
Month	Source	đ£		1	Days afte	r germina	ation	
			15	30	45	60	75	90
all in the set of the s	Size	2	12,33*	16,13**	123.27**	66.08*	131.03	66,15
December	Positio	n 2	2,33	5.49	9.80*	7,80*	108,01	101,68
	Inter- action	4 1	16.52*	8,84**	38 , 9 9*	32,50	172.42*	* 86,03
	Brfor	18	5.29	3.45	7.50	1,38	94 .03	96.8 8
alli alli dali inggi gali sentangi sali	Size	2	7:50	9.70	6 , 90	5,20	19,16	22,51
	Positic)n 2	0.98	0.01	1.63	0,68	1,50	2.65
January	Inter-							
o diruca y	action	. 4	3,98	1.30	1.26	13.99	10,87	8.87
	Error	18	2.17	3,95	2,64	21.07	16.97	8,62
nang ing ing ing ing ing ing ing ing ing i	Size	2	4.84	10,78	16.03	0,94	2,63	22,4
• *	Positié	m 2	0.58	2.38	1,47	15,37	20.97	. 30.84
February	Inter- action	4	0,45	1.47	1.10	6.20	11.51	27.83
	Brror	18	2.94	8,56	5,53	7.42	14.56	66,01
ATT WE GET HER ALL ALL ALL ALL ALL ALL ALL ALL ALL AL	Size	2	2.59	10.74*	0.64	5,10	1.48	147.12
	Positic	on 2	2.57	1.28	0,26	2.09	16,99	13.73
March	Inter-			int,				
	action	4	1.69	1,49	2.96	6.62	5,15	9,69
ter and the activity type and the star	Error	18	1,89	2,80	7,19	8,67	14,51	22.84
t t	Size	2	3,69	9,54	2.19	9.03	47.28	4.80
	Positic	m 2	i. 21	11.01	13.35	5.45	16,28	0.45
April	Inter- action	4	1.74	5.69	2.40	2.41	8,28	5,33
	Error	18	4,84	17,85	5,69	4.85	19.44	11.58

* Significant at 5% level. ** Significant at 1% level.

. .

tin hitin all

APPENDIX - III

.

.

.

Analysis of variance for girth of seedlings at various intervals in different months.

· · ·

			μ	Mean squ	lares				
Month of	Source df	Days after germination							
sowing	•	15	30	45	60	75	90		
a kan baring tan kan kan kan baring barin	5128 2	0.07	0,002	123.27**	66.08**	131.03	66.1		
	Position 2	0.01	0,012	9,80*	7.80	108.01	101,6		
December	Inter- action 4	0,01	0.013	38+99**	32.50**	172,42	86.0		
	Error 18	0,04	0,013	7,50	1.38	94.03	96.8		
	size 2	0.04	0.002	0.002	0.001	0,015	0.01		
•	Position 2	0.02	0.001	0.001*	0,001	0.003	0,01		
January	Inter- action 4	0,01	0,001	0.001	0.01	0,005	0,00		
	Error 18	0,01	0,001	0.001	0,01	0.013	0,00		
							-		
and a set of a set o	Size 2	0,001	0.03**	0,001	0,002	0.003	0.01		
,	Position 2	0,006	0.01	0.01	0.001	0.002	0.05		
February	Inter- action 4	0.009	0.01	0.001	0.001	0.01	0.03		
	Error 18	0.015	0.01	0.01	0,01	0,02	0.01		
till and spectra and spin star (all spin s	Size 2	0,005	04002	0.02	0,01	0.05**	0.08		
	Position 2	0,003	0,003	0.002	0.003	0.004	0,08		
March	Inter- action 4	0.004	0,002	0.024	0.02	0.002	0.03		
	Error 18	0,002	0.005	0.011	0.02	0,003	0.06		
142 MB (11 MP 444 19 MP 19 19 19 19 19 19 19 19 19 19 19 19 19	Size 2	0,003	0.001	0,001	0,001	0,17*	0.00		
	Position 2	0,001	0.003	0.003	0.001	0,09	0.00		
April	Inter- action 4	0,002	0 ₀ 001	0.001	0.002	0,01	0.00		
	Error 18	0,003	0.004	0.004	0.02	0.02	0.00		

* Significant at 5% level. ** Significant at 1% level.

APPENDIX - IV

.

. . .

:

.

Analysis of variance for number of leaves at various intervals in different months.

