171899

SIMULATION OF A RESERVOIR SYSTEM WITH MULTIPLE OBJECTIVES

By LEENA DIVAKAR

THESIS

Submitted in partial fulfilment of the requirement for the degree

MASTER OF TECHNOLOGY IN AGRICULTURAL ENGINEERING

Faculty of Agricultural Engineering and Technology Kerala Agricultural University

Department of Irrigation and Drainage Engineering KELAPPAJI COLLEGE OF AGRICULTURAL ENGINEERING AND TECHNOLOGY TAVANUR - 679 573, MALAPPURAM

KERALA, INDIA

DECLARATION

I hereby declare that this thesis entitled "Simulation of a reservoir system with multiple objectives" is a bonafide record of research work done by me during the course of research and that the thesis has not previously formed the basis for the award to me of any degree, diploma, associateship, fellowship or other similar title of any other university or society.

Tavanur, Date: 13-11-01

LEENA DIVA 4.4 42

182

CERTIFICATE

Certified that this thesis entitled "Simulation of a reservoir system with multiple objectives" is a record of research work done independently by Ms. Leena Divakar under my guidance and supervision and that it has not previously formed the basis for the award of any degree, diploma, fellowship or associateship to her.

Tavanur, Date: 13-11-2001

Mary Regina. F (Chairperson, Advisory Committee) Assistant Professor Department of IDE KCAET, Tavanur.

CERTIFICATE

We the undersigned members of the Advisory Committee of Ms. Leena Divakar, a candidate for the degree of Master of Technology in Agricultural Engineering majoring in Soil and Water Engineering, agree that the thesis entitled "Simulation of a reservoir system with **multiple objectives**" may be submitted by Ms. Leena Divakar in partial fulfillment of the requirement for the degree.

Mary Regina. F

Mary Regina. F (Chairperson, Advisory Committee) Assistant Professor Department of IDE KCAET, Tavanur.

Dr. K. John Thomas Dean K.C.A.E.T, Tavanur (Member)

Dr. Jobi V. Paul Associate Prof. & Head Dept. of Ag. Engg. College of Horticulture, Vellanikara (Member)

Smt. Josephina Paul Assistant Professor Computer Science Directorate of Research Vellanikara (Member)

External Examiner Dr. D chandvasekhar Rofessor College of Agri Engg TNAU Coimbatora

ACKNOLEDGEMENT

î

With deep sense of gratitude the author records her heartfelt reverence to Er. Mary Regina. F, Asst. Prof. Dept. of IDE, K.C.A.E.T, Chairperson, Advisory Committee for her commendable guidance, constant backing, due encouragement, and in time valuation through out the research work.

The author truly expresses her sincere gratitude to Dr.K. .John Thomas, Dean, K.C.A.E.T for his sustained interest, timely help and encouragement during the course of the study.

Words do fail to express the author's extravagant gratitude and utmost indebtness to Dr. Jobi V. Paul, Associate Prof. Dept. of Agrl. Engg. College of Horticulture, Vellanikara and Member of the Advisory Committee for his unfailing guidance, valuable suggestions and prolific encouragement in every phase of the study. The author also extends her sincere thanks for the constant support in completing this task.

In this endeavour, the author remains greatly indebted to Smt. Josephina Paul, Asst. Prof. Computer science, Directorate of Research, Vellanikara and Member of the Advisory Committee for her invaluable professional guidance, fruitful discussions and perpetual encouragement and advice during the course of work.

It's the author's privilege to acknowledge the timely help by Dr. Hajilal M.S, Associate Prof. Dept.of Agrl. Engg. College of Agriculture, Vellayani. The constructive suggestions rendered by Er. Shaji P. James, Dept.of F.P.M.E, K.C.A.E.T, Dr. K.I. Koshy, Dept. of S.A.C., K.C.A.E.T., Er. Satyajith Mathew, Dept. of F.P.M.E, K.C.A.E.T, and other staff members of K.C.A.E.T to solve the problems encountered during the study is highly regarded.

The author expresses her profound gratitude to Smt. Elizabeth Thomas, Superintending Engineer, and Shri. V. Shankunny, Executive Engineer, Irrg. Dept. Thrissur, Shri. K.R. Gopinathan, Asst.Engineer, Head Works, K.E.R.I Peechi, and Smt. A. Rukhiya Beevi, P.A (A.E.E), Field studies, Dept. of Hydrology, Thrissur for their valuable co-operation and guidance.

The author wishes to place on record her sincere thanks to Shri. N.Pushparajan, Modeller, Hydraulic Div. K.E.R.I Peechi, and Shri. Sreevalsan, Head Draftsman, Field studies, Dept. Of Hydrology, Thrissur, for their assistance in collection of the data.

The author gratefully acknowledges the authorities of I.C.A.R for the award of Junior Research Fellowship during the course of study.

Finally the gratification of the author remains incomplete without mentioning the sincere help of M/s. National Computer Centre, Kuttippuram, the stable support of her beloved parents, her friends Jayapradeep. S, and M. Damodara Rao, who has helped her in one way or other in the completion of the study.

Above all Glory and Honour to the Omnipotent for making it possible to bring this report in this shape.

Dedicated

To

My Virtuous Parents

- · · ·

CONTENTS

hapter	Title	Page No.
	LIST OF TABLES	
	LIST OF FIGURES	
	SYMBOLS AND ABBREVIATIONS	
Ι	INTRODUCTION	1 - 5
II	REVIEW OF LITERATURE	6 – 24
III	MATERIALS AND METHODS	25 – 67
IV	RESULTS AND DISCUSSION	68 - 108
V	SUMMARY AND CONCLUSION	109 – 110
	REFERENCES	i-v
	APPENDICES	
	ABSTRACT	

.

Table No. Title Title Page No. ***** Dominant slopes in different physiographic regions _ . .

33

1.

LIST OF TABLES

2.	Existing cropping pattern of the basin	37
3.	Salient features of the project	39&40
4.	Crop water requirement	44
5.	Monthly water demand for different purpose	45
6.	Results of reservoir simulation model	71
7.	Priority levels of different water demands.	89

LIST OF FIGURES

,

Figure No.	Title	Page No
1.	Location map of Karuvannur river basin	28
2.	Vicinity map of Peechi scheme	29
3.	Mean monthly rainfall pattern of the basin	30
4.	Mean monthly temperature of the basin	31
5.	Ayacut map of Peechi dam	36
6.	Mean monthly evaporation from the Peechi reservoir	41
7.	Mean monthly inflow to the reservoir	42
8.	Schematic representation of the reservoir system	46
9. Slopes for different objectives from their priorities		
	and percentage targets	48
10.	Flow diagram of the model	50
11(a).	Comparison between demand, simulated release and actual release for drinking water (94-95)	91
11(b).	Comparison between demand, simulated release and actual release for irrigation (94-95)	92
11(c).	Comparison between demand, simulated release and actual release for pisciculture (94-95)	93
11(d).	Comparison between demand, simulated release and actual release for recreation (94-95)	94
12.	Percentage target achieved for each purpose (94-95)	96
13(a).	Comparison between demand, simulated release and actual release for drinking water (96-97)	97
13(b).	Comparison between demand, simulated release and actual release for irrigation (96-97)	98

Contd. LIST OF FIGURES

Figure No.	Title	Page No.
13(c).	Comparison between demand, simulated release and actual release for pisciculture (96-97)	99
13(d).	Comparison between demand, simulated release and actual release for recreation (96-97)	100
14.	Percentage target achieved for each purpose (96-97)	101
15(a).	Comparison between demand, simulated release and actual releasefor drinking water (97-98)	103
15(b).	Comparison between demand, simulated release and actual release for irrigation (97-98)	104
15(c).	Comparison between demand, simulated release and actual release for pisciculture (97-98)	105
15(d).	Comparison between demand, simulated release and actual release for recreation (97-98)	106
16.	Percentage target achieved for each purpose (97-98)	107

. .

SYMBOLS AND ABBREVATIONS

Agrl.	:	Agricultural
Apr.	:	April
A.S.C.E	:	American Society of Civil Engineers
Aug.	:	August
Bull.	:	Bulletin
Calif.	•	California
Cent.	:	Centre
cft.	:	cubic feet
cm	:	centimetre (s)
Contd.	:	Continued
cum.	:	cubic metre (s)
Dec.	:	December
dia.	:	diameter
DIV.	:	Division
DRINK	•	Drinking water
Engg.	:	Engineering
et al.	:	and others
etc.	:	(etceteras) and the rest
EVP	•	Evaporation
Feb.	:	February
Fig.	:	Figure
ft.	:	feet
Ha.	:	hectare
Hydraul.	:	Hydraulics
Hydrol.	:	Hydrology
I.A.H.S	:	International Association of
		Hydrological sciences
I.C.I.D	:	International Commission on Irrigation
		and Drainage
i.e.	:	that is

in.	• •	inches
INFL	:	Inflow
INIST	:	Initial storage
Inst.	:	Institute
IRRIG	:	Irrigation
I.S.A.E	•	Indian Society of Agricultural
		Engineers
Jan.	:	January
J.	:	Journal
Jul.	:	July
Jun.	:	June
km.	:	Kilometre (s)
m .	:	Metre (s)
Mar.	:	March
Mcft.	:	Million cubic feet
Mcum./ Mm ³	:	Million cubic metre (s)
Mha.	:	Million hectare (s)
MSL	:	Mean Sea Level
No.	:	Number (s)
Nov.	:	November
Oct.	:	October
PISCI	:	Pisciculture
Proc.	:	Proceedings
pp.	:	Pages
REC	:	Recreation
REMST	:	Remaining storage
Res.	:	Research
Sep.	:	September
sec.	• •	Second (s)
SPILL	:	Spillway discharge
Sq.	:	Square

•

•

• -

Tech.	:	Technology
Univ.	:	University
viz.	:	Namely
&	•	And
°C	:	Degree Centigrade (s)
ı	:	Minute (s)
%	:	Percent
/	:	Per

1 eest

11

Introduction

:

INTRODUCTION

Water, the elixir of life sustains all forms of life on earth. It is the most important constituent of the geosystem and is also the most abundant substance on earth. Of the three components of geosystem viz., land, water and air, water links the other two by means of an endless recirculatory transport phenomenon called the hydrological cycle. Water is essential for socio- economic development as a natural key resource for agriculture and industry and provides entertaining sights most refreshing to the eye. Without water, life whether wild, domesticated or human would be as inconceivable as it could be for fish.

In order to meet the various demands and requirements of water, it is essential to obtain sufficient quantity of water in a form, which can be easily and inexpensively made available for the various uses. With the modernisation, industralisation and mechanisation of the present age, the importance of water resources is increasing by leaps and bounds. It is realised that our future depends on the efficient and economic utilization of water. Therefore all over the world efforts have begun to formulate water policies for conservation and implementation of water management programmes on a priority basis.

Nowadays a country which has water in abundance is considered as very rich. Though India has an average runoff of 1683×10^9 cubic metre carried by it's rivers covering an area of 369 million hectares, hardly 16% to 18% of this water is being utilised. Thus it is very important to harness the large quantities of water running in our rivers to benefit the human beings. The running water can be stored by constructing storage reservoirs across the rivers. The aim of all investigations for storage schemes is to locate, design and construct the most economical structures which may impound the much-needed water. Storage reservoirs are normally constructed for the purposes of flood control and conservation of water. It also serves the purposes of irrigation, power generation, water supply for domestic and industrial use, navigation, recreation, wildlife, sanitation etc. With the creation of

more reservoirs in a single river basin, the operation of these reservoirs become more complex and when these reservoirs are multipurpose in nature with conflicting objectives, it becomes still more complex.

Basically India is an agricultural country and all it's wealth depends on the agricultural output. It is essential that water be supplied in optimum quantity at the proper time to the crops. The total rainfall in a particular area may be insufficient or ill distributed or ill timed. Therefore the objective of an irrigation engineer is to make the water available to the farmers with respect to location, time and quantity as per the crop requirements. This is possible only through a systematic system of irrigation i.e. by collecting water during the periods of excess rainfalls, by constructing dams and reservoirs and releasing it to the fields as and when needed. The performance of irrigation systems has been generally deteriorating due to various reasons. One reason is that reservoir operation has been so far largely an art handled by experience and intuition and little attempt has been made to approach it in a more scientific way.

Every reservoir has well defined rules of operation, which are at present based on past experiences. When we find that the performance of the system is poor we need to implement some drastic changes in the operational policy. But it cannot be tested straight away in systems. A modelling approach is highly useful to resolve such a problem. At some risk of over simplification, the job of the water resources engineer may be reduced to a number of basic questions. Since the water resources project is for the control of use of water, the first question naturally deals with quantity of water. This is probably the most difficult of all the design problems to answer accurately because it involves social and economic aspects as well as engineering knowledge. On the basis of an economic analysis, a decision must also be made concerning the span of years for which the proposed works should be adequate. A new approach known as systems approach for defining a concept, methodology and techniques are being increasingly adopted for technological planning and decision making. It involves a planner to develop the numerous alternatives, identify the implications of different factors and obtain the preferred, emphasized or optimum system configuration, component capacities and management policies. The techniques consist of a host of qualified decision making sciences, the important ones being mathematical modelling and simulation. Optimisation procedures can be conveniently arranged into four groups based on the mathematical characteristics of the models viz. Linear programming, Integer programming, Nonlinear programming and Dynamic programming

Simulation is a problem solving technique in which an understanding of the behaviour and response of a system is obtained by development of a model of the system, operation of the model and observation of the resulting outputs. In recent years computer simulation has emerged as the most powerful technique among the many system analysis tools available to the designers of complex processes or systems. Simulation also allows testing of the sensitivity of outcomes to varying input assumptions and system parameters. It provides an accounting device that helps ensure internal consistency among the projections and plans. Qualitative relations among the various factors affecting supply and demand can be depicted. It is therefore considered the most generally useful technique used by the operations manager.

In deciding whether to go in or not for a simulation model, the system analyst must weigh the advantages of this technique. Simulation allows the analyst to model complex and dynamic phenomena that otherwise could not be dealt with in a scientific way. It permits experimentation that might be impossible or otherwise infeasible. It is also useful in solving problems where all values of the variables are not known or only partly known in advance. By simulating the system, the management gains valuable insight into the system and into the relative importance of the different variables. The effect of using a simulation model can be observed without actually using it in the real time. To predict this behaviour of a system over the period of a year takes only a few seconds or minutes using computer simulations. To comprehend the basic concept of simulation does not require a sophisticated mathematical background and consequently, non-technical decision-makers can comprehend simulation better than other methods.

A simulation model is usually characterized as the representation of a physical system and is used to predict the response of the system under a given set of conditions. The management and operation simulation technique is used for experimentation in order to analyse the performance of the reservoir under changing conditions. The simulation model is not able to generate an optimal solution to a reservoir problem directly. While making numerous runs of a model with alternative decision policies it can detect an optimal or near optimal solution. A reservoir system simulation model reproduces the hydrologic and in some cases, economic performance of a reservoir system for given inflows and operating rules. Various strategies can be adopted for applying simulation models. Series of runs can be made to compare system performance for alternative reservoir configuration, storage allocations, operating rules, demand levels and / or hydrologic inflow sequences.

Optimization of reservoir operation both as an individual and as a part of the system can be done by other methods. But it has been conclusively proved that the simulation techniques outweigh any of the other optimization procedures, because it offers great freedom of work and flexibility in modelling the most complex constraints governing the operation. A detailed observation of the system being simulated leads to better understanding of the system and to suggestions for improving it, which otherwise would be unobtainable. In spite of the large optimization techniques available, simulation models still remain the primary tool for reservoir planning and management studies in practice. The reason is that simulation models allow a more detailed and faithful representation of the system studied than optimization techniques do and moreover they can be easily combined with synthetically generated streamflow sequences.

The development and management of the water resources of a region has to evolve together with that of land and biomass, giving due weightage to the specific socio-economic and environmental features. As far as Kerala State is concerned, the aquatic environment of this humid tropic has given shape to its economic, social and environmental features. From this point of view of water resources, Kerala is having both abundance and scarcity. Though it has forty four rivers, most of these are monsoon – fed and short rivers which will dry up during summer months. Kerala has a total of ten completed water resources projects and about more than a dozen partially commissioned projects.

A reservoir operation simulation study on Peechi reservoir which is situated across Manali river, a major tributary of Karuvannur river in Thrissur district of Kerala was undertaken. Peechi scheme comprises of a masonry dam having an estimated storage capacity of 113.27 Mm³ of water and a network of canal system. The canal system consists of two main canals starting from the right bank and left bank of the dam with a view to irrigate an approximate area of 18,600 ha.

Under this context, the specific objectives of the present study were framed as : -

- 1. to develop a simulation model for monthly operation of a reservoir with multiple objectives using historic inflow data.
- to evolve a reservoir management policy for the Peechi reservoir system with a view to optimize the water supply to Thrissur town, kole lands and to serve the facilities of fisheries and recreation.

Review of Literature

REVIEW OF LITERATURE

This chapter primarily reviews the work done on the application of simulation techniques as applied to water resource problems relevant to the present study. The efficient allocation of water resources and subsequent distribution of benefits play an important role in water resources planning and management.

With the growing population and economic development, water requirements are rapidly growing in most parts of the world. The total fresh water supply seems to be able to cover the requirements for a long time to come, but the distribution thereof in time and space is frequently unfavourable. Storage reservoirs are the most effective tools for eliminating the discrepancies in the time variations of the requirements and resources. Man has an experience with reservoirs for the last ten thousand years and he has developed economical methods of reservoir construction for a wide variety of sites. Still, to this day, the methods of estimating the proper sizes of dams and reservoirs for the target pattern of demand have been mainly based on engineering judgement.

A reservoir is created with the impounding of part of the runoff from the catchment upstream by the construction of a dam across a river or stream. Storage is done during the period when the flow is in excess of demand and releases during the lean period so as to maintain constant water supply for drinking, irrigation and other uses including power generation. The hydrological aspects of reservoir planning mainly dealt with are (i) water availability in the river on which the dam is proposed to be constructed; (ii) determination of storage capacity to serve the target pattern of demand; and (iii) operation of the reservoir with the given target pattern.

Reservoirs can be classified on the basis of the purpose served by them. Storage reservoirs: Storage or conservation reservoir stores surplus water during excess flow so as to maintain continuous supply for domestic needs, irrigation, power generation, industrial purposes etc. during the period of lean supply in the river but when demand is keen.

Flood control reservoirs: These reservoirs hold back the excess of the safe carrying capacity of the river channel downstream temporarily during floods and releases later when flood recedes. They are of the following two types.

Retarding reservoirs: Retarding reservoirs are those at which gates are provided in the outlets to regulate the releases but the discharge capacity of the outlets and spillways is so fixed that it is not in excess of the flood carrying capacity of the reservoir channel downstream.

Detention reservoirs: Detention reservoirs are those, which have gated outlets, so as to provide greater flexibility in the operation of the reservoirs.

Distribution reservoirs: Distribution reservoirs are usually of limited storage capacity used primarily to cater for fluctuations in demand which may occur over short periods of several hours to several days. They also serve as local storage to take care of emergency in the event of break in main supply line or failure of the pumping plant etc.

Multipurpose reservoir: These are also termed as multiuse reservoir. In this reservoir the storage and release water are for a combination of two or more purposes such as public water supply, irrigation, hydel power generation, flood control, navigation, recreation, fisheries etc.

Balancing reservoirs: It is a reservoir, usually of limited capacity, located downstream of a main reservoir to store excess water let down from the upstream reservoir. It provides flexibility of operation, distribution, and permits regular supply to cater for the fluctuations in the requirement of water supply.

2.1 Simulation:

Simulation approach is essentially a search approach to determine optimal operating policies. First a reasonable initial operation rule is postulated and then changes in the direction of the desired objectives are tried. It is repeated several times with various inputs and parameter data to calculate values of the objective function for the different runs, to choose the best decision set.

2.1.1 Advantages of simulation:

In deciding whether to go in or not for a simulation model, the system analyst must weigh the advantages of the technique.

- 1. It allows the analyst to model complex and dynamic phenomena that otherwise could not be dealt with in a scientific way.
- 2. It permits experimentation that might be impossible or infeasible otherwise.
- 3. It is useful in solving problems where all values of the variables are not known or only partly known in advance.
- 4. By simulating the system, management gains valuable insight into the system and into the relative importance of the different variables.
- 5. The model of a system once constructed may be employed as often as desired to analyse different situations.
- 6. Simulation methods are handy for analysing proposed system in which information is sketchy at best.
- 7. The effect of using simulation model can be observed without actually using it in the real situation. Simulation allows for the compression of real time. To predict the behaviour of a system over the period of a year may take only a few seconds or minutes using computer simulation.
- 8. Usually data for further analysis can be easily generated from a simulation model.
- 9. To comprehend the basic concept of simulation one does not require a sophisticated mathematical background and consequently non-technical decision makers can comprehend simulation better than other methods.

2.1.2Disadvantages of simulation:

Naturally, there are some significant disadvantages in using simulation to solve operations problems

- 1. Different system configurations are tested to find a good, but not guaranteed best solution.
- 2. Due to the nature of simulation, sampling errors exists in all outputs from simulation models.
- 3. A real disadvantage is that simulation may often be misused if the programmers do not possess the necessary statistical background.
- 4. Possibly the most serious shortcoming of simulation is that it is a tool of solution evaluation and thus does not generate problem solutions.

The application of simulation to the solution of operational problems is on a steep growth trend. Simulation is being applied to a rapidly increasing variety of problems, mainly because of its ability to model complex and dynamic systems that could not be modelled otherwise. Another reason for recent explosion in simulation application is that the major disadvantages of simulation, cost and unavailability of necessary data are being mitigated by the rapid advances that have been made in computer hardware and software technology.

Hufschmidt and Fiering (1966) says that hydrologic simulation is an effective technique in comprehensive watershed planning and equally important in subsequent implementation and refinement. They reported that the simulation approach is essentially a search method. First a reasonable initial operation rule was postulated, then changes in decision rule that tend to move the operation in the direction of the desired objectives were tried. This approach resembles the trial and error approach used in traditional operational studies

Donald and Joe (1970) developed a set of simulation and optimization tools capable of analysing the development and operation of a complex multi-basin, interconnected water resource system. These models provide valuable information regarding the construction and operation of a proposed set of water projects. The simulation procedure developed by them employed a direct solution of a set of linear equations. A mathematical modeling technique to allow simulation of the lower Delware Basin of United States and the proposed engineering structures was developed by Hulman and Erickson (1972) The technique and its application to the Delware Basin were analysed by them. An algorithm was devised which would try system requirements for successive recycling of the simulation period and to determine that system requirement which would fully utilise the storage.

The use of preemptive goal programming for the simulation of a five reservoir system in Indiana is discussed in the work by Toebes and Chang (1972), wherein a prioritization of operation objectives was developed to mimic the inplace operation scheme.

Walesh (1972) has studied the practical considerations involved in the use of simulation in the preparation of three comprehensive watershed plans and has also used the results of that simulation study in implementing these plans. With the help of seven examples he illustrated the potential role and value of simulation in watershed planning process. He concluded that hydrologic- hydraulic simulation, accomplished with digital computer programs, provides an effective means to achieve the necessary understanding of the surface water system, under both existing and hypothetical water shed conditions.

Loucks and Dorfman (1975) used some linear decision rules in chance constrained models for estimating efficient reservoir capacities and operating policies. Optimization and simulation techniques were used to evaluate the performance of each decision rule.

Sigvaldason *et al.* (1975) developed ACRES model and used as a day-to-day operating tool for defining reservoir releases in the Trent River system in Ontario. A simulation model for a multipurpose reservoir at the Leach River was developed by Harboe (1976 b). The simulation model was developed on a monthly basis and

consists of the elements like mass balance for the reservoir, operation policies and energy subroutine.

A simulation model was developed by Sigvaldason (1976) and applied to the Trent river system in Ontario. He proposed a conceptual approach for simulating the response of a multipurpose multiresevoir system under different operating policies. The concept included the subdivision of each reservoir into five time based storage zones and utilized rule curves, i.e., ideal time based operating levels. Violation of individual reservoir rule curves in the various zones were based on the priority concept (i.e., maintaining some functional relationship in the relative violation of different reservoirs). The model was proved to be very effective in assessing the impact of alternative policies of operation. The model has also been used to a limited extent, as an operational tool and showed considerable promise in this area.

Eichert (1979) pointed out that from the practitioner's point of view, mathematical programming techniques have thus far not proven to be widely useful because of the complexities of water resources system and non- commensurable objectives in water management. In this regard he showed simulation as an effective tool for studying the operation of the complex water resource system incorporating the experience and judgement of the plans into the model.

Finite differential equations, integral equations and simulation were employed to ascertain mean first passage times of a non seasonal reservoir fed by various input distributions. The results were accurate to within three significant figures or better. It was found that for large capacity, skewness, correlation and mean net input great difficulty was experienced in obtaining accurate results. The concept of the standard reservoir facilitates comparisons between remarkably disparate marginal distribution of input (Pegram 1980).

Chaturvedi and Srivastava (1981) studied a complex water resources system with screening and simulation models. A simulation program was developed which continues screening on the basis of information obtained from the linear programming model. The models are developed in the context of analysis of the Narmada River, a large river basin in India for which in the first instance alternative combinations and capacities of six major dams are to be decided.

Harboe and schultz (1981) briefly introduces the theory of simulation as used in water resources projects and then describes four applications in different problem areas. The application refers to water supply, environment, water power and irrigation in different parts of the world. Conclusions were drawn in regard to the usefulness of this technique and the variety of its approaches in solving many practical problems.

Mc Bean (1981) studied the mathematical simulation model used in the planning of reservoir capacities, irrigation areas, diversions and hydroelectric installations. He discussed the issues that must be solved in the construction of a large simulation model. Other concerns in the model design included careful attention to both the computational and data efficiency of the model, the output characteristics of the model, and the maintenance of a general structure to enhance the ease of use on other basin planning problems.

A condensed disaggregation model for incorporating parameter uncertainty into monthly reservoir simulations was developed by Stedinger *et al.* (1985). The condensed model has fewer parameters and is convenient for generating flow sequences which incorporate the intrinsic variability of streamflows and the uncertainty in the parameters of the annual and monthly streamflows. For high reliability systems the results show that streamflow generation procedures which ignore model parameters uncertainty can grossly underestimate reservoir system failure rates and the severity of likely shortages, even if based on a 50 year record.

Barnes Jr. et al. (1986) developed a simulation model which provides necessary flexibility to analyse a wide range of assumptions for various planning alternatives of the water resource system. The size, complexity and conveyance facility of the combined CVP(Central Valley Project) and SWP (State Water Project) systems of reservoir in California, is such that proposed changes in water use or development of future water project facilities may involve analysing or changing numerous system or operational constraints. Many model features are incorporated so that the model can be used to analyse the effect of various alternatives of future surface reservoirs, changes in cross Delta transfer proposals, proposed ground water reservoirs and many other proposed system changes.

Takeuchi (1986) developed a reservoir operation rule which was named DDC curves and demonstrated satisfactory operation through a simulation study of the Fukuoka drought care during 1978-79. It deals with a simple reservoir operation model readily acceptable by practitioners responsible for operation of a single purpose water supply reservoir, given a specific water demand pattern. The selected objective was to minimize the ratio of supply deficit to the demand.

The main objectives of the Chi - Basin (Northeast Thailand) Water Use Study was to prepare a long term integrated water resource and agriculture development plan. Piper *et al.* (1989) developed a simulation model for planning water resource and agricultural developments in Chi- River Basin. A basin simulation was written to help evaluate alternative development scenarios of combinations of reservoirs and irrigation schemes.

Raman and Paul (1990) developed a computer simulation model for a multipurpose multireservoir system and tested for Chaliar River Basin of Kerala in South India. The model was designed for monthly operation with historic or generated streamflows. The monthly water requirements for different purposes are taken as the target to be achieved by the model. The simulation model has been constructed in such a way that it can accommodate different reservoir operating policies. The priorities of different water demands can be altered at any stage of the operation according to the changing needs of the region.

Reservoir system simulation models are widely used to determine a system's firm water yield, average yield or hydropower capacity. Most such models use heuristic guidelines to define the systems operating policy. Johnson *et al.*(1991) used optimization within the simulation to identify a reasonable operating strategy. They provided a theoretical justification for several heuristic-operating guidelines including the widely used space rule. The guidelines were expressed as a mathematical objective function and combined with constraints on system operation to yield one period optimization sub models that can be used to determine releases within a simulation. Use of these one period optimization models improved the simulated operation of the Central Valley Project in California over the initial period of record and provided reasonable policies for other hydrologic scenarios.

Andrews *et al.* (1992) developed a network flow programming based model, KCOM (Kern conveyance operations model) to simulate water allocation and distribution of both surface and subsurface water. Network flow programming based simulation was chosen for KCOM because of its generality, flexibility, speed and superior ability to reflect complex water allocation policies. The water allocation capabilities of network flow programming based simulation were enhanced in KCOM by the development of a sequential flow allocation technique, in which sources were allocated in different layers to meet only demands with authorized access to those sources. A validation simulation demonstrates the model's capabilities, and sensitivity analysis underscores the need for the data used to describe the system.

Wurbs (1993) presented a paper to contribute to ongoing efforts through out the water management community in sorting through the numerous reservoir system analysis models. It also helps in better understanding of methods which might be most useful in various types of decision support situations. Models were inventoried and compared from a general overview perspective, with an emphasis on practical applications. Considerations in formulating a modeling approach were outlined. Kumar *et al.*(1996) developed a system dependent simulation model, incorporating the concept of reservoir zoning to facilitate releases and transfers. The simulation model was found to generate a large no of solutions which was screened by the optimization model. The Box complex non-linear programming algorithm was used for optimization. The performance of the system was evaluated through simulation with the optimal reservoir zones with respect to four indices, reliability, resiliency, vulnerability and deficit ratio. The results indicate that by operating the system of 15 reservoirs taken as a single unit the existing utilization of water may be increased significantly.

An optimization simulation model was defined as a tool for planning, designing and managing surface reservoirs in Negev desert, Israel. The model allowed a relatively simple and objective economical study for the production of water in terms of optimal reservoir location and reservoir design to be undertaken. The simulation was carried out over actual flow records taking into account the stochastic nature of runoff. A sensitivity analysis was added for parameters such as sedimentation, infiltration , investment costs, interest and sequence of flows within the flow record. (Pushmann and Lohr , 1996)

Hughes *et al.* (1997) devised a technique that uses a reference time series of daily flow data to represent the prevailing climate and trigger the releases. The technique has been incorporated into a preliminary version of a reservoir simulation model and is designed for planning purposes to illustrate the effect on day to day pattern of releases, as well as to control releases.

Nalbantis and Koutsoyiannis (1997) formulated and tested a parametric rule for multireservoir system operation. The rule was embedded in a simulation model so that optimization requires repeated simulations of the system operation with specific values of the parameters each time. The rule was tested in the case of the multireservoir water supply system of the city of Athens, which was driven by the operating goals (avoidance of spills, leakage losses and conveyance problems) Two problems at the system design level were tackled. First, the total release from the system is maximised for a selected level of failure probability. A detailed simulation model was used in the case study. Sensitivity analysis of the rule's parameters revealed a subset of insensitive parameters that allowed for rule simplification. Finally the rule was validated through comparison with a number of heuristic rules also applied to the test case.

2.2 Operating policy:

Water resource planning is concerned with the establishment of appropriate operating policies besides the structural and hydrological issues. Operating policy refer to achievement of the said transformation, for instance how much and when the releases should be made from the reservoirs, what should be the quality management under different circumstances etc. The capacities and operating policy specify normative design on planning specifications under stochastic conditions of input, state and output demand. In many instances development of operating rules that are best in some sense is a prime objective of the simulation experiments.

Harboe (1970) developed DP models under the basis to find optimal operation rules in short and long term periods. In short time, the objective is to find the hourly withdrawals from the reservoir. In the long term, the objective has been to determine the monthly release from the reservoir over a large period of time, usually coincident with a critical period of runoff or over the economical life of the project.

Roefs and Bodin (1970) grouped the approaches to the solution of the reservoir operation problem into three classes; a simulation approach, an explicit stochastic approach and an implicit stochastic approach. In the simulation approach the effects of an operating rule were simulated on the basis of sequence of streamflows. By trial and error or possibly some search procedure an operating rule was found that achieved the desired objectives the best. When the length of the

17

historical flow sequence is sufficient for a reliable estimation of the effects of the rules investigated, it is commonly extended or replaced by a synthetic sequence.

A mathematical model that can be useful in determining the optimum design and operation of a single multipurpose reservoir was formulated by Mobasheri, and Harboe (1970). The development purposes included firm water supply, firm on-peak and dump hydropower production, flood control, and low augmentation. The model is based upon a two stage optimization technique. It takes into account the fact that economic returns from a project are a function of both design and operational rules of the project. A dynamic programming algorithm, which has a physical recursive equation, computes the optimum operation policy of a feasible design.

Most of the simulation models assume that some particular historical streamflow is representative of the entire hydrologic time series (Askew *et al.* 1971). He successfully used critical period hydrology for design purpose in a reservoir simulation study.

Simulation models are symbolic or numerical abstractions of a system under study (Van Horn, 1971). A sequence of mathematical statements describe the design and operating characteristics of the components of the system being modelled. Such a sequence of statements, adjusted to coincide with the characteristics of a basin and combined with a series of historical or generated streamflow at various gauging stations, provide a means of simulating the operations of that system in order to protect and analyze it's performance.

Becker and Yeh (1974) developed a methodology for real time optimization of water release and hydropower. They utilized dynamic programming for the selection of an optimal reservoir release policy path through a specified number of policy periods, with iterative linear programming used for period by period optimization. Reservoir operation objectives were considered by maximising an objective function while maintaining various minimum values of a second objective in an optimization constraint in a study by Croley II and Rao (1979). An operation rule was formulated from the optimum decision set associated with the selected trade off level, by using Implicit Stochastic Optimization methods already available. These techniques were applied to the practical problem of the Coralville reservoir ,Iowa for flood control and recreation operating purposes and resulting operation rules were compared to the existing operation rule.

Studies show that incorporating the parameter uncertainty in annual streamflow statistics generating into monthly streamflow algorithms can have a major impact on estimates of reservoir system reliability and distributions describing possible future system performance (Stedinger, 1979).

Bhaskar and Whitlatch (1980) analysed a single multipurpose reservoir using a backward looking dynamic program algorithm to obtain optimal releases. Monthly policies were derived by regressing the optimal set of releases on the input and state variables. Linear and non linear release policies were developed, verified and compared through simulation.

Yeh and Becker (1982) developed practical procedures for the analysis of a multiple purpose, multiple facility reservoir to guide real time decisions concerning the optimal operation of the system . Application is made to the California Central Valley Project. The five purposes (benefit) treated as objective in the multiobjective optimization include hydropower production, fish production, water quality maintenance, water supply and recreation.

Houck (1982) presented the results of some numerical experiments, which indicate that the true operation objective function written in real-time model may not be the best one to use for real time operation. He found another objective function which, when used in the same real time model, produced operation results which were better than that measured by the true objective function.

The development of general reservoir system operating rules by deterministic optimization was investigated by Karamouz and Houck (1982). They developed an algorithm that cycles through a deterministic dynamic program, regression analysis and a simulation model and was tested for 48 cases. Annual operating rules were determined for 12 cases and monthly operating rules were determined for 36 cases. The results using the algorithm for the 48 cases demonstrated the significant value of the algorithm in selecting reservoir operating rules.

