ANATOMY AND UTILIZATION OF TWO CANE SPECIES OF KERALA (Calamus travancoricus and C. thwaitesii)

By
MOHAN VARGHESE

THESIS

Submitted in partial fulfilment of the requirement for the degree
Master of Science in Forestry
Faculty of Agriculture
Kerala Agricultural University

COLLEGE OF FORESTRY
 vellanikara trichur
 KERALA
 1988

$$
\begin{aligned}
& 17058-7 \\
& 6314 \\
& \text { MOHANI }
\end{aligned}
$$

DEGLARATION

I hereby declare that this thesis entitled "Anatomy and utilization of two oane species of Kerala (Calgmus travancoricus and C. thwaitegif)" is a bonaflde record of work done by me during the oourse of research work and the thesis has not previously formed the basis for the awerd to me of my degree, diploma, associateship, fellowship or other similar title, of any other University or Society.

Vellanikkara, $17-10-1988$

CERTIFICATE

Abstract

Certified that this thesis entitled "Anatomy and utilization of two cane species of Kerala (Calamus travancorious and C. thwaitegif)" is a record of research work done indepdendentiy by Sheri. Moran Varghese under our guidance and supervision and that it has not previously formed the basis for the award of any degree, fellowship or associateship to him.


```
Dr. K.M. Bhat,
    Co-Chairman,
Advisory Committee,
(Soientist, Hood Science
Division, KFRI)
```

Dr. K.V. Satheesan, Chairman,
Advisory Committee, (Asst. Professor, College of Forestry)

Vellanikkara,
17-10-1988.

centiedcate

Abstract

We, the undersigned members of the Advisory Committee of Sheri. Mohan Varghese, a candidate for the degree of Master of Science in Forestry with major in Wood Science, agree that the thesis entitled "Anatomy and utilization of two cane species of Kerala (Calamustravancorious and Ca thwaitegif)" may be submitted by him in partial fulfilment of the requirement for the degree.

$\underset{\sim}{c}$ atheesam
Dr. K.M. Brat,
Co-Chairman,
Advisory Committee

Dr. B. Mohan Kumar,
 Member

Dr. C Renuka, Member

ACKN OULEDGENEN T

I place on record my decpsense of gratitude to
Dr. K.V. Satheesan, Asst. Professor, College of Forestry, for the guidance and help rendered during the course of this investigation.

Dr. K.M. Bhat, Scientist, Wood Science Division, Kerala Forest Researoh Institute for his constant onoolaragement and the valuable suggestions and guidance in carrying out this investigation and also in the preparation of the thesis.

Dr. C. Renuka, Scientist, Botany Division, Kerala Forest Researah Institute and Dr. B. Mohan Kumar, Asst. Professor, College of forestry for their critical suggestions and encouragement during this study.

Dr. Luckin C. Babu, Assoc. Professor and Mr. Y.R. Krishnan Nair, Special Officer, College of Forestry without whose help this work could not have been completed.

Shri. Monamed Ali (Pathology division), Shri Shahul Hameed and Shri. Thulasidas (Wood Science Division) who heiped me much during the collection of materials for the study.

Classmates, friends, juniors and all well wishers for their timely help and ao-operations.

God almighty, who gave me strength and courage during all the stages of the study.

DEDICATED TO MY alma matre COLLEGE OF FORESTAY, KAU.
CONTENTS
PAGE
1 INTRODUCTION 1
2 REVIES OF Literature 6
3. Materials and methods 24
4 RESULTS 34
5. DISCUSSION 54
6 SUMMARY 65
REFEREMCES
APPENDICES
ABSTRACT

LIST OF TABLES

Table 1. Comparison of quantitativo data for physical properties in C. trayancoricus and C. thwaitesif.

Table 2. Comparison of quantitative data for anatomical properties in C. trayanoorious and C. thwaitesii.

Table 3. Analysis of varianoe of physical properties in the two rattan species.

Table 4. Analysis of variance of anatomial properties in the two rattan species.

Table 5. Correlation coefficients for the relationships between certain physical and anatomical variables.

LIST OF FIGURES

Figure 1. Diagramatio illustration of sampling procedure.

Figure 2. Relationship betweon internode length and distance from the stam base (number of internodes)

Figure 3. Relationship between internode diameter and distance from the stem base (number of internodes)

Figure 4. Density variation as a function of distance from the stem bottom (number of internodes)

Figure 5. Volumetric shrinkage variation as a function of distance from the stem bottom (number of internodes)

Figure 6. Moisture oontent variation as a function of distance from the stem base (number of internodes)

Figure 7. Variation of vasoular bundle frequency as a function of distance from the stem bottom (number of internodes)

Abstract

Figure 8. Vascular bundle diameter variation as a function of distanoe from the stem base (number of internodes)

Figure 9. Variation of Fibre percentage as a function of distance from the stem botton (number of internodes)

Figure 10. Phloem percentage variation as functionof distance from the stem bottom (number of internodes)

Figure 11. Variation of Metaxylem diameter as a function of distance from the stem base (number of internodes)

Figure 12. Xylem percentage variation as a function of distance from the stem bottom (number of internodes)

Figure 13. Cortex percentage variation as a function of distance from the stem bottom (number of internodes)

Figure 14. Variation of metaxylem element length as a function of distance from the stem bottom (number of internodes)

Figure 15	Fibre length variation as a function of dista from the stem bottom (number of internodes)
Figure 16	Relationship between fibre width and distance from the stem base (number of internodes)
Figure 17	Lumen width variation as function of distance from the stem base (number of internodes)

LIST OP PLATES

```
Plate 1. Habit of C. thwaitesii
Plate 2. Habit of C. trayancorious
Plate 3. Extraction of larto diameter oane, C. thwaitesif
Plate 4. Handicraft items of cane products
Plate 5. Largest diameter (A. C. thwaitesii) and smallest
                                diametor (B. C. travangorioua) canes of Kerala
Plate 6. T.S of C. thwaitesii stem (basal most internode)
Plate 7. T.S of C. trgugancoricus stef (basal most
        2nternode)
Plate B. TS of C. thwaitesid stem (intenode No. 20 from
        bottom)
Plate 9. TS of C. travancorious stem (internode No.20 from
        bottom)
```

Plate 10. Epidermal cells of C. $_{\text {travancorious showing oval }}$ or triangular lumen

```
Plate 11. Epidermal cells of Ce thwatesif showing
        reotangular lumen
```

Plate 12. Single vascular bundle in TS of C. travancoricus

Plate 13. L.S of C. thwatesif stem showing stegmata

Plate 14 . Metaxylem vessel element of C. thwaitesii showing simple perforation plate

Plate 25. Metaxylem vessel element of C. travancorigus showing simple perforation plate

Plate 16. Metaxylem vessel element of c. thwajtesif showing scalariform perforation plate

Plate 17. Metaxylem vessel element of C. travancorious showing scalariform perforation plate

Plate 18. Protoxylem vessel element with soalarirorm perforation plate

Plate 19. Branched protoxylem vessel element in C. thwaitesil

Plate 20. Sieve tube element in C. thwaitesid

Plate 21. Septate Fibre with constriction in tho fibre wall in C. thwaitesil

Plate 22. Metaxylem vessel eloment in the outer portion of central cyifnder of the stem of C. thwaitesil showing relatively large number of bars

1. INTRODUCTION

Rattan is the collective name for all climbing palms. The name "rattan" originates from the Malaysian word "rotan". Botanioally rattan bolongs to the family palmae under the sub family Lopidocaryoidae comprising nearly 14 genera and about 600 speoies (Dransfield, 1981). Some 50 species of rattan are commercially $1 m p o r t a n t b e l o n g i n g ~ t o ~$ four genera, viz. Calamus, Daemonorops, Korthalsia and Plectogogia. Though species of rattan occur in tropical Afrioa, it is in South East Asia that they forma significant component of the vegetation. Rattan also is found in India, Burma, China, North Australia and Papua New Guinea. Of the 14 genera of climbing palms, only four viz., Calamus, Daemonorops, Plectoconia and Korthalsia are known to inhabit India. Only 12 species of Calamus are known to occur in Southern India (fisher, 1931 , Fernandez and Dey, 1970). Of those, eleven (․ . brandissi, C. dransfieldif, C. gamblei, C. hookerianus, C. huegelianus, C. metzianus, C. pseudotenuis, C. rheedit, C. rotang, C. thuaitesif, and C. travancoricus) are known from the present geographic ifmits of Kerala (Benuka et al, 1987).

Rattan may be found from sea level upto about 2900 mon large mountains. Most speoies have quite a wide altitudinal range. However, few low land species transgress the
vegetational boundary occurring at botwoen 1000 m and 1400 m. Likenise few mountain species go below this boundary. Large tracts of the more oasily acaesilble forest area containing rich resources of rattan are fast disappearing due to conversion for agriaultural purposes. In some areas important species of rattan are practically sone. Some other species are being over exploited. Demand for rattan on the other hand is continually foraasing. More and more immature canes are being cut to meet the increasing demand.

Rattan stems vary in thiokness from a few millimeters to approximately 8 contimeters in diameter. They can grow even up to approximately 100 m in length. Some plantg produce solitary stems, while majority grow in ciumps and climb on troes (Plates 1 \& 2). The stems are more or less enclosed by the bases of thorny leaf sheaths. Rattan matures in 6-25 years and in maturity, stem changes from green to yellow colour and increases in toughness and strength.

Rattan collection in the natural rorest is done by tribals and in some cases by commuities living near the remote forest areas. Colloction is often an ardaus job, yet it is lowly paid. Collection methods vary slightly from place to place. Genorally, the stem is out orf some 30 cm above the ground with a jungle knife and dislodged from the support tree by puliling the cane (Plate 3). Most rattan

```
Plate 1 Habit of c thwamtesid
```


Plate - 1

Plate 2
producing areas are in difficult terrains Apart from the dificult terrain the problems in rattan harvesting include the maner in which it tangles itself through the trees and the thorny sheaths with whichit ig encased the cane 1 s twisted round a convenient tree trunk to rid it of its thorny lear sheaths and the younger parts of these are chopped off The uppermost 3-4 mof the rattan depending on the species is usually discarded being soft and immature and hence useless Larger canes are generally cut into 2-3 m length and bundled, while the smaller ones are out into 5-7 mength bent double and bunded The very slender canes are coiled in long lengths ror taking out of the forest.

Siliceous species are deglazed soon after haryesting as deglazing of dried canes becomes difficult If degiazing cannot be done soon enough the canes are steepedin water to keepit from drying beforedeglazing Arter deglazing the canes are dried ror about 7-10 days depending on the weather In very wet weather drying is also done over a fire quick drying ls essential to prevent or reduce blemishes like fungal stains(faO 1978)

Grading ig very subjective and grade classes are derived from long trading praotioes established in specific localities or even by individual oompantes towever the basic factors as - size length colour hardness defects
and blemishes internodal lengths and evenness of thickness along the full length of the cane are taken tnto consideration

As a source of cane rattans are economically important In commercial sense the term cane rerers o rattans of 2 om in diameter upwards and ratian refers o those of smaller diameter (FAO 1978) The most mportant use to which canes are put is manuracture of furniture Other uses of canes include production of walking sticks ski-aticks broom nandles orlcket bats hockey sticks etc The slender rattans are normally peeled and the skin is used for making baskets mats chair seats and handicrarts (Plate 4) The core which is resplit into smaller sections is also used for basket making and handicrafts Splitting can be done by hand or machine Rattan processing is a traditional industry which is in the formor seall sale cottage units

In India rattan is found in the tropical evergreen and semi evergreen forest and locally in moist deciduous forest The best growing condition seems to be along the edges of streams and fresh water swamp or on well drained soils Cane brakes aremostly edaphic vegetational types and are round in moist hollows extending outwards to various distances and it is more conspicuous with heavier rainfall Soll is permenantly wet and usually rine clay very rich in

Plate 3 Extraction of large dimeter cane, C. thualtesif

Plate 4 Handioraft items of cane products

Plate - 3

Plate- 4
humus The cane brakes are impenetrable or almost impenetrable thorny thickets which sometimes nave few scattered trees over them

Because of the fact that rattans have been considered as "anor forest product" little attention was blven to lt by way of researeh and development. progress in any industry is based on a fira understanding of the characteristios and behaviour of the raw waterial thus the present study was undertaken to study two important cane species of Kerala - one representing a large diameter cane viz C. thwaitesit and one representing a small diameter cane viz C travancorigus The objectives of the study are
(i) To investigate the variation in the anatomical characteristios and compare thea between the wo species
(11) To correlate the physical properties such as specific gravity moisture oontent hardness and texture with the anatomical reatures.

2. REVIEW OF LITERATURE

2.1 Arborescent, non lianoid palms

2.1.1. Anatomy

The contributions to the anatomy of arborescent palms occured from as early as the first decade of the nineteenth century when Moldenhawer, (1812) observed a clear demarcation line between central and peripheral vaseular zones in Phoenix dactylifera. Karston (1847) observed that in arborescent palms, during initial stages, leaves developed for a prolonged period while the stem ralled to undergo extension growth. But the stem was observed to keep pace with the production of now leaves by increasing later in radial diameter. Sohoute(1912) explained that the increase in girth through the aoivity of lateral meristem growth is an intimate continuation of terminal meristem of the shoot. It is brought by the tangential division of their primary thickening meristem which is continuous beneath successive leaf bases (Ball, 1941 Tomlinson, 1961) Cheade (1937) referred this meristem to as 'thickening ringn. Based on the quantum of girth increment the thickening ring outweighs the apical meristem in extent and importance (Ball, 1941).

In Phoenix sylvestris, Swamy and Govindarajulu (1961) observed that in the oentral portion of the stem the vascular bundles were more widely separated and in the peripheral portion, they were more densely aggregated. They found a positivo correlation (.51) between the diatance from the periphery and the number of vascular bundles per unit area. An increase was also found froll the base upto a height of 18 ft beyond whioh the number decreased at successive heights

All the vascular bundles in faphis oxcelsa were observed to have essentially the same course and construction (Zimmermann and Tomlinson, 1965). No single vasoular bundle was seen to be oontinuous from root to leaf and the continuity throughout the length of the stem was maintained by anastomoses. Tominson (1961) claimed that the number of vasoular bundies per unit area in coconut stem was the same at all heights. However, along the stem height, Richolson and Swarup (1977) observed an inerease in number of vasoular bundes accompanied by a decrease in diameter of vascular bundles. A significant correlation was found between the number of vascular bundles per unft crosssectional area and their percentage in coconut stem by several authors like Rioholson and Swarup (1977) and K1llmann (1983).