				•	Mean so	juares -		•
Month of sowing	Source	đ£		i pilpine de nei filia de la seconda de El seconda de la seconda de	ays after	: germinat	ion	ente diversi datte entre en In des antre entre en
Nya internet in sala internet data inter			15	30	45	60	75	90
	Pod size	2	0,26	0.46	0.96**	2.32**	1.41	3,30
December	Seed positic	2 m	0+49	0.59	0,12	0.63	0.18	3,86
	Inter- action	4	0,24	0.78	1.28**	3.53**	1.02	0,29
	Error	18	0.15	0,49	0,13	0,40	0,97	0,94
January	Pod size	2	0,0001*	0,40	0.21	1.27	0,15	2,58
	Seed positle	2 n	0,083	0.75	0.85	1.13	0.40	3,95
	Inter- action	4	0.051	0.46	0.19	0 _ë 47	2.48	5.16
	Brrof	18	0.123	0.26	0.21	1.23	2.67	3,96
an a la an a Canal ann ann an Ann ann an Ann ann an Ann ann a	Pod size	2	0,093	1.64	1.25**	0.20	1,85	5.00
February	Seed positio	2 m	0.031	1.12	0 _* 38	6.46	1.61	1.41
•	Inter-	4	0.024	0.04	0,77	1.04	1.30	0.52
unas punto della della sundo alla di unidano degradadi	Error	18	0,17	0.13	0.62	1.90	1.58	1.50
της του παι το από της <u>π</u> όλ τηστικό της. ,	Fod size Seed	2 2	0.16 0.13	0.61 1.59*	0,28 0,07	0,27 0,33	0,30 0,82	0,69 4,13
March	positic Inter- action	4	0,03	0,63	0.73	0.16	0.04	2.80
	Error	18	0.24	0.45	1.22	1.30	2.38	4.04

.

. .

Month			Mean squares						
of sowing	Source	đ£		•	after	germination	in an an ini ini an	tin tille mär störaga gan	
			15	30	45 	60 60	75	9 0	
	Pod size	2	3,69	0 , 7 0	0,24	2,20	0,39	1,38	
April	Seed positic	2 m	1.21	O _₹ 32	2,06	5.76	3 , 37	0,75	
	Inter- action	4	1,74	1.05	1.64	0,49	2,52	0.3	
	Brror	18	4,84	0.83	2,11	1.62	1.36	1.9	

APPENDIX - IV CONTIMIED.

1

. .

٥

ı.

jang kin na su ta

•

APPENDIX - V

.

,

Analysis of variance for length of tap root at various intervals in different months.

		Ne	an squares	
Source	đ£	Days a	on	
		30	60	90
Pod size	2	2.35	24.49**	76.77*
Seed	2	3.19	4.78*	13.51
the the second sec				23,42
error	18	1.73	1.13	19.29
Pod size	8	0.24	1,60	2,90
Seed position	2	1.14	2.10	1,22
Interactio	on 4	0,76	5.04	4.45
Error	18	2.56	11.80	5,80
700 0120) Seed	2 .]	0.54	0.07	6.41
position	2	5.53	3,16	2.77
Interactio	on 4	0.19	2,35	8.62
Brror	18	4.51	10,75	8,21
Ted size Seed	2	0,58	6,75	31,55
position	2	5.54	9.89	0.92
Anteractic Spror	on 4 18	3+40 3-07	11.99 7.09	10.55 10.64
Rod size	2	2,71	0,91	5,1
position	2	0.07	0.77	6.48
Interactio	on d 18	1.75	1.11 3.40	5.29
	Seed position Interaction Pod size Seed position Interaction Error Pod size Seed position Interaction Error Tod size Seed position Interaction Error	Pod size2Seed position2Interaction4Error18Pod size2Seed position2Interaction4Error18Pod size2Seed position2Interaction4Error18Pod size2Seed position2Interaction4Error18Pod size2Seed position3Interaction4Error18Pod size2Seed position2	Source df Days a 30 Pod size 2 2.35 Seed position 2 3.19 Interaction 4 5.51* Brror 18 1.73 Pod size 2 0.24 Seed position 2 1.14 Interaction 4 0.76 Error 18 2.66 7od size 2 0.54 Seed position 2 5.53 Interaction 4 0.19 Error 18 4.51 Ted size 2 0.38 Seed position 3 5.54 Interaction 4 3.40 Error 18 3.07 Pod size 2 2.71 Seed position 2 0.07	30 60 Pod size 2 2.35 24.49** Seed position 2 3.19 4.78* Interaction 4 5.51* 2.41 Brror 18 1.73 1.13 Pod size 2 0.24 1.60 Seed 2.10 1.14 2.10 Interaction 2 1.14 2.10 Interaction 4 0.76 5.04 Error 19 2.56 11.80 7cd size 2 0.54 0.07 Seed 2.553 3.16 Interaction 2 5.53 3.16 Interaction 2 5.53 3.16 Interaction 4 0.19 2.35 Brror 18 4.51 10.75 Tod size 2 0.38 0.75 Seed 2 0.38 0.75 Seed 2 0.38 0.75 Seed 3.07 7.09 Pod size 2.71 0.91 <tr< td=""></tr<>

APPENDIX-VI

١

Analysis of variance for length of the longest lateral root at various intervals in different months. , .

