BIOCHEMICAL CHARACTERISATION OF coconut palms in relation to yield

By
NARAYANAN KUTTY, M. C.

THESIS

Submitted in partial fulfilment of the requirements for the Degree of

fflaster of Stiente in 频ortitulture

Faculty of Agriculture
-Kerala Agricuiltural University

Department of Horticulture (Plantation crops \& spices) COLLEGE OF HORTICULTURE
Vellanikkara, Trichur - 680654
KERALA - INDIA

decharaflon

I hereby ceciare that thig chesis ontitied "Hiochemicul charscterisation of coconut palme in relation to yield" is a bonafide record of remearch work done by ins during the course of remoarch and that the thasis has not praviounly foxmed the bawis for the awnid to me of any degree; diploza, agsecintathtp or other almiles titue, of any other Univercity or gociety*

Vollendhlara, \#ovenber: 1983.

DH. P.K. GOPALATIISEHAN Asscoiata Dean

College of Hortaculture, Vollantideras
Dated: -11-1983.

CBETXITCATS
 characterssation of coconut paim in relation to yioldn Is a record of rebearch woris done indepmendenty by Wr. H. G. Haraganon futty under ay guidance and supoivision and that it has not previcusiy forgoa tue basis for the award of any degreo. rellowehtp, or assoctatoshy to his.

GRBTITICATK

We, the undersignod members of the tavisory Comaittee or Mr. Harayanan Autty, H.G. a cindidate for the degreg of Yanter of science in Hortioulture with major in Horticulture, agreo that the thesis entidtied "Biochemicel characterieation of coconut palms in roiation to yield" may be submitted by Mr. Naraympen Kutty, M.C. in partial fulrizent of the requiramat for the degret.

I wish to exprass ray deep sense of gratitude to Dr. P. R. Gopoiairishnan, Chairmen, Aivisory Comaittet, for his help encouragemat and guidance had been of inestimble value during the course of this work.

Dr. A.I. Jose, Profegsor and Hoad, Department of Goil science and Agriculture Chomistry, had boen too generou: with his time, inforiantion and support during the restarich vork ond praparation of the thesis for which I m greatily incebted to him.

I owe zuch to Dr. H. Aravincielsghan, Profener and Reaci, Department of Pasolozy \& Floriculture for the help rendered to ag in aonpleting this work.

I do gratofuliy acirnowledge the uffaling apport, encouragenent and atncere hold given to me by Sri. P.V. Prabhaharan, Assocłato Profesaor, Department of Agricultural Statistics.

I am particularly thaniful to Dr. Hahid, P.A. Profossox, Redio Sracex, for his keen intorest and constructive oriticiaw.

5ri. Augustin Antony, Aasiatant Professor, K.A.D.P. and Sck. V. K. G. Urmithan, Associate Professor, Departant of Agricultural Statiathas had been vary generous with tisaly hol.g and guicharce and I take $2 t$ a privilege to anknowedss thatr ecarejbutions.

I aiso wish to thant tio scientists of CRCBI
 tural Resoarch Station, humuting and azJ the gtaff wabori of the Dopartacet of ERantatien Crope and Bpices, Oailege of Horticuiture, for thest velubie edvice and bincere co-operatica.

I am particularly thmikul to lls. Asoken for tyging the manuscript neatig.

I Ealso timanicful to all my colleagues and friends for theix aincer comparetton.

The junior fellowsaid awarded bs maian Council of asricuiltural Rosoarch is aleo grateruily acknoxiedged.

COHTBNTE

Pag
TNTETOUUCTION -* 1
EEVIEW OF LITEARADES 3
MATCMILLS AND MENHONS 15
2gsuL25 24
DISCOEGION 69
somany 89
HIFEDENCSS 1 -

EIST OF gABLDS

1a Yaeld of the exparimental palaa (Nuts/palm/yoar)
1b Field of the experimentra pales (Muta/pala/pens) Group In.
1c Iteid of the exporisental pelss (Nuts/palua/year) Group 2II.
2e Korphological cheractors of the expertmental palma Group I_{F}
ab Horpholozical charaoters of the experimontal pelms,Groug II.
$2 c$ Horphological characters of the experimental palus, Group IIf.
3 Hitrogen content of Ieaf (per cent)
4 Phosphorus content of lade (por cant)
5 Potassium content of I ar (per cent)
6 Calcium content of lear (por cent).
7 Sagnogium content of 2ear (per cont)
8a butrient ratios in leat, Groug I.
8b Nutrient ratios in lear, Group II.
8e Tlutriont ratios in lact, Group IxT.
9 Soluble augars in lear (per cent)
10 Starch content in leaf (per cont)
11 Total phonalic compounds in lant (por cent)
12 Frea anino nola in loat.
13a Gilloropiyll content tag/g, Group I.

13b Chiorophyll content ma/s. Group In.
130 Chloropayl2 oontent m\&/B, Group III.
14. Catalese activity in lear ($\mu \mathrm{MOl} \mathrm{H}_{2} \mathrm{O}_{2}$ conmmed per h)

45a Peroxidaee activity in 2enf, Group I.
15b peroxidage activity in Iaaf, Group II.
15 c Peroxdabo activity in leaf, troup THI.
16 Content of nitrogen, phosphorus and potassium in soil.
17 Coefficient of corxelarion (araple lipear) between yield, moshological and blochoalcal cheractars.

18 Coefficients of intarcorrelation between sozectad characters.

19 Faxtlai regression cooffleients for yiald on selected characters.

20 Direct and indireot effects of selected character: on yiela.

LIST OF FIGDREG

Tig. 1 Theid vaidations in exparimental peins, yentute.

Fige2 Loof charectors in different yiold groupa.
Fig. 3 Nelationsing betwen nitrogen content end 7102d.
 yisld.

Fig. 5 Fielationaing between aoluble sugers and
yield.
ELg. 6 Reletionship botween total phenole and yield.
P1E. 7 Rolationsilip between chiorophyll contont and 7202a.

Introduction

TITHODUCTION

The lusprovement of crops by agronomice and genotic wenas jwrolvos rbanipuintion of the physiological and bioohemseal characters of the plant. The Iliselinood of succass of a particular project with such an objective could be genget only by an gppreciation of the varioum neoheniam at coliular and mplecular Level. Approach in the saxn line is necossary to understara the causes of Tadjure or to Identify the future poasiblizitieo. Biocharcal rathods are incroadingly used to evaluote the crop varioties, chenged methods or magement and to prodict Che performance of the plant as euch.

The magnitude of resource ond amount of time
 genetic, 10 mach leas remmerative when the not-somare yesuris are consiaered. In such cases sepecially biocheraicel tools for ovaluation whi bo of formenso holp. In tile ingiance gotectacn of propar blechomical constituents usoumes cuch ixportance. The relationsaip for the solected paramitarg witi vertous punt parfomanco oheractertetacs arse be mato knoun. This zust be monitored
thence fron the seed or seedzing stage to the field production stage before anch tools could be standerdised.

Tomarch programss with such broad objectives are already undervay in meny perenatal exops. Whe present atuay is undertalsen in order to oharactorise the yiela componembs in coconut paln in relation to biocicusical and morphological characteristion of the panms. Thats cound be of use in Identifying the components associetact uith better yiold and for seleoting potentinil yleldars.
Review of Literature

TRVIEN OF LITENATUES

As witi mose of the perennini plante, coconut 2xprovement works take:, a 200 of tims and space but a certain amcunt of boti con be savad by way of forming criteria for early solectson. Monitoring the biochomical cospenents at the juvenile stege nad estabilshing their relationshify with the field performance forms the lateat Iine of work in such cases. Thorough information regarding the basic bloohandeal nature of the plant is nocesmary for thas.

Grop yield is cescribed as an expression of the physiological activity in the plant systom, wich in turn 18 influenced by the ancunt or activity of the blochemical constatuents. of late, the use of chemical diagnoatic techniques are on the increan, to judge the general atate of hoazth of the plents ma to assems the nutrient needs. The Foliar alagnositic tochniques atandardised for vartoun crops have het conccendmblo tmpact on economic ranagement of crops. Use of auch tociniques for luproving yielde has been reported in coconut alson. A briof review or the avallable information on thee sapect are presented in this chrpter.

Tield and yield components
Patol (1938) had observed that varietion in nut and ylold charactorn may be due to the age of palm, the noil and onviromantal ccodstiong and the inherent aature of the trees. Considerable data on the effects of easan on the different oneracters of tajl variaty of palu of the west coast hazo been gatherod an a reault of detailed investigations carred out at CPGRI, Kararagode. For an orcinary W. C. T. type hifinst yield as yoll as maxioum coppa are obtained during sumber seasone The smaliest nuts with lowse yield of copra are obtadned during north east zonsoon. Efiect dif senson on crop vary with varieties.

Yielding capseity of the paims in to bo 1dentified during the early stages of growth. Liyanage and hooywardane (1958) had podnted out that the y1eld of socond and third your of bearing had a relation to the yielaing capacity of the pain at aduit atafe. The initiai gicid is thus helpiul in gototing out the 10 y yelders and roplacing them in the enrly stages.
smone the various componenta of yield, Emith (1969) expressed the view that number of nuts per buch was the nost variable component, wilch was influenced by fertiIizar troatmonts.

In ooconut pains it mas suggmetal that yield variations duo to weather factors are more pronounced than in other troc erops (Aboywardane, 1971). It was reasoned that the long reprodixctive cyole of coconut cennot obviate from veraries of climute in ita external manifertations. Acoorulng to him, although ratnfail in the chisf fector controning there giela vaziakons, a qunntitatevo demonatration de this influetre loading to a pradiction of arope on that basis has baen elu:ive.

Taxistion in moxphological characters and yiold

Attompts have been maie to ostablioh the degree of relathonehip that exist betweon various morpholozical charactexs and siold of palms. Patal (1938) reportad that the lengti of ates and number of leaves on tine crown, are positively correlatod to yield.

The Atraction of leaf orientation on tize crown was atatad to be associated bith yicld of the pain by Davis (1963) who obsergea that ting anticlookwise arrangement of the $2 / 5$ apirar of leaves have ouparior pleiding cayacity over clochwise arrangement. Iat Satyabmian at a?. (1964) razed out such posaibility and statod that tie "Iofts' have no sumprior stelding capacity over the "rights".

In 1972, Betyabalan reported 91 gatifoant positive correlation for plent heisht and number of leaves whth yield. Positive correlation for stem girth just balou the crovi, number of leaves present at a given time, the average number of flowera per bunch at the the of opening end yield have been reported by Absywardane (1976). Fic also foum that there vas olpaificant correlation batween yield, leai length and number of 1 tafictat par 1eet.

Foliar mutsient geatus in relation to yield

2112er and provot (1962) suggeated criticol nutrient Ievels for coconut paisu in the jeaves wifoh how attained full maturity. Finey observed that the nitrogen content of Leaves increases from lear number one to leaf numbor six and thon decreasos. Phosphorus and jotassium content decreasod with age of leaf but calciura and magnebiua contont increased. Synorgintic relation oxistad jotween E and fia when the arount of 8 wer below the critical level, but the invorse relationohip was true when K was above the critical Level. Guch relationahips were $12 n 0$ auggeated in botweon K and $C a$, and \mathbb{I} and Kg . Indirakutty and Pantalal (1968) abserved significunt aifferonce botweon Iow , mediun and high yieldors in taras
of foliar N, P and I content. They attributed this variation to the ability of the palma to absorb nutrients which in turn is affected by genetically controlled factors operating through its cffocto on root production or physiology. They miso suggested that the critical foliar nutrient levels may vary from soil to $3 n i l$ when trows failing under the same yield group are gram on tarcerent polls.

Devi and Pendalai (1968) reported a progressive file in nitrogen, potash and phosphorus as the yield from the pelno decreased. Ines found little effect for calcium and Boron. They also worked out the following correlation costificiente and regression equations.

The very concopt of independent critical zevol of mesper mutisents in foller diarnosic vas chailenged by Suath (1969) wo stated thut the ratio between foliar M and K Io releted to yseld.

Thomes (1973) obsezved relation between ylold and $N / P, H / K$, and Ca/Me ratios. Accorcing to his the level of K had to the interproted in terms of a balance botween \mathbb{K} end Ca. With regard to the individual nutrients, be conld observe poaltive correlation with yiald only in
 nutrient comporditon of 2eaves conld roflect the nutrient statiss or solz.

Edgnificant genotypic variatim in foliar mutrient concontrations were obsemved by Hahid at el. (1981).

Gopi (1981) found significent correlation for yield with attrogen content of leaf in lear positicas 2, 3, 4 y 8,10 , 14 , 15 ond 26 from the fixpt fuliy opened 2war. The alghent corrolaeton for potabsius with yiela was obtained from the lear at position 2 . Ho obtained no gimiflicmat correlation for leaf phosphorus uith yield. Elfochemien components of yield
tantification of Dicenemical components reaponsible for crop productivity had been attompted in many
crops. Factors such as activity of various onaytuan content of free amino ncide, mitochonarial activity, Co_{2} asamilation rates ett, have been studiad. Srinivamen and kas (1971) reportad increased peroxictase enayme activity during inflorescence formation in grapevine choote. According to Hagram at a2. (1967) onsyatic activities assessed cen provide en estimato or the attaboile potential of a genotyge, by virtue of which other critaria for eariy seleotion con be furniohed. The onegrantic actiofties can also reflect the influance of anvironment and mineral mutrition on plant funotion. In aituations where the activaty of a aingle ensyms can be relatal to some particular aspect of cerelopnent or to sone 1aportant proparty of the final product, according Draper (1976), there exists a possibility of using mayne tachuiques as a tool for selection of inproved genetio material.

Studies relating to onsywe activities and their correlation with growth hava been cerried out by scientiats. Vora and Vyes (197ir) found that catalase actioity increased concoritentiy uith active grouth. They also put forward an inverse relationahip botween the activitien of cotazase and parosidaso and growth in oats. Poroxiduse activity increased whaner there was airferentiation,

Engyare malyals an a tool to juage the mineral nutrition statua is also boing 200sed into. Barret (1982) suegested onzymatic enrikes: Lox phoghorus dericiency in weat, Eie found that althougn the total phosphatases activity had no consistent relation with P deficiency, the Ifraction B' of phosphatases separated by batch chromatogrophy with cation exchange matrix CH cellulose, whers the 'frection B^{\prime} was abocrbed by the matrix contained phosphatasas wich increased with P coficiency.

Rschbech (1982) based on his stuales on bicohemical components of gield in oil palm, arrived at the concluwiona that although aignificant difforences occur for each parameter among different groups of oil polim, there is no overell roletionahip between the blochenical characters and yiela. He eleo found that the enayme activitien ospecially nitrate reduatasa and acid phomphatase are distinctiy influencad by mineral nutzition to suoin an extent that thoy could be considered as diagnostic tools*

Studies made on the whenondriai activity in ofl paim have chom that thero 10 sienipicant corrolatian betwen such activities neasured during nursery gtage and rield psoduction. Such relateons could make it possibie to sort out most productive material at very eariy stage (Rouan and Hoirot; 1981).

In coconut palis, invastisations with regard to onzyse relations, relationships of other cell componente with yield had been attorgted by some vorkers. Hoinicke (1923) and Ezall and Chriet (1929) have shown that catalame aotivity 10 related to growth and vigour of the paim. Sadasiven (1951) had found that tire andosperm of coconuts contains perozidase, dalydrozenases, catilase and phosphatare. Kagarajen and Pandalai (1975) studied the influence of agricuitural practicee on oxidising enxyes of coconut water. They suggestod the possibla use of solection and adoption of agricultural practices using the information an carbohydrato, fat and protain splitting eneynea in coconut wator:

The apparent rate of photogynthes:
estimated by Hathew and Inesedesan (1975),
its correlation with snnual yield and chl

Chasactera x
$\begin{array}{cc}\text { Mate of apparont photonhythesia } & +0.6137 * * \\ \text { vs ennual yleld }\end{array}$

Variation in ciliosophyil content aucng different ove and hybride were soportad by Kathen and Bamadasan (1973).

