EFFECT OF ELEVATED CO₂ CONCENTRATION ON GROWTH AND PHYSIOLOGY OF SELECTED TROPICAL TREE SEEDLINGS

By NEENU SOMARAJ

¢. .

THESIS

Submitted in partial fulfilment of the requirement for the degree of

MASTER OF SCIENCE IN FORESTRY

Faculty of Agriculture Kerala Agricultural University

Department of Forest Management and Utilization COLLEGE OF FORESTRY VELLANIKKARA, THRISSUR- 680656 KERALA, INDIA 2010

DECLARATION

I hereby declare that this thesis entitled "Effect of elevated CO_2 concentration on growth and physiology of selected tropical tree seedlings." is a bonafide record of research work done by me during the course of research and that this thesis has not previously formed the basis for the award to me of any degree, diploma, associateship, fellowship or other similar title of any University or Society.

Vellanikkara

10.08.2010

Neenu Somaraj

Mr. S. Gopakumar Chairman, Advisory Committee Assistant Professor (SG) Department of Forest Management and Utilization College of Forestry Kerala Agricultural University Vellanikkara, Thrissur-680656

CERTIFICATE

Certified that this thesis entitled "Effect of elevated CO_2 concentration on growth and physiology of selected tropical tree seedlings." is a record of research work done independently by Kum. Neenu Somaraj, under my guidance and supervision and that it has not previously formed the basis for the award of any degree, fellowship or associateship to her.

Vellanikkara

10.08.2010

Mr. S. Gopakumar

CERTIFICATE

We the undersigned members of the advisory committee of Kum. Neenu Somaraj, a candidate for the degree of Master of Science in Forestry agree that this thesis entitled "Effect of elevated CO_2 concentration on growth and physiology of selected tropical tree seedlings." may be submitted by Kum. Neenu Somaraj, in partial fulfillment of the requirement for the degree.

Mr. S. Gopakumar Chairman, Advisory Committee Assistant Frofessor (SG) Department of Forest Management and Utilization College of Forestry Kerala Agricultural University Vellanikkara, Trichur-680656

Dr. K. Vidyasagaran Associate Professor and Head Department of Forest Management and Utilization College of Forestry, Vellanikkara Trichur

Professori Department of Plant Physiology, (AICRP on Weed Control) College of Horticulture, Vellanikkara Trichur

Dr. A. V. Santhoshkumar Associate Professor and Head Department of Tree Physiology and Breeding College of Forestry, Vellanikkara Trichur

L EXAMINER annakorishina Hegde of Porristy, Pomenampet -571216

ACKNOWLEDGEMENT

It is with utmost respect and great devotion, I place on record my deep sense of gratitude and indebtedness to my major advisor Mr. S. Gopakumar, Assistant Professor (SG), Department of Forest Management L Utilization, College of Forestry, whose pragmatic suggestions, erudite guidance, unstinted mental support, friendly cooperation and warm concern throughout the study period made my thesis work an easy task. I express my heartfelt and sincere thanks to him.

My deep sense of gratitude goes to my advisory committee member, **Dr. K, Vidyasagaran**, Associate Professor and Head, Department of Forest Management & Utilization, College of Forestry, or his constructive suggestion, timely cooperation and timely help in availing me to use the nursery and engaging the labour facilities throughout the conduct of my study work.

I take this opportunity to place on record my sincere gratitude to my advisory committee member, Dr. A.V. Santhoshkumar, Associate Professor and Head, Department of Tree Physiology L Breeding, College of Forestry, for his timely advice, friendly cooperation and constant help in a way of extending the facilities available in the department for conducting the present study.

I extend my unreserved thanks to my advisory committee member **Dr. T. Girija**, Professor, Department of Physiology, AICRP on weed control, College of Horticulture, for her keen interest, valuable advice, sincere cooperation and availing the facilities available at her disposal for conducting the experiment.

I owe my sincere thanks to HOD, Department of Agronomy (AICRP on weed control), College of Horticulture, for the financial assistance offered for the successful execution of my work,

I am whole heartedly obliged to Mr. S. Krishnan, Assistant Professor, Department of Agricultural Statistics, College of Horticulture; Dr. T.K, Kunhamu, Associate Professor, Department of Silviculture L Agroforesty, College of Forestry; Dr. N.K, Vijayakumar, Emeritus Scientist, Department of Tree Physiology L Breeding, College of Forestry; Dr.B. Mohankumar, Associate Dean, College of Forestry; Dr. K, Sudhakara, Professor, Department of Silviculture L Agroforesty, College of Forestry; Dr. E.V. Anoop, Associate Professor and Head, Department of Wood Science, College of Forestry; Dr. P.O. Nameer, Associate Professor and Head, Department of Wildlife Sciences, College of Forestry; **Dr. B. Ambika Varma**, Assistant Professor, Department of Wildlife Sciences, College of Forestry for kindly providing me valuable advice and various facilities for the conduct of the study.

Let me place on record my heartiest thanks to Mr. Sreenivasan, Mr. Eldo, Mr.Ashiq Ali, Ms. Nataliya, Mr.Abhilash G. and Mr. Arun Visa for their friendly help during the course of my work.

Words cannot really express the true friendship that I relished from **Deepa**, **Neethu Lakshmi**, Ajay Ghosh, Malik and Sijo Samuel for the heartfelt help, timely suggestions and back-up which gave me enough mental strength to get through all mind-numbing circumstances.

Words cannot describe the cooperation extended by my friends Delphi, Sindhumathi, Keerthy, Suma, Sreehari, Aneesh, Jisha, Sukanya, Sneha, Parvathy, Anu, Manju, Paru and all my juniors.

The help rendered by Mrs. Mini, Mrs. Reshmi, Mrs. Seena, Mrs. Santha, Mr. Krisnadas, Mr. Prasanth, Mr.Prasad, Mrs.Prema, Mrs. Sali, Mrs. Jyothi, Mrs.Deepa and Mrs.Preethi is also remembered with gratitude.

I express my deep sense of gratitude to Kerala Agricultural University for extending financial and technical support for pursuance of my study and research.

My inspiration, my loving parents Mr. P.G. Somaraj and Mrs. Aswathy Somaraj and my loving sister Ms. Nayana Somaraj were always with me with there uninhibited moral support, bonded affection. I behold to them forever for all I am today and hope to be in the future.

Above all I bow my head before the God, 'ALMIGHTY' whose blessings enabled me to undertake this venture successfully.

Dedicated to

.

My beloved parents,

•

CONTENTS

CHAPTER NO.	TITLE	PAGE NO.
1.	INTRODUCTION	1-3
2.	REVIEW OF LITERATURE	4-20
3.	MATERIALS AND METHODS	21-29
4.	RESULTS	30-99
5.	DISCUSSION	100-109
6.	SUMMARY	110-112
7.	REFERENCES	i-xx
8.	ABSTRACT	
9.	APPENDIX	

LIST OF TABLES

Table No.	Title	Between Pages
1 (a)	Two-way tables on height (cm) of seedling of five tree species under two CO_2 concentrations	32
1 (b)	Two-way tables on height (cm) of seedling of five tree species under two CO_2 concentrations	33
2 (a)	Two-way tables on collar diameter (mm) of seedling of five tree species under two CO_2 concentrations	36
2(b)	Two-way tables on collar diameter (mm) of seedling of five tree species under two CO_2 concentrations	37
3 (a)	Two-way tables on number of leaves of seedlings of five tree species under two CO_2 concentrations	39
3 (b)	Two-way tables on number of leaves of seedlings of five tree species under two CO_2 concentrations	40
4 (a)	Two-way tables on root length (cm) of seedlings of five tree species of under two CO_2 concentrations	42
4 (b)	Two-way tables on root length (cm) of seedlings of five tree species of under two CO_2 concentrations	43
5 (a)	Two-way tables on shoot fresh weight (g) of seedlings of five tree species under two CO_2 concentrations	46
5 (b)	Two-way tables on shoot fresh weight (g) of seedlings of five tree species under two CO_2 concentrations	47
6 (a)	Two-way tables on root fresh weight (g) of seedlings of five tree species under two CO_2 concentrations	49
6 (b)	Two-way tables on root fresh weight (g) of seedlings of five tree species under two CO_2 concentrations	50
7 (a)	Two-way tables on shoot dry weight (g) of seedlings of five tree species under two CO_2 concentrations	52
7 (b)	Two-way tables on shoot dry weight (g) of seedling of five tree species under two CO ₂ concentrations	53

8 (a)	Two-way tables on root dry weight (g) of seedlings of five tree species under two CO_2 concentrations	55
8 (b)	Two-way tables on root dry weight (g) of seedlings of five tree species under two CO_2 concentrations	56
9 (a)	Two-way tables on shoot root length ratio of seedlings of five tree species under two CO ₂ concentrations	58
9 (b)	Two-way tables on shoot root length ratio of seedlings of five tree species under two CO ₂ concentrations	59
10 (a)	Two-way tables on shoot root biomass ratio of seedlings of five tree species under two CO ₂ concentrations	60
10 (b)	Two-way tables on shoot root biomass ratio of seedlings of five tree species under two CO_2 concentrations	61
11 (a)	Two-way tables on total dry matter content (g) of seedlings of five tree species under two CO_2 concentrations	64
11 (b)	Two-way tables on total dry matter content (g) of seedlings of five tree species under two CO_2 concentrations	65
12 (a)	Two-way tables on relative growth rate (mgd ⁻¹) of seedlings of five tree species under two CO ₂ concentrations	67
12 (b)	Two-way tables on relative growth rate (mgd^{-1}) of seedlings of five tree species under two CO ₂ concentrations	68
13 (a)	Two-way tables on net assimilation rate (mgd^{-1}) of seedlings of five tree species under two CO ₂ concentrations	69
13 (b)	Two-way tables on net assimilation rate (mgd^{-1}) of seedlings of five tree species under two CO ₂ concentrations	70
14 (a)	Two-way tables on leaf area (cm^2) of seedlings of five tree species under two CO_2 concentrations	72
14 (b)	Two-way tables on leaf area (cm^2) of seedlings of five tree species under two CO ₂ concentrations	73
15 (a)	Two-way tables on specific leaf area (cm^2g^{-1}) of seedlings of five tree species under two CO ₂ concentrations	75
15 (b)	Two-way tables on specific leaf area (cm^2g^{-1}) of seedlings of five tree species under two CO ₂ concentrations	76

16 (a)	Two-way tables on leaf area ratio of $(\text{cm}^2\text{g}^{-1})$ of seedlings of five tree species under two CO ₂ concentrations	77
16 (b)	Two-way tables on leaf area ratio of (cm^2g^{-1}) of seedlings of five tree species under two CO ₂ concentrations	78
17 (a)	Two-way tables on leaf weight ratio (g g^{-1}) of seedlings of five tree species under two CO ₂ concentrations	81
17 (b)	Two-way tables on leaf weight ratio (g g^{-1}) of seedlings of five tree species under two CO ₂ concentrations	82
18 (a)	Two-way tables on number of stomata (mm^{-2}) of seedlings of five tree species under two CO ₂ concentrations	84
18 (b)	Two-way tables on number of stomata (mm^{-2}) of seedlings of five tree species under two CO ₂ concentrations	85
19 (a)	Two-way tables on rate of photosynthesis (μ mol m ⁻² s ⁻¹) of seedlings of five tree species under two CO ₂ concentrations	87
19 (b)	Two-way tables on rate of photosynthesis (μ mol m ⁻² s ⁻¹) of seedlings of five tree species under two CO ₂ concentrations	88
20 (a)	Two-way tables on chlorophyll content a (mg g^{-1}) of seedlings of five tree species under two CO ₂ concentrations	90
20 (b)	Two-way tables on chlorophyll content a (mg g^{-1}) of seedlings of five tree species under two CO ₂ concentrations	91
21 (a)	Two-way tables on chlorophyll content b (mg g^{-1}) of seedlings of five tree species under two CO ₂ concentrations	93
21 (b)	Two-way tables on chlorophyll content b (mg g^{-1}) of seedlings of five tree species under two CO ₂ concentrations	94
22 (a)	Two-way tables on total chlorophyll content (mg g^{-1}) of seedlings of five tree species under two CO ₂ concentrations	95
22 (b)	Two-way tables on total chlorophyll content (mg g^{-1}) of seedlings of five tree species under two CO ₂ concentrations	96
23 (a)	Two-way tables on soluble protein content (mg g^{-1}) of seedlings of five tree species under two CO ₂ concentrations	98
23 (b)	Two-way tables on soluble protein content (mg g^{-1}) of seedlings of five tree species under two CO ₂ concentrations	99
1		

LIST OF FIGURES

.

Fig. No.	Title	Between Pages
1	Average carbon dioxide concentration (ppm) inside the chamber	23-24
2a	Changes in the relative humidity (%) inside the chamber and outside the chamber	23-24
2b	Changes in the mean daily temperature (⁰ C) inside the chamber and outside the chamber	23-24
3	Response of five tree species on height (cm) of seedlings under two CO_2 concentrations	33-34
4	Response of five tree species on collar diameter (mm) of seedlings under two CO_2 concentrations	37-38
5	Response of five tree species on total drymatter content (g) of seedlings under two CO_2 concentrations	65-66
6	Response of five tree species on leaf area (cm^2) of seedlings under two CO ₂ concentrations	73-74
7	Response of five tree species on number of stomata (mm^2) of seedlings under two CO ₂ concentrations	85-86
8	Response of five tree species on rate of photosynthesis (μ mol m ⁻² s ⁻¹) of seedlings under two CO ₂ concentrations	88-89
9	Response of five tree species on total chlorophyll content $(mg g^{-1})$ of seedlings under two CO ₂ concentration	96-97
10	Response of five tree species on soluble protein content (mg g ⁻¹) of seedlings under two CO ₂ concentrations	99-100

.

,

•

LIST OF PLATES

Plates No.	Title	Between Pages
1	Overview of the experimental plot	22-23
2	The CO ₂ trapping trench	22-23
3	View of opened CO ₂ trapping trench	22-23
4	Tree seedlings kept in the trench	22-23
5	<i>Tectona grandis</i> seedlings kept inside the chamber and outside the chamber	65-66
6	Swietenia macrophylla seedlings kept inside the chamber and outside the chamber	65-66
7	<i>Syzygium cumini</i> seedlings kept inside the chamber and outside the chamber	65-66
8	Ailanthus triphysa seedlings kept inside the chamber and outside the chamber	65-66
9	Pterocarpus marsupium seedlings kept inside the chamber and outside the chamber	65-66

INTRODUCTION

.

.

.

.

.

INTRODUCTION

The Earth's atmospheric CO_2 concentration has risen at an accelerating rate since the beginning of the industrial revolution. At present, CO_2 is approximately 38 per cent higher at 372 ppm and by the middle of this century it is predicted to reach 550 ppm and to surpass 700 ppm by the end of the century (IPCC, 2007). The rate of CO_2 concentration increase is estimated to be 1.5 ppm annually. Rapid change in the industrial development, heightened consumption of fossil fuels and deforestation contribute to accumulation of CO_2 in the atmosphere leading to global climatic changes. The elevated atmospheric CO_2 changes the global energy balance and thereby the climate.

As a single tree will absorb approximately one ton of carbon dioxide during its lifetime, the carbon sequestration property of trees could be exploited to balance atmospheric CO₂ concentration (Norby et al., 1999). Hence massive afforestation is evidently the only feasible way to combat global warming and climate change. The schemes entitled Clean Development Mechanism or more commonly carbon trading allows investment in reforestation and other green project such as large scale tree plantations which is a lucrative alternative to mitigate carbon in the atmosphere. In addition to this, converting some of the low productive areas to higher yielding agroforestry systems would sequester 5 to 50 tonnes of carbon per hectare per year. Rehabilitating dry forests in India could double sequestration from 27 to 55 tonnes of carbon yearly for every hectare of dry forest improved. The recently declared National Action Plan Climate on Change (http://www.energymanagertraining.com/NAPCC/main.htm) and Green India Mission are all looking forward to increase the green cover all over India through afforestation activities. It points out the increasing demand of good quality tree seedlings for rehabilitation activities in the near future.

It is predicted that the CO_2 increase will have a significant impact on the growth and eco - physiological response of plants, since the plant growth depends on several environmental factors including atmospheric CO_2 levels. It is already understood that elevated CO_2 can improve biomass and leaf production in different

plant species. Higher growth rate and high biomass accumulation in plants is due to the influence of CO_2 on various metabolic activities of plants (Devakumar et al., 1998). Therefore, CO_2 fertilization is widely exploited in the green houses in order to boost up the growth of plants. However, the response of the tree species is species specific and dependent on the growth stages.

A number of innovative techniques have been developed in order to use increased CO_2 in a more useful way in the nursery. Depending upon the need and purpose, one can select the desirable type of CO_2 enrichment system which includes closed systems in controlled environment cabinet, open top chambers, branch bag techniques and Free Air CO_2 Enrichment (FACE) technique. There are advantages and disadvantages associated with these techniques. However, one of the major constraints is high cost involved in exposing seedlings to higher CO_2 concentrations. Hence, one of the most simple ways of creating higher CO_2 concentrations in the nursery is to trap the CO_2 released by respiration of plants and soil microbes (Devakumar et al., 1996).

The state of Kerala is the home of a number of timber yielding trees. A clamour for planting trees like *Tectona grandis* L.F. (teak) and *Pterocarpus marsupium* Roxb (Venga.) in farmlands has been observed in the recent years among the farmers of Kerala. Tree species like *Swietenia macrophylla* King (mahogany) and *Ailanthus triphysa* (Dennst.) Alston. (matti) are also widely being planted in the Kerala homesteads. *Syzygium cumini* (Njaval), an evergreen fruit yielding tree species is also highly preferred for avenue planting. Hence, the demand for good planting stock of these multipurpose trees has been increasing from year to year. For any successful afforestation programme, it is necessary to produce robust and healthy tree seedlings. Lack of availability of healthy tree seedlings usually delays the progress of greening activities. Moreover, as the growth rate of most tree seedlings in the initial phase is slow, they have to remain in the nursery for a longer period.

As increased CO_2 concentration facilitates higher photosynthetic production, this will have synergistic effects on growth and biomass production in the early stages of tree growth. So, CO_2 fertilization is possibly a rapid and economical way for the speedy production of healthy seedling. However, considerable variations in the response of various plant species to elevated CO_2 levels have already been observed. It is the need of the hour to collect more reliable information on the influence of CO_2 fertilization on the growth, development and physiology of more number of tree species of ecological and economic importance.

It is against this backdrop that the current study was undertaken with the following objectives:

- 1. To understand the responsiveness of five selected tropical tree seedlings to two CO₂ levels
- 2. To assess the changes in their growth rate, physiology and biomass production under CO₂ enrichment

REVIEW OF LITERATURE

REVIEW OF LITERATURE

The photochemical reduction of CO_2 via photosynthesis is the basis of orgin of all higher life on earth. Thus, a change in the CO_2 availability will most likely influence plant life and consequently the biosphere in multiple ways. We are currently witnessing an increase in atmospheric CO_2 concentration. That is unprecedented in recent geological time. As atmospheric CO_2 is the sole source of carbon for plants, CO_2 enrichment will act as carbon fertilizer, resulting in far reaching consequences for plants both quantitatively and qualitatively. However the impact of higher CO_2 concentration, on vegetation depends on the period of exposure. Hence the short term and long term responses are varying even in the same species. This scenario is an important benchmark for experimental research on the effects of elevated CO_2 concentration on plants.

The enriched CO_2 concentration in a closed artificial condition is known to modify micro- climate. Elevated concentrations of atmospheric carbon dioxide may have a major effect on woody plants (Sionit and Kramer, 1986; Jarvis, 1989; Eamus and Jarvis, 1989), yet most attention to date has focused on agricultural crops and horticultural plants (Ceulemans et al., 1993). It may be because of the practical difficulty of conducting experiments with trees. As global rise in CO_2 concentration influences the forest ecosystem to a large extent, more information on the likely consequences of elevated CO_2 on growth, development and productivity of tree species is the need of the day. The published literature on the influence of elevated CO_2 concentration on the tree species are reviewed here under.

2.1 Influence of elevated CO₂ on growth parameters

Continuous exposure to high CO_2 enhances growth and is often used in greenhouses to increase biomass and yield (Mortensen, 1987; Campagna and Margolis, 1989). Short pulses of elevated CO_2 may also promote growth and carbohydrate reserves, while reducing costs and the risk of acclimation due to longterm high CO_2 exposure. The CO_2 fertilization hypothesis stipulates that rising atmospheric CO_2 has a positive effect on tree growth due to increasing availability of carbon.

2.1.1 Influence of elevated CO₂ on shoot growth

Carbon dioxide environment was a significant source of variation for all growth parameters. Seedlings of Black spruce grown under elevated CO_2 , compared to seedlings grown under ambient CO_2 , were 20 per cent greater in height (Johnsen and Major, 1998). Experiments showed that high atmospheric CO_2 concentration leads to increases in height in many plants. According to Wang et al. (2003) height growth of tree seedlings at elevated CO_2 increased by 10 - 40 per cent compared to those grown at ambient CO_2 . Similarly in another study, Johnsen and Major (1998) revealed that tree seedlings grown under elevated CO_2 , compared to seedlings grown under ambient CO_2 .

Experiment in nine-month-old seedlings of *Cedrus atlantica* and *Pinus nigra* (var. maritima) revealed that height and diameter growth were 20 per cent (*C. atlantica*) and 10 per cent (*P. nigra*) greater in the enriched treatment than those plants grown at normal CO₂ concentrations(Kaushal et al., 1989). Melgar et al. (2008) compared growth and other physiological characteristics of two cultivars ('Koroneiki' and 'Picual') of Olive (*Olea europea*) trees in response to elevated CO₂ concentration. After three months of treatment, the 9-month-old cuttings of 'Koroneiki' had significantly greater shoot growth, at elevated CO₂ than at ambient CO₂ under normal soil conditions, but this difference disappeared under salt stress. Likewise, *Abies faxoniana* seedlings after one year's exposure to elevated CO₂ concentration (ambient+350 micro mol/mol) under two planting densities (28 or 84 plants/sq.m) were investigated in closed-top chambers. Tree height, stem diameter and cross-sectional area, were enhanced under elevated CO₂ concentration, and reduced under high planting density (Yun-Zhou et al., 2008).

Elevated CO₂ increased the basal area increment of *Pinus taeda* trees by 13-27 per cent. In most years, exposure to elevated CO₂ increased the growth rate but not the duration of the active growth period (Moore et al., 2006). A study was conducted in seedlings of four and seven month old *Garcinia gummi-gutta* under elevated CO₂ and supplemented with nutrients and hormones. A significant increase in plant height, stem diameter, were noticed in both the age groups in all the treatments (Jagadish et al., 2008). It has been noticed that an increase in the growth of vegetative-propagated olive trees (*Olea europea*) underwent CO_2 fertilization during greenhouse production during winter in a Mediterranean climate (Biel et al., 2008). They suggested that use of CO_2 enrichment can facilitate rapid nursery production of olive trees during the winter season under Mediterranean conditions.

Exposure of the hybrid poplar clone 'Primo' (*Populus deltoides x Populus nipa*) to doubled carbon dioxide for just 68 days significantly increased stem height by 13 per cent compared with trees grown in ambient CO₂ concentrations. The stem diameter was also significantly increased than normal plants (Gardner et al., 1995). Similarly, some of the mangrove species also responded to doubled CO₂ in a positive way. *Rhizophora mangle* seedlings exhibited significantly increased total stem length, branching activity, higher root:shoot ratios and total leaf area in elevated CO₂ (Farnsworth et al., 1996). Growth responses of Beech (*Fagus sylvatica*) and Norway spruce (*Picea abies*) to increased atmospheric CO₂ was analyzed by Egli and Korner (1997). Their conclusion was that stem diameter increased CO₂ in the calcareous soil, but not in the acidic soil. The opposite was found for spruce stems, which responded positively in the acidic soil but not in the calcareous soil. This proved the role of soil characteristics on growth of plants.

An experiment conducted by Bazzaz et al. (1990) on american beech (*Fagus grandifolia*) paper birch (*Betula papyrifera*), black cherry (*Prunus serotina*), white pine (*Pinus strobes*), red maple (*Acer rubrum*), sugar maple (*Acer saccharum*) and eastern hemlock (*Tsuga canadensis*) showed large differences in the magnitude of growth enhancement by increased levels of CO₂ between species. Additionally, the three shade-tolerant species (i.e. beech, sugar maple and hemlock) exhibited the largest increase in shoot growth with increased CO₂ concentrations. Similarly, the study on the response of elevated atmospheric CO₂ with unlimited water and complete nutrient supply on the fast- and slow-growing *acacia* species was conducted by Atkin et al. (1999). The stimulation of Relative Growth Rate was evident throughout the twelve week growth period in seedlings of ten woody *acacia* species. However, CO₂ enrichment in Douglas-fir seedlings in USA did not show any significant effects on stem diameter, height, and leaf growth compared to normal atmospheric CO₂ condition (Olszyk et al., 1998).

7

2.1.2 Influence of elevated CO₂ on leaf growth parameters

Seedlings of four birch species (*Betula lenta, B. papyrifera, B. populifolia and B. alleghaniensis*) were examined to evaluate the response of species to global CO_2 change. All leaf growth parameters including number of leaves, length of longest leaf, leaf area, stem length, biomass) in all four species were significantly stimulated by enriched CO_2 conditions, but the magnitude of response was different among species (Rochefort and Bazzaz, 1992). Jagadish et al. (2008) has found out that the leaf area and leaf number increased in seedlings of four and seven months old *Garcinia gummi-gutta*, when exposed to elevated CO_2 concentrations. Increase in leaf area was due to both increase in leaf number and higher leaf expansion rates. A study on the annual carbon-nitrogen-water economy of trees growing at a CO_2 enrichment experiment at Oak Ridge, Tennessee, USA showed an enhanced Leaf Area Index. (McMurtrie et al., 2008).

According to Gardner et al. (1995) hybrid poplar (*Populus euramericana*) trees in elevated CO_2 had more leaves and a greater total leaf area, while the specific leaf area was decreased in elevated CO_2 on four out of five occasions and was significantly lower after sixty eight days, an effect indicating that leaves were either thicker or heavier. Curtis et al. (2000) conducted a study for two and half growing seasons with *Populus tremuloides* grown under experimental atmospheric CO_2 and soil-N-availability treatments. At the final harvest, stem biomass and total leaf area increased significantly due to CO_2 enrichment in high-N but not in low-N soil. This indicates that soil nitrogen availability has an important role in productivity of CO_2 fertilized plant.

Gaudillere and Mousseau (1989) also examined changes in leaf development of CO_2 treated Poplar species and found that leaves showed increases in area, specific weight, number of chloroplasts and numbers of stomata and epidermal cells. Because of the changes in leaf area, whole plant photosynthesis was increased. Likewise, the stomatal distribution and leaf physiology of *Alnus glutinosa* under elevated CO_2 was analyzed by Poole et al. (2000). In general, a doubling of the atmospheric CO_2 concentration enhanced plant growth and significantly increased stomatal index. However, there was no significant change in relative stomatal density.

One of the major plantation conifers in Australia, *Pinus radiata* was used to investigate effects of high CO₂ concentration on growth and wood production. Two half- sib families (F10 and F62) showed 43 and 30 per cent enhancement of leaf area development respectively and appeared to be associated with increased rates of photosynthesis (Conroy et al., 1990). Tjoelker et al. (1998) studied the impact of CO₂ enrichment in boreal ecosystem. They found that all species (*Picea mariana, Pinus banksiana, Larix laricina, Populus tremuloides* and *Betula papyrifera*) exhibited declines in Specific Leaf Area in response to CO₂ enrichment. Leaf stomatal density and index of *Ginkgo biloba* were significantly reduced after 3 years growth at elevated CO₂ (560 ppm), with values comparable to those of cuticles prepared from Triassic and Jurassic fossil Ginkgo leaves. Experiment indicated that reductions in stomatal density and index irreversibly reduced stomatal conductance (Beerling et al., 1998).

2.1.3 Influence of elevated CO₂ on root growth

In order to predict forest responses to elevated CO_2 concentrations, it is important to determine the tree -soil carbon fluxes. Root systems comprise up to half the total tree biomass and below-ground net primary production may exceed 50% of total net primary production (Curtis et al., 1994). Hence, the effects of elevated atmospheric CO_2 concentration on the root system is studied by many scientists, in order to provide further insight to the response of plants to climate change. Findings on the root system structure of *Betula albosinensis* seedlings, grown in an artificial enclosed-top chamber system showed a significant increase in total root length in the 0-10 cm soil layer, root growth angle in the 5-10 cm layer and 10-22 per cent increased root range under elevated CO_2 concentration. The fine root biomass reached the largest increase of 152 per cent directed towards the significant impact of CO_2 enrichment on entire root system (HouYing et al., 2008).

Johnsen and Major (1998) observed 16 per cent increase in root collar diameter in black spruce seedlings when the seedlings underwent carbon loading during nursery culture. Similarly, increased root growth of forest trees under elevated atmospheric CO₂ has been reported in a longleaf pine (*Pinus palustris*) (Pritchard et al., 2001). Pregitzer et al. (2008) conducted an experiment to understand the ecosystem response to elevated atmospheric carbon dioxide and elevated troposphere ozone. The long term exposure increased the fine root turn over in the *Populus tremuloides* forest as the result of increased soil respiration. The production and mortality of fine roots produced by trees growing under CO₂ enrichment are significantly increased. Increased carbon allocation in the belowground biomass has been observed at elevated atmospheric CO₂ concentrations for a number of tree species. As a result of the enhanced carbon allocation to the belowground biomass, carbon could potentially accumulate in the soil. Moreover, the turnover rate of soil carbon pools may also increase in some ecosystems.

The effects of CO_2 enrichment on surviving and rooting of woody plant cuttings and tissue culture were evaluated. Cuttings of flower cherries, *Prunus incisa* and *Prunus jamasakura*, one endangered five needle pine, *Pinus armandii*, nematode resistant clones of *Pinus densiflora* and three nematode resistant clones of *Pinus thubergii* were evaluated both in normal ambient and under 0.1 per cent CO_2 enriched condition. Rooting rate was 8 per cent and 33 per cent for *Prunus incisa* and *Prunus jamasakura* respectively only with CO_2 enriched condition. Higher rooting was observed in cutting of *Pinus armandii* with CO_2 enrichment, while no rooting appeared without CO_2 enrichment treatment. Branches of *Pistacia chinensis* were rooted under carbon dioxide enriched condition. A marked enhanced rooting rate of in vitro cultured shoots of *Pinus thubergii* was observed under CO_2 enriched condition. (Ishii et al., 2008).

Bassirirad et al. (1996) studied the effects of CO_2 enrichment on growth and nitrogen uptake rate of loblolly pine and ponderosa pine seedlings. It was found out that the increased nitrogen uptake on a per plant basis in response to CO_2 enrichment is largely the result of a compensatory increase in root absorbing surfaces. Pritchard et al. (2008) studied fine root dynamics in a loblolly pine under CO_2 enrichment technique. Averaged over all six years of the study, CO_2 enrichment increased average fine root of standing crop (+23 per cent), annual root length production (+25 per cent), and annual root length mortality (+36 per cent)

9

compared with controls. *Betula albosinensis* seedlings showed 10-22 per cent increased root range under elevated CO_2 concentration (HouYing et al., 2008).

Yellow-poplar (*Liriodendron tulipifera*) saplings were grown in open top chambers with ambient or increased CO₂ concentrations for three growing seasons. This was attributed to a change in carbon allocation patterns, with increase in fine root production (Norby et al., 1992). According to Tingey et al. (2000), elevated CO₂ increases root growth and fine (diameter ≤ 2 mm) root growth across a range of species and experimental conditions. However, there is no clear evidence that elevated CO₂ changes the proportion of C allocated to root biomass, measured as either the root:shoot ratio or the fine root:needle ratio. Measurements of the root length of CO₂ enriched hybrid poplar (*Populus euramericana*) trees suggested that root lengths were greater in the CO₂ treatment. There was a significant increase in the number of fine root tips indicating more fine roots or an increase in fine root branching. (Gardner et al., 1995).

It has been suggested that under many nutrient regimes, the partitioning of carbon to roots in elevated CO_2 conditions may be of major significance, because of the importance of below-ground structures in water acquisition and carbon and nutrient cycling (Norby et al., 1994). However, few studies to date have quantified the impact of elevated CO_2 on root growth, development and function (Berntson and Woodward, 1992; Norby et al., 1994).

2.1.4 Influence of elevated CO₂ on biomass production

The long-term responses of trees to elevated CO_2 are especially crucial to determining the productivity of future forest tree crops. Therefore, Kimball and Idso (2005) initiated a long-term CO_2 enrichment experiment on sour orange trees. Sour orange trees (*Citrus aurantium*) have been grown from seedling stage in open-top chambers under elevated CO_2 . The ratio of annual biomass increments of the elevated- CO_2 trees to those of the control trees reached a peak of about 3.0 within two years into the experiment.

The enhanced photosynthesis has generally been followed by a similar enhancement of above-ground growth. Growth enhancement for trees exposed to elevated CO_2 has been about 27 per cent (Norby et al., 1999). This biomass increase results from an extra amount of assimilates which are partitioned into different plant structures, leading to distinctive root/shoot balances. The responses are again varying with species, soil fertility and duration of exposure.

McKee and Rooth (2008) pointed out the possibility of accelerated mangrove transition from the seedling to sapling stage and also increase above and belowground production of existing mangrove stands, exposed to CO_2 enrichment particularly in combination with higher soil nitrogen, based on their findings in the study of multi-factorial effects of elevated CO_2 , nitrogen enrichment, and competition on a mangrove-salt marsh community. Yun-Zhou et al. (2008) examined the growth of *Abies faxoniana* seedlings after one year's exposure to elevated CO_2 concentration (ambient+350 micro mol/mol) under two planting densities (28 or 84 plants/m²) in closed-top chambers. They were grown with increased total biomass. Dry matter production was higher in seedlings of four and seven month old *Garcinia gummi-gutta* under elevated CO_2 for all treatments (Jagadish et al., 2008).

Allen and Vu (2009) observed growth difference of CO_2 enriched to ambient CO_2 exposed young sweet orange trees. They have noticed a higher above ground and below ground biomass in CO_2 enriched trees. A study on the aboveground biomass response of a fire-regenerated Florida scrub-oak ecosystem after eleven years exposure to elevated CO_2 caused a 67 per cent increase in aboveground shoot biomass. Growth stimulation was sustained throughout the experiment; although there was significant variability between years. The absolute stimulation of aboveground biomass generally declined over time, reflecting increasing environmental limitations to long-term growth response. The results of this long-term study show that atmospheric CO_2 concentration had a consistent stimulating effect on aboveground biomass production (Seiler et al., 2009).