2.1.1.2 Tracheary elements

Esau (1965) described tracheids as imperforate cells with only pit pairs on their contiguous wall and that vessel Q loments are perforate in certain areas of contiguity with other vessel elements. The terms "primitive' and advanced were used to express the degree of resemblance of vessels to tracheids (Klotz, 1978).

In phoenix sylyestris, Swamy and Govindarajuiu (1961) found that the longest vessel members odoured along the central axis of tho stem. From the centre towards the periphery, there was a highly significant decrease in average length of vessel members. Similarly the vessel members showed shortening from the base to the top of the stem. The vessel members in the stem periphery had a significantly larger number of bars compared to the vessels in the inner regions.

Tomlinson (1961) observed that in coconut wood, the vessel elements ranged from $1160 \mu \mathrm{~m}$ to $1630 \mu \mathrm{~m}$ in length and $170 \mu \mathrm{~m}-200 \mu \mathrm{~m}$ in width with a few thickening bars. In Raphis excel sa, the metaxylem elements were observed to be $40 \mu \mathrm{~m}-60 \mu \mathrm{~m}$ wide and $600 \mu \mathrm{~m}-800 \mu \mathrm{~m}$ long with mostly scalarifoamperforation plates with a few thickening bars (4-10) on oblique end walls (zimmerma nt and Tomifnson, 1965). The observations in palms by Bierhorst and Zamora
(1965) revealed that the pitting of wide late metaxylem vessels was basically soalariform and that their end walls ranged from scalariform plates with many olosely spaced bars to reticulate or scalariform perforation plates with fewer, more widely spaced bars

Parthasarathy and Klotz (1976) observed that smaller palms had narrower tracheary elements than larger palms. They found that wide late metaxylem elements had lengths ranging from. 1 m to more than 1 cm and with ranging from. 02 mm to nearly. 5 mm . The bars of the perforation plates were found to bo most closely spaced in the petiole, most widely spaced in the root and intermediate in the stem.

The perforation plates in palms were found to extend the entire length or only part of the length of the end uall and rarely on lateral walls. The end walls were usually straight, but oocasionally they were curved or saddle shaped" (Klotz, 1978).
2.1.1.3 Sieve elements

In coooid palms, Tomilnson (1961) found massive fibrous phloem sheaths. In coconut palm, sieve tubes in the stem were found to range from 50-60 $\mu \mathrm{m}$ in width with sifghty oblique siove plates.

In Raphis excelsa, the pholem was found to be directed towards the stem periphery, partly sheathed by fibres
forming a well devoloped fibrous phloem sheath (Zimmermann and Tomlinson, 1965) The companion and phloem parenohyma cells were however, seen to be irregularly scattered and not well differentiated from each other.

In palms the phloem strand in each vascular bunde could be divided or undivided depending on the species or organ (Parthasarathy, 2966) and based on the species or organs the sieve elements had simple or compound sieve plates. The stems and leaves were reported to have sieve elements with transverse to oblique walls.

Parthasarathy and Klotz (1976) observed that the metaphloem sieve elements had diameters ranging from $15 \mu \mathrm{~m}$ to about $50^{\prime} \mu \mathrm{m}$ and lengths ranging from. 5 mm to 3.25 mm The phloem was observed to be continuous between all bunde types without any structural complexity (Zimmermann and Sperry, 1983).

2.1.1.4 Fibres

The vasoular bundes in the peripheral zone of central cylinder in stems are normally associated with a massive, radially extended fibrous sheath \{Zimmermann and Tomilnson, 1965). In addition fiores occur in the cortex in discrete non vasoular or incomplete vascular bundles. rromthe way, palm stems endure hurricanes, the arrangement of fibres
appears to be meohantoally very efrective (nicholson and Swarup, 1977).

In coconut stem, in the centre, the fibres associated with the vascular bundles were soen to have relatively thin walls and large lumen while at the periphery, their walls were very thick and the lumen oxtremely small (Kloot, 1952, Sudo, 1980). In the stem of Raphis exeelsa, Zimmermann and Tomlinson (1965) found that the fibres became sclerotic and wall thickening appeared first in inner most fibres closest to the phloem, and subsequentiy in centrifugal fibres. The fibros keep on depositing secondary wall, most of palm's IIfetime and thus the basal part of the palm stem generally has fibres with botter developed secondary walls than the top part (Parthasarathy and Klotz, 1976 and Sudo 1980). Sudo (1980) reported that in coconut stemthe ratio of singlocell wall thiokness to tho diameter of fibres (Th/D) was the lowest in the youngest part of the atem and incraased rapidly with age.

The ratio between the area of the fibrous oap and that of vascular tissues was observed to decrease gradually from the periphery towards the centre and from the bottom upwards in palms (Swamy and Govindarajulu, 1961). They round a highly significant decrease in the average length of the flbees from the centre towards the periphery and shortening of average fibre length from the base to the top.

A common association of silica-containing cells called stegmata was seen with vascular or non vascular fibres. Stigmata were seen in palms as longitudinal file of cells adjacent to fibres (Tomlinson, 1961).

2.1.1.5 Cortex and central cylinder

Tomlinson (1961) observed that the cortex of palm stem was largely made up of unspecialised ground parenchyma having numerous small fibrous strands. The cortical vascular bund los were always found to be few and small and the central cylinder was abruptly demarcated from the cortex by a wide peripheral solerotic zone made of congested vascular bundles. He opined that this zone formed the main mechanical support of the palm stem and in the lower portion of the mature stem, this zone was seen to be generally hard, heavy, dark brown and 3-4 inches wide.

The cortical parenchyma in aphis exnolsa was found to be pto 20 cells deep, the cells isodiametric or sightly elongated vertically (Zimmerman and Tominnson, 1965). Fibres occurring as thick walled strands were found scattered throughout the cortex. Leaf traces were also seen extending from each lear base, into the central cylinder, across the cortex. Wilford (1974) observed that in coconut stem within approximately 50 ft of the stem tho average
thickness of the cortex was 9.9 ram wh the thickening towards the bot tombeing 11.4 mm and the top 11.2 mm .

2.1.2 Physical properties

The variation in growth of palms like coconut, due to adverse growing conditions affect the physical properties and utilization value of the wood (Mc Paul, 1964).

2.1.21 Density

In ooconut stem, Richolson and Swarup (1976) observed that the basic density decreased linearly with increase in stem neight and logarithmically in the radial direction from centre to cortex. Thoy found that for the first 12 feet, the density varied from $844 \mathrm{~kg}_{\mathrm{g}} \mathrm{m}^{3}$ in the peripherai zone to $112 \mathrm{~kg} / \mathrm{m}^{3}$ in the central axis of the stem. The low density wood portion was estimated to be more than 25 percent of the round wood volume of the stem. The dengity of coconut stem increased with age in the order of young, marure and ovormature (Sudo, 1980). The values ranged from. 115 , the lowest value in young stem to .918, the highest value in an over mature stem. He also observed the areapercentage of vascular bundles to have influence on the density

The correlation between ovendry density and number of vasoular bundies per cm area over the stem height was relatively low whereas for acoss section of the stem, it
was high (Killmann, lg83). Thus the fibre wall thickness within a vascular bundle was observed to be more important than the number of vascular bundles per square unit area in influencing the density.

21.2 .2 Moisture oontent

Moisture content is a transitory variable and the measurement depends primarily on external conditions at the time of test (Richolson and Swarup 1977)

They observed the moisture content in coconut stem to be wide ranging. It increased rapidly with stem height and logarithmically from the peripheral zone to the centre of the central oylinder.

Killmann (1983) observed 1 n coconut palm, a high by signifioant negative correlation between initial moisture content and ovendry density. Hith increase in density the moisture content was seen to drop logarithmically. Along the stem, the moisture oontent was seen to increase only at a lesser rate than along the intermediate or contral portion.

21.2 .3 Shrinkage

According to McConchie (1975), the volumetrio shrinkage in coconut wood decreased from the centre to the bark. He observed values of 11.1% for tho axis along the cortex,
11.6\% for the mid section axis and 224% (fromgraen to air dry) and 23.3% (from green to ovendry) for the inner scotion. Radial and tangential shrinkage appeared to be low in coconut wood, but tangential shrinkage was sifgtiy higher and longitudinal shrinkage was negligible (MoConchie, 1975 and Killmann 1983).

Shrinkage was observed to have poor correlation with stem helght, basic density and vascular bundle number (Richolson and Swarup, 1977). Contrarily, Killmann (1983) observed that shrinkage had a direct correlation with ovendry density, initial moisture content and vascular bundies per cme. The shrinkage increased to the greatest extent with increasing amounts of vascular bundles/square unit area. A similar trend was obseryed for oven dry density with a shrinkage of 3% at $200 \mathrm{~kg} / \mathrm{m}^{3}$ and 6% at 800 $\mathrm{kg} / \mathrm{m}^{3}$. Thig however contradioted the results of McConchie (1975) as a decrease in shrinkage was found frombark to centre.

2.2. Palm 'Yood' VS Conventional Hood

Hood is the principal strengthening and water conducting tissue of stoms and roots characterised by the presence of tracheary elements (IAWA, 1964). Palmatemmay also therefore be referred to as wood as it has water conducting xylem elements and mechanical fibrous tissue

However palm stem differs from conventional wood in the following respects.

2.2.1 Anatomy

(a) As there is no vascular cambium, no regular girth increase (secondary thickening) takes place in palm stems. However, diffuse secondary growth often occurs due to the oell division and enlargement of parenchymatous coils or ground tissue (Tomlinson, 1961).
(b) The apical meristem contributes little to stem tissues but is a leaf producing meristem (Tomlinson, 1961). Internodal elongation begins only when the primary thickening ends.
(c) The wood of diootyledons is mostly secondary xylem whereas, the wood of palms consists of prımary vascular bundles embedded in a parenohymatous ground tissue (Parthasarathy and Klotz, 1976).
(d) In palms, the sieve elements formed during early life are long 1 ived and remain functional throughout the lifetime of the plants, whereas in most diootyledons, sieve elements are short lived (Parthasarathy and Klotz, 1976).
(e) The wood cells of palms are not dead as in normal rorest trees and the walls continue to increase in thickness

2.2.2 Physioal properties

The physical properties that help in differentiating conventional wood and palm wood are the following.
(1) As a result of periodic radial growth, conventional timbers have a distinct grain pattern and shrinkage in tangential direction is double that in radial direction. Palm stem has no such grain differentiation and hence the material will dry uniformiy without cross sectional distortion (Xinnimonth, 1977)
(2) Conventional woods, gencrally exhibit density gradients from the centre of the stem towarde the outside and from bottom of the trunk towards tho top, whereas a palm wood does not show a definite trend, as it consists of a number of scattered vascular bundles (Meylan, 1978).

2.3 Lepidocaryoid lianoid palms (Canes)

2.3.1 Anatomioal properties

Literature reveals relatively little information on anatomy and physical properties of lepidocaryoid palms particularly rattans. The brittieness often observed in some cane species is mostly due to their peculiar anatomy (Anon, 1939).

2.3.1.1 Perforation plates

Tominnson (1961) reported that among the Lepidocaryoid palms, the lianoid ones are the most specialised. In the genus Calamus, the end wall in the tracheary elements of the stem was observed to be simple and transverse.

The lepidocaryoid palms were seen to inhabit tropical areas (Moore, 1973) and Lheir advanced perforation plates were related to the high moisture demand that acompanied such areas. The late metaxylem tracheary elements in the stem of genera Calamus and Daemonorops were seen to have simple perforation plates (Parthasarathy and Klotz, 1976).

The lepidocaryoid lianas were seen to be relatively homogeneous in the form of their perforation plates (Klotz, 1978). The end walls were less oblique than in other lepidooaryoid palms, and the slope index was estimated to be 12.6.

Bhat et al. (1988) showed for the first time, the ocourrence of mixed, multiple and simple perforation plates In the stem of more than one species of Calamus ocouring in the Western Ohats of peninsular India. Occasional presence of raticulate perforation plate was also observed in C^{-} pseudotenuis and C. tranvanoorious. The wide metaxylem vessels in the stem of Calamus mostly have simple

```
perforation plates with occasional mixed, multiple and
simple type
```


2.3.1.2 Yessel diameter

Among the group of palms, lepidooaryoid lianas had generally the widest vessels Maximum diameter of over . 4 mm were obsorved in four species of the lianas. Wide vessels have greater conducting efficiency which is especially true for the lepidooaryold lianas some of which reach a length of over 100 metres (KIotz, 1976).

The rood of rattans is light due to the porous nature caused by the presence of wide vessels (Parthasarathy and Klotz, 1976). Generally, the smaller palms have narrower tracheary elemonts but, the stems of many lianas have very Wide vessels, relative to their stem diameter.

Bhat (Unpublished data) reportod that diameter of metaxylem was correlated with stem diameter among the species while it increased more sith a raise in stem height with a higher correlation coefficiont of 900 .

2.3.1.3 Diagnostic characters

Teoh (1978) reported that qualitatively, the rattans have similar anatomy. Of the 8 genera of rattans studied, Calamus exhibited the most variation in its anatomy. He
observed that the anatomical characters of diagnostic value at generic level were different from those at specific level. Good quality canos had an even distribution of vascular bundles and even hardness through out the stem whereas useless canes had a spongy centre and a scierotic peripheral region.

Ledse and Weiner (2987) concluded that the composition of vascular bundles, their arrangement in subopidermal zone, the peripheral paronohyma arrangement and the morphological variation in ground tissue parenchyma receive high priority from diagnostio point of viow whereas epidermis and special features have lesser importance.
23.14
(9) Fibres

Studies on the fibre wall arohitecture in stem of Calamus manan by Parameswaran and Leise (1985) revealed that the lignified secondary wall showed alternating broad and narrow layers with a lignin rich isotropic transition zone between them. The fibrillar orientation and lignin distribution in the various layers of polylamellate wall showed resemblences to the fibre structurc in coconut stem and bamboo culms.

Of the 3 calagus spooies growing naturally in Indonesia, Calamus inges had 439% of its Lotal oross section covered with sclerenchyma cells, C. symphysipus had
258% and a third species of Calamus had 284% (Yudodibroto, 1985).