Month SE		Me	an squares	
lowing	Source df -	Days	after germina	90 13.7 3.6 7.4 4.5 2.95 7.73 6.63 8.38 13.71 1.12 9.20 4.82 14.12 11.33 3.62
19 111 altres ar Aprils as Manu		30	60	90
December	Pod size 2 Seed	0,16	1.62**	13.7
	position 2	0.47	2.43**	3.6
	Interaction 4	0.90	3.09**	
	Error 19	0,40	·····O•13··	4,5
January	Pod size 2	0.75	0,49	2.85
	Seed	A 74	0 × P	
	position 2	2.51	2.15	
	Interaction 4	0.71	0.99	
This can be the side of the system of the	Error 18	0,52	2 , 12	
د	Fod size 2 Seed	3.82*	2,62	13.71
February	position 2	2.10	1.68	1.12
	Interaction 4	1.04	0.25	9,20
u Di hili ani dan sida din miji a ji kata sina	Error 19	0.97	1.08	4,82
	Pod 6126 2	1.10	4.72	
March	Weed position 2	0,96	5.69	
"	Interaction 4	0.68	1.84	
	Error 18	0.31	7.66	20.48
	Pod size 2 Seed	0,87	0,17	5,68
April	position 2	0.99	0.80	5.55
	Interaction 4	0.86	0,71	11,54
	Error 18	0.46	1,03	3,18

· .

* Significant at 1% level. ** Significant at 5% level.

ADDINDIN - VII

Analysis of variance for number of lateral roots at various intervals in different months.

of	Change of the second	đ£		Mean squares		
sowing	Gource	OF.		ys after garmi	unation	
an	an mit wit en die sich bei die ser die sieden.	ومنابع معدم	30	60	90	
nan on one and a second of an and body as a second	Dod dize . Geod	2	2.65	1095 .9 3*	9435,42**	
December	position	2	4.14	79.57	270,29	
	Interaction	4	15.00	82.53	1145.82	
and the second second second	Brfor	19	11.33	235,14	611,15	
Salarati na - nin 20. Matangan sa 1	Pod size Seed	2	6,77	55,11	18,92	
January	position	2	14,77	40.11	3.37	
	Interaction		38.22	39,80	34.75*	
	Seror	18	19.37	51,48	11,33	

Fod size	2	3.70	325.77*	246.32
	2	101.91*	13.00	87.61
	4	23.01	95.11	77.72
		19.09	\$3,40	97,20
are pos	3	11,33	56.25**	32,33
	2	26.42	16.59	12.00
				48.00
		21,40	5.74	27,89
Pod eize	3	29.03	7.59	1.59
Geed				
position	2	9. 14	5.08	0.03
	4	31.48	14.03	13.01*
		10,20	12,69	6.77
	Seed position Interaction Error Pod dige Seed position Interaction Error Pod cige Geed position Interaction Interaction	Seed position 2 Interaction 4 Error 13 Pod dige 2 Seed position 2 Interaction 4 Error 19 Pod cige 2 Ged position 2 Interaction 4	Seed position 2 101.91* Interaction 4 23.31 Error 13 19.33 Seed 11.33 position 2 26.42 Interaction 4 6.44 Error 19 21.43 Pool size 3 29.03 Geed 9.14 Interaction 4 31.46	Seed position 2 101.01* 13.00 Interaction 4 23.31 95.11 Brror 13 19.03 53.46 Pod size 2 11.33 56.25** Seed 10.642 16.59 Interaction 4 6.44 19.09* Error 13 21.40 5.74 Pod size 3 29.03 7.59 Ged 9.14 5.06 Interaction 4 31.46 14.03

* Significant at SM level. ** Significant at 1% level.

APPENDIX - VIII

• .

Analysis of variance for dry weight of shoot at various intervals in different months.

OE	and the same and the			Mean squares			
eowing	Source	đí	Days after germination				
		•	30	60	90		
ang dan ang dan dip kapang dan gan.	Pod cize Seed	2	91581.8*	104023,4**	716845,4		
December		2	151549.8**	144004. 1**	207500.9		
	Interaction	4	22459,6	56204.1**	75334 .3		
	Error 1	8	22614.5	11702.2	265606.5		
	Pod 9128 Seed	2	3665.7	48733.6	89224.8		
January	position	2	90697.7	12624.2	3062 .1		
	Interaction	4	36505.9	62362.2	123960.7		
	Error 1	8	15063.8	91189.6	149537.1		
tin film av sty till dar af som at som	Pod size Seed	5	169559.8**	225232,3*	2670445.4*		
February		2	72608.5*	95160.7	168809.6		
· •	Interaction		35081.6	47238.2	534204.4		
9 Vinis dals alternative size and a size of the second state	Error 1	8	19593.4	51568.4	440022.9		
ferskan heren en sterkter heren heren	Pod size	2	6832.0	330538.0*	3251027.7*		
Merch	position	2	112675.4	26048.0	2453451.3*		
ral GH	Interaction	4	66608,9	78146,5	1480892.8		
	Error 1	8	41129.7	62949.8	409345. 8		
و يورين دار شد ال افتان هم الكريكية مان. و	Pod size Seed	2	11700.0	116780.4**	2781237.9		
۲. همچند الم		2	33141,1	87132.4**	61673. 9		
April ·	Interaction	4	25318.7	29020.2	220165. 0		
ŭ	Error 1	8	28700.4	10072.9	438558.8		

** Significant & 1% level

· APPENDIX - IX

.