Growth under increased CO_2 (700 ppm.) increased final seedling dry weights by 20-48 per cent compared with seedling growth under ambient CO_2 (Johnsen, 1993). JianGuo et al. (2007) suggested that direct CO_2 fertilization increase above and belowground biomass based on the evaluation of tree growth responses to atmospheric CO_2 enrichment. Black spruce (*Picea mariana*) seedlings respond positively to increased CO_2 under varied water and nutrient conditions. Long term exposure of Northern forest to elevated CO_2 and elevated ozone induced increases in belowground carbon allocation suggest that the positive effects of elevated CO_2 on belowground net primary productivity (NPP) might not be offset by negative effects of O₃ (Pregitzer et al., 2008).

In a study of the possibility for use of CO₂ enrichment as a cultural practice in the production of containerized tree seedlings, black spruce (*Picea mariana*) seedlings were exposed to either increased (1000 ppm) or ambient (340 ppm.) atmospheric CO₂ levels. Those seedlings had 30 per cent and 14 per cent greater biomass respectively, than control seedlings (Campagna and Margolis, 1989). The responses of yellow-poplar (*Liriodendron tulipifera*) seedlings to elevated levels of atmospheric CO₂ were investigated by Norby and O'Neill (1992). Whole-plant dry weight increased with CO₂ enrichment provided with additional mineral nutrients. Sour orange trees were grown in enriched CO₂ atmosphere showed that the trees have approximately 2-3 times more fine-root biomass in this soil layer than the trees grown in ambient air (Idso and Kimball, 1992). Seedlings of two species of eucalyptus (*Eucalyptus macrorhyncha and E. rossii*) were grown under conditions of high CO₂ and temperature. The growth enhancement, in terms of total dry weight, was 41 per cent and 103 per cent for *E. macrorhyncha* and *E. rossii*, respectively, when grown in elevated CO₂ (Roden and Ball, 1996).

Devakumar et al. (1998) examined a novel approach to obtain increased growth in nursery seedlings of *Hevea brasiliensis* using CO_2 fertilization. The exposure led to a significant increase in total dry matter per plant. The allocation of biomass to roots was greatest in seedlings grown in elevated CO_2 with fertilizers, followed by those grown in ambient air without fertilizers. One-year-old seedlings of *Pinus koraiensis*, *P. sylvestris* var. sylvestriformis and *Phellodendron amurense* were exposed to CO_2 enrichment. The results showed that an increase in CO_2 concentration enhanced seedling growth (measured as dry weight biomass).Under doubled CO₂ concentration, biomass increased by 38 per cent on average for conifer seedlings and by 60 per cent for broadleaved seedlings (Wang et al., 2000).

Curtis and Wang (1998) concluded that total biomass in woody plants increased significantly at high CO_2 but there were also significant differences among various stress levels. A long-term study of the effects of double the current atmospheric CO_2 concentration on biomass production of scots pine (*Pinus sylvestris*) was carried out by Jach et al. (2000). Trees grown at elevated CO_2 accumulated 55 per cent more dry mass than trees grown in ambient CO_2 . All components (stem, branches, buds, needles and roots) showed dry mass increases.

Growth responses of beech (Fagus sylvatica) and Norway spruce (Picea abies) to elevated atmospheric CO₂ and increased wet deposition of nitrogen in combination with two soil types were studied in open-top chambers. Root biomass was significantly increased in the high-nitrogen treated low fertility acidic soil, but not-in the more fertile calcareous soil. These results suggest that soil type co-determines the CO₂ response of young forest trees and that these interactions are species specific (Egli and Korner, 1997).

Both total biomasses and net CO_2 assimilation increased significantly at about twice ambient CO_2 , regardless of growth conditions. Biomass responses to elevated CO_2 were strongly affected by environmental stress factors and to a lesser degree by duration of CO_2 exposure. Increased carbon allocation in the belowground biomass has been observed at elevated atmospheric CO_2 concentrations for a number of tree species (Ceulemans and Mousseau, 1994), although the effect of potential increase in carbon in the soil system is still uncertain and its component carbon pools and fluxes between them are not clearly known (Canadell et al., 1996).

The longest study of continuous exposure of forest trees to elevated atmospheric CO_2 has occurred with forest patches of helm oak (*Quercus ilex*) growing for approximately 30 years in the vicinity of two natural CO_2 springs in Italy (Hattenschwiler et al., 1997). From this study, early growth enhancement included an almost doubling of annual growth ring size under elevated CO_2 . However, a diminishing growth enhancement was noted over the study and at ages 25–30, there is no additional stimulation of annual growth rings, and the CO₂ enhanced trees are only marginally larger than controls. Growth enhancement of a 10-year old loblolly pine (*Pinus taeda*) forest by elevated CO₂ resulted in a few years of growth stimulation (DeLucia et al., 1999). However, this was followed by sharply decreased growth after the third year of exposure (Oren et al., 2001), most likely because soil fertility became a limiting factor. During the entire growth phase, from planting to crown closure, trembling aspen (*Populus tremuloides*) and paper birch (*Betula papyrifera*) growth enhancement under elevated atmospheric CO₂ has been maintained for four years (Percy et al., 2002).

2.2 Influence of elevated CO₂ on physiological parameters

One of the direct effects of increasing CO_2 level is the altering of eco physiological response of plants, since the growth of plants depends on a number of environmental factors including CO_2 level in the atmosphere. Elevated CO_2 has both direct and indirect effect on physiology of plants. Understanding the effect of changing CO_2 on behavior and responses of plants and vegetation is a key issue independent of all other global CO_2 effect (Luo et al., 1998).

2.2.1 Photosynthesis

Plants can only sense a change in atmospheric concentration through tissues that are exposed to the open air. In trees, photosynthesis is the major physiological process highly influenced by elevated CO_2 . When other environmental factors and resources are present in adequate levels, CO_2 can enhance photosynthesis of trees over a wide range of concentrations.

Numerous experiments showed that high atmospheric CO_2 concentration leads to increases in photosynthetic rate and whole-plant growth in many C_3 species, while in C_4 species the increasing effects were much lower (Bowes, 1993; Idso and Idso, 1994; Ghannoum et al., 2000; Griffin et al., 2000; Gunderson et al., 2000; Jach and Ceulemans, 2000; Finzi et al., 2001; Hymus et al., 2001; Watling et al., 2000). Exposure to elevated CO_2 can increase photosynthesis and starch accumulation (Moore et al., 1999). As per the finding of Li et al. (1999), plants of *Quercus* myrtifolia and *Quercus geminata*, both grown in open-top chambers in their natural habitat showed stimulated photosynthetic rates by 73 per cent and 51 per cent for Q. geminata and Q. myrtifolia, respectively in elevated CO₂, compared to ambient CO₂.

When plants are exposed to elevated atmospheric CO₂, photosynthesis and the accumulation of plant biomass are often increased in the short-term (Woodward, 1992; Pritchard et al., 1999). Determining the effect of elevated CO₂ on the tolerance of photosynthesis to acute heat stress (AHS) is necessary for predicting plant responses to global warming because photosynthesis is heat sensitive and AHS and atmospheric CO₂ will increase in the future. Wang et al. (2008) grew 11 species that included C₃, C₄, and CAM species at elevated (370 or 700 ppm) CO₂ and at 30^{0} C. They found out that thermotolerance of net photosynthesis in elevated CO₂ increased in C₃ plants, but decreased in C₄, and CAM species.

Maier et al. (2008) in field-grown loblolly pine exposed to elevated CO_2 concentration noticed an increased light-saturated net photosynthesis per unit leaf area by 43 per cent and 52 per cent in both existing one year old foliage and developing current-year first-flush. Likewise, CO_2 enrichment of two cultivars ('Koroneiki' and 'Picual') of olive (*Olea europaea*) trees showed a significantly higher net CO_2 assimilation rate (Melgar et al., 2008). A study conducted in seedlings of four and seven months old *Garcinia gummi-gutta* under elevated CO_2 showed a concomitant increase in photosynthesizing surface area, indicating higher photosynthesis at elevated CO_2 concentration leading to higher biomass accumulation (Jagadish et al., 2008).

Kimball and Idso (2005) studied the long term exposure of sour orange trees to elevated CO_2 . Their findings showed that the enhancement ratio for net photosynthesis in the initial period, indicating some acclimation to the elevated CO_2 . To investigate the effects of the predicted increase in atmospheric CO_2 concentrations upon photosynthesis in two soils, Eguchi et al. (2008) grew two year old saplings of three Betulaceae species (*Betula platyphylla* var.japonica, Betula maximowicziana, and Alnus hirsute) for two years in a free air CO_2 enrichment system in northern Japan. These three species are all able to increase the photosynthesis efficiency at high CO_2 . However, the rate of photosynthesis depended on the type of the soil in which they grew.

Stirling and Davey (1995) found out a significant increase in photosynthetic efficiency at elevated CO_2 in *Lactuca serriola, Dactylis glomerata, Poa annua, Poa alpina*, *Helianthemum nummularium, Bellis perennis* and *Plantago lanceolata.* Effects of CO_2 concentration on the photosynthetic and carboxylation efficiencies of *Fagus crenata* and *Quercus crispula* were investigated by NaiShen et al. (1996). They found that the elevated CO_2 concentrations strongly stimulated net photosynthetic rate and the photosynthetic efficiency, for both species.

Radiata pine (*Pinus radiata*) and red beech (*Nothofagus fusca*) were grown for over one year at elevated and ambient CO₂ partial pressure in open-top chambers. The result showed maximum photosynthetic efficiency in red beech but the same was not observed in pine under higher CO₂ (Hogan et al., 1996). Oosten and Besford (1996) presented molecular mechanisms behind photosynthetic efficiency in higher C₃ plants exposed to long-term CO₂. Wang et al. (1996) undertook CO₂ enrichment studies on saplings of scots pine (*Pinus sylvestris*) and the result showed an increase in CO₂ assimilation rate. Kirschbaum (1994) analysed the sensitivity of C₃ photosynthesis to increasing CO₂ concentration. He found that photosynthesis was much more responsive to CO₂ at high than at low temperatures.

Some reports suggest that different species in the same ecosystem may respond differently in photosynthesis or growth to rising atmospheric CO₂. These reports include the temperate deciduous species, sweetgum (*Liquidambar styraciflua*) and loblolly pine (*Pinus taeda*) (Strain and Cure, 1986), and the arid land *Eucalyptus* species (*E. tetrodonta* and *E. miniata*) (Duff et al., 1994). It has been suggested that different responses of photosynthesis to increased CO₂ concentration by different species may result in significant changes in the distribution of species and the composition of plant communities (Korner and Bazzaz, 1996). There have been only a few studies in which the responses of species were compared in their undisturbed natural environment (Bazzaz et al., 1990; Bowes, 1993). Photosynthetic rates have been reported to be enhanced by 60 per cent following exposure of the *Populus euramericana* clone 'Robusta' to 700 ppm CO_2 for several months (Ceulemans et al., 1993) and of *Populus deltoides* to twice ambient concentrations (Regehr et al., 1975). The effects of CO_2 enrichment on photosynthesis in field grown *Pinus radiata* was studied by Griffin et al. (2000). They could find increased photosynthesis in the initial period of growth.

Fernandez et al. (1999) studied photosynthesis in plants of four tropical species growing under elevated CO_2 , differing in carbon fixation metabolism: *Alternanthera crucis, Ipomea carnea, Jatropha gossypifolia* and *Talinum triangulare*. During the first weeks under elevated CO_2 in the first stage, plants of all the species had a very marked increase in their maximum net photosynthetic rates of 3.5 times on average. However, carboxylation efficiency decreased in all the species under elevated CO_2 and this was correlated with a decrease in ribulose-1, 5-bisphosphate carboxylase/oxygenase (RuBPCO) content in all the species.

Elevated CO_2 also reduced the light compensation point for net photosynthesis and increased maximum quantum efficiency by reducing photorespiration. Such effects could be of great importance to the growth of tree seedlings in the forest understorey, with possible implications for inter specific competition and forest regeneration (Saxe et al., 1998). Photosynthetic rate is stimulated by 73 per cent and 51 per cent respectively for *Quercus geminata* and *Q. myrtifolia* in elevated CO_2 (Li et al., 1999). Similarly, seedlings of *Garcinia gummigutta* showed higher photosynthesis at elevated CO_2 concentration (Jagadish et al., 2008).

However, photosynthetic enhancement may decline with time due to various limiting factors. With time, trees show a decrease in photosynthetic rate. Down regulation is most pronounced in low soil nutrient supplies. The reasons for this decline are not fully understood, though several reasons have been proposed. They include a reduction in carbohydrate sink strength, a limited capacity to sequester carbon in a storage form, changes in nitrogen allocation and a reduction of rubisco concentration (Hymus et al., 2001).

Indeed, after 17 months of growth in elevated CO_2 , field grown poplar cuttings showed evidence of physiological down-regulation (Ceulemans and

Mousseu, 1994). In some cases elevated CO_2 only increased tree photosynthesis in parallel with leaf mass, without an increase in the specific photosynthesis (Garcia et al., 1994). Branch bag technique in twenty one year old loblolly pine for two years showed enhanced rate of net photosynthesis of 53- 111 per cent and no apparent down-regulation (Teskey, 1995). In loblolly pine, photosynthesis was stimulated more during summer than winter, and observed some diminishment in photosynthetic enhancement of CO_2 exposure in subsequent years compared with the first summer during forty two months of exposure (Tissue et al., 2001).

2.3 Influence of elevated CO₂ on bio - chemical aspects

2.3.1 Chlorophyll content

Elevated carbon dioxide concentration increased chlorophyll concentration in two cultivars ('Koroneiki' and 'Picual') of olive (*Olea europea*) trees that showed a positive response to CO_2 enrichment (Melgar et al., 2008). Roden and Ball (1996) studied growth and physiology of two eucalyptus species during high temperature stress under ambient and elevated CO_2 . Plants grown in elevated CO_2 had an overall increase in chlorophyll content and hence maximum photosynthetic efficiency. However, alpine vegetation responds to elevated CO_2 with negative result. In addition to that, a study carried out by Thron et al. (1997) revealed that chlorophyll pigment contents per leaf was low due to reductions in the proportion of thylakoid membranes.

Ceulmans et al. (1995) examined the effect of doubled CO_2 on ecophysiological response in two poplar clones under open top chambers. They noticed increase chlorophyll content that contributed higher photosynthetic efficiency. An investigation of increased CO_2 on various aspects of the physiology of leaves of adult Mediterranean oak species (*Quercus pubescens* and *Quercus ilex*) grown at naturally enriched CO_2 concentrations in central Italy was conducted by Schwanz and Polle (1998). The foliar contents of chlorophylls were not affected in trees grown under enriched CO_2 in the long run. The results suggested that the down-regulation of photosynthesis might happen during the course of time. Jach and Ceulemans (1998) conducted open top chambers (OTC) studies in order to examine the impact of increased atmospheric CO_2 on leaf morphology, biochemistry and physiology of three year old scots pine seedlings. Seedlings grown in increased CO_2 for one growing season exhibited a positive response to these conditions showing higher chlorophyll, nitrogen and carbon concentrations.

Griffin et al. (2000) studied the effects of CO_2 enrichment on photosynthesis and leaf biochemistry in current year and one year old needles of the same branch of field-grown *Pinus radiata* trees. None of the biochemical parameters including leaf chlorophyll were affected by growth in elevated CO_2 . These results demonstrate that photosynthetic acclimation can develop over time in field-grown trees and may be regulated by source-sink balance, sugar feedback mechanisms and nitrogen allocation.

2.3.2 Soluble protein synthesis

The majority of experiments using elevated CO_2 have found a 15–30 per cent reduction in leaf nitrogen per unit leaf dry mass and an increase in the carbon/nitrogen (C:N) ratio (Korner and Arnone, 1992; Arnone and Körner, 1995; Poorter et al., 1996; Coley, 1998; Curtis and Wang, 1998).

Huttunen et al. (2008) analyzed chemical and morphological changes in the leaves of silver birch seedlings (*Betula pendula*) under higher CO_2 concentration. There was a decreased in the concentrations of the protein content in leaves when compared to normal atmospheric condition. Crous et al. (2008) investigated whether long-term elevated carbon dioxide concentration causes decline in photosynthetic enhancement and leaf nitrogen in *Pinus taeda* growing in a long term free air CO_2 enrichment (FACE) facility. Their findings showed changes in the apparent allocation of nitrogen to photosynthetic components may be an important adjustment in pines exposed to elevated CO_2 on low-fertility sites.

Protein content and activity of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) were down regulated in wild cherry (*Prunus avium*) under elevated CO_2 . The loss of rubisco on an area basis in plants in the

elevated CO_2 treatments was compensated for at the canopy level by increased leaf area (Wilkins et al., 1994). However, the foliar contents of protein and chlorophylls were not affected in trees grown at higher CO_2 compared with those in ambient conditions.

Incorporation of 14C-photosynthate into protein during leaf development in young populus plants showed decline in soluble leaf protein content (Dickmann and Gordon, 1975). A study carried out in birch (*Betula pendula*) trees grown in the field to assess the long-term response of photosynthesis to elevated atmospheric CO_2 concentration in open-top chambers for four consecutive growing seasons recorded a 9 per cent reduction in soluble protein and 12 per cent N concentrations (Rey and Jarvis, 1998). Black spruce seedlings grown under ambient CO_2 had a mean foliar nitrogen concentration (3.68 per cent) significantly greater than elevated CO_2 grown seedlings (3.49 per cent) (Johnsen and Major, 1998).

From all information available today, it is clear that elevated concentrations of atmospheric CO_2 may have a major effect on woody plants. An increase in atmospheric CO_2 will shift the activity of ribulose-l, 5 bisphosphate carboxylase and oxygenase (Rubisco) in favour of carboxylation (Bowes, 1991; Stitt, 1991), depress stomatal conductance (Morison, 1987; Ceulemans and Mousseau, 1994; Field et al., 1995) and change the partitioning of assimilates between root and shoot (Farrar and Williams, 1991). Therefore, it is expected that rising atmospheric CO_2 will have a positive effects on plant photosynthesis, growth, efficiency of water and nutrient use (Lemon, 1983 and Long, 1994) although there is, as yet, no consensus of opinion regarding the extent of climate change and of the adaption of trees to changing environments.

MATERIALS AND METHODS

.

MATERIALS AND METHODS

The present investigation entitled "Effect of elevated CO_2 concentration on growth and physiology of selected tropical tree seedlings." was undertaken during the year 2008-2010 at College of Forestry, Vellanikkara, Trichur District, Kerala, India.

3.1 Climate and weather pattern

Geographically, the area is located 22.25 m above Mean Sea Level at $10^{0} 32^{1}$ N latitude and $76^{0} 10^{1}$ E longitude. The location experiences a humid tropical climate with a mean annual rain fall of 2668.6 mm most of which is received between June to September. The minimum temperature varies from 22.2^oC (January) to 25.1^o C (April) and maximum from 29.0^o C (July) to 36.1^o C (March). The climatic data for the experiment period is given in Appendix I.

The following five tree species which have high market demand in the study locality were chosen for the experiment.

- 1) Teak (Tectona grandis L. f)
- 2) Mahogany (Swietenia macrophylla King.)
- 3) Njaval (*Syzygium cumini* L.)
- 4) Matti (Ailanthus triphysa (Dennst.) Alston)
- 5) Venga (Pterocarpus marsupium Roxb.)

3.2 Methodology

All the seedlings were raised in the polythene bags containing standard potting mixture (1: 1: 1 mixture of soil, sand and farm yard manure). They were grown in the nursery for two months. All seedlings with uniform growth age characters were selected for the experiment.

3.2.1 Lay out of the experiment

Experimental design: CRD (factorial) Treatments: 10 (five tree species at two CO₂ levels) Tree species: factor A CO₂ concentrations: factor B Replication: 3 No of seedlings in each replication: 30

3.2.2 Method

Polybag seedlings of the five tree species were exposed to 500 - 550 ppm CO_2 concentration and another similar set of plants were grown under ambient atmospheric CO_2 condition (370-380 ppm) which served as control (Plate 1). The plants were exposed to elevated CO_2 concentrations for eight month and growth rates and physiology were observed.

For obtaining elevated CO₂ concentration, a simple and economic technique to grow polybag seedlings under elevated CO₂ concentrations was used (Devakumar et.al., 1996). Two rectangular trenches of 3 m length, 1.25 m width and 1 m depth, were dug in a place exposed to open sunlight. A dome shaped metal frame was placed over the trench completely enclosing it. The height of the frame was 1m and it had a gable roof. Using high density polythene sheet of 125 μ gauge, a cover was tailored to suit the size of the frame. The polythene sheet cover was 12 inches longer than the frame for ensuring complete coverage (Plate 2). On this sheet a thin layer of soil was laid to keep the chamber in place. During night hours, the CO₂ released by respiration of plants and soil microbes was trapped raising the CO₂ concentration. Polybag seedlings were exposed to elevated CO₂ between 3.30 pm and 8.00 am i.e. the structure was closed from 3.30 pm till next day 8.00 am (Plate 3 and 4). Apart from CO₂, relative humidity and temperature were also increased inside the chamber.

Plate 1. Overview of the experimental plot

Plate 2. The CO₂ trapping trench



Plate 3. View of opened CO₂ trapping trench

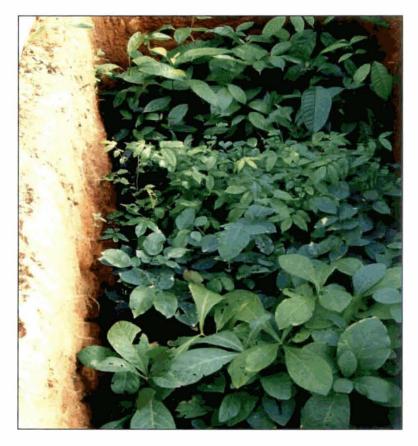


Plate 4. Tree seedlings kept in the trench

3.2.2.1 Standardization

The CO_2 concentration, relative humidity and temperature were measured inside the chamber regularly to make a comparison with outside plot. Carbon dioxide concentration and relative humidity were measured using IRGA (LI 6400 portable photosynthesis system) both in closed and open conditions. Carbon dioxide concentration began to increase inside the trench after closing it and reached 550 ppm within two hours. It continued at high level throughout the night and showed a decreasing trend in the sunlight in the morning (Figure 1). The CO₂ concentration in the ambient air was 370-380ppm. Simultaneously, the closed chamber developed a higher relative humidity than the outer environment and reached at saturation level throughout the night till next day morning (Figure 2a). In addition to that, temperature inside the trench and ambient air were measured using maximumminimum thermometer. Temperature, particularly maximum temperature was also higher inside the trench (Figure 2b). In essence, the seedlings experienced a new microclimate inside the chamber compared to seedlings growing outside plot.

3.3 Observations

3.3.1 Shoot growth parameters

Observations on various shoot growth parameters were taken at an interval of 30 days till the end of the study period.

3.3.1.1 Height

The height of individual seedlings was measured from collar region to terminal bud at monthly interval using a meter scale and expressed in centimeters.

3.3.1.2 Collar diameter

The collar diameter was measured using a digital vernier calliper at monthly interval and expressed in millimeters.

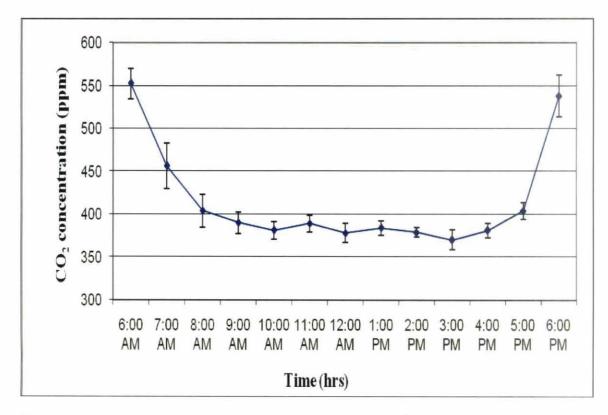


Figure 1. Average carbon dioxide concentration (ppm) inside the chamber

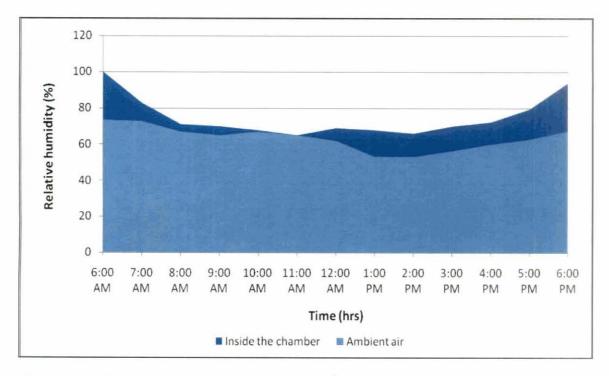


Figure 2 a . Changes in the relative humidity (%) inside the chamber and outside

the chamber

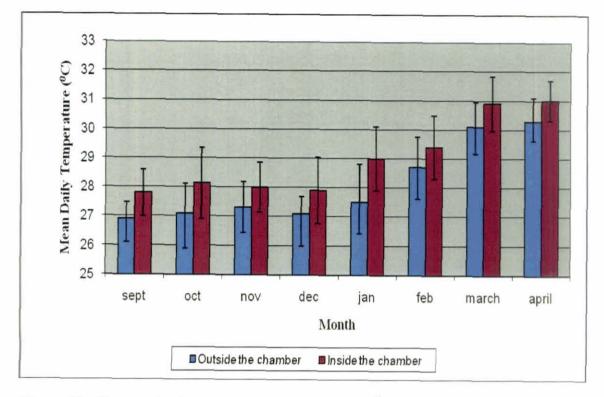


Figure 2b. Changes in the mean daily temperature (⁰C) inside the chamber and outside the chamber

3.3.1.3 Number of leaves

The number of leaves produced by individual seedlings was counted at monthly intervals.

3.3.2 Root growth parameters

Destructive sampling was done at monthly interval for a period of eight months and the following observations were made.

3.3.2.1 Length of roots

Length of roots was measured from the collar region to the tip of the longest root and expressed in centimeter.

3.3.3 Biomass production

Destructive sampling at the rate of three plants per treatment was done at an interval of 30 days for eight months. Leaves, stem and roots were separated and the dry weight of each seedling was recorded.

3.3.3.1 Fresh weight of shoot and root

The leaves were taken and the fresh weight was calculated. The shoot (includes both stem and leaves) and root portion of seedlings were separated and fresh weight was determined separately using precision balance and expressed in grams.

3.3.3.2 Dry weight of shoot and root

The shoot and root portion of the samples were dried separately in a hot air oven at a temperature of $80^{0}C\pm 5^{0}C$ till constant weight was achieved. Dry weights were taken using a precision balance and expressed in grams.

3.3.3.3 Shoot root ratio

Shoot root length ratio was calculated by dividing the average of the shoot length by root length of each plant. Shoot root biomass ratio was calculated by dividing the average of the shoot weight by root weight of each plant.

3.3.3.4 Total dry matter production

Total dry matter production was calculated by summing up of dry weight of shoot and root.

3.3.4 Physiological observations

3.3.4.1 Relative growth rate

,

The Relative Growth Rate (RGR) of plant total dry matter was estimated out by using the following formula:

t₂- t₁

 W_1 and W_2 are dry weights (g) at the beginning and the end of the sampling period, t_1 and t_2 are the dates of sampling respectively, and ln denotes the natural logarithm of the numbers.

3.3.4.2 Net Assimilation Rate (NAR)

NAR is an index of the productive efficiency of plants calculated in relation to total leaf area. NAR is calculated from the formula given below:

$$NAR = (W_2 - W_1) / (t_2 - t_1) X (Log e LA_2 - Log e LA_1) / LA_2 - LA_1)$$

 $W_1 = Dry$ weight at time t_1 $W_2 = Dry$ weight at time t_2 $LA_1 = Leaf Area at time t_1$ $LA_2 = Leaf Area at time t_2$

3.3.4.3 Leaf area

Individual and total leaf area were measured at periodic interval using leaf area meter (CI - 202) and expressed as cm².

3.3.4.4 Specific leaf area (SLA)

Specific leaf area was found out by using the following formula and expressed as $\rm cm^2g^{-1}$

Leaf area SLA = _____ Leaf dry weight

.

3.3.4.5 Leaf area ratio (LAR)

Leaf area ratio was found out by using the following formula and expressed as $\rm cm^2g^{-1}$

Leaf area/ plant

LAR = _____

Whole plant dry weight

3.3.4.6 Leaf weight ratio (LWR)

Leaf weight ratio was found out by using the following formula and expressed as gg⁻¹

Dry weight of leaves

LWR = _____

Plant dry weight

3.3.4.7 Number of stomata

Leaf samples were collected representing each treatment to find out the stomatal frequency. A thin layer of transparent film forming gum was spread on the under surface of leaf and the membranous layer was peeled off carefully. The number of stomata per field was counted using a binocular microscope and stomata per mm² were estimated.

3.3.4.8 Net photosynthesis

Net photosynthesis was measured with a portable Infrared Gas Analyzer (Model LI 6400, LICOR, Nebraska, USA) using a one liter leaf chamber. The measurements were recorded on the data logger supplied with the instrument. The net photosynthesis was calculated using the built in software in the data loggers. The measurements were recorded on a monthly interval and expressed in μ mol m⁻² s⁻¹.

3.3.5 Biochemical parameters

Biochemical estimations were conducted using fully expanded leaf (mostly second or third leaf from the top) which were sampled during pre-dawn hours (0700 to 0800 hrs 1ST) at the end of every 30 days. Three replicates were used from each treatment for the estimation. In teak, none of the parameters could be estimated due to the interference of phenols in the leaf.

3.3.5.1 Chlorophyll content

Chlorophyll content of the leaf was estimated following the method of Starner and Hardley (1967). Samples were collected from the selected plants, cut into pieces and mixed well; 0.1 g of the sample was weighed into a mortar and ground with a pestle to extract the chlorophyll using 80 per cent acetone. The extract was filtered using Whatsman No.1 filter paper and made up to 25 ml using 80 per cent acetone. The absorbance were read at 663 nm and 645 nm wave length in a spectrophotometer.

Chlorophyll 'a', chlorophyll 'b' and total chlorophyll of each sample were calculated using the following formulae.

Chlorophyll 'a' (mg g ⁻¹ of tissue)	
12.7 (OD at 663 nm) – 2.69 (OD at 645 nm) x	v
	1000 x W
Chlorophyll 'b'(mg g ^{-I} of tissue)	
22.9 (OD at 645 nm) - 4.68 (OD at 663 nm) :	x V
-	1000 x W
Total chlorophyll (mg g ^{-I} of tissue)	
20.2 (OD at 645 nm) + 8.02 (OD at 663 nm) x	V
-	1000 x W
XX /1	

Where,

OD Optical density

V Final volume of 80 per cent acetone extract

W Fresh weight of tissue in gram

3.3.5.2 Soluble protein

Foliar soluble protein was estimated by the procedure given by Lowry et al. (1951). Foliar samples were collected fresh from selected plants in each treatment, cut into pieces and mixed well. Extraction was carried out with buffer of pH 7 used for enzyme assay. Five hundred mg of the leaf material was extracted with 10 ml of the buffer. The leaf extract was centrifuged at 5000 rpm for 20 minutes and the supernatant was used for the experiment. The following reagents are used for the experiment:

Alkaline copper reagent

Reagent A: 2% Sodium carbonate in 0.1 N NaOH Reagent B: 0.5% Copper sulphate (CuSO₄.5 H₂O) in 1 % potassium sodium tartarate

Reagent C: 50 ml of Reagent A and 1 ml of Reagent B were mixed prior to use.

Protein solution

Bovine serum albumin (fraction V) of 50 mg dissolved in distilled water and made up to 50 ml in a standard flask.

From the aliquot 0.1 ml was pipetted into a test tube, made up to 1 ml with distilled water and 5 ml of alkaline copper reagent was added. After 10 minutes, 0.5 ml of Folin phenol reagent was added to the above solution and incubated at room temperature in the dark for 30 minutes. A blue colour developed. The absorbance was measured at 660 nm using a spectrophotometer. The amount of protein was estimated after referring to a standard curve with bovine serum and was expressed in mg g⁻¹ of sample.

3.3.6 Statistical analysis

All result was subjected to analysis of variance (ANOVA) using SPSS V 16. Following the ANOVA, Duncan's Multiple Range Test (P=0.05) was used to identify significant differences.

RESULTS

RESULTS

A study on the effects of elevated CO_2 concentration on the growth and physiology of selected tropical tree seedlings was carried out during 2008-10 at the College of Forestry. The results of the different experiments under this study are presented below.

4.1 Shoot growth parameters

The influence of various treatments on the shoot growth parameters of the tree seedlings like height, collar diameter and leaf number recorded at monthly intervals is given hereunder.

4.1.1 Height

The effect of two CO_2 levels on the height of teak (*Tectona grandis*), mahogany (*Swietenia macrophylla*) njaval (*Syzygium cumini*), matti (*Ailanthus triphysa*) and venga (*Pterocarpus marsupium*) seedlings is presented in Table 1 (a and b) and illustrated in Figure 3.

The two levels of CO_2 concentrations had significant impact on height of all the five tree seedlings throughout the study period. The interaction between tree species and two CO_2 concentrations however do not significantly influence the height of seedlings in the first three months.

In the first month, tree seedlings under elevated CO_2 concentration put in more height (33.53 cm) than the seedlings under atmospheric CO_2 (24.80 cm). Both were significantly different. Seedlings of all tree species under elevated CO_2 showed higher shoot growth than that under atmospheric CO_2 , but they were not significantly different. In the second month, height under elevated CO_2 (38.58 cm) was significantly different from that under atmospheric CO_2 level (32.15 cm). Similarly in the third month also, seedlings under elevated CO_2 recorded a significant height of 50.51 cm than that under atmospheric CO_2 (35.51 cm). During the fourth month, height under elevated CO_2 concentration differed significantly (59.95 cm) from that under atmospheric CO_2 level. The interaction effect was also significant. Teak seedlings under elevated CO_2 concentration performed best (65.13 cm). The lowest height was observed in njaval both in elevated CO_2 concentration (47.30 cm) and in atmospheric CO_2 concentration (29.73 cm). Under atmospheric CO_2 concentration, mahogany seedlings showed highest performance (45.97 cm).

In the fifth month, seedlings of venga recorded maximum height (75.67 cm) under enriched CO₂ concentration and mahogany seedlings under atmospheric CO₂ concentration (54.87 cm). The height of njaval seedlings was lowest under both elevated CO₂ (51.00cm) and atmospheric CO₂ concentration (34.47 cm).

In the sixth month, seedlings under CO_2 enriched condition had a height of 77.27 cm while seedlings under normal CO_2 condition had a height of 52.84 cm. The interaction effect was significantly different among the seedlings of five tree species under different CO_2 concentration. The maximum gain in height was observed in teak seedlings under elevated CO_2 (92.33 cm) and lowest growth in njaval seedlings (54.17 cm). Matti seedlings recorded highest height (65.27 cm) and njaval seedlings recorded lowest height of 35.50 cm under atmospheric CO_2 concentration.