2.3.2 Phystoal properties

Threc most impartant characteristics used ingrading and assessing the utilization of rattans are stem thickness (diameter), internode length and weight (specific gravity) (Badhwar et al, 1961). The highest specific gravity in the lowest internode indicates that the bottom portion is strong and rigid (Bhat and Renuka, 1986).

The 10 species of rattans found in Kerala have been divided into large diameter ($>18 \mathrm{~mm}$), medium sized ($10-18 \mathrm{~mm}$) and small diameter ($<10 \mathrm{~mm}$) based on themean valucs of stem diameter (Bhat and Fenuka, 1986). Trom among the ten species according to them stem height varied from 1.8 m to 10.2 m. It was greater in . thwaitegif than in other species and C trayancoricus had the shortest stem.

The stems of C. traygnooricus were round to be as slender as 3 ma in diameter and thickest stem moasured upto 23.5 mm in C. thwaitegit. There was found to be a small, but significant decreasing trend in diameter from botom to 95% of stem height, indicating considerable stem taper. Small diameter canes were found to have both highest and lowest mean values for specifiogravity. C thwaitesif, a thick oane had relatively low speific gravity. They
observed that the specific gravity showed a tendency to decline with an increase in height level from botom to 95 of stem height. There was found to be no consistent relation between stem height, diameter internodal length and specific gravity The within-and between-stem variations in diameter internode length and specific gravity were found to be significant in most of the species Although large diameter rattan species were taller the mean diameter within the species in general was not significantiy related to height of stem The internode length increased inftially upto 15% to 25% or 50% of stem length and then decreased towards the top. The physical characteristic that could be used in identification was the diameter of the cane (Bhat and Renuka 1987).

3. Materials and methods

The present study was carried out on two cane species of Kerala - one representing large diameter canes viz. \underline{C} thwaltesif and one representing small diameter canes viz., C. travancoricus (Plate 5).

Collection of stems

The stems were colleoted in Decomber 1987 during field trips organised to the different forests.
(a) C travancoricus - This species was collected from Rajakkad in Aryankavu forest area ooming under Thenmala forest division in Kerala.
(b) C. thwaitesi1 - was collected from Pallivasal area in Achencoil cane preservation plot The leaf sheaths and thorns were removed and the stems were cleaned. \underline{C}_{-} thwaitessi was found growing to 40 metres height on semul trees. The extraction was done with special care by cutting in the rhizome portion itself to ensure that the first internode was intact. The upper most portion of the rattan stems was discarded being sort and immature. Only the mature and utilizable portions of the stems were taken for the study.

Materials for gtudy - Five stems of more or less similar length were selected from each of the two species. Soon

Plate 5 Largest diameter (A C. thwaftc ii) and smallost diameter (B C travancoricus) canes of Kerala

Plate 5
after extraotion the preliminary observations of the selected stems were carried out. They were rocorded as follows

C travancoricus

	No of Internodes	Total iength
Stemi	34	3.11 m
Stem 2	22	2.70 m
Stem 3	32	40 m
Stem 4	33	4.37 m
Stem 5	32	3.80 m

C thwaitesil

Stem 1
39
9.80 m

Stem 2
23
490 m
Stem 3 44
100 m
Stem $4 \quad 42$
100 回
Stem 5
43
107 m

Samplıng ~Transportation of the harvasted cane stema as such is a very cumbersome prooess especially in the case of C thwaitesif Hence smapling was also donc as far as possible in the harvest sito itself. For uniformity of observations anatomical obsorvations were carried out till the $30 t h$ internode The physical properties, internode length and diameter were however studied upto the available nodes

To find the variation, along the stems in both the species, the lst, $5 t h, 10 t h, 20 t h$, and $30 t h$ internodes were seleoted. The internodes were correctly marked out and sawn With a hand saw. The stem number and the internode number were marked on the sampled internodes and properly sealed In polythene bags to prevent from the loss of moisture.

Observations recorded

Physiogl properties - The various physical parameters suoh as - Internode length, Internode diameter, density, volumetric shrinkage and moisture content were studied for both the species.
(1) Internode Iength - In both the species in each of the 5 stems, the length of each internode was measured from the base to the top and recorded.
(2) Internode diameter - The diameter of each of the Internode was measured from the base to the top in each stem and recorded separately. This was also done along with the measurement of internode length soon after harvest. The diameter was measured in millimetres, using a sifing calliper.
(3) Dengity - The internodes namely lst, 5 th 10th, 20 th and $30 t h$ from each of the stem in both species were taken to the laboratory for measurement of density Density was determined on an ovendry weight to green volume basis.

Hater displacement method was used to measure the green volume of the samples.
(4) Volumetric shrinkage - The sampled internodes were used for measurement of volumetrio shrinkage in both the species. It was measured as percentage of the ratio between the difference of green and ovendry volumes to the green volume. The green volume and the oven dry volume were measured using the water displacoment method.
(5) Moisture content - The moisture content present within the stems of both the species of canes was calculated on an ovendry basis by considering the sampled intornodes from each stem. The moisture content was calculated as a percentage of the ratio between the differenco of green and ovendry weight to the ovendry weight.

Tho way analysis of variance (ANOVA) was porformed to study the within-stem and between - stem variations of physical characteristics.

Sampling procedure for anatomical studies

Five positions of each stem were selected for the study of anatomical and physical charaoteristics namely ist 5th, loth, $20 t h$ and $30 t h$ internodes as they gave afirly true representation of variation trend from base to the top of a stem. These particular internodes were adhered to because,
certaln distinct trends were round to be related to particular internodes.

Preparation of crosssections

For studying the anatomioal characters, approximately .5 to 3 cm thick samples, depending on the length of Internodes, were taken from the middle portion of the sampled internodes in each stem to avoid the offeet of nodes. Standard mierotecrique procedure was followed to prepare sections for observation under mioroscope. These samples were boiled to soften thom and remove the air bubbles within. About $15-20$ um thick transverse sections were out using sifing microtome. At least two seotions were selected from each internode. C. trayancoricus being a small diameter cane, the crosssections of the entiro stom were taken. In C. thwatesif, due to the large diameter of the stem, a wedge shaped portion was removed for laking transverse section (Fig. I).

The transverse sections were stained in 50\% alcoholic sarranin. For routine anatomical studias, temporary sifdes Were used by mounting the stained transverse sections in glycerine. In order to observe the silica bodies, radial longitudinal sections of 20-25 um thickness were taken. However for tho purpose of photography, or when peculiarities were noticed, permenant slides were mounted. For this, the transverse sections were kept in 50% alcoholio

MACERATION

PhlCEEM \% XYLEM"
Flbre
safranin for about 5 minutes The section were then passed through an alcohol series - 60\%, 70\%, 80\%, 90\% and 95\% alcohol, keeping in each for about 3 minutes. They were then passed through one change of acetone and two changes of xylene. After all the moisture were romoved, the sections were mounted in DPX mountant.

Anatomical parameters

(1) Vasoular Bundle Erequency - The transverse sections of the various internodes were used for finding out the vascular bunde frequency. The number of vascular bundles in a fleld area of $29 \mathrm{~mm}^{2}$ was measured under microscope. In the case of C. travancoricus, the frequency of vascular bundes was measured only for the entire central cylinder. But for C_{0} thwaitegily the vascular bundle frequenoy for the inner and outer portions of the central cylinder were taken separately.
(2) Vascular bundie diameter - The distanoe from the fibre sheath to the end of the protoxylem was measured as the
 travanooricus the diameter of 10 largest vasoular bundies from the central oylinder were measured. For the thicker cane, diameter in the inner and outer portions of the central cylinder was measured.
(3) Fibre pergentage - For the estimation of fibre peroentage, in C. trayanooricus, the entire contral cylinder
 representing the inner and outer region of central cylinder were taken. A special statistically designed 25 point grid was used and the points coming against the fibre portions were counted. By rotating the grid four times each time through an angle of 90°, the percentage of fibres was calculated.
(4) Xylem and Phlogm percentage - For both the species these properties were measured only in the central cylinder. Here also the special statistically designed 25 point grid was used to estimate the percentage.
(5) Metaxylem diameter - The transverse seotion of the stem was examined under mioroscope to measure the diameter of wide metaxylem using occular micrometer. Ten widest vessels from the central one-third of the diameter of transverse section fere measured for both the speoles.
(6) Cortex peroentage - The radial distance from the epidermis to the point where the first real vasoular bunde originated was measured as the cortex. Then the ratio between the width of the cortex to the total radius of the transverse section of the internode was worked out and expressed as a peroentage.

Maoeration of tissues

For the measurement of cell length, small radial segments were removed from the sampled middloportions of the seleoted internodes and macerated following Franklin's (1946) method.

The material to be macerated was first reduced to slivers of about 5 mm thiokness and $1-2$ om length. Tho slivers were placed in a centrifuging tube and a mixture of equal parts of glacial acetic acid and fydrogen peroxide were added. The preparation was placed in an oven at $70^{\circ} \mathrm{C}$ for 48 hours. The chemicals were then decanted and washed with water. A mild agltation was given to separate cut the elements. The macerated material was then washed over a filter paper repeatedly using the centrifuge.

Before staining, the material was washed 5-6 times in water to remove all traces of acid that affect stalning. Then a mordant 2% Ferric alum was added and kept for 3-6 minutes.

After washing in about 5-6 changes of water, 5% aquous Haematoxylin was added and kept for about 7-16 minutes. Finally basic fuohsin was added, after washing in 5-6 changes of water and kept for 1 hour

For C. travencoricus, the whole piece of stem was macerated as one lot. But for G. thwitesid, the inner and outer portions of the stem were macerated separately (Fig. 1). The stained macerated material was then mounted on slides for observation under a binocular microscope with ocular micrometer. At least two slides were observed from each macerated sample.

Measurement of cell size

By macerating the material, the various cell elements can be separated out facilitating the measurement of their dimensions.
(1) Metaxylem length - The length of at least 10 wide metaxylem elements were measured fromeachslide. For C thwaltesil outer and inner portions of the stem were treated separately The length from on end to the other end of each metaxylem element was measured with the ocular micrometer.
(2) Fibre length - Only the intact and complete fibre clements were selected for measurement. The total length between the two tapering ends was measured. Tho length of at least 25 fibres was measured from each slide. Care was taken to include both long and short fibres. In thwaitesil, measurements were taken separately for the outer and inner portions.
(3) Lumen width - In a fibre element, the space between the
fibre walls diametrioally is called the lumen. This has an important bearing on the physical properties as the double thickness of fibre wall influences various properties. At least 25 fibre elements in each slide were measured for their lumen size. Care was taken to include fibres with both narrow and large Lumen
(4) Eibre width - At least 25 fibres in each sifde were measured for their width

Statistical analysis

Two way analysis of variance (ANOVA) was carried out to study within-and between-stem variation in both anatomioal and physical properties. The variation patterns along the stem were elucidated using quadratic regression models. Further, the quantitativo data were compared in two species using student's t-test.

4. RESULTS

Anatomioal observations under the microscope revealed the following details.

The transverse section of stem shows a contral cylinder surrounded by outer cortex (Plates 6-9). The central cylinder consists of ground parenchyma tissue in which are embedded the vascular bundles. There in no distinct demarcation between outer cortex and inner central oylinder except that the vascular bundies are more densely arrangod and congested towards the periphery of the central cylinder. Obiviously, the number of vascular bundies per unit cross seational area increases towards the periphery from the centre. In cortex oniy the fibrous bundes or incomplete vascular bundles are distributed which contribute mainly to the mochanical behaviour of the stem. The outer most layer is epidermis. The epidermal cells have more or less triangular lumen in c. travanooricus while it is columar in C. thwatesif. (Plate $10 \& 11$).

Each vascular bunde consists of xylem, phloem, axial parenohyma and thick walled solerenohyma fibres (Plate 12) The later contributes to tho axial strength of the stem. Occasionally fibres are septate and show constrictions in cell wall (Plate 13). The phloem is divided into two strands lateral to a single wide metaxylem vessel. Ground

```
Plate 6 TS of C thwaitesii stem (basal most internode)
```


Plate 8 TS of C. thwatesin stem (internode No 20 from bottom)

Plate $9 \quad \begin{aligned} & \text { TS of } \\ & \text { bottom) }\end{aligned}$ trayanooricus stem (internode No 20 rrom

Plate - 6

Plata_ 8

Plate - 7

Plate- 9

Plate 10. Epidermal cells of C travancoricus showing oval or triangular lumen

Plate 11 Lpidermal ecilg of Chwaitegij showing roctangular lumen

Plate - 10

Plate - 11

Plate 12 Single vascular bundle in $T S$ of C travancorzous stem (F - Fibrous sheath mx - metaxylem pxprotoxylem ph - phloem)

Plate 13 L.S of C thwaitesif stem showing stegmata

Plate. 12

Plate. 13
parenchyma cells and often cortical colls are interspersed with intercellular spaces and mucilage canals. Staroh grains are more abundant in young stems. Silica grains are present in speoial cells (viz. stegmata) assooiating with fibrog of both vasoular and non vascular bundles (plate 13).

Tracheary elements have both perforate and imperforate ends. End walls are either oblique to very oblique with scalariform perforation plates or transuerse with simple perforation plates (Plates 14-17). The protoxylem elements are usually long imperforate tracheids or often with scalariform perforations (Rlate 18) while tho metaxylem vessel elements have specialised simple perforation plates. Often branched protoxylem elements oocur as seen in C. thwaitesif (Plate 19) Sieve tubes have generaliy simple sieve plates (Plate 20). Quantitative data of important anatomioal features are presented in Table 2.

4.1 Physioal properties

4.1.1 Internode length

The mean values aregiven in Table 2.

The mean values show thet $\underline{\text { C. }}$ thwatesil had longer internode than C travancoricus. The range of values was quite high but, the amount of variation was similar for both the species (Table 1). No definite trend in the

Plate 14. Metaxylem vessel element of C. thwaitesil showing simple perforation plate

Plate 15. Netaxylem vessel element of C. travanoorious showing simple perforation plate

Plate 16 Metaxylem vessel element of co thraitesii showing scalariform perforation plate

Plate 17. Metaxylem vessel element of C travancorious showing soalariform perforation plate

Plate 18. Protoxylem vassel element with scalarlform perforation plate

Plate 19 Branched protoxylem vessel elemont in C thwaitesii

Table 1

Coaparison of quantitative data for physical properties in $C_{.}$travancoricus and C_{n} thwatesil.