Analysis of variance for dry weight of root at various intervals in different months,

Month of			Me	an squares		
scuing	Source	đe	Days af	ter germinati	,	
an file and an alternative states and an		,	30	60	90	
يتير وجر وعرف وتشريت بشاهت ويتريهم	Pod size Seed	2	792,5	1549,5	7629.2	
December	position	2	4671.6	2318.8	2716.2	
inte de alte stanie en tai	Interaction	- /	759.9	4424.4	7317.1	
•		18	3599.6	4637.4	8544.6	
and and the property of the pr	Pod size Seed	2	16.7	14003.7*	6942.4	
January	position	2	826.9	300.2	13290.5	
· ·	Interaction	4	1664.5	889.6	21998.7	
		18	3825.3	2720.6	28677.2	
dan tala ana kao ang	Pod size Seed	2	441.0	19276,3*	65859.8*	
February	position	2	1117.5	3298_6	4326.5	
a character a	Interaction		525.9	2183.2	14294.1	
		18	349.7	2098,2	13878.1	
QÎ, CÎ QA QA XÎ ME QA XÎ ÎN DA XW A	Pod size Seed	2	1352.7	4449,9	149236.0*	
4.4	position	2	4228.1	12821.4*	73649.3	
Harch	Interaction		12496.9	4874.3	42290.7	
		18	4924.1	2052.9	21666.9	
an an an a' t	Pod s ize Seed	2	12640.7**	6622.4*	340773,8**	
April	position	2	1294.4	5147.7*	27971.8	
•	Interaction		911.5	3698.4	12695.9	
•		19	793.6	1200.0	34751.6	

•

,

.

* Significant at 5% level. ** Significant at 1% level.

.

. .

.

APPENDIX - X

• .

Analysis of variance for total dry weight at various intervals in different months. . .

.

Month of			Į	Wean squares .	· .		
sowing	Source	đ£	Days after germination				
· · · · · ·			30	60	90 966997,3 246283,2 120534.7 329690,7 73096,1 28185,6 194716,4 240383,5 3470313,8 207554,2 720742,0 577766,6 4570669,9 3263073,6 1774804,6 547051,7		
December	Pod size Secd	2	75412.3	103275,3*	866997,3		
· · · · · · · ·	position Interaction		205818 .0* 30621.0	141772.3** 78768.1 *	120534.7		
ش ار در از 	Error 1	18 •••••	35023,3	22568.9	329690,7		
	Pod size Seed	2	3232,5	110884.1	73096.1		
January	position	2	95704.8	14734. 4	28185.6		
-	Interaction	4	45706.5	69758. 8			
	Error	18	26482.7	106160. 3	240383.5		
Mi le mi po de Contra de Años de Anos	'Pod-size Seed	2	187002.4**	273236.1*	3470313.8		
February	position	2	69492.9*	101945.6	207554 .2		
-	Interaction	4	43419,8	44148.7	720742, 0		
	Error	18	21945.9	59296.7	577766.6		
	Pog size Seed	2	14010,9	273090.0*	4570669,9		
March	position	2	153229.4	46689.1	3263073.6		
	Interaction	2	73418.6	108517.8			
	Error	4	54645.1	75637.7	547051.7		
	Pod size Seed	2	196 3	132708,6*	5060696.9		
April	position	2	37270.3	132703.6**	99354. 1		
	Interaction		28809.3	33047.7	298559.6		
		18	30530.4	13981. 3	683460. 7		

* Significant at 5% level. ** Significant at 1% level.

Month of		· · ·		Ne	an equare	5		an attain an air ann
sowing	Source	đ£	Ð	ays after	germinat	1008		
	ing ga tan ing sa		15	30	45	6 0	75	.90
December	Treatments	2	107.54**	47.35	25,54	12.48	177.52*	175.1 4*
	Error	12	12.08	13.69	10.29	9,00	28.82	22.09
February	Treatments	2	12.15	49.31	27.38	353.76**	165.64	83.60
	Srror	12	4,09	10, 34	3,52	26,67	45.09	33 .2 0
March	Treatments	2	11.09	28,95	43.90	45.91	39,11	232.66*
	Error	12	2,93	14,59	14.05	46.60	25,19	36,22

s. 15

* Significant at 5% level.

Appendix - XI

** Significant at 1% level.

App	ENDIX	-	XII	`

Analysis of variance for girth of seedlings at various intervals in different sizes of bags.

.

83	•			Mea	in equar	es	•		
Month of sowing	Source	burce df		Days after germination					
			15	30	45	60	75	90	
December	Treatments	2	0,02	0,11	0.08	0.14	0.34**	0.35**	
	Error	12	0.02	0.06	0.05	0.04	0.03	0,03	
	Treatments	2	0.001	0.05*	0.02	0.10	0.06	0.11	
February	Error	12	0.01	0.01	0.04	0.04	0.04	0.04	
in and an the factor of the second	Treatments	2	0.02	0,10**	0,25*	0 <u>.</u> 06	0.11	0.12	
March	Error	12	0.01	0.01	0.04	0,07	0,05	0.06	

.

* Significant at 5% level. ** Significant at 1% level.

· · · · · · · · · · · · · · · · ·

.

. . .

APPENDIX		XIII
----------	--	------

Analysis of variance for number of leaves produced in different sizes of bags.