In the seventh month, elevated CO_2 recorded highest height (95.64 cm) followed by those under atmospheric CO_2 level (64.71 cm). A significant difference in interaction was observed at this period. Maximum height was observed in the seedlings of venga (118.67 cm) under elevated CO_2 concentration. Njaval seedlings recorded lowest height of 39.47 cm under atmospheric CO_2 concentration.

In the eighth month of the study period, two levels of CO_2 had a significant impact on the height of the tree seedlings. The maximum gain was observed in seedlings of venga (134.00 cm) under enriched CO_2 condition. Njaval seedlings under atmospheric CO_2 concentration recorded the lowest height growth (41.13 cm).

Table 1 (a): Two-way tables on height (cm) of seedlings of five tree species under two CO₂ concentrations

Saudian	CO2 levels		
Species	Elevated	Atmospheric	
Teak	34.42	29.40	
Mahogany	38.16	30.36	
Njaval	29.09	16.67	
Matti	33.11	24.17	
Venga	32.88	23.40	
Mean	33.53 [×]	24.80 ^y	
$F_{CO2 \text{ levels}} - 11$.39**, SEm+/-	=1.70	
Finteraction - 0.1	2 NS, SEm+/-	=3.81	

Month 1

Month 2

Encoioc	CO ₂ levels		
Species	Elevated	Atmospheric	
Teak	41.27	33.67	
Mahogany	43.87	38.40	
Njaval	29.18	24.60	
Matti	35.60	31.53	
Venga	44.00	32.53	
Mean	38.58 ^x	32.15 ^y	
F _{CO2 levels} - 2	3.1**, SEm+/-	=0.95	
Finteraction - 1.	15 NS, SEm+/-	=2.12	

Month 3

Month 4

Species	CO ₂ levels		
Species	Elevated	Atmospheric	
Teak	48.40	34.45	
Mahogany	55.77	43.51	
Njaval	44.87	27.33	
Matti	42.20	34.07	
Venga	61.33	38.20	
Mean	50.51 ^x	35.51 ^y	
F _{CO2 levels} - 8	5.68**, SEm+/	-=1.15	
F _{interaction} - 2.	443 NS, SEm+	-/- =2.56	

,	CO ₂ levels	
Species	Elevated	Atmospheric
Teak	65.13ª	36.97°
Mahogany	64.67 ^a	45.97 ^b
Njaval	47.30 ^b	29.73 ^d
Matti	59.00ª	44.00 ^b
Venga	63.67ª	41.83 ^{bc}
Mean	59.95 [×]	39.70 ^y
F CO2 levels - 25	3.01**, SEm+	/- =0.90
F _{interaction} - 3.1	68*, SEm+/- =	=2.01

significant at 5 %, ... - significant at 1 %, NS - non-significant

Table 1 (b): Two-way tables on height (cm) of seedlings of five tree species under two CO_2 concentrations

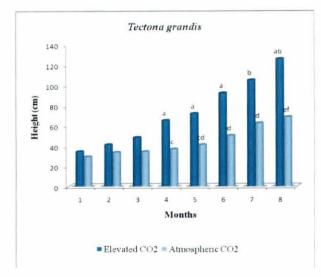
. .	co	CO ₂ levels	
Species	Elevated	Atmospheric	
Feak	72.00ª	41.33 ^{cd}	
Mahogany	67.00ª	54.87 ^b	
Njaval	51.006	34.47 ^d	
 Matti	69.33ª	51.50 ^b	
Venga	75.67ª	49.33 ^{bc}	
Mean	67.00 ^x	46.30 ^y	
F _{CO2 levels} - 1	41.64**, SEm+	/-=1.23	
interaction - 3.	802*, SEm+/-=	=2.75	

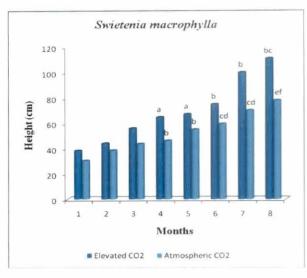
Month 5

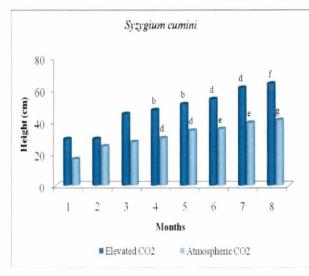
Month 6

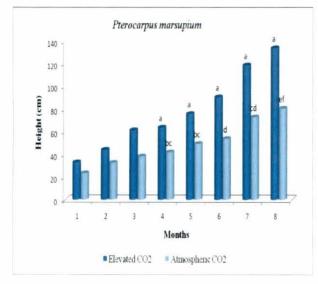
S- askar	CO ₂ levels		
Species	Elevated	Atmospheric	
Teak	92.33ª	50.33 ^d	
Mahogany	74.83 ^b	59.33 ^{cd}	
Njaval	54.17 ^d	35.50°	
Matti	74.67	65.27°	
Venga	90.33ª	53.77 ^d	
Mean	77.27 [×]	52.84 ^y	
F _{CO2 levels} - 1	59.97** , SEm	+/-=1.37	
$F_{interaction} - 10$.66**, SEm+/-	=3.05	

Month 7


•


Month 8


Species	CO ₂ levels		
Species	Elevated	Atmospheric	
Teak	105.00 ^b	62.67 ^d	
Mahogany	99.67 ^b	70.00 ^{cd}	
Njaval	61.17 ^d	39.47°	
Matti	93.67	78.57°	
Venga	118.67ª	72.83 ^{cd}	
Mean	95.64 ^x	64.71 ^y	
F _{CO2 levels} - 1	28.84**, SEm-	+/- =1.93	
Finteraction - 4	.64**, SEm+/-	=4.31	


Emostica	CO ₂ levels		
Species	Elevated	Atmospheric	
Teak	125.60 ^{ab}	68.70 ^{cf}	
Mahogany	110.73 ^{bc}	77.90 ^{cf}	
Njaval	63.83 ^f	41.13 ^g	
Matti	103.80 ^{cd}	85.23 ^{de}	
Venga	134.00 ^a	80.43 ^{cf}	
Mean	107.59 [×]	70.68 ^y	
F _{CO2 levels} - 84.	20**, SEm+/-	=2.84	
F _{interaction} - 3.81	* , SEm+/- =6	i.36	

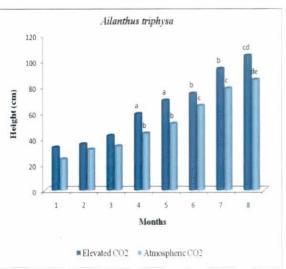

significant at 5 %, ... - significant at 1 %, NS - non-significant

Figure 3. Response of five tree species on height (cm) of seedlings under two CO concentrations

4.1.1 Collar diameter

Observations related to the effect of CO_2 concentrations on the collar diameter in seedlings of five tree species is given in Table 2a and 2b and illustrated in Figure 4. From the table it can be observed that the two CO_2 levels influenced the collar diameter of seedlings throughout the study period except in the second month. There was no significant difference with respect to interaction effect.

In the first month, the highest collar diameter was observed in seedlings of mahogany under elevated CO_2 concentration (6.25 mm) while under atmospheric CO_2 concentrations, seedlings of matti recorded a collar diameter of 3.24 mm. However, njaval seedlings under elevated CO_2 concentration recorded only 2.03 mm and in atmospheric CO_2 concentration, collar diameter was 1.08 mm. In the second month the mean collar diameter under elevated CO_2 concentration was 5.48 mm which was significantly different from that at normal atmospheric CO_2 concentration (3.73 mm).

In the third month, the highest collar diameter was observed in seedlings under elevated CO_2 concentration (6.98 mm). Mahogany seedlings recorded maximum collar diameter of 9.52 mm in enriched CO_2 concentration and teak seedlings in atmospheric CO_2 concentration recorded 5.57mm. The seedlings of njaval recorded the minimum growth of 3.81mm and 3.63 mm under elevated CO_2 concentration and atmospheric CO_2 concentration respectively.

During the fourth month, elevated CO_2 concentration gave a significantly different collar diameter (8.51 mm) and there was significant interaction effect on the collar diameter due to different CO_2 concentration. The maximum collar diameter was given by teak seedlings with a recorded mean of 10.90 mm under elevated CO_2 concentration. As far as atmospheric CO_2 concentration is concerned, maximum collar diameter was put forth by venga seedlings with a recorded value of 6.22 mm in the same month.

The collar diameter was found to be the maximum in seedlings grown in elevated CO_2 concentration in the fifth month of the study period and interaction vise there were significant differences in collar diameter.

In the sixth month, the use of different CO_2 concentrations produced significant differences in the collar diameter. Teak seedlings under elevated CO_2 concentration gave a significantly highest collar diameter of 16.73 mm, while njaval seedlings recorded lowest collar diameter of 5.88 mm. seedlings of matti performed best (8.13 mm) under atmospheric CO_2 concentration.

In the seventh month both the CO_2 concentrations produced significantly different collar diameters. Elevated CO_2 concentration also gave a significant mean value of 12.45 mm. Among the different tree species, teak seedlings grown under elevated CO_2 concentration recorded a higher collar diameter of 18.16 mm. Under atmospheric CO_2 concentration, matti seedlings recorded 9.23 mm. On the other hand, under elevated CO_2 concentration lowest growth was recorded for njaval seedlings (6.85 mm) and under atmospheric CO_2 concentration the noted collar diameter was 4.93 mm.

In the last month of the study period, the maximum collar diameter under elevated CO_2 concentration was 13.36 mm. With regards to the interaction effect, teak seedlings performed best (19.8mm) under elevated CO_2 concentration and njaval seedlings performed least under atmospheric CO_2 concentration (5.17mm).

4.1.2 Number of leaves

The data related to the leaf production due to the effect of different concentration of CO_2 in the five tree species seedlings is furnished in Table 3a and 3b and Figure 5. From the table it can be seen that CO_2 concentrations significantly affect leaf production. But the interactions were significant in the first, fourth, fifth and eighth months only.

The CO_2 levels offered no significant effect in leaf production during first month. However, interaction had significant impacts on the leaf production in which

Table 2 (a): Two-way tables on collar diameter (mm) of seedlings of five tree species under two CO_2 concentrations

M	0	n	ť	h	1	t
	~		-			•

3.1		12	2
IVI	on	m	2

Const	CO ₂ levels		
Species	Elevated	Atmospheric	
Teak	4.92 ^b	3.16 ^d	
Mahogany	6.25ª	3.14 ^d	
Njaval	2.03 ^{ef}	1.08 ^f	
Matti	4.68 ^{bc}	3.24 ^d	
Venga	3.84 ^{cd}	3.04 ^{de}	
Mean	4.34 ^x	2.73 ^y	
F _{CO2 level} - 54		0.15	

C	CO ₂ levels	
Species	Elevated	Atmospheric
Teak	6.49	4.21
Mahogany	6.59	4.30
Njaval	3.49	2.52
Matti	5.61	3.93
Venga	5.23	3.71
Mean	5.48 ^x	3.73 ^y
F _{CO2 level} - 63	.38**, SEm+/-	=0.16

Month 3

Month 4

Species	CO ₂ levels	
Species	Elevated	Atmospheric
Teak	8.16 ^{ab}	5.57 ^{cde}
Mahogany	9.52ª	4.68 ^{ef}
Njaval	3.81 ^f	3.63 ^f
Matti	6.97 ^{bc}	5.43 ^{de}
Venga	6.42 ^{cd}	5.39 ^{de}
Mean	6.98 ^x	4.94 ^y
F _{CO2 level} - 4	4.75**, SEm+	/- =0.22

vated Atmospheric 1 5.68° 1 ^a 5.36° 3.74 ^d
1 ^a 5.36 ^c
3.74 ^d
6.00°
6.22°
5.40 ^y
SEm+/-=0.17

- significant at 5 %, -- significant at 1 %, NS - non-significant

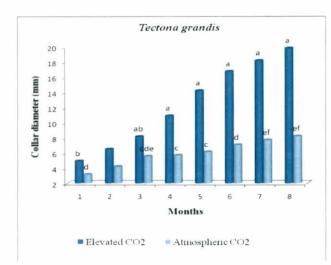
Table 2(b): Two-way tables on collar diameter (mm) of seedlings of five tree species under two CO_2 concentrations

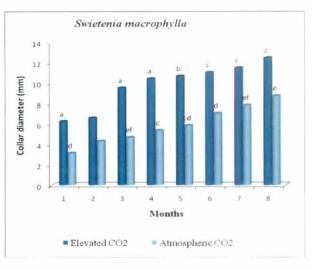
	ς.
Month 5	

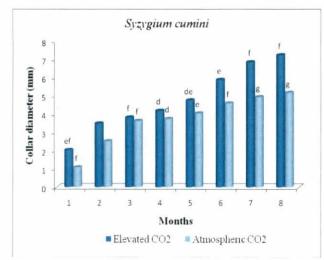
3.4	ant	L.	6
IVI	ont	<u>n</u>	0

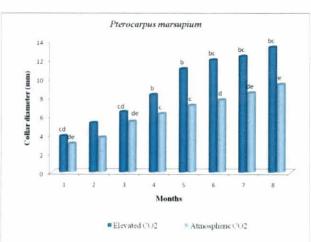
CO ₂ levels	
Elevated	Atmospheric
14.20 ^a	6.14 ^c
10.67 ^b	5.84 ^{cd}
4.75 ^{de}	4.04°
9.81 ^b	6.93°
10.99 ^b	7.12 ^c
10.08 ^x .	6.01 ^y
4.44**, SEm+/-	=0.18
	Elevated 14.20 ^a 10.67 ^b 4.75 ^{de} 9.81 ^b 10.99 ^b 10.08 ^x .

Species	CO ₂ levels	
Species	Elevated	Atmospheric
Teak	16.73ª	7.07 ^d
Mahogany	11.02°	7.03 ^d
Njaval	5.88°	4.59 ^f
Matti	12.23 ^b	8.13 ^d
Venga	11.94 ^{bc}	7.71 ^d
Mean	11.56 ^x	6.91 ^y
F _{CO2 level} - 44	9.12**, SEm+/	-=0.16


Month 7


Month 8


Engelag	C	O2 levels
Species	Elevated	Atmospheric
Teak	18.16 ^a	7.71 ^{ef}
Mahogany	11.47°	7.83 ^{ef}
Njaval	6.85 ^f	4.93 ^g
Matti	13.42 ^b	9.23 ^d
Venga	12.33 ^{bc}	8.46 ^{de}
Mean	12.45 ^x	7.63 ^y
Fcor 1-31	2.71**, SEm+/	/- =0.04


Encolor	CO ₂ levels	
Species	Elevated	Atmospheric
Teak	19.8 ^a	8.23 ^{ef}
Mahogany	12.45°	8.73°
Njaval	7.23 ^f	5.17 ^g
Matti	14.00 ^b	10.97 ^d
Venga	13.30 ^{bc}	9.38°
Mean	13.36 ^x	8.49 ^y
$F_{CO2 level} - 308$	8.07**, SEm+/-	=0.04

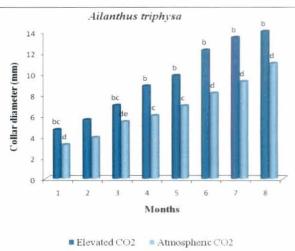

* - significant at 5 %, ** - significant at 1 %, NS - non-significant

Figure 4. Response of five tree species on collar diameter (mm) of seedlings under two $\mathbb C$ concentrations

seedlings of njaval produced maximum leaves ((18) both in enriched as well as in atmospheric CO_2 concentration. Matti seedlings produced minimum leaves (2.67) at atmospheric CO_2 concentration.

At the second, third and fourth month, the CO_2 levels offered significant effect in leaf production. However, interaction was insignificant. At the fifth month, the highest number of leaves (39.00) was found in njaval seedlings grown under elevated CO_2 concentration with respect to interaction. The minimum number of leaves was produced by matti seedlings grown at atmospheric CO_2 concentration (19.00). In the sixth and seventh month, elevated CO_2 concentration had significant impact on the leaf number which gave mean value of 16.53 and 17.93 respectively.

In the eighth month, the different CO_2 levels treatments produced significantly different leaf number in tree seedlings. The maximum number of leaves was seen in seedlings grown under elevated CO_2 concentration (21.53). In interaction effect, maximum number of leaves was recorded in njaval seedlings grown under elevated CO_2 concentration (52.33) and minimum in teak (11.33). Likewise, under atmospheric CO_2 concentration, njaval seedlings produced maximum leaves (25.33) and matti seedlings produced the minimum (8.00).

4.1 Root growth

The root growth parameter like length of the root as affected by different treatments is presented here. The root growth parameter was found to be influenced by the different CO_2 concentrations.

4.1.1 Length of root

The effect of different CO_2 levels in the development of the root length is given in Table 4a and 4b. From the data it can be concluded that the CO_2 concentrations significantly influenced root growth throughout the study period. In the first month, the longest root observed under elevated CO_2 concentration had a mean value of 15.77 cm and differed significantly from the root length (13.03 cm)

Table 3 (a): Two-way tables on number of leaves of seedlings of five tree species under two CO_2 concentrations

Month 1	L
---------	---

Month 2

Species	CO2 levels		
Species	Elevated	Atmospheric	
Teak	7.00 ^{de}	9.00 ^{bcd}	
Mahogany	5.00 ^{cf}	10.00 ^{bcd}	
Njaval	18.00ª	18.00 ^a	
Matti	12.33	2.67 ^t	
Venga	11.00 ^{bc}	8.33 ^{cd}	
Mean	10.67	9.60	
F _{CO2 level} - 2.59NS, SEm+/-=0.47			
$F_{interaction} - 14.$	$F_{interaction} - 14.08^{**}$, SEm+/-=1.04		

Encolog	CO ₂ levels	
Species	Elevated	Atmospheric
Teak	10.00	7.67
Mahogany	7.33	8.00
Njaval	22.00	19.00
Matti	11.33	6.00
Venga	12.67	8.33
Mean	12.67 ^x	9.80 ^ÿ
$F_{CO2 \ level} - 6.80* \ SEm + / - = 0.80$		
$F_{interaction} - 0.87NS$, $SEm + /- = 1.79$		

Month 3

Month 4

Species	CO ₂ levels	
	Elevated	Atmospheric
Teak	8.33	7.67
Mahogany	11.67	7.33
Njaval	22.33	19.00
Matti	11.00	4.33
Venga	16.67	11.33
Mean	14.00 ^x	9.93 ^y
$F_{CO2 \text{ level}} - 15.57^{**}, \text{SEm}{+}/{-}=0.73$		
$F_{\text{interaction}} - 0.97\text{NS}$, SEm+/-=1.63		

	CO2 levels	
Species	Elevated	Atmospheric
Teak	12.33	6.33
Mahogany	10.67	8.33
Njaval	27.00	16.33
Matti	14.67	5.67
Venga	14.00	9.00
Mean	15.73 ^x	9.13 ^y
$F_{CO2 \ level} - 27.38^{**} \ SEm + / - = 0.89$		
F _{interaction} - 27.38**, SEm+/-=1.99		

• - significant at 5 %, •• - significant at 1 %, NS - non-significant

Table 3 (b): Two-way tables on number of leaves of seedlings of five tree species under two CO_2 concentrations

Month	5
-------	---

Month 6

	CO2 levels	
Species	Elevated	Atmospheric
Teak	12.62 ^{cde}	8.00 ^{ef}
Mahogany	17.67 ^{bc}	9.00 ^{def}
Njaval .	39.00ª	19.00 ^b
Matti	13.67 ^{cd}	6.33 ^f
Venga	11.67 ^{de}	10.00 ^{def}
Mean	18.93 ^x	10.47 ^y
$F_{CO2 level} - 66.65^{**}, SEm + / - = 0.73$		
$F_{interaction} - 9.07^{**} SEm + /- = 1.64$		

Guardan	CO ₂ levels	
Species	Elevated	Atmospheric
Teak	10.33	8.67
Mahogany	15.00	10.67
Njaval	32.67	21.67
Matti	9.67	8.33
Venga	15.00	9.33
Mean	16.53 ^x	11.73 ^y
$F_{CO2 \ level} - 20.17^{**}$, SEm+/- =0.76		
$F_{\text{interaction}} - 2.68 \text{NS}, \text{SEm}+/-=1.69$		

Month 7

Month 8

Encolog	CO ₂ levels	
Species	Elevated	Atmospheric
Teak	12.00	8.67
Mahogany	14.33	10.67
Njaval	37.00	26.33
Matti	12.67	8.00
Venga	13.67	9.00
Mean	17.93 [×]	12.53 ^y
$F_{CO2 \ level} - 16.82^{**}, SEm + - = 0.93$		
$F_{interaction} - 1.04NS$, SEm+/-=2.08		

S -asian	CO ₂ levels	
Species	Elevated	Atmospheric
Teak	11.33 ^{cde}	9.33 ^{de}
Mahogany	16.00°	11.00 ^{cde}
Njaval	52.33ª	25.33 ^b
Matti	14.67 ^{cd}	8.00°
Venga	13.33 ^{cde}	11.33 ^{cde}
Mean	21.53 ^x	12.99 ^y
$F_{CO2 \text{ level}} - 56.11^{**}, \text{SEm} + - = 0.81$		
F _{interaction} - 17.04**, SEm+/-=1.80		

• - significant at 5 %, • -- significant at 1 %, NS -- non-significant

I.

observed under atmospheric CO_2 concentration. Interaction was significant only in the fourth, sixth and eighth months.

In the fourth month, the different CO_2 concentrations significantly influenced root length. The longest root 31.43 cm was observed in seedlings grown under elevated CO_2 concentration. Among interactions, teak seedlings under elevated CO_2 concentration produced the longest root (35.67 cm) while matti seedlings produced lowest root length (24.83 cm). Similarly, under atmospheric CO_2 concentration longest root was recorded for the matti seedlings (23.67 cm) and shortest for mahogany (18.33 cm).

In the fifth month also seedlings under elevated CO_2 level significantly different (39.13 cm) from those under atmospheric CO_2 level. In the sixth month, interactions were significant and the longest root length was observed in teak seedlings (60.33 cm) under elevated CO_2 concentration. Under atmospheric CO_2 concentration, the shortest root length was recorded for njaval seedlings (25.33 cm).

At the seventh month stage, although interaction did not have a significant influence, the longest root was observed in teak seedlings (68.67 cm). In the eighth month, different CO_2 concentrations significantly influenced root length. Seedlings of teak grown under elevated CO_2 concentration had the longest roots (80.33 cm). However, njaval seedlings grown under atmospheric CO_2 levels recorded lowest root length (30.00 cm).

4.1 Dry matter of seedlings

The influence of different CO_2 concentration on the fresh and dry weights of the shoot and root portions of the seedlings are clearly evident from the data tabulated in Tables 5a and 5b, 6a and 6b, 7a and 7b, 8a and 8b, 9a and 9b, 10a ans 10b and 11a and 11b. The various CO_2 levels significantly influenced dry as well as fresh weights of shoot and root portions.

Table 4 (a): Two-way tables on root length (cm) of seedlings of five tree species of under two CO₂ concentrations

Month 2

6	CO ₂ levels	
Species	Elevated	Atmospheric
Teak	14.00	12.67
Mahogany	15.33	12.50
Njaval	22.67	15.33
Matti	13.17	10.83
Venga	13.67	13.83
Mean	15.77 [×]	13.03 ^y
$F_{CO2 level} - 6.18^{**}$, SEm+/- =0.78		
$F_{interaction} - 1.31NS$, SEm+/-=1.74		

C=	CO ₂ levels	
Species	Elevated	Atmospheric
Teak	15.67	14.67
Mahogany	16.00	13.67
Njaval	25.00	16.50
Matti	16.33	12.67
Venga	18.00	15.33
Mean	18.20 ^x	14.57 ^y
$F_{CO2 \ level} - 11.82^{**}, SEm + /- \approx 0.75$		
F _{interaction} - 1.49NS, SEm+/-=1.67		

Month 4

Month 3

Smealer	CO ₂ levels	
Species	Elevated	Atmospheric
Teak	21.67	18.33
Mahogany	22.33	15.17
Njaval	24.00	17.67
Matti	18.33	16.33
Venga	21.67	17.00
Mean	21.60 ^x	16.90 ^y
$F_{CO2 \ level} - 14.74^{**}, SEm + - = 0.87$		
$F_{interaction} - 0.60NS$, SEm+/-=1.94		

	$\underline{CO_2}$ levels	
Species	Elevated	Atmospheric
Teak	35.67*	23.00 ^{cd}
Mahogany	35.00 ^{ab}	18.33 ^d
Njaval	28.33 ^{bc}	19.33 ^ª
Matti	24.83 ^{cd}	23.67 ^{cd}
Venga	33.33 ^{ab}	19.00 ^d
Mean	31.43 ^x	20.67 ^y
$F_{CO2 level} - 59.72^{**}$, SEm+/- =0.99		
F _{interaction} - 3.77*, SEm+/-=2.20		

• - significant at 5 %, •• - significant at 1 %, NS - non-significant

Figures with the similar superscripts or no superscripts do not differ significantly.

42

Month	5
-------	---

.

Month 6

Enories	CO ₂ levels	
Species	Elevated	Atmospheric
Teak	49.67	33.33
Mahogany	38.67	24.50
Njaval	30.67	21.00
Matti	34.33	26.00
Venga	42.33	23.67
Mean	39.13 [×]	25.70 ^y
$F_{CO2 \text{ level}} - 70.46^{**}, \text{ SEm} + / - = 1.13$		
$F_{interaction} - 1.49NS$, SEm+/-=2.53		

Month 7

Encoina	CO ₂ levels	
Species	Elevated	Atmospheric
Teak	60.33ª	35.67°
Mahogany	44.33 ^b	29.33 ^{cd}
Njaval	32.33 ^{cd}	25.33 ^d
Matti	45.00 ^b	31.17 ^{cd}
Venga	48.67 ^b	28.00 ^{cd}
Mean	46.13 ^x	29.90 ^y
$F_{CO2 level} - 87.87^{**}$, SEm+/-=1.22		
F _{interaction} - 3.06*, SEm+/-=2.74		

Month 8

Engolog	CO ₂ levels	
Species	Elevated	Atmospheric
Teak	68.67	47.33
Mahogany	55.33	34.00
Njaval	34.33	27.00
Matti	51.33	35.33
Venga	48.67	28.00
Mean	51.67 ^x	34.44 ^y
$F_{CO2 level} - 92.88^{**}, SEm + /- = 1.92$		
F _{interaction} - 2.32NS, SEm+/- =2.67		

	CO ₂ levels	
Species	Elevated	Atmospheric
Teak	80.33ª	57.33°
Mahogany	65.33 ^b	41.33 ^d
Njaval	39.67 ^d	30.00°
Matti	54.67°	42.33 ^d
Venga	53.00°	36.33 ^{de}
Mean	58.60 ^x	41.46 ^y
$F_{CO2 \text{ level}} - 124.62^{**}, \text{SEm} + /- = 1.09$		
$F_{interaction} - 3.41^*$, SEm+/- =2.43		

- significant at 5 %, - significant at 1 %, NS - non-significant

4.3.1 Fresh weight of shoot

The influence of various treatments on fresh weight of shoot is given in Table 5 (a and b). Different CO_2 levels significantly influenced the fresh weight of shoot from the second month to the end of the study period. Interactions significantly influenced the fresh weight of shoot from the third month to the eighth month.

In the third month, both the CO_2 levels had significant impact on the fresh weight of shoot (Table 5a). Among interactions, the maximum fresh weight of shoot was observed in seedlings of teak (55.89 g) and mahogany (50.40 g) under enriched CO_2 condition. The lowest fresh weight was, however, recorded in njaval seedlings in elevated CO_2 concentration (18.58 g).

Among interactions, the maximum fresh weight of shoot was found, in teak seedlings (95.62 g) grown under elevated CO_2 concentration in the fourth month (Table 5a). The minimum fresh weight of shoot was obtained in njaval seedlings in both elevated (23.88 g) and in atmospheric CO_2 concentration (23.23 g).

In the fifth month also varying CO_2 levels had significant effects on the fresh weight of shoot. The maximum fresh weight (126.47 g) of shoot was observed in teak seedlings under elevated CO_2 concentration. The minimum value (27.58 g) was recorded in njaval seedlings under atmospheric CO_2 concentration.

In the sixth month, (Table 5b), interaction had a significant impact on the shoot fresh weight. Maximum fresh weight of shoot was observed in teak seedlings under enriched CO_2 concentration (145.59 g). Minimum value was recorded in njaval seedlings (32.81 g) under atmospheric CO_2 concentration.

During the seventh month, the maximum value of fresh weight of shoot was recorded in seedlings of teak grown in elevated CO_2 concentration (167.63 g). Seedlings of njaval under atmospheric CO_2 concentration recorded the lowest fresh weight of shoot (36.28 g) with regard to interaction effect.

At the end of the study period *i.e.* in the eighth month, different CO_2 concentrations had significant impact on the fresh weight of shoot (Table 5b). The maximum fresh weight of shoot was observed in teak seedlings under elevated CO_2 concentration (186.19 g). The lowest fresh weight of shoot (43.55 g) was observed in njaval seedlings under atmospheric CO_2 concentration.

4.3.2 Fresh weight of root

The effect of different treatments on fresh weight of root is furnished in Table 6 (a and b). The varying CO_2 levels had significant influence on the fresh weight of root starting from the second month till the end of the study period. Interaction was significant throughout the study period except in the second and fourth month.

In the third month, the maximum root fresh weight was observed in the teak seedlings grown under elevated CO_2 concentration (25.16 g). The lowest root fresh weight was obtained in njaval seedlings (9.49 g) under elevated CO_2 concentration as the interaction was concerned. They were significantly different under two CO_2 concentrations.

The highest fresh weight of root was observed in seedlings grown under elevated CO_2 concentration (19.23 g) in the fourth month as shown in Table 6 (a). Interaction did not give significant difference in the same month. In the fifth month, the maximum fresh weight of root under varying CO_2 levels was observed in seedlings under elevated CO_2 concentration (22.87g) which was followed by seedlings under atmospheric CO_2 concentration with mean of 15.86 g and they were significantly different from each other (Table 6b). Among the interactions, the highest fresh weight of root was observed in teak seedlings under elevated CO_2 concentration (50.31g). The least value was recorded in njaval seedlings under atmospheric CO_2 concentration level with a recorded mean value of 12.19 g.

When comparison was done in the sixth month, different CO_2 concentrations significantly affected root fresh weight (Table 6 b). The highest root fresh weight was observed in teak seedlings under elevated CO_2 concentration (56.31 g). The

Table 5 (a): Two-way tables on shoot fresh weight (g) of seedlings of five tree species under two CO₂ concentrations

Month	1	

Month 2

<u> </u>	CO ₂ levels	
Species	Elevated	Atmospheric
Teak	20.85	17.30
Mahogany	20.51	19.54
Njaval	15.40	16.42
Matti	19.21	15.23
Venga	19.59	14.41
Mean	19.11	16.58
F _{CO2 level} -2.71NS, SEm+/-=0.83		
Finteraction - 0.60NS, SEm+/-=1.85		

Guarian	CO2 levels	
Species	Elevated	Atmospheric
Teak	23.59	18.90
Mahogany	22.52	21.78
Njaval	17.20	18.50
Matti	21.55	17.77
Venga	22.33	18.58
Mean	21.44 [×]	19.11 ^y
$F_{CO2 \text{ level -}} 5.21^*, \text{SEm}+/-=0.72$		
Finteraction - 1.21NS, SEm+/-=1.62		

Month 3

Month -	4
---------	---

Ci	CO2 levels	
Species	Elevated	Atmospheric
Teak	55.89ª	25.93°
Mahogany	50.40 ^a	24.18°
Njaval	18.58°	19.80°
Matti	25.62°	23.02°
Venga	36.28⁵	21.53°
Mean	37.35 [×]	22.89 ^y
$F_{CO2 \text{ level}}$ - 104.60**, SEm+/- =0.99		
Finteraction - 20.20**, SEm+/-=2.21		

	CO ₂ levels	
Species	Elevated	Atmospheric
Teak	95.62ª	33.51 ^{cd}
Mahogany	60.97 ⁶	30.88 ^{cd}
Njaval	23.88 ^d	23.23 ^d
Matti	35.12 ^{cd}	30.46 ^{cd}
Venga	39.65°	26.09 ^{ed}
Mean	51.05 ^x	28.83 ^y
$F_{CO2 \ level} - 71.20^{**}$, SEm+/-=1.86		
$F_{interaction} - 18.05 **, SEm+/- = 4.16$		

- significant at 5 %, - significant at 1 %, NS - non-significant

Table 5 (b): Two-way tables on shoot fresh weight (g) of seedlings of five tree species under two CO₂ concentrations

Month	5
-------	---

Month 6

Species	CO2 levels	
	Elevated	Atmospheric
Teak	126.47ª	41.96 ^{cd}
Mahogany	71.63 ^b	36.03 ^{cdef}
Njaval	32.73 ^{def}	27.58 ^f
Matti	44.80°	38.24 ^{cde}
Venga	46.31°	30.92 ^{ef}
Mean	64.39 ^x	34.95 ^y
$F_{CO2 \text{ level}} - 207.85 **, \text{ SEm} + /- = 1.44$		
$F_{interaction} - 52.54^{**}$, SEm+/-=3.23		

Species	CO ₂ levels	
	Elevated	Atmospheric
Teak	145.59ª	51.86 ^{de}
Mahogany	84.99	43.45 ^{cf}
Njaval	40.98 ^{fg}	32.81 ^g
Matti	62.46°	47.91 ^{def}
Venga	54.07 ^{cd}	37.86 ^{fg}
Mean	77.62 ^x	42.78 ^y
$F_{CO2 level} - 303.11^{**}, SEm + /- = 1.42$		
F _{interaction} - 62.23**, SEm+/-=3.16		

Month 8

Species	CO2 levels	
	Elevated	Atmospheric
Teak	167.63ª	63.46 ^d
Mahogany	96.72 ^b	53.42 ^{dc}
Njaval	59.25 ^d	36.28 ^f
Matti	82.15°	63.49 ^d
Venga	62.40 ^d	45.45 ^{ef}
Mean	93.63 ^x	52.42 ^y
$F_{CO2 \ level} - 358.33 \ **, \ SEm + / - = 1.54$		
$F_{interaction} - 56.96^{**}$, SEm+/~ =3.44		

Species	CO2 levels	
Species	Elevated	Atmospheric
Teak	186.19ª	75.16 ^{cd}
Mahogany	106.00 ^b	63.04 ^{de}
Njaval 🔤	70.00 ^{cd}	43.55 ^f
Matti	120.33 ^b	73.24 ^{cd}
Venga	84.67°	50.20 ^{cf}
Mean	113.44 ^x	61.04 ^y
F _{CO2 level} -238	.39**, SEm+/-	=2.39
$F_{\text{interaction}} - 19$.	76 **, SEm+/-	=5.37

- significant at 5 %, -- significant at 1 %, NS - non-significant

Figures with the similar superscripts or no superscripts do not differ significantly.

Month 7

minimum value was observed in njaval seedlings under atmospheric CO_2 concentration (12.84 g) and they were found to be significantly different from each other among interactions.