Physical properties

C. travancoricus				C. thwaitesin			t-value
Parameter	Mean	Range	C V	Mean	Range	C V	
1. Internode length \% (cm)	11.5	2.8-20 5	3621	2117	$63-34$	372	$-15.53^{\text {\# }}$
2 Internode Diameter (mm)	38	2.7-49	11.7	282	21.4-37 7	136	-6674 ${ }^{\text {² }}$
3. Density (g/c.c)	. 486	.276-.766	264	410	260-617	242	$205^{\text {\% }}$
4 Volumetric shrinkage (\%)	29.9	6.98-58.6	42.4	309	18.2-58.4	35.4	$.056^{\mathrm{ns}}$
5. Molsture content (\$)	129.1	60-242.9	39.7	171.3	$782-2879$	37.9	$-2.38^{\text {² }}$

Plate 20 Sicve tube element in C. thwaztesii

Piate 21 Septate fibre with constriction in tho fibre wall in C thwaitegif

Plate 22 Metaxylem vessel element in the outer portion of central cylinder of tha stem of C thwailesil showing relatitely large number of bars

Plate - 22
variation along the stem could be observed, although, the first 3-4 internodes are relatively short from the base (Fig. 2). But the variation between the species was found to be statistically significant. (Table 1).

The F values indicate that both the between-stem and within-stem variations in internode length were signifioant in both specieq (Table 3)

4.1.2 Internode diameter

The mean values are given in Table l. C. thogatsil recorded a higher mean value compared to c. travancorigus. The coafficients of variation show that the amount of variation was quite small and almost similar in both speaies. Within a stem, internode diameter decreased initially in the first few internodes from the base and then gradually showed an increasing trend in Cothwatesin, the 32nd internode being thickest while the variation was reletively small in the internode diameter of . trayanooricus with the thickest internode being in the base (Fig. 3). However, within-and between-stem variations in both species were statistically significant (Table 3). The t-value indioates that the difference between the speoies was significant (Tabie 1).

Li ure

Iigure 3 Rel tion hip betveen internode diameter and distance from the tem bo e (number of internodes) c th - $\frac{6}{C}$ thwaite $1 i$ ctr - \bar{C} Eravancoricus

4.1 .3 Density

The mean values are given in Table 1 and the individual observations are tabulated in Appendix - I.

The thiok oane, \underline{C}. thwaitesif had lower density compared to the siender cane. The range of values was more or less similar and the coefficients of variation indicated that the extent of variation within tho species was similar for both the canes. Between the speoies, the difference was significant only at 5% lavel of probability (Table l).

The F values reveal that the within- and between-stem variations in both canes are statistioally signifioant (Table 3). Within the stem, in both species, the density decreased from the bottom to the top in a curvilinear manner (Fig. 4).

4.1.4 Volumetrio shrinkage

The mean values of the observations are given in Table 1 and the individual sample values are tabulated in Appendix II.
 volumetric shrinkage, the variation between the species in this property was not statisticaliy significant (Table I) The range of the values was more for C. travancoricus, and bence the variation in values was also $h i g h$ as indicated by

Figure 4 Density varietıon as a function of dastance from the stem bottom (number of internodes)
C.th - C. thwaitesil
C.tr - C. travancoricus

「igure 5 Volumetric shrinkage variation as a function of distance from the stem bottom (number of internodes)
c.th - C. thwaitesin
c tr $-\bar{r}$. travancoxicur
the coefficient of variation (Table 1). Along the stem volumetric shrinkage incroased from the bottom to the top in a curvilinear fashion although there was a small decreasing trend in the top portion in C. thweitesif. In oontrast, volumetric shrinkage increased steadily after an initial decreaso in the bottom portion in C. travancoricus (rig. 5).

The analysis of variance revealed that both the withinand between-gtem variations were significant in C. travancorious whereas only the between-stem variation was significant in C_{0} thwaitesif (Table 3).

4.1.5 Moistura content

The mean values of the observations are given in Table I and the individual values are tabulated in Apendix III.

The results showed that at 5% probability level, the variation in moisture content between the two species was statistically significant (Table l) C. thwaitesif recorded a higher moisture content. As in the case of density, the range in velues was high but, the coefficients of variation indicated that the variation in both speoies was similar (Table 1)

The F Table shows that the between-and within-stem variations were significant in both species (Table 3). Within the stem, both speoies showed an increase in
moisture content towards the top as a reverse trend compared to density (Fig. 6).

4.2 Anatomical Characteristios

42.1 Vascular bundle frequency

The mean values of the observations are given in Table 2 and the individual observations are tabulated in Appendix IV.

The variation in values for this property between the species was found to be highly significant. The slender cane, C. travancoricus, recorded a higher mean value of 195 compared to 3.3 of C . thwattesif. The range in values was also different for both species. The coeffioients of variation indicated that the variation in C. thraitesif was higher compared to the other speotes.

The F Table shows that the between- and within- stem
 thwaitesil whereas, only the within-stem variation was significant at 5% probability level in c. travancoricus (Table 4). Within the stem, the vascular bundlefrequency increased rom the bottom upto a certain height level and then decreased slowly towards the top in C travancorious whereas the value docreased from bottom to the middle in C^{-} thwaitesii and then increased slightly towards the top

Table 2
Comparison of quantitative data for anatonical properties an Co travancoricus and C. thwaitesii. Physical properties

C. travancorious				C. thwaitesil			
Parameter	Mean	Range	C.V	Mean	Range	CV	t-value
1. V.B Frequency/mm ${ }^{2}$	19.5	17-23	97	3.3	2-9	31.5	3649 **
2. V.B Diameter (mm)	. 313	.22-.46	81	. 76	.56-.1.1	108	$-26.2^{\text {\# }}$
3. Fibre ?	26.4	13.5-40.5	284	27.6	16-47	22.5	$-.605^{\text {n.s }}$
4. Phloem \%	10.1	5-135	24.3	8.9	5-12	21.7	$1.89{ }^{\text {\#* }}$
5. Metaxylem Diameter (mm)	.140	.08-. 18	14.7	. 352	.146-. 448	25	$-11.6{ }^{* *}$
6. Xylem \%	33	17-43	21.7	27.8	15-38	249	2.52 \#
7. Cortex \$	14.7	8 2-14.7	35.6	2.5	1.2-5.6	45	$108^{7 \%}$
8. Metaxylem length (mm)	1.8	. 370-4.9	32.2	1.7	-5-3.3	24.9	$1.28{ }^{\text {ns }}$
9. Fibre length (mar)	1.4	.5-2.8	13.7	1.7	.5-4	12.2	$-6.15{ }^{\text {* }}$
10. Lumen width (mm)	. 007	.002-. 02	28.4	. 008	.002-. 02	28	$-2.07{ }^{\text {\# }}$
11. Fibre width (mm)	. 017	.012-0 28	8.8	. 019	. $008-.034$	4.2	$-7.5^{* 4}$

Figure 6 lloisture content variation as a function of distance from the stem base (number of internodes)
C th $-C$. thwartesil
C.tr - $\overline{\mathrm{C}}$. travancoricus

rigure 7 Variation of vascular bundle frequency as a function of distance from the stem bottom (number of anternodes)
C.th - C thwartesil
c.tr - \bar{C} tray ncorıcus
(Fig. 7). In C. thwaitegif, the vascular bundie frequency increased from the centre to the perfphery (Appendix IV) Similar variation was observed in the thinner cane also.

4.2.2 Vascular bundie diameter

The mean values of the observations are given in Table 2 and the individual values are tabulated in Appendix V.

Between the two species, t-value shows that the difference in this property was highly significant (table 2) The thicker cane had a larger vascular bundle with a nigher range of values. However, the coefficients of variation showed that the variation was more or less similar for both canes (Table 2).

The F- value showed that in C. thwaitesii, the withinstem and between-stem variations in vaseular bundle diameter were statistically significant, whergas in C. travancoricus, only the within-stem variation was significant (Table 4). Within the stem of thicker oane, the vascular bunde diameter showed an increasing trend from the bottom to the top, whereas in the slender oane, the vascular bundie size slightiy decreased initially and then gradually increased towards the top (Fig. 8).

4.2.3 Fibre percentage

The mean values of observations are given in Table 2

Table 3

Analysis of variance of physical properties in the two rattan species.
Physical properties

$$
\text { C. travancoricus } \quad \text { C. thwaitesil }
$$

Parameter	Source of Variation	Degree of Freedom	Mean Square	F	Source of Variation	Degree of Freedom	Hean Square	F
1. Internode length	Between	4	59.98	24.22***	Between	4	80.1	5.1 复
	Within	21	20.2	$10.58{ }^{* *}$	Uithin	22	84.2	$5.36{ }^{\text {\% }}$
	Error	84	2.48		Error	88	15.7	
2. Internode Diameter	Between	4	2.76	26.87 ${ }^{\text {a }}$	Between	4	305.3	95.2. ${ }^{\text {a }}$
	Unthin	21	0.4	$3.93{ }^{\text {\% }}$	Within	22	817	2.55 "
	Error	84	0.1		Error	88	3.2	
3. Density	Between	4	0.017	$15.28{ }^{\text {\% }}$	Between	4	0.036	21.2**
	Within	4	0086	$77.24^{\text {m* }}$	Within	4	0.020	11.7 ${ }^{\text {* }}$
	Error	16	0.001		Error	16	0.017	
4. Volumetric Shrinkage	Between	4	273.69	$4.78{ }^{* *}$	Between	4	408.76	$7.79{ }^{\text {\#* }}$
	Hithin	4	542.33	$9.46{ }^{\text {\#3 }}$	Hithin	4	110.03	$2.096^{\text {ns }}$
	Error	16	57.25		Error	16	52.49	
5. Moisture Content	Between	4	3454.2	$8.66^{\text {² }}$	Between	4	14822.2	17.99 ${ }^{\text {\#n }}$
	Within	4	10360.6	$25.8{ }^{* *}$	Within	4	8079.72	$9.8{ }^{\text {\% }}$

Fagure 9 Varaation of Fibre percentage as a function of distance from the stem bottom (nu ber of internodes)
${ }_{c}$ th - C thwaitesil
ctr - C.travancoricus

1 igure 8 Vascul r budle diametcr v rı tion as a function of di tance from tle tem a e (nu ber of intornodes)
${ }_{6}$ th -5 thw it gis
< L - - Lruv icorlcu
and the individual values are tabulated in Appendix VI. \quad (thyaitesif had a greater mean fibre percentage than c. travanooricus. The coefficients of variation showed that the range and hence the variation in values were greater for the latter (Table 2). The difference between the two species was not found to be statistically significant. The Inner and outer regions of C. thyeitesif showed that the percentage of fibres decreased from the periphery to the oentre. (Appendix VI) In C。travancorious also, similar pattern was observed.

The F values showed that in the slender oane, both the between-stem andwithin-stem variations weresignificant, whereas in the thicker oane, only the variations within a stem were significant (Table 4). Similar patterns of variation within the stem were exhibited by both the species - the bottom recording the maximum value and a gradual decrease towards the top (Fig. 9).

4.2.4 Phloem percentage

The mean values of the observations are recordedin Table 2 and the individual values are given in Appendix VII.

A higher mean value for phloem percentage was shown by the slender cano, C. travancorious. The range of values was higher for the latter and hence the variation was also greater for this species as indicated by the coefficients of

Table 4
Analysis of variance of anatonical properties in the two rattan species
Anatomical parameters

		C Tra ancoricus				C thwaitesil			F
		Sou ce of Variation		Mean Square	F	Source Variati	$\begin{aligned} & \overline{\mathrm{De}} \\ & \mathrm{~F} \end{aligned}$	Mean Square	
1 Vascular Bundle									
	Frequency	Between	4	494	$218^{\text {ns }}$	Between	4	198	2 gns
		Within	4	904	39973	Between	4	66	$242^{\text {n3 }}$
		Error	16	227		Error	16	069	
2	V B Dlameter	Between	4	000067	$273{ }^{\text {ns }}$	Between	4	02	$94^{* *}$
		Within	4	0001	51%	Within	4	013	646%
		Error	16	00002		Error	16	021	
3	F bro po oontage	П wo n		721	10 07"	Bg ween	4	1606	$26^{\text {n9 }}$
		WIthin	4	2858	3989	Within	4	20751	3382
		Error	16	771		Error	16	614	
4	Phioem $\%$	Between	4	864	$206^{\text {ns }}$	Between	4	066	$025^{\text {n3 }}$
		Within	4	1174	$28^{\text {n. }}$	W thin	4	1126	$427{ }^{*}$
		Error	16	419		Error	16	264	
5	Metaxylem Diameter	Between	4	000005	093 ns	Between	4		$806^{n \pi}$
		Within	4	0002	$4778{ }^{\text {* }}$	Within	4	00395	538
		Error	16	000005		Error	16	00007	
6	Xylem \%	Between	4	495	387	Between	4		
		Within	4	2213	1729^{*}	Within	4	251123	$3057^{* 1}$
		Error	16	128		Er or	16	822	
7	Cortex \$	Between	4	2587	$72^{* *}$	Between	4	089	$584^{\text {EF }}$
		Within	4	13837	$3859^{\text {12 }}$	Within	4	59	$3878{ }^{\text {" }}$
		Error	16	359		Eror	16	015	
8	Metaxylem Length	Between	4	027		Between	4		
		Within	4	03	$24^{n 3}$	Between	4	066	$962^{* / 4}$
		Error	16	012		Error	16	0069	
9	Fibre Length	Between	4	006	$398{ }^{\text {\% }}$	Betwe n	4	008	$243^{\text {ns }}$
		Within	4	008	$534^{\text {\#1 }}$	Within	4	006	$172^{\text {ns }}$
		Error	16	002		Error	16	003	
10	Lumen Width	Between	4	0000008	819**	Between	4	000001	$1882^{* *}$
		Within	4	000001	$118^{* *}$	Between	4	000002	$22004 *$
		Error	16	0000001		Error	16	00000008	
11	Fibre Width	Between	4	0000005	294 ns	Between	4	0000002	$56^{* *}$
		Hithin	4	0000002	$133^{n 3}$	Within	4	00000003	$3071{ }^{\text {ns }}$
		Er or	16	0000002		Error	16	00000004	

Abstract

variation. The variation between the spedes was significant only at 54 probability level (Table 2).