A study was made of the optimal operation of an existing multipurpose, multi-reservoir system by using forecasts An optimization model was constructed for a system of four flood control reservoirs in the Green River Basin, Kentucky having recreation and low-flow augmentation as secondary objectives. The resulting model, called the Green River Basin Operation Optimization Model (GRBOOM), was designed for use in real time operation as well as in long run operation studies. The model is easily modifiable and very flexible and allows sensitivity analysis and experimentation with new operating policies. (Yazicigil *et al.* 1983)

Datta and Burger (1984) used a series of synthetic short term forecasted values to examine a single reservoir. The objective function of the operation model is assumed to be the best possible tradeoff between probable deviations from two operation targets, release and storage volume. Actual losses, deviations between actual and forecasted losses, the variance of shortage and release volume and operational performance measures including reliability, resiliency and vulnerability were found to be sensitive to the relative importance given to deviations from release or storage targets and the quality of forecasts. Most applications of stochastic dynamic programming have derived stationary policies which use the previous periods inflow as a hydrologic state variable. Stedinger *et al.* (1984) developed a stochastic dynamic programming model, which employs the best forecast of the current period's inflow to define a reservoir release policy and to calculate the expected benefits from future operations. The study showed that the use of the best inflow forecast as a hydrologic state variable, instead of the preceding period's inflow, resulted in substantial improvements in simulated reservoir operations with derived stationary reservoir operating policies. The results illustrate the potential stochastic dynamic programming algorithm. It identifies the optimal policy within the class of policies examined.

Tai and Goulter (1987) presented a technique based upon stochastic dynamic programming for a three reservoir hydroelectric system. It involved use of historical inflow data for the down stream reservoir. At each iteration the optimal policies for the downstream reservoir were used to provide relative weightings or targets for operation of upstream reservoirs. New input inflows to the downstream reservoirs were obtained by running the historical streamflow record through the optimal policies for the upstream reservoirs. This flow was then used to develop a new operating policy for the downstream reservoir and hence new targets for the upstream reservoirs. Results obtained from the procedure were compared with the results obtained by the historical operation of the system. The estimated benefits generated from the technique were shown to be similar to the benefits generated by the historical operation of the system with the difference being within the bounds expected from the choice of the number of storage states.

Kuezera and Diment (1988) developed WASP (Water Assignment Simulation Package) to facilitate analysis of the performance of the headworks and transfer components of a water supply system under different operating policies and changes to system configuration. WASP is based on a network LP to take advantage of computer codes upto 100 times faster than standard LP codes.

20

A methodology was developed by Simonovic and Burn (1989) which aims to determine the optimal operating horizon of a single multipurpose reservoir. The optimal value of the operating horizon was selected horizon based on the trade off between most reliable inflow forecast for shorter horizons and better reservoir operation associated with the use of longer operating horizons. The benefits of the methodology were illustrated through an application of the technique in simulating the operation of Green Reservoir in Kentucky.

Kuo *et al.* (1990) reported the development and application of a modelling package for the real time operation of Feitsui and Shihmen Reservoirs in the Tanshui River Basin, China. The modelling package consists of a 10 day streamflow forecast model, a rule curve based simulation model and an optimization model. Tested with actual operational records and a hypothetical condition, the models were seen to be capable of producing improved 10 day operating rules for the present reservoir system. Given a forecasted streamflow sequence for the entire year, the simulation model is first used to determine whether a severe shortage of water is expected. The simulation results were used as an initial feasible operating policy and an appropriate objective function. A dynamic programming based optimization model is then used to determine an improved operating policy.

Mohan and Keskar (1991) studied the goal programming approach for multipurpose reservoir operation and applied it to the Bhadra reservoir system. Irrigation and Hydropower were taken as the dual purposes. The objective of the model was to satisfy sequentially a series of operating criteria. Two goal programming models, one with the objective function as minimizing the deviations from storage targets and other with the objective function as minimizing the deviations from release targets were formulated and applied to the reservoir system under study. The results proved that the model with release target is prefered over the model with storage targets for determining operational policies for multi-purpose reservoir system. A simulation of irrigation policy and reservoir operation was carried out to confirm that extending the irrigated area of the Periyar Vaigai irrigation System from 61,000 Ha to 78,500 Ha would not reduce it's existing productivity. (Venugopal *et al.* 1991). The extra supply for the new data would come from modernising the existing scheme and saving water from more efficient operation procedures.

Hajilal *et al.* (1995) studied dynamic programming model to fourteen seasons for optimal reservoir operations for irrigation management and applied this to Paithan reservoir of Jaikawadi irrigation Project (Maharashtra). The problem of real-time reservoir operation for optimizing the crop yield in the command area is considered to occur at two distinct stages, i.e. the planning stage and the real-time management stage. It was concluded that for irrigation management, the prediction of inflows close to actual ones in water shortage years is of utmost importance as real-time release policies can only then be framed accurately for optimal use of the limited water. In high flow seasons there is not much control over the inflows as most of the inflows will be lost in the form of spills.

2.3 Type of data:

To investigate properties of hydrologic variables relating to distribution of water quantity and water quality data in time and space are available. The first type is the historic or chronological data or observation of process in time. Short historical records are extended with the techniques of hydrologic synthesis and operational hydrology. The new synthetic sequences either preserve the statistical characters of historical records or follow a prescribed probability distribution or both.

Young (1966) applied implicit stochastic approach for the determination of an optimal annual operation rule for one reservoir. The elements of the approach

ł

ł

were streamflow synthesis, deterministic optimization and regression analysis. Streamflow synthesis was used to provide several equally probable sequences of streamflows, which would occur in future. Deterministic optimization was used to map these data on possible future streamflows into data on future storage levels and release schedules.

Mejia *et al.* (1974) analysed a system that serves recreation and flow augmentation purposes. Values of recreational utility were computed at each lake for all summer months of the period of simulation and summed over all years. The monthly disutilities of not meeting a specified target flow were determined on the basis of a loss function and were again added up over the period of simulation. The operation rules ranged from so called conventional policy that uses flow forecasting and mathematical programming for optimization. Historical data were used to simulate the operation of the system under different rules and an assessment of policies was made on the basis of multiobjective criteria.

Yeh (1985) reviewed the state of the art of mathematical models developed for reservoir operations including simulation models. A general overview was presented and historical development of each key model was critically reviewed.

Vedula *et al.* (1986) studied the operation of Bhadra reservoir system using optimization (over a year and within a year storage model) and simulation (with both historic and generated monthly streamflows) based on a 52 year record of monthly inflow data for irrigation and hydropower generation. The simulation runs were carried out for a special irrigation channel with historic data. A comparison of the performance with the identified policies with actual performance made over a period of 11 years showed that a significant increase in hydropower production has been possible thus far without sacrificing the irrigation component.

A primary role of systems analysis is to provide an improved basis for decision making. Simonovic (1992) concluded that a gap exits between research studies and the application of systems approach in practice. He presented two examples to bridge the gap. A simple simulation optimization model for reservoir sizing has been presented as an example of how the systems approach may respond to the practical needs of water resource engineers. Such an approach easily incorporates storage dependent losses, as it too relies on the continuity equation. It also includes a reliability and accepts historical or synthetic streamflows.

ļ

Materials & Methods

.

•

MATERIALS AND METHODS

Kerala, is a tropical humid region which lies between 18° 18' and 12° 48' north latitude and 74° 52' and 77° 22' east longitude along the coast of southwestern part of the Indian subcontinent. Its georaphical area is 38863 sq km and physiographically it is divided into low land, mid land and high land. Even though blessed with 3m of rainfall, 44 rivers, chains of backwater bodies, plenty of reservoirs, tanks, ponds etc., during summer, water level goes down to the silted bottoms in many areas. Deforestation and increasing population along with undulating topography contribute to dry riverbeds and increasing dry wells in the state. Compared to the national average, unit land of Kerala receives 2.5 times more rainfall but the same unit of land has to support 3.6 times more population. Hence for self sufficiency unit land of Kerala has to produce 3.6 times more food and biomass, also the same unit of land has to produce more drinking water and has to meet associated water requirements compared to the national average.

The clue to solve the water crisis in the midst of plentiful rainfall is to arrest and conserve as much rainwater as possible. For this the state should have both short and long term specific water management strategies. The process of planning and management of water resources has become exceedingly complex, particularly since several competing and sometimes conflicting demands of various uses are to be met.

Out of the thirty reservoirs in the state only four reservoirs have drinking water component whereas the others are used for irrigation and hydel power generation. Perhaps, the cheapest, best and the only long term solution to meet most of the domestic and industrial water needs in future is to draw water from all existing and future reservoirs. According to the National Water Policy, next to drinking water the priority is for irrigation. Of the total geographical area only 57% is under cultivation, out of which only 0.3Mha has been brought under irrigation. Therefore there is a great need to evolve integrated basin plans for the rivers of the state considering physiographic, agroclimatic and hydrologic features. A river basin

or a watershed is a natural integrator of all hydrologic processes within its boundaries.

The Karuvannur watershed lies between 10^{0} 15' to 10^{0} 40' north latitudes and 76⁰ 00' to 76⁰ 35'east longitudes. It is located in Thrissur and western boundary of Palakkad districts of Kerala. The Karuvannur river which has a length of 48 km originates from the Western Ghats and is fed by its two main tributaries namely the Manali and Kurumali. The Manali river originates from Vanyampara Hills, in the outskirts of Thrissur and Palakkad districts at an elevation of +928m. The river basin has an area of 1054 sq km.

Peechi irrigation project which is built across Manali river has been in operation for nearly forty years and is selected for the present study. Peechi dam was conceived and conceptualised in the forties and the early fifties. It came into existence in the year 1957. The dam was intended to irrigate 4586 ha of new conversion lands, 1619 ha of single crop land converted to double crop land, 4048 ha of existing double crop lands and 8095 ha of kole lands. In addition to these irrigation needs, the dam materialised as the sole source of drinking water to almost the entire Thrissur Corporation.

Looking back we see that a lot of water has flown under bridge and the needs have increased many folds. Therefore it becomes imperative to preserve every drop of water and the system demands scientific planning and distribution of water. The planning of a large project presents a complex management task calling for a high degree of co-ordination and control. Simulation is an experimental problem solving technique by making observations of the performance over time of a dynamic model of the system. The objective of simulation studies are (i) system simulation in order to study the performance under hydrologic and other inputs and (ii) to study and abstract the performance using relevant performance indices.

ł

In this chapter the methods adopted for the development of simulation model are dealt with. The model described has been formulated on the historic streamflow data of Peechi reservoir taken as twelve monthly periods from June to May, as it is considered as the water year. A detailed description of the study region is presented in the following few sections.

3.1 Location

The dam site chosen at Peechi is about 20 km east of Thrissur town and 8km away from the National Highway 47 at Pattikkad. The reservoir has a water spread area of 12.95 sq. km. and water distribution system of two main canals, one on the right bank and other on the left bank. The location map of the study area, the Karuvannur river basin, is shown in Fig.1. The vicinity map of Peechi dam located across the Manali river, one of the major tributaries of Karuvannur river is shown in Fig.2. It is situated at 10^{0} 26' North latitude and 76^{0} 24' East longitude.

3.2 Climate

3.2.1 Rainfall

The catchment area of the reservoir is fed by the two monsoons which is prominent in the state i.e. the southwest monsoon from June to August and the north east monsoon from September to December. The mean monthly distribution of rainfall of the region is shown in Fig.3. The average rainfall of the region is 2921 mm.

3.2.2 Temperature

The maximum temperature of the region is 27 $^{\circ}$ C and the minimum is 23.8 $^{\circ}$ C. The monthly distribution of temperature is given in Fig.4.

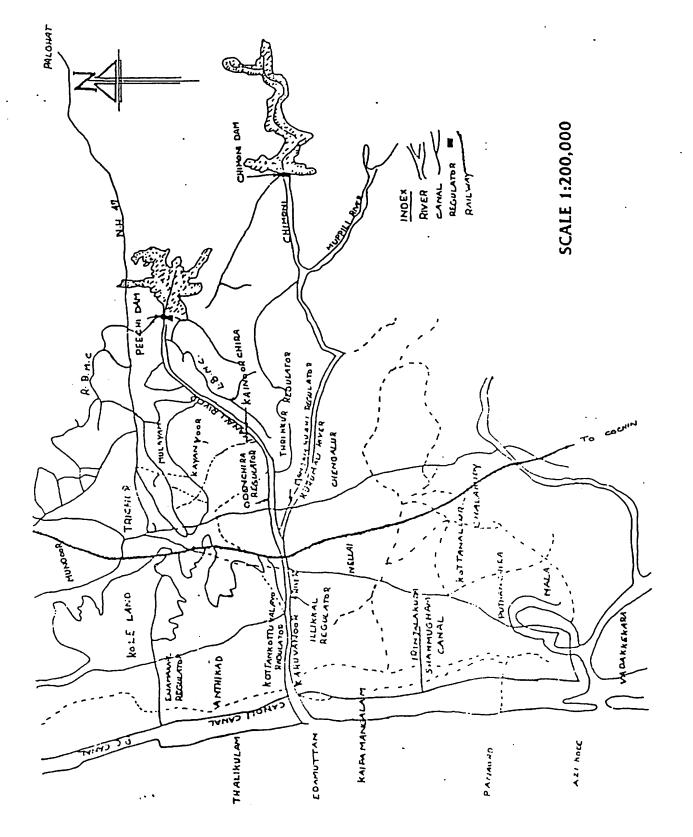
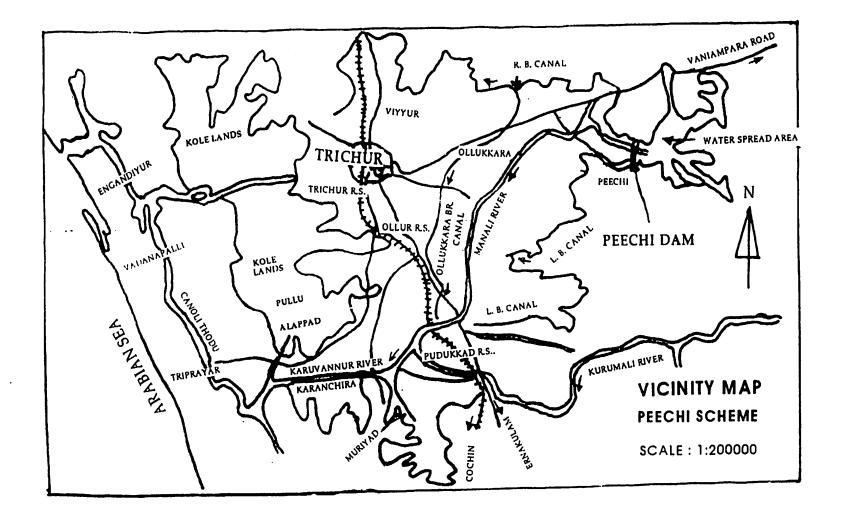
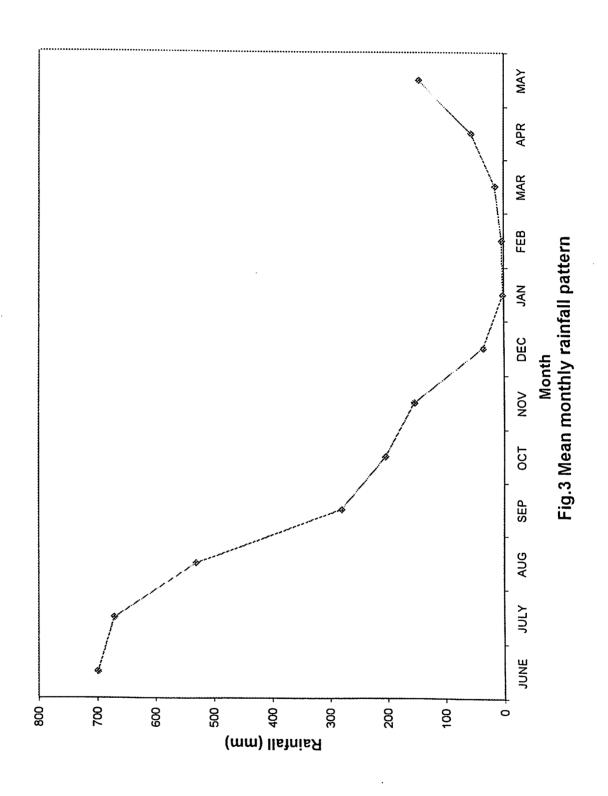
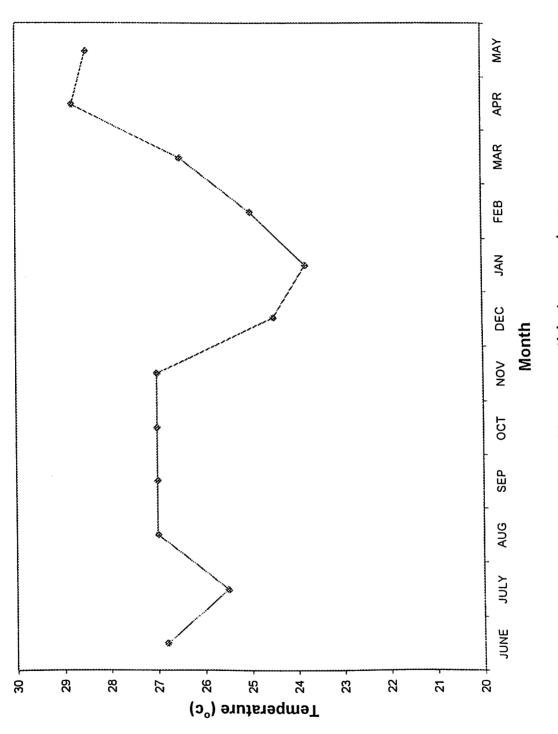



Fig.1 Location map of Karuvannur river basin


.---


2

.

;

Fig.2 Vicinity map of Peechi dam

3.3 Topography

The command area has moderate slopes in upper reaches and flattens towards the bottom valley. Dominant slopes occurring in different physiographic regions are furnished in Table 1. The kole lands, which are a part of the command area, lie between 60 cm to 120 cm below sea level.

3.4 Geology

Based on the geological formations the area is divided into three regions.

3.4.2 Upper region

The major rock type in the upper region of the watershed consists of quartzfeldspar hypersthene granulite, pyroxene granulite and magnetite quartztite of charnockite group, pink granite gneiss and gabbro.

3.4.3 Middle region

Garnetibiotite gneiss of migmatite complex and laterite forms the major rock type of the middle region.

3.4.4 Lower region

The lower region is made of laterite and coastal sand and alluvium.

3.5 Soils

The main type of soils found in the location are as follows.

3.5.1 The lateritic soil

In Thrissur district the predominant soil is lateritic. It covers almost the entire midland areas of the district. These soils in general are well drained, low in all essential plant nutrients and organic matter. They exhibit very low cation exchange capacity and are generally acidic with a pH value ranging from 5 to 6.2.

Table.1 Dominant slopes in different physiographic regions

Upper region	Middle region	Lower region
Gently sloping (3-5%)	Nearly level (0-1 %)	Nearly level (0-1 %)
То	То	То
Steeply sloping	Moderately steeply sloping	Gently sloping
(15-30%))	(10-15 %)	(3-5%)

3.5.2 Brown Hydromorphic Soils

It is the second prominent soil group found in the district. These soils are confined to the valleys between the midlands and in the low lying areas of the coastal strip in the district. They have been formed as a result of transportation and sedimentation of materials from adjoining hill slopes and also through deposition by rivers. In majority of the area the water table is high and there is low drainage conditions. Hence these soils exhibit characteristic features like grey layers, presence of mottlings, streaks, organic matter deposition, iron manganese conditions etc. These soils are very deep and brownish in colour. The surface texture varies from sandy loam to clay. Their pH value ranges between 5.2 and 6.4 and are acidic in nature.

3.5.3 Riverine Alluvium

They are moderately well drained soils which are distributed mainly on the banks of rivers, their tributaries and kole lands. They are light to medium textured with good physical properties and contain organic matter, nitrogen and potash moderately. The soils of kole area are mainly the product of weathering of river alluvial deposits and colluvium. The deposits mainly have clayey texture. In higher locations the deposits are mostly of coarser texture.

3.6 Water Resources

3.6.1 Surface water resources

The quantity of water received from Manali river is sufficient to fill this reservoir to full capacity during the period of south - west monsoon. Water is supplied for irrigation for the first crop during the period of August to September on demand and continuously for second crop from September to December in turn system. Water is delivered to the branch canals and then to the field through field channels.

3.6.2 Ground water resources

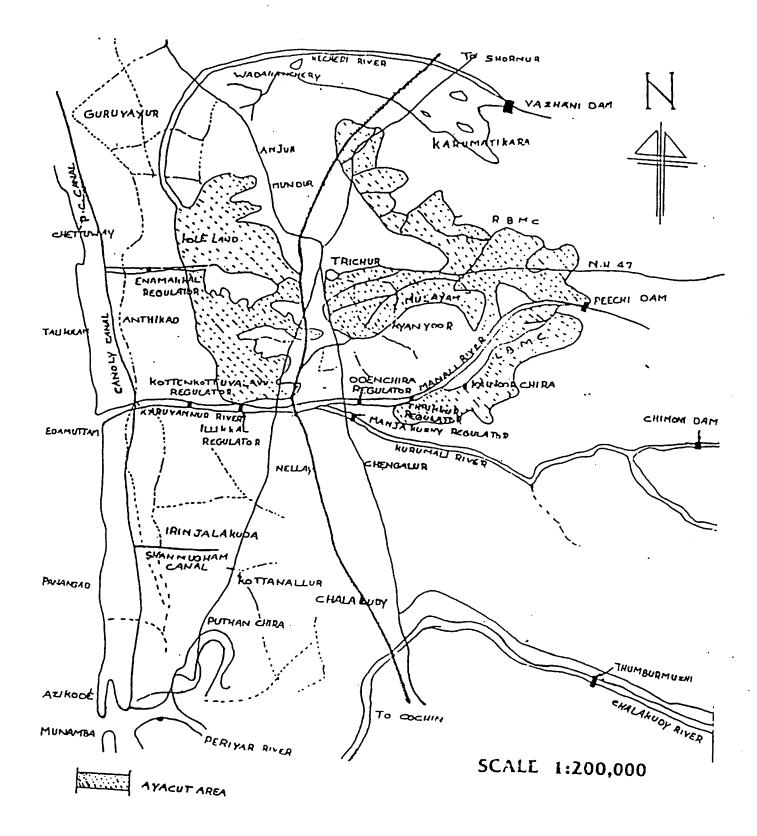
Investigations about the exploration and utilization of ground water resources of this area are still being done.

3.7 Land use / Land cover

3.7.1 Upper region

Nearly 95 % of the upper region is covered by forest, of which about 70 % is occupied by deciduous forests, 15 % by evergreen/ semi green forest and 10 % by forest plantation.

3.7.2 Middle region


About 96 % of the area is covered with agricultural land which is mainly under mixed agricultural / horticultural plantations. Deciduous forests cover rest of the area.

3.7.3 Lower region

The lower region consists of agricultural lands, which is predominantly under mixed agricultural/ horticultural plantations inter spread with narrow valleys where paddy is grown.

3.8 Cropping Pattern

In the command area of the project paddy is the main crop, but crops like coconut, arecanut, tapioca, banana, pulses, vegetables etc. are also cultivated extensively. Two crops of paddy are grown and generally as the kole area lies below M.S.L, it will be water logged and hence no crops are raised during rainy months. The Ayacut map of the project is given in Fig.5. The existing cropping pattern of the basin is shown in Table 2.

. .

Сгор	Cultivated Area (Ha)
Paddy	16344
Coconut	1675
Pulse	432
Arecnut	123
Banana	121
Vegetable	64
Total	18,459

 Table: 2 Existing Cropping Pattern of the basin:

3.9 Salient features of the project

The salient features of the Peechi project are furnished in Table 3.

3.10 Meteorological and hydrologic observations

3.10.1 Rainfall

The main source of water in the site is rainfall. The rainfall data for 35 years from 1964 to 1999 was collected from Hydraulics-II Division of Kerala Engineering Research Institute, Peechi. These observations were from a recording type rain gauge. These datas are furnished in Appendix -I

3.10.2 Evaporation

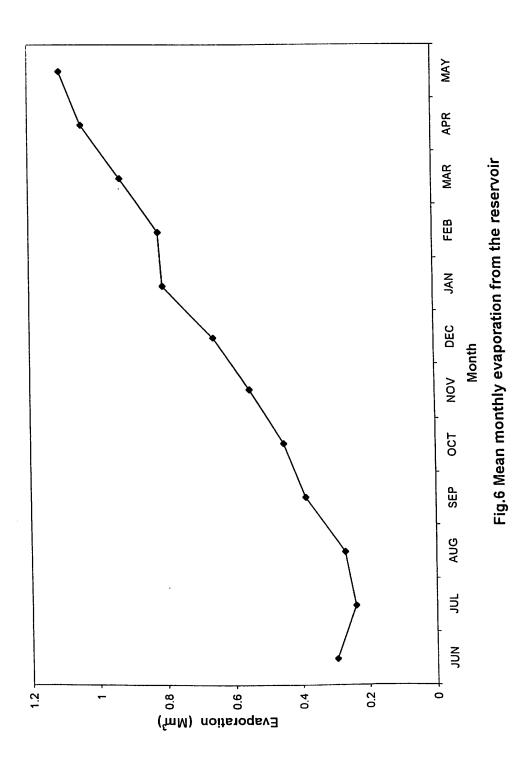
Evaporation measurements from the US Weather Bureau Class A pan was also collected from Hydraulics-II Division of Kerala Engineering Research Institute, Peechi. The datas are presented in Appendix –II and the mean monthly evaporation is plotted in Fig.6.

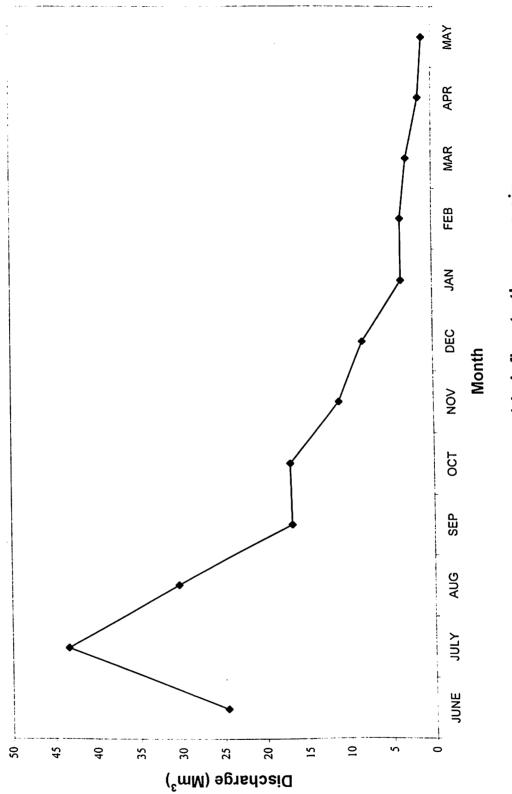
3.10.3 Stream flow

The stream flow data for the years, 1964 to 1999 was collected from Head Work Division, Kerala Engineering Research Institute, Peechi and from the office of the Executive Engineer, Major Irrigation Division, Chembukavu, Thrissur. The datas collected are shown in Appendix-III. The mean monthly inflow data is plotted and shown in Fig.7.

3.10.4 Water demands and supply

The information about water demand for various requirements in the project command area were collected. Data of drinking water demand and supply were collected from Public Water Works, Thrissur and Head Works Division, Kerala Engineering Research Institute, Peechi respectively. Information on water supplied for irrigation and crop water requirement along with crop area in ha was collected from the Head Works Division of Kerala Engineering Research Institute, Peechi.


The Dam					
Length of the dam			213.36m (700ft)		
Bed level of dam site			39.62m (130ft)		
Crest level at spill	way		76.20m (250ft)		
Top of the dan	n		80.47m (264ft)		
Top width of the	dam		4.27m (14ft)		
Full reservoir lev	vel		79.25m (260ft)		
Maximum water l	evel		79.25m (2	260ft)	
Size of the spillway	gates		4 No.s. 10.06m x 3.0	05m (33ft x 10ft)	
Type of spillwa	ıy		Ogee ove	erflow	
Type of dam			Straight gravity, R	ubble masonry	
		The	Lake		
Drainage area	······	107 sq km (41.35 sq miles)			
Water spread area		12.95 sq km (5 sq miles)			
Average annual rai	Average annual rainfall		292 cm (115 in)		
Annual runoff	Annual runoff		209.5M cu m (7400M cft)		
Maximum storage		109.813M cu m (3878M cft)			
Maximum flood dise	Maximum flood discharge		368.119 cu m / sec (13000 cft / sec)		
	Irri	gatio	on Outlets		
	Sill le	vel	Size of outlet	Discharge	
Right Bank	+56.39n	n	1.22 m dia	7.08 cu m / sec	
	(+185ft)		(4ft dia)	(250 cft/sec)	
Left Bank	+67.06m		0.91 m dia	3.54 cu m / sec	
	(+220ft)	(3ft dia)	(125 cft/sec)	
Thrissur water supply	+53.34 t	n			
	(+175ft				


Table.3 Salient features of the project

Contd. Table.3

Canal system			
	Right Bank canal	Left Bank canal	
Total length of main canals	37 km (23 miles)	45.06 km (28 miles)	
Bed width of main canals	3.66 m (12 t)	3.66 m to 2.74 m (12 ft to 9 ft)	
Total length of branch canals	75.64 km (47 miles)	65.98 km (41 miles)	

.

The crop water requirement of the basin is presented in Table 4. Water demand and supply for pisciculture and recreation demand was also collected from the Head Works Division of Kerala Engineering Research Institute, Peechi. The monthly water demands for different purposes are presented in Table 5. The actual release from the reservoir is shown in Appendix - IV

3.11 Simulation of the reservoir system

The reservoir operation simulation model is designed for monthly operation with historic mean monthly streamflows. By running the model with the monthly streamflow data various releases for different purposes are obtained. These set of recommended reservoir releases are computed by taking the historic streamflow data from 1964 to 1999.

Multi-objective demands:

The multi-objective demands of the reservoir system are

Drinking water demand of Thrissur township.

Irrigation demands of kole lands of Thrissur

Pisciculture demand at the reservoir site.

Recreation demands for parks at Peechi dam site.

A schematic representation of the system representing different objectives is shown in Fig.8. The monthly demand for each objective was collected from the concerned departments as cited in section 3.10.4. 70 % conveyance efficiency is considered for the system.

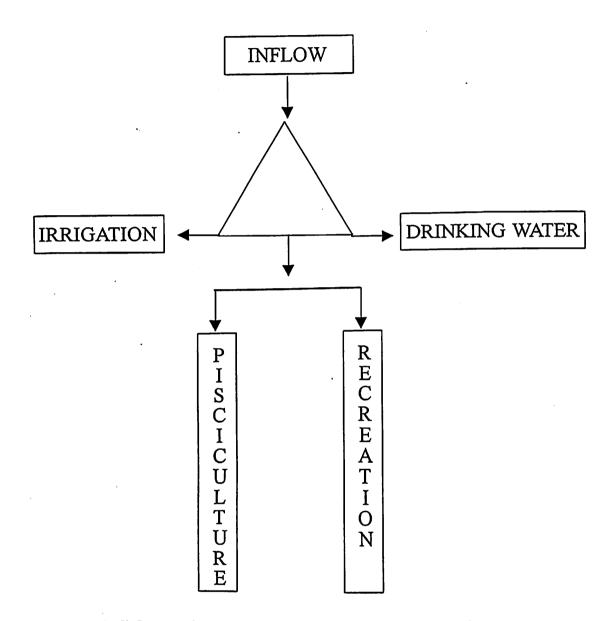
¥

	··· ·							-
Dec	9.46				0.01		9.47	
Nov	4.03				0.01		4.04	
Oct	1.77				0.01		1.78	
Sep							0	
Aug							0	
Jul							0	
Jun							0	
May			0.18	0.02	0.01	0.003	0.213	
Apr	16.21	0.05	0.18	0.02	0.01	0.003	16.473	
Mar	21.94	0.48	0.18	0.02	0.01	0.003	22.633	
Feb	21.28	0.2	0.22	0.2	0.01	0.004	21.914	
Jan	0.63	0.04	0.17	0.01	0.017	0.003	0.87	
Crop	Paddy	Coconut	Pulses	Arecanut	Banana	Vegetables	Total	

.

[m ³)
S
kequirement
water R
Crop
4
Lable :

ţ


44

Month	Drinking	Irrigation	Irrigation Pisciculture		Total
Jun	1.89	0	0.2	0.002	2.092
Jul	1.89	0	0.2	0.002	2.092
Aug	1.89	0	0.2	0.002	2.092
Sep	1.89	0	0.2	0.002	2.092
Oct	1.89	2.54	0.2	0.002	4.63
Nov	1.89	5.77	0.2	0.002	7.86
Dec	1.89	13.53	0.2	0.002	15.62
Jan	1.89	1.24	0.2	0.002	3.33
Feb	1.89	31.30	0.2	0.002	33.39
Mar	1.89	32.33	0.2	0.002	34.42
Apr	1.89	23.53	0.2	0.002	25.62
May	1.89	0.30	0.2	0.002	2.39
Total	22.68	110.54	2.4	0.024	
	.	Grand total			135.64

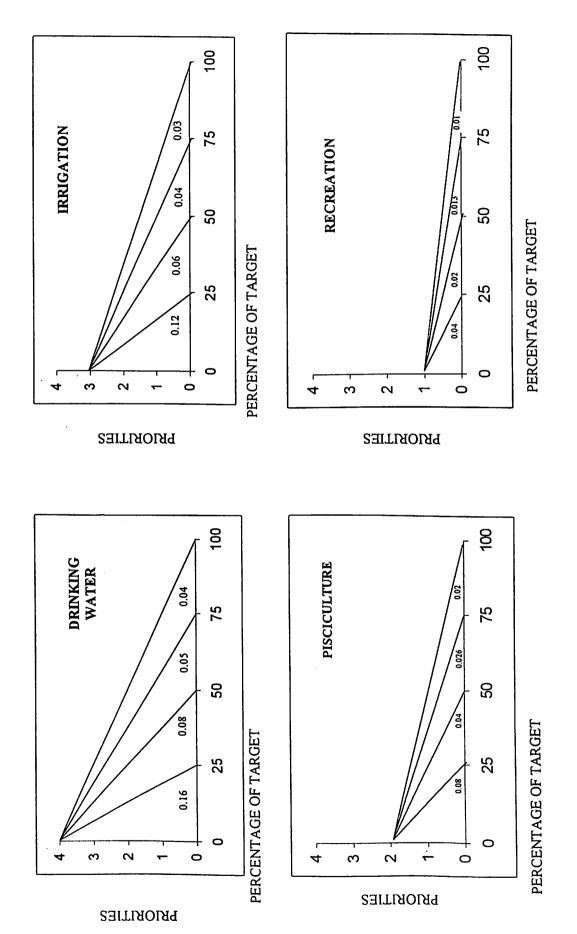
•

Table.5 Monthly water demands for different purposes in Mm³

ţ

3.12 Formulation

Reservoir rules


The reservoir rules assumed for formulation of the problem are as follows.

- 1. Drinking water release is made for each month depending upon the demand which can be assumed as a constant or as a variable.
- 2. 25 % of the drinking water demand is kept aside along with the dead storage and released if there is deficit in drinking water supply.
- 3. Irrigation releases are made for the current month according to the demand, storage and the inflow available.
- 4. Excess of water is released as spill if the water exceeds the specified capacity for the opening of the shutters.
- 5. During the month of May the storage is kept to the minimum level to receive the flood water.
- 6. Dead storage is the minimum storage required for pisciculture.
- 7. April- May is considered as the harvest season for fish and during rainy months the seeds are bred in the hatchery.