In the seventh month the different CO_2 levels had significant effect on the root fresh weight (table 6b). The maximum weight (68.12 g) was recorded in teak seedlings grown under elevated CO_2 level. The lowest root fresh weight was observed in njaval seedlings under both elevated and atmospheric CO_2 concentrations (14.71 g) as far as interactions were concerned.

Different CO_2 levels showed significant effects on the root fresh weight of the seedlings at the end of the study period (Table 6b). Under elevated CO_2 level the highest root fresh weight recorded was 39.47 g. This was trailed by seedlings under atmospheric CO_2 level (25.18 g). When the interactions were taken in to consideration, the maximum root fresh weight was observed in teak seedlings under elevated CO_2 concentration (94.00 g). The lowest root fresh weight was recorded in njaval seedlings (16.00 g) under atmospheric CO_2 concentration.

4.3.3 Dry weight of shoot

The effects of CO_2 concentrations in tree seedlings during the course of eight months is given in Table 7a and 7b. It can be seen that the different CO_2 concentrations did not show any significant effect on the dry weight of shoot till the second month. But it started to influence the tree seedlings from the third month up to the end of the study period.

In the third month, different CO_2 concentrations provided significantly different results (Table 7a). The highest shoot dry weight was observed in tree seedlings under elevated CO_2 concentration (22.72 g). Interactions between the factors had a significant effect in this month. The maximum shoot dry weight due to interaction was observed in teak seedlings (33.25 g) while njaval seedlings (14.69 g) under elevated CO_2 concentration recorded the lowest.

Table 6 (a): Two-way tables on root fresh weight (g) of seedlings of five tree species under two CO_2 concentrations

Month	1

Month 2

Species	CO ₂ levels	
	Elevated	Atmospheric
Teak	17.10	11.67
Mahogany	8.29	8.02
Njaval	6.88	8.35
Matti	7.51	7.06
Venga	13.09	9.21
Mean	10.57	8.86
$F_{CO2 \ level} - 3.95 NS$, SEm+/- =0.37		
$F_{interaction} - 2.18NS$, SEm+/-=1.36		

Species	CO ₂ levels	
	Elevated	Atmospheric
Teak	17.89	14.64
Mahogany	9.07	8.60
Njaval	8.17	8.72
Matti	8.58	8.60
Venga	16.70	13.38
Mean	12.08 ^x	10.79 ^y
$F_{CO2 \text{ level}} - 4.49^*, \text{SEm}^{+/-} = 0.43$		
$F_{\text{interaction}} - 1.85\text{NS}$, SEm+/- =0.96		

Month 3

Month 4

Species	CO ₂ levels	
	Elevated	· Atmospheric
Teak	25.16a	16.16b
Mahogany	11.23cd	9.69d
Njaval	9.49d	9.53d
Matti	11.80cd	9.77d
Venga	18.04b	14.77bc
Mean	15.14 ^x	11.98 ^y
$F_{CO2 \text{ level}} - 18.29^{**}, \text{SEm}_{-}=0.52$		
Finteraction - 4.41**, SEm+/-=1.17		

	CO ₂ levels	
Species	Elevated	Atmospheric
Teak	38.56	16.93
Mahogany	14.03	11.34
Njaval	11.04	10.29
Matti	13.80	11.43
Venga	18.73	17.62
Mean	19.23 ^x	13.52 ^y
$F_{CO2 \ level} - 5.81^{**}, SEm + /- = 1.68$		
$F_{interaction} - 2.84NS$, SEm+/-=3.75		

* - significant at 5 %, ** - significant at 1 %, NS - non-significant

Table 6 (b): Two-way tables on root fresh weight (g) of seedlings of five tree species under two CO_2 concentrations

Month 5

Month 6

0	CO ₂ levels	
Species	Elevated	Atmospheric
Teak	50.31ª	21.05
Mahogany	15.20 ^b	13.80 ^b
Njaval	12.26	12.19
Matti	16.80°	13.40 ^b
Venga	19.80 ^b	18.85
Mean	22.87 [×]	15.86 ^y
F _{CO2 level} - 8.5	9**, SEm+/- =]	1.69
$F_{interaction} - 5.$	45**, SEm+/-=	=3.79

	CO ₂ levels		
Species	Elevated	Atmospheric	
Teak	56.31ª	23.54 ^b	
Mahogany	18.39 ^b	15.87 ^b	
Njaval	13.64 ^b	12.84	
Matti	20.03 ^b	17.25	
Venga	27.06 _b	22.04	
Mean	27.09 ^x	18.30 ^y	
$F_{CO2 level} - 11.57^{**}$, SEm+/-=1.82			
$F_{interaction} - 5.47^{**}$, SEm+/-=4.08			

Month 7

Month 8

Species	CO ₂ levels		
Species	Elevated	Atmospheric	
Teak	68.12ª	28.37 ^{bc}	
Mahogany	20.93 ^{bc}	17.75 ^{bc}	
Njaval	14.71°	14.71°	
Matti	23.61 ^{bc}	20.83 ^{bc}	
Venga	33.15 ^b	29.05 ^{bc}	
Mean	32.10 ^x	22.14 ^y	
$F_{CO2 \ level} - 8.62^{**}, SEm + / - = 2.39$			
$F_{interaction} - 4.86^{**}, SEm + /- = 5.36$			

Species	CO ₂ levels		
Species	Elevated	Atmospheric	
Teak	94.00 ^a	36.33 ^{bc}	
Mahogany	22.00 ^{de}	19.29°	
Njaval	16.67°	16.00 ^e	
Matti	26.33 ^{cde}	22.08 ^{de}	
Venga	38.33	32.2 ^{bcd}	
Mean	39.47 [×]	25.18 ^y	
$F_{CO2 \ level} - 36.54^{**}, SEm + / - = 1.67$			
$F_{interaction} - 21.38^{**}$, SEm+/- =3.73			

- significant at 5 %, -- significant at 1 %, NS - non-significant

In the fourth month, the different CO_2 levels showed significant effects on the dry weight of shoot (Table 7 a). Interactions had an influence on the shoot dry weight at the same stage of growth. Among the interaction between two factors, the maximum dry weight of shoot was seen in teak seedlings grown under elevated CO_2 concentration (41.41 g). The minimum dry weight of shoot was observed in njaval seedlings under elevated CO_2 concentration (16.49 g).

Varying CO₂ concentrations produced significantly different result in the fifth month (Table 7 b). The maximum shoot dry weight among the different interactions was observed in teak seedlings under elevated CO₂ concentration (60.79 g). On the other hand, under atmospheric CO₂ concentration the lowest shoot dry weight was observed in njaval seedlings (20.05 g).

In the sixth month, both CO_2 levels and interaction showed significant effects on the dry weight of shoot (Table 7b). Seedlings of teak under elevated CO_2 concentration recorded the maximum shoot dry weight (73.84 g). Seedlings of njaval under atmospheric CO_2 concentration recorded the lowest value (23.04 g).

In the seventh month, among the different levels of interactions, the maximum shoot dry weight was observed in teak seedlings under elevated CO_2 concentration (86.28 g). The lowest dry weight of shoot was observed in njaval seedlings under atmospheric CO_2 concentration (25.60 g).

In the last month of study period, different CO_2 concentration produced significantly different shoot dry weight. Under elevated CO_2 concentration teak seedlings recorded highest dry weight of shoot (99.46 g). The lowest value was recorded for njaval seedlings under atmospheric CO_2 concentration (27.23 g).

4.3.4 Dry weight of root

The dry weight of root was found to be significantly influenced by the different levels of CO_2 concentration as evident from Tables 8a and 8b.

Table 7 (a): Two-way tables on shoot dry weight (g) of seedlings of five tree species under two CO₂ concentrations

Month	1
-------	---

Month 2

Encoder	CO ₂ levels	
Species	Elevated	Atmospheric
Teak	13.12	11.40
Mahogany	13.10	13.12
Njaval	11.16	13.05
Matti	12.82	11.81
Venga	12.58	13.29
Mean	12.56	12.53
$F_{CO2 \ level} - 0.002 NS, SEm + / - = 0.33$		
$F_{\text{interaction}} - 1.809 \text{NS}, \text{SEm+/-} = 0.74$		

G_using	CO ₂ levels	
Species	Elevated	Atmospheric
Teak	14.84	12.48
Mahogany	16.01	15.02
Njaval	14.31	13.86
Matti	16.12	12.79
Venga	15.58	14.36
Mean	15.37	13.70
$F_{CO2 \text{ level -}} 10.62 \text{NS}, \text{SEm}+/-=0.36$		
Finteraction - 1.03NS, SEm+/-=0.81		

Month 3

Month 4

Species	CO ₂ levels	
Species	Elevated	Atmospheric
Teak	33.25ª	15.20 ^d
Mahogany	26.10 ^b	16.43 ^{cd}
Njaval	14.69 ^d	15.23 ^d
Matti	17.73 ^{cd}	15.35 ^d
Venga	21.83 ^{bc}	16.25 ^{cd}
Mean	22.72 [×]	15.69 ^y
$F_{CO2 \ level} - 38.32^{**}, SEm + - = 0.80$		
Finteraction - 8.12**, SEm+/-=1.79		

_	CO2 levels	
Species	Elevated	Atmospheric
Teak	41.41 ^a	19.23 ^{de}
Mahogany	31.31	19.76 ^{de}
Njaval	16.49°	17.71 ^{dc}
Matti	23.36 ^{cd}	21.03 ^{cde}
Venga	26.90 ^{bc}	19.62 ^{de}
Mean	27.89 ^x	19.47 ^y
$F_{CO2 \ level} - 44.17^{**}, SEm + - = 0.89$		
$F_{interaction} - 10.28^{**}, SEm + / - = 2.00$		

- significant at 5 %, -- significant at 1 %, NS - non-significant

Table 7 (b): Two-way tables on shoot dry weight (g) of seedlings of five tree species under two CO₂ concentrations

<u></u>	CO ₂ levels		
Species	Elevated	Atmospheric	
Teak	60.79ª	24.45 ^{de}	
Mahogany	36.17 ⁵	25.74 ^{de}	
Njaval	20.67 ^f	20.05 ^f	
Matti	29.46 _{cd}	27.05 ^{cde}	
Venga	31.17°	22.42 ^{cf}	
Mean	35.65 ^x	23.94 ^y	
$F_{CO2 \ level} - 152.75^{**}, SEm + - = 0.67$			
$F_{interaction} - 46.05^{**}$, SEm+/-=1.49			

Month 5

	23.74	1	Mahogany	
	20.05 ^f	1	Njaval	
	27.05 ^{cde}]	Matti	
-	22.42 ^{ef}		Venga	
	23.94 ^y]	Mean	

<u> </u>	CO ₂ levels		
Species	Elevated	Atmospheric	
Teak	73.84ª	30.80 ^{de}	
Mahogany	40.32 ^b	29.41 ^{de}	
Njaval	24.61°	23.04 ^f	
Matti	37.17 ^{bc}	34.15 ^{cd}	
Venga	34.20 ^{cd}	26.81 ^{ef}	
Mean	42.028 ^x	28.84 ^y	
$F_{CO2 \text{ level}} - 186.38 \text{ **}, \text{SEm}+/-=0.68$			
$F_{interaction} - 62.63 **, SEm+/-=1.53$			

Month 7

Month 8

Species	CO ₂ levels	
	Elevated	Atmospheric
Teak	86.28ª	34.82 ^{de}
Mahogany	46.71 ^b	34.28 ^{de}
Njaval	29.46 ^{ef}	25.60 ^f
Matti	43.56 ^{bc}	40.30 ^{bcd}
Venga	36.90 ^{cde}	29.20 ^{ef}
Mean	48.58 ^x	32.84 ^y
$F_{CO2 \ level} - 107.28^{**}$, SEm+/- =1.07		
$F_{interaction} - 35.67^{**}$, SEm+/- =2.40		

E	CO2 levels	
Species	Elevated	Atmospheric
Teak	99.46ª	40.41 ^{de}
Mahogany	52.51 ^{bc}	38.45 ^{de}
Njaval	34.00 ^{def}	27.23 ^f
Matti	56.67	43.65 ^{cd}
Venga	39.25 ^{de}	31.93 ^{ef}
Mean	56.38 ^x	36.33 ^y
$F_{CO2 \ level} - 82.50^{**}$, SEm+/- =1.56		
$F_{interaction} - 19.96 **, SEm+/-=3.49$		

-- significant at 5 %, -- significant at 1 %, NS - non-significant

Figures with the similar superscripts or no superscripts do not differ significantly.

Month

6

Different CO_2 levels significantly affected root dry weight from the fourth month till the end of study period with regard to dry weight of root. The interaction also showed significant differences from the fourth month till the end of the study period.

In the fourth month, the exposure of seedlings to different CO_2 concentration showed significant differences in their performances (Table 8 a). Interactions showed significant effect on the dry weight of root. Under elevated CO_2 concentration, the highest dry weight of root was produced by the teak seedlings (18.96 g). Njaval seedlings under elevated CO_2 concentration recorded lowest value (7.34 g).

Root dry weight was significantly different in the fifth month. Among the interaction, under elevated CO_2 concentration the highest root dry weight was recorded in teak seedlings (23.22 g). The njaval seedlings grown under elevated CO_2 concentration produced lowest root drymatter (7.94 g).

In the sixth month, root dry matter production of seedlings under various CO_2 concentrations showed significant differences (Table 8 b). The best performance among different interaction was given by teak where seedlings gave a mean reading of 27.02 g under elevated CO_2 concentration. The least performance was given by njaval seedling under elevated CO_2 concentration (8.80 g).

Two CO_2 levels significantly influenced root dry weight in the seventh month. Interaction also had significant effect in this month on the dry weight of root. Among the interactions, the highest root dry weight was observed in the teak seedlings under elevated CO_2 concentration (30.65 g). The lowest weight was recorded by njaval seedlings (9.72 g) under elevated CO_2 concentration.

The use of different CO_2 concentrations was observed to be significantly influencing the root dry matter production in the eighth month of the study period (Table 8b). among interaction, the best performance was seen in teak seedlings under elevated CO_2 concentration (40.10 g). The seedlings of njaval under elevated CO_2 concentration showed lowest root drymatter (10.21 g).

Table 8 (a): Two-way tables on root dry weight (g) of seedlings of five tree species under two CO₂ concentrations

Month 1	l
---------	---

Month 2

Guada	CO ₂ levels	
Species	Elevated	Atmospheric
Teak	8.73	7.98
Mahogany	6.30	6.13
Njaval	5.77	6.56
Matti	5.63	5.80
Venga	8.03	7.97
Mean	6.89	6.89
$F_{CO2 \text{ level}} - 0.00 \text{NS}, \text{SEm} + / - = 0.36$		
$F_{\text{interaction}} - 0.24\text{NS}, \text{SEm}+/-=0.79$		

6	CO2 levels	
Species	Elevated	Atmospheric
Teak	10.06	9.13
Mahogany	6.84	6.80
Njaval	6.69	7.03
Matti	6.65	6.65
Venga	10.37	8.46
Mean	8.12	7.61
F _{CO2 level} - 1.44NS, SEm+/-=0.29		
Finteraction - 0.93NS, SEm+/-=0.67		

Month 3

Month 4

Species	CO ₂ levels	
	Elevated	Atmospheric
Teak	13.00	10.45
Mahogany	7.82	6.10
Njaval	7.07	7.82
Matti	7.50	7.97
Venga	11.16	9.88
Mean	9.31	8.44
$F_{CO2 \text{ level}}$ - 3.24NS, SEm+/- =0.34		
$F_{interaction} - 1.76NS$, SEm+/-=0.76		

	CO ₂ levels	
Species	Elevated	Atmospheric
Teak	18.96ª	11.50 ^{bc}
Mahogany	8.89 ^{cde}	7.53°
Njaval	7.34°	8.55 ^{de}
Matti	10.10 ^{bcde}	9.06 ^{cdc}
Venga	12.18 ^b	10.52 ^{cd}
Mean	11.49 [×]	9.43 ^y
$F_{CO2 \ level} - 14.75^{**}, SEm + / - = 0.38$		
$F_{interaction} - 7.19^{**}$, SEm+/- =0.85		

-- significant at 5 %, -- significant at 1 %, NS - non-significant

Table 8 (b): Two-way tables on seedlings root dry weight (g) of five tree species under two CO₂ concentrations

Month 5

Month 6

CO₂ levels

	CO ₂ levels	
Species	Elevated	Atmospheric
Teak	23.22ª	14.57
Mahogany	10.65 ^{cde}	9.98 ^{de}
Njaval	7.94°	9.25 ^{de}
Matti	12.17 ^{bcd}	10.65 ^{cde}
Venga	13.44 ^{bc}	11.49 ^{cd}
Mean	13.48 ^x	11.19 ^y
$F_{CO2 \ level} - 15.89^{**}, SEm + / - = 0.41$		
$F_{interaction} - 8.54^{**}$, SEm+/-=0.91		

Species		
Species	Elevated	Atmospheric
Teak	27.02 ^a	15.97 ^b
Mahogany	12.80 ^{bcd}	10.80 ^{de}
Njaval	8.80°	9.74 ^{de}
Matti	14.62 ^{bc}	11.98 ^{cde}
Venga	16.27 ⁵	14.77 ^{bc}
Mean	15.90 ^x	12.65 ^y
$F_{CO2 level} - 18.89^{**}$, SEm+/- =0.53		
$F_{interaction} - 7.47^{**}$, SEm+/-=1.18		

Month 7

Month 8

Species	CO ₂ levels	
	Elevated	Atmospheric
Teak	30.65 ^a	17.806
Mahogany	14.62 ^{bcd}	11.69 ^d
Njaval	9.72 ^d	10.33 ^d
Matti	16.69 ^{bc}	12.84 ^{cd}
Venga	18.42 ^b	16.87 ^{bc}
Mean	18.02 ^x	13.90 ^y
$F_{CO2 \text{ level}} - 18.49^{**}$, SEm+/- =0.68		
$F_{interaction} - 5.84^{**}$, SEm+/- =1.51		

Species	CO ₂ levels	
Species	Elevated	Atmospheric
Teak	40.10 ^a	20.22 ^{bc}
Mahogany	16.19 ^{bcd}	13.07 ^{cd}
Njaval	10.21 ^d	10.55 ^d
Matti	18.43 ^{bc}	14.45 ^{bcd}
Venga	21.61 ^b	21.39 ^b
Mean	21.30 ^x	15.94 ^y
$F_{CO2 level} - 14.07^{**}$, SEm+/- =1.01		
$F_{\text{interaction}} - 6.75^{**}, \text{ SEm} + - = 2.26$		

- significant at 5 %, -- significant at 1 %, NS - non-significant

4.3.5 Shoot : root length

The influence of different CO_2 concentrations on five tree seedlings is furnished in Tables 9a and 9b. The seedlings under different CO_2 treatments recorded significant difference only in first three months. Interactions between two factors had no significant impact on the shoot : root length throughout the study period except in the fourth month.

During the fourth month of observations, the maximum shoot : root length was found in seedlings of matti exposed to elevated CO_2 concentration (2.61) followed by seedlings of mahogany exposed to atmospheric CO_2 concentration (2.49) which were significantly different from each other. On the other hand, seedlings of njaval produced lowest ratio (1.51) under elevated CO_2 concentration as far as the interaction was concerned.

4.3.6 Shoot : root biomass

The effects of different CO_2 concentrations on shoot: root biomass can be seen in Tables 10a and 10b. It is evident from the table that different CO_2 concentrations provided significant difference in the third, fourth, fifth and sixth months while interaction between the factors did not give any significant effect on the shoot: root biomass throughout the study period.

The maximum shoot: root biomass due to interaction effect was observed in mahogany seedlings under elevated CO_2 concentration (3.54) in the fifth month. The minimum value of shoot: root biomass was however observed in teak seedlings under atmospheric CO_2 concentration (1.40).

4.3.7 Total drymatter production

The effects of various CO_2 levels in five tree seedlings during the course of eight months is given in Table 11a and 11b and Figure 5. It can be seen that the different CO_2 levels started to give influence on the tree seedlings from the second

Table 9 (a): Two-way tables on shoot root length ratio of seedlings of five tree species under two CO₂ concentrations

Month 2

Species	CO ₂ levels		
	Elevated	Atmospheric	
Teak	3.08	2.63	
Mahogany	2.88	2.22	
Njaval	1.12	1.25	
Matti	2.98	2.29	
Venga	3.24	2.14	
Mean	2.66 ^x	2.11 ^y	
$F_{CO2 \text{ level}} - 6.17^*$, SEm+/-=0.15			
$F_{interaction} - 0.82NS$, SEm+/-=0.36			

	CO ₂ levels		
Species	Elevated	Atmospheric	
Teak	3.72	2.40	
Mahogany	3.33	2.56	
Njaval	1.62	1.38	
Matti	3.22	2.42	
Venga	3.19	2.14	
Mean	3.02 ^x	2.18 ^y	
F _{CO2 level} - 13.13**, SEm+/-=0.16			
$F_{\text{interaction}}$ - 0.61NS, SEm+/- =0.37			

Month 3

Month 4

Generation	CO ₂ levels		
Species	Elevated	Atmospheric	
Teak	2.89	2.21	
Mahogany	2.74	2.53	
Njaval	2.13	1.59	
Matti	3.33	2.34	
Venga	3.21	2.30	
Mean	2.86 ^x	2.19 ^y	
$F_{CO2 \ level}$ - 12.33**, SEm+/-=0.14			
Finteraction - 0.57NS, SEm+/-=0.31			

	CO ₂ levels		
Species	Elevated	Atmospheric	
Teak	1.94 ^{bcde}	1.85 ^{cde}	
Mahogany	2.15 ^{abcd}	2.49 ^{ab}	
Njaval	1.51°	1.60 ^{de}	
Matti	2.61ª	1.80 ^{cde}	
Venga	2.25 ^{abc}	2.12 ^{abcd}	
Mean	2.09	1.97	
$F_{CO2 \text{ level}} - 1.25 \text{NS}$, SEm+/-=0.08			
$F_{interaction} - 3.29^*$, SEm+/- =0.13			

- - significant at 5 %, -- significant at 1 %, NS - non-significant

Table 9 (b): Two-way tables on shoot root length ratio of seedlings of five tree species under two CO₂ concentrations

Month :	5
---------	---

Month 6

	CC	D ₂ levels	Graning	CO	2 levels
Species	Elevated	Atmospheric	Species	Elevated	Atmospheric
Teak	1.55	1.43	Teak	1.50	1.62
 Mahogany	2.14	2.04	Mahogany	2.00	1.93
Njaval	1.70	1.56	Njaval	1.72	1.44
 Matti	2.10	1.82	Matti	1.69	1.79
Venga	1.88	1.95	Venga	1.83	2.00
Mean	1.87	1.76	Mean	1.75	1.76
$F_{CO2 \ level} - 2.1$	1NS, SEm+/- ==	0.06	$F_{CO2 level} - 0.0$)15NS, SEm+/-	- =0.05
$F_{interaction} - 0.$	56NS, SEm+/	=0.13	Finteraction -	.23NS, SEm+/	-=0.12

Month 7

Month 8

Species	CO ₂ levels		
	Elevated	Atmospheric	
Teak	1.43	1.25	
Mahogany	1.69	1.99	
Njaval	1.76	1.45	
Matti	1.68	1.90	
Venga	1.95	1.92	
Mean	1.70	1.70	
$F_{CO2 \text{ level}} - 0.001 \text{NS}, \text{SEm} + / - = 0.07$			
$F_{interaction} - 1.30NS$, SEm+/-=0.15			

Smaalaa	CO ₂ levels		
Species	Elevated	Atmospheric	
Teak	1.42	1.07	
Mahogany	1.50	1.71	
Njaval	1.62	1.35	
Matti	1.77	1.76	
Venga	1.96	2.10	
Mean	1.65	1.59	
$F_{CO2 level} - 0.43 \text{NS}, \text{SEm} + /- = 0.06$			
$F_{interaction} - 1.53NS$, SEm+/- =0.14			

-- significant at 5 %, -- significant at 1 %, NS -- non-significant

Table 10 (a): Two-way tables on shoot root biomass ratio of seedlings of five tree species under two CO_2 concentrations

Encolor	CO ₂ levels	
Species	Elevated	Atmospheric
Teak	1.55	1.46
Mahogany	2.14	2.14
Njaval	1.95	1.99
Matti	2.28	2.04
Venga ·	1.73	1.67
Mean	1.93	1.86
$F_{CO2 \text{ level}} - 0.31 \text{NS}, \text{SEm} + / - = 0.08$		
$F_{\text{interaction}} \sim 0.16 \text{NS}$, SEm+/-=0.20		

1			
-			

0	CO2 levels		
Species	Elevated	Atmospheric	
Teak	1.53	1.40	
Mahogany	2.35	2.21	
Njaval	2.16	1.98	
Matti	2.42	1.93	
Venga	1.55	1.70	
Mean	2.00	1.84	
F _{CO2 level} - 3.03NS, SEm+/-=0.06			
F _{interaction} - 1.27NS, SEm+/-=0.14			

Month 2

Month 3

Month	4
-------	---

E-acies	CO ₂ levels		
Species	Elevated	Atmospheric	
Teak	2.55	1.49	
Mahogany	3.35	2.70	
Njaval	2.10	1.95	
Matti	2.46	1.93	
Venga	2.01	1.67	
Mean	2.49 ^x	1.94 ^ÿ	
$F_{CO2 \text{ level}} - 15.26^{**}, \text{SEm} + - = 0.10$			
$F_{\text{interaction}} - 1.22\text{NS}, \text{SEm+/-=}0.22$			

Smaalaa	CO ₂ levels		
Species	Elevated	Atmospheric	
Teak	2.21	1.74	
Mahogany	3.54	2.66	
Njaval	2.27	2.07	
Matti	2.33	2.32	
Venga	2.23	1.89	
Mean	2.52 ^x	2.14 ^y	
$F_{CO2 \ level} - 8.91^{**}$, SEm+/- =0.09			
$F_{interaction} - 1.34NS$, SEm+/-=0.20			

-- significant at 5 %, -- significant at 1 %, NS -- non-significant

Figures with the similar superscripts or no superscripts do not differ significantly.

60

Table 10 (b): Two-way tables on shoot root biomass ratio of seedlings of five tree species under two CO₂ concentrations

~ .	CO ₂ levels		
Species	Elevated	Atmospheric	
Teak	2.63	1.70	
Mahogany	3.54	2.62	
Njaval	2.63	2.17	
Matti	2.42	2.55	
Venga	2.33	1.97	
Mean	2.71 ^x	2.20 ^y	
$F_{CO2 level} - 10.$.37**, SEm+/- =	=0.11	
$\overline{F}_{interaction} - 1$.	58NS, SEm+/- *	=0.25	

Month 7

Month 5

 Teak	2.78	1.96
 Mahogany	3.26	2.78
 Njaval	2.80	2.37
 Matti	2.55	2.87
 Venga	2.11	1.83
 Mean	2.70 ^x	2.36 ^y
 $F_{CO2 \ level} - 5.9$	92*, SEm+/- =	0.09

Species

Month	6
-------	---

Elevated

CO₂ levels

Atmospheric

Finteraction - 1.84NS, SEm+/-=0.22

Spaniag	CO ₂ levels		
Species	Elevated	Atmospheric	
Teak	2.87	1.96	
Mahogany	3.42	3.00	
Njaval	3.04	2.49	
Matti	2.61	3.15	
Venga	2.02	1.75	
Mean	2.79	2.47	
$F_{CO2 \text{ level}}$ -2.92NS, SEm+/- =0.13			
$F_{interaction} - 1.60NS$, SEm+/- =0.30			

Smooting	CO ₂ levels			
Species	Elevated	Atmospheric		
Teak	2.51	1.98		
Mahogany	3.49	2.98		
Njaval	3.49	2.58		
Matti	3.09	3.05		
Venga	1.83	1.61		
Mean	2.88	2.44		
$F_{CO2 \ level} - 3.98 \text{NS}, \ SEm + / - = 0.15$				
$F_{interaction} - 0.38NS$, SEm+/- =0.3				

- - significant at 5 %, - - significant at 1 %, NS - non-significant

Month 8

month up to the end of the study period. Interaction between the factors started to give significant effect in the third month till the eighth months of the study period.

In the second month the different levels of CO_2 showed significant effects on the total dry matter content (Table 11 a). The maximum dry matter was seen in seedlings grown under elevated CO_2 concentration (23.49 g). In the third month, seedlings under elevated CO_2 levels also showed significant differences in their performances (32.03 g). The maximum dry weight due to interaction was observed in teak seedlings under elevated CO_2 concentration (46.25 g). However, the lowest dry weight due to interaction for the same month was observed in mahogany under atmospheric CO_2 concentration (22.86 g).

In the fourth month, the application of various types of CO_2 levels provided significantly different results (Table 11a). The elevated CO_2 concentration recorded maximum dry matter content in seedlings (39.40 g). As far as interaction was considered, teak seedlings under elevated CO_2 concentration recorded the highest dry matter content (60.41 g). Njaval seedlings under elevated CO_2 concentration showed the lowest dry matter content (23.83 g).

Use of varying CO₂ levels gave significant difference in the fifth month (Table 11b). Seedlings under enriched CO₂ concentration performed best with mean value of 49.15 g. The maximum dry matter content among the interactions between tree seedlings and CO₂ levels was observed in teak seedlings under enriched CO₂ concentration (84.07 g). The minimum dry matter content was observed in njaval seedlings under elevated CO₂ concentration (28.61 g).

In the sixth month both the CO_2 levels and the interactions between factors showed significant effects on the dry matter production (Table 11b). Teak seedlings under elevated CO_2 concentration recorded the maximum dry matter (100.87g) among interaction. On the other hand, njaval seedlings under atmospheric CO_2 concentration had the minimum dry weight of seedlings (32.78 g).

In the seventh month interaction between species and CO_2 levels significantly influenced seedlings dry matter (Table 11b). Among the different levels of CO_2 , the

maximum dry matter was observed in elevated CO_2 concentration (66.60 g). This was followed by atmospheric CO_2 concentration which showed significant differences with mean values of 46.75 g. When interaction was taken into consideration, the maximum value was observed in teak seedlings under elevated CO_2 concentration (139.56 g). The lowest value was given by seedlings of njaval under atmospheric CO_2 (37.78 g).

In the eighth month, the different CO_2 levels showed significant effects on the dry matter content (Table 11 b). Among the interactions, the maximum dry matter was seen in teak seedlings grown under elevated CO_2 concentration (139.56 g). Njaval seedlings under atmospheric CO_2 concentration showed significant differences in their performances with lowest mean value (37.78 g). Hence, the overall performance of the tree seedlings under varying levels of CO_2 concentration was observed to be better under elevated CO_2 concentration (Plate 5, 6, 7, 8 and 9).

4.4 Physiological observations

The effects of different treatments on various parameters like relative growth rate, net assimilation rate, leaf area, specific leaf area, leaf area ratio, leaf weight ratio, number of stomata and rate of photosynthesis are given under this section.

4.4.1 Relative growth rate

Influence of different CO_2 concentrations on the relative growth rate in the selected tree seedlings is shown in Table 12a and 12b. It is clear from the table that the different CO_2 treatment did not significantly affect the relative growth rate of seedlings during the study period except in the first and second month where there was a significant effect. Interactions between factors had no significant effect on the RGR throughout the study period except in the second month.

In the first and second months, elevated CO_2 concentration produced a higher growth rate in all tree seedlings with a recorded mean value of 6.27 mg/day and 9.26 mg/day respectively. In the second month, the maximum RGR was observed in teak seedlings under elevated CO_2 concentration with mean values of 20.33 mg/day.