The F value showed that the between-stem variations were not statistioally significant for both the species, whereas in $C_{\text {. }}$ thwaitesil the variations within-stem were significant at 5% probability level (Table 4). Within the stem, the variation patterns were not similar but an increasing trend was observed from the bottom to the top (Fig. 10).

4.2.5 Metaxylem diameter

The mean values are shown in Table 2 and the individual observations are tabulated in Appendix VIII.

The results showed that $C_{\text {. }}$ thwaitesii had a wider metaxylem vessel than C. $_{\text {e }}$ travanopicus. The range of values was also higher in the former and hence had a higher variation as indicated by the coefficients of variation The difference in the metaxylem diameter between the two species was statistically significant (Tabla 2).

The F value revealed that in Co thyigitesii, both thc within-stem and botween-stem variations were significant, whereas in C. travanoorious, only the within-stem variation was significant (Table 4). The variations along the stem showed similar patterns in both species, the values

I Igure 10 Phloem percentaje v riation 3 a function of dis.ance from the oten bottor (number of Internoden)
C. th - C thwantesii C.tr - C.travancorıcus

[^0]c th - 4 thwaites 21
C tr-travancorics
gradually increasing from base to top, although a marked increase from internode number 1 to 5 was noticed (Fig 11)

4.2.6 Xyly percentage

The mean values of the observations are shown in Table 2 and the individual values are tabulated in Appendix ix
C. travancoricus had a higher xylemperoentage than the other cane. The variation in values was similar in both species but range in values was silghtiy more ror the thicker cane, as indicated by its coefficient of variation The t-value revealed that the difference between the species was statistically significant (Table 2)

The F value showed that the within-stem variations were significant for both canes while tho between-stem variation was significant at 5% level of probability for C travencoricus alone (table 4). The variation along the stem In both canes showed a similar pattern, increasing from the base to the top (Fig. 12).

42.7 Cortex peroentage

The mean values of the observations are recorded in Table 2 and the individual values are tabulated in Appendix X.
 oortex percentage of 14.7 compared to 2.5% of the thicker cane. The range in the values was high and the variation in the species was large as indicated by their coefficients of variation. Between the species, the t- value shows that the variation in this property was significant (Tabie 2).

The variations both between the stems and within the stems were statistically significant (Table 4). Within the stem, the variation patterns were similar the basal internode recording the highest value and decreasing towards the top (Fig. 13).

4.2.8 Metaxylem element length

The mean values of the observations are recorded in Table 2 and the individual values are tabulated in Appendix XI.

The thinner cane had a slightly higher mean value than the other cane. The coefficients of variation showed that the variation in both the species was more or less similar The variation in values for this property was not statistically significant between the species (Table 2).

The analysis of varianoe showed that in travanoorlous, the the between- and within-stem variations were not significant whereas in C. thwaitesii, the within-

Iigure 12 Xylem percontage variation as a function of distanco from the stem bottom (number of internodes)
C.th C thwaitesis
C.tr - 6 travancoricus

Figure 13 Cortex percentage variation as a function of distance from the stem bottom (number of internodes)
C.th - C. thwaitesii
C.tr - C.travancoricus
gtem variation alone was significant (Table 4). No definite trend could be observed in the variations from the centre to the periphery for the thicker cane (Appendix XIII). Along the stem, botis specios reoorded increasing values from the base to the top (Fig. 14).

4.2.9 Fibre length

The mean values of the observations are recorded in Table 2 and the individual values are tabulated in Appendix XII.

The reusits showed that C_{0} thwaitesii had a mean fibre length of 1.7 mm , almost same as that of its mean metaxylem length whereas, C_{0} travanooricus had a lower mean value of 1.4 mm . The coefficients of variation showed that the total variation was the same in both cases. Howover, the t value indicates that the between-species variation was significant (Table 2).

The f-value showed that in C. travancorious, the between stem and within-stem variations wero significant while, they were not significant in the other species (Table 4). An increasing trend could be observed in the fibre Iength from the centre to the periphery (Appendix XII) for C. thrattesil Along the stem fibre length show an increasing trend from the base to the top in C. thwatitesif
while in $\underline{\text { G }}$ travanoorious it initially decreased and then showed a gradual incroase to attain the initial fibre length value (「ig. 15).

4.2 .10 Fibre width

The mean values of the observations are given in Table 2 and the individual values are tabulated in Appendix XIII

The thicker cane had a higher mean fibre width. However, the coeffiolants of variation indicated a greater variation in values in C. travanooricus The t - value revealed that the variation between the speoies was statistioally significant (Table 2).

The F Table showed that the between-stem and within-
 While, only the between-stem variation was significant in the thioker cane (Table 4). The results showed a decresing trend in fibre width from centre to the periphery in \underline{c}° thwaitesi1.

4.2 .11 Lumen width

The mean values of the observations are recorded in Table 2 and the individual values are tabulated in Appendix XIV.

IIgure 14 Variatjon of metaxylen clement length as a function of distance from the stem bottom (number of internodes)
C.th - C.thwaitesii
C.tr - C.travancoricus

figure 15 I ibre length variation as a function of distance from the stem jottom (number of internode

C th - C.thwaytesif
C tr - と travancoricus

As in fibre width, the thicker cane recorded wider lumen and the variations in both species were similar as shown by their coefficients of variation. The betweenspecies variation in values was significant only at 5% probability level (Table 2).

The variations both between-stem and within-stem were
 thuaitesil, the variation in lumen width showed the opposite trend to that in fibre width, gradually decreasing from centre to periphery (Appendix XIV). Along the stem, however, the game trend of the fibre length was observed, increasing gradually from the bottom to the top (Fig. 17)

Correlation among physioal and anatomical properties

In order to assess the intorrelationships among various properties, correlation coefficients are presented in Table 5. The more meaningful relationships, to explain the performance and behaviour of cane, are given below.

The length and diameter of internodes did not show consistent relationships with other variables although some of the correlation coeflicients were significant. Wood density showed highly significant negative correlation with moisture content and volumetric shrinkage. The correlation coefficients also revealed that density was positively correlated with fibre percentage and that xylem percentage

Table 5
Correlation cofficients for the relationships between certain physical and anatomical variables

Parameters		Int. Length	Int. Dia.	$\begin{aligned} & \text { Den- } \\ & \text { sity } \end{aligned}$	Vol Sirink	$\begin{gathered} \mathrm{MCC} \\ \mathrm{~g} \end{gathered}$	$\begin{aligned} & \text { V.B } \\ & \text { Freq } \end{aligned}$	$\begin{aligned} & \text { VB } \\ & \text { Dia. } \end{aligned}$	Fib.	Ph1	$\begin{gathered} \text { Met.Xy } \\ \text { Dia } \end{gathered}$	$\begin{array}{r} \mathrm{XyI} \\ \mathrm{~g} \end{array}$	$\begin{gathered} \text { Cor } \\ \$ \end{gathered}$	Metwyl Length	Fib. Length	Lamen Length	$\begin{aligned} & \text { F b } \\ & \text { w dth } \end{aligned}$
Internode Length	$\begin{gathered} (t) \\ (T) \end{gathered}$		$\frac{326^{n s}}{11^{n 3}}$	$319^{* *}$	$\begin{gathered} 554^{i n} \\ 32^{n 3} \end{gathered}$	$\begin{aligned} & 74^{4^{n+2}} \\ & 41^{2} \end{aligned}$	$03^{n s}$	44^{4}	$\begin{gathered} 65^{*} \\ 68^{*} \end{gathered}$	$\begin{gathered} 3 n^{n s} \\ 39^{\mathrm{ns}} \end{gathered}$	73^{84}	$79^{57^{n}}$	$-59^{4.4}$	$\begin{aligned} & 60^{* *} \\ & 85^{\prime \prime \prime} \end{aligned}$	$\begin{gathered} 17^{\text {ns }} \\ 50^{*} \end{gathered}$	$\begin{aligned} & 69^{4} \\ & 48^{4} \end{aligned}$	$\begin{aligned} & 01^{n s} \\ & 01^{n s} \end{aligned}$
In ernode Diameter	${ }_{(T)}^{(t)}$			$\begin{gathered} 16^{n 5} \\ 522^{n} \end{gathered}$	$\begin{gathered} 19^{n s} \\ 376^{n 5} \end{gathered}$	$\begin{gathered} 03^{n s} \\ 377^{n s} \end{gathered}$	$\begin{gathered} 72^{*} \\ 512^{*} \end{gathered}$	$\begin{gathered} 39^{n 3} \\ 64^{n 3} \end{gathered}$	$\begin{gathered} 0 \mathrm{ons}^{\mathrm{ns}} \\ 09^{\mathrm{ns}} \end{gathered}$	$\begin{array}{r} 14^{\mathrm{ns}} \\ 022^{\mathrm{ns}} \end{array}$	$\begin{gathered} 374^{\text {ns }} \\ 203^{\text {ns }} \end{gathered}$	$\begin{gathered} 16^{\mathrm{ns}} \\ 09^{\mathrm{ns}} \end{gathered}$	$\frac{175^{n s}}{122^{n s}}$	$\begin{gathered} 225^{n s} \\ 223^{\text {ns }} \end{gathered}$	$\begin{aligned} & 369^{n 3} \\ & 153^{n 3} \end{aligned}$	$\begin{aligned} & 048^{\text {ns }} \\ & 47^{7} \end{aligned}$	$.299^{n s}$
Density	$\begin{gathered} t \\ (T) \end{gathered}$				$\begin{gathered} 714^{n \pi} \\ 83^{* *} \end{gathered}$	$\begin{gathered} 942^{* F} \\ 956^{* 2} \end{gathered}$	$\begin{aligned} & 038^{n 9} \\ & 588^{* 4} \end{aligned}$	$\begin{gathered} 501^{" n} \\ 797^{*} \end{gathered}$	$\begin{aligned} & 898^{* *} \\ & 422^{*} \end{aligned}$	$\frac{501^{n}}{22^{n 3}}$	$\begin{gathered} 894^{* 4} \\ 786^{* \%} \end{gathered}$	$\begin{aligned} & 768^{14} \\ & 464^{3 \prime} \end{aligned}$	$\begin{gathered} 825^{4 \pi} \\ 374^{n 3} \end{gathered}$		$\begin{aligned} & 065^{n s} \\ & 187^{\mathrm{ns}} \end{aligned}$	$\begin{aligned} & 877^{* *} \\ & 86^{*} \end{aligned}$	$\begin{aligned} & 097^{\mathrm{ns}} \\ & 343^{\mathrm{ns}} \end{aligned}$
Vol Sn inteage	$\left(\begin{array}{c} () \\ (T) \end{array}\right.$					$\begin{gathered} 823^{7 n} \\ 893^{4} \end{gathered}$	$\begin{gathered} 369^{n s} \\ 327^{n s} \end{gathered}$	$531^{17 n}$	$\begin{gathered} 661^{n+4} \\ 188^{\text {ns }} \end{gathered}$	$\begin{gathered} 254^{n 3} \\ 159^{n 9} \end{gathered}$	$60^{63^{n 4}}$	$\begin{gathered} 47^{*} \\ 285^{n s} \end{gathered}$	$\begin{gathered} 45^{3} \\ 32^{n 3} \end{gathered}$	$\begin{gathered} 437^{\star} \\ 11^{n s} \end{gathered}$	$\begin{aligned} & .231^{\mathrm{ns}} \\ & 075^{\mathrm{ns}} \end{aligned}$	$\begin{aligned} & 774^{* *} \\ & 681^{* *} \end{aligned}$	$\begin{gathered} 406^{n} \\ .282^{n s} \end{gathered}$
MC\%	$\begin{aligned} & (t) \\ & (T) \end{aligned}$						169^{123}	$\begin{array}{r} 426^{* *} \\ 644^{*} \end{array}$	$\begin{aligned} & 871^{4!} \\ & 417^{*} \end{aligned}$	$\begin{gathered} 506^{4} \\ 24 n^{n s} \end{gathered}$	$788^{* *}$	$\begin{aligned} & 688^{* *} \\ & 443^{*} \end{aligned}$	$\begin{gathered} 776^{* *} \\ 375^{\text {ns }} \end{gathered}$	$\begin{gathered} 478 \\ .266^{n 3} \end{gathered}$	$\begin{aligned} & 046^{\mathrm{n3}} \\ & 155^{\mathrm{n3}} \end{aligned}$	$\begin{gathered} 91^{6 *} \\ .857^{* *} \end{gathered}$	$\begin{gathered} 191^{\mathrm{ns}} \\ .258^{\mathrm{ns}} \end{gathered}$
VB Frequency	T^{t}							$\begin{gathered} -511^{* *} \\ 768^{* *} \end{gathered}$	$\begin{aligned} & 038^{\text {ns }} \\ & 393^{\text {ns }} \end{aligned}$	$\begin{aligned} & 242^{n s} \\ & 067^{\mathrm{ns}} \end{aligned}$	$\begin{gathered} 012^{123} \\ 633^{*} \end{gathered}$	$\begin{gathered} 033^{n s} \\ 334^{n s} \end{gathered}$	$\begin{gathered} 032^{\text {ns }} \\ 437 \end{gathered}$	$\begin{gathered} .08^{n s s} \\ 26^{n 3} \end{gathered}$	$\begin{aligned} & 143^{n s} \\ & 306^{n s} \end{aligned}$	$\begin{aligned} & 158^{\text {ns }} \\ & 513 \end{aligned}$	364 $445^{\text {n3 }}$
V B Diameter	$\begin{aligned} & (t) \\ & (T \end{aligned}$								$\begin{gathered} 482^{n} \\ 397^{\text {ns }} \end{gathered}$	$\begin{gathered} 503^{*} \\ 305^{n \mathrm{~s}} \end{gathered}$	$\begin{gathered} 317^{\text {ns }} \\ \end{gathered}$	$\begin{aligned} & 354^{n 3} \\ & 473^{3 n} \end{aligned}$	$\begin{gathered} 468^{*} \\ 423^{*} \end{gathered}$	$\begin{gathered} 432^{n} \\ .225^{n s} \end{gathered}$	$\begin{aligned} & 007^{\mathrm{ns}} \\ & 222^{\mathrm{ns}} \end{aligned}$	$\begin{aligned} & 442^{*} \\ & 691^{*} \end{aligned}$	$\begin{aligned} & 185^{n 3} \\ & 324^{n 3} \end{aligned}$
Fibre $\$$	$\begin{gathered} (t) \\ (T) \end{gathered}$									$562^{\pi!}$	$\begin{gathered} 81^{n * 2} \\ 771^{n} \end{gathered}$	$883^{7 \#}$	$\begin{gathered} 865^{* 14} \\ 803^{*} \end{gathered}$	$513^{* * *}$	$\begin{aligned} & 107^{\text {ns }} \\ & 348^{\mathrm{ns}} \end{aligned}$	$\begin{aligned} & 797^{* 4} \\ & 545^{* *} \end{aligned}$	$\begin{aligned} & 116^{\mathrm{ns}} \\ & 139^{\mathrm{ns}} \end{aligned}$
Phloem $\%$	$\begin{aligned} & (t) \\ & (T) \end{aligned}$										432^{3}	558*******	$588^{* *}$	$\begin{gathered} 415^{n} \\ 392^{n s} \end{gathered}$	$\begin{gathered} 21^{n s} \\ 155^{n s} \end{gathered}$	$\begin{aligned} & 395^{\mathrm{ns}} \\ & 369^{\mathrm{ns}} \end{aligned}$	$\begin{aligned} & 079^{n s} \\ & 07^{n s} \end{aligned}$
Met. Xylem Dia.	$\begin{aligned} & (\mathrm{t}) \\ & \mathrm{T}) \end{aligned}$											$\begin{gathered} 760^{F+} \\ 828^{* *} \end{gathered}$	$788_{7}^{F i n}$	$\begin{aligned} & 586^{74} \\ & 642^{74} \end{aligned}$	$\begin{aligned} & 177^{n s} \\ & 253^{n s} \end{aligned}$	$\begin{aligned} & 709_{n}^{* *} \\ & 779^{* *} \end{aligned}$	$\begin{aligned} & 026^{n s} \\ & 143^{n s} \end{aligned}$
$\text { Xylem } \%$	t)												$\begin{gathered} 829 \\ 848 \end{gathered}$	$\begin{gathered} 448 \\ 833 \end{gathered}$	$\begin{aligned} & 183 \\ & 375 \end{aligned}$	$\begin{aligned} & 584 \\ & 528 \end{aligned}$	$\begin{aligned} & 006 \\ & 204 \end{aligned}$
Cortex \%	$\begin{aligned} & (t) \\ & (T) \end{aligned}$													$\begin{gathered} 534^{\text {min }} \\ 837^{* *} \end{gathered}$	${ }_{-1}^{1} 9^{\text {ns }}$	$\begin{aligned} & 603^{\pi *} \\ & 478^{* *} \end{aligned}$	$\begin{aligned} & 194^{n s} \\ & 06^{n 3} \end{aligned}$
Met. Xyl Length	$\begin{gathered} (\mathrm{t}) \\ (\mathrm{T}) \end{gathered}$														$\begin{gathered} 30 q_{4}^{n s} \\ 573^{4} \end{gathered}$	$\begin{gathered} 464^{*} \\ 402^{*} \end{gathered}$	$\begin{aligned} & 049^{n s} \\ & 03^{n s} \end{aligned}$
Fibre Length	$\begin{gathered} \text { t) } \\ (T) \end{gathered}$															$\begin{gathered} 06^{n 3} \\ .263^{n s} \end{gathered}$	$\begin{aligned} & 065^{\mathrm{ns}} \\ & 056^{\mathrm{ns}} \end{aligned}$
Lumen Hidth	$\begin{aligned} & (t) \\ & T \end{aligned}$																$\begin{aligned} & 395^{n 3} \\ & 447^{7} \end{aligned}$