Two high gielding hybrids i.e., Dwarf x Tall (DxT) and Tell x Dwarf (TxD) had rore chlorophyll comparod to W.C.T. and others in the $\frac{H+1}{2}$ or N / Z leaf which had minimua coerficient of variation.

Wemadosen and Mathew (1977) reported variation in etarcin, reducing sugars and non-meducing sugars in coconut palms. 放ey observed hicher total caroohydrate content in the trubl of bearing paims compared to non-bearing yelra, The bearang palms hed a Cif ratio of 1.0 compared to 0.6 in non-boaring palios. Mathow (1977) described ohonges in carbohyarate constituents in aiseane affected pains. Totak, reducing and non-reducing sugars were algnificantly bighor in the roifage, vilie there vas a depletion of these constefuenta from the rootro.

Bat and Mamadasan (1978) dascribod vaxiationa in starch, reductng ond nonmseduoing suger during comencement of flowesing, tho starch content reduced and non-roducing augere went up.

Andybis of free amo acids (TAN) con throw licht to the piturogen metabolism. p121at (1964) performed oxrcular and two dimenaicnal chronotography on cocomut tissua oxtract. He diontified aspartio aoid, serino,
glycine, glutamifie, 如reonine, alenine, tyroaine, valine, methionine, leucine, minobutyric acia, proline, wetheorine guxphomide, aspargane, 2ybine, cyetine,

(1) Free amino acid content of nut watar diacreases with meturaty while that or 40mal deorencod.
(2) Potiole, stera, roots and IGavan hera round to contais lower quantitios dikn.

Balasubramenimm af al. (19pt) studied the FM patters in baaring and non-bearing pelms. They found that nonmearing peins had sigificently lowor FAM levol than that ar otering peivas. The pattam theg theorvod vere siusiar to that shown by adirogan starvad gumg polas. Thay iound unt who bewing poras had atyoest

 fyrosine wes cetectad only in bearing palms.

Barcolon at sh. (1983) artor gtudyjus free anino acta patterm in many pain vaxietios, corrolated It with sascentibility of thoce paims to lothal ywlouing disoaso and souna that thero is som corrolation betinem prosenco of ixee arginsne oud tho susceptibility of the peld to the disease.

MaTETIALS AND Methons

The experimental palims; ev Heat Coast Tall wore melectad from the axiating plantation at the Agricultural Fesoaroh station, Mannutiay ($12^{\circ} 32^{*}$ Horth 1atitude, Fh $^{\circ} 201$ East lougitude, 22.25 m above M.S.L. . . Pelmi wore melectad based cn yjeld data for the proviout five yearm. The group I consisted tronty palma wich gave jeas then 40 nuts per year on an avarage. The twenty palms under group II gave $40-80$ nuta par year on an average and the twonty palmo of group III gave more than 80 nuts per year. the oxperimantal pales are maintained accoriling to the package of practices recommonded by the Korala Agricultural tonivorsity.

I IIeld datm

Yield data for provious five yoarm were collected Irom the registar maintained in the research station. During the experimental period yiold of nuts was recoreded during ench harvaet.

II Observation on growth charactars

> Observations on the following ass
recorted from the asxty aclected palma.

1. Fotal number of Leavee on the crom

The total count of leaves on the crow were recorded overy two months, taking the Pirst fully opened 2eaf as number ane and counting dormuards. Tha avorago leaf number on the canopy was then calculatad. 2. Parimiloity oi leas emergmee

Obsorvation on the sath of onargence of leavos
 of tays elapsed batueen emargonce of thas suacesaivo leavos are computed.
3. Length of Leaves

The total length of two oldest leavea at the base of the crown was recorded from each palm.
4. Length of petiole

The longth of potiole was measured from the prosimal and of the raciais to the position of the rirst leaflet on the rachis.
5. Humber of leaflets

Whe total mubbor of leaflets in the leaves solected for 1 ength oesuremonts were counted and recorded.
6. Nern length of leaflets

The mean length of leafleta was calculated
 midele ame datel parto of tie lanvos.
7. Garti at collar

The garth of tho trunk at the cozlar rogion was measured and recorded.

III Camical analysis

1. Collestion of seraples

From eacis palin, amples vere collectad melecting the 1 thil leaf from the top excluding the unopened lear, which was suggested by 2411 or end Prevot (1962) as the phyalologically matrure inif of the palth Sampiong tas dene during two poriods tient durting larch-figril, juse prior to the Southmest monson and during Septamber-October, fust fowned the clobe of monsoon.

For the enciyais of nineral olements, carbohydrates and phenclu, tha stipies were collected between 0730 h and 1030 l . Th . of the leaf were colleated and the mid rib was removed. The middle $10-15$ em portion was vashed in distilied water and aftor blotiting the water, it was dried in a hot air oven
at $80^{\circ} \mathrm{C}$, till $1 t \cdot \mathrm{attained}$ constant waight. The dried maples were poudered and stored in polythone bottles.

Gamples for the ostamation of chlorophyll content, catalase and peroxidase activity were collected Iresh. In order to arrest the onyymic action and dagradotion of the blochemfeal coupanmat tha samplea
 eovering adth polythexa wavperin. Expore veighing out

2. Analyois of raneral nutsiones
4. Motat agerogen

The total nitrogen present in lafif thates wan ontinated Following the microcjeldian dilgosition and distiliation methoi (Jacken, 1958). The nitrogen content estienatod thus was expressed as per cent nitrogen on dry welght basit.
6. Phosphomis

Phosphorus was sotinated by venadomsiybdate yoilow collour methot on tin oxtract jropared by digenting powdered leat asmios in 9:2:1 nitrac acta: sulphuric acid: perchlorie acid wixture. The phosphorus content ven expressed as par cont on cry wosedt basta.

c. Potassium

Potassium content of the loef sample was detormined firme photomatrically as suggosted by Juckison (ig58) in the iriacid aigesta, and was oxprossed as por cant of dry veagis basia.
d. Celcium and magasium

Content of caicium and tiognesium wan estriated by Veineme lituation method using Coicon end Erichurome
 mentionea eariier. the contents weit aspreased as per cent on elry welcht begie.
3. malyols of biochemical conatituents
a. Soluble sugars

The solublo zaenrs gresent in the powarea somplea acro axtrastet is zeconol and wera oftimetad by
 es por cont en ary welght baste,
b. 3tarch

Th residue left after extraction of solubla
 The otaren Sraction way hydrolysed to selubla fractions
4. th 52 par cont perchzoric aola at $0^{\circ} \mathrm{C}$ for 20 ornutes trice as suggested by Hencready ot g7. (1950), and the content was estinated by enthrone Eethod. The converaion factor 0.9 was used to calculate the starch content.
c. Totad phemos.

The totas phandicic oundituenta were exthated

 Twe motats was ompessed as pow cont on dry waight bads.

The frea amino eold fractione in the leas samples vere effricted in aquora micohcil ant wero qualitatively
 acki water ($4: 1: 1$). The anfno acdas vere iclentitiad by nithydrin colour reaction.

- Motat chzorophyzi

Criorophyil in the fresily coileated sarplen ves extrenter in acotone by necsirting 1 s empic in a mortar ut the edid wacted sand. A pinch of $\mathrm{Ca} \mathrm{CO}_{3}$ was adied to avolel phewhytio formaticn. Chlorophyli estisintion vas done by recorciag the cifierential absorgedeity of the

Ifltared extract at 64a and 665 nm as sugsested by Btames and Hedzey (1968). The chlorophyll fracticas wore entimated using the following formulae.

$$
\begin{aligned}
& \text { Chlorophylz 'a' }=12.72 A_{663}-2.58 \text { A845 } \\
& \text { ChIorophyil "3" }=22.87 A_{645}-4.67 A_{663} \\
& \text { Thtol chlorophyll }=8.054663+20.29 \text { A645 }
\end{aligned}
$$

Who contents wero expressed as mg / B on fresh weight basis.
f. Cataiase activity

The catalass ongye activity of the fresh tisaues was estimated by the mathod suggested by AOAC (1970) on the extracts propared by comanuting 1 g portions with $20 \mathrm{arg} \mathrm{Ca} \mathrm{CO}_{3}$ mid watar, and wan expresmed by the arbitracy unite as μ noles of $\mathrm{H}_{2} \mathrm{O}_{2}$ decosposed per hour per gran of sample.
8. Peroxidese activity

Peroxidase oncymo activity vas estimated in the ensyme extracts prepared by blendins 1 a Ireah anmple made into 1-2 cm pieces, in chilled phosphate buffer pH 6.0, by its colour developrent reaction with Gualacol (0 methoxyphenol) in presenco of 1 jer cent $\mathrm{H}_{2} \mathrm{O}_{2}$ at substrate (Aedy and Goodition; 1972).

```
4. Goll anclysia
```

Sold ampies wore coliacter fron the batina of each pata to a ceptin of 50 co from the arrface using a bamer dxiven soil tube. The semplez wero collected from 4 points covering 1.5 m radus around tine pila. The bulls of anplo was reduced by quarterting. Those vere thon air artec, ofoved to pass through 2 and seive and atored. Ta soil pif was measured in the muspension with one part soin 1 n 2.5 parts of vatar.

Tho mitrogen content was datormednod by kjeleahi digastion and distiliation method, The avoilable P wam extracted uning Bray Bo. 1 and uas estimatad by the ptsmacu: reduced chloromalybdic blue colour nothoa in yet syotern.
 acotate and wan enthated by slame entasion spactroscopy.

IV statistisel malgas of the data

 and Coohmas (1967):

Bimple IInear correlation coefflumenvo woat worked out betwear y1old and the cinaracters uncier etudy.

Chereatars wisoh axhibitad aignificant corrolstion with yield were selectad to find out thair intarrelationsinipa. Yield prediotion models were proposed basad on the regresation analyois of these characters and 2 ineor prediction quations were evolved.

The mathematical wocal of tho Linuar regreanion equation 1.6

$$
y=b_{0}+\sum_{i=4}^{n} b_{1} x_{1}
$$

Where b_{0}, b_{i}......... b_{n} aro tha pasamotas

Stgnifigunco of the regwaseicn coefticienf by uging the studane's 't' seat. The cootricient ar moltiphe fotermination (n^{2}) vas cazculated to teat the edequacy of tha fitted moid. The diract effoct or veriouv charactors sere calculatod by using the statistic β_{1}

Results

Hg90LTs

This chapter preaents the salient findings frow the observations recorded curtag the course of the acuay, based on geveral trend and statistical analymis of the deta.

3.1. Fifeld from the expersmental pala

 gears inclusive of tuo geat of javasitgatian have been prosentod in Tablas $19,1 b$ anic 10. The classification. of palas to low yielding, wedium yielding' and high Slezeing groupa; wan acmo based en the the low yialding groug of palmg on an averaga protucod 86.07 to 36.0 mbs

The yearwise variation in the jlelding habit of the three groups nan been graphically depicted in Fig.1. The Low yielasig group gresentoi a naxrow ronge of Variation compared to the medium and high yield groups. Trom 1980-81 cnwayan, all the three groups ehowed similar trend. Thero was a general dacrease in gield during 1960-81 perion.

Table 1a. Xield of the experimontal paimo, Group I (Euts/palo1/year)

$\begin{gathered} \text { S2. } \\ \text { NO. } \end{gathered}$	1977-178	1978-179	1989-180	1980-181	1981-182	1982-183	Kean
1	42	35	21	45	26	35	34.33
2	31	13	47	20	41	50	35.00
3	20	26	39	36	43	52	36.00
4	33	18	24	17	35	36	27.17
5	15	19	27	38	31	30	26.67
6	18	15	30	23	40	58	30.67
7	27	19	24	23	38	44	29.17
8	36	29	17	18	42	51	32.17
9	46	33	23	26	46	51	37.50
10	36	31	42	30	29	50	36.33
11	21	17	19	E1	15	44	22.83
12	29	47	29	25	51	49	38.33
13	30	29	30	30	50	44	35.50
14	29	19	34	18	27	43	28.33
15	19	27	31	30	26	33	27.67
16	27	19	16	34	41	34	28.50
17	16	21	32	38	33	43	30.50
. 18	18	19	35	41	36	37	31.00
19	21	37	32	28	23	48	31.50
20	19	97	31	24	38	38	29.50
Hean	27.15	25:05	29.15	27.15	35.55	43.55	31.43

Table 10. Xiold of experimental paime, Oroup II (Hite/palm/yoar)

\%1.	1977 ${ }^{178}$	1978-079	1979-180	1980~181	1901-182	4982-383	Hean
1	89	73	56	21	44	65	58.00
2	70	39	28	45	65	65	52.33
3	52	39	49	61	63	79	57.17
4	50	48	52	30	72	87	56.50
5	49	89	8%	44	67	89	70.33
6	35	44	85	40	78	83	60.83
7	49	58	49	62	53	94,	60.83
3	41	72	109.	90	53	\% 4	69.83
9	22	62	54	32	67	75	51.50
10	49	55	79	86	78	81	71.33
11	43	83	89	4.4	101	7	73.17
12	54	64	98	115	67	8\%	79.83
13	61	143	119	72	98	70	93.83
12	63	72	101	92	60	108	82.67
15	52	84	75	80	90	83	77.83
16	41	80	73	72	102	87	75.83
17	39	104	55	81	50	111	73.33
18	39	58	74	64	51	82	62.33
19	46	90	57	81	50	93	69.50
20.	69	62	67	56	69	80	67.17
Han	50.5	71.2	72.5	63.45	68.9	82.25	68.13

83. NO	1977-178	1978.179	1979 180	1980-181	1981-182	1982-183	Man
1	57	92	148	194	73	127	101.83
2	67	80	79	89	112	107	89.00
3	97	118	73	112	108	112	103. 33
4	40	54	127	103	116	241	97.67
5	81	70	117	84	78	174	97.33
6	77	111	127	116	134	126	115.17
7	101	95	117	99	81	126	103. 17
8	60	119	97	97	60	127	93.33
9	Pt	83	168	89	99	126	106.50
10	99	157	126	106	76	139	117.17
11	62	89	124	96	91	110	94. 83
12	60	83	64	72	108	126	85.50
13	67	90	96	79	112	86	89.67
14	70	76	110	94	64	98	88.67
15	4.3	98	96	79	126	90	88.67
15	73	105	89	88	101	92	91.33
17	50	100	75	6	82	91.	77.00
18	8	98	71	. 84	95	64	8.83
19	117	102	74	60	63	0	83.33
20	67	87	. 76	79	90	02	80.17
Mean	77.0	95.75	102.55	90.65	94.45	109.4	93.97

Fig. 1 YIELD VARIATIONS IN EXPERIMENTAL PALMS YEARWISE

3.2 Mormholozical charactora
3.2.1 Mumer of leaves retained by the palm

The average number of loaves retained by the pelm was computed fron the bimonthly obsexvations collected yons round. The data pertaining to tila are preasted in TabZes 2a, 2b and 2c.

Lov yielding palan, in genaral had leaser number of Ieaves on the crown at any.given trimo. In the twonty palms of tinis group observed under the study, it ranged betraen 20 ond 33.33 . In the madrum yiela group this rame was botiven 24 and 40.5 , winie it was 31 to 40.63 in the high yfeld group of pales. The general rreca nes been given in P18.2.

The simple 2 nnear correzation coofficient between gield and nusber of leaves was vorked out. It was Lound that muber of leavea had a algnificant positive innear correlatico with yiold ($x=0.697 *$). The partial regreastion coafficient of muber of leaves and giald was found to be positive and significent (Table 19). The path coefricient anaiyuls endicated tinet nuedor of laves do not havo mariced direct affect on yitild (Tsbly a0).

Whon tha intor rolationahips batween the number of leaves and othor characters were studied, it
showed that this charaoter hed sigmificant 7 inear correlation with leaf potassium ($x=0.489 * *$) chlorophyll ($x=0.617^{* *}$) total phenols ($x=-0.576 * *$) and 2ant nitrogen ($x=0.312^{*}$).

3v2.2 Leaf length

The obaervations on jeaf length or the experimantal palas are shom in rables $2 a, 20$ and 20 and the gonerai trend ia represented graphically in Fig. 2.