Month	•			Mean	squares				
sowing	Source	35	Days after germination						
		internet soundations, statutes and an	15	30	45	60	75	90	
December	Treatmonts	2	2.60**	1.86	5.06	5.06	1.40	9.80	
	Error	12	0, 26	0.76	1.56	3.40	4.30	1.40	
	Treatments	2	0,06	1.06	6.06*	2.46	1.40	6.06	
February	Brror	12	0.06	0.93	1.05	2.20	4.30	2,90	
March	Treatments	2	1.36**	0.26	8.60	5,60	8,60	0.46	
	Error	12	0.26	0.93	4,43	1.53	4.43	2.50	

* Significant at 5% level. ** Significant at 1% level.

APPENDIX - XIV

Analysis of variance for length of tap root in different sizes of begs.

Month	. · · · ·	Mean squares				
of sowing	Source df	Days aft	ter germina			
	ب 1944 میں 1954 (1951 میں 1955	30 . 30 .	60 60	90		
December	Treatments 2	1.88	7.07	3.28		
	Error 12	4.41	5 ₉ 94	29,62		
February	Treatment 2	5,56	19.61	1.03		
	Error 12	3,32	12,64	12,53		
		an and a star will will star and the star	an anna an aige ann aige ann aige an aige aige			
an an aig an an an Ang an an Ang a	Treatments 2	0,99	11,59	7,32		

APPENDIX-XV

Analysis of variance for length of longest lateral root in different sizes of bags.

ionth St		Me	an squares		
rowing	Source de		Days after germin		
***	ala ang wai ngung ang na ang kinaga 100 ang 100 ang mga ngung ngi ng	30	60	90	
December	Treatments 2	1.06	2.23	54,72*	
	Error 12	0,77	2.87	10.70	
and and the standard and and and the second second	Treatments 2	1.20	19.71*	22.73	
ebruary	Error 12	0,64	4,73	8.59	
March	Treatments 2	0 ₄ 36	24,73*	6.79	
	Error 12	0.43	4.12	21,70	

-

* Significant at 5% level.

.

,

ì

Appendix - XVI

•

Analysis of variance for number of laterals in different sizes of bags.

Month			Mean squares Days after germination			
or sowing	Source	đ£				
y a nning a sa a chining an air aige	inii ilaya fu uyar 19-ah daba ili ili		30	60	90	
	Treatments	2	62,46**	455.00**	545.00	
Xecembér	Error	12	2.50	53,33	89.16	
ebruary	Treatments	2	70,86**	1.66	31,66	
TAUS LICE Y	Error	12	3,83	35,00	47.50	
ann ann 2011 Tha ann Aine Aine Aine Aine Aine Aine Aine Ai	Treatments	2	50,46**	45.00	380,00	
larch	errof	12	2.66	87.50	140.83	

** Significant at 1% level.

• •

.

. :

.

Appendix - XVII

	Analysis of in different	variance	for dry	weight o	f shoot	
	TU OTELetenc		. Dag s ş			
ar ann 176 anns an san sin ann an stàraichtean 1	البا والا والا والا والد فات الله التوالي والا الله الله الله	والمحمد بين الله منه عد الله	والمراجع بألدختن فبتوعيته بفرادة			

.

Month		1	Mean squares	
of sowing	Source df	Source df Days after germ		
	ning high stage start was well and with start way store and the start station was	30	60	90
	Treatments 2	39621 .7	125166.7	171500.0
December	Error 12	12766.7	172333.3	321 633 . 3
na si si se a cenaria	Treatments 2	34586.7	169820.0	137049.0
February	Error 12	11050.00	188800.0	316596.7
March	Treatmonts 2	284 45.0	166051.7	139606.7
	Error 12	8116.7	205126.7	464043.3

,

APPENDIN - XVIII

,

Analysis of variance for dry weight of root in different sizes of bags.

8 den van de Da				Mean squares			
Month of sowing	Source	d£	Days after germination				
			30	60	90		
	Treatments	2	8211.7	15011.7	49221.7**		
December	Error 12		18750.0	4791.7	5378.3		
an an air an an an air an air an	nije. Oda svoja na postali inter Olipitala nije svje take dije	iş en WE alt siştiği	के कहर को रहे को की की की की की कि को की कि	in the set of the set o	par nas aikans ny ari yakiri yakiri ya		
	Treatments	2	13020,0	43291,7*	26446.7		
February	Error	12	7 550,0	9816 ₉ 7	15353,3		
1월 188 1월 188 184 184 196 196 196 196 196 196 196 196 196 196	Treatments	2	18006,7	6386,7	3846 , 7		
March	Error	12	15710.0	7026 • 7	6229,2		

* Significant at 5% level. ** Significant at 1% level.

APPENDIX - XIX

Analysis of variance for total dry weight in different sizes of bags.

Month			M	ean squares	
onen of sowing	Source	đĒ	Days af	ion	
	an air dh' chuir air óis air dha na rit air		30	60	90
n ng kana kanang kanang kana	Treatments	2	13206.7	219345.00	395071 ,7
December	Error	12	26500.8	166583,3	337986,7
(in a la ana - 11 an-12	Treatments		90046.7	387015.0	252326.7
February	Error	12	1433 3, 3	224896.7	342010.0
March	freetmen	ts 2	83585.0	237421.7	189646.7
	EFFOF	12	29226.7	199873.3	445045.8

* Significant at 5% level.

· · ·

.

.

