KERALA AGRICULTURAL UNIVERSITY
 B.Sc (Hons.) Forestry 2015 Admission
 I ${ }^{\text {st }}$ Semester Final - Examination- March-2016

Cat. No: Bash. 1102
Title: Basic Mathematics (2+0)

Marks: 50.00
Time: 2 hours

I Fill up the blanks

1. $(\operatorname{Cos} \theta+\mathrm{i} \operatorname{Sin} \theta)^{\mathrm{n}}=$ \qquad
2. The $4^{\text {th }}$ term of $3,12,48$, is.
3. If A be any square matrix ($A+A^{\prime}$) is \qquad and ($\mathrm{A}-\mathrm{A}^{\prime}$) is \qquad
4. The degree measure corresponding to $1 / 4$ radian is. \qquad
5. Period of the function $\operatorname{Cos} \theta$ is
6. A function which has same differential and integral is. \qquad
7. The first four terms in the expansion of $(1+x)^{-1}$ is. \qquad
8. $10^{C} 4=$ \qquad
9. A matrix A is orthogonal if. \qquad
10. Integral $\operatorname{Cosec}^{2} x$ is \qquad

II Write answers on any FIVE questions

1. Find for what values of x, the function $x^{3}-9 x^{2}+24 x+7$ is
a) Increasing
b) Decreasing
C) Stationary
2. Prove the following: i) $\int_{a}^{b} f(x) d x=\int_{-b}^{a} f(x) d x$
ii) $\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x$
3. Find the inverse of $\left[\begin{array}{ccc}1 & 2 & -1 \\ -1 & 1 & 2 \\ 2 & -1 & 1\end{array}\right]$.
4. Solve by Cramer's rale: $x+y+z=7,2 x+3 y+2 z=17,4 x+9 y+z=37$.
5. If $A=\left[\begin{array}{ccc}1 & 2 & -3 \\ 5 & 0 & 2 \\ 1 & -1 & 1\end{array}\right] \quad B=\left[\begin{array}{ccc}3 & -1 & 2 \\ 4 & 2 & 5 \\ 2 & 0 & 3\end{array}\right] \quad C=\left[\begin{array}{ccc}4 & 1 & 2 \\ 19 & -5 & 10 \\ 1 & -3 & 0\end{array}\right]$

Verify that $A(B+C)=A B+A C$
6. Find the area bounded by the curve $y=x^{2}+x+2, x$-axis and the ordinates at $x=1, x=2$.
7. What are the methods of integration?

III Write answers on any FIVE questions

I. Find the area enclosed between the two parabolas $y^{2}=4 a x$ and $x^{2}=4 a y$.
2. If $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right] \quad B=\left[\begin{array}{cc}5 & 6 \\ 7 & 8\end{array}\right] \quad$ P.T. $(A B)^{-1}=B^{-1} A^{-1}$
3. Integrate w.r.t.x:
i) $\cos 7 x \cos 3 x$
ii) $\sin 6 x \cdot \sin 4 x$
4. The angle of elevation of a cloud from a pt 'h' mts above the lake is α and the angle of depression of its reflection in the lake is $\frac{h \sin (\alpha+\beta)}{\sin (\beta-\alpha)}$
5. Prove the following: i) $\sin 3 \theta=3 \sin \theta-4 \sin ^{3} \theta \quad$ ii) $\cos 2 A=\cos ^{2} A-\sin ^{2} A$
iii) $\tan 2 \mathrm{~A}=\frac{2 \cdot \tan A}{1-\tan ^{2} A}$
iv) $\tan 3 A=\frac{3 \tan A-\tan ^{3} A}{1-3 \tan ^{2} \theta}$
6. Find $\frac{d y}{d x}$, when y is equal to (i) $\sec ^{-1}(\tan 2 \mathrm{x})$ ii) $\frac{\log \tan 5 x}{e^{x}}$, iii) $\sqrt{x^{2}-1} \cdot \operatorname{cosec}^{-1} \mathrm{x}$
T. Write four important properties of matrices.

IV Write essay on any ONE

1. i) Solve by Cramer's rule $3 x+2 y+52=32$ -

$$
\begin{aligned}
& 2 x+5 y+32=31 \\
& 5 x+3 y+22=32
\end{aligned}
$$

ii) Solve for $\mathrm{x}:\left|\begin{array}{lll}x+2 & x+6 & x-1 \\ x+6 & x-1 & x+2 \\ \dot{x}-1 & x+2 & x+6\end{array}\right|=0$
iii) Prove that : $\left|\begin{array}{lll}x & p & q \\ p & x & q \\ p & q & x\end{array}\right| \quad q=(x-p)(x-q)(x+p+q)$
2. a) Find the maximum and minimum values of the function $4 x^{3}-15 x^{2}+12 x+7$
b) Prove that i) $\int_{0}^{a} f(x) \mathrm{dx}=\int_{0}^{a} f(a-x) \mathrm{dx}$
ii) $\int_{0}^{2 a} f(x) \mathrm{dx}=\int_{0}^{a} f(x) \mathrm{dx}+\int_{0}^{a} f(2 a-x) \mathrm{dy}$
c) If $\mathrm{A}=30^{\circ}$, prove that
i) $\cos 3 A=4 \cos ^{3} A-3 \cos A$

$$
\text { ii) } \tan 2 A=\frac{2 \tan A}{1-\tan ^{2} A} \quad \text { iii) } \sin 3 A=3 \sin A-4 \sin ^{3} \cdot A
$$