The observations Indicatod that there is an incrense in the averago length of leaf corresponding to the increage in yiold. In the low yield group the leaf length ranged batween 3.86 to 498 motres. It was. between 4.61 and 5.98 m in zediua yiald group and betwen 4.27 and 6.30 min migh yield group.

There was a significent positive correlation between yield and loaf length and the linear correlation coorficient (5) was woried out as 0,674**, Hegression malysis also indicated that the partial regreasicu coofficient is algnificant (Table 19). The oirect affect or jeaf Iength as obtained from the path analyais is show in tabie 20. mia ghows that a 1 per cent chenge In leaf length will be followed by about 0.3 per cent change in yield.

The intorcorrelaticne butiwtin vexious morphologicel and chomical charaoters var nixo itucter and 1t was obsarved that the lengù of leaf is aignificently correlated with leaf nuiber ($x=0.627^{* *}$) leas nitarogen and pocabsium ($x=0.297$;and $0.336 * 4$) and also wh the leaf chlorophyil content ond soluble carbchydretes (r a 0.4 úcem and 0.32^{*}). It sas also recorced that a argnificant negetive corrolstion eriste for this characteg weth the totnl phanols pxerent in the 1eaf ($\mathrm{r}=-0.455^{* *}$) :

3.2.3 retiola lengen

The petiole length recorded from the palms selected for the atudy is presented in Tables 2a, $2 b$ and 20. The gromal txend is shown in Bige.

From the data collectod, it in obserped that there is e considersble difference between the 20 y yield group and the medium yield group while that betwen the lattor end the ingh yield group in not oo. The menn Length in 2 ow yield group was 1.06 and and 1.27 manc. 4. 26 ar respectively in medium and high yield groups.

Tha rolatica batween siold and petaolo lengin was found to be linear with the corcelation coessicient

 numbor ($x^{2}=0.457+ \pm$)
3.2 .4 Number of Ieaflete

Tables 2 a to Cc thow the number of Ieaillote recorded fixim the experinental pains. In tharirst group it ranged fron $\$ 48$ to 260. Orcup Ix had 206 to

The simple innear corielation between number of leaflets and ytozd was found to be signtriant ($r=0.50 \% * *$). It ala0 had a1niliar relation with leaf mumber, leas length and peticle length. Among the chealcal constituants chloropinyli and leaf potassium posted aignificant positive correlation vinile total phenole recorded a negative cooffictent (rable 18).
3.2.5 Hean leaslet length

Whe date on mean Zearlat lengit hava bget Eiver in Sables 2a, $2 b$ and 2c. In group I_{1} it averaced to 87.76 on hitle it was 93.65 on 10 grcep II exit 88.77 ca in group III.

 3.2.6 Pomoatchty of zeaf emergence

The mubur of daws olapsed between the margence of two successivo leaves in oach paln has bsen computed and given in Rebjes say 20 and 2c. The relation of this charectey with yiad has been enomin Fig. 2 . Aproxibataly 30.4 daya doneed between two successipe lear emergences in the 10 a ydeldars. It was about $28 . \mathrm{l}^{2}$ days
 Gering tide as the lear productan capadty of tho parms, it could bo observed thnt the differenes betreen 20 and medivn yielders vas coneidersbin.

Twhen vas atgiricmot negative corralation betwean the periodicity of leaf production and yield of palas. It was aico observed that millar reationohip oxists for thic charactar with Ieaf number, length, petiole lenctin, leaf potnsalum and leat, chiorophyil. With totel phenols and leaflot nujoor it had a pouitive cormelation (TaOL 16).
3.207 gister ait tha tatule at collar region

The cinta pertasning to this have we en fipen in Fribien 2an ats and 2c, In the 20 w yield group, it raged

Table 2a. Morphological characters of the experimental pales, Group I

$\frac{81 .}{81 .}$	Nsan 30. of ienves	Lengtis of 1ear (m)	Lensth of potiole (m)	$\begin{aligned} & \text { no. of } \\ & \text { loarm } \\ & \text { lets } \end{aligned}$	stan length of 1eat1ets (cm)	```pertodi- caty of 2ear emergence (days)```	$\begin{aligned} & \text { Girth } \\ & \text { at } \\ & \text { colsar } \\ & (\mathrm{cm}) \end{aligned}$
1	22.33	4.38	1.10	182	73.50	40.00	68
2	27.83	4.62	1.13	198	84.00	32.73	64
3	25.67	4.88	1.02	176	98.0	25.71	62
4	24.50	4.52	1.20	214	84.00	30.00	65
5	20.00	4.45	0.85	148	85.00	40.00	53
6	29.17	4.28	1.06	210	85.20	25.79	61
7	21.67	4.74	1.15	192	86.00	40.00	68
8	24.50	4.70	1.14	226	86.00	40.00	6
9	32.50	4.85	1. 15	220	84.00	30.00	72
10	31.33	4.32	1.40	208	98.75	32.73	75
11	33.33	4.10	1.20	212	79.00	32.73	71
12	30.67	4.92	1.27	239	78.00	30.00	68
13	28.00	4.72	1.44	250	103.0	30.60	73
14	24.33	4.33	1.09	216	85.00	32.73	57
15	29.33	4.31	1.00	178	73.50	30.00	54
16	23.17	4.58	1.28	186	86.25	30.00	74
17	23.67	3.6	0.79	192	76.00	32.73	56
18	21.50	4.11	0.84	214	98.00	32.73	53
19	34.33	4.91	0.81	260	114.80	30.00	81
20	33.33	4.76	0.84	256	85.2	30.00	64
srean	27.00	4.49	1.08	208.8	87.16	32.39	68.15

Nable 2b. Norphological charneters of the oxperimantal jolas, Grow II

$\frac{81}{\text { No. }}$	Hoan EO. OF Ieaves	Longth or 1985 (a)	Length 0 petiol. (m)	Do. of 2ear1ets	Ham Lengtis of 2eaf 10ts (om)	Periodicity of 1sat' emorgence (claya)	Gurth at collar (cmi)
1	24.50	5.38	1.07	2 d	98.00	32.73	66
2	89, 33	5.49	1.16	238	100.00	30.00	72
3	32.67	5.24	1.20	208	85.75	25.71	69
4	36.33	5.59	1.42	228	85.25	25.71	78
5	34.50	5.72	1.11	$22^{2} 8$	92.75	25.71	65
6	37.67	4.89	1.08	226	98.00	35.71	71
7	39.67	5.29	1.38	230	91.00	30.00	86
8	34.00	5.63	1.37	232	84.00	25.71	81
9	32.50	5.22	1.28	252	100.00	25.71	84
10	37.33	5.98	1.50	264	93.75	30.00	82
11	40.50	5.71	1.35	232	10\%.60	32.73	87
12	32.17	4.61	$1.3{ }^{3}$	230	88.40	25.71	82
13	38,00	5.65	1.13	230	88.40	25.71	71
位	33.67	5.7	1.37	256	96.00	30.00	11
15	31.50	5.14	1.60	232	9.50	30.00	86
16	34.00	4.67	1.52	248	101.00	25.71	84
17	29.50	4.82	1.03	236	105.00	30.00	75
13	33.50	5.09	1.23	240	88.88	32.73	78
19	35.00	4.78	1.06	${ }^{2} 48$	81.00	32.73	76
20	32.50	4.79	1.24	228	81.75	25.71	70
Hean	34.29	5.27	1.27	237.5	93.65	28.40	77.25

Table 2c. Horphologesi characters of the expertnental palas, Group III

$\frac{\text { SI. }}{81}$	Nean No.0f Ieare	Length of Izar (m)	Length 0 of patzoze (m)	No. of 1eaf 1e\%s	tean Iength of 1eas. 1ets (cI)	persodicity of 2eat emorgence (days)	$\begin{aligned} & \text { Girth } \\ & \text { at } \\ & \text { collar } \\ & \text { (cm) } \end{aligned}$
4	40.83	5.10	1.23	332	86.0	25.71	73
2	37.83	5.26	1.14	376	81.3	25.71	77
3	34.50	5.35	1.26	228	102.75	30.00	74
4	34. 17	5.59	1.52	246	97.75	25.73	98
5	39.00	5.87	1.40	254	81.75	25.73	90
6	34.83	5.89	1.49	222	87.2	25.73	82
7	39.83	5.40	1.36	236	80.67	25.73	75
8	39.37	5.33	1.27	226	85.75	25.73	70
9	38,50	6.13	1.44	230	100.00	30.00	76
10	37.67	6.38	1.37	230	88.75	25.73	82
11	35.00	5.43	1.38	256	92.20	30.00	8_{4}
12	34.83	4.72	0.99	246	90.80	30.00	68
13	32.67	4.73	1.30	240	91.40	30.00	77
14	32.83	5.04	1.23	246	90.80	30.00	69
15	35.83	4.27	1.32	230	90.60	30.00	73
15	31.83	4.87	1.23	238	79.25	30.00	67
17	31.00	4.80	1.09	232	90.40	30.00	70
18	32.83	5.24	1.13	240	104.25	30.00	69
19	32.83	4.99	1.15	232	87.2	30.00	71
20	35.33	4.88	1.11	213	85.00	30.00	73
Mann	35.59	5.26	1.26	237.65	88.77	28.29	75.9

Fig. 2 LEAF CHARACTERS IN DIFFERENT YIELD GROUPS

betveen 53 and 75 cas. In medium yiela group it was betwean 65 and 96 om and in high yiold group it was botween 67 and 93 cm itatisticol analgsia indicated that the girth of polm had a significant positive correIetion with yield ($r=0.508 * *$).

3. 3 Ehamoleal canstazuanta

3.3 .1 Toter nstrowen 2t the 2000^{5}

Foisiar aitroisen content of the anmples aravn frow the experimental polme Ausing haroheopril and Aeptembeymotobar La presentat in ?able 3e The variation in foljer pitrogen contant is also presentet graphically in Pige 3 considexing the genn visues from ach yiald group.

The variationa obsorved were within a renge of O. 975 por cent to 1.97 per cont in the fixat group. In the group II it ranged between 1.435 per aent and 2.665 per cent wisile in group III it was between 1.35 per cent and 2.695 per cent. The genoral observation vas that the foliar nitrozen sas Low during Geptomber-october period compared to that during the Harch-Apati period.

When the ralation batwean $2 e a z$ nitrogen contant and yiela was stuaiod a signifticenc positavo linear coriolation Eetwees tiose two wal observed ($5=0.418 \%$).

Table 3. 值trogen content of ieat (per cent)

$81 .$	Yleld groups								
	1			2			3		
	Pertod of enmiliag		Hean	Perioc of gamping		Mean	peried of sampling		Man
	Harch	Septomber		Merch	Septandor		March	September	
1	2.24	0.90	1.570	2.60	1.22	2.010	2.80	1.57	2.185
2	1.68	1.57	1.625	1.40	2.02	1.710	1.95	1.63	1.795
3	1.68	1.75	1.715	1.68	1.63	1.655	2.24	1.57	1.905
4	1.90	1.69	1.825	1.96	1.91	1.685	3.36	1.32	2. 340
5	1.68	1.18	1.4.30	1.95	$1.4+1$	1.685	1.52	1.22	1.420
6	1.12	1.47	1.295	1.40	1.47	1.435	2.24	2.09	2.165
7	1.40	1.27	1.385	1.62	1.69	1.655	2.58	1.22	1.900
B	2.52	1.09	1.805	3.76	1.57	2.665	2.58	1.87	2.225
9	2.24	1.57	1.875	1.68	1.88	1.780	3.08	1.75	2.475
10	3.02	1.81	1.425	2.24	1.944	1.690	1.68	2.18	1.930
11	1.68	1.37	1.525	2.24	1.57	1.905	2.80	1.52	2.150
12	1.68	1.88	1.780	2.80	7.81	2.305	1.28	1.27	1.275
13	2.64	0.72	1.880	2.24	1.32	8.780	7.40	1.32	1.350
14	2.24	1.32	1.78	1.96	1.52	1.740	1.96	1.59	1.775
15	2.10	4.48	1.755	1.38	1.32	1. 350	2.80	1.32	2.050
16	1.68	1.32	1.50	1.9	8. 32	1.340	3.08	1.47	2.275
17	2.80	1.74	1.970	2.58	1.37	1.975	2.09	1.76	1.985
18	1.12	0.83	0.975	1.68	2.02	1.850	2.24	1.63	1.935
19	2.24	1.57	1.875	1.68	1.63	1.665	1.95	1.63	1.755
20	1.68		1.270	1.40	1.47	1.4.35	3.92	1.47	2.695
Hean	1.967		1.65	2.021	1.539	1.78	2.38	1.57	1.985

Foliar nitrogen content al.an had positive correlation with potamaium content in the leaves ($x=286 *$) , Hitrogen had a significant partial linear rogreasion with yield (Table 19). The patin scefficient anolyols chorad that cone per cent change in foliar nitrogen lavel wall be folvoned by 0.15 par geat chenge in yiedd.

3.3.2 Phosphorus content in Iear

Data prementad in Table 4 relate to the phosphorus sitatus emniysed during March-april anc Septermer-notober In the three yiezd grouph, The phesphoms content way generaidy Migher during Eoptamber-Jctobaz seasoni: in groin I_{y} tho maan veluss ranged rrom 0.133 per cont to
 and 0.246 per cont. The third group finover phosphoru: content soustag srom 0.118 pan cont 400.373 \%as cont.

There rea no andificant linaex correlation for phe phocpianus content with yisid frow the parms. Ixcept
 potessium $\{=0.395 \%$; racophorus did nos show my rele-
 stưited.

The fozias potassiua 2 gove was found to vary within 0.95 per cent to 1.55 por cont in tha 13 wiold group.

In the nediun yteld group the variation vas within a range of 1,275 per cont to 2,025 and in aigh yicid group It was betrean 1.325 per cent and 2.175 per cont (Table 5, Fig.4). The overalh potastium atatus was low during soptember-batolier poriod. There wes s marked difference batween the lou and medius yield groups in teras of potassium but between wedium and high yield grouns this differance was not that projected.