APPENDIX - XX

.

Analysis of variance for height of seedlings in different media.

Month of sowing				Mean	squares	معدمونات بندر المرجعات	an aine thick a starting life and an	
	Source	đ£	Days after germination					
			15	30	45	60	75	90
	Treatments	2	0,41	40,92**	15,40	23.23	110,22*	93.50
December	Effor	12	6.07	5,38	3.41	11.84	16,19	12 ₉ 71
February	Treatments			20,64**	13,89		23,43	
	Error	12	3.90	1,48	4,34	54,59	79, 59	91.0
March	. Treatments	2	0,26	49 ₁ 95**	22 ₄ 62	78, 30	104,93	110,1(
	Error	12	4.95	4,62	13,57	37,94	32.13	44.6

.

* Significant at 5% level.

** Significant at 1% level.

.

•

ı.

APPENDIX - XXI

.

•

.

۰ .

Analysis of variance for girth of seedlings in different potting media.

Month of sowing	Source			Man squares				
		đ£		Days	after g	erminati		
			15	30	45	60	75	90
December	Treatments	2	0,08	0.003	0.06	0.20*	0.08	0.12
	BFFOF	12	0,03	0+01	0,03	0,03	0.03	Q. 16
February	Treatments	2	0,001	0.002	0.05	0,06	Ø ₄ 03	0.11
	Error	12	0.01	0,004	2.04	0,06	0 _e 03	0,06
March	Treatments	 2	0,06	0.002	0.05	0,16	0,07	0,01
	Error	12	0.07	0.01	0.09	0.11	0.06	0.02

* Significant at 5% level.

APPENDIX - 2011

Analysis of variance for number of leaves produced in different media.

Month Of sowing	Source	df			2	kan squar	es	-
		نیا، قبل د (آنه زندان خدمین جد:	Days after germination					
an tinun in chi chi da an ti	-		15	30	45	60	75	90
	Treatments	2	0,20	0,26	0.80	12,20**	21,65	21,06
December	Error	12	0,16	1.40	1,36	0,96	3,49	7.00
February	Treatments	2	0,36	0,06	0.60	19 . 49	12.06	7.26
	Error	12	0 _* 26	1.06	1.06	7.06	4.56	6.26
March	Treatments	2	0.20	0,26	4,06	14.06	12.05	20.26
	Error	12	0.16	1,40	5.06	3.73	5.23	6.03

** Significant at 1% level.

÷

2.

Appendix-XXIII

Analysis of variance for length of tap root in different media.

Nonth				Maan squares				
of soving	Source	đe	Days	after germinat	ion			
			30	60	90			
December	Treatments		13.76	18,22	112,52			
	Brror	12	9,57	6 . 71	33,06			
February	Treatments	2	9.31	58,50	52,84			
	Brror	12	\$ <u></u> •69	22,45	40+17			
March	Treatments		9,99	55,54	38,89*			
	Error	12	6.27	25.79	9,58			

* Significant at 5% level.

APPENDIX - XXIV

Analysis of variance for the length of the longest lateral

Month of sowing	A	đ£	Mean squares				
	Source		Days at	بود ورد درد درد از با رود ورد ورد نوار ورد قرق قرار (رو از ور نوار ورد ورد از ور از مرز (رو از ور			
and the sum and such that with the b	and a gray bird and a second secon		30	60	90		
December	Treatments	2	0,68	1.68	31.33		
	Strot	12	0, 47.	3,10	27.11		
February	Treatments	2	0,63	14,61	60,26*		
	Error	12	0,45	10,05	3,75		
March	Treatments	2	0 ₀ 68	7,11	10,53		
	Error	12	0÷40	6.89	7.81		

i tin an sin an air an sin

.

.

* Significant at 5% level.

APPENDIX + XXV

Month of sowing			Me	su adnores	يترجية جدينة بالكينيز ويتجاربه بليه بند
	Source	đe	Days a	Lon	
		4-19. 100 010 fag ag: 200 10	30	60	90
	Treatments	2	42,06	331,66	1131,66
lecember	Error	12	12.73	321,66	309,16
nin an the state of t	Treatmonts	2	42.06	21.66	15.00

Analysis of variance for number of laterals produced in different media,

Rebruary	Error	12	12,40	112.50	4 6, 66
199	Treatments	S S	42,06*	245.00	375.00
Merch	Error	12	8.56	45 _* 83	124,16

* Significant at 5% level.

Analysis of variance for dry weight of shoot in difference madia.

.

. .

Month of sowing			Mean squares Days after germination				
	Source	d£					
· · ·	· · ·	.	30	60	90		
December	Treatments	2	50006.7	114980,0*	953166.7		
ng c gilingt	Error	12	31593, 3	22853,3	1040250.0		
niê nê di de an de an an de an	Treatments	2	39795.0	375165 .7	115406.7		
February	Error	12	22338.3	296166 _* 7	1868 26 .7		
al an an an an an an an an an	Treatments	2	730835.0*	730835 _* 0	330646,7		
March	Error	12	184470 _* 0	184470.0	641716.7		

* Significant at 5% level.

.

. .

Appendix-XXVII

Analysis of variance for dry weight of root in different media.