Table 11 (a): Two-way tables on total dry matter content (g) of seedlings of five tree species under two CO₂ concentrations

Month 1

Month 2

6t	CO ₂ levels		
Species	Elevated	Atmospheric	
Teak	21.85	19.38	
Mahogany	19.40	19.26	
Njaval	16.94	19.61	
Matti	18.45	17.61	
Venga	20.61	21.26	
Mean	19.45	19.42	
F _{CO2 levels} - 0.001NS SEm+/- =0.53			
F _{interaction} - 1.27NS, SEm+/-=1.19			

Succion	CO ₂ levels		
Species	Elevated	Atmospheric	
Teak	24.90	21.61	
Mahogany	22.84	21.82	
Njaval	21.00	20.88	
Matti	22.78	19.44	
Venga	25.95	22.82	
Mean	23.49 ^x	21.31 ^y	
F _{CO2 levels} - 9.26**,SEm+/-=0.51			
F _{interaction} - 0.88NS SEm+/- =1.13			

Month 3

Month 4

Atmospheric

30.73^{de}

27.29^{de}

26.25°

30.09^{de}

30.13^{de}

28.89^y

Species	c c	O2 levels		CO ₂ levels	
	Elevated	Atmospheric	Species	Elevated	Atmo
Teak	46.25ª	25.64°	Teak .	60.41ª	30.73
Mahogany	33.92 ^b	22.86°	Mahogany	40.19 ^b	27.29
Njaval	21.76 ^c	23.05°	Njaval	23.83°	26.25
Matti	25.24°	23.32°	Matti	33.46 ^{cd}	30.09
Venga	32.99 ^b	26.13°	Venga	39.09 ^{bc}	30.13
Mean	32.03 ^x	24.20 ^y	Mean	39.396 ^x	28.89
F CO2 levels -	35.49**,SEm+	/- =0.93			=0.97
Finteraction - 8	.47 **, SEm+/	/-=2.08		.5.84**SEm+/-	

- significant at 5 %, --- significant at 1 %, NS - non-significant

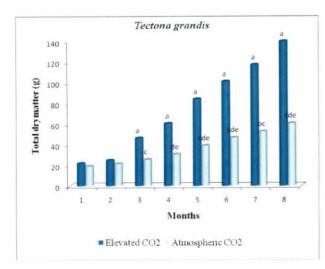
Table 11 (b): Two-way tables on total dry matter content (g) of seedlings of five tree species under two CO₂ concentrations