The problem has been formulated as a monthly operation model based on historic streamflows and the operating horizon has been taken as twelve monthly periods from June to May, which is considered as the water year. The water requirement for each purpose is taken as the target to be achieved by the model.

In each of the objectives the target is again sub - divided into 25 %, 50 %, 75 % and 100 % of the target and the slopes in each divisions are taken as their priority levels. The priority graph used in the program formulation is shown in Fig.9. Since there are releases for drinking, irrigation, pisciculture and recreation from the system in each month, a total of four targets and sixteen divisions of targets are seen in this manner. The objective of the model is to minimize the deviations of the releases from the targets for each demand. As the targets are different for each of the

i

demand and in each month, the ratio of highest value of target to each of the remaining targets are taken. In other words, the greatest degree slope of the lines drawn to each levels of target i.e 25 %, 50 %, 75 % and 100 % from the priority points for each demand is considered first followed by the next greater degree of slope. To make the approach more clear, by referring to the priority graph, it is seen that the greatest value of slope of 0.160 is that of 25% of drinking water demand. Therefore the highest priority is assigned to 25% of drinking water demand followed by 25% of irrigation demand with next higher slope of 0.120 and so on till the sixteen divisions of the targets are completed. Therefore the priority level is assigned according to the decreasing degree of slopes. The flow diagram for algorithm of the model is shown in Fig. 10

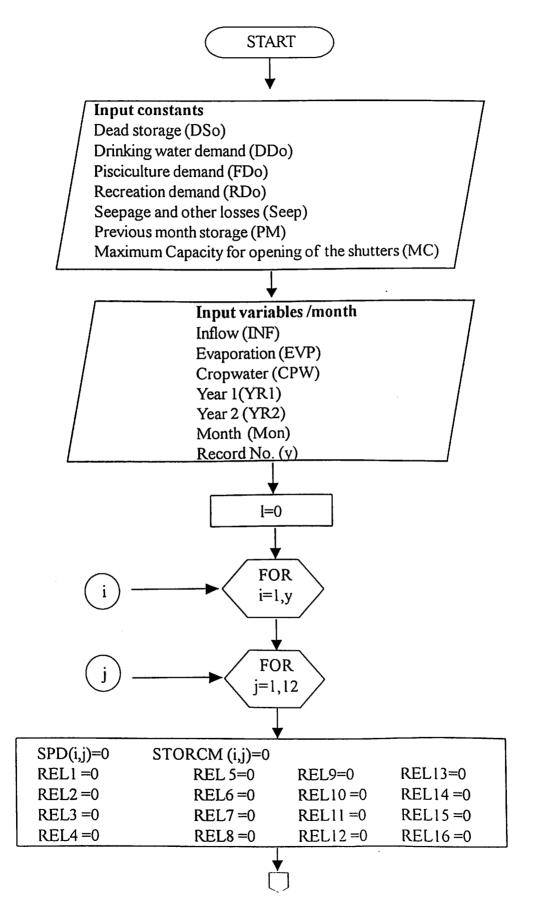
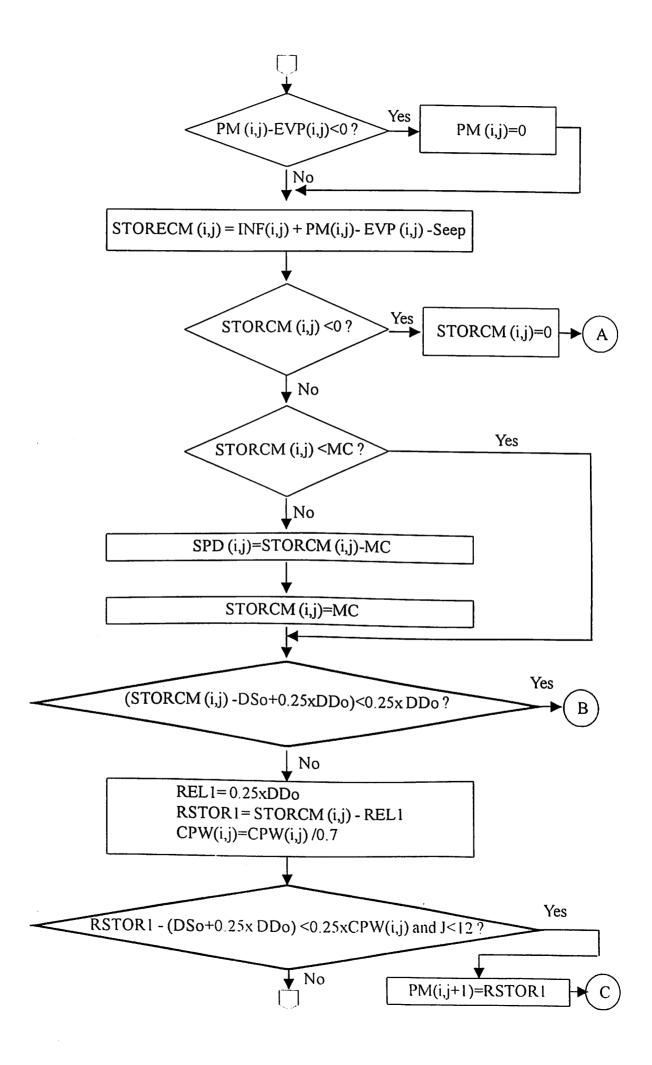
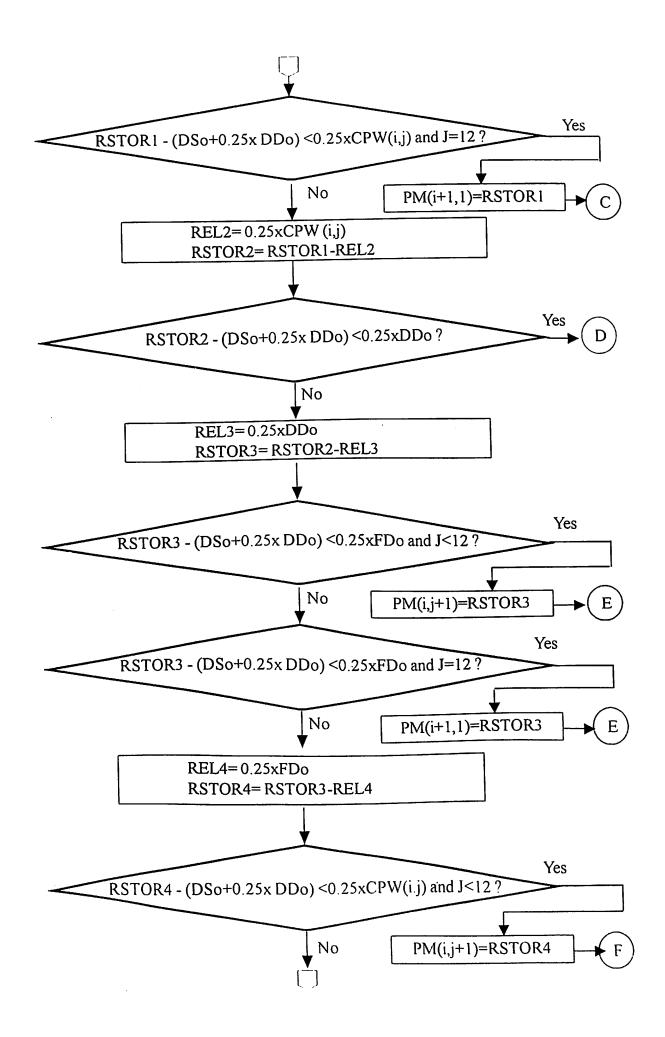
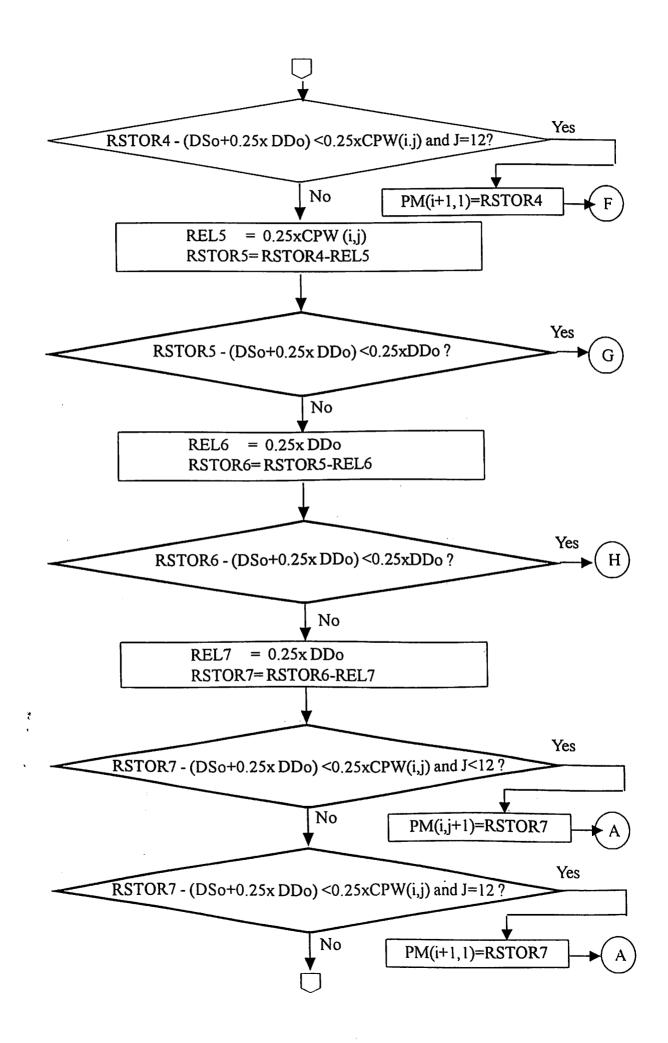
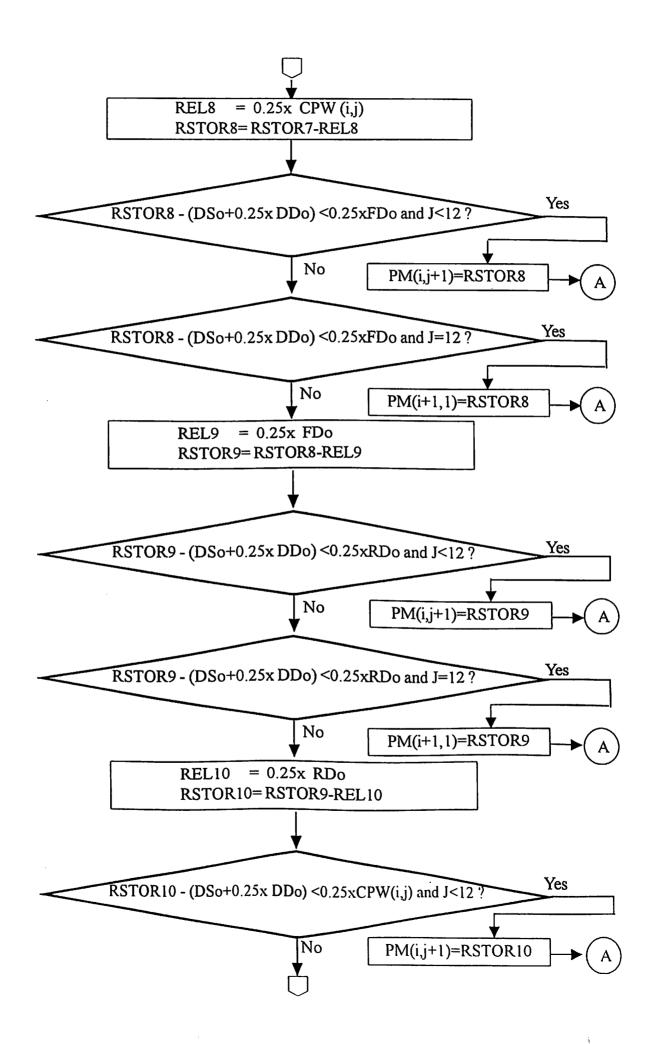
The mathematical program has been formulated with all the known quantities on the right hand side of the continuity equation.

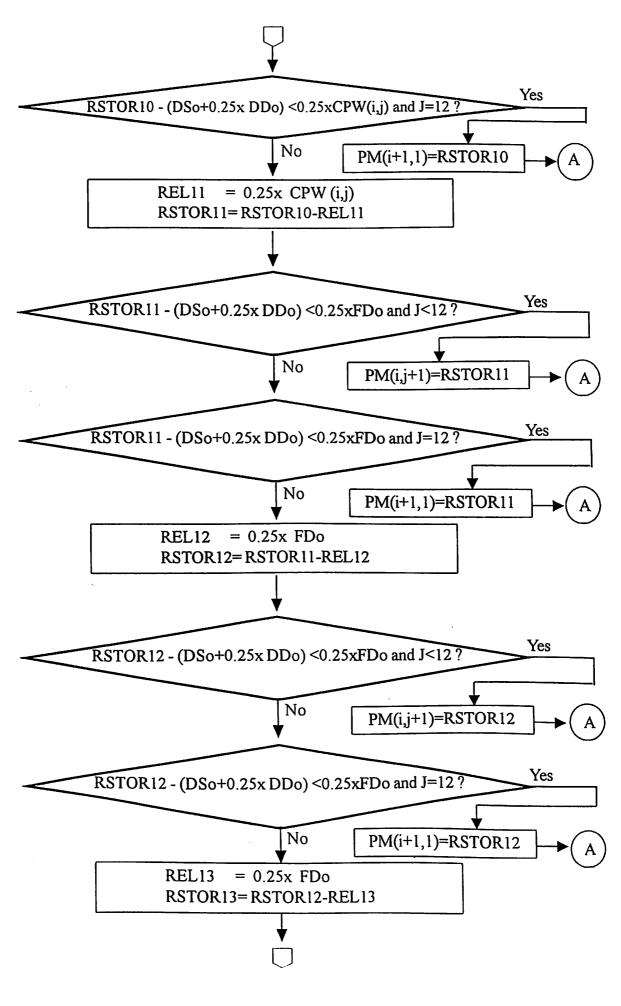
Continuity equation used in the formulation is STORCM = IN + PM - EV - REL

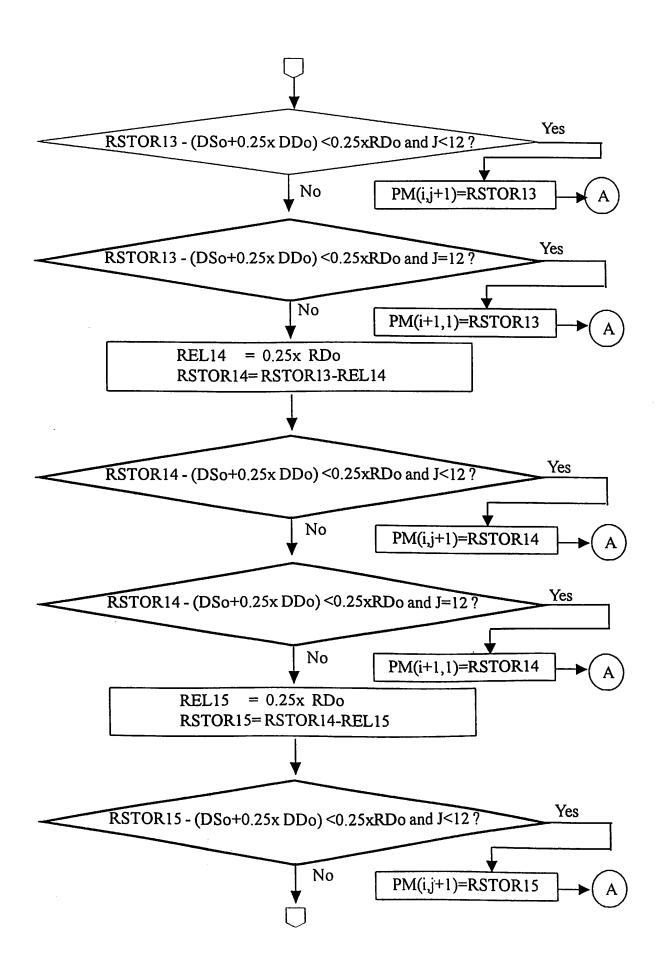
STORCM	=	Storage in the reservoir for the current month
IN	=	Inflow to the reservoir for the current month
PM	=	Remaining storage of the previous month
EV	=	Evaporation from the reservoir for the current month
REL	=	Releases made from the reservoir for different
		objectives

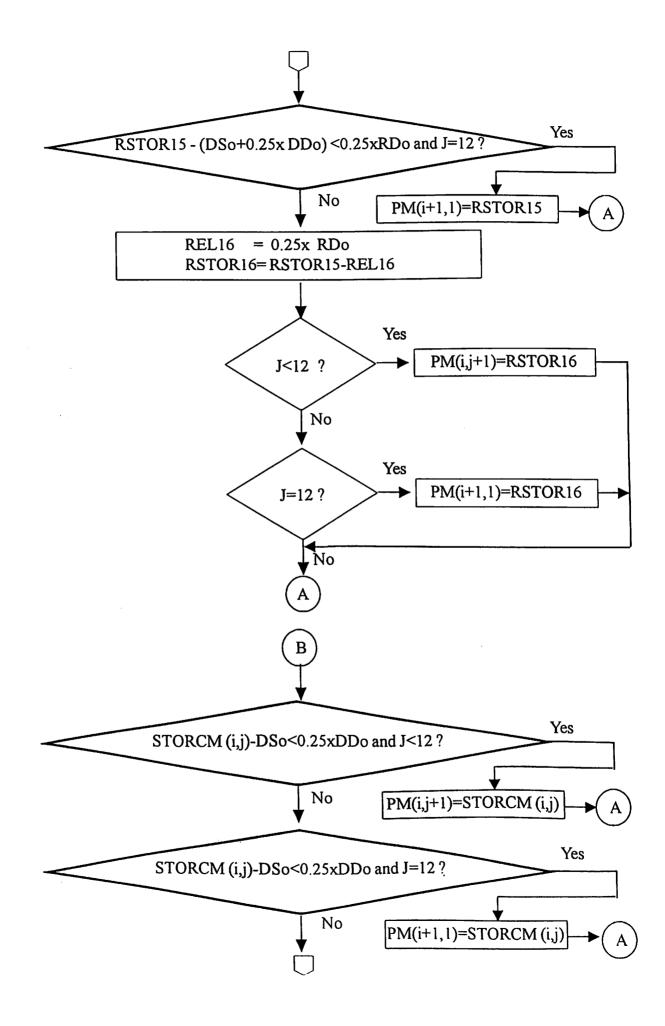
3.13 Solution Algorithm

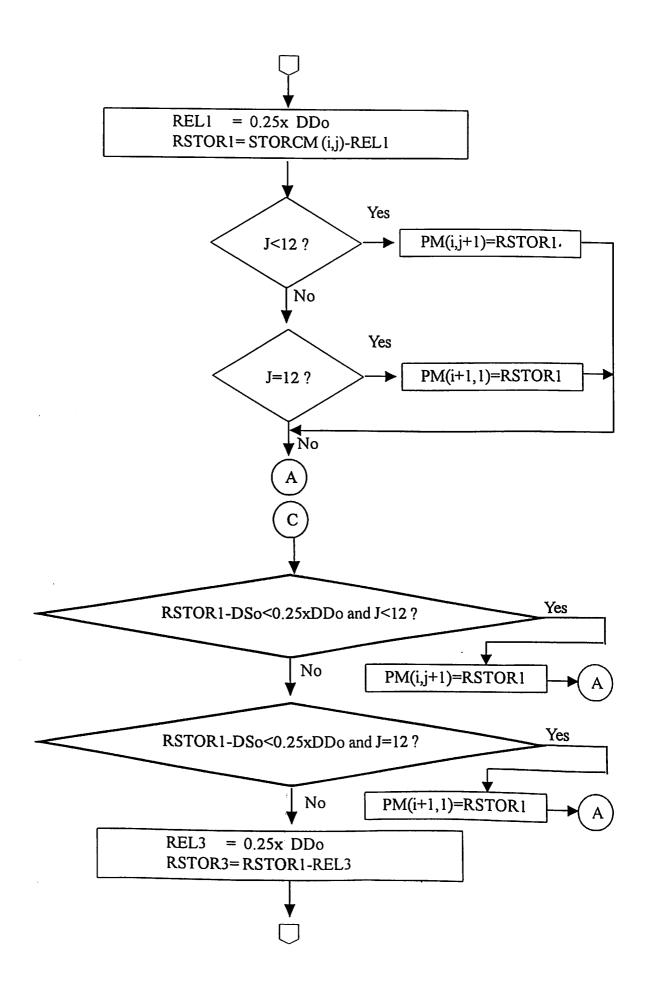
In the algorithm developed, the input values are inflow, evaporation and the demands for different water uses, keeping the dead storage and the capacity for opening the shutter as constants. The drinking, pisciculture and recreation demands for each month were kept constant where as the irrigation demand varied according to the crop water requirement of the particular month.

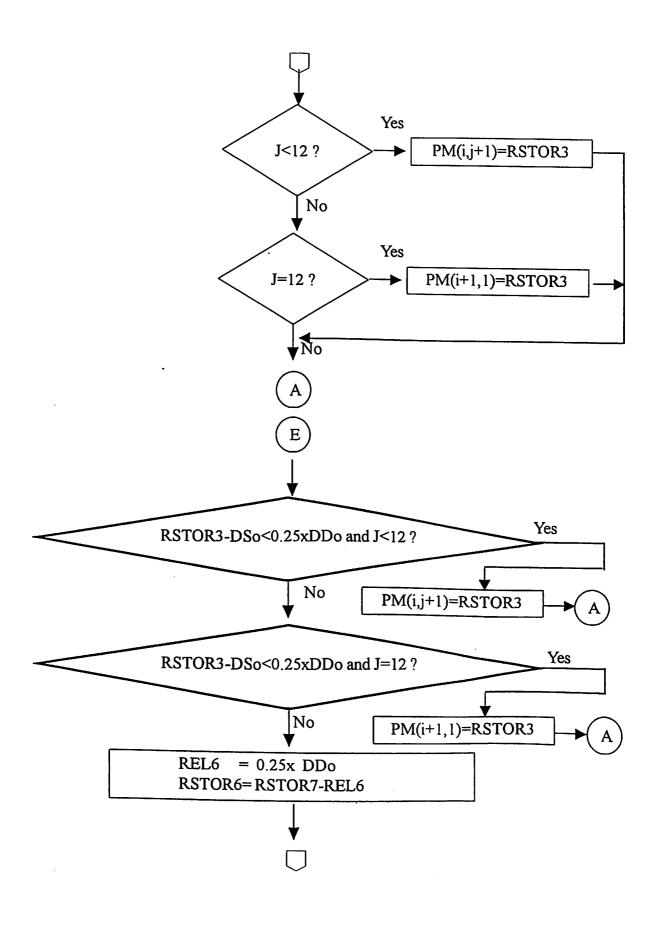







Fig. 10 Flow chart of the reservoir simulation model



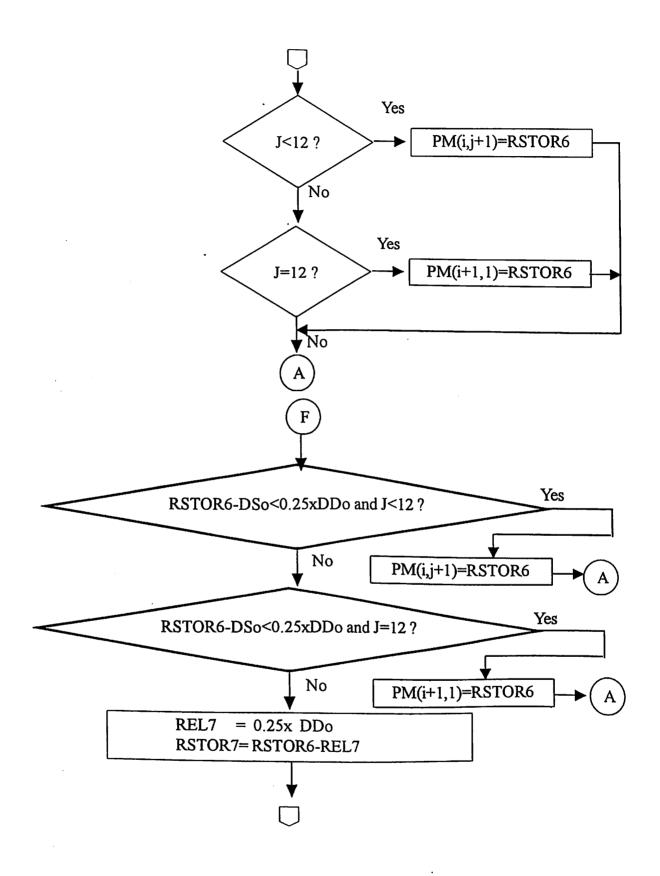



ļ

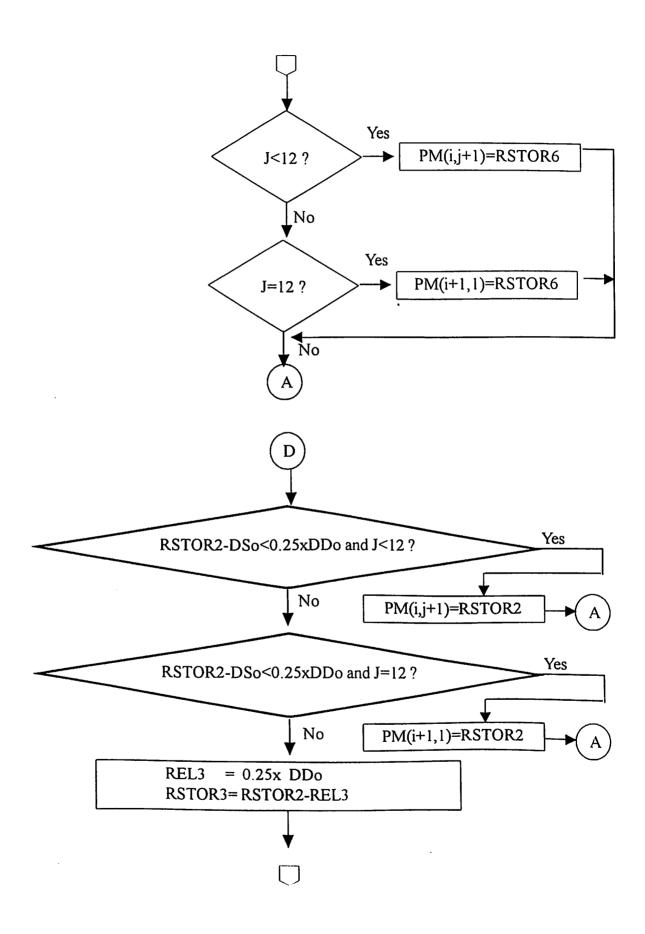


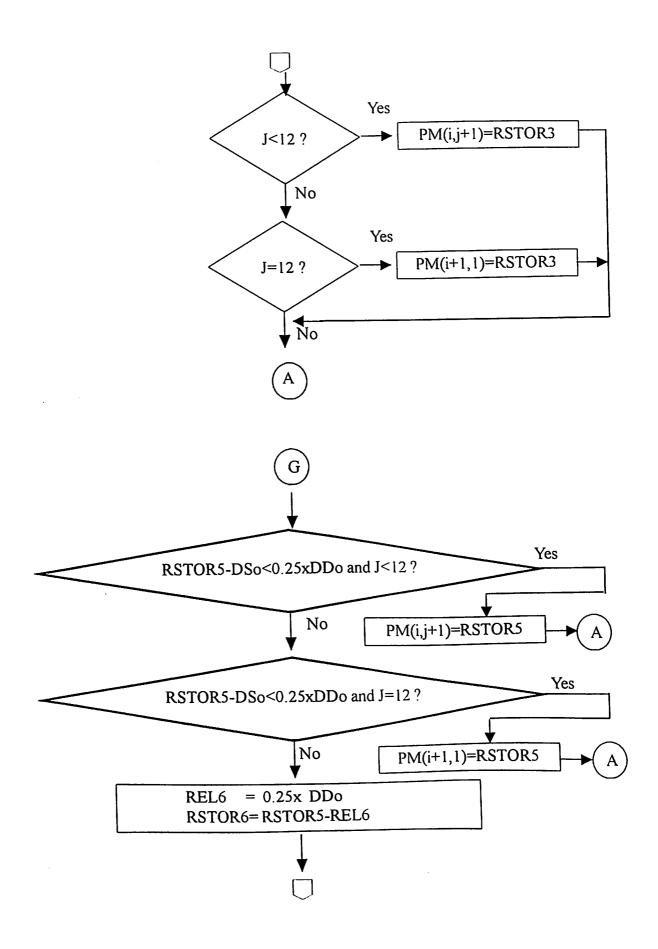
ļ

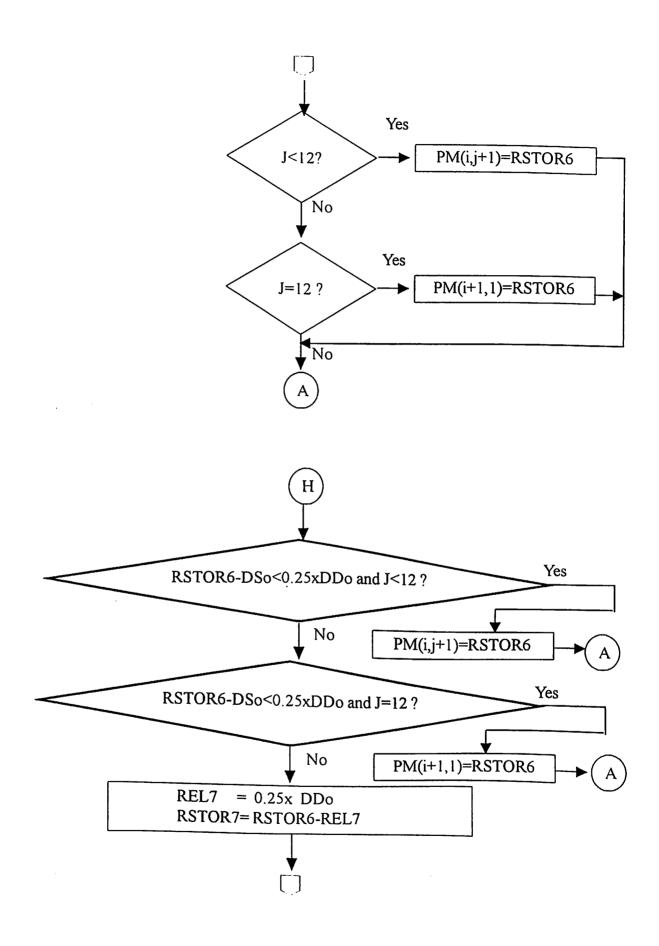
Ļ

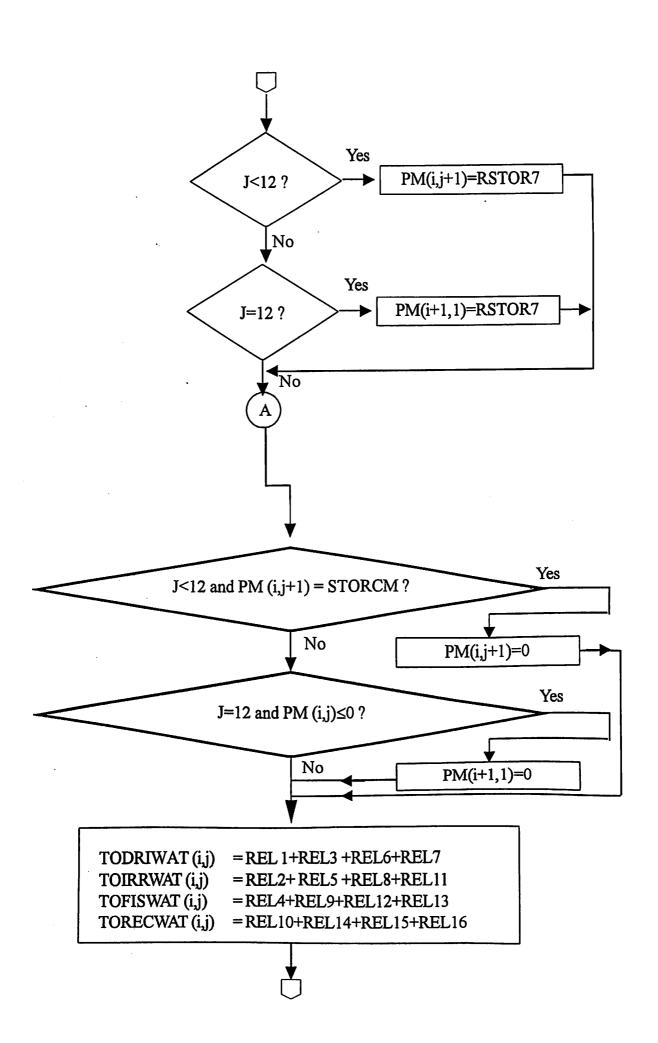


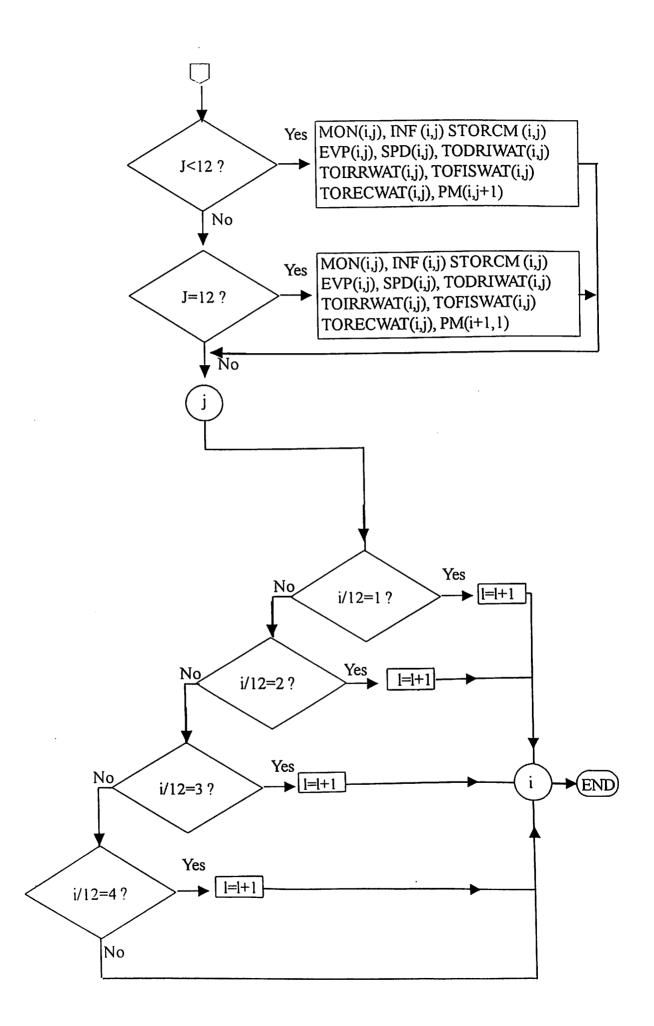
ł




ļ


ļ




ł

The water in the beginning of a month is assumed as the previous month's remaining storage. If the difference between the previous month's storage and evaporation is less than zero then previous month's storage is considered as zero, as otherwise the program may yield a negative value. Therefore the remaining storage for the previous month is taken as zero.