Monitoring the relaticnghip between potansiun content end yield, it was fome that high innear correlation oxitats betriven tiose two ($x=0.644 \%$). The partial rogression coerfiaient for potassium on yleza was found oignificant (Table 19). The cirect effect of potassium on yiela uas Found to be 0.289 (Table 20), Finis indicated that about 0.3 per cant change in yieze can be observed with one per cent change in foliar potassium level. Leaf potasalum end chlorongyll also exhibited significant correlation ($5 \times 0.3 \mathrm{~F}^{*}$). There was a negative cornelation between total phenols and potasmium in leaves ($x=-0.469 \%$).
3.3.4 Calcium content in lear

The calcium content in leaves recorded from the samplea is given in Table 6. Maan calcium otatus ranged fron 0.31 per cent to 0.525 per cont in Group $I_{\text {, }}$

Table if. Phosphorus content of בear (per cent)

$\begin{aligned} & 83 \\ & 40_{0} \end{aligned}$	Fand grange								
	1			2			3		
	Person of sempling		Hesm	Period or sampling		Hean	Potioi of sampling		Hesm
	March	Geptrajer		Erach	September		Hasch	soptember	
1	0.152	0.221	0.187	0.245	0.250	0.248	0.152	0.260	0.206
2	0.152	0.22 .1	0.187	0.152	0.231	0.187	0.128	0.270	0.199
3	0.128	0.221	0.175	0.128	0.319	0.224	6.192	0.2145	0.219
4	0.084	0.221	0.153	0.08%	0.221	0.153	0.108	0.270	0.189
5	0.152	0.295	0.224	0.108	0.201	0.155	0.123	0.334	0.236
6	0.177	0.313	0.2045	0.152	0.250	0.201	0.152	0.219	0.182
$?$	0.128	$0,2+5$	0.187	0.084	0.245	0.165	0.084	0.152	0.118
8	0.064	0.221	0.143	0.177	0. ${ }^{\text {ci4j }}$	0.211	0.108	0.245	0.177
9	0.108	0.221	0.165	0.128	0.368	0.248	0.201	0.221	0.211
10	0.128	0.260	0.194	0.085	0.245	0.165	0.152	0.202	0.177
11	0.064	0.201	0.133	0.177	0.221	0.199	0.208	0.344	0.273
12	0.152	0.245	0.199	0.108	0.295	0.202	0.108	0.221	0.165
13	0.084	0.368	0.226	0.108	0.221	0.365	0.120	0.295	0.212
14	0.152	0.245	0.181	0.128	0.295	0.212	0.128	0.245	0.187
15	0.128	0.212	0.170	0.103	0.260	U. 182	0.177	0.285	0.231
15	0.128	0.221	0.175	0.084	0.270	0.177	0.177	. 368	0.273
17	0.201	0.221	0.211	0.084	$0.33{ }^{2}$	0.214	0.108	0.295	0. 202
18	0.152	0.201	0.177	C. 108	0.270	0.189	0.108	0.177	0.143
19	0.177	0.245	0.187	0.178	0.295	0.237	0.221	0.270	0.245
20	0.128	0.221	0.175	0.177	0.221	0.199	0.108	0.295	0.202
yean	0.132	0.241	0.187	0.135	0.263	0.199	0.143	0.261	0.202

Table 5. Rotasaium content of leaf (per cent)

$\begin{array}{ll} \text { SIO } \\ \mathrm{NO}_{0} \end{array}$	Tlold groups								
	1			2			3		
	Period af sumpling		Hean	2eriod of gargling		Hean	Pericd of sampling		Hasm
	March	Septamer		Hasch	Septomber		Hars	September	
1	1.325	1.150	1.238	1.65	1.90	1.775	1.55	2.65	1.60
2	1.50	1.20	1.35	1.35	1.35	1.35	2.05	1.50	1.775
3	1.20	1.20	1.20	1.65	1.55	1.60	1.725	1.55	1.638
4	1.45	1.25	1.35	1.50	1.30	1.40	1.80	1.75	1.775
5	0.90	1.00	0.95	1.60	1.40	1.50	1.85	1.60	1.725
6	1.35	4.45	1.40	1.75	1.50	1.625	1.70	1.50	1.60
7	1.35	1.10	1.285	1.25	1.60	1.425	1.30	1.35	1.325
8	1.45	1.20	1.325	1.975	1.70	1.838	1.55	1.35	1.45
9	1.35	4.45	1.40	1.80	2.00	1.90	1.85	1.95	1.90
10	1.05	0.95	1.00	1.05	1.50	1.275	1.55	1.95	1.75
11	1.585	1.300	1.41	1.65	1.95	1.80	2.00	1.55	1.775
12	1.60	1.50	1.55	1.95	2.10	2.025	1.65	1.95	1.80
13	1.225	0.70	0.963	1.75	1.90	1.825	1.85	1.45	1.65
14	1.65	1.65	1.65	1.30	1.90	1.60	2.025	1.65	1.838
15	1.60	1.20	1.40	1.95	1.55	1.75	2.10	2.25	2.175
16	1.45	1.30	1.375	1.70	1.25	1.475	1.80	1.45	1.625
17	1.40	1.30	1.350	1.80	1.60	1.70	1.65	1.30	1.475
18	1.50	1.45	1.475	1.55	1.35	1.45	1.60	1.40	1.50
19	1.65	1.15	1.50	2.175	1.30	1.738	1.60	1.60	1.60
20	1.35	1.30,	1.39]	1.70	1.55	1.55	1.75	1.35	1.55
Mears	1.404	1.24	1.322	1.655	1.603	1.629	1.718	1.605	1.662

Fig. 3 RELATIONSHIP BETWEEN NITEOGEN CONTENM OF LEAF AND. YIEID

0.33 per cont to 0.525 per cent in group II and 0.205 per cent to 0.52 per cent in group III.

Thers was no conaistent trand in celcium ecotent in relatico to giele.

3.3 .5 Magnesiun content in lear

Table 7 presents the variatico in teras of magnesium observed in the experimental palms uncer tince groups, A Bilightiy higar magnesiua level was observed during Boptonbex-0ctober period, Ganerally it ranged zixu 0.085 per cent to 0. 325 per cent in Iov yield groun, 0.092 per cont to 0.39 per cont in mediwn yiela grous and 0.84 por cent to 0.26 per cent in high yieid group.

The negative zinear correlaticn owserved betwen magnesium status and yiold was not signiricant.

3.3.6 dutrient zatioo

From the anta coilcoted on the nutrient stetus of the palms, various nutrient ration were vorized out ard thecr yelationesips with the yield of parms were

 signifiont 2 incar corrolation uith gield cs palms (Table 17),
Fable 6. Galezum contert as 20af (par cent)

$\begin{aligned} & \text { SL. } \\ & \text { SO. } \end{aligned}$	Tield groups								
		1			2			3	Han
	Perina or anpling		13 man	Period of sampling		3ean	Persca or sajpinge		
	Harch	Septemias		March	Septerabe		March	September	
1	0.44	0.42	0.23	0.45	0.36	0.405	0.40	0.27	0.335
2	0.39	0.39	0.305	0.40	0.36	0.39	0.49	0.39	0.44
3	0. 32	0.30	0.31	0.42	0.33	0.375	0.45	0.35	0.405
4	0.321	0.248	0.401	0.36	0.42	0.39	0.42	0.39	0.405
5	0.49	0.39	0.44	0.45	0.33	0.39	. 0.40	0.33	0.365
6	0.32	0.36	0.34	0.85	0.30	0.525	0.26	0.33	0,305
7	0.40	0.33	0.365	0.35	0.45	0.405	0.55	0.33	0.44
8	0.34	0.33	0.335	. 0.40	0.34	0.355	0.35	0.30	0.33
9	0.36	0.30	0.33	0.52	0.42	0.47	0.344	0.13	0.285
10	0.60	0.52	0.55	0.56	0.85	0.45	0.36	0.27	0.315
11	0.68	0.30	0.49	0.440	0.36	0.38	0.40	0.45	0.425
12	0.28	0.25	0.35	0.36	0.30	0.33	0.32	0.33	0.31
13	0.48	0.42	0.45	0.55	0.27	0.43	0.35	0.27	0.405
14	0.55	0,48	0.515	0.32	0.27	0.295	0.48	0.37	0.435
15	0.55	0.30	0.385	0.36	0.482	0.39	0.42	0.30	0.37
16	0.36	0.34	0.35	0.36	0.36	0.36	0.40	0.51	0.455
17	0.48	0. 36	0.42	0.58	0.36	0.47	0.35	0.42	0.39
18	0.44	0.36	0.42	0.28	0.42	0.35	0.56	0.48	0.52
19	0.35	0.59	0.455	0.40	0.12	0.41	0.40	0.51	0.495
20	0.32	0.38	0.35	0.55	0.48	0.515	0.27	0.48	0.375
Hean	0.424	0.387	0.406	0.447	0.366	0.407	0.411	0.362	0.387

Trale 7. Kagnosium content of 1eap (por cent)

Table Ea. Nutrient ratios in leaf, Group I

$\begin{aligned} & \text { si. } \\ & \text { Bo. } \end{aligned}$	\$/P	$\underline{1} / \mathrm{K}$	$8 / \mathrm{Ca}$	1/1\%	K/2	K/Ca	K/陜	I/Ca+3	$\mathrm{Ca} / \mathrm{Mg}$
1	8.42	8.27	3.65	18.47	6.64	2.88	14. 56	2.40	5.38
2	8.71	1.20	4.22	13.54	7.24	3.51	11.25	2.67	3.21
3	9.83	1.43	5.53	10.09	6.88	3.37	7.06	2.50	1.82
4	11.97	1.35	4.56	13.04	8.85	3.37	9.54	2.49	2.88
5	6. 37	1.51	3.25	6.09	4.25	2.16	4.04	1.4i	1.87
6.	5.29	0.93	3.81	9.25	5.71	3.18	10.00	2.92	2.43
7	7.16	1.09	3.66	8.90	6.57	3.35	6.28	2.19	1.87
8	12.67	1. 36	5.39	12.45	9.30	3.96	9.14	2.76	2.31
9	11.40	1.34	5.68	8.72	8.51	4.24	6.51	2.57	1.54
10	12.45	2.15	4.31	19.32	5.16	1.79	8.00	1.46	4.48
11	11.51	1.08	3.11	8.87	0.64	2.88	8.20	2.13	2.85
12	8.97	1.15	5.09	7.42	7.83	4.43	6.45	2.63	1.46
13	7.43	1.75	3.73	6.00	4.26	2.14	3. 44	1.32	1.61
14.	9.83	1.08	3.46	8.48	9.12	3.20	5.89	2.73	2.45
15	10.34	1.25	5.40	8.56	8.25	4.31	6.83	2.64	1.59
16	8.60	1.09	4.29	8.33	7.88	3.93	7.64	2.59	1.94
17	9.34	1.46	4.69	8.96	6.40	3.21	6.14	2.11	. 1.93
18	5.52	0.65	2.44	10.83	8.36	3.69	15.39	3.01	4.444
19	10.05	1.25	4.12	5.77	8.04	3.30	4.62	1.92	1.40
20	10.28	0.06	9.41	9.42	7.59	. 79	9.82	2.73	. 2.59

Table 6o. Nutrient ratios in Lenf, Groug II

$\begin{aligned} & \text { S1. } \\ & \text { No. } \end{aligned}$	N/P	21/8	8/6a	73/43	E/b	2/Ca	7/3/3	E/GatMg	$\mathrm{Ce} / \mathrm{LH}$
1	8.12	1.13	4.96	7.73	7. 17	4.38	6.83	2.67	1.56
2	8.17	1.27	4.39	10.06	7.24	3.46	7.94	2.24	2.29
3	7. 51	. 1.03	4.42	5.71	7.16	4.27	5.12	2.42	1.29
4	11.05	1.20	4.32	6.24	9.18	3.59	5.19	2.12	1.44
5	10.91	1.12	4.32	8.02	9.71	3.85	7.14	2.50	1.85
6	7.94	0.88	2.73	6.24	8.09	3.10	7.07	2.15	2.28
7	10.06	1.16	4.09	10.68	8.65	3.52	9.19	2.55	2.51
8	12.63	1.445	7.51	45.68	8.71	5.18	10.81	3.50	2.09
9	7.18	0.04	3.79	7.91	7.66	4.04t	8.14	2.73	2.09
10	10.24 .	1.33	3.67	6.50	7.73	2.77	4.90	1.77	1.77
11	9.57	1.06	5.01	16. 14	9.05	4.74	15.25	3.61	3.22
12	10.09	1.14	6.99	12.81	10.05 .	6.14	11.25	3.97	1.83
13	10.82	0.90	4.14	9.13	17.09	4.24	9.36	2.92	2.21
14	8.23	1.09	5.89	14.38	7.57	5.42	13.82	3.85	2.444
15	7.44	0.71	3.46	13.50	9.44	4.49	17.50	3.57	3.90
16	9.27	1.11	4.56	8.4 .1	8.33	4. 10	7.56	2.65	1.85
17	9.23	1.16	4.12	5.06	7.94	3.54	4.36	1.95	1.2.20
18	9.79	1.28	5.29	20.10	7.67	4.944	15.76	3.28	3.80
19	7.04	0.95	4.04	11.82	7.35	4.24	12.41	3.16	2.93
20	7.21	0.94	2.50	6.83	7.65	2.65	7.26	1.94	2.74

©

Table Be, Iutriant ratios in leaf, Gronp III

$\frac{\text { S1. }}{\pi 0_{*}}$	M/P.	D/IS	. W / Ca	11/4B	x / p	x/ca	2/Ng	N/Catis	$\mathrm{Ca} / \mathrm{Ag}$
1	10.61	1.37	6.52	10.07	7.77	4.77	11.03	3.33	2.31
2	9.02	1.01	4.08	10,88	8.92	4.03	10.76	2.93	2.67
3	8.72	1.96	4.70	13.61	7.49	$4.0{ }^{4}$	11.69	3.00	2.89
4	12.38	1.32	5.78	11.14	9.39	4.38	8. 45	2.88	1.93
5	6.02	0.82	3.89	7.47	7.31	4.73	9.08	3.40	3.92
6	11.93	1.35	7.09	13.62	8.82	5.25	10.05	3. 25	1.92
7	16.10	1.43	4.32	2.64	11.23	3.01	6.02	2.01	2.00
8	12.61	1.53	6.7\%	11.74	8.22	4.39	7.63	2.79	1.74
9	12.45	1.27	8.47	18.16	9.01	6.67	19.29	4.55	2.14
10	10.90	1.10	6.13	8.73	9.89	5.56	7.92	3.27	1.43
18	7.93	1.20	5.08	14.69	6.51	4.18	12.09	3.10	2.89
12	7.75	0.74	4.18	9.11	10.9\%	5.81	12.86	4.00	2.21
13	6.38	0.62	3.33	8.60	7.80	4.07	10.51	2.94	2.58
14	9.41	3.97	4.08	12.59	9.85	4.22	13.03	3.19	3.09
15	8.92	1.95	5.57	10.96	9.42	5.88	11.57	3.90	1.97
16	8.35	1.40	5.00	8.75	5.96	3.57	6.25	2.27	1.75
17	9.55	1.31	4.94	10.13	7.32	3.78	7.76	2.54	2:05
18	10.05	1.29	3.72	8.60	7.79	2.89	6.82	2.03	2.36
19	9.31	1.12	3.63	8.76	6.52	3.23	7.81	2.29	2.42
20	13.88	1.87	7.19	17.97	7.69	4.13	10.33	2.85	2.50

3.3 .7 Boxubie ougarg tn iotur

Woble 9 givea the amount of moluble sugars
 ylead groupe over. the two periods. In the Low yleading pasma, soluble carbonydrates were fcund varying betweon 0.581 per cent ond 1.297 per cent in tho wedium yicid group it raa 1 nera 0.753 to 1.646 per cent and in tue high yieid grap 2t was from 0.769 paw cant to 7.355 jer cent. The asfrarince observed bstuen the two poriods was not that projected an the high yiald group compared to the other Ewo groxipli.

Frow the statistical onalysis it was concluded that there is a signifieant corralation botwed yield of palms and content of solublo sugas's in zeaves ($5=0.362^{* *}$). Uith regape to the invex corralationg atucated, this constituent uay found to heve ofgnificant relationsip with total oblorophyl2 acntent in leaven aleo ($x=0.3+5 \times=$).

Soluble sugars had a algaificmt linesr regression on yield (Table 19). The divect effect of this constituent on yiold was not maxked (Table 20).
3.3.8 8tarcs content in ieaf.

The cata pervanusg to this ure given in Mewle io.

Table '9. Soluble sugars in leaf (per cent)

$\begin{array}{ll} 52 . \\ \mathrm{FO}_{0} \end{array}$	Yeid eroups								
	1			2			3		
	Period of samrling		Mean	period of sampling		Moan	Period of sexpling		g学 fosn
	March	Bepitaber		Harch	September		Harch	Eeptenser	
1	0.878	0.678	0.878	1.445	2.049	1.247	1.088	0.955	1.022
2	0.580	0.581	0.581	1.164	0.703	0.934	0.951	1.038	0.995
3	0.903	0.903	0.308	0.895	0.898	0.867	1.194	1.398	1.295
4	0.986	0.985	0.985	0.726	0.657	0.697	1.281	0.811	1.046
5	0.985	0.985	0.985	0.689	0.884	0.787	1.646	0.768	1.207
6	0.878	0.878	0.878	0.880	1.281	1.087	1.329	0.955	1.142
7	0.957	0.957	0.957	1.130	1.646	1.388	0.878	0.929	0.904
8	0.985	6.783	0.885	1.007	1.331	1.194	1.017	1.130	1.074
9	0.783	0.783	0.783	1.233	0.656	0.950	0.629	1.008	-0.919
10	0.623	0.957	0.795	0.811	0.942	0.877	1.681	1.065	1.374
11	1.098	0.722	0.910	1.066	0.704	0.885	1.357	1.353	1.355
12	0.955	0.878	0.917	1.129	0.630	0.880	0.840	0.747	0.794
13	1.4345	0.836	1.941	1.098	0.704	0.901	0.981	0.333	0.907
14	1.098	0.666	0.682	1.312	0.320	0.916	0.930	0.632	0.781
15	0.929	0.806	0.868	0.747	0.550	0.649	1.235	1.729	1.483
16	3.663	0.806	2.235	0.811	0.704	0.758	0.806	0.768	0.787
17	0.726	0.852	0.789	0.725	0.630	0.676	0.017	1.130	1.074
18	1.663	0.930	1.297	1.233	1.017	1.120	0.830	0.856	0.84, 3
19	1.098	0.743	0.921	1.129	0.565	0.643	0.830	1.130	0.980
20	1.008	0.492	0.750	1.500	1.0219	1.425	0.74 .3	0.833	0.813
Hean	1.013	0.821	0.917	1.050	0.859	0.955	1.073	1.003	1.038

Fig. 5 RELATIONSHIP BETWEEN SOLUBLE SUGARS AND YIEID

Hize anan sunch content over the two pariods varied rean 0.719 per cent to 1.953 par cent in group I 0.665 to 1.4461 par cent in group II and 0.719 to 1.285 per cont in group III.