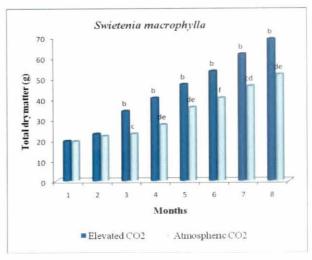
Μ	on	th	5
	~~~		~

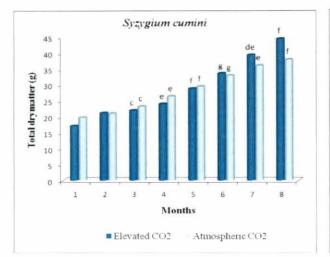
Month 6

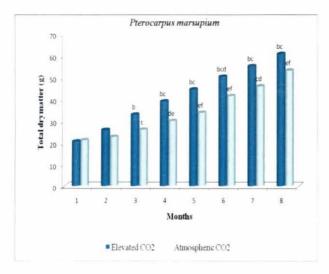
Constan	CO ₂ levels		
Species	Elevated	Atmospheric	
Teak	84.07 ^a	39.01 ^{cde}	
Mahogany	46.82 ^b	35.72 ^{de}	
Njaval	28.61 ^f	29.30 ^f	
Matti	41.63 ^{bcd}	37.70 ^{de}	
Venga	44.61 ^{bc}	33.91 ^{ef}	
Mean	49.15 ^x	35.13 ^y	
F CO2 levels - 1	24.22**,SEm+/	-=0.89	

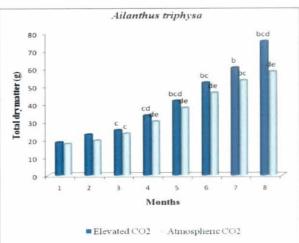
Clevated           0.87 ^a 12 ^b 40 ^g 79 ^{bc}	Atmospheric           46.78 ^{cde} 40.21 ^f 32.78 ^g
12 ^b 40 ^g	40.21 ^f 32.78 ^g
40 ^g	32.78 ^g
79 ^{bc}	1 c 1 ide
	46.14 ^{de}
47 ^{bcd}	41.58 ^{ef}
85 ^x	41.49 ^y
**,SEm+/	/- =0.76
	85 ^x


Month 7


Month 8


Constan	CO ₂ levels	
Species	Elevated	Atmospheric
Teak	116.92 ^a	52.62 ^{bc}
Mahogany	61.33 ^b	45.98 ^{cd}
Njaval	39.18 ^{de}	35.93°
Matti	60.25 ^b	53.14 ^{bc}
Venga	55.32 ^{bc}	46.08 ^{cd}
Mean	66.60 ^x	46.75 ^y
F _{CO2 level} -10	8.03 **,SEm+	/- =1.35


CO ₂ levels		
Elevated	Atmospheric	
139.56 ^a	60.63 ^{cde}	
68.69 ^b	51.52 ^{de}	
44.21 ^f	37.78 ^f	
75.10 ^{bcd}	58.09 ^{de}	
60.87 ^{bc}	53.32 ^{ef}	
77.69 ^x	52.27 ^y	
0.26**,SEm+/-	-=2.14	
	Elevated 139.56 ^a 68.69 ^b 44.21 ^f 75.10 ^{bcd} 60.87 ^{bc} 77.69 ^x	


* - significant at 5 %, ** - significant at 1 %, NS - non-significant











### Figure 5. Response of five tree species on total drymatter content (g) of seedlings under two CO₂ concentrations



Plate 5. Tectona grandis seedlings kept inside the chamber (A) and outside the chamber (B)



Plate 6. *Swietenia macrophylla* seedlings kept inside the chamber (A) and outside the chamber (B)



Plate 7. Syzygium cumini seedlings kept inside the chamber (A) and outside the chamber (



Plate 8. Ailanthus triphysa seedlings kept inside the chamber (A) and outside the chamber (



Plate 8. *Pterocarpus marsupium* seedlings kept inside the chamber (A) and outside the chamber (B)

However, the least performance was given by njaval seedlings under elevated  $CO_2$  concentration (1 mg/day) and it was significantly different from the seedlings of other species when the interactions were taken into consideration.

### 4.4.1 Net assimilation rate

The influence of different  $CO_2$  concentrations on the NAR of the seedlings of five tree species is furnished in Tables 13a and 13b. The effects of different treatments were not significantly different during the study period except in the second, third and fifth month.

In the second month, the interactions between various treatments were found to be significant. The maximum value of NAR of seedlings was found in teak seedlings under atmospheric CO₂ concentration (0.710 mg/day) with respect to interaction effect. Seedlings of njaval under atmospheric CO₂ concentration had the minimum value (0.104 mg/day). During the third and fifth months,  $CO_2$ concentrations were observed to be significant. The elevated  $CO_2$  concentration recorded maximum NAR in seedlings with a recorded mean value of 0.530 mg/day and 0.370 mg/day respectively. However, interaction was insignificant in this month.

#### 4.4.3 Leaf area

Data tabulated in Table 14(a and b), Figure 6 revealed that different treatments had significant effect on leaf area for the entire period of study. In the first month, tree seedlings under elevated CO₂ concentration had maximum leaf area  $(378.32 \text{ cm}^2)$  which was followed by the seedlings under atmospheric CO₂ (180.06 cm²). Both were significantly different. Among interactions, matti seedlings under elevated CO₂ showed highest leaf area  $(474.88 \text{ cm}^2)$  while that under atmospheric CO₂ produced lowest leaf area  $(69.89 \text{ cm}^2)$  which was significantly different.

In the second month, mahogany seedlings under elevated  $CO_2$  had highest leaf area (780.98 cm²) which was significantly different when interaction was taken into consideration. Similarly in the third month, teak seedlings under elevated  $CO_2$ recorded leaf area (1517.33 cm²) which was significantly different from the rest.

## Table 12 (a): Two-way tables on relative growth rate (mgd⁻¹) of seedlings of five tree species under two CO₂ concentrations

Month	1
-------	---

Month 2

S- onling	CO ₂ levels			
Species	Elevated	Atmospheric		
Teak	4.33	3.47		
Mahogany	5.67	4.67		
Njaval	7.00	2.00		
Matti	6.67	3.33		
Venga –	7.67	2.33		
Mean	6.27 ^x	3.16 ^y		
$F_{CO2 \ level} - 8.55 **, SEm +/- = 0.74$				
$F_{interaction} - 0.80 \text{ NS}, \text{ SEm}+/-=1.67$				

	CO ₂ levels			
Species	Elevated	Atmospheric		
Teak	20.33	5.67		
Mahogany	13.33	1.53		
Njaval	1.00	3.33		
Matti	3.33	6.00		
Venga	8.33	4.67		
Mean	9.26 [×]	4.24 ^y		
F _{CO2 level} - 14.58**, SEm+/-=0.93				
F _{interaction} - 7.33**, SEm+/-=2.08				

Month 3

Month 4

	CO ₂ levels			
Species	Elevated	Atmospheric		
Teak	9.13	6.33		
Mahogany	5.83	6.00		
Njaval	3.33	4.33		
Matti	9.33	8.33		
Venga	5.67	4.67		
Mean	6.66	5.93		
F _{CO2 level} - 0.27 NS, SEm+/-=0.98				
$F_{interaction} - 0.21$ NS, SEm+/-=2.19				

Sugaina	CO ₂ levels			
Species	Elevated	Atmospheric		
Teak	11.10	7.67		
Mahogany	5.23	9.00		
Njaval	6.00	4.00		
Matti	7.33	7.33		
Venga	4.73	3.67		
Mean	6.88	6.33		
$F_{CO2 \ level} - 0.22 \ NS, SEm + / - = 0.81$				
F _{interaction} - 1.11 NS, SEm+/-=1.82				

- significant at 5 %, -- significant at 1 %, NS - non-significant

## Table 12 (b): Two-way tables on relative growth rate (mgd⁻¹) of seedlings of five tree species under two CO₂ concentrations

MOUTIN 2	Month	5
----------	-------	---

Month 6

Enorico	CO ₂ levels		
Species	Elevated	. Atmospheric	
Teak	6.00	6.33	
Mahogany	4.00	4.00	
Njaval	5.43	3.77	
Matti	7.00	6.67	
Venga	4.00	6.67	
Mean	5.29	5.49	
$F_{CO2 \ level} - 0.05 \ NS, SEm + / - = 0.65$			
$F_{\text{interaction}} - 0.58$ NS, SEm+/-=1.46			

<u>Encoire</u>	CO ₂ levels		
Species	Elevated	Atmospheric	
Teak	4.67	4.00	
Mahogany	6.17	4.00	
Njaval	5.60	3.33	
Matti	5.00	4.37	
Venga	3.23	3.33	
Mean	4.93	3.81	
$F_{CO2 level} - 1.84$ NS, SEm+/-=0.58			
$F_{interaction} - 0.32$ NS, SEm+/-=1.31			

Month 7

		`		
Species	C	CO ₂ levels		
Species	Elevated	Atmospheric		
Teak	6.00	4.33		
Mahogany	4.00	4.00		
Njaval	4.00	1.77		
Matti	7.00	3.00		
Venga	5.00	4.67		
Mean	5.2	3.55		
$F_{CO2 \text{ level}} - 2.66 \text{ NS}, \text{SEm} + - = 0.71$				
$F_{\text{interaction}} - 0.51 \text{ NS}$ , SEm+/- =1.59				

• - significant at 5 %, •• - significant at 1 %, NS - non-significant

# Table 13 (a): Two-way tables on net assimilation rate (mgd⁻¹) of seedlings of five tree species under two CO₂ concentrations

Month 1	
---------	--

Month	2
-------	---

Succion	CO ₂ levels	
Species	Elevated	Atmospheric
Teak	0.311	0.227
Mahogany	0.261	0.217
Njaval	0.326	0.723
Matti	0.501	0.320
Venga	0.285	0.327
Mean	0.34	0.36
$F_{CO2 \ level} - 0.10 \ NS, \ SEm + / - = 0.06$		
Finteraction - 1.41 NS, SEm+/-=0.13		

Station	CO ₂ levels	
Species	Elevated	Atmospheric
Teak	0.441 ^{abc}	0.710ª
Mahogany	0.129°	0.479 ^{abc}
Njaval	0.530 ^{abc}	0.104°
Matti	0.567 ^{ab}	0.178 ^{bc}
Venga	0.368 ^{abc}	0.325 ^{abc}
Mean	0.41	0.36
$F_{CO2 \ level} - 0.34 \ NS, SEm + /- = 0.05$		
$F_{interaction} - 3.86 *, SEm + / - = 0.12$		

Month 3

Month 4

Species	CO ₂ levels	
	Elevated	Atmospheric
Teak	0.388	0.304
Mahogany	0.443	0.203
Njaval	0.722	0.249
Matti	0.749	0.401
Venga	0.356	0.220
Mean	0.53 ^x	0.28 ^y
$F_{CO2 \text{ level}} - 6.33^*, \text{SEm}+/-=0.07$		
$F_{interaction} - 0.48$ NS, SEm+/-=0.16		

	CO ₂ levels		
Species	Elevated	Atmospheric	
Teak	0.349	0.361	
Mahogany	0.362	0.165	
Njaval	0.397	0.500	
Matti	0.392	0.311	
Venga	0.202	0.197	
Mean	0.34	0.31	
$F_{CO2 \ level} - 0.34 \ NS, SEm + / - = 0.04$			
$F_{\text{interaction}} - 0.76$ NS, SEm+/-=0.09			

-- significant at 5 %, -- significant at 1 %, NS - non-significant

3			

## Table 13 (b): Two-way tables on net assimilation rate (mgd⁻¹) of seedlings of five tree species under two CO₂ concentrations

Month	5
-------	---

Month	6
Ινιοπιπ	ο

	CO ₂ levels		
Species	Elevated	Atmospheric	
Teak	0.416	0.211	
Mahogany	0.204	0.121	
Njaval	0.412	0.408	
Matti	0.422	0.302	
Venga	0.419	0.171	
Mean	0.37 ^x	0.24 ^y	
$F_{CO2 \text{ level}} - 6.15^*$ , SEm+/-=0.03			
$F_{interaction} - 0.66$ NS, SEm+/-=0.08			

	CO ₂ levels		
Species	Elevated	Atmospheric	
Teak	0.250	0.171	
Mahogany	0.201	0.141	
Njaval	0.290	0.385	
Matti	0.261	0.207	
Venga	0.197	0.126	
Mean	0.24	0.21	
$F_{CO2 \text{ level}} - \text{ NS, SEm} + - = 0.02$			
Finteraction -	NS, SEm+/- =	0.06	

#### Month 7

g!	CO ₂ levels	
Species	Elevated	Atmospheric
Teak	0.281	0.204
Mahogany	0.147	0.118
Njaval	0.138	0.253
Matti	0.149	0.306
Venga	0.263	0.138
Mean	0.19	0.20
$F_{CO2 \ level} - 0.02 \ NS, SEm + /- = 0.04$		
F _{interaction} - 0.76 NS, SEm+/-=0.09		

-- significant at 5 %, -- significant at 1 %, NS - non-significant

During the fourth month, leaf area of seedlings under elevated  $CO_2$  concentration differed significantly (1142.76 cm²). Interaction between various treatments had significant impact on leaf development. Teak seedlings under elevated  $CO_2$  concentration had maximum leaf area (2286.67 cm²). The lowest leaf area was observed in njaval seedlings under atmospheric  $CO_2$  concentration (195.40 cm²)

In the fifth month, among interactions, teak seedlings under enriched  $CO_2$  concentration recorded maximum leaf area (2428.33 cm²). njaval seedlings under atmospheric CO₂ concentration recorded lowest leaf area (238.67 cm²). In the sixth month, seedlings under CO₂ enriched condition had a leaf area of 1468.22 cm² followed by 672.24 cm² under normal CO₂ condition. The interaction effect was significantly different among the seedlings of five tree species under different CO₂ concentration. The maximum leaf area was observed in teak seedlings under elevated CO₂ (2704.59 cm²) and lowest leaf area in njaval seedlings (308.33 cm²).

In the seventh month, elevated  $CO_2$  gave highest leaf area (1828.65 cm²) followed by the atmospheric  $CO_2$  level (846.10 cm²). A significant difference in interaction was observed under both  $CO_2$  concentrations. Maximum leaf area was seen in teak seedlings (3599.71 cm²) under elevated  $CO_2$  concentration. Njaval seedlings showed lowest leaf area (425.33 cm²) under atmospheric  $CO_2$  concentrations.

In the last month of the study period, the two levels of  $CO_2$  had significant impact on the leaf area. The maximum gain was observed in seedlings of teak (3788.67 cm²) under enriched  $CO_2$  condition. The lowest leaf area among the five tree species was obtained in seedlings of njaval under atmospheric  $CO_2$ concentration (487.33 cm²).

### 4.4.4 Specific leaf area

Data with regard to specific leaf area (SLA) is furnished in Table 15(a and b). Different CO₂ levels showed significant differences in the study period with regard

## Table 14 (a): Two-way tables on leaf area $(cm^2)$ of seedlings of five tree species under two CO₂ concentrations

Smaalaa	CO ₂ levels		
Species	Elevated	Atmospheric	
Teak	384.76ª	195.36 ^b	
Mahogany	437.26ª	348.99 ^a	
Njaval	185.56	139.16	
Matti	474.88	69.89 ⁶	
Venga	409.15ª	146.88 ^b	
Меап	378.32 ^x	180.06 ^y	
F _{CO2 level} - 39.87**, SEm+/-=22.20			
$F_{interaction} - 4.16^*$ , SEm+/- =49.65			

Month 1

Month 2

	CO ₂ levels	
Species	Elevated	Atmospheric
Teak	638.11ªb	277.73 ^d
Mahogany	780.98ª	337.44 ^{cd}
Njaval	236.33 ^d	178.68 ^d
Matti	486.88 ^{bc}	211.68 ^d
Venga	693.80ª	278.71 ^d
Mean	567.22 ^x	256.85 ^y
F _{CO2 level} - 78.10**, SEm+/-=24.83		
F _{interaction} - 3.90*, SEm+/-=55.53		

Month 3

М	onth	4	
	011 VI 1		

Species	CO ₂ levels		
	Elevated	Atmospheric	
Teak	1517.33ª	326.72°	
Mahogany	829.00 ^b	457.94 ^{bc}	
Njaval	252.82°	164.35°	
Matti	532.22 ^{bc}	301.69°	
Venga	773.67	335.69°	
Меап	781.01 [×]	317.28 ^y	
$F_{CO2 \text{ level}} - 38.36^{**}, \text{SEm}+/-=52.94$			
$F_{interaction} - 6.54^{**}, SEm + /- = 118.38$			

Species	CO ₂ levels		
Species	Elevated	Atmospheric	
Teak	2286.67ª	616.13 ^{cde}	
Mahogany	1172.12 ^b	569.33 ^{de}	
Njaval	298.42°	195.40°	
Matti	905.28 ^{bcd}	399.33°	
Venga	1051.31 ^{bc}	434.00°	
Mean	1142.76 ^x	442.84 ^y	
$F_{CO2  level} - 59.99  **,  SEm + /- = 63.89$			
$F_{interaction} - 8.28 **, SEm +/-= 142.88$			

- significant at 5 %, -- significant at 1 %, NS - non-significant

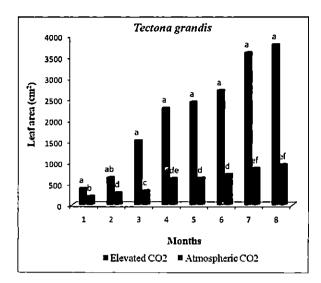
## Table 14 (b): Two-way tables on leaf area (cm²) of seedlings of five tree species under two CO₂ concentrations

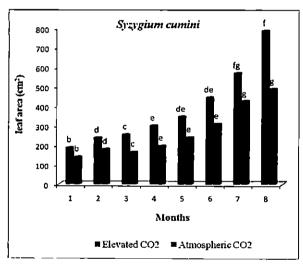
### Month 5

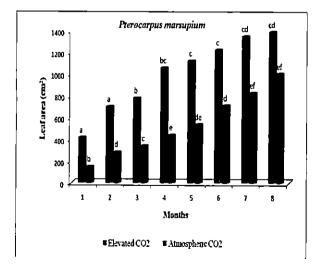
Month 6

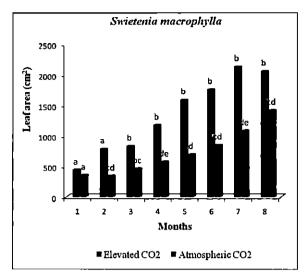
Energies	CO ₂ levels		
Species	Elevated	Atmospheric	
Teak	2428.33ª	626.83 ^d	
Mahogany	1583.83	690.67 ^d	
Njaval	344.48 ^{de}	238.67°	
Matti	1061.43°	578.33 ^{de}	
Venga	1115.83°	531.33 ^{de}	
Mean	1306.78 ^x	533.17 ^y	
F _{CO2 level} - 107.19**, SEm+/-=52.84			
$F_{interaction} - 14.66 **, SEm+/-=118.15$			

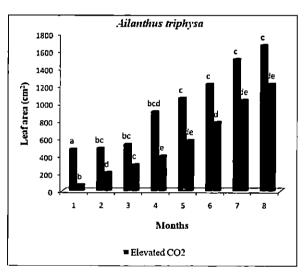
Species	CO ₂ levels		
Species	Elevated	Atmospheric	
Teak	2704.59ª	717.87 ^d	
Mahogany	1753.73 ^b	845.67 ^{cd}	
Njaval	443.46 ^{de}	308.33°	
Matti	1221.47°	783.67 ^d	
Venga	1217.83°	705.67 ^d	
Mean	1468.22 ^x	672.24 ^y	
$F_{CO2  level} - 100.91^{**}, SEm + /- = 56.03$			
F _{interaction} - 16.53**, SEm+/-=125.28			


Month 7


Month 8


	CO ₂ levels	
Species	Elevated	Atmospheric
Teak	3599.71*	860.87 ^{cf}
Mahogany	2128.22	1082.63 ^{dc}
Njaval	567.93 ^{fg}	425.33 ^g
Matti	1503.38°	1039.67 ^{de}
Venga	1344.00 ^{cd}	822.00 ^{cf}
Mean	1828.65 ^x	846.10 ^y
$F_{CO2 \ level} - 154.04^{**}, SE_{m+/-} = 55.97$		
$F_{interaction} - 34.11 **, SEm+/-=125.17$		


Species	CO ₂ levels		
Species	Elevated	Atmospheric	
Teak	3788.67ª	950.67 ^{ef}	
Mahogany	2055.00	1415.33 ^{cd}	
Njaval	784.00 ^f	487.3 ^{3g}	
Matti	1663.33°	1224.67 ^{de}	
Venga	1383.82 ^{cd}	996.67 ^{ef}	
Mean	1934.96 ^x	1014.93 ^y	
$F_{CO2 \text{ level}} - 256.73^{**}, \text{SEm}+/-=40.60$			
$F_{interaction} - 70.69^{**}$ , SEm+/-=90.79			


- significant at 5 %, -- significant at 1 %, NS - non-significant











,

Figure 6. Response of five tree species on leaf area  $(cm^2)$  of seedlings under two  $CO_2$  concentrations

to specific leaf area. However, the interaction gave significant differences in the first and second month of the study period only.

In the first month, the application of different levels of CO₂ showed significant differences in their performances (Table 15a). The maximum SLA was given by elevated CO₂ concentration (57.30 cm²g⁻¹). In the same month the interactions showed significant effect on the specific leaf area. The highest SLA was produced by the matti seedlings (71.25 cm²g⁻¹) under elevated CO₂ concentration. The lowest SLA was also observed in matti seedlings under atmospheric CO₂ concentration (12.60 cm²g⁻¹).

In the second month, various  $CO_2$  concentrations showed significant differences in the SLA of the seedlings (Table 15 a). The best SLA among different interaction was given by mahogany where seedlings gave a mean reading of 97.32  $cm^2g^{-1}$  under elevated  $CO_2$  concentration. The lowest SLA was observed in njaval seedling under atmospheric  $CO_2$  concentration which showed significant differences with mean values of 26.13  $cm^2g^{-1}$ . The SLA was not significantly different from third month till the end of the study period.

### 4.4.5 Leaf area ratio

Data furnished in Tables 16a and 16b depict the influence of various treatments on the leaf area ratio in tree seedlings of five species. It is clear from the table that different  $CO_2$  treatment significantly affected the leaf area ratio (LAR) in seedlings throughout the study period. Interactions between factors had no significant effect the study period except in the first month.

In the first month, elevated  $CO_2$  concentration produced the highest LAR in tree seedlings with a recorded mean value of 19.28 cm²g⁻¹. The interaction effect was significant in this month. The maximum leaf area ratio was observed in matti seedlings under elevated  $CO_2$  concentration (25.37 cm²g⁻¹). However, the lowest LAR was also given by matti seedlings under atmospheric  $CO_2$  concentration (3.97 cm²g⁻¹).

## Table 15 (a): Two-way tables on specific leaf area $(cm^2g^{-1})$ of seedlings of five tree species under two CO₂ concentrations

Month	1
-------	---

Г

Month	2
-------	---

Species	CO ₂ levels	
Species	Elevated	Atmospheric
Teak	58.78 ^{ab}	35.66°
Mahogany	66.38ª	53.12 ^b
Njaval	30.42 ^{cd}	20.41 ^{de}
Matti	71.25 ^ª	12.60°
Venga	59.68 ^{ab}	23.08 ^{de}
Mean	57.30 ^x	28.97 ^y
F _{CO2 level} -121.69 **,SEm+/-=1.82		
$F_{interaction} - 11.96^{**}$ , SEm+/- =4.06		

Month 3

Speeder	CO ₂ levels	
Species	Elevated	Atmospheric
Teak	92.73ª	43.98 ^{bc}
Mahogany	97.32ª	52.34 ^{bc}
Njaval	30.07°	26.13°
Matti	58.00	37.44 ^{bc}
Venga	85.33ª	40.99 ^{bc}
Mean	72.69 ×	40.18 ^y
$F_{CO2 \ level} - 39.89^{**}, SEm^{+/-} = 3.64$		
$F_{interaction} - 2.86^{**}$ , SEm+/- =8.14		

Month 4

Species	CO ₂ levels	
Species	Elevated	Atmospheric
Teak	92.52	46.39
Mahogany	55.54	55.30
Njaval	31.49	21.33
Matti	78.91	44.57
Venga	67.67	47.25
Mean	65.23 ×	42.97 ^y
F _{CO2 level} -12.65**,SEm+/-=4.43		
$F_{interaction} - 1.72NS$ , SEm+/-=9.89		

1	CO ₂ levels	
Species	Elevated	Atmospheric
Teak	95.27	62.96
Mahogany	65.68	58.81
Njaval	32.18	19.97
Matti	86.56	35.09
Venga	75.20	46.93
Mean	70.98 ^x	44.75 ^y
$F_{CO2 \ level} - 15.94^{**}, SEm + / - = 4.64$		
$F_{interaction} - 1.45NS$ , SEm+/-=10.39		

- significant at 5 %, - significant at 1 %, NS - non-significant

# Table 15 (b): Two-way tables on specific leaf area $(cm^2g^{-1})$ of seedlings of five tree species under two CO₂ concentrations

	cc	CO ₂ levels	
Species	Elevated	Atmospheric	
Teak	67.26	53.12	
Mahogany	72.13	55.88	
Njaval	31.22	21.48	
Matti	78.43	39.51	
Venga	71.63	43.91	
Меап	64.13 ×	42.78 ^y	
$F_{CO2 level} - 14$	.09**,SEm+/- =	4.02	
Finteraction - 0.8	37NS, SEm+/	=8.99	

Month 7

Month:	5
--------	---

Month	6
-------	---

	CO ₂ levels	
Species	Elevated	Atmospheric
Teak	61.10	50.02
Mahogany	68.64	61.62
Njaval	32.97	23.84
Matti	62.54	38.02
Venga	78.76	49.57
Mean	60.80 ^x	44.61 ^y
$F_{CO2 \ level} - 8.87 \ **, SEm + /- = 3.84$		
$F_{interaction} - 0.68NS$ , SEm+/- =8.59		

Month 8

<b>E</b> -asias	CO ₂ levels	
Species	Elevated	Atmospheric
Teak	66.89	46.34
Mahogany	81.87	56.29
Njaval	33.68	27.93
Matti	62.16	48.19
Venga	84.57	46.87
Mean	65.83 ×	45.12 ^y
$F_{CO2 \text{ level}} - 32.02^{**}, SEm + / - = 3.84$		
$\overline{F}_{interaction} - 2$	.17NS, SEm+/	/- =8.59

S-seter	CO ₂ levels	
Species	Elevated	Atmospheric
Teak	58.41	44.87
Mahogany	74.15	68.98
Njaval	38.78	31.37
Matti	49.41	52.97
Venga	81.53	55.11
Mean	60.46 ^x	50.66 ^y
$F_{CO2  level} - 8.75^{**}, SEm + / - = 2.34$		
$F_{interaction} - 2.26NS$ , SEm+/-=5.24		

- significant at 5 %, -- significant at 1 %, NS - non-significant

## Table 16 (a): Two-way tables on leaf area ratio of $(cm^2g^{-1})$ of seedlings of five tree species under two CO₂ concentrations

Mon	th	1

Month 2

Encolog	CO ₂ levels	
Species	Elevated	Atmospheric
Teak	17.66 ^b	10.28°
Mahogany	22.30 ^{ab}	17.82 ^b
Njaval	10.73°	7.10°
Matti	25.37ª	3.97°
Venga	20.36 ^{ab}	6.89°
Mean	19.28 ^x	9.21 ^y
$F_{CO2  level} - 54.33^{**}, SEm + / - = 0.97$		
$F_{interaction} - 5.89^{**}$ , SEm+/-=2.16		

C	CO ₂ levels	
Species	Elevated	Atmospheric
Teak	25.67	12.97
Mahogany	34.26	15.48
Njaval	11.18	8.68
Matti	21.50	10.89
Venga	26.83	12.53
Mean	23.89 ×	12.11 ^y
$F_{CO2  level} - 52.43^{**}, SEm + /- = 1.15$		
$F_{\text{interaction}} - 2.72\text{NS}, \text{ SEm+/-} = 2.57$		

Month 3

Month 4

Enterior	CO ₂ levels	
Species	Elevated	Atmospheric
Teak	32.66	12.77
Mahogany	24.91	19.78
Njaval	11.71	7.13
Matti	21.37	13.26
Venga	23.45	12.92
Mean	22.82 ×	13.17 ^y
$F_{CO2  level} = 20.08^{**}, SEm^{+/-} = 1.52$		
$F_{\text{interaction}} - 1.66\text{NS}, \text{ SEm}+/-=3.41$		

Succion	CO ₂ levels	
Species	Elevated	Atmospheric
Teak	37.70	20.26
Mahogany	29.45	20.91
Njaval	12.54	7.47
Matti	27.21	13.43
Venga	26.86	14.52
Mean	26.752 ^x	15.32 ^y
$F_{CO2 level} - 24.67^{**}, SEm^{+/-} = 1.62$		
$F_{interaction} - 0.86 \text{ NS}$ , SEm+/- =3.64		

- significant at 5 %, - significant at 1 %, NS - non-significant

# Table 16 (b): Two-way tables on leaf area ratio of $(cm^2g^{-1})$ of seedlings of five tree species under two CO₂ concentrations

Month	5
-------	---

Month 6

0	CO ₂ levels	
Species	Elevated	Atmospheric
Teak	29.11	16.01
Mahogany	33.81	19.18
Njaval	12.05	8.14
Matti	25.84	15.35
Venga	25.25	15.79
Mean	25.211 [×]	14.89 ^y
F _{CO2 level} - 32.67**, SEm+/-=1.15		
$F_{interaction} - 0.79 \text{ NS}, \text{ SEm+/-} = 2.57$		

Guardian	CO ₂ levels	
Species	Elevated	Atmospheric
Teak	26.85	15.31
Mahogany	33.00	20.86
Njaval	13.29	9.41
Matti	23.61	17.13
Venga	24.19	17.08
Mean	22.19 ^x	15.96 ^y
$F_{CO2 \text{ level}} - 30.74^{**}, \text{SEm} + / - = 1.05$		
$F_{interaction} - 1.12 \text{ NS}$ , SEm+/- =2.35		

Month 7

Month 8

Species	CO ₂ levels	
	Elevated	Atmospheric
Teak	30.79	16.31
Mahogany	35.35	23.32
Njaval	14.50	11.85
Matti	25.28	20.18
Venga	24.27	17.90
Mean	26.04 ^x	17.92 ⁹
$F_{CO2  level} - 29.11^{**}, SEm + / - = 1.06$		
$F_{interaction}$ –2.16 NS, SEm+/- =2.38		

8- aakaa	CO ₂ levels	
Species	Elevated	Atmospheric
Teak	27.36	15.90
Mahogany	30.41	27.97
Njaval	17.82	12.93
Matti	22.14	21.68
Venga	22.81	19.22
Mean	24.11 ^x	19.54 ^y
$F_{CO2 \ level} - 8.79^{**}, SEm + / - = 1.09$		
$F_{interaction} - 1.48$ NS, SEm+/-=2.44		

-- significant at 5 %, -- significant at 1 %, NS -- non-significant

### 4.4.6 Leaf weight ratio

The leaf weight ratio (LWR) was found to be significantly influenced by the different levels of  $CO_2$  concentration as evident from Tables 17 a and 17 b.

Different levels of  $CO_2$  showed significant differences except in the first, sixth, seventh and eighth month till the end of study period. The interaction effect also started to give significant differences from the third month to the seventh month of the study period.

In the third month, the highest LWR was recorded in the seedlings kept under elevated  $CO_2$  concentration with mean values of 0.361. Interactions showed significant difference. The highest leaf weight ratio was produced by the mahogany seedlings (0.458) while lowest LWR for matti seedlings under elevated  $CO_2$  concentration (0.268).

Leaf weight ratio was influenced significantly by different  $CO_2$  levels which showed significant effect in the fourth month. Among the interactions, the highest leaf weight ratio was recorded in matti seedlings under atmospheric  $CO_2$ concentration (0.380). The matti seedlings grown under elevated  $CO_2$  concentration produced minimum LWR with significant differences and mean values of 0.250.

In the fifth month the application of various  $CO_2$  concentrations showed significant differences in the LWR of the seedlings. The best LWR among different interaction was observed in mahogany seedlings under elevated  $CO_2$  concentration (0.475). The lowest LWR was given by teak seedling under atmospheric  $CO_2$ concentration which showed significant differences with mean values of 0.307.

The use of different  $CO_2$  concentrations also proved to be significantly influencing the LWR in the sixth month of the study period (Table 17 b). Among interactions, the best performance was seen in mahogany seedlings under elevated  $CO_2$  concentration (0.481). The seedlings of venga under elevated  $CO_2$  concentration had the lowest mean values of 0.306. They were all significantly different from each other. Both  $CO_2$  levels showed significantly different impact on the leaf weight ratio of seedlings in the seventh month. Interaction also had significant effect on the LWR in this month. Among the interactions, the best performance was observed in the teak seedlings under elevated  $CO_2$  concentration (0.466). The lowest LWR was for venga seedlings kept under elevated  $CO_2$  concentration which recorded a mean value of 0.288.

#### 4.4.7 Number of stomata

Data tabulated in Table 18 (a and b) and Figure 7 revealed that different  $CO_2$  levels had significant effect on number of stomata for the entire period of study except in the first month. Seedlings under elevated  $CO_2$  recorded lowest number of stomata compared to seedlings under atmospheric  $CO_2$  concentration. Interactions were found to be insignificant in first and second months.

In the third month, teak seedlings kept under atmospheric  $CO_2$  had the highest number of stomata (302.95) which was significantly different from all others when interaction is taken into consideration. On the other hand, njaval seedlings kept under elevated  $CO_2$  recorded lowest stomatal number (167.06) which was significantly different.

During the fourth month, number of stomata of seedlings under elevated  $CO_2$  concentration differed significantly (230.35). Interaction between various treatments had significant impact on stomata development. Teak seedlings under atmospheric  $CO_2$  concentration had the highest number of stomata (324.40). The lowest number was observed in njaval seedlings raised under elevated  $CO_2$  concentration (171.35).

In the fifth month, seedlings of teak recorded maximum number (358.62) under atmospheric CO₂ concentration among interactions. In contrast, njaval seedlings under elevated CO₂ concentration (169.24) recorded the lowest stomatal number. In the sixth month, normal CO₂ condition had a stomatal number of 298.50

### Table 17 (a): Two-way tables on leaf weight ratio of seedlings of five tree species under two CO₂ concentrations

Species	CO ₂ levels	
	Elevated	Atmospheric
Teak	0.301	0.286
Mahogany	0.334	0.348
Njaval	0.348	0.356
Matti	0.356	0.314
Venga	0.334	0.298
Mean	0.334	0.320
$F_{CO2  level} = 2.21  \text{NS}$ , SEm+/- =8.16		
$F_{interaction} - 0.54 \text{ NS}$ , SEm+/-=0.018		

3 6 41-	1
Month	T

Month 2

Emocion	CO ₂ levels	
Species	Elevated	Atmospheric
Teak	0.280	0.294
Mahogany	0.352	0.298
Njaval	0.379	0.330
Matti	0.376	0.284
Venga	0.314	0.312
Mean	0.340 [×]	0.303 ^y
F _{CO2 level} -9.89 **,SEm+/-=8.16		
$F_{interaction} - 2.66$ NS, SEm+/- =0.018		

Month 3

Month 4

.

	CO ₂ levels	
Species	Elevated	Atmospheric
Teak	0.359 ^{bc}	0.276 ^{cd}
Mahogany	0.458ª	0.341 ^{bcd}
Njaval	0.372 ^b	0.334 ^{bcd}
Matti	0.268	0.298 ^{bed}
Venga	0.351 ^{bcd}	0.271
Mean	0.361 [×]	0.304 ^y
$F_{CO2  level} - 14.98^{**}, SEm + / - = 0.012$		
F _{interaction} - 2.88*, SEm+/- =0.026		

	CO ₂ levels	
Species	Elevated	Atmospheric
Teak	0.290 ^{de}	0.318 ^{bed}
Mahogany	0.290 ^{de}	0.358 ^{abc}
Njaval	0.326 ^{abcd}	0.371 ^{ab}
Matti	0.250°	0.380 ^a
Venga	0.312 ^{bcd}	0.306 ^{cde}
Mean	0.294 ^x	0.347 ^ÿ
F _{CO2 level} -6.87 **,SEm+/-=8.16		
$F_{interaction} - 4.85^{**}$ , SEm+/-=0.018		

- significant at 5 %, ... significant at 1 %, NS - non-significant

### Table 17 (b): Two-way tables on leaf weight ratio of seedlings of five tree species under two CO₂ concentrations

Species

### Month 5

Month 6

CO₂ levels

	CO ₂ levels	
Species	Elevated	Atmospheric
Teak	0.434 ^{ab}	0.307
Mahogany	0.475ª	0.359 ^{ede}
Njaval	0.392 ^{bc}	0.382 ^{bcd}
Matti	0.331 ^{dc}	0.391 ^{bcd}
Venga	0.347 ^{cde}	0.358 ^{ede}
Mean	0.396 ^x	0.359 ^y
F _{CO2 level} -6.88*, SEm+/- =8.16		
$F_{interaction} - 6.88^{**}$ , SEm+/-=0.018		

	Elevated	Atmospheric
Teak	0.441 ^{ab}	0.322 ^{cd}
Mahogany	0.481ª	0.366 ^{bcd}
Njaval	0.406 ^{abc}	0.396 ^{bc}
Matti	0.381 ^{bcd}	0.449 ^{ab}
Venga	0.306 ^d	0.344 ^{cd}
Mean	0.414	0.375
	NS ,SEm+/- =0.	
$F_{\text{interaction}} - 6.95^{**}$ , SEm+/-=0.026		

Month 7

Month 8

Species	CO ₂ levels	
Species	Elevated	Atmospheric
Teak	0.466ª	0.354 ^{bc}
Mahogany	0.432 ^{ab}	0.414 ^{ab}
Njaval	0.432 ^{ab}	0.424 ^{ab}
Matti	0.408 ^{ab}	0.417 ^{ab}
Venga —	0.288°	0.383 ^{ab}
Mean	0.405	0.398
$F_{CO2  level} - 0.202  NS , SEm + /- = 0.012$		
Finteraction - 4.88**, SEm+/-=0.026		

< ·

Species	CO ₂ levels	
	Elevated	Atmospheric
Teak	0.469	0.357
Mahogany	0.417	0.408
Njaval	0.461	0.420
Matti	0.451	0.408
Venga	0.278	0.349
Mean	0.415	0.389
$F_{CO2 \text{ level}} - 1.79 \text{ NS}$ , SEm+/-=0.014		
$F_{interaction} - 2.19 \text{ NS}$ , SEm+/-=0.032		

• - significant at 5 %, •• - significant at 1 %, NS - non-significant

followed by 249.92 under  $CO_2$  enriched condition. The interaction effect was significantly different among the seedlings of five tree species under different  $CO_2$  concentrations. The maximum gain in number of stomata was observed in teak seedlings (374.83) under atmospheric  $CO_2$  concentration and lowest number in njaval seedlings (180.00) under elevated  $CO_2$ .

In the seventh month, a significant difference in interaction was observed under both  $CO_2$  concentrations. Maximum stomatal development was seen in the mahogany seedlings (382.54) followed by teak seedlings (381.18) under atmospheric  $CO_2$  concentration. Njaval seedlings showed lowest stomatal count of 190.80 under elevated  $CO_2$  concentration.

In the last month of the study period, the effect of two levels of  $CO_2$  had significant impact on the stomatal count of the tree seedlings. In interactions, the maximum gain was observed in seedlings of mahogany (392.58) under atmospheric  $CO_2$  condition. The least stomatal count among the five tree species was obtained in seedlings of njaval under enriched  $CO_2$  concentration (194.80).

### 4.4.8 Rate of photosynthesis

The observations related to the rate of photosynthesis of tree seedlings for different  $CO_2$  concentrations is furnished in Tables 19 a and 19 b and Figure 8. The varying  $CO_2$  concentrations showed significant effect on the rate of photosynthesis of the tree seedlings in all months. On the other hand, interactions between factors had significant impacts on the rate of photosynthesis except in the second, fifth and eighth months.

Different CO₂ concentrations provided statistically significant values in the first month (Table 19a) and the best performance was shown by seedlings under elevated CO₂ concentration with a mean value of 25.11 ( $\mu$  mol m⁻² s⁻¹). In the same month the interaction was also significant. The highest rate of photosynthesis was recorded in teak seedlings with a significantly different value of 30.90 ( $\mu$  mol m⁻² s⁻¹) and lowest rate recorded in the case of njaval seedlings 9.09 ( $\mu$  mol m⁻² s⁻¹) under atmospheric CO₂ concentration.

### Table 18 (a): Two-way tables on number of stomata (mm⁻²) of seedlings of five tree species under two CO₂ concentrations

Month	l	
monu	T	

Month 2

Species	CO ₂ levels	
	Elevated	Atmospheric
Teak	248.62	266.71
Mahogany	216.73	222.82
Njaval	162.92	177.22
Matti	185.64	181.72
Venga	199.14	212.22
Mean	202.61	212.14
F _{CO2 level} -3.80	NS, SEm + / - = 3.	46

	CO ₂ levels	
Species	Elevated	Atmospheric
Teak	278.31	288.85
Mahogany	238.10	261.34
Njaval	166.33	188.74
Matti	186.56	187.85
Venga	208.66	235.38
Mean	215.59 ^x	232.43 ^y
$F_{CO2  level} - 18.05^{**}, SEm^{+/-} = 2.80$		
F _{interaction} - 1.44 NS, SEm+/- =6.27		

Month 3

Month 4

Species	CO ₂ levels	
	Elevated	Atmospheric
Teak	286.56ª	302.95ª
Mahogany	224.72°	289.36ª
Njaval	167.06 ^r	206.48 ^{de}
Matti	193.70° .	192.50°
Venga	212.32 ^{cd}	260.215
Mean	216.88 ^x	250.30 ^y
F _{CO2 level} - 86.	99**,SEm+/-=2	2.53
Finteraction - 10	).54**, SEm+/-	=5.67

Species	CO ₂ levels	
Species	Elevated	Atmospheric
Teak	279.95 ^{bc}	324.40 ^a
Mahogany	262.07 ^{cd}	298.32 ^b
Njaval	171.35 ^g	235.45°
Matti	192.00 ^r	206.24 ^t
Venga	246.42 ^{de} .	275.53°
Mean	230.3 ^{5×}	267.99 ^y
F _{CO2 level} - 87.60	**,SEm+/- =2.8	4
$F_{interaction} - 4.23$	*, SEm+/- =6.3	6

- significant at 5 %, - significant at 1 %, NS - non-significant

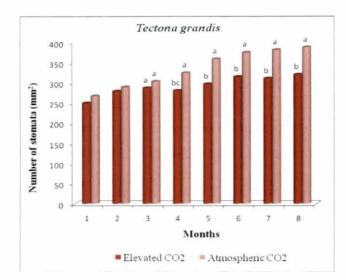
### Table 18 (b): Two-way tables on number of stomata (mm⁻²) of seedlings of five tree species under two CO₂ concentrations

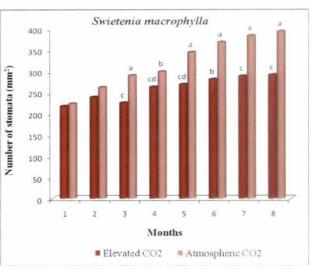
MOHU 2	Month	5
--------	-------	---

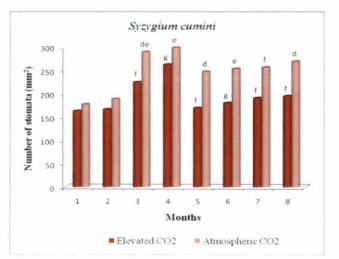
Month 6	)
---------	---

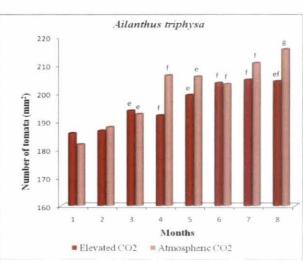
Species	CO ₂ levels	
	Elevated	Atmospheric
Teak	296.24	358.62ª
Mahogany	268.06 ^{cd}	343.64ª
Njaval	169.24 ^f	247.21 ^d
Matti	199.25°	205.81°
Venga	257.57 ^d	281.84 ^{bc}
Mean	238.07 ^x	287.42 ^y
F _{CO2 level} - 105	.68**,SEm+/-=3	.39
F _{interaction} - 8.9	07**, SEm+/-=7.	.59

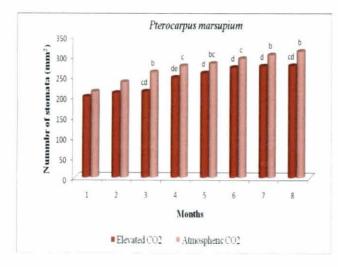
Month 7


Species	CO ₂ levels	
	Elevated	Atmospheric
Teak	314.49 ^b	374.83°
Mahogany	280.06 ^{ed}	367.31ª
Njaval	180.00 ^g	253.52°
Matti	203.55 ^f	203.13 ^f
Venga	271.50 ^d	293.73°
Mean	249.92 [×]	298.50 ^y
$F_{CO2 level} - 232.5$	55**,SEm+/- =2	.25
F _{interaction} - 26.3	6 **, SEm+/-=	5.04


Month 8


Empolog	CO ₂ levels	
Species	Elevated Atmosp	Atmospheric
Teak	310.30 ^b	381.18ª
Mahogany	287.84°	382.54ª
Njaval	190.80 ^g	256.52°
Matti	204.63 ^f	210.57 ^f
Venga	275.03 ^d	303.15 ^b
Mean	253.72 ^x	306.79 ^y
F _{CO2 level} - 480	).93**,SEm+/-=	=1.71
Finteraction - 42	3.14**, SEm+/-	=3.83


Species	CO ₂ levels	
	Elevated	Atmospheric
Teak	319.98 ^b	387.43ª
Mahogany	290.54°	392.58ª
Njaval	194.80 ^r	268.89 ^d
Matti	204.14 ^{ef}	215.46 ^g
Venga	276.24 ^{cd}	312.20 ^b
Mean	257.14 [×]	315.32 ^y
F _{CO2 level} – 192	.16**,SEm+/-=	2.96
F _{interaction} - 14	.06**, SEm+/-=	=6.64


• - significant at 5 %, ••- significant at 1 %, NS - non-significant











### Figure 7. Response of five tree species on number of stomata (mm²) of seedlings under two CO₂ concentrations

In the third month, the varying levels of  $CO_2$  provided significant impacts on the rate of photosynthesis. Among the interactions, the highest rate of photosynthesis was observed in mahogany seedlings under elevated  $CO_2$  concentration with mean values of 30.86 ( $\mu$  mol m⁻² s⁻¹). The njaval seedlings grown under atmospheric  $CO_2$ concentration recorded the lowest photosynthesis rate (11.27  $\mu$  mol m⁻² s⁻¹) with significant differences.

In the fourth month, when interactions were taken into consideration, the best performance was recorded by teak seedlings (29.10  $\mu$  mol m⁻² s⁻¹) under elevated CO₂ concentration and the least performance was given by njaval seedling 11.20 ( $\mu$  mol m⁻² s⁻¹) under atmospheric CO₂ concentration. They were statistically significant from each other.

At the sixth month stage, different  $CO_2$  concentrations were also observed to be significantly influencing the rate of photosynthesis. Among interactions, teak seedlings under elevated  $CO_2$  concentration performed best when rate of photosynthesis was measured with mean values being 31.70 $\mu$  mol m⁻² s⁻¹. The seedlings of njaval under atmospheric  $CO_2$  concentration showed lowest recorded rate of 13.63  $\mu$  mol m⁻² s⁻¹.

Both CO₂ levels showed significantly different impact on the rate of photosynthesis of seedlings in the seventh month. Interaction also had significant effect in this month. Among the interactions, the best performance was observed in the teak seedlings under elevated CO₂ concentration (30.43  $\mu$  mol m⁻² s⁻¹). The least performance was given by njaval seedlings under atmospheric CO₂ concentration (10.20  $\mu$  mol m⁻² s⁻¹).

### 4.5. Biochemical parameters

#### 4.5.1 Chlorophyll content

The chlorophyll content of leaves was found to be significant at varying  $CO_2$  levels in certain months (Tables 20, 21 and 22). In teak, none of the parameters could be estimated due to the interference of phenols in the leaf.

86

### Table 19 (a): Two-way tables on rate of photosynthesis ( $\mu$ mol m⁻² s⁻¹) of seedlings of five tree species under two CO₂ concentions

Month	1
T.T.C. FTETT	

Month 2

Species	CO ₂ levels	
	Elevated	Atmospheric
Teak	30.90 ^a	15.90 ^d
Mahogany	25.93 ^b	12.45°
Njaval	19.57°	9.09 ^f
Matti	24.93 ^b	18.62 ^{cd}
Venga	24.23 ^b	12.67°
Mean	25.11 ^x	13.746 ^y
$F_{CO2 \text{ level}} - 300$	.78**,SEm+/-=0.	.46

Species	CO ₂ levels	
	Elevated	Atmospheric
Teak	25.73	14.70
Mahogany	28.70	12.55
Njaval	19.40	10.25
Matti	26.69	16.23
Venga	23.27	14.80
Mean	24.76 ^x	13.71 ^y
F _{CO2 level} - 252	.82**,SEm+/-=(	0.51

Month 3

Month 4

Species	CO ₂ levels	
Species	Elevated	Atmospheric
Teak	30.23ª	15.79°
Mahogany	30.86 ^a	14.13 ^f
Njaval	21.07 ^c	11.27 ^g
Matti	27.33 ^b	19.48 ^d
Venga	26.10 ^b	15.33 ^{ef}
Mean	27.12 ^x	15.20 ^y
F _{CO2 level} -130	] 3.13 **,SEm+/-	=0.23

Elevated	Atmospheric
29.10 ^a	16.17°
28.26ª	13.52 ^{cd}
21.18 ^b	11.20 ^d
26.27 ^a	20.09 ^b
25.65 ^a	15.90°
26.09 ^x	15.38 ^y
1**,SEm+/-=0	.57
	29.10 ^a 28.26 ^a 21.18 ^b 26.27 ^a 25.65 ^a 26.09 ^x

- significant at 5 %, - significant at 1 %, NS - non-significant

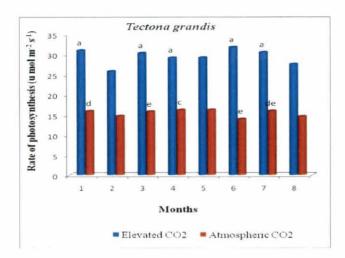
# Table 19 (b): Two-way tables on rate of photosynthesis ( $\mu$ mol m⁻² s⁻¹) of seedlings of five tree species under two CO₂ concentions

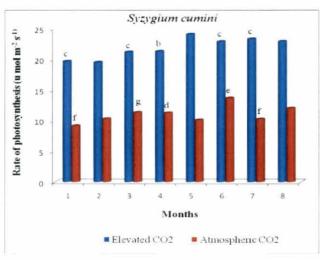
11	1 1
Mont	h
TATOIL	11 2

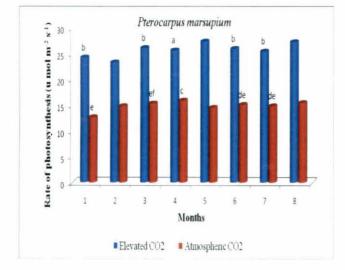
Month 6

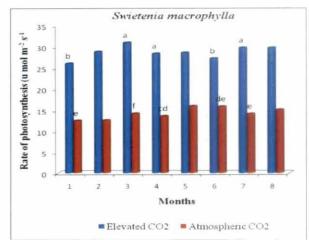
Species	CO ₂ levels	
	Elevated	Atmospheric
Teak	29.13	16.22
Mahogany	28.50	15.87
Njaval	23.97	10.04
Matti	26.17	17.54
Venga	27.37	14.53
Mean	27.03 ^x	14.84 ^y
F _{CO2 level} -311	.57**,SEm+/-=0.	.49

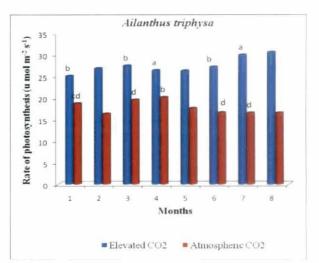
CO₂ levels Species Elevated Atmospheric 13.94^e 31.70^a Teak 27.13^b 15.75^{de} Mahogany 22.77° 13.63° Njaval 27.07^b 16.54^d Matti 25.97^b 15.07^{de} Venga 26.93^x 14.99^y Mean F_{CO2 level}-675.61 **,SEm+/-=0.32 Finteraction - 10.70**, SEm+/-=0.73


Month 7


Month 8


0	C	O2 levels	
Species	Elevated	Atmospheri	
Teak	30.43ª	15.96 ^{de}	
Mahogany	29.63ª	14.03°	
Njaval	23.21°	10.20 ^f	
Matti	29.83ª	16.47 ^d	
Venga	25.43 ^b	14.83 ^{de}	
Mean	27.71 ^x	14.29 ^y	
F _{CO2 level} -792		=0.34	


0	CO	CO ₂ levels	
Species	Elevated	Atmospheric	
Teak	27.47	14.59	
Mahogany	29.63	15.03	
Njaval	22.80	11.98	
Matti	30.47	16.47	
Venga	27.27	15.47	
Mean	27.53 ^x	14.71 ^y	
F _{CO2 level} - 865	.33**,SEm+/-=	0.31	


- significant at 5 %, - significant at 1 %, NS - non-significant











### Figure 8. Response of five tree species on rate of photosynthesis ( $\mu$ mol m⁻² s⁻¹) of seedlings under two CO₂ concentrations

### 4.5.1.1 Chlorophyll-a

The data related to the chlorophyll-a content of the leaves is furnished in Tables 20 a and 20 b. The influence of different  $CO_2$  concentrations on the chlorophyll-a content could be seen in the tree seedlings starting from the first month till the end of the study period. However, interaction between the factors had significant effect on only in first and fourth month.

In the first month, elevated  $CO_2$  concentration recorded the highest chlorophyll-a content in all tree seedlings (0.775 mg/g). The interaction effect was significant in this month. The maximum chlorophyll-a content due to interaction was noticed in matti seedlings under elevated  $CO_2$  (1.035 mg/g). However, the minimum chlorophyll-a content due to interaction was observed in mahogany seedlings under atmospheric  $CO_2$  concentration (0.197 mg/g).