The current month storage is the difference between the sum of inflow and previous month's storage and evaporation from the reservoir. While checking, if it is found that the current month's storage is less than zero, then the current month's storage is considered as zero for the same reason as mentioned above. In such a case water is not available for any of the releases and the algorithm switches over to next month. Whereas if the current month's storage is more than zero then it is checked with the maximum capacity for opening of the shutters. If the storage is more than the specified capacity it is recommended to release the excess water as spillway discharge.

As a next step it is checked whether the difference between the current month's storage and sum of dead storage and 25 % of drinking water (the drinking water kept aside for emergency release, stored along with dead storage) is less than 25% of drinking water demand. After checking if it is found to be less, then once again it is checked whether the difference between current month's storage and dead storage is less than 25% of drinking water demand. If the water is found to be less, it releases 25% of drinking water and then the algorithm switches over to the next month. On the other hand if the water is found to be more then first release is given to satisfy 25% of drinking water demand. Hence the remaining storage (RSTOR1) at present is the difference between current month storage and the first release. According to the priority graph the second release is for irrigation requirement. Here again, the difference of first remaining storage (RSTOR1) and sum of dead storage and 25% of drinking water demand is checked with 25% of irrigation demand. If

released and the algorithm switches over to the next month. If it is the other case then second release of 25 % of irrigation demand is done. The same procedure is followed in the case of pisciculture and recreation demand.

So the subsequent releases from third till sixteenth are made for different purposes according to their priority assigned by the priority graph. Therefore, the total drinking water for a month is contributed by first, third, sixth and seventh releases. The irrigation is met by second, fifth, eighth and eleventh releases. For pisciculture it is the fourth, ninth, twelfth and thirteenth release and for recreation purpose it is tenth, fourteenth, fifteenth and sixteenth release. 100 % of the monthly demand for different objectives is met if this cycle is continued for whole of the month. Similarly, after continuing for twelve months in a year the algorithm switches over to next year as per the requirement.

The program is written in Visual Basic-6.0 and the entire analysis was carried out in a personal computer. Historical data of 35 years from 1964-1965 to 1998-1999 (Appendices II and III) were used to run the program. The results give the monthly releases and deficits of different demands.

Results & Discussion

RESULTS AND DISCUSSION

The problem of reservoir operation arises mainly because of scarcity of water and conflicts among purposes. A suitable operating policy is essential for the optimal utilisation of available surface water resources. In the present study, an attempt has been made to demonstrate the usefulness and applicability of simulation technique in solving water resources problems.

A simulation model was constructed including all the vital aspects pertaining to the system and excluding the trivial details. The behaviour of the model with changes in different parameters was studied and the inferences are presented in this chapter.

4.1 Water demands

The different demands of water considered for the study were

1.Drinking water

2.Irrigation

3. Pisciculture and

4. Recreation

The drinking water demand was taken as a constant value of 1.89 Mm³ per month and it accounts to a total of 22.68Mm³ for twelve months.

The irrigation demand varies according to the season and the crop. In the kole lands paddy is not cultivated from June to September due to water logging and other crops do not require water during this period, as there is enough precipitation. Therefore crop water requirement and hence irrigation demand during these months is zero

(Table 4). Irrigation demand from October till May varied according to the crop, stage of crop and precipitation received. The maximum irrigation demand was

observed in the month of March (Table 5). The total irrigation demand was assumed to be a constant for all years and it comes to 110.56 Mm³ (Table 5).

Pisciculture and recreation demands were also considered as constant throughout the year, with a demand of 0.2 Mm³ and 0.002 Mm³ per month respectively. This figures out to be 2.4 Mm³ and 0.024 Mm³ respectively per annum (Table5). A total water demand of 135.69 Mm³ was observed for a year.

4.2 Reservoir storage

The concept of continuity is used in the storage equation. The current month storage in the reservoir is the difference between the inflow into the system and the outflow from the system. The outflow includes the losses and the releases from the system. The storage for each month has been calculated and is presented in Table 6. The remaining storage for each month is given in column ten of the same table. It was also seen that in the monsoon months the initial storage comes to about 106 Mm³which is the cutoff capacity for the discharge of spill. From December till June the spill discharge is generally nil. The month of May is found to have the least storage and this makes the reservoir ready to receive the inflow during the next rainy season.

4.3 Development of a simulation model for a multipurpose reservoir

Peechi reservoir, built across Manali river in Thrissur district of Kerala is taken as the study project.

4.3.1 Formulation

The policies adopted in the formulation of reservoir rules are as follows 1. Drinking water demand was assumed as a constant of 1.89 Mm³ per month

- 2. Along with the dead storage of 0.63 Mm³, twenty five percent of the drinking water demand, which comes to 0.4725 Mm³, was kept aside at the beginning of every month. This additional storage was to cover the shortage in drinking water during months of acute deficiency.
- 3. The distribution of water for the different demands was done based on the priority levels obtained from the priority graphs. In general drinking water was given the highest priority with irrigation, pisciculture and recreation following one after another as shown in Table 7.
- 4. The quantity of water let out for irrigation depended on the demand, which in turn depended on the crop water requirement in each month.
- 5. The hatched eggs of fish were introduced into the reservoir when the rains commence and the inflow was high. Harvesting was done in the months of low inflow and high evaporation. The dead storage is sufficient for the fishes to grow.
- 6. The capacity limit for spillway discharge is 106 Mm³. The spillway shutters are opened when the water in the reservoir exceeds this limit.

4.3.2 The simulation model

The program was written in Visual Basic 6.0 (Appendix-V) and tested with historical data of 35 years. The model yielded values of water releases for the different demands. The model can be said to be sensitive as data for all the years could be fed and results obtained without any hindrance.

4.4 Testing of the model

The inputs of the model included the year, month, inflow, evaporation, storage, maximum capacity, previous month storage, seepage and other losses etc. The demand for different objectives was also needed. After one run, for a particular month, the model gave directions as to the number of releases that can be given for each demand and the volume of water for each release. In months with sufficient

Table.6 Reservoir simulation model results

INPUT CONSTANTS:

Dead storage (Mm3)	: 0.63	Seepage ar
Drinking water demand (Mm3)	: 1.89	Previous r
Pisciculture demand (Mm3)	: 0.2	Maximum ca
Recreation demand (Mm3)	: 0.002	

Seepage and other losses (Mm3)	: 0.35
Previous month storage (Mm3)	: 0.63
Maximum capacity for the opening of hutters (Mm3): 106

YEAR:1964- 1965

MONTH	INFL	EVP	SPILL	INIST	DRINK	IRRIG	PISCI	REC	REMST
JUN	21.436	0.234		21.482	1.89	0	0.2	0.002	19.39
JUL	50.83	0.042	0	69.828	1.89	0	0.2	0.002	67.736
AUG	28.36	0.0264	0	95.7196	1.89	0	0.2	0.002	93.6276
SEP	21.423	0.38	8.3206	106.	1.89	0	0.2	0.002	103.908
OCT	11.64	0.49	8.708	106.	1.89	2.5429	0.2	0.002	101.3651
NOV	10.46	0.5	4.9751	106.	1.89	5.7714	0.2	0.002	98.1366
DEC	4.32	0.63	0	101.4766	1.89	13.5286	0.2	0.002	85.856
JAN	5.68	0.585	0	90.601	1.89	1.2429	0.2	0.002	87.2661
EB	5.41	0.732	0	91.5941	1.89	31.3057	0.2	0.002	58.1964
1AR	2.36	0.846	0	59.3604	1.89	32.3329	0.2	0.002	24.9356
APR	1.42	0.923	0	25.0826	1.89	17.6496	0.1	0.0005	5.4424
APR 1AY	1.87	1.03	0	5.9324	1.89	0.3043	0.2	0.002	3.5361

INFL-Inflow (Mm3) EVP-Evaporation (Mm3) SPILL-Spillway discharge (Mm3) INIST-Initial storage (Mm3) DRINK- Drinking (Mm3) IRRIG-Irrigation (Mm3) REC-Recreation (Mm3) REMST-Remaining storage (Mm3) PISCI-Pisciculture (Mm3)

H L N O N	TNFT	EVP	SPILL	INIST	DRINK	IRRIG	PISCI	REC	REMST
	i 1							i	
	0.A	134	0	0.900	ω	0		00	3.808
	ט כ - -	1 (\sim	ω	0		00	6.577
		5 C 7 C 7 C		608	8	0		80.	3.516
AUG			. .		α	C		00	00.931
SEP	0.41	295	0	30.0V	0	с V С		ĉ	01.36
DCT	. 95	673	8623	יר	0	7 V 7 T 7 T			8 1366
NOV	с С С	723	12.6435	06	Ð				0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	.984	78.	0	00.98	ω.	3.52		$\frac{1}{2}$	
	L L	.06	0	.763	ω.	.2429		0.0	4.4.0
	1 250 2	0.8673	0	84.5634	1.89	31.3057	0.2	0.002	/ COL.IC
		522	С	.210	Ξ,	2.332		00.	4.785
MAK	070.		o c		~	1.766		0	.173
APR		C 7 .	יכ			 		0	.930
MAY	5.	.90	0	י ע					
 YEAR:19	966- 1967					 			
			с	1 H	DRINK	IRRIG	PISCI	REC	REMST
MONTH	TNLT	<u>ר</u> אד	4	: 1					
				4.661	8	0	•	•	22.5698
	100.4	r c - v -	o c	881	00	0	•	<u>.</u>	5.789
JUL	ი. ი	5,	5 0	05 0677	0		•	0	2.970
AUG	0.18	. 563.			, α		•	0	03.90
SEP	4.2	. 63	0.230/		• •	с 7 с	• •	0	01.36
OCT	19.56		τ.		 	5.012 5 7714		0.002	6.188
NOV	. 58	.547	0	1000 F01	0 C	• • • •	•	0	6.371
DEC	. 69	.54	0	1. 442 1. 442	•••	0,000 0,000 0,000	•	C	6.600
JAN	. 78	.87	0	.934	ο α	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	•	\sim	4.364
50 D	43	.92	0	.762	α.		•		997 0
) 7 7 7	463	0	.89	ω.	2.33	2	2	005.00 0002
	יים ר י	10	С	.129	œ.	1.766	•	D	775.
APR	C7.	r = 1 C	- c	2414	ω.	.152	0	0	.149
V d M	C 7177	70	S	H r)				

į

Contd. Table.6

YEAR:1967- 1968

MONTH	INFL	EVP	SPILL	INIST	DRINK	IRRIG	PISCI	REC	REMST
JUN	19.257	0.3462		19.71	1.89	0	0.2	0.002	17.618
JUL	56.258	0.164	0	73.362	1.89	0	0.2	0.002	71.27
AUG	37.458	0.246	2.132	106	1.89	0	0.2	0.002	103.908
SEP	12.354	0.563	9.349	106	1.89	0	0.2	0.002	103.908
OCT	10.258	0.542	7.274	106	1.89	2.5429	0.2	0.002	101.365
NOV	5.241	0.462	0	105.7941	1.89	5.7714	0.2	0.002	97.9307
DEC	6.2547	0.764	0	103.0714	1.89	13.5286	0.2	0.002	87.4508
JAN	4.257	0.9463	0	90.4115	1.89	1.2429	0.2	0.002	87.0767
FEB	2.3147	0.846	0	88.1954	1.89	31.3057	0.2	0.002	54.7977
MAR	0.2367	0.372	0	54.3124	1.89	32.3329	0.2	0.002	19.8875
APR	0.645	1.86	0	18.3225	1.89	11.7664	0.05	0	4.6161
MAY	1.47	1.9	0	3.8361	1.89	0.3043	0.2	0.002	1.4398
 EAR:19	 68- 1969								
	INFL	EVP	SPILL	INIST	DRINK	IRRIG	PISCI	REC	REMST
	48.321	0.139	0	49.2718	1.89	0	0.2	0.002	47.1798
JUN .	48.321	0.139	0 0	49.2718 69.9195	1.89 1.89	0	0.2	0.002	67.8275
JUN . JUL	23.354	0.2643	-				0.2 0.2	0.002 0.002	67.8275 88.6334
JUN JUL AUG	23.354 23.78	0.2643 0.5321	0	69.9195	1.89 1.89	0	0.2 0.2 0.2	0.002 0.002 0.002	67.8275 88.6334 101.4041
JUN . JUL AUG SEP	23.354 23.78 15.897	0.2643 0.5321 0.6843	0	69.9195 90.7254	1.89 1.89	0 0 0 2.5429	0.2 0.2 0.2 0.2	0.002 0.002 0.002 0.002	67.8275 88.6334 101.4041 101.3651
JUN . JUL AUG SEP OCT	23.354 23.78 15.897 13.56	0.2643 0.5321 0.6843 0.733	0 0 0	69.9195 90.7254 103.4961	1.89 1.89 1.89	0 0 2.5429 5.7714	0.2 0.2 0.2 0.2 0.2 0.2	0.002 0.002 0.002 0.002 0.002 0.002	67.8275 88.6334 101.4041 101.3651 98.1366
JUN JUL AUG SEP OCT NOV	23.354 23.78 15.897 13.56 10.78	0.2643 0.5321 0.6843 0.733 0.701	0 0 0 7.8811	69.9195 90.7254 103.4961 106	1.89 1.89 1.89 1.89	0 0 2.5429 5.7714 13.5286	0.2 0.2 0.2 0.2 0.2 0.2 0.2	0.002 0.002 0.002 0.002 0.002 0.002	67.8275 88.6334 101.4041 101.3651 98.1366 90.3794
JUN JUL AUG SEP OCT NOV DEC	23.354 23.78 15.897 13.56 10.78 18.1	0.2643 0.5321 0.6843 0.733 0.701 0.721	0 0 0 7.8811 5.0941	69.9195 90.7254 103.4961 106 106	1.89 1.89 1.89 1.89 1.89	0 0 2.5429 5.7714 13.5286 1.2429	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	0.002 0.002 0.002 0.002 0.002 0.002 0.002	67.8275 88.6334 101.4041 101.3651 98.1366 90.3794 87.7476
JUN JUL AUG SEP OCT NOV DEC JAN	23.354 23.78 15.897 13.56 10.78 18.1 1.987	0.2643 0.5321 0.6843 0.733 0.701 0.721 0.934	0 0 7.8811 5.0941 9.1656 0	69.9195 90.7254 103.4961 106 106 106	1.89 1.89 1.89 1.89 1.89 1.89	0 0 2.5429 5.7714 13.5286 1.2429 31.3057	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002	67.8275 88.6334 101.4041 101.3651 98.1366 90.3794 87.7476 54.185
JUN JUL AUG SEP OCT NOV DEC JAN FEB	23.354 23.78 15.897 13.56 10.78 18.1 1.987 1.5471	0.2643 0.5321 0.6843 0.733 0.701 0.721 0.934 1.362	0 0 7.8811 5.0941 9.1656 0 0	69.9195 90.7254 103.4961 106 106 106 91.0824	1.89 1.89 1.89 1.89 1.89 1.89 1.89	0 0 2.5429 5.7714 13.5286 1.2429	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	0.002 0.002 0.002 0.002 0.002 0.002 0.002	67.8275 88.6334 101.4041 101.3651 98.1366 90.3794 87.7476 54.185 20.2311
JUN JUL AUG SEP OCT NOV DEC JAN FEB MAR APR	23.354 23.78 15.897 13.56 10.78 18.1 1.987	0.2643 0.5321 0.6843 0.733 0.701 0.721 0.934	0 0 7.8811 5.0941 9.1656 0	69.9195 90.7254 103.4961 106 106 91.0824 87.5827	1.89 1.89 1.89 1.89 1.89 1.89 1.89 1.89	0 0 2.5429 5.7714 13.5286 1.2429 31.3057	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002	67.8275 88.6334 101.4041 101.3651 98.1366 90.3794 87.7476 54.185

		FVD	SPTLL	INIST	DRINK	IRRIG	PISCI	REC	REMST
UTNOM	4	>	{ 						1
		1 0 1 C	c	1.337	<u>∞</u>	0	-	0.002	25.2454
NUN	י) (י י וווי	$ \frac{1}{2} $		617	α	0		0	9.525
JUL	3.30	• •	5 0		ο α	• c		0	1.096
AUG	сл 	.34		00T.0	о с •	o c		C	03.90
SEP	с. 	.13	ດ		ο.	C S U		\sim	01 36
OCT	36	.95	5.97	<u></u>	Ω.	242			7700 7700 700 700
NON	-	.64	9	67	ω.	.7714		<u>,</u>	
	1000	, o	0	0.5.0	ω.	3.52		•	9.461
ר <u>ה</u> ר	י ג ע ע י			3.182	ω.	.242	•	•	9.847
		970 C	о с	95.0191	1.89	31.3057	.0.2	9	1.62
H H H	ก้	r (0 (•		0 503	ι u	2.332	•	0	8.098
MAR	.254		.	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1		ים ה ה ה ה		0	.517
APR	4	.01	0	7.4.4.6	• •)))))	•	,	344
MAY	.176	7	0	.344	0				
		L 1 1 1 1 1 1 1 1							
	1		1 6	1 1	NETNK	TRRIG	PISCI	REC	REMST
MONTH	INFL	EVP	מחדאמ	TOTNT					
		0 7 		8.639	ω.	0	•	0.002	16.5475
. NUL	יי הו	1 C C C C C) c	3.645	8	0	٠	<u> </u>	1.553
JUL	7.64	י ת אור י	5 0) [0	0	•	<u>.</u>	5.051
AUG		ງ ກູ	כ ^י כ	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	, α	0	•	0	5.411
SEP	3.14	τ. 	5 (ο •	542		0	8.148
ocT	8.365	0.643	(7	00/	 0 0 0	5.7714	0.2	0.002	8.136
NOV	∞ 	. 50	4. LLUD		ο α	3.52	•	0	4.61
EC	.41	90.	0			9010		0	6.333
JAN	.24	. 84	0	ν. σου σου	•••	・ 1 - 1 - 1 - 2 - 1 - 1 - 2 - 1 - 1	•	0	4.13
FEB	.01	.46	0	νυ. / νις	• •	7 C	•	0	9.332
MAR	4		0	3.757	ρ.	4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	, c	•	1701
יוחי			0	7.876	80	1.766	•	5 0	
155	?		1		5	ר ה ר	Ċ	-	0

ļ

74

Contd. Table.6

YEAR:1971- 1972

MONTH	INFL	EVP	SPILL	INIST	DRINK	IRRIG	PISCI	REC	REMST
JUN	17.789	0.356	0	17.8705	1.89	0	0.2	0.002	15.7785
JUL	75.456	0.623	0	90.2615	1.89	0	0.2	0.002	88.1695
AUG	37.248	0.164	18.9035	106	1.89	0	0.2	0.002	103.908
SEP	25.247	0.322	22.483	106	1.89	0	0.2	0.002	103.908
OCT	14.354	0.742	11.17	106	1.89	2.5429	0.2	0.002	101.3651
NOV	8.964	0.963	3.0161	106	1.89	5.7714	0.2	0.002	98.1366
DEC	6.147	0.843	0	103.0906		13.5286	0.2	0.002	87.47
JAN	3.148	1.06	0	89.208	1.89	1.2429	0.2	0.002	85.8731
FEB	4.251	1.09	0	88.6841	1.89	31.3057	0.2	0.002	55.2864
MAR	1.024	1.846	0	54.1144	1.89	32.3329	0.2	0.002	19.6896
APR	0.3657	1.94	0	17.7653	1.89	11.7664	0.05	0	4.0588
MAY	0.166	1.98	0	1.8948	0.945	0.0761	0	0	0.8738
EAR:19	72- 1973								
 ONTH	INFL	EVP	SPILL	INIST	DRINK	IRRIG	PISCI	REC	REMST
JUN	33.32	0.232	0	33.6118	1.89	0	0.2	0.002	31.5198
JUL	34.453	0.461	0	65.1618	1.89	0	0.2	0.002	63.0698
AUG	25.453	0.334	0	87.8388	1.89	0	0.2	0.002	85.7468
SEP	5.324	0.764	0	89.9568	1.89	0	0.2	0.002	87.8648
OCT	16.238	0.546	0	103.2068	1.89	2.5429	0.2	0.002	98.5719
NOV	13.458	0.589	5.0909	106.	1.89	5.7714	0.2	0.002	98.1366
DEC	7.786	0.84	0	104.7326	1.89	13.5286	0.2	0.002	89.112
JAN	7.258	0.94	0	95.08	1.89	1.2429	0.2	0.002	91.7451
	2.546	0.98	0	92.9611	1.89	31.3057	0.2	0.002	59.5634
FEB		1 26	0	59.0854	1.89	32.3329	0.2	0.002	24.6606
FEB MAR	1.232	1.36	-					0 0005	o
FEB MAR APR	1.232 0.154	1.30		23.0646	1.89	17.6496	0.1	0.0005	3.4244 0.7954

Contd. Table.6

YEAR:1973- 1974

MONTH	INFL	EVP	SPILL	INIST	DRINK	IRRIG	PISCI	REC	REMST
	 30.364	0.163	0	30.6464	1.89	0	0.2	0.002	28.5544
JUL	39.25	0.12	0	67.3344	1.89	0	0.2	0.002	65.2424
AUG	25.147	0.142	0	89.8974	1.89	0	0.2	0.002	87.8054
SEP	22.14	0.14	3.4554	106.	1.89	0	0.2	0.002	103.908
OCT	20.147	0.746	16.959	106.	1.89	2.5429	0.2	0.002	101.3651
NOV	11.147	0.834	5.3281	106.	1.89	5.7714	0.2	0.002	98.1366
DEC	10.258	0.946	1.0986	106.	1.89	13.5286	0.2	0.002	90.3794
JAN	4.124	0.98	0	93.1734	1.89	1.2429	0.2	0.002	89.8386
FEB	6.214	0.97	0	94.7326	1.89	31.3057	0.2	0.002	61.3349
MAR	1.365	1.4	0	60.9499	1.89	32.3329	0.2	0.002	26.525
APR	0.258	1.536	0	24.897	1.89	17.6496	0.1	0.0005	5.2569
MAY	0.0014	1.63	0	3.2783	1.89	0.2282	0.05	0	1.11
	 74- 1975								
MONTH	INFL	EVP	SPILL	INIST	DRINK	IRRIG	PISCI	REC	REMST
JUN	 32.256	0.146	0	32.87	1.89	0	0.2	0.002	30.778
JUL	39.247	0.346	0	69.329	1.89	0	0.2	0.002	67.237
AUG	15.14	0.542	0	81.485	1.89	0	0.2	0.002	79.393
SEP	9.247	0.646	0	87.644	1.89	0	0.2	0.002	85.552
	5.458	0.613	0	90.047	1.89	2.5429	0.2	0.002	85.4122
OCT		0.731	0	92.5852	1.89	5.7714	0.2	0.002	84.7218
OCT NOV	8.254				1.89	13.5286	0.2	0.002	74.2902
NOV	8.254 6.369		0	89.9108					
NOV DEC	6.369	0.83	0 0	89.9108 77.5202	1.89	1.2429	0.2	0.002	74.1853
NOV DEC JAN	6.369 4.54	0.83 0.96				1.2429 31.3057	0.2 0.2	0.002 0.002	74.1853 44.9426
NOV DEC JAN FEB	6.369 4.54 5.425	0.83 0.96 0.92	0	77.5202	1.89				
NOV DEC JAN	6.369 4.54	0.83 0.96	0 0	77.5202 78.3403	1.89 1.89	31.3057	0.2	0.002	44.9426

Contd. T YEAR:197	Table.6 175- 1976									
1 1	- 4 - 1 - 1	EVP	SPILL	TSINI	DRINK	IRRIG	PISCI	REC	REMST	I
	- 2				1			C	1.466	
	1	ų r	c	558	œ	0				
JUN	ກ	- -	. .	~	œ	0		00	0/2.0	
JUL	4.2	00	1	100. 100. 100.	0	C		00	03.90	
	8.36	4	067	~	0,0	. .		00	03.90	
		0 4	<i>LL</i>	\sim	Ω.				31 36	
SEF	. 1	, (о ч	\sim	ω.	.542		5		
oct	5.36	ν		y y	œ	.771		0.0	9.1.5 9	
NOV	4.1	. 56	n	יר	, α	3.52	•	8.	0.379	
	7.1	.64	3.294			0000		00.0	8.150	
TPN TPN	14	. 69	0	l.48		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 C	0.002	55.0569	
	α α	73	0	8.454	ъ.		•		9.496	
227			С	3.921	ω.	2.33	2	5	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
MAR	5.	- C	, c	8 213	ω,	1.766	0	Ð		
APR	0.0127	0.946	0 0		1.89	0.1521	•	0	.072	
					 					1
YEAR:19	10- TAIL						i	i C		
		EVP	SPILL	INIST	DRINK	IRRIG	PISCI	REC		
	4 1	- I		1 1 1	ļ	 		C	2.725	
	65 V	.23	0	4.817	ω.	5 (•	\sim	5.353	
	rν	14	0	8.445	°,	D	•	\sim	a 570	
JUL	Η 7 · C	 	C	0.662	ω.	0	•	<u> </u>	01000	
AUG	ۍ م	ド (つ (, c	6.064	ω.	0	•	2	1 · · · · · · · · · · · · · · · · · · ·	
SEP	.21	•	5 0	5 808 5	8	.542	•	<u>.</u>	L.L/3	
OCT	2.4	.26	5		ο α	771	•	<u>,</u>	5.998	
NON	3.354	0.316	0	0700.5/		13 5286	0.2	0.002	52.1128	
	.38	•	0	1.133	•••	0,000 0,000			2.100	
	5	54	0	5.435	Ω.		•	C	2.667	
NAD	 	α	0	6.064	œ.	1.30	•		4908	
FEB	- T-7) 0) 0	• c	5.597	°.	6.166	•	5 0	, 1 , 2 , 2	
MAR	.16	00	o c	2264	ъ.	0	0		- r 0 v 0 v 0 v	
APR	0.	<u></u> σ	5 0	2027	œ	0.3043	0.2	0.002	. 00 .	
MAY	.10	ი.			2	1				.
		 								77

YEAR: 197	17- 1978									ļ
HTNOM	INFL	EVP	SPILL	S I	DRINK	IRRIG	PISCI	REC	Σ 1	l
	1 0				ω	0		0.002	35.2451	
NUL	1 U C T	 		003	ω.	0			4.911	
JUL	ς	ט ת יו יו		325	00	0			4.233	
AUG		0 () (1 677	<u></u>	0		•	5.585	
SEP	4.15 15	0 () [810 X	0	.542			3.643	
ocT	3.56	20.	5 0			.771		•	6.903	
NON		0.6/3	- C	2101.FC	1.89	13.5286	0.2	0.002	2.661	
DEC	2.4	2.	5 (, α	2429		•	2.505	
JAN	.30	ω.	0 0		, α	1 205		•	9.944	
FEB	.14		5	7 T C . C) () () (•	5.829	
MAR	۳.		0		, c	1000.1	•	•	060	
APR	.647		0	٠.	л • •	оо/.т	Ś)) -	
MAY	.31		0	0	0	0				I
			 							ł
HTNOM		EVP	SPILL		DRINK	IRRIG	PISCI	REC	REMST	l
	. L						:	C	2,29	
NIT	55	.26	0	4.388	Ω.	5 0	•			
111	1 25	.13	0	03.0	8	0	•			
			0.53	0	8	0	•		03.20 00.00	
AUG	τι Γι Γι Οι	1 U 1 S	DC C	C	8	0	•		03.90	
SEP	רי רי	0 4 7 4 7	и 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	\sim	8	.542	•	•	01.36	
OCT	8.12	ব'। •		$\sim c$	8	.771	•	•	8.136	
NON	.365	<u>ດ</u>) (α	3.52	•	0	0.379	
DEC	13.147	0.49	4 U	00. 1537	68. F	1.2429	0.2	0.002	91.2026	
JAN	.14		5 0		ο α	1.305	•	<u> </u>	1.052	
FEB	. 25	<u>،</u> ف	5 0	4 . 4 7 . 4 7 . 7	ο α	2.332	•	۰.	6.89	
MAR	.36	۲.	- 0	1.J22 5 073	, œ	7.64	•	۰	.332	
APR	2	ω	5 0	- U - C - C	, α	0.304		<u>.</u>	.340	
MAY	.68	σ	0	D 1	2					I
		1 	 							78

Contd. Table.6

	0
9	œ
•	σ
U	H
Ă.	
Ď	1
æ	Ó
E	5
-	Ō
	H
d.	•••
ŭ	
'n	AR
ō	Ш
υ	×

YEAR:19	EAR:1979- 1980									1
HTNOM	INFL	EVP	SPILL	INIST	DRINK	IRRIG	PISCI	REC	REMST	ļ
	 0 20	46		0.848	¦ °°.	0	•	•	5	
	י י י	۳ -	о с	591	ω.	0	•		.499	
	L.36J	שית הרי		σ	ထ	0	•		.837	
906 GDD	0.L4 21	. u	36	06.	ထ	0	•	•	3.90	
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	4 • 6 F 7 - 7 - 7 7 - 7	י ר י ני י	0.132	90	<u></u>	.542	•	•	1.36	
UCT.	1919.01 1910.01	0.641	f 7281	106.	1.89	5.7714	0.2	0.002	.136	
	, , , , , , , , , , , , , , , , , , ,	- C	190	06	ω.	3.52	•	•	.379	
	4 T - 2	-α 1 4		1.27	ω.	.242	•	•	.942	
NIAL	, 4 , 7 , 7 , 7	50	o C	7.032	ω.	1.305	•	•	.634	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		י ם סי	o c	2	ω.	2.33	•	•	.197	
MAR	1070 1070	, u , c	o c	7.636	ω.	1.766	•	0	929	
AFK	200.		o c	9145	, u	.3043	•	0.002	518	
МАҮ	.314			r : -	, i		' I		1	l 1
YEAR: 19	80- 1981									1
HTNOM	INFL	EVP	SPILL		DRINK	IRRIG	PISCI	REC	REMST	l 1
				0.193	ω.	0	•	<u> </u>	8.101	
NOD		0 0 0 0 0 0	о с	6 962	8	0	•	<u>.</u>	4.870	
JUL	2 / / / J	0 U 0 F		~ ~	8	0	•	<u> </u>	1.865	
AUG	י ע י ט ט ע		ά		00	0	•	<u> </u>	03.90	
SEP	120.0		, 00 90.9	106	8	.542	•	٩,	01.36	
I DO	, 0 , 0 , 0	7 7 7 7	1 994		ω.	.771	•	٩,	8.136	
NOV	чс • • г	7 7 7 7	8.50	106	ω.	3.52	•	਼	0.379	
230	5.5	97C U)) •	92.0951	1.89	1.2429	0.2	0.002	88.7603	
NAU		rσ \ α		ω.	ω.	1.305	•	0.	5.469	
	- 1	000		.245	ω.	2.33	.2	<u>.</u>	9.820	
MAR		2 4	• c	<u>ი</u>	ω.	1.766	•	0	.224	
APR		ייר		1841	ω.	.304		0.002	.787	
		ρį								; 7
										70

Contd. T YEAR:198	Table.6 81- 1982						, 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
HTNOM	INFL	 ЕVР	SPILL	INIST	DRINK	IRRIG	PISCI	REC	REMST	1
		i c		9.440	6	0	•	•	7.34	
		- C - C - C	o c	5	00	0	•	•	9.46	
	4.002 0222	1.0	212.0	06.	8	0	•	•	03.90	
AUG ABD	ο 1 κ ο α 1 κ ο	10	35.5297	0	8	0	•	•	03.90	
	3 374	14	0.512	0	8.	.542	٠	•	01.36	
NOV	44.44	. 4	.0536		ω.	.771	•	•	8.136	
	7321	່. ເ		00.99	1.89	13.5286	0.2	0.002	85.3781	
1 DN	934	9	0	7.332	ω.	.242	•	•	3.997	
			0	4.55	8.	1.305	•	•	1.153	
	467	· œ	0	0.430	ω.	2.33	•	•	6.005	
				5.918	ω.	1.766	•	0	.211	
MAY	0.7645	0.81	0 0	8163	σ.	.076	0	0	.795	l
 YEAR:198	32- 1983	1 1 1 1 1 1 1 1 1	L L I I I I I I I I I I I I I I I I I I							1
HTNOM	INFL	EVP	SPILL	้ถึ	DRINK	IRRIG	PISCI	REC	REMST	1
		1 -		8.352	α	0	•	00.	6.260	
		+α • •) C	7.673	ω.	0	•	00.	5.581	
	F0.7	. ' c ' c	0 0	6.689	ω.	0	•	00.	4.59	
500 100 100	20.4 20.4	5	0.0	8.066	ω.	0	•	00.	5.974	
	1.36	.46	0	6.522	8.	.542	•	00.	1.887	
NOV	, . , .	0.321	0	103.0454	1.89	5.7714	0.2	0.002	95.182	
DEC	.462	.64	0	01.65	ω.	3.52	•	00.00	50.03 20.03	
NGT.	75	.73	0	9.703	œ.	.2429	•	00.	6.368 , 222	
55B	595	.84	0	7.771	°.	1.305	•	00.	4.373	
אסא מאמא	95	.92	0	0.058	ω.	2.33	•	.002	5.633 2223	
APR	390	.96	0	4.713	ω.	7.649	•	00.	ν. υ/υ	
MAY	0.8698	. 98	0	.612	8.	.304	•		12.	
				1 1 1 1 1 1 1 1	4 1 1 1 1 1 1 1					80

YEAR:198	33- 1984									ļ
HTNOM	INFL	EVP	SPILL	INIST	DRINK	IRRIG	PISCI	REC	REMST	!
	4 46		0	1.69.0	8	0		0.002	13.602	
.THT.	5.77	.16	0	m	ω.	0			6.77	
		00.	0	02.0	ω.	0			9.944	
0 0 0 0 0 0 0	31 144	0.172			1.89	0	0.2		03.908	
	 617	- 5 - 6 - 6	•	0	ω.	542			01.36	
TOO NOM	• œ	74	.15	-	<u>.</u>	771		•	8.136	
	0 0 0 0	ο - Γ		01.0	ω.	13.5286		•	5.438	
	7 C	, α		6.002	ω.	242		•	2.66	
NIC	1 U - U - U			4.184	ω.	.305		•	0.786	
а ц ц		20		1 753	00	.332		•	7.328	
MAR	ν. Τι	• •) C - 0 - 0 - 4		.76		0	.200	
APR	. 14	η.	5			1900		C	.083	
MAY	0.196	.94	0	.104	າ. ເ))) .	ļ
 YEAR: 198										ł
 MONTH	INFL	EVP	SPILL	INIST	DRINK	IRRIG	PISCI	REC	REMST	!
					8	0	•	<u> </u>	4.601	
NUC	0.3U	י ת י ה		426	8	0	•	٩,	3.334	
JUL		0 7 7 0 7 0		88.5891	ω.	0	•	•	6.4	
AUG	α. . α.	7 t 7 1	o, c	0.34	00	0	•	਼	8.256	
SEP	70. 70. 70.	л и ч с •	4 7 8 7		8	.542	•	<u>.</u>	01.36	
OCT	2.20	0 V V V		106.	ω.	.771	•	<u> </u>	8.136	
NON	ນ (ກູ	τς Ο 1 Ο 1		ן . קין	ω.	3.52	•	<u> </u>	8.5	
DEC	0 c	207		1.275	ω.	.242	•	۰.	7.94	
JAN	- τ - ι - α - ι	י ה - 0	о с	1.264	ω.	1.305	•	<u>.</u>	7.866	
FEB	റ്റ	o c		7.85		32.3329	0.2	0.002	.432	
MAR	00	2 0	о с	1.952	ω.	7.649	•	۰.	.312	
APR	0.23	1.00 101		3755	4	0	0	0	. 90	
MAY 		1 1		1						; 8

Contd. Table.6 vrvp.1083- 1084

Contd. T YEAR:198	Table.6 85- 1986			1 8 8 8 8 8 8 8 8						1
HTNOM	INFL	EVP	SPILL	INIST	DRINK	IRRIG	PISCI	REC	REMST	ļ
	1 C	i r		5.45	ω	0		<u> </u>	3.36	
	5 7 7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	マー マー	0 0	4.281	ω.	0		<u> </u>	2.1892	
	1111 102 0	יע יר י		02	ω.	0		<u>.</u>	00.17	
ט ק ק ק	- 1-	. 43	6.1002	.06.	8.	0		<u> </u>	03.908	
	۰ د ۲. ۵	. 4	10.453	0	ω.	.542		0	01.36	
NON	10.0 1986	64	0	05.757	ω.	.771		•	7.893	
	7.438	.53.	0	104.4507	1.89	13.5286	0.2	0.002	88.8301	
		83	0	8.655	ω.	.242		<u>с</u>	5.320	
	2 2 2	8.0	0	6.774	ω.	1.30	•		3.376	
U U U	1 1 1 1 1		0	4.66	ω.	2.33		•	0.242	
מכינ	272	1 C 5 0		9.60	ω.	1.76	•	0	. 900	
AFK May	с т Ф	0.914	00	.3961	ω.	.304	•	0.002	666.	
 YEAR:19	86- 1987			1 1 1 1 1 1 1 1						ļ
			SPTLL	INIST	DRINK	IRRIG	PISCI	REC	REMST	
U I NOM	4	> 1								ļ
NIT.	2.75	.24	0	5.1	ω.	0	0.2	0.002	13.066	
1111	0.616	.21	0	3.1	æ.	0	•	.00	I.028	
	, ν . α	113	0	9.015	ω.	0	•	00.	6.923	
ם הי ני	829	പറ	0	3.84	1.89		0.2	00.	1.74	
	7.86	22	0	9.033	°.	.542	•	. 00	4.398	
		28	0	6.33	ω.	.771	٠	. 00	8.471	
	00000		0	2.44	ω.	3.52	•	.00	6.820	
) 1 1 2 2 4 1) α) Γ	22.	0	8.537	ω.	1.2429	•	.00	5.202	
	56	11	C	0.052	ω.	1.30	•	.00	6.654	
	5 F	- α) C	9.82	ω.	2.332	•	00.	.398	
MAK	0.04	יי יי ע כ) c	1.406	4.	.883	•	0	.05	
AFR	0.3416 0 235			0205	ω.	.152	•	0	.928	
1910 									C L L C D T D J L L L L	. 8

JUN 10.1062 0.326 0 10.3586 1.89 0 JUL 18.2007 0.112 0 25.9963 1.89 0 SEP 9.955 0.467 0 10.3586 1.89 0 SEP 9.955 0.467 0 61.0043 1.89 0 OCT 13.335 0.264 0 61.0043 1.89 0 DEC 7.251 0.734 0 64.5891 1.89 1.8 DAN 9.214 0.646 0 49.4944 1.89 1.1 DAN 3.179 0.733 0 48.2655 1.4175 5. MAR 9.707 0.71 0 1 23.5148 1.89 1.1 APR 6.627 0.892 0 3.1327 1.89 1.1 1.89 1.1 MAR 9.707 0.71 0 0 3.1327 1.89 1.1 1.89 1.1 MAR 0.9707 0.11 0 0.1107954 1.4175 0 0	MONTH INF	Ţ	EVP	SPILL	INIST	DRINK	IRRIG	PISCI	REC	REMST
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			100	0	.358	ω.	0			8.2666
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			 1	- C	.996	ω.	0		0	3.904
9.955 0.4467 0 50.3753 1.89 9.955 0.2664 0 61.0043 1.89 9.1214 0.646 0 61.0043 1.89 9.1214 0.6464 0 61.0043 1.89 9.1214 0.6464 0 61.0043 1.89 9.114 0.723 0.714 0 49.4944 1.89 9.707 0.71 0.71 0 48.2655 1.89 9.707 0.71 0 10.7954 1.4175 9.707 0.892 0 3.1327 1.89 9.707 0.892 0 3.1327 1.89 9.707 0.892 0 3.1327 1.89 0.993 0.892 0 3.1327 1.89 1.89 0 100.7954 1.4175 1.99 0 3.1327 1.89 1.99 0 3.1327 1.89 1.99 0 0 3.1327 1.89 1.99 0 0 1.4175 1.89	0 1 1	200			3.329	8.	0		0	1.23
7.251 0.264 0 61.0043 1.89 9.214 0.646 0 64.5874 1.89 9.214 0.734 0 64.5874 1.89 9.214 0.734 0 64.5874 1.89 9.214 0.734 0 64.5874 1.89 9.2179 0.723 0 49.4944 1.89 9.707 0.71 0 48.2655 1.89 9.707 0.71 0 10.7954 1.4175 9.093 0.892 0 3.1327 1.89 9.179 0.892 0 0 10.7954 1.4175 0.93 0.892 0 0 10.7954 1.4175 0.93 0.892 0 0 3.1327 1.89 1.198 0 10.7954 1.4175 1.89 1.198 0 3.1327 1.89 1.4175 1.198 0 3.1327 1.89 1.4175 1.189 0 10.7954 1.4175 1.89 1.189 0 <td>n - C</td> <td>ы с</td> <td>+ V + V + V</td> <td></td> <td>0.375</td> <td>ω.</td> <td>0</td> <td></td> <td>0</td> <td>8.283</td>	n - C	ы с	+ V + V + V		0.375	ω.	0		0	8.283
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2 C	0 U 7 C •	• c	1.004	ω.	.542	0.2	0.002	6.369
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ם ו) -) -	. 4 4 7 4) C	4.587	8	.771	•	0	6.72
3.416 0.842 0 49.4944 1.89 3.179 0.723 0 48.2655 1.89 9.707 0.711 0 10.7954 1.4175 9.707 0.711 0 23.5148 1.89 9.707 0.711 0 10.7954 1.4175 9.707 0.892 0 81.2655 1.89 9.707 0.892 0 81.4175 1.89 9.705 0.892 0 3.1327 1.89 0.93 0.892 0 3.1327 1.89 1.1988-1989 1.89 1.89 1.89 1.1988-1989 1.89 1.89 1.89 1.1988-1989 1.81 1.89 1.89 1.1988-1989 1.81 1.89 1.89 2.192 0.321 0.31.0305 1.89 39.752 0.021 0.31.0305 1.89 27.859 0.164 0 31.0305 1.89 27.187 0.164 0 31.0305 1.89 2.192 0.315 0.	n r	чu	" ") C	2.891	ω.	13.5286	•	0	7.270
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	· ·	n r) / / 0		9.494	8	.242		0	6.15
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-	י ר ס ר י		и 2	α.	1.30	•		4.867
9.707 0.71 0.7954 1.4175 6.627 0.892 0 3.1327 1.89 0.93 0.892 0 3.1327 1.89 TH INFL EVP SPILL INIST DRINK TH INFL EVP SPILL INIST DRINK 30.661 0.321 0 31.0305 1.89 30.661 0.321 0 31.0305 1.89 30.661 0.321 0 31.0305 1.89 30.661 0.321 0 31.0305 1.89 27.859 0.164 0 31.0305 1.89 39.752 0.021 0 31.0305 1.89 39.752 0.021 0 93.5725 1.89 13.1847 0.315 10.4277 106 1.89 13.1847 0.315 10.4277 106 1.89 2.192 0.821 0.661 0.82.4261 1.89 2.192 0.81 0 99.1586 1.89 2.1646 0.81 0	n (~ (7 1	o c	2.5.0 2 514	00	6.166	0	0	.408
6.627 0.892 0 3.1327 1.89 r:1988-1989 0.892 0 3.1327 1.89 TH INFL EVP SPILL INIST DRINK TH INFL EVP SPILL INIST DRINK 30.661 0.321 0 31.0305 1.89 27.859 0.164 0 31.0305 1.89 39.752 0.021 0 31.0305 1.89 27.859 0.164 0 31.0305 1.89 39.752 0.021 0 31.0305 1.89 39.752 0.021 0 31.66 1.89 39.752 0.021 0 1.89 1.89 39.752 1.66 1.89 1.89 1.89 39.752 0.021 0.315 10.4277 106 1.89 13.1847 0.315 10.4277 106 1.89 1.89 2.192 0.82 0.81 106 1.89 1.89 2.192 0.56 0.82.4261 1.89 1.89 </td <td>י ת י</td> <td>D (</td> <td>. (</td> <td>5 0</td> <td>100 100 100 100</td> <td>717</td> <td>8832</td> <td></td> <td>0</td> <td>.444</td>	י ת י	D (. (5 0	100 100 100 100	717	8832		0	.444
0.93 0.892 0 3.1327 1.89 TH INFL EVP SPILL INIST DRINK TH INFL EVP SPILL INIST DRINK 30.661 0.321 0 31.0305 1.89 39.752 0.021 0 31.0305 1.89 39.752 0.021 0 31.0305 1.89 13.1847 0.315 10.4277 106 1.89 13.1847 0.315 10.4277 106 1.89 13.1847 0.315 10.4277 106 1.89 2.192 0.82 0.01 26.8981 106 1.89 2.192 0.82 0.01 26.8981 106 1.89 2.192 0.82 0.84.975 1.89 1.89 2.347 0.566 0 84.975 1.89 1.646 0.51 0 84.975 1.89 1.646 0.51 0 84.975 1.89 1.646 0.81 0 82.4684 1.89	9	\sim	α	D	0.190) () [) [) C	- c	040
::1988- 1989THINFLEVPSPILLINISTDRINKTHINFLEVPSPILLINISTDRINK 30.661 0.321 0 31.0305 1.89 27.859 0.164 0 31.0305 1.89 27.859 0.164 0 31.0305 1.89 27.859 0.021 0 93.5725 1.89 27.872 0.021 0 93.5725 1.89 41.3803 0.001 26.8981 106 1.89 41.3803 0.001 26.8981 106 1.89 8.703 0.53 3.1881 106 1.89 8.703 0.53 3.1881 106 1.89 2.192 0.82 0 84.975 1.89 2.192 0.82 0 84.975 1.89 2.192 0.82 0 84.975 1.89 2.192 0.81 0 82.4261 1.89 7.6 0.81 0 0.81 0.81 $0.51.4684$ 7.6 0.81 0.87 0.87 0.92 0.91106 0.545 0.92 0.92 0.921106 1.89	.0		6 6	0	•	Ω.	2CT.	? ;		5 r 5 •
TH INFL EVP SPILL INIST DRINK 30.661 0.321 0 31.0305 1.89 30.661 0.321 0 31.0305 1.89 27.859 0.164 0 31.0305 1.89 27.859 0.164 0 93.5725 1.89 39.752 0.001 26.8981 106 1.89 41.3803 0.001 26.8981 106 1.89 13.1847 0.315 10.4277 106 1.89 13.1847 0.315 10.4277 106 1.89 2.192 0.87 0.315 10.4277 106 1.89 2.192 0.82 0.81 106 1.89 2.192 0.82 0.84.975 1.89 2.192 0.82 0 84.975 1.89 2.347 0.56 0 82.4261 1.89 2.347 0.567 0 82.4261 1.89 1.646 0.51 0 82.4261 1.89 1.646 0.81 0 0.82 1.89 1.646 0.81 0 0.19 1.89 0.545 0.82 0.92 0.92 0.92	1988-	68								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	NI H		1 >	I 🕰	IN	DRINK	IRRIG	PISCI	REC	REMST
30.661 0.521 0 0.221 0 335725 1.89 0 27.859 0.164 0 93.5725 1.89 0 41.3803 0.001 26.8981 106 1.89 0 41.3803 0.001 26.8981 106 1.89 0 13.1847 0.315 10.4277 106 1.89 0 13.1847 0.315 10.4277 106 1.89 2 2.192 0.82 $0.93.1881$ 106 1.89 2 2.192 0.53 3.1881 106 1.89 1 2.192 0.82 0 84.975 1.89 1 2.347 0.56 0 84.975 1.89 1 2.347 0.51 0 82.4261 1.89 3 7.6 0.81 0 55.4684 1.89 3 0.287 0.87 0 55.4684 1.89 3 0.545 0.92 0 5.6791 1.89 0					1 030	8	0	•	<u> </u>	8.938
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ມີມີ ເ	0 1 0 0	2 r 7 r		с 2 2 2 2 2 3 2 3 2 3 3 2 3 3 3 3 3 3 3) œ		•	<u> </u>	4.191
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21.	ດເ ນ	0 0 	5 0	0.4.0 2 2 7 7 2	, α		0.2	0.002	91.4805
41.3803 0.001 20.8331 100 1.00 1.00 13.1847 0.315 10.4277 106 1.89 2 8.703 0.53 3.1881 106 1.89 2 2.192 0.82 0 99.1586 1.89 1 2.192 0.53 3.1881 106 1.89 2 2.347 0.56 0 84.975 1.89 1 2.347 0.56 0 84.975 1.89 3 1.646 0.51 0 82.4261 1.89 3 7.6 0.81 0 55.4684 1.89 3 0.287 0.87 0 20.1106 1.89 3 0.545 0.92 0 5.6791 1.89 0	39.	297	20.		3 · · · · ·	, α) C		<u> </u>	03.90
13.1847 0.315 $10.42/7$ 106 1.03 8.703 0.53 3.1881 106 1.89 5 2.192 0.53 3.1881 106 1.89 5 2.192 0.82 0 99.1586 1.89 1 2.347 0.56 0 84.975 1.89 1 2.347 0.51 0 84.975 1.89 3 1.646 0.511 0 82.4261 1.89 3 7.6 0.81 0 82.4261 1.89 3 7.6 0.81 0 55.4684 1.89 3 0.287 0.87 0 5.6791 1.89 0	41.	380	00.	6.848 0.873	> 0		с Д 2	•	୍	01.36
8.703 0.53 3.1881 106 1.03 2.192 0.82 0 99.1586 1.89 1 2.347 0.56 0 84.975 1.89 1 2.347 0.56 0 84.975 1.89 1 1.646 0.51 0 82.4261 1.89 3 7.6 0.81 0 82.4261 1.89 3 7.6 0.81 0 82.4261 1.89 3 0.287 0.81 0 55.4684 1.89 3 0.287 0.87 0 5.6791 1.89 0	13.	184	.31	0.427	D (•••	127.	•		8.1366
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8.7	0	ഹ	.188	0 0 1 0 1 0	•••		•		3 538
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.1	σ	æ.	0	9.158	ρ.	20.0	•	\sim	1 640
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ۍ . د	4	ഹ	0	4.97	ω.	.2429	•		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ש (ייר	• •	ഹ	0	2.426	ω.	1.305	•	0.	9.02
0.287 0.87 0 20.1106 1.89 1 0.287 0.87 0 5.6791 1.89 0 0.545 0.92 0 5.6791 1.89 0	9 9 - 1	tr i)α		5.468	ω.	32.3329	•	<u> </u>	1.043
	D (- (<u>ر</u>	ς α	- C	0.110	ω.	1.766	•	0	.404
	. v . v		o c) C	6791	ω.	.304	•	0.002	.282
	с. О		ות							

.

Contd. Table.6 vrvp.1007_ 1988

YEAR:1989	39- TARO									ļ
HTNOM	INFL	EVP	SPILL	INIST	DRINK	IRRIG	PISCI	REC	REMST	1
					œ	0			9.84	
NDC	0 T - 7 0		o c		8	0			8.651	
JUL	ν. Γ.		01		0 00	0			03.90	
AUG	1.32			~ ~	000	0			03.90	
SEP	1.75 	η.	9 F 0 .	~ ~	, α	542			01.36	
ocT	7.73	•	60T.CT	פיס	ο	171			8.136	
NON	7.109	0.03	τ Λ	100 7546	68 T	13.5286	0.2	0.002	87.134	
DEC	.46	•	5 0		ο α	2429			4.996	
JAN	.34	ρ	5 0		, u	1 305	•		1.64	
FEB	. 23	•	5 0	• • •					8.595	
MAR	ი ი ი	ω.	5 0	0 V V V V	, .	1 766			.861	
APR	. 25	ი	Э	100.1) / / / / / / / / / / / / / / / / / / /	•	0 002	239	
MAY	.92	•	0	. 636	~ 1	50°.	• •)) 	!
 YEAR: 199	90- 1991	L L L L L L L L L								1
HTNOM	INFL	EVP	SPILL	INIST	DRINK	IRRIG	PISCI	REC	REMST	l
	 			0 7	¦α	c	•	•	926	
JUN .	7.49	.30	0	0 U U		, c	,		.177	
JUL	58.834	0.141	0	0 7 7 7 7 7	Ч. Со. г		4.0	0.002	1.223	
AUG	9.72	.23	0	3. <u>3</u> 1	ρ.α		•	•	1.65	
SEP	5	.64		3./4/	ρ.		•	•	1 365	
001		ື.	6.8023	ം	ю. •	140.	•	•	1366	
NON		<u>е</u>	.395	.06.	8.0	.//T4	•	•	750	
	0	. 65	0	00.3	Ξ.	20.5	•	•	1 C C C C	
	1 0 1 0	73	0	6.506	œ.	.2429	•	•		
NAU	5,0) (5.342	ω.	1.305	•	•	. 44	
FEB	-11	7" (D (4 736	ω.	2.33	•	•	.311	
MAR	0	0 5			ω.	7.649	•	•	497	
APR	09	4 V	5 0				0	0	769	
MAY	46	84	0	. / 02						ļ
L 1 1 1 1 1			 							84

Contd. Table.6

	INFL	EVP	SPILL	INIST	DRINK	IRRIG	PISCI	REC	REMST
	1 0				¦α		•	0	6.975
NUL		γ (5 0	b r	, α	o c		0	9.188
JUL	4.69	.04	1 1		•••	o c			03,90
AUG	2.59	Ч.	س	0	ρ.	5 (-		
SEP	<u>ہ</u>	.46	5	0	°.				
		с.	.847	0	ω.	.542			
	907	4	.492	0	8	.771		<u>-</u>	9.1.50
		۲ م م	0.3046	106.	1.89	13.5286	0.2	0.002	90.3794
) < 1 0	 	2.373	00	.242	•	•	9.038
AN			o c		00	1.305	•		8.089
FEB		200			00	2.33	•	0	8.89
MAR	5	ν. ν.	5 0	240.0	, α	3 532		0	.511
APR	•	ი.	Э	0.10	, .				664
MAY	0.4942	<u>о</u> .	0	. 685	ן ה				• > •
	92- 1993	L 1 1 1 1 1 1 1 1 1							
	INFL		SPILL	INIST	DRINK	IRRIG	PISCI	REC	REMST
				 	1 00	0	•	۰.	1.539
· NDC	3.1/	D (N 1	5 0	3700.LL	α	C	•	<u>,</u>	5.180
JUL	6.20	•		1.2.4	, α) C	•	0	03.90
DUG	1.58		22.0	> (, o			0	03.90
БР	5.35	.21	0/.7	D (•••	с г д	•	0	01.36
OCT	20.356		14	106.	н. ач	07#0.7 V L L L L	4.0 4.0	0.002	1366
νo	8.81	•	3.61	06. 	ο α		•		0.124
EC C	<u>ە</u>	.73	0	05.7	ρ.		•	\sim	7 694
AN	10	.84	0	1.029		. 2427	•	. c	
	с С	5	0	0.912	æ.	ςης.Τ	•		r
) [94	0	ω	ω.	2.33	•	.002	4.031
L L) (σ	C	5.400	ω,	7.649	•		./60
AFK	ń T	•	, ,		a	304		0	.628

Contd. Table.6

YEAR:1993- 1994

....

MONTH	INFL	EVP	SPILL	INIST	DRINK	IRRIG	PISCI	REC	REMST
JUN	9.389	0.462	0	13.2059	1.89	0	0.2	0.002	11.1139
JUL	39.314	0.143	0	49.9349	1.89	0	0.2	0.002	47.8429
AUG	28.952	0.231	0	76.2139	1.89	0	0.2	0.002	74.1219
SEP	6.341	0.53	0	79.5829	1.89	: 0	0.2	0.002	77.4909
OCT		0.34	0	96.1559	1.89	2.5429	0.2	0.002	91.5211
NOV	8.957	0.563	0	99.5651	1.89	5.7714	0.2	0.002	91.7017
DEC	4.186	0.734	0	94.8037	1.89	13.5286	0.2	0.002	79.1831
JAN	3.104	0.834	0	81.1031	1.89	1.2429	0.2	0.002	77.7682
FEB	2.584	0.721	0	79.2812	1.89	31.3057	0.2	0.002	45.8835
MAR	3.239	0.834	0	47.9385	1.89	32.3329	0.2	0.002	13.5137
APR	2.11	0.92	0	14.3537	1.89	11.7664	0.05	0	0.6472
MAY	0.9852	1.34	0	0	0	0	0	0	0
EAR:19	 94- 1995			· · · · · · · · · · · · · · · · · · ·					
EAR: 19 MONTH	94- 1995 INFL	 EVP	SPILL	INIST	DRINK	IRRIG	PISCI	REC	REMST
 MONTH	INFL				DRINK 1.89	IRRIG 0	PISCI 0.2	REC 0.002	REMST 22.406
MONTH JUN	INFL 25.112	0.264	 SPILL 0 0	INIST 24.498 94.834				0.002 0.002	22.406 92.742
MONTH JUN JUL	INFL 25.112 72.879	0.264 0.101	 0 0	24.498	1.89	0	0.2	0.002	22.406 92.742 103.908
MONTH JUN JUL AUG	INFL 25.112 72.879 32.6507	0.264 0.101 0.193	0 0 18.8497	24.498 94.834	1.89 1.89 1.89	0 0	0.2 0.2	0.002 0.002	22.406 92.742
MONTH JUN JUL AUG SEP	INFL 25.112 72.879 32.6507 21.9324	0.264 0.101 0.193 0.34	0 0 18.8497 19.1504	24.498 94.834 106.	1.89 1.89 1.89 1.89	0 0 0 0	0.2 0.2 0.2 0.2 0.2 0.2	0.002 0.002 0.002	22.406 92.742 103.908 103.908
MONTH JUN JUL AUG SEP OCT	INFL 25.112 72.879 32.6507 21.9324 12.4	0.264 0.101 0.193 0.34 0.48	0 0 18.8497 19.1504 9.478	24.498 94.834 106. 106.	1.89 1.89 1.89 1.89 1.89	0 0 0 0 0	0.2 0.2 0.2 0.2 0.2	0.002 0.002 0.002 0.002 0.002	22.406 92.742 103.908 103.908
MONTH JUN JUL AUG SEP OCT NOV	INFL 25.112 72.879 32.6507 21.9324 12.4 9.8667	0.264 0.101 0.193 0.34 0.48 0.56	0 0 18.8497 19.1504 9.478 4.3218	24.498 94.834 106. 106. 106.	1.89 1.89 1.89 1.89 1.89 1.89	0 0 0 0 2.5429	0.2 0.2 0.2 0.2 0.2 0.2	0.002 0.002 0.002 0.002 0.002 0.002	22.406 92.742 103.908 103.908 101.3651
MONTH JUN JUL AUG SEP OCT NOV DEC	INFL 25.112 72.879 32.6507 21.9324 12.4 9.8667 4.8169	0.264 0.101 0.193 0.34 0.48 0.56 0.64	0 0 18.8497 19.1504 9.478	24.498 94.834 106. 106. 106. 106. 106. 101.9635	1.89 1.89 1.89 1.89 1.89 1.89 1.89	0 0 0 0 2.5429 5.7714	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	0.002 0.002 0.002 0.002 0.002 0.002 0.002	22.406 92.742 103.908 103.908 101.3651 98.1366
MONTH JUN JUL AUG SEP OCT NOV DEC JAN	INFL 25.112 72.879 32.6507 21.9324 12.4 9.8667 4.8169 4.067	0.264 0.101 0.193 0.34 0.48 0.56 0.64 0.62	0 0 18.8497 19.1504 9.478 4.3218 0 0	24.498 94.834 106. 106. 106. 106. 101.9635 89.4399	1.89 1.89 1.89 1.89 1.89 1.89 1.89 1.89	0 0 0 2.5429 5.7714 13.5286	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002	22.406 92.742 103.908 103.908 101.3651 98.1366 86.3429
MONTH JUN JUL AUG SEP OCT NOV DEC JAN FEB	INFL 25.112 72.879 32.6507 21.9324 12.4 9.8667 4.8169 4.067 3.503	0.264 0.101 0.193 0.34 0.48 0.56 0.64 0.62 0.534	0 0 18.8497 19.1504 9.478 4.3218 0 0 0	24.498 94.834 106. 106. 106. 106. 101.9635 89.4399 88.724	1.89 1.89 1.89 1.89 1.89 1.89 1.89 1.89	0 0 0 2.5429 5.7714 13.5286 1.2429	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002	22.406 92.742 103.908 103.908 101.365 98.1366 86.3429 86.105
MONTH JUN JUL AUG SEP OCT NOV DEC JAN	INFL 25.112 72.879 32.6507 21.9324 12.4 9.8667 4.8169 4.067	0.264 0.101 0.193 0.34 0.48 0.56 0.64 0.62	0 0 18.8497 19.1504 9.478 4.3218 0 0	24.498 94.834 106. 106. 106. 106. 101.9635 89.4399	1.89 1.89 1.89 1.89 1.89 1.89 1.89 1.89	0 0 0 2.5429 5.7714 13.5286 1.2429 31.3057	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002	22.406 92.742 103.908 103.908 101.3651 98.1366 86.3429 86.105 55.3263

Contd. Table.6

..-

YEAR: 1995- 1996

MONTH	INFL	EVP	SPILL	INIST	DRINK	IRRIG	PISCI	REC	REMST
 JUN	11.565	0.462	0	17.143	1.89	0	0.2	0.002	15.051
JUL	41.3266		0	55.7846	1.89	0	0.2	0.002	53.6926
AUG	26.5495	0.394	0	79,4981	1.89	0	0.2	0.002	77.4061
SEP	26.328	0.321	Ö	103.0631	1.89	0	0.2	0.002	100.9711
OCT	68.3664	0.101	62.8865	106	1.89	2.5429	0.2	0.002	101.3651
NOV	7.4385	0.4963	1.9573	106	1.89	5.7714	0.2	0.002	98.1366
DEC	10.4801	0.421	1.8457	106	1.89	13.5286	0.2	0.002	90.3794
JAN	3.51	0.643	0	92.8964	1.89	1.2429	0.2	0.002	89.5616
FEB	7.55	0.531	0	96.2306	1.89	31.3057	0.2	0.002	62.8329
MAR	5.05	0.589	0	66.9439	1.89	32.3329	0.2	0.002	32.519
APR	1.215	0.734	0	32.65	1.89	23.5329	0.2	0.002	7.0251
MAY	4.4712	0.62	0	10.5263	1.89	0.3043	0.2	0.002	8.1301
YEAR:19	96- 1997								
MONTH	INFL	EVP	SPILL	INIST	DRINK	IRRIG	PISCI	REC	REMST
JUN	4.5816	0.643	0	11.7 <u>1</u> 87	1.89	0	0.2	0.002	9.6267
JUL	23.035	0.342	0	31.9697	1.89	0	0.2	0.002	29.8777
AUG	19.44	0.531	0	48.4367	1.89	0	0.2	0.002	46.3447
SEP	27.715	0.34	0.	73.3697	1.89	0	0.2	0.002	71.2777
OCT	23.177	0.31	0	93.7947	1.89	2.5429	0.2	0.002	89.1598
NOV	4.8283	0.53	0	93.1081	1.89	5.7714	0.2	0.002	85.2447
DEC	6.118	0.51	0	90.5027	1.89	13.5286	0.2	0.002	74.8821
JAN	4.504	0.64	0	78.3961	1.89	1.2429	0.2	0.002	75.0612
	3.55	0.72	0	77.5412	1.89	31.3057	0.2	0.002	44.1435
		0.53	0	49.1955	1.89	32.3329	0.2	0.002	14.7707
FEB	5 932					11 7664	0.05	0	5.0205
FEB MAR APR	5.932 4.8963	0.59	0	18.727	1.89	11.7664	0.05	0	2.2132

										ļ
MONTH	INFL	EVP	SPILL	INIST	DRINK	IRRIG	PISCI	REC	REMST	ļ
	1 1 1	i r		862	0	0		0	770	
	100.0	0.026		.41	8	0		0	3.31	
		•		99.336	1.89	0	0.2	0.002	97.244	
AUG		7 7 7			00	0		.0	8.18	
SEP	α α	D: •			, α	542		0	01.36	
OCT	0.264	U.43	0.00		, α	5 7714		0	8.13	
NOV	4.77	4' I	5.		. 0	- LC			8.764	
DEC	.178	<u>،</u>	5	14.00	•••				1.312	
JAN	.752	<u>ں</u>	0		ρ.	7477 777 777				
FEB	.595	.73	0	2.824	Ω.	CU2.				
ad M	926	.61	0	5.415	œ.	.33		<u>ر</u>	0.52.0	
		43	0	5.499	ω.	.532		Ч.	. 874	
AFN	0 1 0 0 1 0	· σ		.4504	ω.	304		Ч.	.054	
MAY		•			i	į				ł
 YEAR:199	98- 1999			 						ł
HTNOM	INFL	EVP	SPILL	INIST	DRINK	IRRIG	PISCI	REC	REMST	ļ
				9.47	ω,	0	•	۰.	38	
. NUL	001.0 01.0	0 () f	o c	7 128	00	0	•	<u> </u>	.036	
JUL	cc2.0		007	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ο α			°.	3.90	
AUG	7.454	T 0 -	. 1400		•α	, c		0	3.90	
SEP	7.29	.31	1. 1. 1. 1. 1.	D 0	ο •	542		୍	1.36	
OCT	5.721	0.26	3.ULY	.00T		6177 P	0.2	0.002	98.1366	
NOV	0.07	. 64	.45U		, o	• • • • •		C	.379	
DEC	3.54	ო.	.964	06. 010	• •	0400	•		014	
JAN	.266	94	0	242.9	• •	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	•	\sim	171	
FEB	.96	5	0		ω.	ν. Γ. τ	•	, c		
A A A	5.54	.84	0	6.833	ω.	2.332	•	<u>,</u>		
	200	84	0	6.448	ω.	3.532		<u>,</u>	. 823	
AFR Mdv	4 251 120	0.941	0	3.783	÷.	.304		•	.387	
		- i			 	, [[] [] [] []		L 	 	88

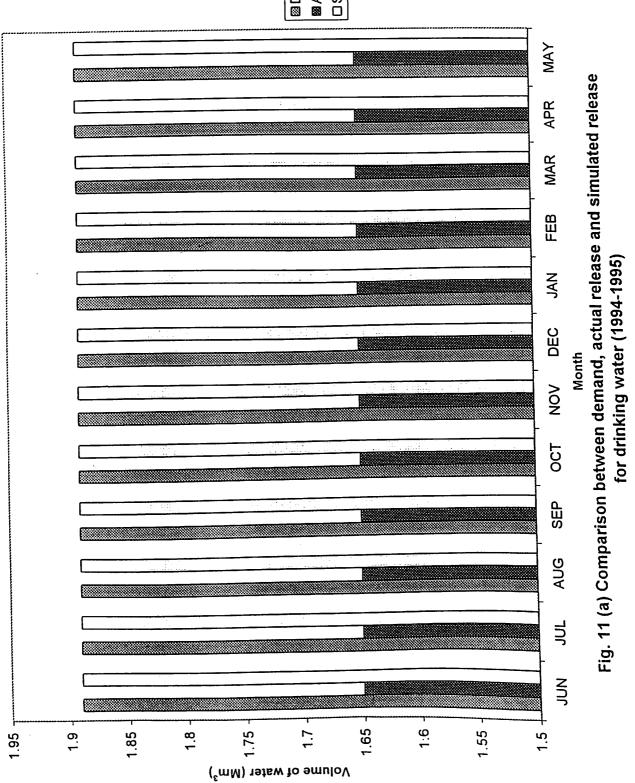
Contd. Table.6 vrar.1997- 1998

i

Demand	Slope	Priority level
Drinking	0.16	1
Irrigation	0.12	2
Drinking	0.08	3
Pisciculture	0.08	4
Irrigation	0.06	5
Drinking	0.05	6
Drinking	0.04	7
Irrigation	0.04	8
Pisciculture	0.04	9
Recreation	0.04	10
Irrigation	0.03	11
Pisciculture	0.026	12
Pisciculture	0.02	13
Recreation	0.02	14
Recreation	0.013	15
Recreation	0.01	16

4

 Table.7 Priority levels of different water demands.


i

remaining storage and inflow, the demands were satisfied completely. In months of deficiency releases were made till only the dead storage remained. The twenty five percent of drinking water demand, which was kept aside at the beginning for emergencies was released when no more water was available for any of the releases. When the decisions were made for one month the program switches over to the next month. The results obtained after the program was run with historical input data of 35 years are presented in Table 6.

4.5 Analysis of the results

The simulation model was designed for monthly operation with historic data of 35 years going back from the water year 1998-1999. In most months all demands were satisfied to the full extent but months with acute water shortage was also seen. The model has distributed the available water most efficiently among the different demands. Certain typical months are taken for looking deeply into and are presented below.

The monthly variation of the demand, actual release made by the reservoir authorities, and simulated release for different purposes for the year 1994-1995 is shown in Figures 11 (a), 11(b), 11(c) & 11(d). The demands for drinking, irrigation, pisciculture and recreation were 22.68Mm³, 110.56 Mm³, 2.4 Mm³ and 0.024 Mm³ respectively (Table 5). The actual releases from the reservoir were 19.8 Mm³, 167.98 Mm³, 1.3 Mm³, 0.006 Mm³ (Appendix- IV) for each purpose. It is seen that there was a gap between the demand and the water released. Drinking water requirement was not met upto the demand and much more water than needed was released in the name of irrigation. This disparity may have been due to the lack of experience of the management. It is seen that (Appendix- IV) after the initial rains, in the following months when demand was less, more water was released Therefore in the dry months shortage of water was experienced. Failings in planning can be the only reason for this ironical situation.

© DEMAND ■ ACTUAL RELEASE □ SIMULATED RELEASE

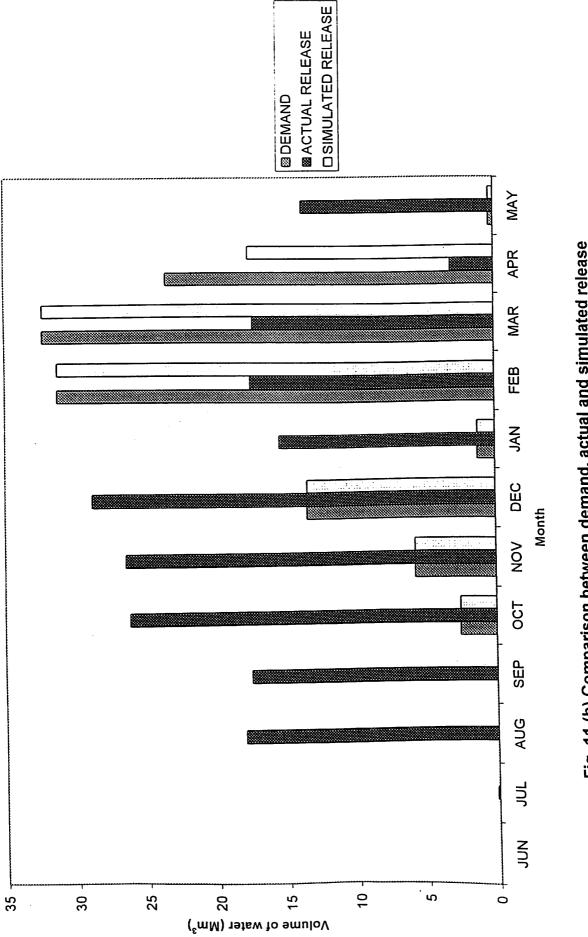
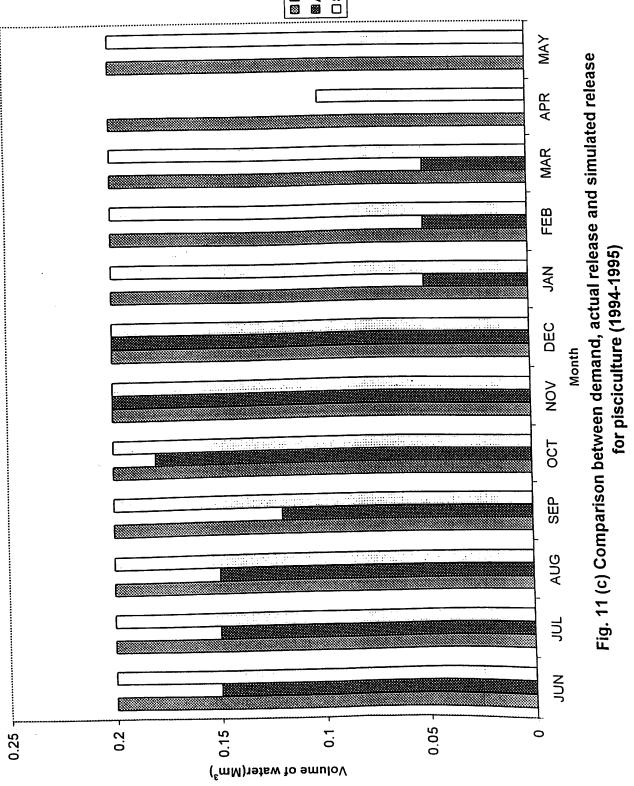
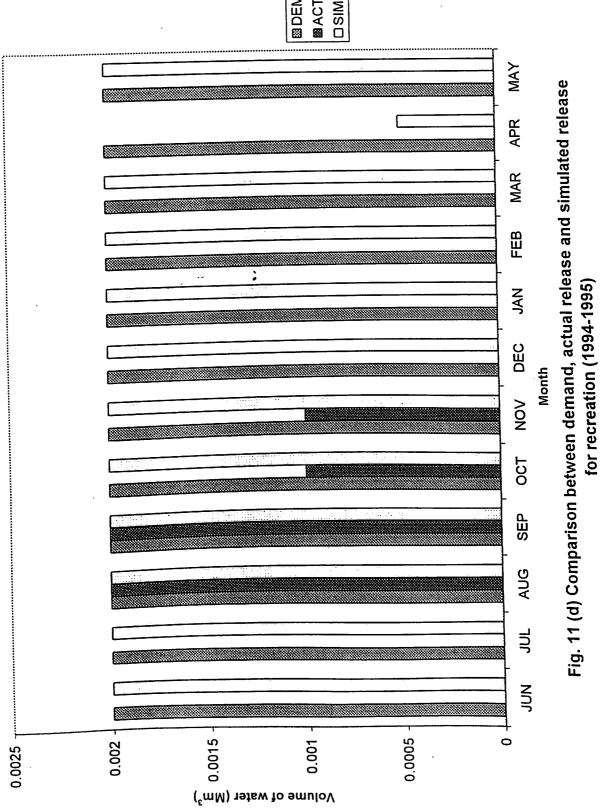




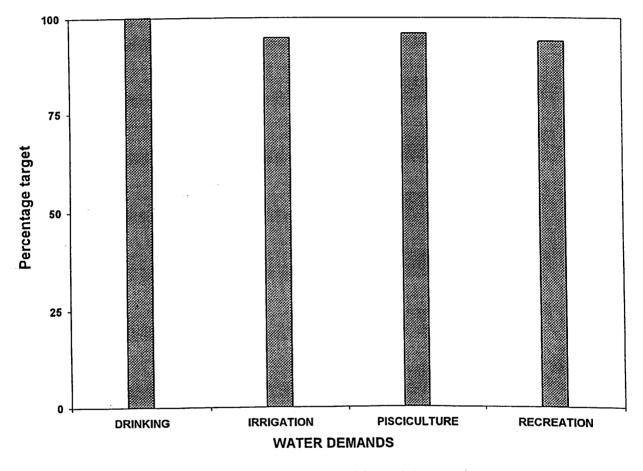
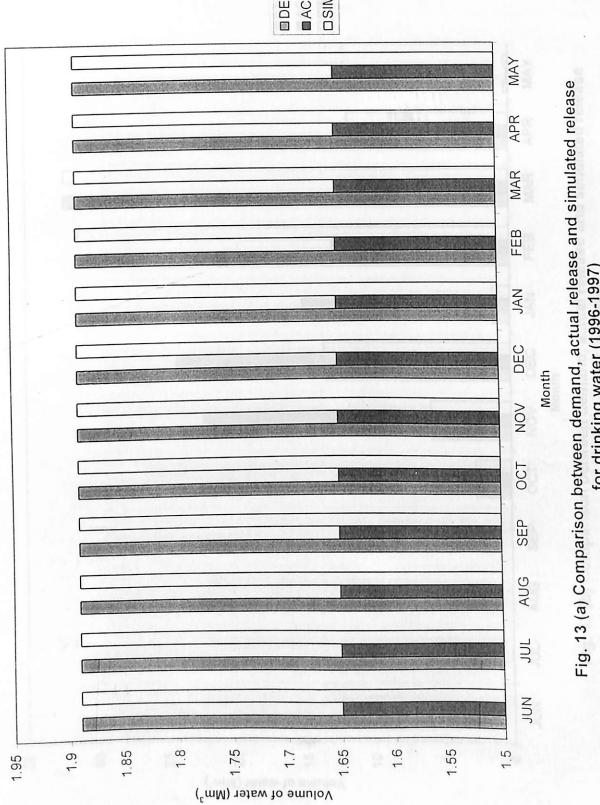
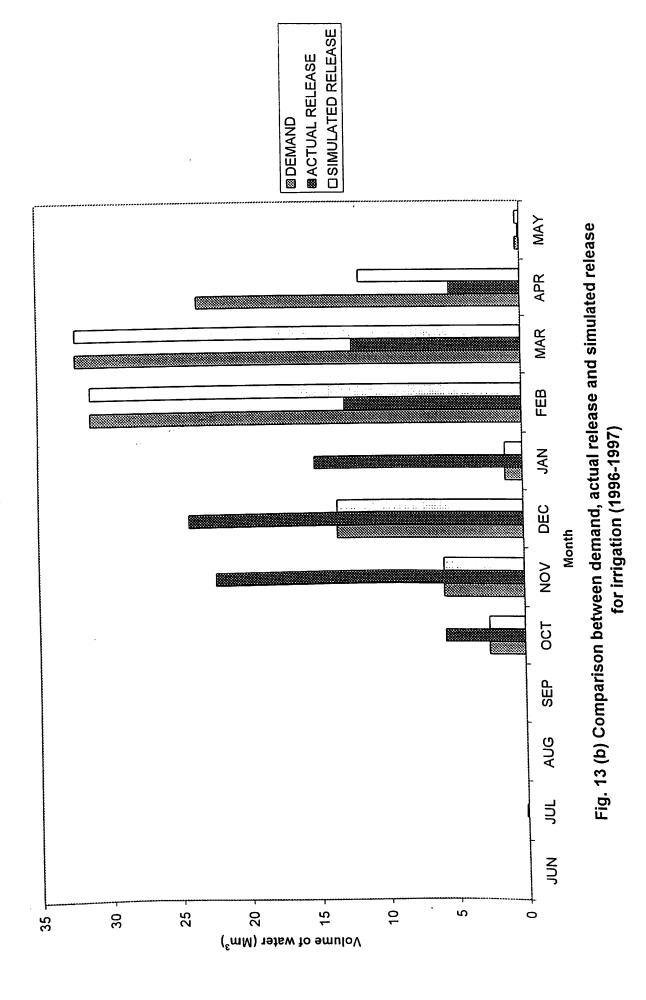
Fig. 11 (b) Comparison between demand, actual and simulated release for irrigation (1994-1995)

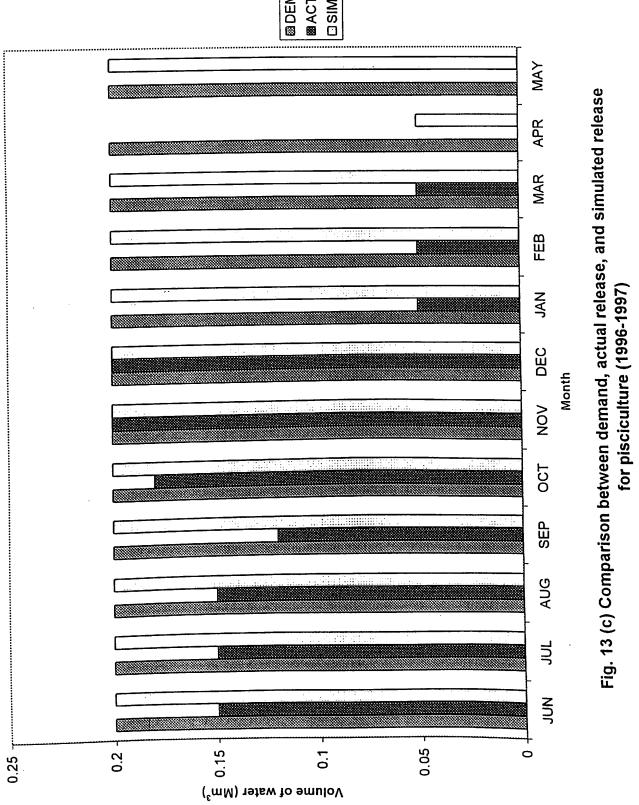
@DEMAND @ACTUAL RELEASE DSIMULATED RELEASE

⊠ DEMAND ■ ACTUAL RELEASE □ SIMULATED RELEASE The targets achieved by the simulation model for this particular year are 100 percent, 94.68 percent, 95.83 percent, and 93.75 percent respectively for drinking, irrigation, pisciculture and recreation as illustrated in fig. 12. This year had good precipitation of 3374.8 mm and an inflow of 197.77 Mm³ (Appendices- I & II). The simulated releases were 22.68 Mm³, 104.68 Mm³, 2.3 Mm³, 0.0225 Mm³ (Table 6) respectively. According to the simulation model there could be no deficit of drinking water for the whole year. Simulated release for irrigation satisfied the demand fully except in the month of April. The irrigation requirement was 23.533 Mm³ in April, which is relatively a high value. Only 17.68 Mm³ could be met giving a deficit of 25 percent of the demand. The simulation releases for pisciculture and recreation suffered deficit only in the month of April. Hence the model overcomes the shortcomings of manual planning and gives a well distributed schedule for all demands of water.

The demand, actual release and simulated release for the year 1996- 1997 is presented in Fig.13(a), 13(b), 13(c) & 13(d) for the various purposes. The demand comes as 22.68 Mm³, 110.56 Mm³, 2.4 Mm³ and 0.024 Mm³ (Table 5) respectively, whereas the actual release for different purposes were 19.8 Mm³, 97.95 Mm³, 1.3 Mm³ & 0.006 Mm³ (Appendix- IV) respectively. As usual the drinking water was not met as the monthly release was 1.65 Mm³ whereas the demand per month was 1.89 Mm³. In the same way irrigation, pisciculture and recreation demands were not satisfied and there was deficiency in the month of April. Irrigation suffered deficit in the summer months from February to May. Pisciculture satisfied the demand only in the months of November and December and recreation in the month of August and September. This was because there was no proper distribution of water according to the crop water requirement. Therefore scientific release of water has to be adopted for proper water utilisation.

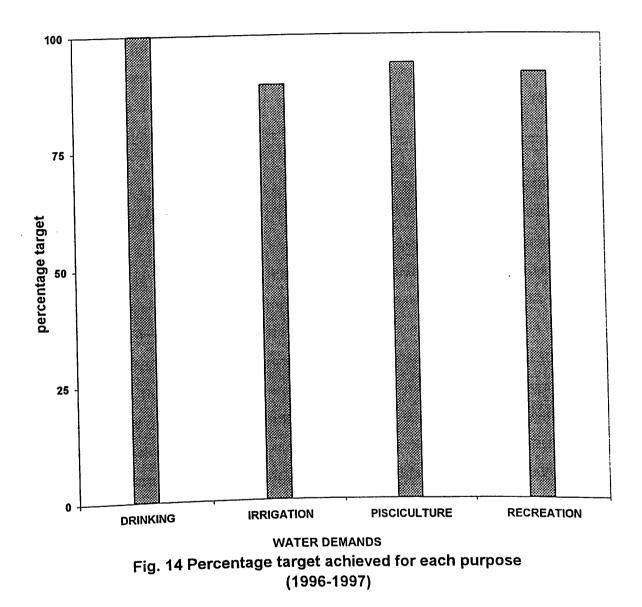
The simulated model shows that 100 percent of the drinking water demand, 89.35 percent of irrigation demand, 93.75 percent of pisciculture demand and 91.66 percent of the recreation demand was achieved (Fig. 14). This was possible because


Fig. 12 Percentage target achieved for each purpose (1994-1995)

DSIMULATED RELEASE ACTUAL RELEASE DEMAND

for drinking water (1996-1997)



© DEMAND ■ACTUAL RELEASE □SIMULATED RELEASE

MAY Fig. 13 (d) Comparison between demand, actual release and simulated release APR MAR FEB JAN for recreation (1996-1997) NOV DEC Month OCT SEP AUG JUL NUL Volume of water(Mm³) 0.0015 0.0015 0.002 0 0.0005 0.0025 -

© DEMAND © ACTUAL RELEASE □ SIMULATED RELEASE

the total precipitation and inflow were 2445 mm and 128.55 Mm³ respectively (Appendix- I & III). The simulated release for different purposes were 22.68 Mm³, 98.795 Mm³, 2.25 Mm³ and 0.022 Mm³ respectively (Table 6). Only in the month of April there was scarcity unlike the actual release where there was deficiency in most of the months. Drinking water demand was fully met by the simulation model. Water released for irrigation was not sufficient in the month of April as only 11.76 Mm³ was released against a demand of 23.533 Mm³, causing a deficit of 50 percent of the demand for the particular month. Similarly pisciculture and recreation experienced deficits only in the month of April.

Another set of releases that can be taken into consideration is where all the demands are satisfied to full extent. Taking the year 1997-1998 into consideration, Figures 15 (a), 15 (b), 15 (c) & 15(d) show the comparison of actual release and simulated release with respect to the demand for drinking, irrigation, pisciculture and recreation respectively. The demand for this year was recorded to be 22.68 Mm³ for drinking, 110.56 Mm³ for irrigation, 2.4 Mm³ for pisciculture and 0.024 Mm³ for recreation (Table5). The actual release was only 19.8 Mm³ for drinking, 130.7 Mm³ for irrigation, 1.3Mm³ for pisciculture and 0.006 Mm³ for recreation (Appendix-IV). Monthly release of 1.65 Mm³ was only made when the demand was 1.89 Mm³ for drinking. The actual irrigation releases were either in excess in most of the months or was not adequate, generally from February onwards till May. Pisciculture and recreation releases also showed scarcity in the summer months.

By simulation the targets set for drinking, irrigation, pisciculture and recreation were achieved to the full (Fig.16). This ideal situation was possible as there was enough rainfall of 3265 mm and a considerable amount of inflow of about 161.13 Mm³ to the reservoir (Appendix I & III). The simulated releases were 22.68 Mm³ for drinking, 110.56 Mm³ for irrigation, 2.4 Mm³ for pisciculture and 0.024 Mm³ for recreation which matches with the demand.

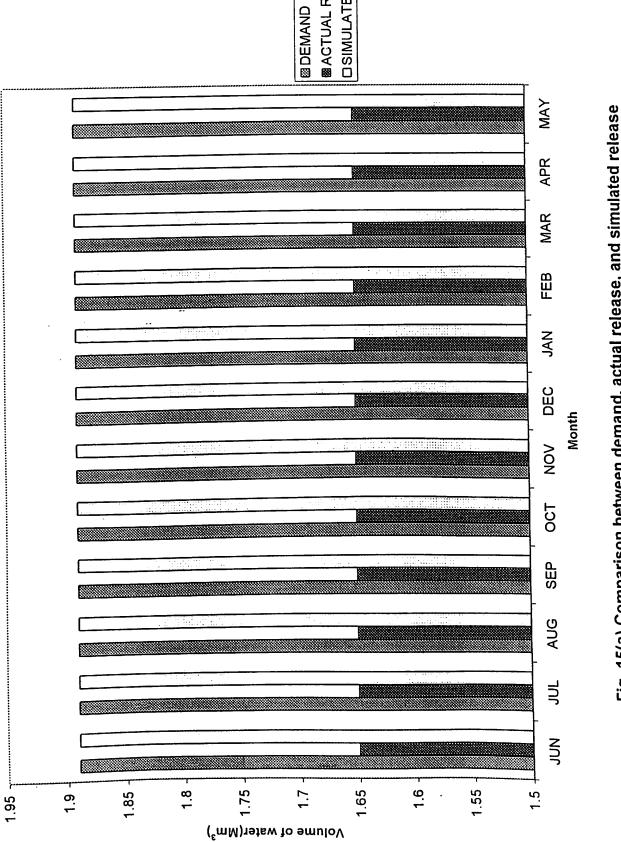


Fig. 15(a) Comparison between demand, actual release, and simulated release for drinking water (1997-1998)

© DEMAND ■ ACTUAL RELEASE DSIMULATED RELEASE DEMAND
 ACTUAL RELEASE
 DSIMULATED RELEASE

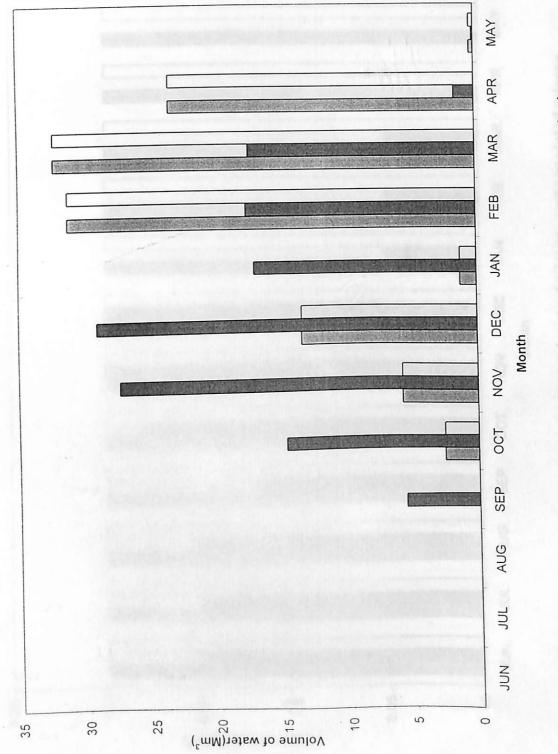
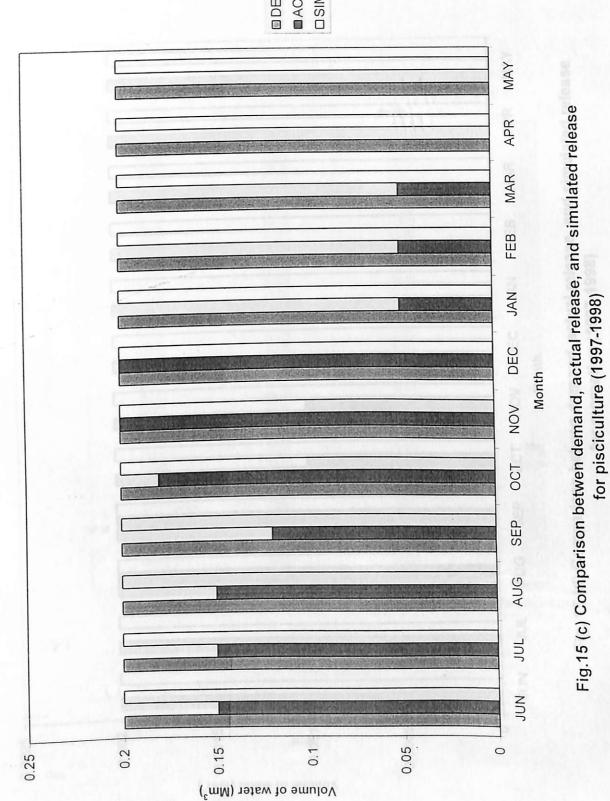
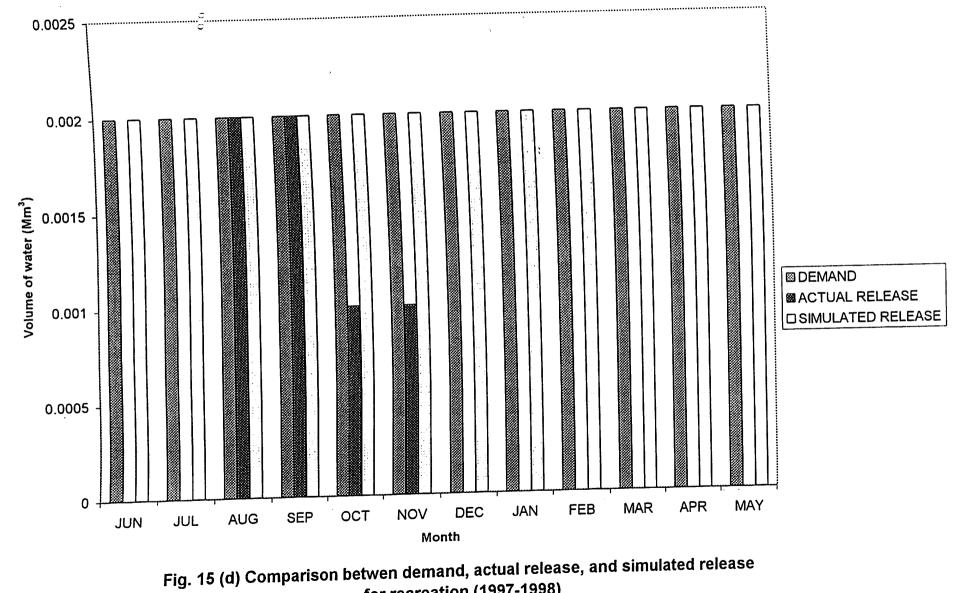
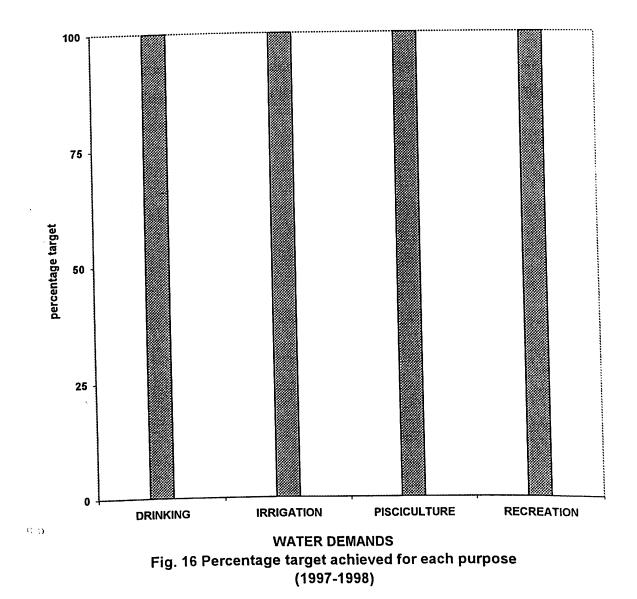




Fig.15 (b) Comparison between demand, actul release, and simulated release for irrigation(1997-1998)



DEMAND
 ACTUAL RELEASE
 SIMULATED RELEASE

for recreation (1997-1998)

.

4.6 Limitations and suggestions

0.0

The results of the early years could not be taken for analysis as the value for various demands was assumed to be a constant over the years, due to lack of sufficient data. Hence the results are unrealistic in these years and can be viewed only as a test result of the simulation model.

The accuracy of the predictions can be increased by shortening the reservoir operation time. In the present study the operation period is one month while it can be 15 days or even shorter.

Summary & Conclusion

.

•

.

SUMMARY AND CONCLUSION

Planning and management of multipurpose reservoir systems have been and continue to be the subject of numerous research works. This attention is due to the essential benefits arising from scientific reservoir management. Since the adoption of modern techniques has become necessary for the management of water resources, an attempt has been carried out with the objective to develop a simulation model for a multipurpose reservoir. The reservoir management policy was evolved with a view to satisfy the water supply to Thrissur town, kole lands of Thrissur and to serve the facilities of pisciculture and recreation. The problem has been formulated as a monthly operation model based on historic stream flow. The operating horizon has been taken as twelve monthly periods from June to May.

The monthly water requirement for each purpose was considered as the target to be achieved i.e. the objective function was to minimize the deviations from the target release. For this the target was divided into four levels and the priorities were fixed. Since the targets were different for each of the objectives and in each month, the model accessed the highest value of target with highest priority. So there are sixteen releases made for different purposes in each month according to the priority assigned by the priority graph. The mathematical program was based on the continuity equation.

The inputs used for the algorithm developed were inflow, evaporation and water demands for different purposes. The algorithm developed was run with historical data of 35 years. The results gave the monthly releases and deficits of different demands. The conclusions derived from the present study can be summarised as follows.

1. Simulation approach to multiobjective reservoir shows the efficiency of the technique to handle complex water resource operation.

- 2. The flexibility of the model for changing the demands for allocation of water for different uses according to the changing needs of the region at any stage of the operation was brought out.
- 3. With the zoning of the target release an optimal allocation of water for all the purposes could be achieved to their priority levels.
- 4. It is seen that results obtained from the simulation model can be easily understood or even comprehended by non-technical decision-makers.
- 5. The versatility of the model is that it can incorporate changes and there in the model obtain the solution in the quickest time possible and is very user friendly.
- 6. The simulated model satisfied the drinking water demand for most of the years except a few years with deficiency in the months of April and May. This can be compensated by the fact that simulated release meets the specified demand in every other month, whereas the actual release is far below the demand.
- 7. In the case of irrigation there is no wastage of water in the months followed by rains or when there is no demand. Deficits are generally observed in the month of April and May, as the inflow is less.
- 8. There is enough water for pisciculture every month except for a few summer months. Harvesting is done in the dry months.
- 9. Recreation releases are not met by the model in the last 2,3 months of some years.

The present simulation study conducted for the previous years reveals that the reservoir operation policy adapted is adequate to meet all the different demands. The simulation approach suits very well for this system for the optimal releases.

References

..

, ^ .

REFERENCE

- Andrews, E.S., Chung, F.I. and Lund, J.R. (1992). Multilayered, Priority-Based Simulation of Conjunctive Facilities. J. of Water Resources Planning and Management, ASCE 118 (1): 32-53.
- Askew, A.J., Yeh, W.W-G. and Hall, W.A. (1971). Use of MonteCarlo techniques in the design and operation of a multi-purpose reservoir system. *Water Resources Res.* 6 (4): 819-822.
- Barnes Jr. G.W. and Chung, F.I. (1986). Operational Planning for California Water System. J. of Water Resources Planning and Management, ASCE 112 (1): 71-86.
- Becker, L.G. and Yeh, W.W-G. (1974). Optimization of Real-Time Operation of Multiple Reservoir System. *Water Resources Res.* 10 (6): 1109-1112.
- Becker, L.G., Yeh, W-G., Fults, D. and Sparks, D. (1974). Operations model for the Central Valley Project. J. of Water Resources Planning and Management, ASCE 102 (WR1): 101-115.
- Bhaskar, N.R. and Whitlatch Jr., E.E. (1980). Derivation of Monthly Reservoir Release Policies. Water Resources Res. 16 (6): 987-993.
- Chaturvedi, M.C. and Srivastava, D.K. (1981). Study of a Complex Water Resources System With Screening and Simulation Models. *Water Resources Res.* 17 (4): 783-794.
- Croley II,T.E. and Rao,K.N.R.(1979). Multiobjective Risks in Reservoir Operation. Water Resources Res. 15 (4): 807-813.
- Datta, B. and Burger, S.J. (1984). Short-Term, Single, Multiple- Purpose Reservoir Operation: Importance of Loss Functions and Forecast Errors. Water Resources Res. 20 (9): 1167-1176.
- Donald, E.E. and Joe, C.M. (1970). Simulation Optimization Techniques for Multibasin Water Resources Planning. *Water Resources Bull.* 6 (5): 1870-1897.
- *Eichert,B.S. (1979). Tech. paper on reservoir storage determination by computer simulation of flood control and conservation systems. 66, Hydrol. Eng. Cent., U.S. Army Corps of Engg., Davis, Calif.
- Hajilal, M.S., Sarma, P.B.S. and Rao, N.H. (1995). Optimal reservoir release policies for irrigation management. *Paper presented at the XXXI Annual Convention* of ISAE, KAU, Vellanikara, Kerala.

- Harboe, R.E. (1970). Optimal policy for the operation of a single multipurpose reservoir.
 J. of Hydraul. Div. 96 (HY1): 2297-2308.
- *Harboe, R. (1976 b). A stochastic optimization and simulation model for the Operation of the Leach river System. Inst. Hydraul. Gewasserkd., Tech. Univ. Munchen, Heft.
- Harboe, R. and Schultz, G.A. (1981). Applications of simulation to specific water projects. J. of Hydrol. (51): 131-138.
- Houck, M.H. (1982). What is the best objective function for real time reservoir operation. *Decision Making for Hydrosystems: Forecasting and Operation*. Water resource Publications, Littleton, Colo. pp. 115-123.
 - *Hufschmidt, M.M. and Fiering, M.B. (1966). Simulation Techniques for Design of Water Resource Systems. Havard Univ. Press, Massachusetts. pp. 1261 – 1284.
 - *Hughes, D.A., O'-Keeffe, J. and King, J. (1997). Development of a reservoir release operating rule model to simulate demands for instream flow requirements and water resources. *Proc. of an international synopsium of the fifth scientific assembly of the IAHS*, Rabat, Morocco, 23Apr.- May, 321-329.
 - Hulman, L.G. and Erickson, D.K. (1972). Delware River Basin Modeling. J. of Hydraul. Div. (HY1):105-120.
 - Johnson, S.A., Stedinger, J.R. and Staschus, K. (1991). Heuristic Operating Policies for Reservoir System Simulation. *Water Resources Res.* 27 (5): 673-685.
 - Karamouz, M. and Houck, M.H. (1982). Annual and Monthly Reservoir Operating Rules Generated by Deterministic Optimization. *Water Resources Res.* 18 (5): 1337-1344.
 - Kuezera, G. and Diment, G. (1988). General water supply system simulation model: WASP. J. of Water Resources Planning and Management, ASCE 114 (4): 365-382.
 - Kumar, V.V., Rao, B.V. and Mujumdar, P.P. (1996). Optimal operation of a multibasin reservoir system. Sadhana 21 (4): 487-502.
 - Kuo, J-T., Hsu,N-S., Chu,W-S.,Wan, S. and Lin,Y-J.(1990). Real-Time Operations of Tanshui River Reservoirs. J. of Water Resources Planning and Management, ASCE 116 (3) 349-362.

- Loucks, D.P. and Dorfman, P.J. (1975). An Evaluation of Some Linear Decision Rules in Chance – Constrained Models for Reservoir Planning and Operation. *Water Resources Res.* 2 (6): 777-782.
- McBean, E.A. (1981). Issues in Simulation Model Design A case study. J. of Hydrology (51): 205-218.
- Mejia, J.M., Egli, P. and Leclere, A. (1974). Evaluating Multireservoir Operating Rules. Water Resources Res. 10 (6) 1090-1098.
- Mobasheri, F. and Harboe, R.C. (1970). A Two-Stage Optimization Model for Design of a Multipurpose Reservoir. *Water Resources Res.* 6 (1): 22-31.
- Mohan, S. and Keskar, J.B. (1991). Optimization of multipurpose reservoir system operation. *Water Resources Bull.* 27 (4): 621-6297.
- Nalbantis, I. and Koutsoyiannis, D. (1997). A parametric rule for planning and management of multiple reservoir systems. Water Resources Res. 33 (9): 2165-2177.

Pegram, G.G.S. (1980). On Reservoir Reliability. J. of Hydrology (47): 269-296.

- Piper,B.S., Sukhsri,C., Thanopanuwat, S. and Knott, D.G. (1989). A simulation Model for Planning Water Resource Developments in the Chi River Basin. Water Resources Management 3: 141-153
- Puschmann, A. and Lohr, H. (1996). An Optimization Simulation model as a tool for planning, Designing and management of reservoirs in the Negev. International- Water and Irrigation-Review 16:2,54, 56-58.
- Raman, H. and Paul, J.V. (1990). Simulation of a multireservoir system with multiple objectives. Indian J. of Power and River Valley Development Mar.-Apr.: 47-52.
- Roefs, T.G. and Bodin, L.D. (1970). Multireservoir Operation Studies. Water Resources Res. 6 (2): 410-420.
- *Sigvaldason,O.T., Ellis,R., Bradford,W.E. and Granz,H. (1975). The Trent River System: An improved operational strategy. *Paper presented at Proc. of the* second World Congress on Water Resources, New Delhi.
- Sigvaldason, O.T. (1976). A Simulation Model for Operating a Multipurpose Multireservoir System. Water Resources Res. 12 (2): 263-278.

- Simonovic, S.P. and Burn, D.H. (1989). An Improved Methodology for Short Term Operation of a Single Multipurpose Reservoir. *Water Resources Res.* 25 (1): 1-8.
- Simonovic, S.P. (1992). Reservoir Systems Analysis: Closing Gap Between Theory and Practice. J. of Water Resources Planning and Management, ASCE 118 (3) 262-280.
- *Stedinger, J.R. (1979). Parameter estimation, streamflow model validation and the effects of parameter error and model choice on derived distribution. Paper presented at Special Session on Stochastic Hydrology, AGU Fall Meeting, San Fransisco, Calif.
- Stedinger, J., Sule, B. and Loucks, D. (1984). Stochastic dynamic programming models for reservoir operation optimization. *Water Resources Res. 20 (2):* 1499-1505.
- Stedinger, J.R., Pei, D. and Cohn, T.A. (1985). A Condensed Disaggregation Model for

Incorporating Parameter Uncertainty Into Monthly Reservoir Simulations. *Water Resources Res.* 21 (5):665-675.

- Tai,F-K. and Goulter,I.C. (1987). A stochastic dynamic programming based approach to the operation of a multi-reservoir system. *Water Resources Bull.* 23 (3): 371-377
- Takeuchi, K. (1986). Chance Constrained Model for Real-Time Reservoir Operation Using Drought Duration Curve. *Water Resources Res.* **22** (4): 551-558.
- Toebes, G.H. and Chang, T.P. (1972). Tech. Report on Operating policies for the Upper Wabash surface water system. 31 Purdue Univ. Water Resources Res. Cent, West Lafayette, Ind.
- Van Horn, R.L. (1971). Validation of simulation results. Management Science 17 (5):247-258.
- Vedula.S., Mohan,S. and Shrestha,V.S. (1986). Improved operating policies for multipurpose use: A case study of Bhadra Reservoir. Sadhana 9 (3): 157-176.
- Venugopal,K., Shakthivadivel,R. and Murthy,K.R. (1991). Irrigation scheduling of Periyar Vaigai System- planning through simulation. Proc. of ICID Special Technical Session, Beijing, China 1(B). Operation of Irrigation Systems: 220-229.
- Walesh, S.G. (1973). Simulation in watershed Planning. J. of Hydraul. Div. (HY9): 1383-1399.

- Wurbs, R. A. (1993). Reservoir-System Simulation and Optimization Models. J. of Water Resources Planning and Management, ASCE 119 (4) 455-472.
- Yazicigil, H., Houck, M.H. and Toebes, G.H. (1983). Daily Operation of a Multipurpose Reservoir System. Water Resources Res. 19 (1): 1-13.
- Yeh, W.W-G. (1985). Reservoir Management and Operation Models: A State- ofthe- Art Review. *Water Resources Res.***21** (12): 1797-1818.
- Yeh, W.W-G. and Becker, L. (1982). Multiobjective Analysis of Multireservoir Operations. Water Resources Res. 18 (5): 1326-1336.
- *Young, G.K. (1966). Techniques for finding reservoir operating rules. *Ph.D dissertation*, Cambridge, Massachusetts.

.

* Originals not seen.

..

•

Appendices

APPENDIX I

RAINFALL DATA (mm)

MONTH 1	64-65	65-66	66-67	67-68	68-69	69-70	70-71	71-72	72-73	73-74	74-75
JUNE	456.4	825.2	256.6	727.5	643.2	938	544.2	964.8	779.7	895	561.8
JULY	788.3	774.3	809.9	274.8	674.5	303	631	903.1	318.46	586	107.93
AUG	448.2	516	266	664.9	688.5	255.2	646.2	350.4	546.7	534.2	564.6
SEP	501.1	134	153.7	72.1	302	231.7	17,4.3	254.9	461.8	342.6	445.6
OCT	223.3			97.7	86.3	199.9	193.4	246	,219.4	189.3	105.2
NOV	119			51	10.5	134.9	35,3	28.2	137.9	89.36	62.5
DEC	23.3				0.9	50.8	0	29.1	0	0	0
JAN	0		<u> </u>	0	0	0	1.6	0	0	0	0
FEB	0	0	0	61.5	0	0	7.9	0	0	1	0
MAR	0	51	12	149.5		0	0	0	1.6	2.3	
APR	47.6	34.5	21.1	56.9	58.6	61.2	85.7	79.9	68.6		31.3
MAY	165.6		269.8	63.5	179.6	277.7	286.3	147.3	127.5	119.7	397.8
Total	2772.8		2623.1	2638.4	2644.1	2452.4	2605.9	3003.7	2661.66	2835.56	2328.93
MONITH	75 76	76.77	77-78	78-79	79-80	80-81	81-82	82-83	83-84	84-85	85-86
	75-76	76-77	77-78 480 f	78-79	79-80	80-81 978.4	81-82 968.4	82-83 784.9			
JUNE	932.6	247.3	480.8	3 780.3	611.4	978.4	968.4	784.9	467.92	490.5	907.4
JUNE JULY	932.6 657.6	247.3 8 891	480.8 656.2	3 780.3 2 795.5	3 611.4 5 997.8	4 978.4 3 624.3	968.4 558.2	784.9 605.1	467.92 774.75	490.5 763.4	907.4 786
JUNE JULY . AUG	932.6 657.6 365.6	247.3 891 400.1	480.8 656.2 262.5	3 780.3 2 795.5 5 828.6	3 611.4 5 997.8 3 502	4 978.4 3 624.3 2 582.8	968.4 558.2 629	784.9 605.1 620.9	467.92 774.75 710	490.5 763.4 700.33	907.4 786 583.1
JUNE JULY . AUG SEP	932.6 657.6 365.6 465.8	247.3 891 400.1 194.4	480.8 656.2 262.5 283	3 780.3 2 795.8 5 828.8 3 68	3 611.4 5 997.8 3 502 3 201.6	4 978.4 3 624.3 2 582.8 6 124	968.4 558.2 629 412.5	784.9 605.1 620.9 83.6	467.92 774.75 710 389.1	490.5 763.4 700.33 75.63	907.4 786 583.1 113.63
JUNE JULY AUG SEP OCT	932.6 657.6 365.6 465.8 308.2	247.3 891 400.1 194.4 2 175.1	480.8 656.2 262.5 283 319.6	3 780.3 2 795.5 5 828.6 3 66 5 123.6	3 611.4 5 997.6 3 502 3 201.6 3 201.6 3 108.2	4 978.4 3 624.3 2 582.8 5 124 2 432.3	968.4 558.2 629 412.5 75.5	784.9 605.1 620.9 83.6 194.2	467.92 774.75 710 389.1 100.65	490.5 763.4 700.33 75.63 390.5	907.4 786 583.1 113.63 149.7 37.2
JUNE JULY .AUG SEP OCT NOV	932.6 657.6 365.6 465.8 308.2 275.8	247.3 891 400.1 194.4 175.1 241	480.8 656.2 262.5 283 319.6 299.8	3 780.3 2 795.8 5 828.8 3 68 6 123.6 3 291.7	3 611.4 5 997.8 3 502 3 201.6 5 108.2 1 249.3	4 978.4 3 624.3 2 582.8 5 124 2 432.3 3 207.8	968.4 558.2 629 412.5 75.5 106.7	784.9 605.1 620.9 83.6 194.2 84.54	467.92 774.75 710 389.1 100.65	490.5 763.4 700.33 75.63 390.5 31.13	907.4 786 583.1 113.63 149.7 37.2
JUNE JULY AUG SEP OCT NOV DEC	932.6 657.6 365.6 465.8 308.2	247.3 891 9 400.1 9 194.4 175.1 9 241.2	480.8 656.2 262.5 283 319.6 299.8	3 780.3 2 795.8 5 828.6 3 68 6 123.6 3 291.7 0 70	3 611.4 5 997.8 3 502 3 201.6 5 108.2 1 249.3 0 0	4 978.4 3 624.3 2 582.8 5 124 2 432.3 3 207.8 0 5.8	968.4 558.2 629 412.5 75.5 106.7	784.9 605.1 620.9 83.6 194.2 84.54 7	467.92 774.75 710 389.1 100.65 59.25 8.1	490.5 763.4 700.33 75.63 390.5 31.13 62.78	907.4 786 583.1 113.63 149.7 37.2 22.05 0
JUNE JULY .AUG SEP OCT NOV DEC JAN	932.6 657.6 365.6 465.8 308.2 275.8 1.1	247.3 891 400.1 194.4 175.1 241 1.2 0	480.8 656.2 262.5 283 319.6 299.8 200.0	3 780.3 2 795.8 5 828.6 3 68 6 123.6 3 291.7 0 70	3 611.4 5 997.8 3 502 3 201.6 5 108.2 1 249.3 0 0	4 978.4 3 624.3 2 582.8 5 124 2 432.3 3 207.8 0 5.8 0 0	968.4 558.2 629 412.5 75.5 106.7 0 0 0	784.9 605.1 620.9 83.6 194.2 84.54 7 0 0	467.92 774.75 710 389.1 100.65 59.25 8.1 0 0	490.5 763.4 700.33 75.63 390.5 31.13 62.78 0 0	907.4 786 583.1 113.63 149.7 37.2 22.05 0 0
JUNE JULY AUG SEP OCT NOV DEC JAN FEB	932.6 657.6 365.6 465.8 308.2 275.8 1.1	247.3 891 400.1 194.4 175.1 241 1.2 0 0 0.2	480.8 656.2 262.5 283 319.6 299.8 2 0 0 0 0 0	3 780.3 2 795.4 5 828.4 3 68 6 123.6 3 291.7 0 70 0 70 2 29.9	3 611.4 5 997.6 3 502 3 201.6 5 108.2 1 249.3 0 0	4 978.4 3 624.3 2 582.8 5 124 2 432.3 3 207.8 0 5.8 0 0	968.4 558.2 629 412.5 75.5 106.7 0 0 0 0 0 14	784.9 605.1 620.9 83.6 194.2 84.54 7 0 0 1.4 25.1	467.92 774.75 710 389.1 100.65 59.25 8.1 0 0 0 35.55	490.5 763.4 700.33 75.63 390.5 31.13 62.78 0 0 0 0 0	907.4 786 583.1 113.63 149.7 37.2 22.05 0 0 0
JUNE JULY .AUG SEP OCT NOV DEC JAN FEB MAR	932.6 657.6 365.6 465.8 308.2 275.8 1.1	247.3 891 400.1 194.4 175.1 247.3 194.4 175.1 241 1.2 0 0 0.2 12.1	480.8 656.2 262.5 283 319.6 299.8 200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 780.3 2 795.4 5 828.8 3 68 6 123.6 3 291.7 0 70 0 70 2 29.8 5 25.8	3 611.4 5 997.6 3 502 3 201.6 5 108.2 1 249.3 0 0 0 0 0 0 0 0	4 978.4 3 624.3 2 582.8 5 124 2 432.3 3 207.8 0 5.8 0 0 0 0 0 65.8 0 65.8	968.4 558.2 629 412.5 75.5 106.7 0 0 0 0 0 14 81.2	784.9 605.1 620.9 83.6 194.2 84.54 7 0 0 1.4 25.1 27.2	467.92 774.75 710 389.1 100.65 59.25 8.1 0 0 0 35.55 76.05	490.5 763.4 700.33 75.63 390.5 31.13 62.78 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	907.4 786 583.1 113.63 149.7 37.2 22.05 0 0 0 0 28.65
JUNE JULY AUG SEP OCT NOV DEC JAN FEB	932.6 657.6 365.6 465.8 308.2 275.8 1.1 0 0 15.4	247.3 891 400.1 194.4 175.1 241 1.2 0 0.2 12.1 56.4	480.8 656.2 262.5 283 319.6 299.8 299.8 0 0 0 0 21 69.5 41.2	3 780.3 2 795.8 5 828.6 3 68 6 123.6 3 291.7 0 70 0 70 0 29.9 0 29.9 0 25.8 2 56.4	3 611.4 5 997.8 3 502 3 201.6 5 108.2 6 108.2 1 249.3 0 0 0 0 0 0 0 0 1 107.3	4 978.4 3 624.3 2 582.8 5 124 2 432.3 3 207.8 0 5.8 0 0 0 0 12 65.8	968.4 558.2 629 412.5 75.5 106.7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	784.9 605.1 620.9 83.6 194.2 84.54 7 0 1.4 25.1 27.2 145.3	467.92 774.75 710 389.1 100.65 59.25 8.1 0 0 0 35.55 76.05 156.08	490.5 763.4 700.33 75.63 390.5 31.13 62.78 0 0 0 0 0 149.25 15.33	907.4 786 583.1 113.63 149.7 37.2 22.05 0 0 0 28.65 70.05

Contd. APPENDIX I

.

					00.04	91-92	92-93	93-94	94-95	95-96	96-97
MONTH	86-87	87-88	88-89	89-90	90-91		900	402.5	853.1	954.3	668.1
JUNE	176.9	401.2	968.3	814.05	717.2	960.7		100.3	1014.9	890.4	320
JULY	748.73	345.05	934.5	608.06	887.5	988.6	792.1		503.9	631.7	698.39
AUG	509.98	429	413.3	434.58	620.18	676.1	520.9	228		335	361.9
SEP	267.83	411	354.38	354.38	191.47	175.51	147.6	363	77.1	158.4	208.1
	142.62	226.73		205.1	140.75	178.7	239.6	396	399.7		16.5
OCT				87.53	95.01	138.7	355.3	642	87.2	92.7	
NOV	433.58		18.93	0,100	0	0	2	18.4	0	0	82
DEC	9.9			7.35	0	0	0	49.5	0	0	0
JAN	0					0	0	0.2	4.8	0	0
FEB	0			0				20.6	6.5	0	0
MAR	C				·				47.2	78.7	0
APR	0	95.54					160		380.4	29.7	90.5
MAY	118.27	96.35	and the second design of the s								2445.49
Total	2407.8	2435.8	3 2928.31	2647.55	2689.77	3263.91	3170.2	2410.2	1		<u>.</u>

MONTH	97-98	98-99	TOTAL	AVER
JUNE	756.8	637.3	24452.77	698.651
JULY	878.5	702	23491.78	671.194
	728.5	519.5	18580.06	530.859
AUG	489.2	797	9810.43	280.298
SEP	113.6	79.2	7133.25	203.807
OCT	113.0			154.5
NOV	190.7	26		35,5803
DEC			58.45	1.67
JAN	0		127.9	3.65429
FEB	. 0			14.9771
MAR	0			55.8443
APR	10.5		1954.55	
MAY	86.4			
Total	3265.2	3106.6	97923.06	2797.8

APPENDIX II

.

EVAPOR	ATION L	<u>) A I A (Mi</u>			00.00	69-70	70-71	71-72	72-73	73-74	74-75	75-76
MONTH	64-65	65-66	66-67	67-68	68-69		0.3645	0.356	0.232	0.163	0.146	0.136
JUN	0,234	0.1342	0.2746	0.3462	0.139	0.382		0.623	0.461	0.12	0.346	0,004
JUL	0.042	0.3562	0.0136	0.164	0.2643	1.642	0.192	0.023	0.334	0.142	0.542	0.142
AUG	0.0264	0.9732	0.5632	0.246	0.5321	0.347	0.301		0.764	0.14	0.646	0.04
SEP	0.38	0.5621	0.634	0.563	0,6843	0.139	0.345	0.322		0.746	0.613	0.33
	0.49	0.6731	0.782	0.542	0.733	0.953				0.740	0.731	0.562
NOV	0.5		0.547	0.462	0.701	0.646					0.731	
	0.63		0.5432	0.764	0.721	0.946	0.964			0.946		
DEC	0.581		0.873		0.934	1.47	0.843	1.06				
JAN					1.362	0.846	1,462	1.09				
FEB	0.732					1.002	1.5	1.846	1.36			0.798
MAR	0.846						1.42	2 1.94	1.4	1.536		
APR	0.923						1.56	5 1.98	1.41	1.63	1.48	
MAY	1.03						10.1565	5 11.929	9.856	9.607	9.514	6.019
TOTAL	6.4144	9.8281	8.904	1 9.0115	10.2007	1.0.000						

EVADORATION DATA (Mm³)

•

					00.04	81-82	82-83	83-84	84-85	85-86	86-87	87-88
MONTH	76-77	77-78	78-79	79-80	80-81		0.113	0.634	0.342	0.341	0.246	0.326
JUN	0.234	0.194	0.262	0.463	0.0264	0.016		0.162	0.162	0,14	0.212	0.121
JUL	0,146	0.246	0.132	0.141	0.562	0.12	0.28		0.102	0.361	0.132	0.112
AUG	0.341	0.382	0.244	0.36	0.16	0.24	0.214	0.004		0.432	0.562	0.467
	0.375	0.364	0.46	0.34	0.15	0.26	0.213	0.172	0.421			0.264
SEP		0.521	0.441	0.573	0.242	0.42	0.464	0.593	0.251	0.416	0.229	
OCT	0.264		0.52	0.641	0.241	0.41	0.321	0.742	0.643		- 0.28	0.646
NOV	0.316	0.673		0.721	0.346	0.52	0.642	0.79	0.621	0.531	0.68	0.734
DEC	0.3	0.722	0.49		0.746		0.732	0.834	0.742	0.831	0.731	0.842
JAN	0.542	0.84	0.637	0.846		0.72			0.831	0.821	0.714	0.723
FEB	0.831	0.96	0.66	0.946	0.891			0.816	0.921	0.816	0.846	0.71
MAR	0.88	0,98	0.74	0.952	0.942	0.84		0.814	1.36		0,533	0.89
APR	0.926	1.33	0.81	1.28	1.34				1.30	0.914		0.892
	0.97	1.42	0.93	0.98	1.38	0.81	0.981	0.942				
MAY		8.632		8.243	7.0264	5.706	6.684	7.304	7.747	7.177	0.005	0.121
TOTAL	6.125	0.032	0.020	01110								

Contd. APPENDIX II

:

					00.02	93-94	94-95	95-96	96-97	97-98	98-99	TOTAL	MEAN
MONTH	88-89	89-90	90-91	91-92	92-93		0.264	0.462	0.643	0.632	0,364	10.3809	0.2965971
JUN	0.321	0.162	0.362	0.341	0.263	0.462		0.402	0.342	0.161	0.164	8,3841	0.2395457
JUL	0.164	0.112	0.141	0.04	0.121	0.143	0.101		0.531	0.234	0.012	9,4469	0.2699114
AUG	0.021	0.131	0.236	0.166	0.192	0.231	0.193	0.394		0.254		13.5204	0.3862971
SEP	0.001	0.32	0.641	0.463	0.211	0.53	0.34	0.321	0.34			15.7381	0.44966
	0.315	0.121	0.39	0.32	0.2	0.34	0.48	0.101	0.31	0.43			
OCT		0.635	0.35	0.43	0.216	0.563	0.56	0.493	0.53	0.41	0.64		
NOV	0.53		0.651	0.436		0.734	0.64	0.421	0.51	0.58		22.9576	
DEC	0.82	0.52		0.466			0.62	0.643	0.64	0.52	0.946	28.1323	0.80378
JAN	0.56	0.804	0.732		0.79		0.534	0.531	0.72	0.734	0.76	28.5624	0.8160686
FEB	0.51	0.831	0.641	0.321				0.589	0.53	0.617	0.843	32.473	0.9278
MAR	0.81	0.813	0.621	0.396				0.734	0.59	0.432	0.846	36.472	1.0420571
APR	0.87	0.931	0.432	0.91	0.916			0.62		0.931		38.679	1.1051143
MAY	0.92	0.82	0.841	0.97	0.99							263.9993	7.5428371
TOTAL	5.842	6.2	6.038	5.639	6.422	7.652	5.709	5.552	0.020	0.201	0.100		

APPENDIX III

.

NFLOW D	ATA (M	m ³)				00.70 J	70-71	71-72	72-73	73-74	74-75	75-76	76-77
MONTH	64-65	65-66	66-67	67-68	68-69	69-70	19.354	17.789	33.32	30.364	32.256	26.354	14.329
JUNE	21.436	17.849	24.356	19.257	48.321	24.369	37.64	75.456	34.453	39.25	39.247	74.25	26.216
JULY	50.83	50.567	55.675	56.258	23.354	38.364 34.36	36,241	37.248	21.453	25.147	15.14	18.365	25
AUG	28.36	20.354	20.1867	37.458	23.78	16.38	13.147	25.247	5.324	22.14	9.247	14.258	8.219
SEP	21.423	20.419	14.25	12.354	15.897	9.365	8.365	14.354	16.238	20.147	5.458	25.369	12.45
OCT	11.64	9.954	19.56	10.258	13.56 10.78	14.255	12.874	8.964	13.458	11.147	8.254	24.16	3.354
NOV	10.46	18.352	8.584	5.241	10.78	8.241	3.412	6.147	7.786	10.258	6.369	27.15	2.385
DEC	4.32	3.984	6.697	6.2547	1.987	5.541	6.247	3.148	9.258	4.124	4.54	2.147	4.215
JAN	5.68	3.654	4.786	4.257	1.5471	6.368	3.014	4.251	4.546	6.214	5.425	1.385	5.145
FEB	5.41	1.352	2.435	2.3147	2.254	2.254	1.47	1.024	1.232	1.3654	1.347	0.0125	4.15
MAR	2.36	0.0265	1.34	0.2367 0.645	1.35	0.4102	0.314	0.3657	0.154	0.258	0.8741	0.0127	0.0115
APR	1.42	1.698	0.2547	1.47	1.687	0.1768	0.147	0.168	0.152	0.0014	0.625	0.005	0.102
MAY	1.87	1.542	0.2147	156.0041		160.084	142.225	194.1617	147.374	170.4158	128.7821	213.4682	105.5705
Total	165.209	149.7515	158.3391	130.0041	102.01.1								
								1	05.00	96.97	87-88	88-89	89-90
MONTH	77-78	78-79	79-80	80-81	81-82	82-83	83-84	84-85				88-89 30.661	89-90 29.16
		78-79	the second se	80-81 49.0514	58.0185	28.02	15.462	2 16.302	35.24	12.7542	10.10622		29.16
JUNE	36.214		the second se	49.0514 19.7737	58.0185 44.6827	28.02 42.043	15.462 35.777	2 16.302 7 51.337	35.24 41.4112	12.7542 20.616		30.661	29.16 31.363
JUNE	36.214 22.354	55 51.257	38.321	49.0514 19.7737 29.5963	58.0185 44.6827 39.3337	28.02 42.043 11.672	15.462 35.777 55.615	2 16.302 7 51.337 5 25.848	35.24 41.4112 30.791	12.7542 20.616 28.4695	10.10622 18.2007	30.661 27.859	29.16 31.363 21.326 11.754
JUNE JULY AUG	36.214 22.354 12.146	55 51.257 46.147	38.321 41.3256 23.14 24.214	49.0514 19.7737 29.5963 15.5218	58.0185 44.6827 39.3337 38.2317	28.02 42.043 11.672 14.032	15.462 35.777 55.615 31.144	2 16.302 7 51.337 5 25.848 4 14.622	35.24 41.4112 30.791 12.705	12.7542 20.616 28.4695 7.829	10.10622 18.2007 19.887	30.661 27.859 39.752 41.3803 13.1847	29.16 31.363 21.326 11.754 17.731
JUNE JULY AUG •SEP	36.214 22.354	55 51.257 46.147 15.147	38.321 41.3256 23.14 24.214 15.147	49.0514 19.7737 29.5963 15.5218 28.686	58.0185 44.6827 39.3337 38.2317 13.3743	28.02 42.043 11.672 14.032 11.362	15.462 35.777 55.615 31.144 6.617	16.302 51.337 525.848 14.622 723.201	35.24 41.4112 30.791 12.705 13.311	12.7542 20.616 28.4695 7.829 17.864	10.10622 18.2007 19.887 9.955	30.661 27.859 39.752 41.3803 13.1847 8.703	29.16 31.363 21.326 11.754 17.731 7.109
JUNE JULY AUG SEP OCT	36.214 22.354 12.146 14.158	55 51.257 46.147 15.147 18.124 8.365	38.321 41.3256 23.14 24.214 15.147 12.354	49.0514 19.7737 29.5963 15.5218 28.686 27.22	58.0185 44.6827 39.3337 38.2317 13.3743 14.4485	28.02 42.043 11.672 14.032 11.362 11.629	15.462 35.777 55.615 31.144 6.617 9 9.883	2 16.302 7 51.337 5 25.848 4 14.622 7 23.201 3 7.328	35.24 41.4112 30.791 12.705 13.311 5.384	12.7542 20.616 28.4695 7.829 17.864 12.5664	10.10622 18.2007 19.887 9.955 13.335	30.661 27.859 39.752 41.3803 13.1847 8.703 2.192	29.16 31.363 21.326 11.754 17.731 7.109 5.468
JUNE JULY AUG •SEP	36.214 22.354 12.146 14.158 13.564	55 51.257 46.147 15.147 18.124 8.365 13.147	38.321 41.3256 23.14 24.214 15.147 12.354 10.125	49.0514 19.7737 29.5963 15.5218 28.686 27.22 27.06	58.0185 44.6827 39.3337 38.2317 13.3743 14.4485 3.7321	28.02 42.043 11.672 14.032 11.362 11.629 7.462	15.462 35.777 55.615 31.144 6.617 9.883 2 4.062	16.302 51.337 525.848 14.622 723.201 37.328 27.005	35.24 41.4112 30.791 12.705 13.311 5.384 5 7.438	12.7542 20.616 28.4695 7.829 17.864 12.5664 4.9994	10.10622 18.2007 19.887 9.955 13.335 9.214 7.251 3.416	30.661 27.859 39.752 41.3803 13.1847 8.703 2.192 2.347	29.16 31.363 21.326 11.754 17.731 7.109 5.468 2.347
JUNE JULY AUG SEP OCT NOV	36.214 22.354 12.146 14.158 13.564 12.147	55 51.257 46.147 15.147 18.124 8.365 13.147 5.145	38.321 41.3256 23.14 24.214 15.147 12.354 10.125 2.0936	49.0514 19.7737 29.5963 15.5218 28.686 27.22 27.06 3 2.8117	58.0185 44.6827 39.3337 38.2317 13.3743 14.4485 3.7321 2.9346	28.02 42.043 11.672 14.032 11.362 11.629 7.462 4.75384	15.462 35.777 55.615 31.144 6.617 9.883 2 4.062 4	16.302 51.337 525.848 14.622 723.201 37.328 27.005 83.317	35.24 41.4112 30.791 12.705 13.311 5.384 5.384 7.438 7.438	12.7542 20.616 28.4695 7.829 17.864 12.5664 4.9994 2.798	10.10622 18.2007 19.887 9.955 13.335 9.214 7.251 3.416 8.179	30.661 27.859 39.752 41.3803 13.1847 8.703 2.192 2.347 1.646	29.16 31.363 21.326 11.754 17.731 7.109 5.468 2.347 1.23 ⁴
JUNE JULY AUG SEP OCT NOV DEC	36.214 22.354 12.146 14.158 13.564 12.147 12.45	55 51.257 46.147 15.147 18.124 8.365 13.147 5.145 4.258	38.321 41.3256 23.14 24.214 15.147 12.354 10.125 2.0936 0.3861	49.0514 19.7737 29.5963 15.5218 28.686 27.22 27.06 2.8117 1.3478	58.0185 44.6827 39.3337 38.2317 13.3743 14.4485 3.7321 2.9346 1.623	28.02 42.043 11.672 14.032 11.362 11.629 7.462 4.75384 2.595	15.462 35.777 55.615 31.144 6.617 9.883 2 4.062 4.062 4.065	16.302 7 51.337 5 25.848 4 14.622 7 23.201 3 7.328 2 7.005 8 3.317 8 4.505	35.24 41.4112 30.791 12.705 13.311 5.384 5.7.438 7.438 7.438 1.006	12.7542 20.616 28.4695 7.829 17.864 12.5664 4.9994 2.798 5.914 4.364	10.10622 18.2007 19.887 9.955 13.335 9.214 7.251 3.416 8.179 9.707	30.661 27.859 39.752 41.3803 13.1847 8.703 2.192 2.347 1.646 7.61	29.16 31.363 21.326 11.754 17.731 7.109 5.468 2.347 1.237 2.587
JUNE JULY AUG SEP OCT NOV DEC JAN	36.214 22.354 12.146 14.158 13.564 12.147 12.45 4.369	55 51.257 46.147 15.147 18.124 8.365 13.147 5.145 4.258 1.36	38.321 41.3256 23.14 24.214 15.147 12.354 10.125 2.0936 0.3861 0.2895	49.0514 19.7737 29.5963 15.5218 28.686 27.22 27.06 2.8117 1.3478 5 0.0676	58.0185 44.6827 39.3337 38.2317 13.3743 14.4485 3.7321 2.9346 1.623 0.4672	28.02 42.043 11.672 14.032 11.362 7.462 4.75384 2.599 6.956	15.462 35.777 55.615 31.144 6.617 9.883 2 4.062 4.062 4.062 5.666 2.133	16.302 51.337 525.848 14.622 723.201 37.328 27.005 83.317 84.505 31.262	35.24 41.4112 30.791 12.705 13.311 5.384 7.438 7.4457 7.4457 7.448 7.44577 7.448777 7.44877777777777777777777777	12.7542 20.616 28.4695 7.829 17.864 12.5664 4.9994 2.798 5.914 4.364 6.8912	10.10622 18.2007 19.887 9.955 13.335 9.214 7.251 3.416 8.179 9.707 6.627	30.661 27.859 39.752 41.3803 13.1847 8.703 2.192 2.347 1.646 7.61 0.287	29.16 31.363 21.326 11.754 17.731 7.109 5.468 2.347 1.237 2.587 0.252
JUNE JULY AUG SEP OCT NOV DEC JAN FEB	36.214 22.354 12.146 14.158 13.564 12.147 12.45 4.369 2.147	55 51.257 46.147 15.147 18.124 8.365 13.147 5.145 4.258 1.36 0.235	38.321 41.3256 23.14 24.214 15.147 12.354 10.125 2.0936 0.3861 0.2895 1.0691	49.0514 19.7737 29.5963 15.5218 28.686 27.22 2.8117 1.3478 0.0676 0.8006	58.0185 44.6827 39.3337 13.3743 14.4485 3.7321 2.9346 1.623 0.4672 0.9823	28.02 42.043 11.672 14.032 11.362 11.629 7.462 4.75384 2.599 6.956 0.3900	15.462 35.777 55.615 31.144 6.617 9.883 2 4.062 4.062 5.2.133 30.742	16.302 51.337 525.848 14.622 723.201 37.328 27.005 83.317 84.505 31.265 20.21	35.24 41.4112 30.791 12.705 13.311 5.384 7.438 7.438 2.625 2.4564 3.0.6464	12.7542 20.616 28.4695 7.829 17.864 12.5664 4.9994 2.798 5.914 4.364 6.8912 0.235	10.10622 18.2007 19.887 9.955 13.335 9.214 7.251 3.416 8.179 9.707 6.627 0.93	30.661 27.859 39.752 41.3803 13.1847 8.703 2.192 2.347 1.646 7.61 0.287 0.545	29.16 31.363 21.326 11.754 17.731 7.109 5.468 2.347 1.237 2.587 0.252 2.925
JUNE JULY AUG SEP OCT NOV DEC JAN FEB MAR	36.214 22.354 12.146 14.158 13.564 12.147 12.45 4.369 2.147 1.64	55 51.257 46.147 15.147 18.124 8.365 13.147 5.145 4.258 1.36 0.235	38.321 41.3256 23.14 24.214 15.147 12.354 10.125 2.0936 0.3861 0.2895 1.0691 1.3146	49.0514 19.7737 29.5963 15.5218 28.686 27.22 27.06 2.8117 1.3478 0.0676 0.8006 0.6898	58.0185 44.6827 39.3337 38.2317 13.3743 14.4485 3.7321 2.9346 1.623 0.4672 0.9823 0.7645	28.02 42.043 11.672 14.032 11.362 11.629 7.462 4.75384 2.599 6.956 0.3900 0.8699	15.462 35.777 55.615 31.144 6.617 9.883 2 4.062 4.062 5.2.666 2.6667 3.0.743 3.0.743 3.0.743	2 16.302 7 51.337 5 25.848 4 14.622 7 23.201 3 7.328 2 7.005 8 3.317 8 4.505 3 1.265 2 0.216 6 0.622	35.24 41.4112 30.791 12.705 13.311 5.384 7.4387 7.4387 7.4387 7.4387 7.4387 7.4387 7.4387 7.4477 7.4487 7.44777 7.4487777777777	12.7542 20.616 28.4695 7.829 17.864 12.5664 4.9994 2.798 5.914 4.364 6.8912 0.235	10.10622 18.2007 19.887 9.955 13.335 9.214 7.251 3.416 8.179 9.707 6.627 0.93	30.661 27.859 39.752 41.3803 13.1847 8.703 2.192 2.347 1.646 7.61 0.287 0.545	29.16 31.363 21.326 11.754 17.731 7.109 5.468 2.347 1.23 2.58 0.252 2.925

contd. APPENDIX- III

.

MONTH	00.04	91-92	92-93	93-94	94-95	95-96	96-97	97-98	98-99	TOTAL	MEAN
		18.989		9.389	25.112	11.565	4,5816	4.6307	13.13827	861.7357	24.62102
JUNE	17.491				72.879			52.15066	40.2556	1518.254	43.37868
JULY	58.834				32.6507	26.5495				1062.369	30.35339
AUG	29.724				21,9324		L				16.8309
SEP	3.515										17.01009
OCT	11.885	11.6095									11.16061
NOV	11.73	8.907				7.4385					
DEC	3.237	8.954	8.69								
JAN	2.836	3.19	2.104	3.104							
FEB	3.162	3.12	4.358	2.584	3.502						
MAR	3.763		2.764	3.239	4.691	5.05	5.931	6.956			
APR	1.608			2.11	2.317	1.215	4.8963	5.3906			
	0.463		_		3.544	4.4712	0.7789	0.85698	_		
MAY	148.248					213.6503	128.5531	161.1331	223.7519	5761.195	164.6056
Total	140.240	100.004	100.1100								

:

APPENDIX IV

.

TUAL REL	EASE (IF	RIGATIC	<u> </u>			00 70	70-71	71-72	72-73	73-74
MONTH	64-65	65-66	66-67	67-68	68-69	69-70	0	0	0	0
JUN	0	0	0	0	0	0		0.5	0	0
JUL	0	0	0	1.1	0	0	0	0.101	1.302	12.21
AUG	ol	0	0	1.29	6.06	4.22	0	22.36	18.46	26.42
SEP	22.13	16.402	17.432	2.3	18.43	24.32	15.36	27.64	25.32	18.19
OCT	27.41	21.64	27.64	25.62	19.18	21.12	27.16	26.32	22.61	22.31
NOV	27.48	28.94	23.32	24.29	26.41	25.31	25.43	28.16	22.21	20.17
DEC	28.64	25.93	25.6	27.31	22.32	21.42	5.21	15.92	3.01	5.21
JAN	3.26	6.41	9.32	15.26	4.61	1.27	27.31	15.21	16.32	14.36
FEB	18.41	8.26	9.41	18.11	16.22	18.31	15.26	27.61	12.19	22.21
MAR	12.31	16.49	18.36	16.21	20.19	15.26	1.09	2.11	0	3.11
APR	3.04	0	1.4	2.6	3.21	0	1.03	0	0	0
the second s	0	0	0	0	0	131.23	116.82	165.931	121.422	144.19
MAT										
MAY Total		124.072	132.482	134.09	136.63					
Total	142.68	124.072	132.482	134.09	130.03					
		124.072						81-82	82-83	83-84
Total		124.072 75-76	76-77	77-78	78-79	79-80	80-81	81-82 0	82-83 0	<u>83-84</u> 0
Total MONTH	142.68		76-77 0	77-78 0	78-79 0	79-80 0				
Total MONTH JUN	142.68 74-75	75-76 0 0	76-77 0 0	77-78 0 0	78-79 0 0	79-80 0 0	80-81 0 0	0	0	0 0 0
Total MONTH JUN JUL	142.68 74-75 0	75-76 0 26.353	76-77 0 0	77-78 0 0 0	78-79 0 0 61.898	79-80 0 0 13.971	80-81 0	0 0.228	0	0 0 0 18.89
Total MONTH JUN	142.68 74-75 0 0	75-76 0 26.353 37.252	76-77 0 0 11.056	77-78 0 0 0 13.3	78-79 0 0 61.898 17.508	79-80 0 0 13.971 21.994	80-81 0 0 14.614	0 0.228 40.595	0 0 0 17.262 27.088	0 0 0 18.89 30.118
Total MONTH JUN JUL AUG	142.68 74-75 0 0 0	75-76 0 26.353 37.252 27.9145	76-77 0 0 0 11.056 15.96	77-78 0 0 0 13.3 17.096	78-79 0 61.898 17.508 28.838	79-80 0 13.971 21.994 25.297	80-81 0 0 14.614 36.379	0 0.228 40.595 38.082	0 0 0 17.262	0 0 18.89 30.118 28.38
Total MONTH JUN JUL AUG SEP	142.68 74-75 0 0 0 14.61	75-76 0 26.353 37.252 27.9145 23.959	76-77 0 0 11.056 15.96 14.83	77-78 0 0 0 13.3 17.096 11.498	78-79 0 61.898 17.508 28.838 20.646	79-80 0 13.971 21.994 25.297 21.271	80-81 0 0 14.614 36.379 23.772	0 0.228 40.595 38.082 26.571	0 0 0 17.262 27.088	0 0 18.89 30.118 28.38 28.38
Total MONTH JUN JUL AUG SEP OCT	142.68 74-75 0 0 0 14.61 25.104	75-76 0 26.353 37.252 27.9145 23.959 28.079	76-77 0 0 11.056 15.96 14.83 12.55	77-78 0 0 13.3 17.096 11.498 25.33	78-79 0 61.898 17.508 28.838 20.646 22.276	79-80 0 13.971 21.994 25.297 21.271 20.335	80-81 0 14.614 36.379 23.772 21.913	0 0.228 40.595 38.082 26.571 24.288	0 0 17.262 27.088 24.466 20.406 0	0 0 18.89 30.118 28.38 28.38 3.84
Total MONTH JUN JUL AUG SEP OCT NOV	142.68 74-75 0 0 0 14.61 25.104 26.32	75-76 0 26.353 37.252 27.9145 23.959 28.079 6.096	76-77 0 0 11.056 15.96 14.83 12.55 2.789	77-78 0 0 0 13.3 17.096 11.498 25.33 5.621	78-79 0 61.898 17.508 28.838 20.646 22.276 7.308	79-80 0 0 13.971 21.994 25.297 21.271 20.335 5.496	80-81 0 14.614 36.379 23.772 21.913 27.285	0 0.228 40.595 38.082 26.571 24.288 27.559	0 0 17.262 27.088 24.466 20.406	0 0 18.89 30.118 28.38 28.38 3.84 19.185
Total MONTH JUN JUL AUG SEP OCT NOV DEC	142.68 74-75 0 0 0 14.61 25.104 26.32 4.212	75-76 0 26.353 37.252 27.9145 23.959 28.079 6.096 16.42	76-77 0 0 11.056 15.96 14.83 12.55 2.789 2.448	77-78 0 0 13.3 17.096 11.498 25.33 5.621 10.369	78-79 0 61.898 17.508 28.838 20.646 22.276 7.308 4.736	79-80 0 13.971 21.994 25.297 21.271 20.335 5.496 12.568	80-81 0 14.614 36.379 23.772 21.913 27.285 8.88	0 0.228 40.595 38.082 26.571 24.288 27.559 5.909	0 0 17.262 27.088 24.466 20.406 0	0 0 18.89 30.118 28.38 28.38 3.84 19.185 13.376
Total MONTH JUN JUL AUG SEP OCT NOV DEC JAN	142.68 74-75 0 0 0 14.61 25.104 26.32 4.212 3.939	75-76 0 26.353 37.252 27.9145 23.959 28.079 6.096 16.42 22.657	76-77 0 0 11.056 15.96 14.83 12.55 2.789 2.448 19.137	77-78 0 0 13.3 17.096 11.498 25.33 5.621 10.369 17.976	78-79 0 0 61.898 17.508 28.838 20.646 22.276 7.308 4.736 23.671	79-80 0 13.971 21.994 25.297 21.271 20.335 5.496 12.568 21.463	80-81 0 14.614 36.379 23.772 21.913 27.285 8.88 21.906	0 0.228 40.595 38.082 26.571 24.288 27.559 5.909 15.406	0 0 17.262 27.088 24.466 20.406 0 18.167	0 0 18.89 30.118 28.38 28.38 3.84 19.185 13.376
Total MONTH JUN JUL AUG SEP OCT NOV DEC JAN FEB	142.68 74-75 0 0 0 14.61 25.104 26.32 4.212 3.939 11.69	75-76 0 26.353 37.252 27.9145 23.959 28.079 6.096 16.42 22.657 3.045	76-77 0 0 11.056 15.96 14.83 12.55 2.789 2.448 19.137 3.914	77-78 0 0 13.3 17.096 11.498 25.33 5.621 10.369 17.976 5.084	78-79 0 0 61.898 17.508 28.838 20.646 22.276 7.308 4.736 23.671 9.383	79-80 0 13.971 21.994 25.297 21.271 20.335 5.496 12.568	80-81 0 14.614 36.379 23.772 21.913 27.285 8.88 21.906 20.827	0 0.228 40.595 38.082 26.571 24.288 27.559 5.909 15.406 20.688	0 0 17.262 27.088 24.466 20.406 0 18.167 11.829 0 0	0 0 18.89 30.118 28.38 28.38 3.84 19.185 13.376 0 0
Total MONTH JUN JUL AUG SEP OCT NOV DEC JAN FEB MAR	142.68 74-75 0 0 0 14.61 25.104 26.32 4.212 3.939 11.69 14.954	75-76 0 26.353 37.252 27.9145 23.959 28.079 6.096 16.42 22.657	76-77 0 0 11.056 15.96 14.83 12.55 2.789 2.448 19.137 3.914 0	77-78 0 0 13.3 17.096 11.498 25.33 5.621 10.369 17.976	78-79 0 0 61.898 17.508 28.838 20.646 22.276 7.308 4.736 23.671	79-80 0 0 13.971 21.994 25.297 21.271 20.335 5.496 12.568 21.463 3.22	80-81 0 0 14.614 36.379 23.772 21.913 27.285 8.88 21.906 20.827 3.711	0 0.228 40.595 38.082 26.571 24.288 27.559 5.909 15.406 20.688 2.285	0 0 17.262 27.088 24.466 20.406 0 18.167 11.829 0	0 0 18.89 30.118 28.38 28.38 3.84 19.185 13.376

.

Contd. ACTUAL RELEASE (IRRIGATION, Mm³)

Conta. ACTU		EASE (IIV				00.00	00.04	91-92	92-93	93-94
MONTH	84-85	85-86	86-87	87-88	88-89	89-90	90-91	91-92	52-33	33-34
JUN	0	0	0	2.94	0	0	0	0	0	0
	l ol		0	0	3.038	0	0	0	0	0
JUL	╈╾╼╼╼╤╋╴	5 0000			3.038	0	2.608	33.856	14.562	0.53
AUG	0	5.3368			10.928		3.693	20.553	15.937	2.954
SEP	18.476	21.915	2.383			11 50	22.874	21.819	23.049	11.044
OCT	24.501	22.015	10.872	9.524	21.787	11.58			22.696	23.265
NOV	27.38	26.58	8.861	3.184	28.74	20.735	18.481	23.745		
DEC	24.08	22.386	25.326	11.163	22.089	23.421	20.004	22.71	27.397	24.137
	8.446	1.21	5.843	5.246	15.21	6.462	8.099	12.737	12.495	9.425
JAN			18.934	26.033	17.812	26.838	25.345	15.337	26.975	14.067
FEB	11.341	13.995			18.601	16.771	18.021	19.035	17.843	16.073
MAR	17.892	16.001	26.431	22.36			3.559	1.276		0
APR	0	0	5.167	12.176	9.689	1.26	3,559	1.270	12.00	0
MAY	0	0	0	0	0	0	0	0	0	101 105
Total	132.116	129.4388	103.817	92.626	150.932	107.067	122.684	171.068	172.984	101.495
i Utai										

MONTH	94-95	95-96	96-97	97-98	98-99	TOTAL
JUN	0	0	0	0	0	2.94
	0.042	0.1	0.1	0	0.1	5.208
JUL	6.78	18.02	0	0	0.1	267.4448
AUG	20.34	17.56	0	5.587	29.16	564.073
SEP		26.192	5.703	14.7488	13.4065	740.9338
OCT	24.94		22.32	27.383	37.16	812.385
NOV	23.66	26.474		29.13	40.07	837.477
DEC	28.861	28.861	24.24	17.096	26.42	298.712
JAN	20.04	15.494	15.131		3.184	559.426
FEB	16.656	17.531	12.89	17.673		640.026
MAR	17.98	17.332	12.316	17.459		
APR	3.683	3.092	5.15	1.53	6.45	114.741
MAY	5	13.8	0.1	0.1	13.508	32.508
Total	167.982	184.456	97.95	130.7068	192.8015	4875.8746

Contd. APPENDIX - IV

ACTUAL RELEASE

DRINKING (Mm³)

MONTH	64-87	87-94	94-99
JUN	0.93	1.26	1.65
JUL	0.93	1.26	1.65
AUG	0.93	1.26	1.65
SEP	0.93	1.26	1.65
ОСТ	0.93	1.26	1.65
NOV	0.93	1.26	1.65
DEC	0.93	1.26	1.65
JAN	0.93	1.26	1.65
FEB	0.93	1.26	1.65
MAR	0.93	1.26	1.65
APR	0.93	1.26	1.65
MAY	0.93	1.26	1.65
Total	11.16	15.12	19.8

PISCICULTURE (Mm³)

:

MONTH	64-99
JUN	0.15
JUL	0.15
AUG	0.15
SEP	0.12
OCT	0.18
NOV	0.2
DEC	0.2
JAN	0.05
FEB	0.05
MAR	0.05
APR	0
MAY	0
Total	1.3

RECREATION (Mm³)

MONTH	64-99
JUN	0
JUL	0
AUG	0.002
SEP	0.002
OCT	0.001
NOV	0.001
DEC	0
JAN	0
FEB	0
MAR	0
APR	0
MAY	0
Total	0.006

PROGRAMMING VARIABLES

CPW(i,j)	:	Crop water requirement
Ddo	:	Drinking water demand
Dso	:	Dead storage
EVP (i,j)	:	Evaporation
FDo	:	Pisciculture demand
INF (i,j)	:	Inflow
МС	:	Maximum capacity for opening of
		shutters
PM (i,j)	•	Previous month's storage
Rdo	:	Recreation demand
REL	:	Release
RSTOR	:	Remaining storage
Seep	:	Seepage and other losses
SPD (i,j)	:	Spillway discharge
STORCM (i,j)	:	Initial storage .
TODRIWAT(i,j)	:	Total water for drinking
TOFISWAT (i,j)	:	Total water for pisciculture
TOIRRWAR(ij)	:	Total water for irrigation
TORECWAT(i,j)	:	Total water for recreation
YR1 (i,j)	:	Water year 1
YR2 (i,j)	:	Water year 2
<		

.

.

-

,

APPENDIX –V

PROGRAM FOR RESERVOIR SIMULATION MODEL (VB-6.0)

i

WELCOME FORM:

NEXT button:

Private Sub Command1_Click() Load RESERVOIRSIM RESERVOIRSIM. Show End Sub

Private Sub Form_Load() Module1.FNAME End Sub

Private Sub Command2_Click() Unload Me End Sub

INPUT FILE FORM:

ADD button:

Private Sub Command1_Click() Module1.Add End Sub

Private Sub Command2_Click() txtIN. Text = " " txtEVP. Text = " " txtCW. Text = " " End Sub

RESULT button:

Public Sub Command5_Click() Module1.RESULT End Sub

EXIT button:

Private Sub Command3_Click() Unload Me | End Sub

OUT PUT FORM:

ţ

Private Sub Command1_Click() Module1.prev End Sub Private Sub Command2_Click() Module1.nxt End Sub

Private Sub Command3_Click() Unload Me End Sub

MODULE1 :

Public FILNAME, MON(60, 13) As String Public RecNo, COUNT, YR1(60, 13), YR2(60, 13), y As Integer Public TODRIWAT(60, 13), TOIRRWAT(60, 13), TOFISWAT(60, 13), TORECWAT(60, 13), PM(60, 13), STORCM(60, 13) As Double Public INF(60, 13), EVP(60, 13), SPD(60, 13) As Double Public CRecNo As Integer

Public Sub FNAME() FILNAME = InputBox("ENTER A FILE NAME FOR STORING THE RESERVOIR DATA (C:\.....)") End Sub

ADD subroutine:

Public Sub Add() Dim Y1, Y2 As Integer Dim i, EV, CW As Single Dim M As String RecNo = RecNo + 1Open FILNAME For Append As #1 Y1 = RESERVOIRSIM.txtY1.Text Y2 = RESERVOIRSIM.txtY2.Text M = RESERVOIRSIM.txtM.Text i = RESERVOIRSIM.txtIN.Text EV = RESERVOIRSIM.txtEVP.Text CW = RESERVOIRSIM.txtCW.Text Write #1, Y1, Y2, M, i, EV, CW Close #1 If (RecNo < 12 * (COUNT + 1)) Then RESERVOIRSIM.txtY1.Text = Y1 RESERVOIRSIM.txtY2.Text = Y2 Else RESERVOIRSIM.txtY1.Text = RESERVOIRSIM.txtY1.Text + 1 RESERVOIRSIM.txtY2.Text = RESERVOIRSIM.txtY2.Text + 1 COUNT = COUNT + 1End If If RESERVOIRSIM.txtM.Text = "JUN" Then RESERVOIRSIM.txtM.Text = "JUL": GoTo 10 If RESERVOIRSIM.txtM.Text = "JUL" Then RESERVOIRSIM.txtM.Text = "AUG": GoTo 10 If RESERVOIRSIM.txtM.Text = "AUG" Then RESERVOIRSIM.txtM.Text = "SEP": GoTo 10 If RESERVOIRSIM.txtM.Text = "SEP" Then RESERVOIRSIM.txtM.Text = "OCT": GoTo 10 If RESERVOIRSIM.txtM.Text = "OCT" Then RESERVOIRSIM.txtM.Text = "NOV": GoTo 10 If RESERVOIRSIM.txtM.Text = "NOV" Then RESERVOIRSIM.txtM.Text = "DEC": GoTo 10 If RESERVOIRSIM.txtM.Text = "DEC" Then RESERVOIRSIM.txtM.Text = "JAN": GoTo 10 If RESERVOIRSIM.txtM.Text = "JAN" Then RESERVOIRSIM.txtM.Text = "FEB": GoTo 10 If RESERVOIRSIM.txtM.Text = "FEB" Then RESERVOIRSIM.txtM.Text = "MAR": GoTo 10 If RESERVOIRSIM.txtM.Text = "MAR" Then RESERVOIRSIM.txtM.Text="APR": GoTo 10 If RESERVOIRSIM.txtM.Text = "APR" Then RESERVOIRSIM.txtM.Text="MAY": GoTo 10 If RESERVOIRSIM.txtM.Text = "MAY" Then RESERVOIRSIM.txtM.Text = "JUN"

10 RESERVOIRSIM.txtIN.Text = "" RESERVOIRSIM.txtEVP.Text = "" RESERVOIRSIM.txtCW.Text = "" End Sub

RESULT subroutine :

Public Sub RESULT() Dim i, j, k, l, DamCount As Integer Dim CPW(60, 13), IST(60, 13), DD(60, 13), ID(60, 13), FD(60, 13), RD(60, 13), RS(60, 13) As Double Dim DSo, DDo, FDo, RDo, seep As Single Dim REL1, REL2, REL3, REL4, REL5, REL6, REL7, REL8, REL9, REL10, REL11, REL12, REL13, REL14, REL15, REL16, MC As Double Dim RSTOR1, RSTOR2, RSTOR3, RSTOR4, RSTOR5, RSTOR6, RSTOR7, RSTOR8, RSTOR9, **RSTOR10** As Double Dim RSTOR11, RSTOR12, RSTOR13, RSTOR14, RSTOR15, RSTOR16 As Double Dim A, B As Double DamCount = 0CRecNo = 0y = 1 DSo = 0.63: FDo = 0.2: RDo = 0.002: DDo = 1.89 seep = 0.35PM(1, 1) = 0.63 'Val(InputBox("PREVIOUS MONTH STORAGE OF THE RESORVOIR")) MC = 106 'Val(InputBox("MAXIMUM CAPACITY OF RESERVOIR"))

Debug.Print Tab(30); "RESULTS OF RESERVOIR SIMULATION MODEL" Debug.Print Tab(30); "-----Debug.Print Debug.Print "INPUT CONSTANTS:" Debug.Print :": DSo Debug.Print "Dead storage :"; DDo Debug.Print "Drinking water demand :"; FDo Debug.Print "Pisciculture demand :": RDo Debug.Print "Recreation demand :"; seep Debug.Print "Seepage and other losses Debug.Print "Previous month storage :"; PM(1, 1) Debug.Print "Maximum capacity for the opening of shutters :"; MC Debug.Print

On Error GoTo 120 Open FILNAME For Input As #1 Do While Not EOF(1) 'Check for end of file. DamCount = DamCount + 1 If (DamCount > 12) Then y = y + 1: DamCount = 1 Input #1, YR1(y, DamCount), YR2(y, DamCount), MON(y, DamCount), INF(y, DamCount). EVP(y, DamCount), CPW(y, DamCount) Loop Close #1

Open "c:\result.out" For Output As #1 Print #1, Tab(30); "RESERVOIR SIMULATION MODEL RESULTS" Print #1, Tab(30); "------"" Print #1, "INPUT CONSTANTS:"

:"; DSo Print #1, "Dead storage :": DDo Print #1, "Drinking water demand :": FDo Print #1, "Pisciculture demand :"; RDo Print #1, "Recreation demand :"; seep Print #1, "Seepage and other losses :"; PM(1, 1) Print #1, "Previous month storage Print #1, "Maximum capacity for the opening of shutters :"; MC 1 = 0For i = 1 To y Debug.Print "YEAR:"; YR1(i, i - 12 * l); "-"; YR2(i, i - 12 * l) Debug.Print Debug.Print Tab(2); "-----Debug.Print Tab(2); "MONTH"; Tab(15); "INFL"; Tab(20); "EVP"; Tab(30); "SPILL"; Tab(40); "INIST": Tab(50); "DRINK"; Tab(60); "IRRIG"; Tab(70); "PISCI"; Tab(80); "REC"; Tab(90); "REMST" Debug.Print Tab(2); "-----Print #1, "YEAR:"; YR1(i, i - 12 * l); "-"; YR2(i, i - 12 * l) Print #1, Tab(2); "-----Print #1, Tab(2); "MONTH"; Tab(15); "INFL"; Tab(20); "EVP"; Tab(30); "SPILL"; Tab(40); "INIST"; Tab(50); "DRINK"; Tab(60); "IRRIG"; Tab(70); "PISCI"; Tab(80); "REC"; Tab(90); "REMST" Print #1, Tab(2); "------" For j = 1 To 12 SPD(i, j) = 0: STORCM(i, j) = 0REL1 = 0: REL2 = 0: REL3 = 0: REL4 = 0: REL5 = 0: REL6 = 0 REL7 = 0: REL8 = 0: REL9 = 0: REL10 = 0: REL11 = 0: REL12 = 0 REL13 = 0: REL14 = 0: REL15 = 0: REL16 = 0 If PM(i, j) - Val(EVP(i, j)) < 0 Then PM(i, j) = 0STORCM(i, j) = Val(INF(i, j)) + PM(i, j) - Val(EVP(i, j)) - seepIf STORCM(i, j) < 0 Then STORCM(i, j) = 0: GoTo 100 If STORCM(i, j) < MC Then GoTo 40 SPD(i, j) = STORCM(i, j) - MCSTORCM(i, j) = MC 40 If STORCM(i, j) - (DSo + 0.25 * DDo) < 0.25 * DDo Then GoTo 50 REL1 = 0.25 * DDo RSTOR1 = STORCM(i, j) - REL1 CPW(i, j) = CPW(i, j) / 0.7If RSTOR1 - (DSo + 0.25 * DDo) < 0.25 * CPW(i, j) And j < 12 Then PM(i, j + 1) = RSTOR1: GoTo 30 If RSTOR1 - (DSo + 0.25 * DDo) < 0.25 * CPW(i, j) And j = 12 Then PM(i + 1, 1) = RSTOR1: GoTo 30 REL2 = 0.25 * CPW(i, j) RSTOR2 = RSTOR1 - REL2 If RSTOR2 - (DSo + 0.25 * DDo) < 0.25 * DDo Then GoTo 60 REL3 = 0.25 * DDo RSTOR3 = RSTOR2 - REL3 If RSTOR3 - (DSo + 0.25 * DDo) < 0.25 * FDo And j < 12 Then PM(i, j + 1) = RSTOR3: GoTo 20 If RSTOR3 - (DSo + 0.25 * DDo) < (0.25 * FDo And j = 12 Then PM(i + 1, 1) = RSTOR3: GoTo 20REL4 = 0.25 * FDoRSTOR4 = RSTOR3 - REL4

If RSTOR4 - (DSo + 0.25 * DDo) < 0.25 * CPW(i, j) And j < 12 Then PM(i, j + 1) = RSTOR4: GoTo 10 If RSTOR4 - (DSo + 0.25 * DDo) < 0.25 * CPW(i, j) And j = 12 Then PM(i + 1, 1) = RSTOR4: GoTo 10 REL5 = 0.25 * CPW(i, j)RSTOR5 = RSTOR4 - REL5 If RSTOR5 - (DSo + 0.25 * DDo) < 0.25 * DDo Then GoTo 70 REL6 = 0.25 * DDo RSTOR6 = RSTOR5 - REL6If RSTOR6 - (DSo + 0.25 * DDo) < 0.25 * DDo Then GoTo 80 REL7 = 0.25 * DDoRSTOR7 = RSTOR6 - REL7 If RSTOR7 - (DSo + 0.25 * DDo) < 0.25 * CPW(i, j) And j < 12 Then PM(i, j + 1) = RSTOR7: GoTo 100 If RSTOR7 - (DSo + $0.25 \times DDo$) < $0.25 \times CPW(i, j)$ And j = 12 Then PM(i + 1, 1) = RSTOR7: GoTo 100 REL8 = 0.25 * CPW(i, j)RSTOR8 = RSTOR7 - REL8 If RSTOR8 - (DSo + 0.25 * DDo) < 0.25 * FDo And j < 12 Then PM(i, j + 1) = RSTOR8: GoTo 100 If RSTOR8 - (DSo + 0.25 * DDo) < 0.25 * FDo And j = 12 Then PM(i + 1, 1) = RSTOR8: GoTo 100 REL9 = 0.25 * FDo RSTOR9 = RSTOR8 - REL9 If RSTOR9 - (DSo + 0.25 * DDo) < 0.25 * RDo And j < 12 Then PM(i, j + 1) = RSTOR9: GoTo 100 If RSTOR9 - (DSo + 0.25 * DDo) < 0.25 * RDo And j = 12 Then PM(i + 1, 1) = RSTOR9: GoTo 100 REL10 = 0.25 * RDo RSTOR10 = RSTOR9 - REL10 If RSTOR10 - (DSo + 0.25 * DDo) < 0.25 * CPW(i, j) And j < 12 Then PM(i, j + 1) = RSTOR10: GoTo 100 If RSTOR10 - (DSo + 0.25 * DDo) < 0.25 * CPW(i, j) And j = 12 Then PM(i + 1, 1) = RSTOR10: GoTo 100 REL11 = 0.25 * CPW(i, j)RSTOR11 = RSTOR10 - REL11 If RSTOR11 - (DSo + 0.25 * DDo) < 0.25 * FDo And j < 12 Then PM(i, j + 1) = RSTOR11: GoTo 100 If RSTOR11 - (DSo + 0.25 * DDo) < 0.25 * FDo And j = 12 Then PM(i + 1, 1) = RSTOR11: GoTo 100 REL12 = 0.25 * FDo RSTOR12 = RSTOR11 - REL12 If RSTOR12 - (DSo + 0.25 * DDo) < 0.25 * FDo And j < 12 Then PM(i, j + 1) = RSTOR12: GoTo 100 If RSTOR12 - (DSo + 0.25 * DDo) < 0.25 * FDo And j = 12 Then PM(i + 1, 1) = RSTOR12: GoTo 100 REL13 = 0.25 * FDo RSTOR13 = RSTOR12 - REL13 If RSTOR13 - (DSo + 0.25 * DDo) < 0.25 * RDo And j < 12 Then PM(i, j + 1) = RSTOR13: GoTo 100 If RSTOR13 - (DSo + 0.25 * DDo) < 0.25 * RDo And j = 12 Then PM(i + 1, 1) = RSTOR13: GoTo 100 REL14 = 0.25 * RDoRSTOR14 = RSTOR13 - REL14 If RSTOR14 - (DSo + $0.25 \times DDo$) < $0.25 \times RDo$ And j < 12 Then PM(i, j + 1) = RSTOR14: GoTo 100 If RSTOR14 - (DSo + 0.25 * DDo) < 0.25 * RDo And j = 12 Then PM(i + 1, 1) = RSTOR14: GoTo 100 REL15 = 0.25 * RDo RSTOR15 = RSTOR14 - REL15 If RSTOR15 - (DSo + 0.25 * DDo) < 0.25 * RDo And j < 12 Then PM(i, j + 1) = RSTOR15: GoTo 100 If RSTOR15 - (DSo + 0.25 * DDo) < 0.25 * RDo And j = 12 Then PM(i + 1, 1) = RSTOR15: GoTo 100 REL16 = 0.25 * RDo RSTOR16 = RSTOR15 - REL16 If j < 12 Then PM(i, j + 1) = RSTOR16 If j = 12 Then PM(i + 1, 1) = RSTOR16 GoTo 100 50 If STORCM(i, j) - DSo < 0.25 * DDo And j < 12 Then PM(i, j + 1) = STORCM(i, j): GoTo 100 If STORCM(i, j) - DSo < 0.25 * DDo And j = 12 Then PM(i + 1, 1) = STORCM(i, j): GoTo 100 REL1 = 0.25 * DDo RSTOR1 = STORCM(i, j) - REL1If j < 12 Then PM(i, j + 1) = RSTOR1 If j = 12 Then PM(i + 1, 1) = RSTOR1 GoTo 100

```
60 If RSTOR2 - DSo < 0.25 * DDo And j < 12 Then PM(i, j + 1) = RSTOR2: GoTo 100
  If RSTOR2 - DSo < 0.25 \times DDo And j = 12 Then PM(i + 1, 1) = RSTOR2: GoTo 100
  REL3 = 0.25 * DDo
  RSTOR3 = RSTOR2 - REL3
  If j < 12 Then PM(i, j + 1) = RSTOR3
  If i = 12 Then PM(i + 1, 1) = RSTOR3
  GoTo 100
70 If RSTOR5 - DSo < 0.25 \times DDo And j < 12 Then PM(i, j + 1) = RSTOR5: GoTo 100
  If RSTOR5 - DSo < 0.25 * DDo And j = 12 Then PM(i + 1, 1) = RSTOR5: GoTo 100
  REL6 = 0.25 * DDo
  RSTOR6 = RSTOR5 - REL6
  If j < 12 Then PM(i, j + 1) = RSTOR6
  If j = 12 Then PM(i + 1, 1) = RSTOR6
  GoTo 100
80 If RSTOR6 - DSo < 0.25 \times DDo And j < 12 Then PM(i, j + 1) = RSTOR6: GoTo 100
  If RSTOR6 - DSo < 0.25 * DDo And j = 12 Then PM(i + 1, 1) = RSTOR6: GoTo 100
  REL7 = 0.25 * DDo
  RSTOR7 = RSTOR6 - REL7
  If j < 12 Then PM(i, j + 1) = RSTOR7
  If j = 12 Then PM(i + 1, 1) = RSTOR7
  GoTo 100
30 If RSTOR1 - DSo < 0.25 * DDo And j < 12 Then PM(i, j + 1) = RSTOR1: GoTo 100
   If RSTOR1 - DSo < 0.25 * DDo And j = 12 Then PM(i + 1, 1) = RSTOR1: GoTo 100
   REL3 = 0.25 * DDo
  RSTOR3 = RSTOR1 - REL3
   If j < 12 Then PM(i, j + 1) = RSTOR3
   If j = 12 Then PM(i + 1, 1) = RSTOR3
GoTo 100
20 If RSTOR3 - DSo < 0.25 * DDo And j < 12 Then PM(i, j + 1) = RSTOR3: GoTo 100
   If RSTOR3 - DSo < 0.25 \times DDo And j = 12 Then PM(i + 1, 1) = RSTOR3: GoTo 100
   REL6 = 0.25 * DDo
   RSTOR6 = RSTOR3 - REL6
   If j < 12 Then PM(i, j + 1) = RSTOR6
   If i = 12 Then PM(i + 1, 1) = RSTOR6
 GoTo 100
 10 If RSTOR4 - DSo < 0.25 \times DDo And j < 12 Then PM(i, j + 1) = RSTOR4: GoTo 100
```

If RSTOR4 - DSo <0.25 * DDo And j = 12 Then PM(i + 1, 1) = RSTOR4: GoTo 100 REL6 = 0.25 * DDo RSTOR6 = RSTOR4 - REL6 If j < 12 Then PM(i, j + 1) = RSTOR6If j = 12 Then PM(i + 1, 1) = RSTOR6

100 If j < 12 And PM(i, j + 1) < 0 Then PM(i, j + 1) = 0If j = 12 And PM(i, j) <= 0 Then PM(i + 1, 1) = 0 TODRIWAT(i, j) = REL1 + REL3 + REL6 + REL7TOIRRWAT(i, j) = REL2 + REL5 + REL8 + REL11TOFISWAT(i, j) = REL4 + REL9 + REL12 + REL13TORECWAT(i, j) = REL10 + REL14 + REL15 + REL16 If j < 12 Then Print #1, Tab(2); MON(i, j); Tab(10): Format\$(INF(i, j), "#####.####"); Tab(20); Format\$(EVP(i, j), "##.####"); Tab(30); Format\$(SPD(i, j), "#####.####"); Tab(40); Format\$(STORCM(i, j), "#####.####"); Tab(50); Format\$(TODRIWAT(i, j), "#####.####"); Tab(60); Format\$(TOIRRWAT(i, j), "######.####"); Tab(70); Format\$(TOFISWAT(i, j), "#####.####"); Tab(80); Format\$(TORECWAT(i, j), "######.####"); Tab(90); Format\$(PM(i, j + 1), "#####.####")

Next j

Debug.Print Tab(2); "-----Print #1, Tab(2); "-----If i / 12 = 1 Then 1 = 1 + 1If i / 12 = 2 Then l = l + 1If i / 12 = 3 Then 1 = 1 + 1If i / 12 = 4 Then l = l + 1If i / 12 = 5 Then l = l + 1Next i Close #1 Load RESOUT **RESOUT.Show** For i = 1 To 1 For k = 1 To 12 RESOUT.IblY1.Caption = YR1(i, k) RESOUT.lblY2.Caption = YR2(i, k) RESOUT.IbIM(k - 1).Caption = MON(i, k) RESOUT.IbIINF(k - 1).Caption = Format\$(INF(i, k), "##########") RESOUT.IblEVP(k - 1).Caption = Format\$(EVP(i, k), "##########") RESOUT.IbISD(k - 1).Caption = Format\$(SPD(i, k), "##########") RESOUT.IbIIPS(k - 1).Caption = Format\$(STORCM(i, k), "##########") RESOUT.IbIDW(k - 1).Caption = Format\$(TODRIWAT(i, k), "##########") RESOUT.IbIIRR(k - 1).Caption = Format\$(TOIRRWAT(i, k), "##########") RESOUT.IbIFD(k - 1).Caption = Format\$(TOFISWAT(i, k), "##########") RESOUT.IbIREC(k - 1).Caption = Format\$(TORECWAT(i, k), "#########") If k < 12 Then RESOUT.lblREM(k - 1).Caption = Format(PM(i, k + 1), "###########")If k = 12 Then RESOUT.IblREM(k - 1).Caption = Format\$(PM(i + 1, 1), "##########") Next k Next i CRecNo = CRecNo + 1 120 End Sub

PREVIOUS button:

Public Sub prev() Dim k As Integer RESOUT.Show CRecNo = CRecNo - 1 If CRecNo < 1 Then CRecNo = y For k = 1 To 12

NEXT button:

Public Sub nxt() Dim k As Integer **RESOUT.Show** CRecNo = CRecNo + 1If CRecNo > y Then CRecNo = 1For k = 1 To 12 RESOUT.IblY1.Caption = YR1(CRecNo, k) RESOUT.IbIY2.Caption = YR2(CRecNo, k) RESOUT.IbIM(k - 1).Caption = MON(CRecNo, k) RESOUT.IbIINF(k - 1).Caption = Format\$(INF(CRecNo, k), "##########") RESOUT.IblEVP(k - 1).Caption = Format\$(EVP(CRecNo, k), "############") RESOUT.IbISD(k - 1).Caption = Format\$(SPD(CRecNo, k), "##########") RESOUT.IbIIPS(k - 1).Caption = Format\$(STORCM(CRecNo, k), "##########") RESOUT.IbIDW(k - 1).Caption = Format\$(TODRIWAT(CRecNo, k), "###########") RESOUT.IbIIRR(k - 1).Caption = Format\$(TOIRRWAT(CRecNo, k), "############") RESOUT.IbIFD(k - 1).Caption = Format\$(TOFISWAT(CRecNo, k), "#########") RESOUT.IbIREC(k - 1).Caption = Format\$(TORECWAT(CRecNo, k), "##########") If k < 12 Then RESOUT.lblREM(k - 1).Caption = Format\$(PM(CRecNo, k + 1), "#########") If k = 12 Then RESOUT.IbIREM(k - 1).Caption = Format(PM(CRecNo + 1, 1), "##########")Next k End Sub

SIMULATION OF A RESERVOIR SYSTEM WITH MULTIPLE OBJECTIVES

By LEENA DIVAKAR

ABSTRACT OF A THESIS

Submitted in partial fulfilment of the requirement for the degree

MASTER OF TECHNOLOGY IN AGRICULTURAL ENGINEERING

Faculty of Agricultural Engineering and Technology Kerala Agricultural University

Department of Irrigation and Drainage Engineering KELAPPAJI COLLEGE OF AGRICULTURAL ENGINEERING AND TECHNOLOGY

TAVANUR - 679 573, MALAPPURAM

KERALA, INDIA

2001

ABSTRACT

During the past three decades, the application of the systems approach to reservoir management application has been established as one of the most important advances made in the field of water resources engineering. Water resources planning has become exceedingly complex and is bound to become even more complex in the future considering the various demands. Application of sophisticated techniques for scientific planning and utilisation of the limited available water resources has become highly necessary to meet the growing demands of various types of consumptive and non-consumptive needs.

Though India has been endowed with plenty of rainfall, the distribution is uneven both in time and space. A reservoir system simulation model reproduces the hydrologic and in some cases economic performance of a reservoir system for given inflow and operating rules.

A computer simulation model for a multipurpose reservoir system was developed and tested for Peechi reservoir of Kerala state in south India. The model was designed for monthly operation with historic inflow of 35 years. The model obtains the monthly releases for various uses. The monthly water requirements for different purposes like drinking, irrigation, pisciculture and recreation are taken as the target to be achieved by the model. Out of the different uses only irrigation demand had monthly variation and the rest were taken as constants along with the dead storage and the maximum capacity for opening of the shutters. The objective of the model is to minimise the deviations of the release from the targets for each demand.

The model has been formulated with appropriate priorities, which satisfy the continuity and physical conditions of the system. The priorities of different water demands can be altered at any stage of the operation according to the changing needs of the region. The program is written in Visual Basic-6.0 and the results gave

the monthly releases and deficits of different demands. One advantage of the model is that even non technical decision makers can comprehend the results obtained from this. The efficiency of the model is such that the solution can be obtained in the quickest time possible and is very user friendly.

, * [`]