The relationohip of this constituent with yiela was not found significant in the 12mons fasmion.
3.3.9 Totm patnold 3.81 ear

The values for totel ghexale in leaves estioated as famina havo begn uiven in Table it. litha it ranged
 gralip it wex zogsor to a considerajo extant putting a range of 0.478 par cont to 2.596 per cent and thore whis no wrin change for this in tiso inga yieic group unere the range was betwoen 1.261 to 2.556 per annt. It is also seen that during september-october pericu the ampunt is ntightiy wart corpared to March-April porlod (Fig.6). Tue totai phanozs showed a significent negetive eorrelation
 Zear potassium and chiorophyll was also bignificont ($r=-0.469^{*}$ and $-0.485 * *$). 2ne partin2 regreasion coorfindent for tho effect of total pienols on gield was 0lso found to be stanifioent (Tahze 19). The direct efrect of this conatiturnt on yiend wan found to be very zow (radze zo).

Sable 10. Starcin contsent in lanf (per cent)

$\begin{aligned} & 812 \\ & 80_{0} \end{aligned}$	Yield gruaps								
	1			2			3		Nest
	Period of sampling			Pemod of sappling		Hexn	Partoi of sempling		
	March	Oepterber		yench	Septamber		Herch	September	
1	1.485	0.709	1.097	1.260	0.826	1.043	0.756	1.333	1.045
2	0.756	0.258	0.857	1.361	0.466	0.1813	$1.0{ }^{1}+1$	1.369	1.205
3	1.101	0.802	0.957	0.801	1.228	1.015	1.269	0.601	0.934
4	1.014	0.781	0.971	0.825	1.012	0.929	0.825	1.228	1.027
5	0.825	0.709	0.803	0.984	0.826	0.905	1.296	1.261	1.279
6	0.687	0.887	0.782	0.984	1.297	1.141	1.017	1. 333	1.172
7	0.957	0.908	0.930	1.368	1.514	1.44\%	0.98	0.877	0.930
8	1.645	0.757	4.101	1.227.	0.826	1.086	0.642	0.958	0.780
9	1.161	0.781	0.971	0.957	1.228	1.091	0.801	1.251	1.031
10	1.131	1.228	1.180	0.621	0.877	. 0.749	0.601	1.042	0.922
11	1.041	1.359	1.205	0.957 .	1.012	0.935	0.732	1,261.	0.997
12	0.93\%	0.958	0.971	0.903	0.985	0.944.	1.161	0.958	1.050
13	1.287	2.105	1.666	0.708	0.757	0.732	0.792	0.54	0.666
14	0.951	0.622	0.786	0.642	0.802	0.722	1.011	0.426	0.719
15	0.896	0.562	0.719	0.657	0.643	0.665	1-101	0.580	0.570
16	1.071	0.580	0.825	0.708	1.228	0.958	0.621	0.357	0.489
17	0.852	0.501	0.723	0.732	0.960	0.845	0.780	0.643	0.771
. 18	-1.485	0.622	1.053	0.732	0.688	0.710	1.761	1.408	1.285
19	0.093	3.003	1.553	0.792	0.904	0.848	0.930	1.162	1.046
20	0.663	2.390	1.527	0.903	0.733	0.818	0.642	0.853	0.747
y_{1}	0.992	1.066	1.029	0.898	0.941	0.920	0.918	0.973	0.976

2abl. 11. Totel phenolic compounds in leaf (per cent)

$\begin{aligned} & 62 . \\ & \text { no. } \end{aligned}$	Yiozd groups								
	Periont of ampling		Mean	period or sampling		Moan	Poriod of sampling		1 l an
	Harch	Sajterber		March	Septamer		Harcia	Sapteraber	
1.	2.774	2.872	2.522	2.628	1.4 .8	2.238	2.113	1.948	2.031
2	3.292	3.397	3.340	2.055	3.015	2.535	1.948	1.550	1.8349
3	3.828	2.590	3.209	2.594	2.055	3.305	1.598	2.431	2.015
4.	2.055	1.501	1.781	1.504	1.948	1.726	1.550	1.789	1.670
5	3.38.	3-292	3.9*0	1.948	1.773	1.861	1.789	1.508	1.649
6	2.554	2.761	2.658	0.722	0.234	0.478	1.789	2.919	2.35\%
7	3.196	4.109	3.653	1.508	. 1.646	1.577	1.6\%	1.694	1.694.
8	3.016	3.196	3.106	1.693	0.913	1.030	1.508	1.789	1.649
9	3.337	3.387	3.387	1.598	. 3.015	? 307	1.173	2.347	1.760
10	2.628	3.397	3.908	1.598	1.550	$1.57{ }^{\text {d }}$	2.171	2.835	2.503
11	2.421	2.019	2.235	1.550	1.693	1.622	1.217	3.896	2.556
12	3.600	3. 357	3.49%	1.948	1.264	1.606	3.197	1.789	2.493
13	1.450	2.750	2.110	2.293	3.842	2.068	2.528	1.217	1.922
34	2.293	8.750	2.527	1.842	1.508	1.675	1.460	1.484	1.452
15	2.628	4.889	3.750	2.421	2.293	2.357	1.099	2.197	1.548
16	2.357	3.790	3.074	2.421	2.771	2.596	2.421	1.460	1.941
17	2.771	3.8\%	3.334	1.694	2.229	1.961	2.357	2.055	2.206
18	2.490	1.709	2.100	2.230	2.293	2.262	0.924	1.598	1.261
19	1.948	2.781	2.360	2.229	2.230	2.230	3.508	2. 2331	1.970
20	2.113	2.357	2.235	2.230	2.590	2.410	2.055	1.948	2.002
Mean	2.692	3.008	2.85	1.915	1.937	¢.923	1.81	2.042	1.926

3.3.10 Free amino acids (Fan)

Tho. Fak presont in the crude $2 e a f$ extracts were separated chromatographically and wero identified by gisfoyarin collour reaction. Guankifiention with the cinromeogram was not attenptad butt it was concluded that the FAA are present only in tracom. Thure was no marised defference between yield groups in the type of amino acids located but for the didierence with regara to alonine

3.3.11 Crinorophyli content in 3 eaf

In Thale 13a, 130 and 13 c chlorophyid content of the frosin aproples extracted in acetone is presented. It ranged frow 1.658 ms/8 to 2.645 the/ 6 in group I. In groug IT It wag from $2.1 \mathrm{mg} / \mathrm{g}$ to $3.438 \mathrm{arg} / \mathrm{g}$ and in 8 roup III
 higner cillorophy3l contont was recorded during March-April paziod. dine variation betweon yield groups obsorved during larelioApriz period uas more conapicuous than that observed during Saptember-Cctober (81 fm 7).
 uge coricu with a fairly high degrae or innear correlation

Table 12. Bree aninozotis in leaf

$\begin{aligned} & \text { SR. } \\ & \text { NO. } \end{aligned}$	aninoacsd	$\underset{I}{\text { Group }}$	Group	$\begin{gathered} \text { Group } \\ \text { III } \end{gathered}$
1	DL-Alanine	+	-	-
2	DLm-2-amino-n-kutyxic actd	-	-	-
3	I-Arginino mono chloryde	-	-	-
4	DL-Aspartic acid	$+$	+	+
5	InCystefue hycrochzorice	-	-	-
6	jucyatina	$+$	+	+
7	Dimb, 4 digyurcry pheuyd wianine	+	+	+
8	L-glutarie acta	+	$+$	+
9	Gzyoine	+	4	+
10	In-Histidine monochzoride	-	-	-
11	L-Lydroxyprolitue	+	+	+
12	y-Loucine	-	-	-
13	DL-1somieucine	+	$+$	+
14	Diminor-laucine	-	-	-
15.	Inlysine mxionydrociloride	+	+	+
16	Dr-3etiajonine	-	-	-
17	Lutornsthane monohyarochioride	-	-	-
18	DL-D-Phangl alenine	-	-	-
19	L-Proline	-	-	-
20	DJ-merine	+	+	+
21	DE-Threonide	-	-	-
22	DEmFryptophan	-	-	-
23	L-xyrosine	-	+	+
2	DL-Valine	-	-	-

$+\quad=\quad$ Present
$-\quad=\quad$ abgent

Table 132. Chiorophyil content ag/g, gucup I

$\begin{aligned} & \text { SI. } \\ & \text { HO. } \end{aligned}$	March smapling			Septamer sampling			Mran
	Chalorophyll	$\underset{b}{\text { Chilorophyli: }}$	zotes.	Chlorophyll	$\underset{b}{\text { Chla }}$	2 T 202	
1	0.850	0.950	1.80	.85	0.97	1.82	1.81
2	3.33	. 1.58	2.91	. 01	0.91	1.92	2.82
3	1.29	1.53	2.82	.29	.1.18	2.47	2.65
4	1.37	1.51	2.88	1.71	0.82	1.53	2.21
5	0.71	0.69	1.40	1.73	0.80	1.53	1.85
6	1.11	1.24	2.35	. 23	1.07	2.30	1.97
7	0.78	0.78	1.56	. 13	1.24	2.37	1.97
8	0.96	1.94	2.10	.16	1.04	2.17	2.14
9	1.33	1.64	2.97	. 08	1.12	2.20	2.59
10	1.14	1.28	2.42	. 31	1. ${ }^{4}$	2.35	2.38
13	1.29	1.52	2.80	. 23	. 1.07	2.30	1.55
12	1.24	1.34	2.58	1.07	0.93	1.99	1.31
13	0.66	0.75	1.41	1.05	0.86	1.91	. 65
14	1.31	1.42	8.73	1.50	1.27	2.83	1.7
15	0.82	0.88	1.70	0.80	0.90	1.70	. 70
16	1.23	1.38	2.61	1.30	1.13	2.43	. 52
17	1.06	1.20	2.26	1.42	1.20	1.62	. 94
18	1.72	1.99	3.71	\$. 23	1.07	2.30	1.00
19	0.83	1.03	1.86	7. 37	1.24	2.67	2.24
20	0.77	0.90	1.67	2.22	1.19	2.34	2.00
Hean	1.09	1.238	2.297	1.134	1.047	2.134	2.206

99

2able 130. Chlorophyll content wg/g, Group II

\$10.	Hawoh enmpling			Septenbar sampins			Meen
	Chlorophenal	chiorophyll	Total	Churophyin 0	$\underset{b}{\text { charoropil2 }}$	Totail	
1	0.8)	0.92	1.74.	1.16.	1.30	2.46	2.10
2	1.23	1.45	2.68	1.48	$1.57{ }^{\circ}$	3.0%	2.852
3	1.37	1.50	2.89	1.3)	1.13.	2.45	2.673
4	1.35	9.45	2.80	1.19.	1.0\%	2.23	2.597
5	1.44	1.78	3.20	1.23	1.15	2.40	2.80
6	1.71	2.12	3.83	1.73	1.32	3.05	3.438
7	1.29	1.53	2.82.	1.78	1.46.	3.21	3.028
8	1.47	1.90	3.37	0.99 .	0.84	1.81	2.603
9	1.32	1.67	2.99	1.65	1.17.	2.82.	2.905
10	1.24	1.67	2.91.	1.65	1.45	3.10	3.005
11	1.43	1.84	3.27	1.54	1.24	2.75	3.010
12	1.41	1.63 .	3.05.	1.42 .	1.17	2.60.	2.824
13	1.26	1.49	2.75	1.67	1.30	2.98	2.863
14	1.23	1.4 .5	2.68	1.18.	1.50	2.63	2.68
15	0.81	0.68	1.52	1.38.	2.19	2.57	2.045
16	1.21	1.37	2.88	1.90	1.18	3.09	2.8\%
17	1.72	2.01	3.73	1.50	1.344	2.82	3.287
18	1.49	2.76	3.25	1.59	1.58	3.17	3.212
19	4.29	2.53	2.82	1.42	1.20	2.62	2.721
20	1.55	2.05	3.60	1.37	1.22	3.59	3.096
Msx	$1.33{ }^{4}$	1.591	2.925	1.458	1.267	2.725	2.825

Inbie 130. Chiorophyil ecotent mg/k, aroup III

$\begin{aligned} & \text { s. } \\ & \hline 10 . \end{aligned}$	Yaxch tamping			Segtenior sampling			Kean
	$\begin{gathered} \text { Chloropayli } \\ \text { a } \end{gathered}$	oblorophyl2.	Tocal	$\underset{a}{\text { Chilorozhyll }}$	$\underset{b}{c} \underset{b}{c}$	Totre	
1	1.51	1.40	3.11	1.59	1.47	3.06	3.086
2	1. H_{4}	1.76	3.20	1.26	1.15	2.40	2.80
. 3	1.26	1.4.8	2.74	1.54	1.24	2.75	2.745
4	2.45	1.70	3.15	1.30	1.08	2.39	2.769
5	1.47	1.59	3.00	1.30	1.13	2.43	2.715
6	1.78	2.11	3.88	1.66	1.34	3.01	3.444
7	1.85	2.53	4.58	4.59	1.47	3,06	3.821
8	1.85	2.53	4.38	1.69	1.58	3.28	3.831
9	2.45	1.71	3.16	1.12	0.95	2.07	2.617
10	1.63	2.27	3.90	1.45.	1.31	2.76	3. 331
11	1.48	1.83	3.31	1.17	0.93	2.10	2.704
12	1.19	1.52	2.71	3.37	1.50	2.97	2.79
13	1.55	2.65	3.40	1.69\%	2.98	2.678	0.037
14	1.37	1.59	2.96	1.37	1.2?	2.09	2.776
15	1.23	1.44	2.67	1.45	1.26	2.71	2.69
16	1.23	1.38	2.67	1.41	1.27	2.58	2.648
17	1.23	1.38	2.61	1.37	1.16	2.50	2.554
18	1.03	1.13.	2.16	1.22	1.11	2.34	2.248
19	1.50	2.00	3.50	1.69	1.28	2.97	3.235
20	1.20	1.47	2.61	1.07	0.97	2.03	2.321
Mean	$1.1+32$	1.751	3.183	1.402	1.218	2.62	2.902

Fig. 6 RELATIONSHIP BETWEEN TOTAL PHENOLS AND YIELD

(2) March

Fig. 7 RELATIONSHIP BETWEEN CHLOROPHYLL CONTENT AND YIEID

2inoar regression was recorded for this congtituent on yteld (Thble 19). The path coerficient nalygis friticatod that about $0_{n} 25$ per cent change in yiold 28 posaible with one por cent change in chlorophyll contant in the 2 asf . 3.3.12 Catalase activity

Leaf catalase actipity in torms of micro molos of $\mathrm{H}_{2} \mathrm{O}_{2}$ consumed per hour in fresh anmples collected from tise polos under Investigation is presented in Table 14.

It wes found that the variation in the activity idd not exiabit any consestent trond, and the statistical anciysis showed no algnificant effect for this towarda yield of palms. Eut it was observad that catalase activity has s1gnipicent corrolation with lexi potascium ($x=0.359^{* *}$), phenols ($x=0.336 *$) and atarch ($x=0.406 * *$).

3.3.13 Peroxidase activity

Lese peroxidase activity in texms of chenge in optical aensity (0 D) at 20 yecond intervals are given in Tabzes 15a, 450 and 150.