Iigure 16 Relationohip between fibre width and distance from the stem base (numbel of internodes)

$$
\begin{aligned}
& \text { C.th }=\frac{\text { C thwaitesii }}{\text { C.tr }} \\
& \text { C.travancorıcus }
\end{aligned}
$$

ligure 17 Lumen width variation as a function of di.otance from the stem bave (number of internodes)
C th - C thwaitesin
c.tr - Lravancoricus
and diameter of metaxylem vessels were inversely related to density. The diameter and number of vascular bundles per unit area showed different relationships in thick and thin canes. What is evident from the table is that the most important contributing factors to stem density were the percentage of fibres, fibre lumen (or in turn fibre wail thickness), often cortex percentage, diameter of metaxylem vessel and percentage of xylem. Volumetric shrinkage was positively correlated with initial moisture content. Volumetric shrinkage was more related to the diameter of metaxylem vessel, lumen width and hence the wall thickness of fibres than to the number of vascular bundles per mam and their diameter. It had inverse relationship with fibre\% in C. travanoorious in contrast to non significant correlation in C. $_{\text {thwaitesin. }}$

Initial moisture content was positively correlated with both the diameter of metaxylem vessel and the percentage of my 1 em.

Vascular bundle diameter was negatively correlated with the number of vascular bundles per unit area in both species.

In both the species the percentage of fibres had negative association with phloem and xylem percentages while, it was positively correlated with cortex percentage.

5. DISCUSSION

5.1 Variability of physioal properties

Along the stem, internodes become longer upto atleast 3 to 5 internodes from the base and then either remain more or less constant or slightly inorease in length towards the terminal end. Thus, no definite pattern of variation in internode length could be established. The diameter, as measured in the middle part of internode, also does not elucidate a olear trend although there is an initial drop from the first internode from the base and there is an increasing trend towards the top in C. thwaltesif. This observation supports the results of earifer studies in different species of Calamus (Fisher, 1978, Bhat and Renuka, 1986).

The other physioal properties such as density, initial moistura oontent and volumetrio shrinkage show difinite patterns of longitudinal variation. Such variation oould best be explained using quadratic regression models as the 8^{2} values are in tho range of $86-98 \%$ (Fig. 4-6).

Density decreases in the stem from the base to the top, although the slope of the ourve is more steep only upto about 20 internodes from the base. Density decline from the base to the top is also reported in other erect palms like Cocos nucifera although it is a linear decreasc (Richolson
and Suarup, 2977 Sudo, 1980 K111mann, 1983). Undisputediy, consity value is higher in the periphery than in stem centre, in a given height level as reported in coconut stom (Richolson and Swarup, 1977 Meylan, 1978). The longitudinal variation in moisture content is almost in a reverse pattern compared to density in both species of rattans in contrast to a linear increase in ooonut stem (Ki11mann, 1983).

Although volumetric shrinkage increases considerably from the base to the top in both species of rattans, the patterns of variation are different. In C. travancorious, it increases even up to the internode number 30 from the base while in C. thwattesif, it starts decreasing after internode number 20 with an initial increase from the the base. This difference is probably attributable to variation in the texture of the stem between the two species.

5.2 Anatomical variability

5.2.1 Cortex percentage

Despite the presenoe of relatively wide cortex in C. thwaitesil (Ranuka et al, 1987) the moan percentage of cortex in the cross sectional area of the stem is higher in C. travancoricus. This indicates that in large diameter canes like C. thwaitesil the proportion of central cyinder in the stem is greater than that in the stem of .
 secondary growth resulting in over all cell division and cell enlargement in tho parenchymatous ground tissue. It may be noted that in c. travanooricus cortex percentage decifnes more rapidly upwards in the stem than in thwaitesif. However both the variation patterns obey the regression curves of the second degree polynomial (fig 12).

5.2.2 Frequency and diameter of vascular bundies

Longitudinal pattern of variation in number of vasuclar bundles per mm ${ }^{2}$ area differs between the two species, although, the extent of variation within the stem of each species is relatively small. The pattern of an lifitial Increase up to a certain stem length from the base and then a gradual deorease towards the top, exhibited by \underline{C}_{-} travancorious is almost similar to that reported in arborescent palm viz., Phoenix sylyestris (Swamy and Govindarajulu, 1961). On the othor hand, an opposito trend is shown by \underline{C}. thwaiteger although the variation is insignificant. Tomilnson (1961) made an observation that the number of vascular bundes per unit area of the stem is approximately the same at all heights in palms. However, a linear increase in number of vascular bundies per cmas observed with increasing stem height in coconut trunk (Rioholson and Swarup, 1977 Killmann, 1983). The pattern displayed by coconut stem is in agreement with that noted in

Chrysalidocarpus outescens by Zimmermann and Tominson (1974) Thus it is evident that the longitudinal variation in frequency of vasoular bundies per unit area differs in both lianold and non-lianoid palms. One reature which is in general agreement in the reportod studies, is that the diameter of vasoular bundles shows a reverse trend in variation to that of vascular bunde frequency from the bottom to the top (zimmermann and Tomlinson, 1974 Killmann, 1983).
5.2.3 Percentage of fibres and vasoular tissues

In spite of the differonces in size and frequency of vascular bundles and their variation patterns between the thick and thin canes, the percentage of fibres and the trend In their curvilinear decrease from the bot tom to the top are similar in both species. On the other hand, tho percontage of $x y l e m$ and that of phloem differ between the species. In general they increase with inoreasing stem height although the patterns showed by phloem percentage are different between the two species. This inverse relationship of fibres with vascular tissues in their longitudinal variation can cause the decilne in fibrovasoular ratio from the bottom to the top as observed in non-lianoid palms like fhoenix sylvestris (Swamy and Govindarajulu, 1961)
5.2.4 Cely dimensions

Length of vessel elements (wide metaxylem) is almost similar in both the species. However, its increase from the bottom upwards in the stem is in a linear fashion in slender cane (\underline{C} travancorious) in contrast to curvilinear manner in C. $_{\text {thwaitesit. The pattern of initial increase }}$ upto certain internode number from the base before the gradual decrease towards the terminal portion, displayad by C. thwaitesifis in agreoment with the lainoid palm Sabal galmetto (Tomiinson and Zimmermann, 1967). As in the length of metaxylem elements, fibre length increases considerably from the bottom to the top in C. thwategii while it does not differ much between the bottom and top internodes in . travancoricus However, fibre length varies considerably within the stem, by exhibiting an initial drop and then a gradual increase so as to attain more or less similar length in the top as in bottom portions of the atem. In spite of these differencos between the speoies, the longitudinal variation in cell diamension could be elucidated using curvilinear regression models as the \boldsymbol{a}^{2} valuos are quite high. This longitudinal variation in cell length contradicts the trend observed in other non-1ianoid palms like Phoenix sylvestris and Washingtonia where vessel elements are significantly longer at the bage than at the top (Zimmermann and Tomlinson, 1974, Swamy and

Govindarajulu, 2961). Whether the cell length variation is related to the nabit of palms is yet to be understood. For example, the climbing palms like rattans grow to enormous hoights under favourable conditions and no information is available on the oell formation and length variation in subsequent stages of growth.

Diameter of metaxylem vessel increases gignlficantly from the first internode at the base towards the top and from the periphery to the centre (Plate 22) while fibre width does not change considerably. However, fibre wall thickness decreases and hence the lumen width increases with increasing stem height and distance from the periphery towards the stem oentre.

5.3 Identification based on anatomy

The quantitative data prosented in rable 1 shows that internodes are shorter and more slender in $C_{.}$travancoricus than in C.thwaitesif This obeys the clasqification of Kerala rattans proposed by Bhat and Renuka (1986). They include C. $^{\text {trequanooricug }}$ under small diameter rattans (where mean diameter is (10 mm) and C. thwaitegif under large diameter cane (mean diameter is > 19 mm . Although diameter and leneth of internodes are useful features in distinguishing between the species, they cannot be used as the only criteria due to the fact that there are many other
spocies whioh come under small diameter and largo diameter cane groups This warrants the examination of anatomical reatures. Exceptin the percentage of total ribres there are differences betwoen the two species in anatomioal characteristios suoh as cortex percentage, frequency and diameter of vascular bundies, percentage of xylem and phloem as well as length and diameter of metaxylem vessel elements and fibres. However, with distinotly different values between the two species, anatomical features that offer diagnostio olues are the vascular bundle diameter, number of vascular bundlag per unit area ($1 \mathrm{~mm}^{2}$) and the diameter of wide metaxylem vesscis. Furthermore, the little variation encountered in $31 z e$ and frequency of vascular bundles along the stem (between the internodes) favour these features as diagnostio criteria. Similarly Liese and Weiner (1987), in their preliminary study, made an oboervation that a comparison of tho middle part or the internodes at different height levels reveals no differencos in relation to size and distribution of vascular bundles The diameter of wide metaxylem vessels however inareases considerably from the bottom-most internode to the top portion. The careful observation indicates that the diameter increase in metaxylem is rapid between internode number 1 and 5 from the bottom and thereafter it is rather slow. Since, the patterns of longitudinal variation are more or less similar in both species, the comparison of samples from the same
position of stem may offer enough clue to separate the species based on the diameter of metaxylem vessels.

In addition to these quantitative anatomical differences, some of the qualitative characteristics may also be employed in identification of species. Particularly important are the shape of epidermal cell and its lumen and the width of cortex (Siripatanadilok, 1983). For instance, the cell lumen of epidermal cells is triangular or oval in C. travanooricus in contrast to oblong or rectangular in C thwaitesif. Furthermore, with features like relatively wide cortex and relatively large cells of the latter, an anatomist could distinguish it from C. travanooricus. Lies and Weiner (1987), in attempting intergeneric differentiation of rattans, made the observation that the composition of vascular bundles, their arragement in the peripheral zone, the peripheral paranchyma arrangement and the morphological variation of ground tissues could be used as diagnostic features. However such differences within the genus appear to be too small to act as separation oriteria. More research iq needed to bring out such minute differences in identification. Tho occurrence of perforation plates of tracheary elements with simple reticulate and scalariform types even within the species seem to have little diagnostic value in separating the two species.
5.4 Influence of anatomy on behaviour and performance of

As in conventional timber species, many end-use characteristics of palm stem such as strength, rigidity and hardness are reflected through wood density (Sudor, 1980) The results of the correlation analysis show that the number of vascular bundles per unit area has positive relationship
 travancoricus, the relationship is not evident. on the other hand the diameter of vasoular bundle has a positive bearing on the density of C. travancoricus in contrast to the negative relationship in Cothwatesif. The negative correlation of vascular bundle diameter with density probably indiaates that the contribution of vascular tissue to the size of vascular bundles is more than fibres in the central cylinder which constitutes greater proportion of stem tissues in large-diameter cane. The percentage of fibres in the stem has positive contribution to the density in both species, although the relationship is weak in thwaitesif. The proportion of vascular tissues viz, the percentages of $x y l e m$ and phloem are negatively correlated with density. The diameter of metaxylem shows highly significant negative correlation with density. This relationship supports the observation that the fibre percentage does not differ much in rattan palms and that
diameter of metaxylem vessel is one of the most important determining factors of "wood' density (Tomilnson, 1961). For instance, C. thwaitesif, with wider vessels, has lighter wood than C. travancorious although both the spocies have the same percentage of fibres in the stem. Yudodibroto, (1985), however, showed that the tensile strength improved With the increase in fibre percentage among the three species of Calagus grown in Indonesia Another most important contributing factor to the density is fibre wall thickness. The correlation analysis shows that in both species, fibre diameter is not related to density while lumen diameter is negatively correlated and henoe ribre wall thickness has positive contribution to wood' density. Similarly in coconut palm, wood density was shown to be closely related to fibre wall thickness and the sclerosis of fibres (Meylan, 1978, Sudo, 1980). Since the walls of fibres continue to thicken almost throughout the life in palms, density of older stem is higher than that of younger stem. Similarly, as observed in the present study, older basal parts of the stem have more thick walled fibres and denser ${ }^{\circ}$ wood' than young terminal parts. These features explain not only why the basal part of the stem is more rigid and hard than top portion but also why it is denser and harder in the stem periphery than in the stem centre.