In the fourth month, when comparison was done for the interaction effect, the best performance was shown by njaval seedlings under elevated  $CO_2$  concentration (1.214 mg/g) and the lowest content was noticed in mahogany seedlings under atmospheric  $CO_2$  concentration (0.609 mg/g).

Thus it can be seen that interaction between five tree seedlings and two  $CO_2$ level did not show significant effect on the chlorophyll-a content in tree seedlings in most of the time during the course of study.

#### 4.5.1.2 Chlorophyll-b

Chlorophyll-b content of tree seedlings was also affected by different  $CO_2$  levels from the first month till the end of the study period. On the other hand, interaction between two factors had no influence during the course of study except in last month. Data related to the influence of these factors are furnished in Tables 21 a and 21 b.

# Table 20 (a): Two-way tables on chlorophyll content a (mg $g^{-1}$ ) of seedlings of five tree species under two CO₂ concentrations

Month	1	

Month 2

6	CO ₂ levels	
Species	Elevated	Atmospheric
Mahogany	0.745°	0.197 ^e
Njaval	0.581 ^d	0.201°
Matti	1.035ª	0.960 ^b
Venga	0.741°	0.225°
Mean	0.775 ^x	.396 ^y
F _{CO2 level} –1632	2.51 **,SEm+/-=	0.009
F _{interaction} - 131	.09 **, SEm+/-	=0.018

Species	CO ₂ levels	
	Elevated	Atmospheric
Mahogany	1.049	0.802
Njaval	1.134	0.805
Matti	1.149	0.966
Venga	0.946	0.695
Mean	1.069 ^x	0.817 ^y
$F_{CO2 level} - 47.2$	35**,SEm+/-=0	.026
$F_{interaction} - 0.6$	8 NS, SEm+/-=	=0.050

### Month 3

Month 4

Species	CO ₂ levels	
Species	Elevated	Atmospheric
Mahogany	1.047	0.772
Njaval	1.192	0.811
Matti	1.187	1.071
Venga –	0.921	0.734
Mean	1.087 [×]	0.847 ^y
$F_{CO2 ievel} - 46.$	67**,SEm+/-=(	).024
$F_{interaction} - 2$ .	66 NS, SEm+/-	=0.048

	CO ₂ levels	
Species	Elevated	Atmospheric
Mahogany	1.068ªb	0.609 ^d
Njaval	1.214ª	1.007 ^b
Matti	1.209ª	1.041 ^b
Venga	1.018 ^b	0.811°
Mean	1.127 [×]	0.867 ^y
F _{CO2 level} - 53.09	**,SEm+/-=0.2	260
Finteraction - 3.53*	', SEm+/- =0.5	80

- significant at 5 %, -- significant at 1 %, NS - non-significant

# Table 20 (b): Two-way tables on chlorophyll content a (mg $g^{-1}$ ) of seedlings of five tree species under two CO₂ concentrations

Month	5
-------	---

Month 6

<b>G/</b>	CO ₂ levels	
Species	Elevated	Atmospheric
Mahogany	1.022	0.747
Njaval	1.168	1.016
Matti	1.267	0.985
Venga	1.094	0.849
Mean	1.138 ^x	0.899 ^y
$F_{CO2  level} - 44.4$	3**,SEm+/-=0.(	)26
F _{interaction} - 0.6	93 NS, SEm+/-	=0.030

Species	CO ₂ levels	
	Elevated	Atmospheric
Mahogany	1.061	0.786
Njaval	1.174	0.887
Matti	1.231	1.062
Venga	1.064	0.947
Mean ·	1.133 ^x	0.921 ^y
F _{CO2 level} - 27.104**,SEm+/-=0.029		
$F_{interaction} - 1.028 \text{ NS}, \text{ SEm}+/-=0.020$		

Month 7

### Month 8

Sanaion	CO ₂ levels	
Species	Elevated	Atmospheric
Mahogany	1.071	0.793
Njaval	1.045	0.893
Matti	1.274	1.113
Venga	1.106	0.883
Mean	1.124 ^x	0.671 ^y
$F_{CO2  level} - 114.44 **, SEm +/- = 0.0129$		
$F_{interaction} - 2.31$ NS, SEm+/-=0.0258		

Species	CO ₂ levels	
	Elevated	Atmospheric
Mahogany	1.143	0.830
Njaval	1.125	0.904
Matti	1.330	1.187
Venga	1.076	0.952
Mean	0.919 ^x	0.968 ^y
$F_{CO2 \text{ level}} - 33.85^{**}, \text{SEm} + / - = 0.024$		
$F_{interaction} - 1.52 \text{ NS}, \text{ SEm} + / - = 0.048$		

-- significant at 5 %, -- significant at 1 %, NS -- non-significant

In the last month of the study period, the best performance was given by the venga seedlings under elevated  $CO_2$  concentration (0.688 mg/g) when the interaction was analyzed. The minimum chlorophyll-b content at the end of the study period was found in njaval seedlings under atmospheric  $CO_2$  concentration (0.404 mg/g).

### 4.5.1.3 Total chlorophyll

The effect of varying  $CO_2$  levels on the total chlorophyll content of the tree seedlings is presented in Tables 22 a and 22 b. Different  $CO_2$  concentrations had significant influence on tree seedlings throughout the study period. However, interactions between two factors showed significant influence only in the first, seventh and eighth months.

In the first month, tree seedlings under elevated  $CO_2$  concentration recorded highest total chlorophyll content (1.60 mg/g). The interaction was also significant in this month. The maximum total chlorophyll content due to interaction was noticed in mahogany seedlings under elevated  $CO_2$  concentration (1.690 mg/g). However, the minimum chlorophyll-a content due to interaction was observed in njaval seedlings under atmospheric  $CO_2$  concentration (1.058 mg/g).

The total chlorophyll content of the tree seedlings was significantly affected due to the varying CO₂ concentrations in the seventh month. When the comparison was done for the interaction, the best performance was shown by matti seedlings under elevated CO₂ concentration (1.853 mg/g) and the lowest content was noticed in mahogany seedlings under atmospheric CO₂ concentration (1.21 mg/g).

In the eighth month of the study period, interactions between the factors had significant impact on the total chlorophyll content. The maximum total chlorophyll content regarding interaction was observed in matti seedlings under elevated  $CO_2$  concentration (1.923 mg/g). However, the minimum value of total chlorophyll content due to interaction for the same month was observed in mahogany seedlings under atmospheric  $CO_2$  concentration (1.329 mg/g).

# Table 21 (a): Two-way tables on chlorophyll content b (mg $g^{-1}$ ) of seedlings of five tree species under two CO₂ concentrations

	CC	2 levels	
Species	Elevated	Atmospheric	
Mahogany	0.632	0.436	
Njaval	0.437	0.324	
Matti	0.544	0.398	
Venga	0.619	0.496	
Mean	0.589 ^x	0.414 ^y	
$\overline{F_{CO2  level}} - 36.9$	97**,SEm+/-=0.0	016	

Species	CO ₂ levels	
	Elevated	Atmospheric
Mahogany	0.657	0.311
Njaval	0.443	0.362
Matti	0.548	0.375
Venga	0.632	0.503
Mean	0.57 ^x	0.388 ^ÿ
$F_{CO2 \text{ level}} - 29.62^{**}, \text{SEm} + / - = 0.024$		
F _{interaction} - 2.98 NS, SEm+/- =0.048		

Month 1

### Month 2

Month 3

Month 4	
---------	--

6	CO ₂ levels	
Species	Elevated	Atmospheric
Mahogany	0.665	0.407
Njaval	0.448	0.358
Matti	0.551	0.405
Venga	0.656	0.506
Mean	0.58 ^x	0.419 ^y
$F_{CO2  level} - 57.02^{**}, SEm + /- = 0.016$		
$F_{interaction} - 2.73NS$ , SEm+/-=0.032		

	CO ₂ levels	
Species	Elevated	Atmospheric
Mahogany	0.637	0.451
Njaval	0.455	0.365
Matti	0.556	0.463
Venga	0.628	0.607
Mean	0.569 [×]	0.472 ^v
$F_{CO2  level} - 19.62^{**}, SEm + / - = 0.016$		
$F_{interaction} - 2.38NS$ , SEm+/-=0.032		

• - significant at 5 %, •• - significant at 1 %, NS - non-significant

### Table 21 (b): Two-way tables on chlorophyll content b (mg g⁻¹) of seedlings five tree species under two $CO_2$ concentrations

Month	5
-------	---

Month	6
-------	---

s	co	) ₂ levels
Species	Elevated	Atmospheric
Mahogany	0.642	0.488
Njaval	0.452	0.342 .
Matti	0.563	0.434
Venga	0.606	0.480
Mean	0.566 ^x	0.436 ^y
$F_{CO2 level} - 35.4$	9**,SEm+/-=0.0	016
Finteraction - 0.1	7NS, SEm+/-=(	).032

Species	CO ₂ levels	
	Elevated	Atmospheric
Mahogany	0.659	0.528
Njaval	0.460	0.368
Matti	0.571	0.438
Venga	0.632	0.484
Mean	0.581 [×]	0.455 ^y
$F_{CO2  level} - 38.45 **, SEm +/- = 0.013$		
$F_{\text{interaction}} - 0.36 \text{ NS}, \text{ SEm}+/-=0.026$		

### Month 7

#### Month 8

Stanias	CO ₂ levels	
Species	Elevated	Atmospheric
Mahogany	0.646	0.455
Njaval	0.465	0.403
Matti	0.579	0.441
Venga	0.646	0.487
Mean	0.584 ^x	0.447 ^y
$F_{CO2}$ tevel - 43	.75**,SEm+/-=0	0.016
$F_{\text{interaction}} - 1$ .	75 NS, SEm+/-	=0.032

Species	CO ₂ levels	
Species	Elevated	Atmospheric
Mahogany	0.650 ^{ab}	0.465 [°]
Njaval	0.472°	0.404 [°]
Matti	0.589 ^b	0.465°
Venga	0.688ª	0.454°
Mean	0.596 ^x	0.447 ^y
F _{CO2 level} - 68.3	3**,SEm+/- =0	.013
F _{interaction} - 3.8	5*, SEm+/-=0.	.026

- significant at 5 %, -- significant at 1 %, NS - non-significant

# Table 22 (a): Two-way tables on total chlorophyll content (mg g⁻¹) of seedlings of five tree species under two $CO_2$ concentrations

Month 1	
---------	--

INDURIN Z	Month	2
-----------	-------	---

	CO ₂ levels	
Species	Elevated	Atmospheric
Mahogany	1.69ª	1.266 ^{cd}
Njaval	1.655ª	1.058°
Matti	1.613ª	1.324 ^{bc}
Venga	1.4576	1.155 ^{de}
Mean	1.60 ^x	1.20 ^y
F _{CO2 level} - 128	.96**,SEm+/- =0.	.026
F _{interaction} - 4.0	06*, SEm+/-=0.0	51

	CO ₂ levels	
Species	Elevated	Atmospheric
Mahogany	1.715	1.224
Njaval	1.596	1.167
Matti	1.697	1.341
Venga	1.568	1.198
Mean	1.64 ^x	1.23 ^y
F _{CO2 level} -93.7	72**,SEm+/- =0.	.03
$F_{interaction} - 0.5$	53NS, SEm+/-=	0.06

Month 3

Month 4

.

Succion	CO ₂ levels	
Species	Elevated	Atmospheric
Mahogany	1.725	1.212
Njaval	1.650	1.169
Matti	1.738	1.526
Venga	1.583	1.240
Mean	1.67 [×]	1.29 ^y
$F_{CO2 level} - 66.$	64**, SEm+/- =	0.03
$F_{interaction} - 2.$	13 NS, SEm+/-	=0.07

~ .	CO ₂ levels	
Species	Elevated	Atmospheric
Mahogany	1.721	1.169
Njaval	1.672	1.372
Matti	1.765	1.505
Venga	1.646	1.419
Меап	1.70 ^x	1.37 ^y
F _{CO2 tevel} - 58.25	**, SEm+/- =0.	03
Finteraction - 2.85	NS, $SEm +/- =$	0.06

- significant at 5 %, -- significant at 1 %, NS - non-significant

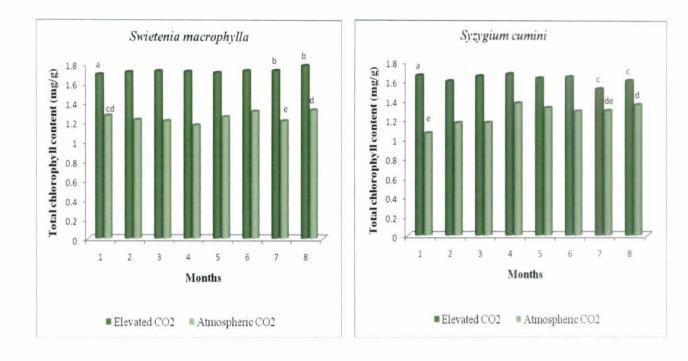
# Table 22 (b): Two-way tables on total chlorophyll content (mg g⁻¹) of seedlings of five tree species under two CO₂ concentrations

Month 5

Month 6

	CO ₂ levels	
Species	Elevated	Atmospheric
Mahogany	1.710	1.256
Njaval	1.630	1.325
Matti	1.829	1.419
Venga	1.701	1.329
Mean	1.72 ^x	1.33 ^y
F _{CO2 level} - 148	.21**, SEm+/-=0	0.02

<b>c</b> .	CO ₂ levels	
Species	Elevated	Atmospheric
Mahogany	1.731	1.314
Njaval	1.644	1.289
Matti	1.802	1.599
Venga	1.679	1.397
Mean	1.71 ^x	1.39 ^y
$F_{CO2 level} - 57.0$	64**, SEm+/- =0	).03


Month 7

Month 8

<b>.</b> .	CO ₂ levels	
Species	Elevated	Atmospheric
Mahogany	1.734 ^b	1.216 ^e
Njaval	1.520 ^c	1.296 ^{de}
Matti	1.853 ^a	1.653 ^b
Venga	1.752 ^b	1.371 ^d
Mean	1.71 ^x	1.38 ^y

Elevated	Atmospheric 1.329 ^d
	1.329 ^d
1.607 ^c	1.358 ^d
1.923 ^a	1.686 ^{bc}
1.765 ^b	1.423 ^d
1.77 ^x	1.45 ^y
	1.765 ^b

- significant at 5 %, -- significant at 1 %, NS - non-significant



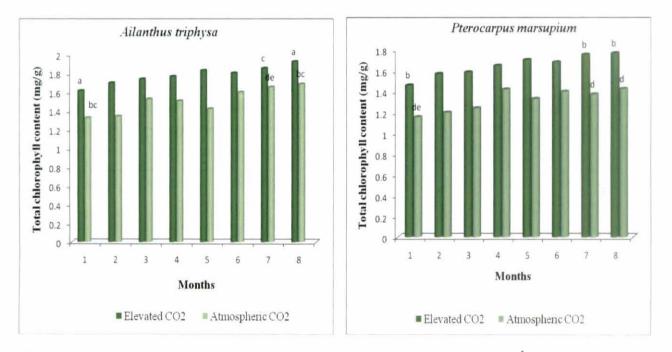



Figure 9. Response of five tree species on total chlorophyll content (mg g⁻¹) of seedlings under two CO₂ concentrations

#### 4.5.2 Soluble protein content

The observations related to the soluble protein content of tree seedlings for different  $CO_2$  concentrations is furnished in Tables 23 a and 23 b and Figure 9. The varying  $CO_2$  concentrations showed significant effect on the soluble protein content of the tree seedlings in all months except in the sixth month. On the other hand, interactions between factors had significant impacts on the soluble protein content except in the third, sixth, seventh and eighth months.

Different CO₂ concentrations provided significant difference in the first month (Table 23 a) and the best performance was shown by seedlings under atmospheric CO₂ concentration with a mean value of 7.24 mg/g. In the same month the interactions showed significant effect. The highest soluble protein content was observed in matti seedlings with a significantly different value (8.84 mg/g) while lowest content was recorded in njaval seedlings (5.93 mg/g ) both under atmospheric CO₂ concentration.

In the second month, the varying levels of  $CO_2$  provided significant impacts on the soluble protein content. Among the interactions, the highest soluble protein content was observed in venga seedlings under elevated  $CO_2$  concentration (8.19 mg/g). The njaval seedlings grown under elevated  $CO_2$  concentration produced minimum amount of soluble protein (5.42 mg/g) with significant difference.

In the fourth month, when interaction was taken into consideration, the maximum amount of soluble protein was in matti seedlings (10.18 mg/g) under atmospheric CO₂ concentration while the lowest content was in mahogany seedling (6.40 mg/g) under elevated CO₂ concentration.

At the fifth month stage, the use of different  $CO_2$  concentrations also proved to be significantly influencing the soluble protein content. Among interactions, matti seedlings produced maximum amount when soluble protein was measured (11.04 mg/g) under atmospheric  $CO_2$  concentration. The seedlings of njaval under elevated  $CO_2$  concentration recorded the lowest values (4.97 mg/g).

### **Table 23 (a):** Two-way tables on soluble protein content (mg g⁻¹) of seedlings of five tree species under two CO₂ concentrations

### Month 1

3.4	0.01	41	2
1VI	on	tn.	Ζ.
			-

Constan	CO ₂ levels		
Species	Elevated	Atmospheric	
Mahogany	6.18°	6.12 ^e	
Njaval	6.11°	5.93°	
Matti	6.83 ^d	8.84ª	
Venga	7.33°	8.06 ^b	
Mean	6.61 ^x	7.24 ^y	
F _{CO2 level} - 4.6	8*,SEm+/-=0.20		

S	CO ₂ levels		
Species	Elevated	Atmospheric	
Mahogany	5.47 ^d	5.99 ^d	
Njaval	5.42 ^d	6.77°	
Matti	7.25 ^{bc}	7.91 ^{ab}	
Venga	8.19 ^a	8.07ª	
Mean	6.58 ^x	7.19 ^y	
$F_{CO2 level} - 14.$	70**,SEm+/-=0	.11	

### Month 3

Month 4

Secolar	CO ₂ levels		
Species	Elevated	Atmospheric	
Mahogany	5.84	7.14	
Njaval	5.27	6.32	
Matti	7.36	9.42	
Venga	6.94	9.09	
Mean	6.35 ^x	7.99 ^y	
F _{CO2 level} - 42	.06**,SEm+/-=(	).18	

	CO ₂ levels		
Species	Elevated	Atmospheric	
Mahogany	6.40°	8.12 ^b	
Njaval	4.97 ^d	7.12°	
Matti	8.99 ^b	10.18 ^a	
Venga	8.51 ^b	8.97 ^b	
Mean	7.22 ^x	8.59 ^y	
F _{CO2 level} - 45.7	/2**,SEm+/-=0.	14	

- significant at 5 %, -- significant at 1 %, NS - non-significant

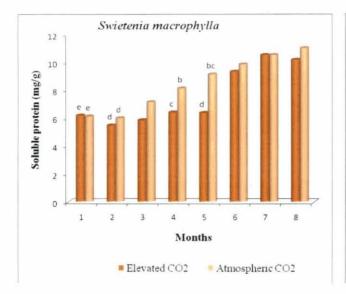
# Table 23 (b): Two-way tables on soluble protein content (mg g⁻¹) of seedlings of five tree species under two CO₂ concentrations

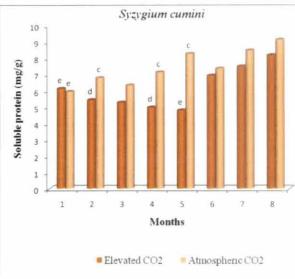
N	lon	t	h	5
14	101	i Li	u	2

Month 6

0	CO ₂ levels		
Species	Elevated	Atmospheric	
Mahogany	6.37 ^d	9.13 ^{bc}	
Njaval	4.79 ^e	8.26 ^c	
Matti	8.62 ^{bc}	11.04 ^a	
Venga	8.93 ^{bc}	9.46 ^b	
Mean	7.18 ^x	9.47 ^y	
F _{CO2 level} - 85.4	47**,SEm+/-=0.1	18	

G	CO ₂ levels		
Species	Elevated	Atmospheric	
Mahogany	9.32	9.84	
Njaval	6.91	7.35	
Matti	10.52	11.64	
Venga	9.14	9.98	
Mean	8.97	9.70	
$F_{CO2 level} - 3.5$	1NS,SEm+/-=0.	28	


### Month 7


	r	. 1 .	0
ΛЛ	an	Th	~
1 V I	on	un	0

0	CO ₂ levels		
Species	Elevated	Atmospheric	
Mahogany	10.52	10.52	
Njaval	7.48	8.47	
Matti	11.51	12.57	
Venga	9.22	10.89	
Mean	9.68 ^x	10.61 ^y	
Mean	9.68 ^x 57**,SEm+/-=0.		

Granter	CO ₂ levels		
Species	Elevated	Atmospheric	
Mahogany	10.17	11.01	
Njaval	8.17	9.12	
Matti	11.68	13.14	
Venga	9.88	10.25	
Mean	9.98 ^x	10.88 ^y	
F _{CO2 level} - 4.4	9*,SEm+/-=0.31		
Finteraction - 0.2	28 NS, SEm+/	=0.60	

+ - significant at 5 %, -- significant at 1 %, NS - non-significant





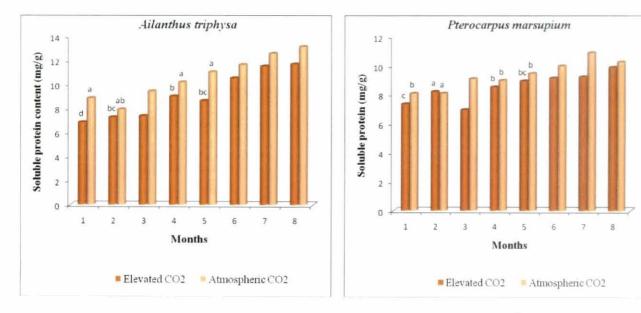



Figure 10. Response of five tree species on soluble protein content (mg g⁻¹) of seedlings und two CO₂ concentrations

Figures with the similar alphabets do not differ significantly

# DISCUSSION

#### DISCUSSION

In plants, a higher level of  $CO_2$  decreases the oxygen inhibition of photosynthesis and increases the net photosynthesis which results in increased growth rates. Plants respond positively to  $CO_2$  enrichment through increased plant height, number of leaves, leaf area, dry weight and lateral branching. Plant quality expressed by growth habit and seed production is also often enhanced by  $CO_2$ enrichment. The rooting of cuttings is also stimulated by high  $CO_2$  levels. So,  $CO_2$ fertilization under a controlled environment can be an important technique to produce healthy and vigorous nursery stock. In forestry programmes,  $CO_2$ enrichment can be exploited for mass production of healthy tree seedling in a shorter time span. Hence, the present study was conducted at College of Forestry, Vellanikkara during the period 2008-2010 with the objective of understanding the growth responsiveness of five selected tropical tree seedlings to two  $CO_2$  levels. The salient findings of the studies are discussed hereunder

### 5.1 Growth parameters

#### 5.1.1 Height and collar diameter

From the experiment exposing seedlings of five tree species to elevated (500-550 ppm) and atmospheric (370-380 ppm) CO₂ concentrations, it was obvious that seedlings under elevated CO₂ level had greater height throughout the study period (Figure 3). Seedlings of all tree species raised under elevated CO₂ showed significantly higher shoot growth than that under atmospheric CO₂ concentration (Table 1 a and b). The enhanced shoot growth among the seedlings is most likely through the increased uptake of more CO₂. The shoot growth enhancement is a possible outcome of the plants physiological reactions *viz.*, photosynthesis, respiration and carbon allocation. Both carbon assimilation and carbon allocation are significantly higher in seedlings under elevated CO₂ level; these factors increase the height of plants (Johnsen and Major, 1998). Wang et al. (2003) also has proved that height growth of pinus seedlings at elevated CO₂ increased by 10 - 40 per cent compared to those grown at ambient CO₂. Seedlings of *Garcinia gummi-gutta* raised under elevated CO₂ and supplemented with nutrients and hormones also recorded a significant increase in plant height and stem diameter (Jagadish et al., 2008). Similarly, other workers like Norby et al. (1992) and Radoglou and Jarvis (1990), have also reported stimulation of plant height on cuttings and seedlings of woody plants. In the present study, a review of nursery studies (Rajesh, 1996; Adersh, 2001; Girijapushpam, 2004) of all the tree seedlings conducted in the same location also showed an average one third increase in height of seedlings kept under elevated  $CO_2$ concentration

In the present study (Figure 4), an increased CO₂ concentration also contributed to a significant difference in collar diameter among seedlings of all five tree species (Table 2 a and b). Elevated CO₂ concentration produced higher increment in collar diameter of seedlings. It is based on the assumption that high carbon uptake accelerate the assimilation rate and rate of translocation into shoot portion. Hence, collar diameter could be a good correlate of aboveground biomass in our study. Our observation is in line with the findings observed in *Pinus taeda*, where elevated CO₂ increased the basal area by 13-27 per cent (Moore et al., 2006). Likewise, in another study, exposure of the hybrid poplar clone 'Primo' (*Populus deltoides* x *Populus nipa*) to doubled CO₂ significantly increased the stem diameter compared with trees grown in ambient CO₂ concentrations (Gardner et al., 1995). Thus in the present study, collar girth was enhanced better under CO₂ enriched condition probably because of the better carbon assimilation and accumulation strategy achieved by the seedlings.

### 5.1.2 Leaf production

In the present study,  $CO_2$  concentrations had a significant impact on the leaf production (Table 3 a and b). Leaf number was consistently higher in seedlings under elevated  $CO_2$  concentration (Table 3 a and b). The result of the present study is similar to the findings of Jagadish et al. (2008) who reported that the leaf area and leaf number increased in *Garcinia gummi-gutta* seedlings exposed to elevated  $CO_2$ level. Seedlings of birch species also showed better leaf growth parameters including number of leaves and leaf area at enriched  $CO_2$  conditions (Rochefort and Bazzaz, 1992). Production rate of leaves is linked with extension of the main stem, since plant height is significantly increased in elevated  $CO_2$  condition (Bosac et al., 1995). In our study also, a higher shoot growth (Table 3 a and b) achieved might have accelerated higher leaf production under enriched  $CO_2$  conditions. This also is an offshoot of better carbon assimilation and carbon allocation under increasd  $CO_2$  level.

### 5.1.3 Root length

Root length was found to be significantly high under enriched  $CO_2$  condition among seedlings of all the species (Table 4 a and b). Many workers like Hou Ying et al. (2008) and Pritchard et al. (2001, 2008) have reported an increased root length under higher  $CO_2$  levels. Elevated  $CO_2$  could influence root growth through effects on both cell division and expansion (Bosac et al., 1995). Under higher  $CO_2$  levels there is a reduction in the cell wall extensibility (plasticity) which created more cells and hence more cell walls in the segment of roots. Taylor et al. (2001) also found out increased cell wall loosening and extensibility at elevated  $CO_2$  concentration. An increase in root branching was observed in seedlings under elevated  $CO_2$  level (Rogers et al., 2006). It can be concluded that tree seedlings at higher  $CO_2$  condition showed better root elongation because of an increase either in root branching or in cell division or both.

### **5.2 Biomass production**

Above-ground growth is perhaps the most obvious manifestation of the effect of  $CO_2$  on trees. In the present study the shoot and root biomass production was significantly stimulated under higher  $CO_2$  concentrations (Tables 5 a and 5 b, 6 a and 6b, 7 a and 7 b, 8 a and 8b and 11a and 11b). In this experiment, seedlings might have made use of higher  $CO_2$  for carbon assimilation during day time. Through an increased carbon uptake, total growth of seedlings got enhanced under elevated  $CO_2$ concentration. A higher biomass production (Figure 5) could be the result of an enhanced photosynthesis (Figure 8). An increased amount of biomass is partitioned into different plant structures, leading to distinctive root/shoot balances (Norby et al, 1999). In addition, trees exposed to elevated  $CO_2$  need less enzymes, lower quantities of leaf proteins, lose less water (less soil moisture) and need less light( shift in light compensation point of photosynthesis) (Korner, 2000). These factors

might also have accelerated the shoot and root drymatter production in the present study. It is possible to increase the biomass production by plants under elevated  $CO_2$ condition (Kimball, 1983; Cure and Acock, 1986; Bazzaz et al., 1990). The experiments with conifers and broadleaf trees at a higher concentration of CO₂ recorded increases in dry matter production within the range 20-120 per cent (Jarvis, 1989). Devakumar et al. (1996) reported a positive response to biomass production among various tropical tree species, though the extent of response varied with species. Nursery seedlings of Hevea brasiliensis also showed higher drymatter production under CO₂ fertilization (Devakumar et al., 1998). Similarly, Abies faxoniana seedlings under elevated CO₂ concentration showed increased total biomass (Yun Zhou et al., 2008). Seedlings of Populus tremuloides and Betula papyrifera also showed growth enhancement under elevated CO₂ (Isebrands et al., 2001; Percy et al., 2002). Such an increase in biomass production is largely due to higher photosynthetic rate, lower rate of respiration and photorespiration observed in plants kept under elevated CO₂ concentration. All these factors also might have influenced the shoot and root biomass produced in the present study.

Increased carbon allocation in the belowground biomass has been observed at elevated atmospheric CO₂ concentrations for a number of tree species (Pritchard et al. 2001). In trees the production and mortality of fine roots under CO₂ enrichment were significantly increased (Pregitzer et al., 2008). Betula albosinensis seedlings also showed 10-22 per cent increased root production under elevated CO₂ concentration (HouYing et al., 2008). A similar observation was obtained in Pinus ponderosa under enriched condition (Tingey et al., 2000). In the present study also, under elevated CO₂ concentration the shoot as well as root biomass production was significantly increased due to higher carbon uptake followed by increased carbon allocation in the below ground biomass. Based on the nursery studies of tree seedlings conducted by Rajesh (1996) and Adersh (2001) in different potting media we can conclude that tree seedlings under elevated  $CO_2$  concentration showed two fold increases in total drymatter at the end of the study period. Hence, CO₂ fertilization can considerably reduce the time and cost of production of tree seedlings in the nursery. However, the shoot: root ratio was statistically not significant during the study period (Table 10 a and b). This non effect could be due to the equal

partitioning of drymatter in shoot as well as in root. This is supported by the findings of Saxe et al. (1998) and Stulen and den Hertog (1993).

### 5.3 Physiological parameters

The two  $CO_2$  levels did not influence any significant changes (Table 12 a and b and Table 13 a and b) in relative growth rate (RGR) and net assimilation rate (NAR) of seedlings. However,  $CO_2$  concentrations had significant influence on other physiological attributes such as leaf area, specific leaf area (SLA), Leaf area ratio (LAR), Leaf weight ratio (LWR) and stomatal number.

The seedlings of all species raised under elevated CO₂ level recorded significantly higher leaf area (Table 14 a and b) (Figure 6). Elevated CO₂ generally promotes an increase in leaf area of most tree species (Norby et al., 1992; Mousseau, 1993). An increase in total leaf area in tree seedlings under CO₂ enrichment resulted due to higher numbers of leaves (Table 3 a and b) and larger individual leaf area. Leaf expansion under CO₂ enrichment was related to changes in the biochemical and biophysical properties of the cell wall. In Populus grown under elevated CO2 concentration, the cell wall extensibility of rapidly growing leaves increased due to an increase in xyloglucan endotransglycosylase activity, a cell wall loosening enzyme, associated with leaf growth rate (Ferris et al. 2001). In addition, an increase in individual leaf area might be the result of an increase in the number of cells (Gaudillere and Mousseau, 1989) or a greater rate of leaf cell expansion through changes of cell wall properties (Taylor et al., 2000). Accelerated rate in both cell production and cell expansion may also contribute to enhance leaf growth in elevated  $CO_2$ . Ranasinghe and Taylor (1996) have shown that increased final cell size may be of more importance. Higher leaf area increases plants capacity to take up CO₂ and make more stem and leaf tissue, which further increases their capacity to take up  $CO_2$  and grow. As long as there are no constraints on leaf area production, spectacularly large CO2 responses can occur (Ceulemans and Mousseau 1994; Norby et al., 1996). In our case too, higher number of leaves and accelerated rate of cell production and cell division could increase leaf area of seedlings under elevated CO₂ concentration.

Specific leaf area (SLA) describes the efficiency with which the leaf captures light relative to the biomass invested in the leaf. It describes whether the leaf is thicker or heavier. Specific leaf area (SLA) was significantly different in two  $CO_2$  levels only in the first two months (Table 15 a and b). In general, elevated  $CO_2$  did not show any significant change in SLA during the study period. This agrees with the findings of Roumet et al. (1996) who did not notice any changes in SLA and leaf thickness in FACE experiments with trees. It might be because of the non-accumulation of TNC (total non-structural carbohydrate) in leaves. On contradictory, there is a large body of literature which reported that SLA decreases in elevated  $CO_2$  (Gardner et al., 1995; Norby et al., 1999). However, in our case more detailed observation is needed to find out the clear cause of the non-effect.

In the present study, leaf weight ratio (LWR) was significantly higher under elevated CO₂ concentration (Table 17 a and b). Leaf weight ratio (LWR) is the ratio of leaf drymatter to total plant drymatter and reflects the allocation of biomass to foliage. This was found to increase significantly in plants grown under elevated CO₂ concentration. Such an increase in LWR is an indication of allocation of higher biomass to photosynthetic surface area. This view point is supported by the findings of Devakumar et al. (1998) in *Hevea brasiliensis* seedlings. In the present study, LWR in seedlings increased with CO₂ enrichment probably due to higher efficiency of the photosynthetic apparatus to use the substrate available for photosynthesis. It could be correlated with the up regulation of the photosynthetic rates (Figure 8) as observed in seedlings that were under elevated CO₂ level.

Elevated CO₂ recorded higher leaf area ratio (LAR) for all seedlings only in the first month (Table 16 a and b). As leaf area ratio (LAR) is the product of the specific leaf area (SLA) and the leaf weight ratio (LWR) *i.e.* LAR was affected similarly as the SLA. Generally in the present study, LAR did not significantly differ in the tree seedlings under elevated CO₂. Previous studies also showed that elevated CO₂ either decreases or had no effect on leaf area ratio (Luo et al., 1998; Norby et al., 1999). LAR reflects the size of photosynthetic surface relative to the plant drymatter. Thus it can be concluded from the present study that seedlings under higher CO₂ level allocated resources to leaf production in proportion to the total plant weight.

The stomata of leaves are the channels through which the plant interacts with the atmosphere directly: gases diffuse inward and outward, water is lost to the air. The stomata open and close in response to various stimuli and physiological states of the plant, including internal vs. external gas concentrations, water stress, heat stress, and pollutants. In the present study too, two CO2 levels induced significant effect on stomatal number (Figure 7). Reduction in stomatal number/density was observed in seedlings kept under elevated CO₂ concentration. Stomatal number was reported to reduce in plants grown under elevated CO2 concentration (Woodward and Bazzaz, 1988; Paoletti et al., 1997). Similarly, plants grown under elevated CO₂ concentration were reported to have reduced stomatal conductance and decreased transpiration rate (Medlyn et al., 2001; Woodward, 2002). The density of stomata has been shown in many cases to reflect important changes in atmospheric composition, as well as other kinds of environmental stresses. Hence, it is argued that as the plants under enriched CO₂ concentration did not experience water stress, the lower stomatal density observed in our study might be due to wider and thinner leaves on which the stomata were less densely packed.

### 5.3.1 Rate of photosynthesis

Rate of photosynthesis was also found to be affected by two  $CO_2$  levels (Table 19 a and b). Photosynthesis rate was always found to be lower in atmospheric  $CO_2$  concentration (Figure 8). Numerous experiments showed that higher atmospheric  $CO_2$  concentration leads to increases in photosynthetic rate and wholeplant growth in many  $C_3$  species, (Idso and Idso, 1994; Ghannoum et al., 2000; Griffin et al., 2000; Gunderson et al., 2000; Jach and Ceulemans, 2000; Watling et al., 2000; Finzi et al., 2001and Hymus et al., 2001). Norby et al. (1999) reported on an average 60% enhancement of photosynthesis for trees exposed to elevated  $CO_2$  concentration. However, the responses vary considerably between species (Naumburg et al., 2001). Seedlings of *Garcinia gummi-gutta* showed higher photosynthesis at elevated  $CO_2$  concentration (Jagadish et al., 2008). Carbon assimilation rate increases with increasing intercellular  $CO_2$  partial pressure. The direct increase in photosynthesis due to  $CO_2$  elevation results from two properties of Rubisco enzyme i.e., the K_m of the enzyme for  $CO_2$  is close to the current atmospheric concentration, so elevated  $CO_2$  increases the velocity of carboxylation and  $CO_2$  competitively inhibits the oxygenation reaction, which produces glycolate leading to photorespiration (Long et al., 2004). In the short term, plants sense and respond directly to rising  $CO_2$  exclusively through direct effects of increased carboxylation by Rubisco and decreased stomatal opening (Long et al., 2004). Hence, in the present study also enriched  $CO_2$  concentration may have provided the positive significant increase on the photosynthetic rate of tree seedlings through higher leaf area and increased activity of Rubisco enzyme.

### 5.4 Chlorophyll content

In the present study chlorophyll a content was significantly affected by different levels of CO₂ only in the two months (Tables 20 a and 20 b). Chlorophyll b content was significantly higher in the eighth month of study (Tables 21 a and 21 b). Total chlorophyll content also showed significant difference among species towards the end of the study period (Tables 22 a and 22 b and Figure 9). An increase in chlorophyll content could be observed in seedlings kept under elevated CO₂ compared to seedlings grown in atmospheric CO₂ concentration. Enriched CO₂ condition showed an increase in chlorophyll concentration in seedlings of olive trees (Melgar et al., 2008). Roden and Ball (1996) also noticed a positive response in chlorophyll content in eucalyptus species under elevated CO₂ concentration. Higher chlorophyll content results in increased photosynthetic efficiency. It helps the plant to harvest maximum light for photosynthesis. Higher carboxylation efficiency enables higher biomass production which makes the plants more competent in the changing environment. In the present study too, elevated CO₂ concentration has a positive effect on chlorophyll content of the tree seedlings in order to increase the photosynthetic efficiency of the seedlings to utilize the increased CO₂ concentration.

### 5.6 Soluble protein synthesis

The two  $CO_2$  treatments showed a significant difference in leaf soluble protein content among the seedlings (Figure 10). Under elevated atmospheric  $CO_2$ concentration, there was a reduction in leaf soluble protein content in all species (Table 23 a and b). A similar reduction in leaf soluble protein was observed in birch (*Betula pendula* ) trees grown in elevated atmospheric  $CO_2$  concentration (Rey and Jarvis, 1998). Huttunen et al. (2008) also reported decreased leaf protein content in silver birch seedlings (*Betula pendula*) under higher  $CO_2$  concentration. Plants normally adapt to any stress through response mechanisms including changes in protein content. Reduction in soluble proteins at higher  $CO_2$  concentration reflects the acclimation of plant photosynthetic machinery to more efficient carboxylation by Rubisco (Rey and Jarvis, 1998). In our study too, overall the soluble protein content was consistently, lesser in elevated  $CO_2$  concentration. The seedlings might have reduced soluble protein content in order to affect better carboxylation by Rubisco enzyme. However, more detailed study is required to confirm this conclusion.

In addition to an increase in carbon dioxide concentration, there was also a substantial increase in relative humidity (Figure 2a) and about  $0.5 - 1^{\circ}C$  of temperature (Figure 2b) in the CO₂ trapping trenches. Any of these factors could be reasonably expected to influence the response of seedlings to CO₂. Hence, this interaction deserves more pertinent attention in future studies.

The demand for seedlings for reforestation programs will substantially increase from year to year, and nurseries will have to provide large numbers of healthy seedlings in a very short time frame. Moreover, reforestation practitioners are increasingly demanding seedlings better adapted to the environmental conditions where reforestation is going to be carried out. The present study reveals that a higher  $CO_2$  level has a favourable effect on the various growth indices of these economically important tree species. The trench method which was adopted for this study is a viable nursery technique to produce healthy tree seedlings in a shorter time period. The increase in shoot and root biomass and higher photosynthesis rate gained under higher  $CO_2$  level may help to easily produce healthy seedlings that are also better adapted to face stress after transplant.

One of the limitations of the study observed during the period was the less spacing between polybag seedlings kept inside the trenches. So, mutual shading occurred due to the overlapping of leaves which might have negatively influenced seedlings growth

### Future line of work

- 1. Photosynthetic active radiation (PAR) can be measured to find out the light availability inside the chamber
- 2. Methods can be adopted to apply various shade levels in order to find out the growth and physiology of the different tree seedlings inside the chamber.
- 3. The role of higher temperature and relative humidity inside the chamber on growth of the seedlings has to be examined in detail for more information.
- 4. Influence of quality potting mixture under elevated CO₂ need to be studied for rapid production of seedlings for eventual field planting

# SUMMARY

•

.

.

•

#### SUMMARY

The research programme entitled "Effect of elevated  $CO_2$  concentration on growth and physiology of selected tropical tree seedlings." was carried out during 2008-2010 in the College of Forestry, Vellanikkara. The salient findings from the study are highlighted below.

- 1. The two levels of CO₂ concentrations had significant impact on height and collar diameter of all the five tree seedlings throughout the study period. Tree seedlings under elevated CO₂ concentration put in more height and collar diameter than the seedlings under atmospheric CO₂. The maximum gain was observed in seedlings of venga (*Pterocarpus marsupium*) under enriched CO₂ condition. Njaval (*Syzygium cumini*) seedlings under atmospheric CO₂ concentration recorded the lowest height. With regards to the collar diameter, teak (*Tectona grandis*) seedlings performed best under elevated CO₂ concentration and njaval (*Syzygium cumini*) seedlings performed least under atmospheric CO₂ concentration.
- 2. CO₂ treatments induced significant difference on leaf number and leaf area of all the five tree seedlings. Higher leaf production and larger leaf area were recorded in seedlings under elevated CO₂ concentration. Among interaction, maximum number of leaves was recorded in njaval (*Syzygium cumini*) seedlings grown under elevated CO₂ concentration and matti (*Ailanthus triphysa*) seedlings produced the minimum under atmospheric CO₂ concentration. The maximum leaf area was observed in teak (*Tectona grandis*) seedlings under enriched CO₂ condition. The lowest leaf area among the five tree species was obtained in njaval (*Syzygium cumini*) seedlings under atmospheric CO₂ concentration.
- 3. The  $CO_2$  concentrations significantly affected root length production throughout the study period. The longest root was observed in seedlings grown under elevated  $CO_2$  concentration. Seedlings of teak (*Tectona* grandis) grown under elevated  $CO_2$  concentration had the longest roots