The average change in on in the 30w yieid group was between 0.0601 to 0.2508 while at was 0.0793 to 0.2029 . in the meduum yield ercap and between 0.0763 to 0.2131

Sable it: Cataliase actupity in leaves ($\mu \mathrm{\mu mol} \mathrm{H}_{2} \mathrm{O}_{2}$

K1.	Grcup 1	Group II	Group 1 II
1	372.58	345.97	505.65
2	399.19	479.03	496.77
3	345.97	487.90	496.77
4	328. 23	390.32	425.81
5	186.29	416.94	239.52
6	452.42	487.90	487.90
7	310.49	496.77	487.90
8	434.68	434.68	248.39
9	159.68	461.29	487.90
10	115.32	266.13	320.23
11	470.15	452.42	168.55
12	452.42	487.90	425.81
13	106.45	470.16	443.55
4	354.0	$3+5.97$	363.71
15	156.68	319.35	487.90
16	156.68	443.55	141.94
17	345.97	275.00	159.68
18	4.34.68	496.77	487.90
19	$54+1.13$	283.87	195. 16
20	470.16	159.68	399.19

Pabre 15mio peroxidase activity in iear, Group I

$181 .$	OD at 20 seconcs intarval							Averase chenge in $018 / 20$ seconds
	40	60	80	146	120	140	150	
1	0.2757	0.4202	0.5685	0.6990	0.8239	0.9586	1.0969	0.1359
2	0.3979	0.6198	0.8539	1.0458	1.2219	1.3979	1.5229	0.1875
3	0.2675	0.4089	0.5528	0.6930	0.8239	0.4586	1.0445	0.1297
4	0.2924	0.4049	0.6990	. 0.8869.	1.0969	1.3010	1.3979	0.1843
5	0.2292	0.3505	0.4815	0.6198	0.744 .7	0.8539	1.0000	0.1285
6	0.3372	0.5229	0.7213	0.9208	1.0969	1.3010	1.3979	0.1768
7	0.3010	0.4685	0.6383	0.7959	0.9585	1.0969	1.3010	0.1667
8	0.2757	0. 4089	0.5376	0.6576	0.759	0.8860	1.0000	0.1207
9	0.2344	0.3566	0.4559	0.5528	0.6383	0.7213	0.7958	0.0920
10	0.5086	0.7447	0.9586	1.1549	1.3979	1.5229	*	0.1690
11	0.3279	0.4819	0.6198	. 0.7 .447.	0.8606	1.0000	1.1549	0.1378
12	0.2447	0.3665	0.48 .15	0.6021	0.6990	0.7959	0.9208	0.1128
13	0.2441	0.3605	0.4815	0.6021	0.6990	0.7959	0.9208	0.1128
14	0.1079	0.1675	0.2365	0.2924	0.3566	0.4089	0.4685	0.0601
15	0.2757	0.4202	0.5086	0.6383	0.7213	0.8239	0.9208	0.1075
16	0.2757	0.4202	0.5086	0.6383	0.7213	0.8239	0.9208	0.1075
17	0.1079	0.1675	0.2366	0.2924	0.3565	0.4089	0.4685 .	0.0501
18	0.1938	0.3279	0.5086	0.6990	0.9208	1.2219	1.6990	0.2509
19	0.4815	0.6778	0.8539	1.6458	1.3979	1.6990	, -	0.2029
20	0.3566	0.5376	0.6778	0.7958.	0.9208	1.0458	1.1549	0.1331

Sable 15b, Eercmiase activity in Ieaf; Group II

$\begin{aligned} & 82 .{ }^{\prime \prime} \\ & 180 \end{aligned}$	OD at 20 seconds interval							dyarage change in $00 / 20$ saccnis
	40	60	80	100	120	140	150	
1	0.1249	0.2007	0.2757	$0.3+63$	0.4202	0.4815	0.5528	0.0713
2	0.3372	0.4949	0.6576	0.7959	-0.9206	1.0458	8.8549	0.1363
3	0.2840	0.4202	0.5598	0.6778	0.7959	0.3861	1.0000	0.1193
4	0.2840	0.4202	0.5528	0.6778	0.7959	0.9208	8.0000	0.1193
5	0.2840	0.3979	0.5289	0.6198	0.7213	0.8239	0.9208	0.1061
6	0.4815	0.7695	8.0000	1.2019	4.5223	1.6990	-	0.2029
7	0.2448	c. 3168	0.4437	0.5376	0.6198	0.6990	0.7696	0.0876
8	0.3279	0.4815	0.6021	$0.74+7$	0.8539	1.0000	- 1.0969	0.1282
9	0.5528	0.8239	1.0969	1.3979	1.5229	-	-	0.1617
10	0.2757	0.3979	0.4949	0.6021	0.7447	0.7596	0.8539	0.0964
11	0.3080	0. 4338	0.5528	0.6778	0.7696	0.8561	1.0000	0.1165
42	0.3872	0.5528	0.7213	0.8539	8.0000	1.1549	1.3979	0.1688
13	0.2292	0.3098	6.3980	0.4845	0.5528	0.6198	0.6990	0.0783
14	0.6021	0.8861	1.1549	1.3979	1.6990	-	.	0.1828
45	. 0.3979	0.6021	6.7959	1.0060	1.2219	1.3979	-	0.1667
16	$0.26+1$	0.4202	0.5376	0.74127	0.7959	0.9208	1.0000	0.1193
17	0.3779	0.5850	0.76\%	0.9586	1.15479	1.3010	1.3979	0.1667
18	0.3010	0.4437	0.5850	0.74447	0.8539	8.0000	1.1544	0.1423
19	0.3979	0.6021	0.7959	1.0000	1.2219	1.3979	-	0.1657
20	0.3010	0.4437	0.5850	0.7447	0.8539	1.0000	1.7549	0.3423

Teble 15el Feroxidese activity in leaf, Group III

$\frac{57}{810_{0}}$	OD et 20 soconds interval							Aํarase change in 0D/20 seconds
	40	60	80	100	120	140	160	
1	0.3566	0.5080	0.6778	0.3239	0.9586	1.0969	1.2219	0.1442
2	0.3768	0.5376	0.6576	0.8239	0.9586	1.0450	1.2219	0.1409
3	0.4345	0.6778	0.8061	7.0458	1.3010	1.5229	-	0.1735
4	0. 3872	0.6021	0.7959	0.9586	1.7549	1.3979	1.5229	0.1893
5	0.3010	0.42318	0.5376	0.5579	0.7447	0.8539	0.9586	0.1096
6	0.5229	0.7213	0.9208	1.0969	1.3010	1.5229	1.6990	0.1950
7	0.5086	0.7213	0.8867	1.0458	4.2219	+ 3979	1.59970	0.1984
8	0.5850	0.8539	1.0969	1.3979	1.6990	-	-	0.1857
9	0.4202	0.6198	0.8239	1.0000	1.1549	1.3979	1.6990	0.2131
10	0.4089	0.5850	0.7447	0.8851	10.04,58	1.15:9	1.3977	0.1648
11	0.3098	0.4559	0.5021	0.90447	0. 8539	0.9583	1.0969	0.1312
12	0.2219	0.3279	0.4318	0.5376	0.6383	0.75	0.8239	0.1003
13	0.2219	0.3372	0.4437	0.5528	0.6576	0.7447	0.8539	0.1053
1\%	0.2640	0.4202	0.5376	0.7447	0.7959	0.9208	7.000	0.1193
15	0.2076	0.3098	0.3979	0.4949	0.5686	0.6383	0.7213	0.0856
16	0.3979	0.5650	0.7696	0.9586	1.1549	1.3010	1.3979	0.1667
17	. 0.1805	0.2596	0.3372	0.4202	0.4949	0.5685	0.6383	0.0763
18	0.3010	0.4318	0.5686	0.6990	0.8239	0.9208	1.0458	0.1241
19	0.3979	0.6021	0.7959	1.0000	1.2219	1.3979	-	0.1667
20	0,2076	0.3098	0.3979	0.4949	0.5686	0.6393	0.7243	0.0856

In the bigh yield group. Peroxidase ectivity also did not show any consistant relation with yield or other charactess under the study.
3.4. Sosi melyoia

The coll of tha plantation site is well drainod Laterite with par ranging from 4.8 to 5.6 .

Tabie 16 geves the data on soll nitrogen, yhosphorue and potasalun atatus. The soin nitrogen content vemed from 0.028 per cent to 0.252 per cent wien the basins of 1ow yielding palms was considered. In the wedium yield eroup it wee between 0.004 to 0.616 per cent and in the high yiead group it was between 0.112 and 0.448 per cent. The aveilable phosphorvs (Eray No.1) ranged between 14-33 ppu In both low and modium yield groupa and 18-4t ppio in the high yield group. The avoilable potasalum content ranged Prose 0.016 to 0.032 per cent, 0.01 to 0,036 per cent and 0.0 to 0.04 per cent in 20w, mecium and high yield groups respectivoly, Tho nutrient status of moli and plent vere compared and it was found that soill and plant nitrogen had a algnificant positive correlation ($r=0.273^{*}$). Soli ond plent potassium also had significent correlation ($x=0.39 *$). There was no Ifnesy relationohip betimen soil and plont phosphorus.

Table 16. Content of nitrogen, phosphorus and potaosiun in soil

$\frac{51}{\mathrm{sig}_{0}}$	Itexd groups								
	1 -				2		3		
	Sotel (3) (3)	$\frac{\text { Arablable }}{(\text { ppon })}$	$\frac{A v a i l e b l e}{K(\%)}$	$\begin{aligned} & \text { Totad. } \\ & n(k) \end{aligned}$	$\begin{aligned} & \text { Available } \\ & \frac{1}{(p p a)} \end{aligned}$	$\frac{\text { Arathable }}{5(\%)}$	$\begin{aligned} & \text { Potal } \\ & 1(\%) \end{aligned}$	$\begin{gathered} \text { Available } \\ P(p \sin) \end{gathered}$	$\begin{aligned} & \text { Ava11- } \\ & \text { able } \\ & \text { FSE\} } \end{aligned}$
1	0.94	18	0.017	0.308	28	6.023	0.354	22	0.027
2	0.22	3	0.022	0.196	26	0.019	0.448	18	0.027
3	0.8	18	0.017	0.224	18	0.019	0.336	31	0.026
4	0.056	22	0.021	0.350	24	0.032	0.112	31	0.036
5	0.028	20	0.017	0.140	31	0.036	0.168	18	0.030
6	0.028	16	0.027	0.055	21	0.029	0.364	32	0.028
7	0.168	18	0.022	0.360	27	0.028	0.940	31	0.030
8	0.140	18	0.027	0.36%	28	0.028	0.168	32	0.028
9	0.140	20	0.021	0.616	26	0.026	0.36	4.4	0.027
10	0.168	24	0.016	0.448	26	0.027	0.36	26	0.028
11	0.168	16	0.017	0.364	23	0.026	0.364	28	0.027
12	0.168	14	0.016	0.112	14	0.027	0. 364	31	0.025
13	0.252	25	0.032	0.084	20	0.027	0.221	18	0.018
14	0.112	33	0.025	0.168	22	0.036	0.354	4.4	0.040
15	0.252	26	0.019	0.168	33	0.029	0.392	30	0.023
16	0.112	23	0.032	0.168	23	0.022	0.312	30	0.023
17	0.056	33	0.009	0.196	26	0.022	0.112	22	0.019
18	0.056	30	0.010	0.1210	27	0.017	0.224	30	0.026
19	0.252	33	0.032	0.168	40	0.027	0.14	26	0.01
20	0.252	30	0.032	0.14	25	0.010	0.195	28	0.028
Mean	0. 145	22.55	0.022	0.239	24.75	0.022	0.279	29.3	0.027

2able 17. Cobificients of corralation (simple 1inesar) butwen. yleld (y) morpholozical and biochomacal characteriotice.

$$
\begin{aligned}
& \text { - Gignificent at 58 1evel }
\end{aligned}
$$

$$
\begin{aligned}
& \text { EmbRot signsficent }
\end{aligned}
$$

Tabie 18. Coofricients of intercusreletion between meloctad characters

Charceter	Tobral chicrontyin in Ieat	Lotar phenols in lear	Sozubie sugars in 2 exf	Total axtrom gen in Leaf	Ho.er Zeavor	$\begin{aligned} & \text { Jength } \\ & \text { of } \\ & \text { leap } \end{aligned}$	Leagth $0{ }^{\circ}$ patzole	Hon of 3eat$18 t s$	persoakcity 0^{2} zeta pro duction	Gutum at colis:
Potasmua	0.360**	-0.469**	0.789^{38}	0.285	0.4890*	$0.335 \cdots$	0. ${ }^{2}$ ¢ 40	0.394**	-0.398**	$0.373 * *$
Totol chlorophyll in 2eai		-0.485**	0.33+7**	0.1524^{35}	0.616**	0.460**	0.290*	$0.379^{* *}$	-0.522**	$0.382^{* *}$
notel phenols in leef				-9.82320	-0.576**	-0.4.55\%	-5.313*	-0.539**	-0.446*	-0.453**
				0.772^{43}	0.237^{23}	0.312	0.234^{803}	0.099^{178}	$0.0 .156^{\text {83 }}$	0.166^{KS}
Tratal intio in 1 er P					$0.312{ }^{*}$	0.298*	$0.304+$	$0.067^{\text {ES }}$	-0.206 ${ }^{106}$	0.277
Wusber of 1	caves					0.619**	0.4754**	C.447**	-0.631**	0.663**
Lengti of 2	ear						0.574**	0.476**	-0.430**	0.600**
Lengtin of p	cetola							0.303^{*}	-0.338**	0.64 3**
Jumber of I	caflets								-0.271*	0.565**
Perdositity	of 2000 prot	auetion							-	-0.395**

[^0]Table 19. Partiel regregoion coefflelents for yield on selected characters.

S3. KO_{0}	charucter	Eegressica coefficient B_{2}	$\begin{aligned} & \text { Standard } \\ & \text { error } \\ & \text { SE } B_{1} \\ & \hline \end{aligned}$	t
1	Potascium content in leat	33.298	1.237	26.909**
2	Totol chlorophyll content in lear	14.399	0.699	20.59\%**
3	Total phesol content liv 1092	-1.468	0.495	-2.904**
4	Soluble sugar content in leaf	6.432	1.043	6.168**
5	Hitrogen content in leaf.	11.798	0.794	14.857**
6	Lear number	0.637	0.236	2.691**
$?$	Lear lereth	15.220	T0.6no	24.258**
$\mathrm{n}^{2}=0.736$				

** Significent at one per cent Level

Table 0 . Direct and indrect affects of solected characters on yiela

Characters	Potassiua	Ghiorophyll	total phenols	Goluble sugars	Iftrogen	Leaf number	Leaf longth	$\begin{gathered} \text { Totaz } \\ \text { (I) } \end{gathered}$
Potassium	0.289	0.0918	0.0156	0.0117	$0.04+21$	0.0608	0.102	0.614
Cha orophgil	0.104	0.254	0.0172	0.0215	0.0228	0.0804	0.14	0.637
Totel phense	.s-0. 155	-0.123	20.0355	-0.0154	-0.0332	0.00715	-0. 138	-0. 553
$\begin{aligned} & \text { Solubze } \\ & \text { sugarw } \end{aligned}$	0.0547	0.0804	0.0088	900521	0.0854	0.094	$0.09 \div 9$	0.364
Hitrogen	0.0822	0.0393	0.0019	0.0106	2. 248	3.0387	0.0895	0.416
Lear numar	0.14.	0.156	0.0204	0.0947	0.0462	0.124	0.188	0.692
Leaf 1ength	0.0971	0.117	0.0161	0.0193	0.04 .35	0.0768	0.304	0.674

Direab effects are denoted by urdeninned ingures

DISGOSSIOH

Identification of yield components has definite edvantage in peremial crop breeding and production. Horpholozical charactars are accounted generally to judze the overall productivity of the plant. Although this con furnioh a genoral assessmont, a sound knowledge of causal meonanioss at coilular or molecular level is necessarily warmated for any kind or mentpuiationg yonitoring the biochemical end physiolozical mechaniams attain ieportance at this point.