Initial moisture content (on over dry basis) of the stem shows a highly significant negative correlation with
basic density. This indioates that cell lumen especially that of vessels accommodates more volume of water in the wood as it is a general condition in dicotyledons. Therefore, the diameter of the wide metaxylem vessels and xylem percentage show positive correlation with initial moisture content. Cortex percentage shows negative relationship with moisture content as vascular bundles per unit area and the vascular bundle size, however, it does not show consistent relationship with inital moisture content as observed in coconut palm (Killmann, 1983), although some of the correlation coefficients are significant

As seen from the correlation coefficients, the anatomical features that influance the volumetric shrinkage (from green to oven dry condition) are the width of metaxylem vessels lumen width and hence the fibre wall thickness. The negative association of fibre wall thickness with volumetrio shrinkage suggests that the latter in higher in young lower density stems. The condition is somewhat vice-versa in dicotyledonous woods where density ss positively correlated with shrinkage (Bhat, 1980) although Trenard and Gueneau (2977) reported that mean density has little influence on ahrinkage.

6. SUMMARY

The present comparative study of anatomy and physical properties of two ratian species, representing thickest and slendermost canes growing in Kerala, draws the following conclusions

1. Except in volumetric shrinkage, the physical properties such as internode length and diameter, density of 'wood' and initial moisture content differ between the two species.
2. The quantitative anatomical properties such as cortex peroentage, number of vascular bundles per unit area and their diameter, peroentages of $x y l e m$ and phloem, length of late metaxylem vessels as well as fibre dimensions show distinct difference although the percentages of fibres are similar in two species
3. Hith the exceptions of internode length and diameter as well as fibre width, all tho physical and anatomical properties exhibit a difinito pattern of longitudinal variation. Except in fibre lumen width the Iongitudinal variations occur in curvilinear fashion obeying the quadratic regression modols. The distinctiy different variations between the two species are those which were exhibited by volumotrio shrinkage, number of vasular bundles por mon the diameter of vascular bundles, phloem
percentage, metaxylem vessel element length and fibre length.
4. In addition to stem diameter and internode length, the most promising anatomical features of diagnostic value In distinguishing between the two species are epidermal cell and its lumen shape, size and frequency of vascular bundles as well as the diameter of wide metaxylem vessels
5. Of the different anatomical variables studied, fibre percentage, xylem percentage, fibre lumen width or the fibre wall thickness and the diameter of the metaxylem vessels are the more important determining factors of wood density than the amount or size of vascular bund es per unit area. Denser the wood' lower the volumetric shrinkage and Initial moisture content in the stem. Basal portion of the stem is harder and heavier than top portion because of more thick walled fibres and smaller wide metaxylem vessels.

7. REFERENCES

Anon. 1928 . Uses of Rattan. Now York College of Forestry. Technical Publication 7126.
*Anen 1983. An investigation report on the manuracture of cane furniture. Malaysian Industrial Devolopment Authority, Kuala Lumpur.

Badhwar, Rol., A.C Dey and S. Ramaswamy 1957. Canes (rattans) their oocurrence, cultivation and exploitation in India. Indian Forester 83 (3) 216223.

Badhwar R.L., 1961. A note on the introduction of Malaysian canes into India and utilization of indigencoug canes. Proc. 10 th Silvicultural Conference., Dehra Dun, Forest Research Institute, Dehra Dun 399-402.
*Bal1, E. 1942. The development of the shoot apax and of the primary thichening meristem in Phoenix canariensis with comparisons to HEGhigtonia filifera and Trachycarous exaelsa. Amer. J. Bot. 28 820-832.

Basu, S.K. 1985. The present status of rattan palms in India - an Overview. Proc. The Rattan Seminar, Kuala Lumpur. The Rattan Information Centre, Forest Researah Institute, Kepong 77-90.

Bhat, K.M. A note on the relationship of metaxylem diameter with rattan stem size among ten species of Kerala grown Calamus of Peninsular India (Unpublished report).

Bhat, K.M. 2980 . Variation in structure and selected properties of finnish birch wood I. Interrelationships of some structural features, basic density and shrinkage. Silva Fennioa 14(4) 384-396

Bhat, K.M and Renuka, C. 1986. Variation in physical characteristios of Kerala grown rattan palms of Peninsular India. Malaysian Forester 44(2) 185-197.

Bhat, K.M., Renuka, C and Thulasidas, P.K. 1988 . Occurrence of multiple perforation plate in the vessel edements of Calamus (Lepidocaryoideae). Curr. Sci. (Press).

Bierhorat, D.W and Zamora, P.M. 1965. Primary xylem elements and olement associations in angiosperms. Ager. J. Bot. 52 657-710.
"Casin, R.f. 1979. Utilization of rattan, research status and needs. Paper presented at Symposium on Rattan, Los Banos, 6-7 Nov, 1979108.

Cheadie, V.I. 1937. Secondary growth by means of a thickening ring in certain monocotylodons. Bot. Gaz. 98 535-555.
*Dransfiold $J \quad 1981$ The biology of Aslatic rattans in relation to the rattan trade and conservation. In H Synge (rd) The Biological aspoctur of rare plant conservation. John Wiley \& Sons London 179-186
 York 767.

FAO 1978. Topics of the quarter - Rattan. Eorest News for Asiag and the Paciric II (4) 31-47 United Nations Regional Office for Asia and Far East Bangkok Thailand

Frankiln GL. 1946 A rapid method of softening wood for microtome sectioning Trop Woods 88 35-36.

Ghose M 1984. Vessel elements in Roots of Young Palms. Principes 28 (4) 179-186.
*Fischer, C. C 1931 ramily Palmaceae. In Gamble, J.S and Fischer, CEC Elora of the Presidency of Madras Botanical Survey of India, Calcutta.

IAWA 1964 . Multilingual glosgary of terms used $2 \underline{n}$ nood anatomy. Int Assoc Hood Anatomists Rijksherbaraium The Vetherlands 186.

Johansen, D 1940 Plant Microtechnique Tata McGraw Hill publishing Co Ltd. Bombay 65-110

[^1]Killmann, $W 1983$ Some physical properties of the coconut palm stom. Wood. Sgi. Teohnol. 17 167-185.
*Kininmonth, J A. 1977. Drying sawn timber of Coconut. Proceedings Coconut Stem utilization Seminar Tonga. 1976 133-146.

Klotz, L. 1978 Form of the perforation plates in the wide vessels of mętaxylem or palms. J. Arnol. Arbor., 59(2) 105-128.

Klotz, L.ll. 1978. Observations on diameters of vessels in stems of palms. Pringipes. 22 (3) 99-106.

Kong-ong, HK. and Manokaran, N. 1986. Rattan - a bibly Hesearch Institute, Malaysia Kepong Selangor

Leise, W. and Heiner,G. 1987. Anatomical Struatures for the identification of rattans. Paper presented in International Rattan Seminar Chiangmai Thailand.
"Madulid, D.A. 1980. Anatomical studies of the leaflets and fertile bracts of Plectocomia Mart. ex Blume (Palmae Lepidocaryoideae). Sylvatrop Phillipine Forest Research Journal 5(3) 193-205.

MoConchie, D L. 1975 Physical properties of Cocos nucifera New Zealand Forest Service Forest Rosearch Institute Forest Products Division, Wood Quality Report No 2 (Unpublished)

MoQuire, AJ 1979. Anatomical and morphoiogical features of the coconut palm stem in relation to its utilization as an alternative Nood Source. Coconut Nood=79上 The Proceedings. Philifpine Coconut Authority 24-28
*McPaul J.W 1964 Coconut Growing Fíji, Department of Agriculture, Fiji.

Moylan $B A 1978$ Density variation within Cocos nueifera Stems NZ.J [or Soi 8(3) 369-383
*Holdenhawer, J J.P 1812. Beitrage zur Anatomic der Pflanzen Kiel
Moore HE 1973 The major groups of palms and their distribution. Gentes. Herb 1127-141
*Munoz C V. 1915. Laminatad rattan mat board (Philipine Patent No 9191) 8

Ordinario, F 1973 Phillipine rattans Forpride Digest 2 (2) 4-5, 72.

Parameswaran, v and W, Leise 1985 Fibre wall arenitecture in the stem of Rotan manan Proceedings of the Rattan Seminar. Kuala Lumpur 2-4 Oct. 1984 edited by K M. Wong and N Manokaran The Rattan Information Centie Forest Research Institute Kepong 123-129.

Parthasarathy, M.V. and Klotz, L.H. 1976 Palm ${ }^{9}$ Hood' 1. Anatomical aspects. Hood Sox. Technol. 10 215-229.

Rao H.S and Brijlal. 1968. Modelling with cane The Indian For.. 94 (8) 631-634

Renuka, C. 1984. Calamus - a minor forest produce of promise. Evergreen, (India) (12) 17-18.

Renuka, C., Bhat, K.M. and Nambiar, V.P.K. 1987. Morphological, Anatomical and Physical propertios of Calamus species of Kerala forests. KFRI Research Report No 46.

Richolson, J.M. and Suarup, H. 1976. The Anatomy, Morphology and Physical properties of the mature stem of the coconut paln Coconut stem utilization Seminar. Ministry of Foreign Affairs, Hellington, New Zealand 65-302.
"Ridley, ifN. 1903. Rattans. Agri Bull. of the Straits and Federal Malay Slates 2 \{4\} 127, 130-136 (Part I), 2 (5) 157-160 (Part II).

Saxena, N.C. and AR. Said. 1982. Physical properties of rattan and its use. paper presented at the International Forestry Seminar, Serdang, Univ. Pertanian, Malaysia, 11-15 Wov. 1980.
*Schoute, J.C. 1912. Ueber das Dickenwachstum der Palmeu Ann. Jard. bot. Buitenz 26 1-209.
"Serrand, R.C. 1984. Gurrent developments on the propagation, utilization of Phillipine rattan NSTA Technology Journal 9 (2) 76-88.
 (furniture Industry Research Association, U.K.), 19 (67) 6,8.

Silitonga, T. 1985 . The status and development of Indonesian rattans. Journal of Forestry Research and Development 1 (1) 7-13.

Siripatanadilok, S. 1983. Characterstics of epidermal cells in relating to taxonomy and quality of rattan canes. Technical paper No.19. Kasetsart University, Thailand 14. (Also in fic buld. $2(2)$ 3-4.).

Sudo, S. 1980. Some anatomioal properties and density of the stem of coconut palm (́oogs nugsfera) with consideration for pulp quality. IAWA Bull. 1 (4) 161171.

Swamy, B.G.L. and Govindarajulu, E. L961. Studies on the anatomioal variability in the stem of phoenix sylvestris, 1. Trends in the behaviour of certain cells and tissues. J. Indian Bot Soo. 40 243-262
"Teoh, B.W. 1978. An exploratory anatomical survoy of some Malaysian rattans. Univ. of Malaya, Kuala Lumpur. (Thesis).
*Tesoro FO. 1983 Utllization of selected non-timber forest products in the Phillipines Paper presented at First ASEAN Forestry Congress, Manila 0 -15 october, 1983

Tomlinson, $P B$ 1961. Anatomy of Monocotyledons II Palmae. Clarondon Press, Oxford First Edn 215-221, 453

Tomilnson P B. and Zimmermann, H.M 1966 Anatomy of the palm Raphis excelsa III Juvenile phase J Arnol Arbor-47 30I-312.

Tomlinson P.B. and Zimmermann, H M 1967 . The obod' of Monocotyledons IAWA Bull 2 4-24.

Tomlinson, P. 1970 . Monocotyledons Morphology and Anatomy Advances in Botanical Research Edt B D. Preston. Academic Press London 3 205-289.

Tomlinson, PB. 1983 Development of the stem conducting tissues in monocotyledons Contemporary problems in plant anatomy $E d t$ Richard, A. White and William, C. Dickson Academic Press INC (London) Edn I 1-45. * Trenard, Y and Gueneau, P 19/9 (Relation between anatomical structure and extent of shrinkage of wood) Holzforsohung 3 194-200.

[^2]Yudodibroto, H. 1980. Anatomical characteristics of some rattan spectes and their tonsile strongths. paper presented at Symposium on production and utilization of Bamboo and realted species XVIIth IUFRO World Congress, Kyoto, Sept. 6-19, 1981

Yudodibroto, H. 1982. Physical properties and composition of rattan species in some natural tropical forest comploxes in East Kalimantan. Req Report (Indonesian) Fakultas Kehutanan, Univ. Gadjah Mada, Yogyakarta.

Yudodibroto, H. 1985. Anatomy, Strength properties and the utilization of some Indonesian rattan species. Progegdings of the Rattan Seminar, Kaula Lumpur, 2-4 Oot, 1984. Edited by K.M Wong and N. Manokaran. The Rattan Information Centre, FRI, Kepong 117-122.

Zimmermann, H. M. and Tomingon, P.B. l965. Anatomy of the palm Raphis excelsa, I. Mature Vegetative axis. J. Arnol. Arbor. 46 (2) 160-178

Zimmermann, H.M., Kent, F.M and Sperry, J. 1982 Anatomy of the palm Raphis oxcelsa, VIII. Veqsel net work and vessei-length distibution in the stem. J. Arnol. Arbor. 63 83-95.