Month			Mean so	iuares	
of sowing	Source	đ£	Days afte	,	
	10		30	60	90
	Treatments	2	7786,7	5135.0	71820.
December	erior	12	3800.0	10430.3	34463.
44 W 14-17-17-17-18-18-18-18-18-18-18-18-18-18-18-18-18-	Treatments	2	6660.0	13140.0	103280.
February	Error	12	3810.0	12990+0	26383,3
March	Treatments	2	7983.0	21446.7	20271.7
rig FGH	Error	12	2923.3	9883 _* 3	9100 ₄ 0

 \bigcirc

Appendix - XXVIII

· · · ·

.

.

Analysis of variance for total dry weight in different media.

Month			Mea	in squares	
of sowing	Source	d£	Days at	Ster germinati	
ut an air tai th an an air air a	n in via anti anno marca anti eta a		30	60	90
December	Treatments	2	82460.0	160351,7*	1389786.7
	Brror	12	36705.8	2948.2	1212080.0
February	Treatments	2	65#45.0	523606.7	412326 <u>*</u> 7
	Error	12	28529.2	307206+7	168853.3
March	Treatments	2	95286.7*	1002351.7	483571.7
	Error	12	48710.0	256723.3	647740.0

* Significant at 5% level.

.

APPENDIX - XXIX

Analysis of variance for percentage of rooting and mean number of roots.

	Mean squares						
Source	đ£	Percentage of rooting	Meen number of roots				
freatme nts	15	2222.05**	1.23**				
(Grwoth regulators and concentration)			9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9				
Time	3	95.13	0.67**				
Interaction	45	260,43**	0.47**				
Error	128	90.36	0.04				

Mist Chamber Method.

** Significant at 1% level.

APPENDIX - XXX

Analysis of variance for percentage of rooting and mean number of roots.

Polythene Sheet Method.

Source	đ£	Mean squares		
	UL.	Percentage of rooting	Mean number of roots	
Treatments (Grwoth regulators and concentrations)	15	1994,46**	1,99**	
Time	~	19,45	0,42**	
Interaction	45	242.42**	0.3B**	
Erfor	128 .	101,20	0.06	

** Significant at 1% level.

Month of Seedling characters Reight on 15th day Height on 90th day January Height on 90th day February Height on 90th day Height on 90th day Height on 90th day Height on 90th day Height on 90th day	Pod c	• •	•	
Becember Height on 90th day Height on 15th day Height on 90th day Height on 90th day Height on 90th day Height on 15th day Height on 15th day Height on 90th day	Length	Girth	Volume	Neight
Height on 90th day Height on 15th day Height on 90th day Height on 90th day Height on 90th day Height on 90th day Height on 15th day Height on 90th day	+ 0.181 ^{NS}	+0,499 ^{NS}	+ 0.307 ^{NS}	+ 0.437 ^{NS}
January Reight on 90th day February Height on 15th day Height on 90th day Height on 15th day Height on 90th day Height on 15th day	+ 0.201 ^{NS}	-0.326 ^{NS}	-0,453 ^{NS}	- 0.154 ^{NS}
February Height on 15th day Height on 90th day March Height on 15th day Height on 90th day Height on 15th day	÷ 0.028 ^{NS}	+ 0.110 ^{NS}	- 0.364 ^{NS}	- 0.028 ^{NS}
February Height on 90th day March Height on 15th day Height on 90th day	+ 0,024 ^{NS}	-0,224 ^{NS}	-0,371 NS	-0.598 ^{NS}
Height on 90th day Height on 15th day Height on 90th day Height on 15th day	-0.234 ^{NS}	-0,239 ^{NS}	-0.311 ^{NS}	-0.170 ^{NS}
Height on 90th day Height on 15th day	+0.431 ^{NS}	+ 0 .633*	+0.494 ^{NS}	+0.641*
Height on 90th day Height on 15th day	+0.480 ^{NS}	+0.036NS	+0.540 ^{NS}	+0,344 ^{NS}
Height on 15th day	+0.512 ^{NS}	-0.301 ^{NS}	+0.753*	+0 . 669*
	-0,406 ^{NS}	+0.230 ^{NS}	+0,059 ^{NS}	+0.337 ^{NS}
April Height on 90th day	+0.019 NS	-0.370 ^{NS}	-0.372 ^{NS}	-410 ^{NS}

:

Appendix - XXXI

Correlation coefficient of sealling and rod

.

•

•

•

NS Not significant. * Significant at 5% level.

Mon th OE	Seedling characters	andright allowing supported to a give the set of a support	Pod character	2. S	
sowing		Length	Girth	Volume	Weight
December	Height on 15th day	+ 0.266 ^{NS}	- 0.318 ^{NS}	-0.266 ^{NS}	- 0.216 ^{NS}
	Height on 90th day	- 0.004 ^{NS}	- 0.042 ^{NS}	-0.290 ^{NS}	- 0.019 ^{NS}
Tanuary	Height on 15th day	- 0.080 ^{NS}	+ 0.401 ^{NS}	-0.109 ^{NS}	- 0.481 ^N
	Height on 90th day	+ 0.124 ^{NS}	+ 0.501 ^{NS}	+0.225 ^{NS}	- 0.050 ^N
Pebruery	Height on 15th day	- 0.065 ^{NS}	+ 0.040 ^{NS}	+ 0.060 ^{NS}	- 0.249 ^{NC}
	Height on 90th day	- 0.801**	+ 0.254 ^{NS}	+ 0.115 ^{NS}	- 0.133 ^{NC}
4arch	Height on 15th day	- 0.102 ^{NS}	+ 0.135 ^{NS}	+ 0.276 ^{NS}	- 0.331 ^{Ns}
	Height on 90th day	+ 0.492 ^{NS}	- 0.201 ^{NS}	+ 0.151 ^{NS}	- 0.097 ^{Ns}
pril	Height on 15th day	-0.427 ^{NS}	+ 0.410 ^{MS}	+ 0.310 ^{NS}	- 0.0110
	Height on 90thday	+0.073 ^{NS}	-0.632*	-0.742*	- 0.599 ^{NE}

.

NS Not significant. * Significant at 5% level. ** Significant at 1% level.

APPENDIX-XXXIII

Correlation coefficients of seedlings and pod characters of small pods.

Month of	Seedling	Pod characters				
sowing	characters	Length	Cirth	Volume	ueight	
December	Height on 15th day	+0.047 ^{NS}	-0.047 ^{NS}	-0, 377 ^{NS}	-0.072 ^{HS}	
	Height on 90th day	-0.142 ^{NS}	40.258 ^{NS}	+0, 238 ^{NS}	+0.002 ^{NS}	
January	Height on 15th day	-0.523 ^{NS}	+0.320 ^{NS}	-0.186 ^{NS}	+0.002 ^{NS}	
	Height on 90th day	+0.268 ^{NS}	-0.310 ^{NS}	+0.061 ^{NS}	-0.132 ^{NS}	
February	Height on 15th day	+0. 313 ^{NS}	+0.014 ^{NS}	+0.302 ^{NS}	+0.290 ^{NS}	
	Height on 90th day	+0. 435 ^{NS}	+0.209 ^{NS}	+0.181 ^{NS}	+0.048 ^{NS}	
March	Height on 15th day	-0.515 ^{NS}	-0.294 ^{NS}	-0.217 ^{NS}	-0, 418 ^{NS}	
	Height on 90th day	-0.198 ^{NS}	-0.621 ^{NS}	-0.706*	-0, 495 ^{NS}	
April	Height on 15th day	40.120 ^{NS}	+0.169 ^{NS}	+0.192 ^{NS}	+0.195 ^{NS}	
	Height on 90th day	+0.349 ^{NS}	+0.448 ^{NS}	+0.551 ^{NS}	+0.129 ^{NS}	

.

÷

NS Not significant. * Significant at 5% level.

PROPAGATIONAL STUDIES ON COCOA

(Theobroma cacoo L.)

BY

R. KESHAVACHANDRAN

ABSTRACT OF A THESIS

Submitted in partial fulfilment of the requirements for the degree of

Master of Science in Horticulture

Faculty of Agriculture. Kerala Agricultural University

Department of Horticulture (Plantation Crops) COLLEGE OF HORTICULTURE Vellanikkara - Trichur

ABSTRACT

A study on the different aspects of propagation of coccoa was undertaken at the College of Morticulture from May 1978 to July 1979 to standardise the criteria for selecting the pode, seeds and seedlings for raising the nursery, to find out the optimum size of polythene bags and the suitable medium for raising the nursery and also to standardise the best vegetative propagation methods for coccoa.

The results had indicated that the volume and weight of the pods varied within the three classes of pode namely large, medium and small. There was not much variation in the number of seeds among the three classes of pods and the mean number varied between 30 to 42. The number of seeds were found to be highest in pods harvested in February and March followed by April. The highest percentage of germination was recommended in March followed by February. January, December and April.

The size of the pod and the position of seeds(pedicel end, middle and distal end) had no significant influence on the germination and the growth of the seedlings, However, the large and medium sized pods are found to produce better seedlings. Based on the studies the following recommendation are made i) Large and medium sized pods weighing more than 350g each with not less than 400 cc volume should be selected for raising the nursery during the month of February and March. ii) The seed should be sown on the same day, harvest but it can be stored under room conditions upto six days. The percentage of germination will be decreased to 66 per cent by the sixth day. iii) A selection criterion for selecting the seedlings when they are three months old is recommended. The seedlings should have atleast 30cm height and 10 or more number of leaves when they are three months old.

For raising three to five month old seedlings, the optimum size of bag is found to be 30 x 20 cm and the best medium for raising cocca nursery is a mixture soil, sand and farm yard manure in the proportion 1:1:2.

Considering the pattern and extent of root and shoot growth of the seedlings, planting the seedling when they are three to four months old is suggested.

For higher percentage of rooting and optimum number of roots and higher root length, a 'quick dip' method for 60 sec in 4000 ppm NAA or 6000 ppm IAA is recommended for producing rooted cuttings. A 'mist chamber' method is suggested for rooting the cuttings. Forkert method of budding is recommended for docoa either on eight to nine months old root-stocks or by green budding on three to four months old root-stock. The best time for budding is February and March on older root-stocks and April and May for green budding.