Identification of biochemicel parameters responsible for, better plant performance in tercs of yiela, breading value, disease resistance etc. is betng attempted in various cropis. In the follouins pagen the realle recorded from the data colleoted curing this staify are briafly discussed. 4.1 Xield from the expertmental palms

Coconut paims apecially the tall typica types take $4-6$ years to reach the stage of firat beartng. Diring the inftiel gears, therg is much variation in giold with the incresse in age. It usunily takes another $6 \mathbf{6} 9$ years to come to the stage of full bearine. The variations in
gield, once the palins attain atmbinized yleld, mogily confine to a limitac range unieas they have the altemate or irragular bearing habit. The reailisation of good yield frow a plantation is thua dependent on aystematic salection procedures carriad out to enoure the pield potential and also the naintemance practices. A aisable part of the yield from the plantation will be contributed by the high yielders. kixray (1950) iound that 9 por cont. of the trees in a plaptation which cars under the high yielding category contributed as much as 21 per cent of the crop.

Observing the yiold variacions of the three groups of paigs meder study, it was found that the high and medium yiele groups showed a widar runge or yardation compared to the low yiolders. necording to Aboywardenc (1971) woather paraneters have more pronounced effecte in coconut yield then in any other crop. The high and wedivio yieldera alow a bettor capacity to utilice the cogenial conditions for higher procuction, while under the unfevourabie condstions they can sustain optimal levele of growth and production. The potential ability of the joor yielders boing 20w, increased production noed not be obtained oven uncer cosioniel acnaltions.

4.2 Horpholozical charactors 4.2 .1 Humber of jeaver retained by the peam

Tumber or zeaves have been maxised as an index to the procuction potential of the pala. The total dxyuntter production by tine pe2m can postly be manifested from the production of Ieaves and nuts, as the amual incrawent in the lengtin and girtio of the trunt in only marginal. lumber of leavea and drymatter profuctico axe two autually reciprocstang characters one enhancine the other.

Frow tho observations recorded under this study It was found that the high gield grous of palns had 40.03 leavas on an avorage compared to 33.32 in $20 y$ gieldern. A. Fairly high dogres of correlation ($5=0.692 \%$) (as recordod betwoen the mumber of leaver and yiela. Path coerficient analyais with selected ohoracters (Table 20) indicated that lone number contributes to the yleld wore incilrectiy tion itw ajroct offeats on yiald. Loaf longth was one of the wost 1 woprtant paramotors contrisuting to the yield in this respoct. Tho potassium statug ndd chloropaylil contant were also found to give mbstantial. contribution. Tite may substantifete the effect of leaf number on gield in ench a wey that the not increment in
dxy matine accumulation realisod through the enhanced photosynthetic area and synthesiaing capacity rerlects in nut yiold also. The partial innear regression coofficient of leaf numbrer on yield was fomb to bo algniricont. rixe correlatiuns mentioned botwen leaf numor end lear potasaium, chzorophyli, totai phonole and nitrogen vere also found to be significant. imin indicatas that these constitucnts can tnsluenee the net production of zeaves by the palm.

Thus as a rocopitulation it oan be stated that number of Leaves retained by the palm is an Indscation to ita yioid potential which inturn reaults from the indirect influance of this character through the chemical constitucnts such as potassius, chiorophyll otc. and the number of leavesiatself is also influenced by the anolnt of chemical constituents present. sicilar observations were almo recorded by Patel (1938), Batyabalan (1972), Hathey and Eanadasan (1975) and Oopi (1989).

4,2.2 Lami length, potsole iensth, number of leaflets and length of leafleta

From the observations recoried uring viv cuarce of expariments it was concluded that the high yielding pajme differ significently with respect to the deaf characters such as leaf length, patiole length, number of

Laaflets and hensth of jeafiots from the low yielaint palus. Theso parametars can genoraily enhance the net photosynthesterby 2 ncreasing the leaf area and by better leaf oriontation. The positive correiation for these charactors recorden "under this atudy can be viewed as their combined effact on the ary matter production of the paim. The high yielaing paiog have the inhosent copecity to utilise the photosynthatos nccusulated for tho produetion of nuts by way of inproving the sink capaoity.

Loaf length was found to be one of the mont important paramotars contributing towerds the gield directiy. The path coefficient analyeis indicated tact a one per cent ohange in lear length cen cauce 0.3 por cent chenge in yield of nuts. The zinear regression for this charecter on yield was aiso recorded as olignificants Thus zeat length can also give an indication of the yield potential of the pala. frinke the number of lanves, leaf langtin hat a direct effect on yield. Its indiract offeat was most pronounced through the chzorophyil contant.

The positive correlation obsorved between leat length and other charectexs like louf numbr, potasaium content, cilorophyin, nitrosen and soluble sugers, and the negatavo corrointion vith totel phenole indicate that

221 these companents of yield are intar-related and the manifastation of the production potential of the pain can bo cone only by giving ailowance to thoge compononts. Tite findinga are in conformity with the marifer observaticns recordod by Aboywardene (1976). 4.3 perfodictty of 3 eaf production

The lear production rate 18 another findeation to the health ad vigor of the palm. Tho obsearations recordea duxing the course of thas atudy indicated that the high ylelding pains produce loaves nore fraquentiy than the low yielders. It took approximately 28 days for a IIgh/mediwn yielcer between two suacessive lear asergen while it was about 30 days for the poor giclders. Tils interval is influcnced by the season of the year. During the sumer seeson the recurrent leaf emorgence take: even ahorter interval.s whate curing the ratny season it takea zore. Considening the net number of leaves produced per yeur, the difforence betwen low and high yielders will not be wore then one or two leaves per year. But the number of leavos retajnee by a high yielder is mioh more than thet in a low yledder indicating that the high yieldara not oniy produce leavea more irequentiy but are also capiole of rotaining them for longer period then
the IOW yielders. Finis can also be influanced by the cultural practices follovea.

The Lear production rate and the duration of retention 13 vell marked on the man lear stam on tive crown risis can give a good indication of the vigour of the poim and thoreby its production potential.
4. 4 Girtin at collar

The observetions indicated that the yield of palms are corrolatod algnificantly with the colier girth of tire pales. The vegetative growth in terms of developwent of the columar trunk takes ebout $4-5$ yoars to initiate. The girti of the devoloping truns depends on the fertility and varietal nature; It undergces minizum change ance the maximu has been attained, unleas there 1c serious malnutrition or Gisease infoction. The girth of mature palw at the collar region $1 s$ a resultant of the vegstative growth attained by the palm during the previous saason. This on thus give a good iniloation of tire possible yialds as re21. Its positive reletionahip vith yigid is furthey atreased by the significont positive corrtiation observed with all the yiold componants studied. Slacilar finding was reported earlier by Ferayena and Jom (19'42).
4.5 Chematcal conatituents
4.5.1 Notal aitrogoz content in tho $20 a r$

The total nitrogon in the lear lamina showed signiffeant cirforences among the threa yiold groupto The fncreate in foziar nitrogen level obsorved an madum and high yialders could be attributed to the difference In the ebsizty of pains to ebsorb the nutrient element from soil which recults from genetically contronled factore operating through their effects on root production and phyalalosy: The root proaucing cayactty of poor ylelderg has been found to be low compared to high gielding pulms, resulting in the reduced uptate of nutrionts. Varlations towarte botiz sides were observed in the follar nitrogen zovel, from the criticed level of nitrogon proposed by Z1910r end Prevot (1962) in the 14 th Ieaf.

The foliar nitrogen lovel exhibited algnifiont innear regrossion yield of nuta from the poles. The Datin analysis has indicatod that the droct affect of nitrogen on yield is most proncunced. a one per cent change in follar nitrogen can cause 0.15 per cent change in yield of nuts fron the palms. The significant correlation obsarved between gield and foliar nitrogen lovel of the pelve was mostily tue to this cifect. Sosth (1969) had observed that foliar nitrogen has a close ansociation
with tive female flowar procuctich in the pelws. The rate of production of SIcwor bunches shao uns reportad to have close relation with roliar nitrogen level. Thus Low level of nitrogen in the leaf larana con be reflactec in the realised yield frow the palms. It wa: alno observed that during monbocn season the mitrogen level falls. Ieciuced uptoke of nitrogen with the onset of monsocn had oarifer been noted by Minid et si. (1989).
4.5.2 Phosphorus content in tho leef

Phosphorun level in the lasina of the lear idd not exiabit any ilmes relationshiy with the yield of the palms. The observoc levels of yhosphorus ware smich inghar then the critical levals proposed earlier by zinler and Prevot (1962) for optimil level of production. In such a axtriation rollar phosphorus level could not have lindted the prosuction evan in the low yielding Dalmo, Trese had been eariler reports that the content of phosphorus in leaf does not influence tine ylala (Indirakutty and Fondolet, 1968; Gop1, 1984). It is also genorelis acoeptad that phosphorus applicatton can be skipged cepending on the sol2 phosphorus renerves in the case of cooonat palms. But a contraciotory finding kis also reportoc by thoms (1973) wo found that oimgificent alrearonce in foliar phosphorum zevolis axists between yield groups.

4.5.3 Potasaius content in the Leof

The reanits obtained frow the experisent indicate *het tiore is a definite relationahip hotweon leaf potassium status and yicle. Aoons the primary nutrienta it was tiats elesent which shousd maximus corralation

 groups is gutte concpicuous. Tale may indicato that in the low yjeld groups potassium remajng es the major 13miting toctor. The asdiun and hivi yield grcupe did not show mok oufforance indicating that the potential production ot tha madiun yiarders are not 31 mited by this nutsient.

Potasatum hnd a sixmificant Innear ragroasion on yiaid. The path coefsiciont melynis indicated that the ajrect effect of potessiue 18 important. About 0.3 par cent shtft in yield in fcura pogsible with ane per cont change in tine potasoius status.

The positive ralationcuip oxhibited betwoan lenf potassium 2evol arv other yiald compenents lika lear number, Length, Leaflet number, Ieai chlorcphyll, nitrogen etc., could expladn its witimate eifect on the yield of nuts from the polmo.

Framond at gi. (1966) acraiciered coconut as a Iuxuriant feader or potagatur, which hno prominent role In flower procuction aind nut development, Singado (1955 streased the motaboile asportanco of potassius for chlorophyil producticn. Most of the absorbed potassium goes to the production of nuts (P111ai and Davis; 1963). Fecentily, Taffin ard quences (9980) sursereted that the extreordinary respense for KCl by the pand is not due to the effect potessium alone, but due to the effect of chlorine aleo. But the presont atudy incicaten that amom the nutrients studied potassium has maximun aireat effect on gield. whus potesoiur does mow definits infinence on giold of nuts fron the polum.
4.5.4 Calcium content in the leaf

Calcium status of the loaves in most of the cases were well bolow the critical level of this eloment proposed by Thio. There were also inatances where calcium content wes aore than the oxitical level recorded. Coconut is reckoned as a licie lofing trea and higher Levels of calctus if not uncominon. But from the obsorvaticons, it nay be concluded that there in no alynipicant 2inoar relationsinf for the follar lovid of this dement with yield.

Rotasaiura and calciuan levals have whown a ..-gative corzelation batoen them. Alkough this vad not significent it moy indeate thet thore cen bls a cortain degree of antagonisa between tho two. It was also observed that K / Ga ratio has a significant oorro2ation with yiela. This inaicetes that it is the balance betwen-potassium and oxicium chat is important than tha anount of cascius along. Piliai at 22. (1973) had reportad that cocenut roots havo low CEC and tius have moreaffinity towards monovaiont cation which rasurts in the antagonion botwoon uencvalent mat aivalent cations.
4.5.5 Kagnealum content in the 10 bf

The follar aagnesiun level exiloited a nesative Innor correlation with the yield of nuts from the palme, but this relationainip was not signeficant. In this case also the x / y_{j} ratio hed shown signdificant positivo rolationship with yiezd of the palins. It was aiso observed that tin ratio batweon acnovalent potassius and divalent calcina + magnegium posuoses fainly high correzaiton with yiela. Prom these observations it en bo deduced that for batter yields a balanced state of nutrient elements ghould be attained in the pexis. Bioniar obyarvations ware racorded by thomes (1973).
4.5 .6 soluble suars in the leaf.

The observations recorled on roluble augar contont of the leair lamina inoicated that tho high yioza group palas have fairly high percentage of this constituoat compared to the 10 yield group. Finis being the immediate procuct of photosynthesis the hisher percentage observed in the high and rudium yielding palms conflyms the point that thoy are having a bettor synthesising capacity. Thin resulto from the larger photosynthetic surface and higher chloropayll content posseasod by than. The difference in soluble gusar content observed furing September-October period shows that the oynthetie processes tak place at a lower intensity curing this period. The fall in photoaynthatic rate gudged tirough the fell in accumnation of soluble sugare was vory 30 for tha high glezoing palas, which may bo due to thoir cosparitivaly betory offlciency in utilizing the resourcea for synthetic processes.

The diract offect shown by this constituent on yield was net that marked. This beina the primary product of the synthetic process, it wist undergo vericus matabolic chengos and hes to play many eatabolic rolez, before the overall effect is annifosted in the nut yield,
it is posalule, that aciuble sugars in leaf chow no direct ofrect on yicild.

The soluble augars in the lear had ghom signiPLaent positive cormalation with its chiorophyll content. Gince the eccumulation of photosynthate has a direct bearing on the officiency with wioh the plamonts function, such a positive rolationshtp egn exist. The observations are in conformity with the carlier reports by Remadasan and Hathew (1979).

14. 5.7 atarct content in the $10 a f$

The variation in starci contant betweon the aifferent yiold groups uas not atatisticaliy significant. From the obeervations it can be deduced that the hegh yielding palins had a slightiy low lovol of atarch in the leaf iemina compared to tive low yiolders. This mey indicate bettor ability of these pelims to trenslocate the photosynthates to the sinks. The iow yielders have zow bink capacity resulting in the eccumuiation of photosynthates.
4.5.8 Total phenols in the leat

Those was a distinct indication thict the arount of phonolic constituonts reduced as the nut yiold from the paim incraasec. The amount of these constitionta
had negetive correlation with most of the yield compononts also. Tho phenolic conatituents also had shown a 8 gniffent 3tnear regresaion on yield. The path analysis rovealed that the drect effoct of phenolic canstituants on yiela is lesp pronounced. the indxret offects throrgh the 2 eaf length, leaf potasaium and lead chiorophyll contant were matrily reaponaible for tie high negative ourmodation between tins constituent and giold.

The fursorion of phenolic constituents in the plant is nore regulatorg then production. The negative correlation between yinld and this component move that the partition of metabolites for production and regulation fincticn is carried out more effictentiy in high yielaine palios. In the low yiolsing palms a major portion of the synthates goes for the regulatory and dorenoe functions as the metriolic, activities as a whole proceed at a lou rate. 4.5 .9 Free amino acids (IMA) in the joar

The froe abino reta fractions prenent in the coconut heaf were idontiried a shom in Table 12.

It was observed that free amino acids are present only in tracos. The data collected from the preatnt invostigntion could not furnish enough details so as to
charecterige the three gield groups according to the anount of frec amino acide present in thom. The free amino acid alanine was identified only from the Iow yielding paims; while tyrosine was identified oniy from medium and high gield grouys.

It has been reported that doficiency or poor balance between nitrogen, phosphorus and potassium can reault in increased levels of PAA due to the unsatisfactory incorporation of antno acids with protolns. Concluaive deductions are posaible only ofter quantification of tho different aminoacids in order to support such a viev. 4.5.10 Cnlorophyl2 content in the lear

The results obtained from this study ehowed that there is a marked difference batwaen the yiela groups with respect to the total chlorophyli content. Chiorophyll pignents being the aite of the synthotic processes its anount could influsence the net photosynthesis. A sun Loving plant like cocomut can perform with full officionoy when the actual site of synthesis is not litesting. The comparatively high chlorophyll content recorded during the sumer season showa that the palss could cope with the demand for increased production during this period.

Shis also shows that tio pelms could adjust the retabolic activities for utiliaing the increased mailability of sumilght.