Parameter Density (g/c.c) APPENDIX I

C. thwaitesil

Stom					
Internode	1	II	III	IV	V
1	. 617	. 392	.462	. 566	. 460
5	498	. 299	. 429	. 600	. 440
10	. 470	. 260	. 319	. 525	. 344
20	. 410	. 366	. 322	. 463	. 272
30	. 399	. 322	. 337	. 449	. 275

C. travancoricus

Internode	I	II	III	IV	V
1	.732	.617	.766	676	.639
5	.573	.490	.503	.445	.440
10	587	.389	.480	.469	.434
20	.516	.308	.484	.419	.374
30	.393	290	335	.354	.276

APPENDIX II

Parameter Volumetric shrinkage (\%)

C. thwaitesil

Stem					
Internode	I	II	III	IV	v
1	19.46	35.79	22.16	20.68	24.20
5	21.56	46.85	21.71	18.21	25.08
10	22.54	51.32	30.82	22.13	43.03
20	27.40	38.39	31.54	21.36	58.40
30	26.63	31.47	27.69	25.51	46.06

C. travanooricus

Internode	II	III	IV	V	
\cdots	12.19	20.56	25.0	16.67	29.51
1	22.67	21.02	31.15	30.81	36.60
5	17.46	38.34	23.53	20.86	36.36
10	21.88	48.10	23.66	6.98	39.65
20	35.96	48.36	49.43	49.44	58
30					

APPENDIX III

Parameter Moisture content (1)

C. thwaitesif

Stem					
Internode	I	II	III	IV	v
1	81.55	165.79	127.88	94.91	119.66
5	113.81	253.71	131.44	78.21	13639
10	126.60	287.87	211.80	98.01	192.59
20	163.08	254.88	219.24	127.48	274.16
30	168.38	255.0	207. ${ }^{\text {O }}$	135.23	272.32
C. travancoricus					
Internode	I	II	III	IV	v
1	60.0	81.62	69.39	72.46	79.49
5	83.72	116.88	108.70	136.17	340.91
10	83.78	172.0	110.20	121.67	134.88
20	106.06	217.54	108.89	142.59	178.46
30	162.86	220.10	181. 36	174.60	242.86

APPENDIX IV
Parameter vasoular bundle frequency/uII"
C. $\frac{\text { thraitesil }}{}$

Stem															
Internode	I			II			III			IV			v		
	Inmer	arter	Hean	Inter	Outer	Mean	Inner	auter	Mean	Inner	Outer	Men	Inmer	Outer	Mean
1	9	6	7.5	3	3	3	3	4	3.5	5	4	45	3	3	3
5	3	3	3	4	4	4	2	3	2.5	3	4	3.5	2	3	2.5
10	3	3	3	2	4	3	2	3	2.5	3	4	3.5	2	3	25
20	3	4	3.5	3	4	3.5	2	3	2.5	3	4	3.5	2	3	2.5
30	3	4	3.5	3	4	3.5	2	3	2.5	2	4	3	2	3	2.5

Co travancarious

Stem					
Interrode	I	II	III	IV	v
1	18	18	20	17	19
5	20	19	38	17	21
10	23	18	23	21	22
20	21	17	21	23	19
30	18	17	19	18	19

Parameter Vascular bundle dianater (m)
C. thwaitesin

Stem															
Internode	I			II			III			IV			v		
	Inmar	Outer	Mean	Inmer*	Outer	Pran	Inter	Outer	Mean	Inner	Outer	Mean	Inner	Outer	Pean
1	.440	. 710	. 580	. 860	. 680	.770	. 680	.760	.720	.430	. 730	. 580	. 640	. 830	. 740
5	750	. 792	. 770	. 80	. 740	. 770	. 758	. 870	. 810	. 570	. 680	. 630	. 770	. 850	. 810
10	. 70	.760	. 730	.770	. 770	.770	. 772	. 826	80	. 70	. 734	. 720	. 840	. 870	. 860
20	-780	. 769	. 770	.740	. 690	. 715	.890	. 856	. 870	. 750	.740	. 750	. 850	. 860	. 860
30	. 80	. 768	. 780	. 760	. 710	.750	.966	. 850	. 910	770	. 70	.740	. 830	. 860	. 880

C. travancoricus

Stent					
Intermode	I	II	III	IV	V
1	.365	. 330	.342	. 338	. 314
5	. 318	. 30	. 328	. 332	. 282
10	. 312	. 330	. 294	. 298	. 268
20	. 312	. 238	.294	. 280	. 312
30	. 338	. 318	. 316	. 310	. 308

APPENDIX VI

Parameter Vascular bundle Fibre (\%)
C. thwaltesin

Stem															
Internode	I			II			III			IV			V		
	Inmer	Outer	Yean	Inner	Outer	Mean	Inner	Outer	Saan	Inner	auter	Mean	Inner	Outer	Mean
1	33	47	40	33	34	33.5	33	42	37.5	30	42	36	34	37	335
5	24	39	31.5	27	34	30.5	31	35	33	23	29	26	32	35	33.5
10	22	26	24	21	23	22	24	29	26.5	21	28	24.5	27	33	30
20	19	20	19.5	20	23	21.5	23	26	24.5	19	28	23.5	26	33	29.5
30	17	18	17.5	19	21	20	20	21	205	16	27	21.5	18	24	21

C. travancoricus

Sent					
Internode	I	II	III	IV	V
1	37	30	40.5	35	40.5
5	355	24	30	32	30
10	27	19	28	27.5	20
20	25.5	14	26.5	25	19.5
30	22	24	18	18	13.5

APPENDIX VII

Parameter Phloem (\%)
C. thwaitesii

Stem					
Internode	I	II	III	IV	v
1	10	11	5	7	6
5	6	7	8	9	8
10	8	6	9	10	11
20	9	10	10	10	11
30	10	10	11	12	12

C. travanooricus

Internode	I	II	III	IV	V
1	6	13	10	5	7.5
5	9	12	9	85	7
10	7	10	10.5	10.5	13.5
20	12	13	11.5	13	12
30	9	11	11	8	13.5

APPENDIX VIII

Parameter Metaxylem Diameter (mm)

C. thwaitesil

Stem:					
Internode	I	II	III	IV	V
1	. 146	. 310	.198	170	. 208
5	. 342	. 40	. 370	.278	. 334
10	. 355	. 430	.388	. 342	. 422
20	. 380	. 430	. 420	. 376	. 438
30	. 434	. 430	. 436	. 388	448

G. travancoricus

Internode	I	II	III	IV	v
1	. 106	. 116	. 102	. 10	. 098
5	. 142	. 142	. 151	. 153	. 138
10	137	. 144	. 146	. 144	. 146
20	. 245	. 162	. 146	. 137	. 160
30	. 164	. 164	. 173	. 160	. 158

APPENDIX IX

Parameter Xylem ($)_{\text {) }}$

C thwartesil

APPENDIX X

Parameter Cortex (\%)

C thwaitesil

APFENDIX XI
Parameter Metaxylem elenent length (am)
C. thraltesii

Stem															
Internode	I			II			III			IV			V		
	Imer	Outer	Mean	Inner	Outer	Hean	Inner	Outer	Hean	Inner	Outer	Mean	Inner	Outer	Man
1	. 937	. 860	899	3090	. 820	. 960	856	. 958	910	1470	1.410	1.440	1.380	1.040	1.210
5	. 949	10885	1.018	2.834	2330	2080	1.530	2.620	1.580	1.650	12780	1.720	1.580	1.750	1.670
10	1818	2320	2070	1.60	1.940	1.520	2.720	1637	1.680	1.650	2120	1.890	1.770	1.570	1.670
20	1.965	2.240	210	2160	1880	2020	1.698	3.430	1.560	2350	2270	2310	1.760	1790	1.780
30	2350	2190	2270	210	1.950	20	1.623	1.750	1.690	2250	1.960	2110	1.850	1.790	1.820

C. travanoricus

Stem					
Internode	1	II	III	IV	V
1	1.10	2.080	1.425	1.313	1.472
5	1.610	1.845	2.029	1.885	1.654
10	1.427	1.490	1.910	1.940	2.450
20	1.410	1.520	1.962	2.080	2.30
30	1.766	1.80	2.680	2.88	1.769

APPENDIX XII
Parameter Fibre length (mm)
C. thwaitesin

Stera															
Internode	I			III			III			IV			V		
	Inner	Cuter	Mean	Inner	Outer	Mean									
1	1.120	1.550	1.340	1.130	1.510	2.320	1.323	1.580	1.450	1.896	20	1.950	1.990	2190	2090
5	1.350	1.549	1.450	1.727	2020	1870	1.510	1.650	1.580	1.449	1.710	1.580	1.730	2030	1.880
10	1.825	2020	1.920	1.435	1670	2.550	1.530	1.620	1.580	3.590	2.050	1.820	1.740	1.750	1.750
20	1.730	1.619	1.670	1.60	1832	1720	1.770	1.720	1750	1.690	1810	1.750	1710	1.840	1.780
30	2.884	1.90	1.890	1.750	1.90	1.80	180	180	1.80	1.820	210	1.960	2010	2170	2090

C travancorícus

| | | | Stem | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Internode | I | II | III | IV | V |
| 1 | 150 | 1220 | 1.715 | 1.539 | 1680 |
| 5 | 1165 | 1.237 | 1308 | 1285 | 1280 |
| 10 | 1205 | 1160 | 1.310 | 1.520 | 1530 |
| 20 | 1.030 | 1.280 | 1213 | 198 | 1420 |
| 30 | -1480 | 1.40 | 1660 | 1.660 | 1380 |

APPENDIX XIII

Parameter Lumen width (m)
C. thwaitesil

Stem															
Internode	I			II			III			IV			V		
	Inner	Outer	Mean	Inner	Outer	Mean	Inner	Oater	Mean	Imer	Outer	Mean	Inner	Outer	Mean
1	. 004	003	. 004	. 008	006	. 007	.008	. 0058	. 007	005	003	. 004	. 009	004	007
5	006	0056	006	010	. 007	0085	009	006	008	007	004	0055	010	. 005	. 008
10	005	004	005	013	008	010	010	007	0085	006	004	005	010	008	009
20	009	007	008	. 014	. 010	. 012	010	008	009	0086	. 007	008	. 016	009	010
30	012	0076	0098	. 014	010	012	009	008	009	009	. 0056	008	018	0098	013

C travancoricus

		Stem			
Internode	I	II	III	IV	
1	004	005	.0038	005	005
5	.005	0057	006	007	009
10	005	008	006	006	008
20	005	.010	006	007	011
30	.008	009	.008	008	010

APYENDIX XIV
Parameter Fibre width (man)
C. thwaitesii

Stant															
Internode	I			II			III			IV			v		
	Inner	Outer	Nata	Inner	Outer	Hean	Inner	Outer	Mean	Inmer	Outer	Mean	Innar	Outer	Yean
1	018	017	0175	. 0198	00198	0198	. 020	. 019	0195	. 019	. 0178	018	. 220	. 022	021
5	. 019	. 019	. 019	. 0196	. 0198	. 0197	. 022	. 0198	. 020	. 020	. 019	. 0195	. 024	. 022	. 020
10	. 018	. 017	. 0175	. 021	. 017	. 019	. 020	. 020	. 020	. 020	. 018	. 019	. 024	. 020	. 020
20	. 019	. 018	. 0185	. 021	. 018	. 0195	. 020	. 019	.0195	. 020	. 0196	. 0198	. 024	. 021	. 020
30	. 020	. 018	. 019	. 021	. 018	. 0195	. 018	. 0186	. 018	. 028	. 018	. 019	. 026	. 020	. 020

C. travancoricus

	Stan					
Internode	I	II	III	IV	V	
1	.019	.019	.016	.016	.017	
5	.016	.014	.017	.017	.017	
10	.017	.016	.015	.015	.019	
20	.018	.018	.015	.016	.019	
		.017				

ANATOMY AND UTILIZATION OF TWO CANE SPECIES OF KERALA (Calamus travancoricus and C. thwaitesii)

By
MOHAN VARGHESE

ABSTRACT OF A THESIS

Submitted in partial fulfilment of the requirement for the degree
Master of Science in Forestry
Faculty of Agriculture
Kerala Agricultural University

COLLEGE OF FORESTRY

VELLANIKARA TRICHUR
KERALA
1988

ABSTRACT

Variation in oertain anatomical and physical properties has been investigated and compared in two rattan speoies, viz. Calamus thwaitesii and C. tranvangoricus, the former reprasenting the larger diameter and the latter possessing small-diameter canes of Kerala. Five stems possessing more or less similar number of internodos have been sampled in each of two speoles.

There were significant differences between the two species in oertain physical properties such as length and diameter of intennode, stem "wood' density and initial moisture content although volumetric shrinkage did not differ appreciably Similarly, quantitative data for anatomical properties suoh as cortex percentage, number of vascular bundles per unit area, vascular bundle diameter, xylem and phloem percentage, metaxylem vossol olement and fibre dimensions were markediy different between the two speoies while the fibre peroentage had almost similar values.

With the exceptions of internode size and fibre width, the mean physical and anatomical proporties in each species showed definite patterns of longitudinal variation, which could be best explained using quadratic regression models.

However, patterns of longitudinal variation were different between the species in volumetric shrinkage, number of vasoular bundles per mar vascular bundle diameter, phloem percentage, metaxylem vossel element and fibre length.

The most important useful features in distinguishing between the two species are internode length, stem diameter, epidermal cell and its lumen shape, diameter and frequency of vasoular bundies as well as the diameter of wide metaxylem vessels.

The most important determining factors of oood' density are fibre percentage, fibre wall thickness and lumen width as woll as the diameter of metaxylem vessels although features like the size and number of vascular bundies per unit area also influence this property. Volumetric shrinkage and moisture content are inversely related to the density of ${ }^{\circ}$ wood'. With higher density owing to more thick walled fibres and narrower wide metaxylem vessels, basal portion of the stem $i s$ harder and heavier than top portion

[^0]: lijure 11 Variation of the Metarylen diamcter as a fuction of di tance from the stem base (number of internodus)

[^1]: "Karsten, H. 1947 Die Vegetationsorgaue de Palmeu. Ein Beitrage zur vergleichende Anatomio und Physiologie. Gesammelte Beitrage zur Anatomie und Physiologic der Pflanzen. Barlin 1865 82-186.

[^2]: Walford, GB 1974 The strength of coconut palm poles Forest Products Division Report Forest fesearch Institute, New Zealand. No 488 (Unpublished)