due to interaction. However, njaval (*Syzygium cumini*) seedlings grown under atmospheric CO₂ levels recorded lowest root length.

- 4. The various CO₂ levels significantly influenced dry as well as fresh weights of shoot and root portions. Interaction had a significant impact on all the parameters. Teak (*Tectona grandis*) seedlings under elevated CO₂ concentration recorded the maximum fresh weight and dry weight of shoot and root. Njaval (*Syzygium cumini*) seedlings under atmospheric CO₂ concentration recorded the lowest fresh weight and dry weight of shoot and root at the end of the study period.
- 5. The different levels of CO₂ showed significant effects on the total dry matter content. The maximum dry matter was seen in teak (*Tectona grandis*) seedlings grown under elevated CO₂ concentration while njaval (*Syzygium cumini*) seedlings under atmospheric CO₂ concentration showed lowest performances.
- 6. The different CO₂ treatment did not significantly affect the relative growth rate (RGR) and net assimilation rate (NAR) of seedlings.
- 7. Tree seedlings under two different CO₂ levels did not show significant differences with respect to specific leaf area (SLA) and the leaf area ratio (LAR). However, both CO₂ levels showed significantly different impact on the leaf weight ratio (LWR) of seedlings. The highest LWR was observed in the teak (*Tectona grandis*) seedlings under elevated CO₂ concentration. The lowest LWR was for venga (*Pterocarpus marsupium*) seedlings kept under elevated CO₂ concentration.
- 8.  $CO_2$  levels had significant effect on number of stomata in seedlings. Seedlings under elevated  $CO_2$  recorded lowest number of stomata compared to seedlings under atmospheric  $CO_2$  concentration. The maximum gain was observed in mahogany (*Swietenia macrophylla*) seedlings under atmospheric  $CO_2$  condition. The least stomatal count was

obtained in njaval (*Syzygium cumini*) seedlings under enriched CO₂ concentration.

- 9. The varying CO₂ concentrations showed significant effect on the rate of photosynthesis of the tree seedlings. Matti (*Ailanthus triphysa*) seedlings under elevated CO₂ concentration had the best performance while njaval (*Syzygium cumini*) seedlings under atmospheric CO₂ concentration had the lowest photosynthetic rate at the end of the study period.
- 10. Chlorophyll a and Chlorophyll b in tree seedlings was not significantly different under two CO₂ concentrations. However, total chlorophyll content showed significant influence. The maximum total chlorophyll content due to interaction was observed in matti (*Ailanthus triphysa*) seedlings under elevated CO₂ concentration while the minimum value was observed in mahogany (*Swietenia macrophylla*) seedlings under atmospheric CO₂ concentration in the last month.
- 11. The varying CO₂ concentrations showed significant effect on the soluble protein content of the tree seedlings. Seedlings under elevated CO₂ recorded lowest soluble protein content compared to seedlings under atmospheric CO₂ concentration. In interactions, the maximum amount was observed in matti (*Ailanthus triphysa*) seedlings under atmospheric CO₂ condition. The minimum amount was obtained in njaval (*Syzygium cumini*) seedlings under enriched CO₂ concentration.

# REFERENCES

•

.

.

.

.

#### REFERENCES

- Adersh, M. 2001. Muncipal garbage as a component of plotting media for seedlings of selected forest tree species. M.Sc. Thesis, College of Forestry, Kerala Agricultural University, Thrissur
- Agrell, J., McDonald, E.P. and Lindroth, R.L. 2000. Effects of CO₂ and light on tree phytochemistry and insect performance. *Oikos*. 88 (2): 259-272
- Allen, L.H. and Vu, J.C.V. 2009. Carbon dioxide and high temperature effects on growth of young orange trees in a humid, subtropical environment. *Agricultural and Forest Meteorology*. 14 (95): 820-830
- Arnone J.A. and Korner C. 1995. Influence of elevated CO₂ on canopy development and red-far-red ratios in two storied stands of *Ricinus communis*. Oecologia.
  94 (4): 510-515
- Atkin, O.K., Holly, C. and Ball, M.C. 1999. Acclimation of snow gum (*Eucalyptus pauciflora*) leaf respiration to seasonal and diurnal variations in temperature: the importance of changes in capacity and temperature sensitivity of respiration. *Plant, Cell and Environment.* 22 (1):15-26
- Barton, C.V.M., Lee, H.S.J. and Jarvis, P.G. 1993. A branch bag and CO₂ control system for long-term CO₂ enrichment of mature Sitka spruce (*Picea* sitchensis (Bong.) Carr.). Plant, Cell and Environment. 16 (9): 1139-1148
- Bassirirad, H., Griffin, K.L., Strain, B.R. and Reynolds, J.F. 1996. Effects of CO₂ enrichment on growth and nitrogen uptake rate of loblolly pine and ponderosa pine seedlings. *Tree Physiology*. 16 (12): 957-962
- Bazzaz, F.A., Coleman, J.S. and Morse, S.R. 1990. Growth responses of seven major co-occurring tree species of the northeastern United States to elevated CO₂. Canadian Journal of Forest Research. 20 (9): 1479-1484

- Beerling, D.J., McElwain, J.C. and Osborne, C.P. 1998. Stomatal responses of the 'living fossil' *Ginkgo biloba* L. to changes in atmospheric CO₂ concentrations. *Journal of Experimental Botany.* 49 (326): 1603-1607
- Berntson, G.M. and Woodward, F.L. 1992. The root system architecture and development of Senecio vulgnris in elevated CO₂ and drought. Functional Ecology. 6 (3): 324-333
- Biel, C., Herralde, F.D., Save, R. and Evans, R.Y. 2008. Effects of CO₂ atmospheric fertilization on greenhouse production of olive trees (*Olea europea* L. 'Arbequina'). *European Journal of Horticultural Science*. 73 (5): 227-230
- Bosac, S.D.L., Gardner, G., Taylo, P. and Wilkinsb, D. 1995. Elevated CO₂ and hybrid poplar: a detailed investigation of root and shoot growth and physiology of *Populus euramericana*, *Forest Ecology and Management*. 74 (6):103 116
- Bowes, G. 1993. Facing the inevitable plants and increasing atmospheric CO₂. *Annual Review of Plant Physiology and Plant Molecular Biology*. 44 (1): 309-332
- Bowes, G. 1993. Growth at elevated CO₂: photosynthetic responses mediated through Rubisco. *Plant, Cell and Environment.* **14** (8): 795-806
- Brown, K.R. 1991. Carbon dioxide enrichment accelerates the decline in nutrient status and relative growth rate of *Poplus tremuloides* Micbx. seedlings. *Tree Physiology*. 8 (2): 161-173
- Brown, K.R. and Higginbotham, K.O. 1986. Effects of carbondioxide enrichment and nitrogen supply on growth of boreal tree seedlings. *Tree Physiology*. 2 (2): 223-232

- Bunce, J.A. 2001. Are annual plants adapted to the current atmospheric concentration of carbon dioxide? *International Journal of Plant Science*. 162 (6):1261-1266
- Campagna, M.A. and Margolis, H.A. 1989. Influence of short-term atmospheric CO₂ enrichment on growth, allocation patterns, and biochemistry of black spruce seedlings at different stages of development. *Canadian Journal of Forest Research.* 19 (6): 773-782
- Canadell, J.G., Pitelka, L.F. and Ingram, J.S.I. 1996. The effects of elevated CO₂ on plant-soil carbon below-ground: a summary and synthesis. *Plant Soil*. 187 (3): 391-400
- Cavender-Bares, J., Potts, M., Zacharias, E. and Bazzaz, F. A. 2000. Consequences of CO₂ and light interactions for leaf phenology, growth, and senescence in *Quercus rubra. Global Change Biology*. 6 (8): 877-887
- Ceulemans, R., Jiangg, X.N. and Shao, B.Y. 1993. Growth and Physiology of one year poplar (*Populus*) under elevated atmospheric CO₂. *Annals of Botany*. 75 (6): 609-617
- Ceulemans, R. and Mousseau, M. 1994. Effects of elevated atmospheric CO₂ on CO₂ atmosphere. *New Phytol*ogist, **139** (3): 395-436
- Coley, P.D. 1998. Possible effects of climate change on plant/herbivore interactions in moist tropical forests. *Climate Change*. **39**: 455-472
- Coley, P.D. and Kursar, T.A. 2001. Herbivory, plant defenses and natural enemies in tropical forests. In: Interacciones quimicas entre organismos: aspectos básicos y perspectivas de aplicación (eds), Anaya, A.L., Cruz-Ortega, R. and Espinosa-Garcia, F.J. Plaza y Valdes, Mexico, p. 401-424

- Conroy, J.P., Milham, P.J., Mazu, M. and Barlow, E.W.R. 1990. Growth, dry weight partitioning and wood properties of *Pinus radiata* D. Don after 2 years of CO₂ enrichment. *Plant, Cell and Environment.* 13 (4): 329-337
- Coviella, C.E. and Trumble, J.T. 2000. Effects of elevated atmospheric carbon dioxide on insect-plant interactions. *Conservation Biology*. **14** (3):700-712
- Crous, K.Y., Walters, M.B. and Ellsworth, D.S. 2008. Elevated CO₂ concentration affects leaf photosynthesis-nitrogen relationships in *Pinus taeda* over nine years in FACE. *Tree Physiology*. **28** (4): 607-614
- Cure, J. D. and Acock, B. 1986. Crop responses to CO₂ doubling: a literature survey. Agricultural and Forest Meteorology. 38 (2): 127-145
- Curtis, P.S., O'Nell, E.G., Teeri, J.A., Zak, D.R. and Pregitzer, K.S. 1994. Belowground responses to rising atmospheric CO₂: implications for plants, soil biota and ecosystem processes. *Plant Soil*. 6 (1): 165-166
- Curtis, P.S., Vogel, C.S., Wang, X., Pregitzer, K.S., Zak, D.R., Lussenhop, J., Kubiske, M. and Teeri, J.A. 2000. Gas exchange, leaf nitrogen, and growth efficiency of *Populus tremuloides* in a CO₂ enriched atmosphere. *Ecological Applications*. 10 (1): 3-17
- Curtis, P.S. and Wang, X. 1998. A meta-analysis of elevated CO₂ effects on woody plant mass, form, and physiology. *Oecologia*. **113** (2): 299-313
- DeLucia, E.H. and Thomas, R.B. 1999. Photosynthetic responses to CO₂ enrichment of four hardwood species in a forest understory. *Oecologia*. **122** (1):11–19
- Devakumar, A. S., Udayakumar, M. and Prasad, T.G. 1996. A simple technique to expose tree seedlings to elevated CO₂ for increased initial growth rates. *Current Science*. **71** (6): 469-472

.

- Devakumar, A. S., Sheshashayee, M. S., Udayakumar, M. and Prasad, T.G. 1998. Effect of elevated CO₂ concentration on seedling growth rate and photosynthesis in *Hevea brasiliensis*. Journal of bio science. 23 (1): 33-36
- Devos, P., Rammeloo, J. and Verstraeten, C. 1992. Biological Indicators of Global Change: Proceedings of a Symposium offered by Royal Academy of Overseas Sciences, Brussels, pp. 155-171
- Dickmann, D. I. and Gordon, J. C. 1975. Incorporation of 14C-photosynthate into protein during leaf development in young Populus plants. *Plant Physiology*. 56 (1): 45-48
- Duff, G.A., Berryman, C.A. and Eamus, D. 1994. Growth, Biomass Allocation and Foliar Nutrient Contents of Two Eucalyptus Species of the Wet-Dry Tropics of Australia Grown Under CO₂ Enrichment. *Functional Ecology*. 8(4): 502-508
- Eamus, D. and Jarvis, P.G. 1989. The direct effects of increase in the global atmospheric CO₂ concentration on natural and commercial temperate trees and forests. *Advanced Ecology Research.* **19** (1): 1-55
- Egli, P. and Korner, C. 1997. Growth responses to elevated CO₂ and soil quality in beech-spruce model ecosystems. *Acta Oecologica*. **18** (3): 343-349
- Eguchi, N., Karatsu, K., Ueda, T., Funada, R., Takagi, K., Hiura, T., Sasa, K. and Koike, T. 2008. Photosynthetic responses of birch and alder saplings grown in a free air CO₂ enrichment system in northern Japan. *Trees: Structure and Function.* 22 (4):437-447
- Farnsworth, E.J., Ellison, A.M. and Gong, W.K. 1996. Elevated CO₂ alters anatomy, physiology, growth, and reproduction of red mangrove (*Rhizophora mangle* L.). *Oecologia*. 108 (4): 599-609

- Farrar, J.F. and Williams, M.L. 1991. The effects of increased atmospheric carbon dioxide and temperature on carbon partitioning, source-sink relations and respiration. *Plant, Cell and Environment.* 14 (8): 819-830
- Fernandez, M. D., Pieters, A., Azkue, M., Rengifo, E., Tezara, W., Woodward, F.I. and Herrera, A. 1999. Photosynthesis in plants of four tropical species growing under elevated CO₂. *Photosynthetica*. **37** (4): 587-599
- Ferris, R., Sabatti, M., Miglietta, F., Mills, R.F. and Taylor, G. 2001. Leaf area is stimulated in Populus by free air CO₂ enrichment through increased cell expansion and production. *Plant, cell and environment.* **24** (4): 305-315
- Field, C.B., Jackson, R.B. and Moony, H.A. 1995. Stomatal responses to increased CO₂: implications from the plant to the global scale. *Plant, Cell and Environment.* 18 (11): 1214-1225
- Finzi, A.C., Allen, A.S., DeLucia, E.H., Ellsworth, D.S. and Schlesinger, W.H. 2001. Forest litter production, chemistry, and decomposition following two years of free-air CO₂ enrichment. *Ecology.* 82 (2):470-484
- Garcia, R.L., Long, S.P., Wall, G.W., Osborne, C.P. and Kimball, B.A. 1994.
  Photosynthesis and conductance of spring-wheat leaves: field response to continuous free air atmospheric CO₂ enrichment. *Plant, Cell and Environment.* 21 (8):659-69
- Gardner, S.D.L., Bosac, C. and Taylor, G., 1995. Leaf growth of hybrid poplar following exposure to elevated CO₂. New Phytologist. **131**(1): 81–90
- Gaudillere, J.P. and Mousseau, M. 1989. Short term effect of CO₂ enrichment on leaf development and gas exchange of young poplars (*Populus* euramericana). Acta Oecologea. 10 (2): 95-105

- Ghannoum, O., Caemmerer, S., Ziska, L.H. and Conroy, J.P. 2000. The growth response of C4 plants to rising atmospheric CO₂ partial pressure: a reassessment. *Plant Cell Environment.* 23 (9): 931–42
- Girijapushpam, R.R. 2004. Morphological and anatomical properties of teak (*Tectona grandis* L. f) seedlings as influenced by nursery techniques. M.Sc. Thesis, College of Forestry, Kerala Agricultural University, Thrichur
- Griffin, K.L., Tissue, D.T., Turnbull, M.H. and Whitehead, D. 2000. The onset of photosynthetic acclimation to elevated CO₂ partial pressure in field grown *Pinus radiata* D. Don after 4 years. *Plant, Cell and Environment.* 23(10): 1089-1098
- Gunderson, C.A., Norby, R.J. and Wullschleger, S.D. 2000. Acclimation of photosynthesis and respiration to simulated climatic warming in northern and southern populations of *Acer saccharum*: laboratory and field evidence. *Tree Physiology*. 20 (2):87-96
- Hattenschwiler, S., Miglietta, F., Raschi, A. and Korner, C. 1997. Thirty years of *in situ* tree growth under elevated CO₂: a model for future forest responses? *Global Change Biology*. 3 (6): 463-471
- Hogan, K.P., Whitehead, D., Kallarackal, J., Buwalda, J. G., Meekings, J. and Rogers, G.N.D. 1996. Photosynthetic activity of leaves of *Pinus radiate* and *Nothofagus fusca* after 1 year of growth at elevated CO₂. *Australian Journal* of *Plant Physiology*. 23 (5):623-630
- HouYing, T., KaiYun, W., YuanBin, Z. and ChunJing, Z. 2008. Effects of elevated CO₂ concentration and temperature on root structure of subalpine *Betula* albo-sinensis seedlings in western Sichuan, southwestern China. Journal of Beijing Forestry University. 30 (1): 29-33

- Huttunen, L., Niemela, P., Julkunen-Tiitto, R., Heiska, S., Tegelberg, R., Rousi, M. and Kellomaki, S. 2008. Does defoliation induce chemical and morphological defenses? *Chemoecology*. 18 (2): 85-98
- Hymus, G.J., Dijkstra, P., Baker, N.R., Drake, B.G. and Long, S.P. 2001. Will rising CO₂ protect plants from the midday sun? A study of photoinhibition of *Quercus myrtifolia* in a scrub-oak community in two seasons. *Plant, Cell and Environment.* 24(12):1361-1368
- Idso, K.E. and Idso, S.B. 1994. Plant responses to atmospheric CO₂ enrichment in the face of environmental constraints: a review of the past 10 years research. *Agricultural and Forest Meteorology*. 69 (3): 153–203
- Idso, S.B. and Kimball, B.A. 1992. Effects of atmospheric CO₂ enrichment on photosynthesis, respiration, and growth of sour orange trees. *Plant Physiology.* 99 (1): 341–343
- IPCC (Intergovernmental Panel on Climate Change Group), 2007. Climate Change 2007: the Scientific Basis: Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.
- Isebrands, J.G., McDonald, E.P., Kruger, E., Hendrey, G., Pregitzer, K. and Percy, K. 2001. Growth responses of *Populus tremuloides* clones to interacting carbon dioxide and tropospheric ozone. *Environmental Pollution*. **115** (3): 359-371
- Ishii, K., Hosoi, Y. and Maruyama, E. 2008. The effects of carbon dioxide on rooting of woody plants. *Propagation of Ornamental Plants*. 8 (3):144-147
- Jach, M. E. and Ceulemans, R. 1998. Impact of elevated CO₂ on physiology and needle morphology of Scots pine (*Pinus sylvestris*) seedlings. In : Proceedings of the international conference on impacts of global change on

tree physiology and forest ecosystems, 26-29 November 1996, Wageningen, the Netherlands. pp.67-73

- Jach, M.E. and Ceulemans, R. 2000. Effects of season, needle age and elevated atmospheric CO₂ on photosynthesis in Scots pine (*Pinus sylvestris*). Tree Physiology. 20 (18):1289-1297
- Jach, M.E., Laureysens, I. and Ceulemans, R. 2000. Above and below-ground production of young Scots pine (*Pinus sylvestris* L.) trees after three years of growth in the field under elevated CO₂. Annals of Botany. 85(6): 789-798
- Jagadish, M.R., Devakumar, A.S., Kumar, P.N., Patil, C.S.P. and Prakash, N.A. 2008. An improved nursery practice for enhancing the initial growth rates of Garcinia gummigutta (L.) Robson. International Journal of Forest Usufructs Management. 9 (2): 21-26
- Jarvis, P.G. 1989. Atmospheric carbon dioxide and forests. Philosophical Transactions of the Ro-val Society. London, **324**: 369-392
- JianGuo, H., Bergeron, Y., Denneler, B., Berninger, F. and Tardif, J. 2007. Response of forest trees to increased atmospheric CO₂. Critical Reviews in Plant Sciences. 26 (6): 265-283
- Johnsen, K.H. 1993. Growth and Ecophysiological responses of black spruce seedlings to elevated CO₂ under varied water and nutrient additions. *Canadian Journal of Forest Research.* 23 (96): 1033-1042
- Johnsen, K.H. and Major, J. E. 1998. Black spruce family growth performance under ambient and elevated atmospheric CO₂. *New forests.* **15** (3): 271-281
- Kaushal, P., Guehl, J.M. and Aussenac, G. 1989. Differential growth response to atmospheric carbon dioxide enrichment in seedlings of *Cedrus atlantica* and

Pinus nigra ssp. larcio var. Corsicana. Canadian Journal of Forest Research. 19 (11): 1351-1358

- Keel, S. G., Pepin, S., Leuzinger, S. and Korner, C. 2007. Stomatal conductance in mature deciduous forest trees exposed to elevated CO₂. *Trees: Structure and Function.* 21 (2): 151-159
- Keeling, C.D., Whorf, T.P., Whalen, M., and van der Plicht, J. 1995. Interannual extremes in the rate of rise of atmospheric carbon dioxide since 1980. *Nature*. 375 (6533): 666-670
- Kellomki, S. and Wang, K.Y. 1997. Effects of elevated O₃ and CO₂ on chlorophyll fluorescence and gas exchange in scots pine during the third growing season. *Environmental Pollution.* 97 (1): 17-27
- Kimball, B.A. 1983. Carbon dioxide and agricultural yield: An assemblage and analysis of 4, 10 prior observations. *Agronomy Journal*. **75** (6): 779-788
- Kimball, B.A. and Idso, S.B. 2005. Long-term effects of elevated CO₂ on sour orange trees. *Plant responses to air pollution and global change*. **44**:73-80
- Kirschbaum, M.U.F. 1994. The sensitivity of C₃ photosynthesis to increasing CO₂ concentration: a theoretical analysis of its dependence on temperature and background CO₂ concentration. *Plant, Cell and Environment.* 17(6):747-754.
- Korner, C. 2000. Biosphere responses to CO₂ enrichment. *Ecological Applications*. **10** (6): 1590–1619
- Korner, C. and Arnone, J. A. 1992. Responses to elevated Carbon dioxide in artificial tropical ecosystem. *Science*. 257:1672–1675
- Korner, C. and Bazzaz, F.A. 1996. Carbon dioxide, populations, and communities. Academic Press, San Diego, California, USA,124pp.

- Lemon, E.R. 1983. CO₂ and Plants: The Response of Plants to Rising Levels of Atmospheric Carbon Dioxide. Westview Press, Boulder, 382pp.
- Li, J.H., Dijkstra, C.R., Wheeler, R.M. and Drake, B.G. 1999. Photosynthetic acclimation to elevated atmospheric CO₂ concentration in the Florida scruboak species *Quercus geminata* and *Quercus myrtifolia* growing in their native environment. *Tree Physiology*. **19** (3): 229-234
- Long, S. P. 1994. The potential effects of concurrent increases in temperature, CO₂ and O₃ on net photosynthesis, as mediated by Rubisco. In: *Plant Responses* to the Gaseous Environment, (eds), Alscher, R.G. and Wellburn, A.R. Springer publishers,London, pp. 21-38
- Long, S.P., Ainsworth, E.A., Rogers, A. and Ort, D.R. 2004. Rising atmospheric carbon dioxide: Plants Face the Future. Annual Review of Plant Biology, 55:591–628
- Lowry, O.H., Brough, R.N.T., Ferr, L.A. and Randall, R.J. 1951. Protein measurement with phenol reagent. *Journal of Biological Chemistry.* **193** (2): 265-275
- Luo, Y., Sims, D.A. and Griffin, K.L.1998. Nonlinearity of photosynthetic responses to growth in rising atmospheric CO₂: an experimental and modelling study. *Global Change Biology*. 4 (2):173–183
- Maier, C.A., Palmroth, S. and Ward, E. 2008. Short-term effects of fertilization on photosynthesis and leaf morphology of field-grown loblolly pine following long-term exposure to elevated CO₂ concentration. *Tree Physiology*. 28 (4): 597-606
- McMurtrie, R.E., Norby, R.J., Medlyn, B.E., Dewar, R.C., Pepper, D.A., Reich, P.B. and Barton, C.V.M. 2008. Why is plant-growth response to elevated CO₂ amplified when water is limiting, but reduced when nitrogen is limiting?

A growth-optimisation hypothesis. *Functional Plant Biology.* **35** (6): 521-534

- McKee, K.L. and Rooth, J.E. 2008. Where temperate meets tropical: *Global Change Biology*. **14** (5): 971-984
- Medlyn, B.E., Barton, C.V.M., Broadmeadow, M.S.J., Ceulemans, R., De Angelis,
  P., Forstreuter, M., Freeman, M., Jackson, S.B., Kellomaki, S., Laitat, E.,
  Rey, A., Robernts, P., Sigurdsson, B.D., Strassemeyer, J., Wang, K., Curtis,
  P.S. and Jarvis, P.G., 2001. Stomatal conductance of forest species after
  long-term exposure to elevated CO₂ concentrations: a synthesis. New
  Phytologist. 149 (2): 247-264
- Melgar, J.C., Syvertsen, J.P. and Garcia-Sanchez, F. 2008. Can elevated CO₂ improve salt tolerance in olive trees? *Journal of Plant Physiology*. 165 (6): 631-640
- Mooney, H.A., Canadell, J., Chapin, F.S., Ehleriger, J., Korner C., McMurtrie, R., Parton, W.J., Pitelka, L. and Schulze, E.D. 1999. Ecosystem physiology responses to global change. In: *The Terrestrial Biosphere and Global Change. Implications for Natural and Managed Ecosystems* (eds), Walker, B.H., Steffen, W.L., Canadell, J. and Ingram, J.S.I.), Cambridge University Press, Cambridge. pp.141–189
- Moore, B.D., Cheng, S.H. and Sims, D. 1999. The biochemical and molecular basis for photosynthetic acclimation to elevated atmospheric CO₂. *Plant, Cell and Environment.* 22 (6): 567-582
- Moore, D.J.P., Aref, S., Ho, R.M., Pippen, J.S., Hamilton, J.G. and Lucia, E.H. 2006. Annual basal area increment and growth duration of *Pinus taeda* in response to eight years of free-air carbon dioxide enrichment. *Global Change Biology*. **12** (8): 1367-1377

- Morison, J.I.L. 1987. Intercellular CO₂ concentration and stomatal response to CO₂.
  In: Stomatal Function, (eds), Zeiger, E., Farquhar, G. D. and Cowan, I. R. Stanford University Press, Stanford. pp. 229-252
- Mortensen, L.M. 1987. CO₂ enrichment in greenhouses crop responses. *Scientia Horticulturae*. **33** (1):1-25
- NaiShen, L., Maruyama, K. and Huang, Y. 1996. Effects of CO₂ concentration on the photosynthetic and carboxylation efficiencies of *Fagus crenata* and *Quercus crispula*. *Photosynthetica*. **32** (3): 355-365
- Naumburg, E., Housman, D. C., Huxman, T. E., Charlet, T.N., Loik, M. E. and Smith, S. D. 2000. Photosynthetic responses of Mojave Desert shrubs to free air CO2 enrichment are greatest during wet years. *Global Change Biology*. 9(3):276-85
- Norby, R.J., Gunderson, C.A., Wullschleger, S.D., O'Neill, E.G. and McCracken, M.K. 1992. Productivity and compensatory response of yellow poplar trees in elevated CO2. *Nature*. 357: 322–324
- Norby, R.J. and O'Neill, E.G. 1992. Leaf area compensation and nutrient interactions in CO₂ enriched seedlings of yellow-poplar (*Liriodendron tulipifera* L.). New Phytologist. 117 (4): 515-528
- Norby, R.J., O'Neill, E.G. and Wullschleger, S.D. 1994. Belowground responses to atmospheric carbon dioxide in forests. In: McFee, W.W. and Kelly, J.M. (eds), Carbon Forms and Functions in Forest Soils. Soil Science Society of America, Madison, pp.115 – 118
- Norby, R. J., Todd, D. E., Fults, J. and Johnson, D. W. 1996. Allometric determination of tree growth in a CO2-enriched sweetgum stand. New *Phytologist.* 150:477–87

- Norby, R.J., Wullschleger, S.D., Gunderson, C.A., Johnson, D.W. and Ceulemans,
   R. 1999. Tree responses to rising CO₂ in field experiments: implications for the future forest. *Plant, Cell Environment.* 22 (6): 683-714
- Olszyk, D., Wise, C., VanEss, E. and Tingey, D. 1998. Elevated temperature but not elevated CO₂ affects long-term patterns of stem diameter and height of Douglas-fir seedlings. *Canadian Journal of Forest Research*. 28 (7): 1046-1054
- Oosten, J.J. and Besford, R.T. 1996. Acclimation of photosynthesis to elevated CO₂ through feedback regulation of gene expression: climate of opinion. *Photosynthesis Research.* **48** (3): 353-365
- Oren, R., Ellsworth, D.S., Johnsen, K.H., Phillips, N., Ewers, B.E., Maler, C., Schafer, K.V.R., McCarthy, H., Hendrey, G. and McNulty, S.G. 2001. Soil fertility limits carbon sequestration by forest ecosystems in a CO₂ enriched atmosphere. *Nature.* 411: 469-472
- Paoletti, E. and Grulke, E.N. 2005. Does living in elevated CO₂ ameliorate tree response to ozone?. A review on stomatal responses. *Environmental Pollution*. 137 (2): 483-49
- Paoletti, E., Miglietta, F., Raschi, A., Manes, F., and Grossoni, P. 1997. Stomatal numbers in holm oak (*Quercus ilex* L.) leaves grown in naturally and artificially CO₂ -enriched environments. In: Plant Responses to Elevated CO₂. Evidence from Natural Springs (eds.), Raschi, A., Miglietta, F., Tognetti, R. and van Gardingen, P.R. Cambridge University Press, Cambridge, pp. 197-208
- Percy, K.E., Awmack, C.S., Lindroth, R.L., Kubiske, M.E., Kopper, B.J., Isebrands, J.G., Pregitzer, K.S., Hendrey, G.R., Dickson, R.E., Zak, D.R., Oksanen, E., Sober, J., Harrington, R. and Karnosky, D.F. 2002. Altered performance of

forest pests under atmospheres enriched by  $CO_2$  and  $O_3$ . *Nature*. **420**: 403-407

- Poole, I., Lawson, T., Weyers, J.D.B. and Raven, J.A. 2000. Effect of elevated CO₂ on the stomatal distribution and leaf physiology of *Alnus glutinosa*. New *Phytologist.* 145 (3): 511-521
- Poorter, H., Roumet, C. and Campbell, B.D. 1996. Interspecific variation in the growth response of plants to elevated CO₂: a search for functional types. In: *Carbon Dioxide, Populations, and Communities* (eds.), Körner, C. and Bazzaz, F.A. Academic Press, San Diego, pp. 375–412
- Pregitzer, K.S., Burton, A.J., King, J.S. and Zak, D.R. 2008. Soil respiration, root biomass, and root turnover following long-term exposure of northern forests to elevated atmospheric CO₂ and tropospheric O₃. New Phytologist. 180 (1): 153-161
- Pritchard, S.G., Rogers, H.H., Prior, S.A. and Peterson, C.M. 1999. Elevated CO₂ and plant structure: a review. *Global Change Biology*. **5** (7): 807-837
- Pritchard, S.G., Davis, M.A., Mitchell, R.J., Prior, S.A., Boykin, D.L. and Rogers,
  H.H. 2001. Root dynamics in an artificially constructed regenerating longleaf
  pine ecosystem are affected by atmospheric CO₂ enrichment. *Environment Experimental Botany*. 46 (1):55 –69
- Pritchard, S.G., Strand, A.E., McCormack, M.L., Davis, M.A., Finzi, A.C., Jackson, R.B., Matamala, R., Rogers, H.H. and Oren, R. 2008. Fine root dynamics in a loblolly pine forest are influenced by free-air CO₂ enrichment: a six-yearminirhizotron study. *Global Change Biology*. 14 (3): 588-602
- Radoglou, K.M. aud Jarvis, P.G. 1990. Effects of CO₂ enrichment on four poplar clones. on growth and leaf anatomy. *Annals of Botany*. **65** (7): 617-626

- Rajesh, N. 1996. Response of selected forestry and agroforestry tree seedlings to water stress. M.Sc. Thesis, College of Forestry, Kerala Agricultural University, Thrichur
- Ranasinghe, S. and Taylor, G. 1996. Mechanism for increased leaf growth in elevated CO₂. Journal of Experimental Botany. 47 (296): 349-358
- Regehr, D.C., Bazzaz, F.A. and Boggess, W.R. 1975. Photosynthesis, transpiration and leaf conductance of *Populus deltoides* in relation to flooding and drought. *Photosynthetica*. 9 (1): 52-61
- Rey, A. and Jarvis, P.G. 1998. Long-term photosynthetic acclimation to increased atmospheric CO₂ concentration in young birch (*Betula pendula*) trees. *Tree Physiology*. 18 (7): 441-450
- Rochefort, L. and Bazzaz, F. A. 1992.Growth response to elevated CO₂ in seedlings of four co-occuring birch species. *Canadian Journal of Forest Research*. 22 (11): 1583-1587
- Roden, J.S. and Ball, M.C. 1996. Growth and photosynthesis of two eucalyptus species during high temperature stress under ambient and elevated CO₂. *Global Change Biology*. 2 (2): 115-128
- Rogers, H.H., Peterson, C.M., McCrimmon, N. and Cure, J.D. 2006. Response of plant roots to elevated atmospheric carbon dioxide. *Plant, Cell and Environment.* **15** (6): 749-752
- Roumet, C., M.P. Bel, L. Sonié, F. Jardon, and J. Roy. 1996. Growth response of grasses to elevated CO₂: a physiological plurispecific analysis. New Phytologist. 133 (4): 595-603
- Saxe, H., Ellsworth, D. S. and Heath, J. 1998. Tree and forest functioning in an enriched CO2 atmosphere. *New Phytologist.* **139** (3): 395-436

- Schwanz, P. and Polle, A. 1998. Antioxidative systems, pigment and protein contents in leaves of adult mediterranean oak species (*Quercus pubescens* and *Quercus ilex*) with lifetime exposure to elevated CO₂. New Phytologist. 140 (3): 411-423
- Seiler, T.J., Rasse, D.P., Li, J.H., Dijkstra, P., Anderson, H.P., Johnson, D.P., Powell, T.L., Hungate, B.A., Hinkle, C.R. and Drake, B.G. 2009.
  Disturbance, rainfall and contrasting species responses mediated aboveground biomass response to 11 years of CO₂ enrichment in a Florida scrub-oak ecosystem. *Global Change Biology*. 15 (2): 356-361
- ShiJie, H., YuMei, Z., JunHui, Z., Wang ChenRui, W. and ChunJing, Z. 2000. Effect of elevated CO₂ concentration on growth course of tree seedlings in Changbai Mountain. *Journal of Forestry Research*. 11 (4): 223-227
- Sionit, N. and Kramer, P.J. 1986. Woody plant reactions to CO₂ enrichment. In: Enoch, H.Z. and Timball, B.A. (eds), CO₂ Enrichment and Greenhouse Crops, Vol. II. CRC Press, Boca Raton, Florida, pp.69-85
- Stamp, N.E. 1993. Caterpillars: ecological and evolutionary constraints on foraging. Casey, T.M. (eds), Chapman and Hall, New York
- Starner, W.J. and Hardley, H.H. 1967. Chlorophyll content of various strains of soyabeans. Crop Science. 5: 9-11
- Stewart, J.D. and Hoddinott, J. 1993. Photosynthetic acclimation to elevated atmospheric carbon dioxide and UV-irradiation in *Pinus banksiana*. *Physiologia Plantarum*. 88 (4): 493- 500
- Stirling, C.M. and Davey, P.A. 1995. Modification of the photosynthetic response to elevated CO₂ by growth temperature and defoliation treatments. In: Photosynthesis: from light to biosphere. Proceedings of the Xth International

Photosynthesis Congress, Volume V. Montpellier, France, 20-25 August, 1995. pp.961-964

- Stitt, M. 1991. Rising CO₂ levels and their potential significance for carbon flow in photosynthetic cells. *Plant, Cell and Environment.* **14** (8): 741-762
- Strain, B.R. and Cure, J.D. 1986. Direct effects of atmospheric CO₂ enrichment on plants and ecosystems: a bibliography with abstracts. Oak Ridge National Laboratory, Oak Ridge,164pp.
- Stulen and Hertog, J.D. 1993. Root growth and functioning under atmospheric CO₂ enrichment. *Plant Ecology*. **104** (1): 34-37
- Taylor, G., Ceulemans, R., Ferris, R., Gardner, S.D.L., and Shao, B.Y. 2001. Increased leaf area expansion of hybrid poplar in elevated CO₂. From controlled environments to open-top chambers and to FACE. *Environmental Pollution*. 115 (3): 463–472
- Teskey, R.O. 1995. A field study of the effects of elevated CO₂ on carbon assimilation, stomatal conductance and leaf and branch growth of *Pinus taeda* trees. *Plant, Cell and Environment.* **18** (5): 565–573
- Thron, C., Hahn, K. and Lutz, C. 1997. *In situ* effects of elevated CO₂ on chlorophyll fluorescence and chloroplast pigments of alpine plants. *Acta Oecologica*. 18 (3): 193-200
- Tingey, D.T., Phillips, D.L. and Johnson, M.G. 2000. Elevated CO₂ and conifer roots: effects on growth, life span and turnover. *New Phytologist.* 147 (1): 87-103
- Tissue, D.T., Lewis, J.D., Wullschleger, S.D., Amthor, J.S., Griffin, K.L. and Anderson, O.R. 2001. Leaf respiration at different canopy positions in sweetgum (*Liquidambar styraciflua*) grown in ambient and elevated

concentrations of carbon dioxide in the field. *Tree Physiology*. **22** (17):1157–1166

- Tjoelker, M.G. Oleksyn, J. and Reich, P.B. 1998. Seedlings of five boreal tree species differ in acclimation of net photosynthesis to elevated CO₂ and temperature. *Tree Physiology*. **18** (11): 715-726
- Wang Miao, Dai Limin, Han Shijie, Ji Lanzhu and Li Qiurong 2000. Effect of elevated CO₂ concentration on growth of dominant tree species in pine broadleaf forest of Changbai mountain. *Chinese Journal of Applied Ecology*. 5 (2):23-26
- Wang Li Qiu, Dal Hi, and Ji Lan. 2003. Response of seedlings of different tree species to elevated CO₂ in Changbai Mountain. *Journal of Forestry research*. 14(1):2-4
- Wang, D., Heckathorn, S.A., Barua, D., Joshi, P., Hamilton, E.W. and LaCroix, J.J.
  2008. Effects of elevated CO₂ on the tolerance of photosynthesis to acute heat stress in C₃, C₄ and CAM species. *American Journal of Botany*. 95 (2): 165-176
- Wang KaiYun, Kellomaki, S. and Laitinen, K. 1996. Acclimation of photosynthetic parameters in Scots pine after three years exposure to elevated temperature and CO₂. Agricultural and Forest Meteorology. 82 (4): 195-217
- Watanabe, Y., Tobita, H., Kitao, M., Maruyama, Y., Choi DongSu, Sasa, K., Funada, R., and Koike, T. 2008. Effects of elevated CO₂ and nitrogen on wood structure related to water transport in seedlings of two deciduous broad-leaved tree species. In: Trees: Structure and Function. Springer-Verlag GmbH, Berlin,Germany, pp. 403-411
- Watling, J.R., Press, M.C. and Quick, W.P. 2000. Elevated CO₂ induces biochemical and ultrastructural changes in leaves of the C-4 cereal sorghum. *Plant Physiology.* 123 (4):1143-52

- Wilkins, D., Oosten, J.J. and Besford, R.T. 1994. Effects of elevated CO₂ on growth and chloroplast proteins in *Prunus avium*. *Tree Physiology*. **14** (7): 769-779
- Woodward, F.I. 1992. Predicting plant responses to global environmental change. New Phytologist. 122 (2): 239-251
- Woodward, F. L. 2002. Potential impacts of global elevated CO₂ concentrations on plants. *Current Opinion in Plant Biology*. 5:207–211
- Woodward, F. L. and Bazzaz, F. A. 1988. The responses of sromatal density to CO₂ partial pressure. *Journal of Experimental Botany.* **39** (8): 1771-1781.
- Yakimchuk, R. and Hoddinott, J. 1994. The influence of ultraviolet- B light and carbon dioxide enrichment on the growth and physiology of seedlings of three conifer species. *Canadian Journal of Forest Research.* **24** (1): 1-8
- Yun-Zhou, Q., Yuan-Bin, Z., Kai-Yun, W., Qian, W. and Qi-Zhuo, T. 2008. Growth and Wood/Bark Properties of *Abies faxoniana* Seedlings as affected by Elevated CO₂. Journal of Integrative Plant Biology. 50 (3): 265-270



.

.

.

.

,

•

.

•

~ 、

Appendix- I

Weather data of Vellanikkara (2009 July to 2010 April)

Element	Year 2009						Year 2010					
	July	Aug	Sept	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	June
Relative humidity (%)	86.5	85.5	81	80	72	62	57	63.5	63	70		
Rain fall(mm)	686.9	454.2	245.6	302.1	104.4	17.8	1.9	3.9	6.6	68.8		
Rainy days	24	21	12	13	5	1	0	0	0	4		
Sunshine hours	3	3.8	5.9	5.9	7	8.5	9	9.3	9.2	8.5		
Maximum temperature ( ^o C)	29.0	29.3	30.5	31.1	31.7	31.7	32.8	34.8	36.1	35.4		
Minimum temperature ( ⁰ C)	22.9	23.1	23.2	23.0	22.8	22.5	22.2	22.6	23.9	25.1		<u> </u>

.

## EFFECT OF ELEVATED CO₂ CONCENTRATION ON GROWTH AND PHYSIOLOGY OF SELECTED TROPICAL TREE SEEDLINGS

By NEENU SOMARAJ

## **ABSTRACT OF THE THESIS**

#### Submitted in partial fulfillment of the

requirement for the degree of

# MASTER OF SCIENCE IN FORESTRY

Faculty of Agriculture Kerala Agricultural University

Department of Forest Management and Utilization COLLEGE OF FORESTRY VELLANIKKARA, THRISSUR – 680 656 KERALA, INDIA 2010

#### ABSTRACT

The present study entitled "Effect of elevated  $CO_2$  concentration on growth and physiology of selected tropical tree seedlings." was carried out in College of Forestry, Kerala Agricultural University, Vellanikkara, Thrissur during the period 2008-2010.

There are references that elevated CO₂ typically increases tree seedling growth and has also modified physiological processes. Polybag seedlings of five economically important tree species were exposed to 500-550 ppm CO₂ concentration and another similar set of plants were raised under ambient atmospheric CO₂ condition (370-380 ppm). The growth rates and physiology were observed for eight months. Tree seedlings under elevated CO₂ concentration put in more height and collar diameter than the seedlings under atmospheric CO₂. A higher leaf production and larger leaf area was recorded in seedlings under elevated CO₂ concentration. The different levels of CO₂ also showed significant effects on the total dry matter content. However, interactions between two CO₂ levels and five tree seedlings had no significant impact on the shoot: root ratios throughout the study period.

The different CO₂ treatment did not significantly affect the relative growth rate (RGR), net assimilation rate (NAR), specific leaf area (SLA) and the leaf area ratio (LAR) of seedlings. However, both CO₂ levels showed significantly different impact on the leaf weight ratio (LWR) of seedlings. Seedlings under elevated CO₂ recorded lowest number of stomata compared to seedlings under atmospheric CO₂ concentration. The varying CO₂ concentrations showed significant effect on the rate of photosynthesis of the tree seedlings. Chlorophyll a and Chlorophyll b in tree seedlings was not significantly influenced under different CO₂ concentrations. However, total chlorophyll content showed significant influence. Seedlings under atmospheric CO₂ concentration. Hence, CO₂ enrichment technique can be used as an economically viable nursery technology for production of more healthy and vigorous planting stock to meet the increasing demand for social forestry /agro forestry programme.