The Ifnear regression of chlorophyll on yleld was stentriteont. The dyrect effect of chzorophyil an yield was found to be 0.25l per cont. It also had Indirect erfects on yield through the leaf potasaiun ond Ieal length. The high cegree of correlation observed for chlorophyil with gield, to the most part, vas shared by these threo factore.

4.5.11 Catalase activity

The catalase engyab activity in the leaf lemina presented orratic voriation among the difforent yield groups. The date colleatsd on this aspoct could not indleate any cefinite trend, nor does it exhibit ony cefinjte relationshis uith yiend of nuta from the pelms. Thus charncterising the Zow, zedium and high yield groups based on the activity of catalase enzyme present in the lamine of jeaf at position 14, was not possible. Howerer, catalase activity showed positive relationship with 1eaf potasaium lovals, loaf starch ecntent and a negative correlation uith phenols. This may indicate that fnereamed catalase aotivity can Indirectily influence the giold of the palew,

Thare had been eariler raports of the asociation betreen aatalaso activity and vigour of the plant (E. 241 and Chriet, 1927). Vora and Vyaa (197t) also suggested that active growth and catalase netivity are associated. Iut the resurite fros tur prosent study do not fall in line with these suegestions.

4.5.12 Peroxidase aetivity

The porozidase aotivity in lesf jamina aluo did not indicato any consistant trond witin the change in yiold characteristics of the palay. The inter-relationships betveen the peroxidage engywe activity and otiner constituents under gtuck also was not indicatiag any conciusive deductions possible. Although peroxidesas are known to Influence euztitude or matabozic functions 2ike reguzation or indigencus auxin levols, ethylene biosyntivesis, aisease reaistance eto. It may be conciuded that the ectivity of thin mzyns cannot be considered as a monter cinaracter to juage the yleld potentiol of the prias.

4.5.13 Yiead prediction models

Fron the different yield components studied it was concluded that joef number, lear length, petiole length, leaflot nusbor, perioetcsty of leaf energence
and girth had aignificant influance on yiald, anong the morphological feutures. Leaf nitrogen content, leaf potassius, chlorophyll, totel phanola and soluble sugare also had show significant corraiation with gield, Based on the muitipie regreasion onelyals it was conciuded that expacted yield of nuts from the paime could be predictod uaing the above 11 charactars to the tume of 74 per cent officiency ($\mathrm{a}^{2}=0.747 * *$) with the bocel given bolow.

$$
\begin{aligned}
I= & -254.8 \%+33.2 \mathrm{X}+14.1 \mathrm{C}-0.978 \mathrm{P} \\
& +4.872 \mathrm{~S}+10.953 \mathrm{X}+0.97 \mathrm{~L} . \mathrm{X} \\
& +14.643 \mathrm{~L} .4+25.204 \mathrm{~L} . \mathrm{P}+0.0463 \mathrm{LN} \\
& +0.32 \mathrm{I}=0.555 \mathrm{O} .
\end{aligned}
$$

 H = mitrogen, $\mathrm{L}_{\mathrm{f}} \mathrm{f}$ w number of leaves, LL a length of leaves, LaP $=$ length of petiole, LiN $=$ number of leaf lets, I a periodicity of leaf emergence and $\mathbf{c}=$ girth

Another Iinear rogression equation wis worked out retaining only seven apparently prominent charactars 1.Eo, Leaf potansius, chioroghyil, total phenola, soluble sugars, nitrogen, number of leaves end leaf length and it was foum that yield prediation can be done with alanst same level of accuracy ($\mathrm{R}^{2}=0.736 \mathrm{m*}$).

The differenco in the vaiue of coefficient of multiple detramation comes to 0.011. Thus it is evident that the contribution of four charactera vim., petiole langth, number af jeafleta, periodicity of Iesf emergence end girth is quite negligibie (1.1\%). Thus yield prediction can'be done using tile almpler Linear function ala givon below.

$$
\begin{aligned}
\mathrm{I}= & -144.575+32.298 \mathrm{~K}+14.399 \mathrm{C}-1.468 \mathrm{D} \\
& +6.4 .32 \mathrm{~A}+17.798 \mathrm{~N}+0.63+\mathrm{NN}+15.219 \mathrm{I}_{\mathrm{H}} \mathrm{~L}_{6}
\end{aligned}
$$

The above mathomatical notol cen be ersicienly used for forecosting the oxpucted average yield of coccnut palas with known values of the morphological and chemical paramotars.

Summary

$\operatorname{SUM} A n I$

The study was uncerteken to characterias coconut palms in ralation to yield, baged on verious morpholozical ond biochemicel characteristico. Gixty pulms, er hest Coast Tail were melectad end were grouped as 10:g, modium and high yiold groups each group comprising of twenty palus. Morpholorseal observations and chenical analysea wore conducted aurang wie suay.

1. Tho low, medium and high yiold groups of coconut palms differed significantly interms of their norphologicsl charactersistics such as number of leaves length of Learos, Lengtiz of petioles, numbor of leaflots per Leat, pariodioity of leaf emargence and collar girth. The number of leaves which was jutged as an inciloation of the yielains capacity, influenced yiold indirectiy through the chemical components ospocially cirlorophyll and potassiug. High yzalding palms profiuced leeves more frequentiy and also retained them for longer period. Tize length of leaf had a direct offect on yield. The overall erfect show by these characters was prosumed to have resulted from the net increase in irymettey production Que to increased photosynthetie arsa.
2. The nitrogen lovel in the 14 th $10 a f$ lamina exilbited oignificant difference betwem the three giold groupe. Hitrogen had a disect effect on the yield of nuts frov the pelis.
3. The phoaphorus oontent in lear neithor mowed any remarisemle voriation between the yield groups, nor did it exhioit any linear reiaticnship with giold.
4. Leaf potageium oxisbited high degree or arralation witif yieldi The difformen betreen 20 and high yielders was conspicuous. The direct offoct of this nutrient on gield was marked.

In Vertation in celocum content of leaf was not stgnificant betweon the 2 ww , medium and high yiald groups.
6. Hagnesium content in leat did not show any cefintte patterm of varistion between the yleld groupa.
7. Tue nutifent ration eapecinaly $7 / \mathrm{Ce}$, K/P,
 jield of nuts from palusa it was ooneluded thet a balence between varicus nutrients is highiy essentioi for better proatuctiona
8. Eoluble sugarg in the jear hed a alanficont yositivo corrozation uith yioid. The axtent of racuction

In the contant of this comstatuent-was 3080 in tho high yielding pains chring septomber-0otober perice compared to low yielaing pelisw.
9. Starch content of laaves dia not anow any g1gnifiont relationship with giold.
10. Ibtal prenolic compounde present in the leaf had a magative corinlation with yield oi nuts irom tio palas. Efalinx relationship was mow with other yield componants alao. Its ultimete offect on yield was dus to the indirect affectg through the 10 of chioroghyla and zeaf potabsium.
11. Tin Ixeo amino ncids presont in the 2ant Lemina were identified, Alantue was detected fron Iow yialdors while tyrosine was detectod fron modua and high yieldare. therg who no otrer qualitative difference oovween the yiend groups.
12. Wear cilorcplagil wis Cound to have positive cosrelasion utth gield. It wes also relatea to tho potasaius statas of the loaf. Chlorophyly content ofir loaf incseated durisg sumncr soason.
13. The catalaso enzye activity rataured in the extracts of Ieaf Iamina fallad to give indication of my
relationshig with gield. It was however significantiy correzatad to leas potessium and starch content.

1i. Peroxidase enzyes activity in leaf aiso did not axhibit any consiatent relationship with yield.
15. Linear regrassion model which could predict the yield or nuta froin the palms with flar pent accuracy was proposed usang seven selectod characters.
16. hing peanit indiceter that eharacteriaation of gield grenps basod ow biocheries. onmonents is possiblea minoon chamaters wich on tnaleato the yield potenclai and prococity at the arealing levels itself is to bo identified by edopting long term experimente.
References
Abeywaruane, V. 1971. Yiela variations in coconut. Cayzon Gocon.2. 22 (3): 97-103.Abeywardane, Y. 1976. Helationship botween leaf jengthand yield in coconut. Cesicn cocon. 2.27:47.
*Ady, B.K. and Goodman, A. H. 1972. Polyphenol cxidace and peroxidaee activity in apple jeavoa inoculated with a virulent or avirujent strain of Grwinde swployora. Indian Photopath. 25: 575-579.
A. O.A.C. , 1970. Officiat methoda of gatyesis of the Hoxtitz, W. (ed). Assockition of oificlel Aneigtical Chemiats. Hashington D.C. pp.15it ani 563-564.
Bat, R.V. 先 and Romadasm, L. 1978. Changes in 3eaf cariohyurates in rolation to comencement of floworing in coconut palim. In Relliat, I. V. (ed) placrosyom 1. Placrogys standing coinsittoe.
 Nutritional atualeo an initial flowaring coconut (var typica) II Froe amino mada in leaves of bearing end non-bemaring palus.
Barcelon, M.A. $;$ Yic Coy, R. Be and Donselman, H. M. 1983.Hew 11quid chromatographic approaches forIreo amino actd molyais in plants and insects.II. train-layor chromatographic analynis forelishteen varieties of palm tries. I. Chroset.260 (1): 147-155.

Barret-Innnard, E.G. 1982, The use of phosphatases as onsynatic mankers of phosphosus defloioney. In Scaife, A. (ed) piant nutrition 1982. Proceedings of the Rinth intornationn? phant putrition collogutum. Vol. 1. Comameelth

 composition in relation to poor vegetative cheractera and yicld in tho coconut pain. frijinn I. geric. Scit- 3B: 816-860.

> *Davis, T.A. 1953. the depondence of yield on asymbetry in coccnut paima. I. Genet. 58: 186-215.

Rschbech. J.M. 198R. Hochemical cosponents of ofi pais yiozd. Dageqneux 32 (4): 165-168.
*2ze11, B. D. and Caxist, J. W. 1927. Effect of certan nutrient conditions on activity or oxidame and
 Sta. No: 7 B.
> *Frecond, Y; ziliar, Fin, and Locothe, M, Da tuee Dc. 1966. Tan coconut patre. Intermationai potanh Instituta. Borne. Switzarland.

Gopit, C.s. 1981. Toilar diagromis in coconut (Eogos
 wind potassium. M. Sc. (ABn) Theain, mbratted to time Rerala igricuiturai university, Triciur, Rerala.
 approach to coxn breeding．AdU Aston． 192
$45-86$.
－Hoinike，A．J．1923．Factors affecting catalame activity
定和 gtn．Ios 62．

Indirakutty，K．${ }^{*}$ ．and Pandelai，K．M．1948．Influence of soil type on folins nutrient composition in

Jackson Ho Ha 1958．Spil chemtcgi gnotysis．Prentice Eniz Ine．Fanhington D．C．USA．
 productivity in 0il paim（E．Buineengis Jacq．） by meaburomont of aitochonarial activitien． 020atineute $36(11) 540-542$.

CLyanage，D．V．and Aboywardane．V．1958．Corrolations between seednut，seedilng and adult paln charactars in coconut．Bild．Cocon．Hes．Ingt． Cavinn Doti6．

Mathew，C．1977．Changes in carbohydrate content of coconut pela affected by foot（yilt）diseana．I．Elant． craper 5 （2）： $8+6 \mathrm{BO}_{6}$

Mathev，C．and Rownasean，A．1973．Chzorophyll contont in certain cultivars and hybrids of cosonut． Proceedinge of first national syapogilua on plantation crops I．plant．Gropet．（fuppl．）： $96-98$.

Mathow：C．sud Remadasan．A．1975．Dhotonynthetic efficioncy in relation to anmual yield and chlorophyli contont in the coconut palm．In plant．Grop曽．3（1）： 26－28．

Ho Gready, R.A., Guggoly, Ju gilvoieria, Ve and Owens, H.E. 1950. Determination of gtarol and englose in Vegetables Am. chame $2: 1150$.
*lurray, D. 5. 1950. Coconut growint in Trinidad and Tovago. Proc. Aaxic. Sog Trin. 59: 193-200.

Nagasajen, Ho end Pandalat, Kofs. 1975. The infiuence of zome agriculturnz practices on the anzyme
 685-686.

Hiarayano, G. V. and Jom, C.M. 1942. Amunt Inaporit of tha
 $3{ }^{3} 0.41$ Deport on the work of the hegricultural mebearch atations in Madras Presidency for 1940-41 $0 \mathrm{pa.415-46}$.

Patel. J.E. 1938. The coconut - a monorraph. Govt. Press. Hadras.

P12lut, D.C. mai Devia, T.A. 1963. Exinabt of macronutrimber by the coconut palm. A preliminery study. Inding cocon. I.

P111ai, N. Q. 196\%. Biochemical Investigntiona on the eoconut paim. I. A proliminary gtudy on the amino eedds in the cocomut poin tisnues. Indan eccon. I. 12: 109m113.

P417at, H. Gu F Hahid, P.A. and Dovi, K. C. B. 1973. Gation exchinge capocity of excised roots of coccout besdinge. Herame gmxe. 2. Go (3): 1045-10:7.

Hamedusan, A. znd Mathew, c. 1977. Nelationship of cerbohrarate reserve in whe truas with convenceriont of slowesins in young weat coast tall cocrnut

Thomes, fire 1973. Rutwient cosposition of coconut Iemves and 14 s Fagtionstaly to nut yield in Tensenia. E. AfE agxic. Fog. I. 39 (2): 170-175.
Fora, A.B. end Vyas, A. V. 197 . A study of oatalage and poromidese acturtiet duxing devolopment

 1937. Conotypie and seagonal variaticns in the manaral mutrition of coconut parn. I. P3nt. Gzops. 9 (2): $105 \mathrm{mi1}$.
 mituchontinini respdration. Paccogidnge of prant Myyanopy wectings, Mogniratoxy metnuolts pp.24.
 of gtudysig mineral nutrition - its appisications to the cocomut palm. Inden Cocone I. $15:$ 156-159.

- Originais not seen

BIOCHEMICAL CHARACTERISATION OF COCONUT PALMS IN RELATION TO YIELD

By
NARA
M. C.

ABSTRACT OF THESIS

Submitted in partial fulfilment of the requirements for the Degree of

flaster of Grience in 唃ortitulture

Faculty of Agriculture
Kerala Agricultural University

Department of Horticulture (Plantation crops \& spices)
COLLEGE OF HORTIGULTURE
Vellanikkara, Trichur - 680654
KERALA - INDIA

ABSTMACT

An investifation on the morphologicel and chomical components of yield in cocomut palns was conducted at the Colleye of Horticulture, Vollanikiara during 1981-83, in orter to characteribe the yiold of palme basex on these charsctars. SIxty palms of the curtivar West Cost Tail (H.C.To) were gelectad from the
 Namukly compraing tuenty patma ach moer low, medium and high ytela groups ($<40,40-80$ and >80 nutis/palim/yoar respective2y).

Obownatione on mophalegical charecters such as number of leaves, lengeh of leaf, longth of jetioio, number of leaflets, length of leasleis, perfocicity of zean onargence and gitin at coilay wero reourded at bimonthly intervain. Analysis af lear samber from the Leaf posftlon the were tokn un to ostimatio the contents of mitrogens phoophorus, poinsosum, caloturi, magneaium, coluble augers, staroli, fotar phenols, free amino actas, total chlorophyil, catnzase activity andi percozidase activity dnaza Haxch-April and Boptewber-Wctober seasans.

Thone was a siguituent politva cosexiation

Iength of leaflets and isth at collar with the mean annual yiela. The periodicity of lonf esergenco had a negative correlation with gield.

Anone tha mineral nutrients, nitrogen and poinssium hae algmificant posstive comrelation with yicld. Phospinotus, calciwa and magnesiurs fajled tio mot any

 positive corrolation with yield.

The brochenical components such as soluble sugers and total chlorophyli content in tho leci lanina hnd simsficent poontive correlation utin yiand. Totel phenolic compound present in the leaf Iamina hed a aignificant nagative corrolation with yiald. starch content in the leef did not show ouch relations. The free amino acids prosent in traces in the lent were Identified. Leaf catelase and perozidace activity exhim bited no desinite pattern of variation in relation to ytola.

[^0]:

