KERALA AGRICULTURAL UNIVERSITY B.Sc (Hons.) Forestry 2015 Admission Ist Semester Final - Examination- March-2016

Cat. No: Bash. 1102

Title: Basic Mathematics (2+0)

Marks: 50.00

Time: 2 hours

(10 x1=10)

I Fill up the blanks

 $(\cos\theta + i\sin\theta)^{n} = \dots$

- 2. The 4th term of 3, 12, 48, is.....
- 3. If A be any square matrix (A+A') isand (A-A') is.....
- 4. The degree measure corresponding to ¼ radian is.....
- 5. Period of the function $\cos \theta$ is.....
- 6. A function which has same differential and integral is....
- 7. The first four terms in the expansion of $(1+x)^{-1}$ is....
- 8. 10 ^C4=....
- 9. A matrix A is orthogonal if.....
- 10. Integral Cosec² x is.....

II Write answers on any FIVE questions

(5 x 2=10)

- 1. Find for what values of x, the function $x^3 9x^2 + 24x + 7$ is
 - a) Increasing
- b) Decreasing
- C) Stationary

2. Prove the following: i)
$$\int_{a}^{b} f(x) dx = \int_{b}^{a} f(x) dx$$
 ii)
$$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx$$

- 3. Find the inverse of $\begin{bmatrix} 1 & 2 & -1 \\ -1 & 1 & 2 \\ 2 & -1 & 1 \end{bmatrix}$
- 4. Solve by Cramer's rule: x+y+z=7, 2x+3y+2z=17, 4x+9y+z=37.

5. If
$$A = \begin{bmatrix} 1 & 2 & -3 \\ 5 & 0 & 2 \\ 1 & -1 & 1 \end{bmatrix}$$
 $B = \begin{bmatrix} 3 & -1 & 2 \\ 4 & 2 & 5 \\ 2 & 0 & 3 \end{bmatrix}$ $C = \begin{bmatrix} 4 & 1 & 2 \\ 19 & -5 & 10 \\ 1 & -3 & 0 \end{bmatrix}$

Verify that A(B+C) = AB + AC

- Find the area bounded by the curve $y=x^2+x+2$, x-axis and the ordinates at x=1, x=2.
- 7. What are the methods of integration?

III Write answers on any FIVE questions

 $(1 \times 10=10)$

I. Find the area enclosed between the two parabolas $y^2 = 4ax$ and $x^2 = 4ay$.

2. If
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
 $B = \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix}$ P.T. $(AB)^{-1} = B^{-1}A^{-1}$

- Integrate w.r.t.x:
- i) cos7x cos3x
- ii) sin6≈ sin4x
- 4. The angle of elevation of a cloud from a pt 'h' mts above the lake is α and the angle of depression of its reflection in the lake is $\frac{h\sin(\alpha+\beta)}{\sin(\beta-\alpha)}$
- 5. Prove the following: i) $\sin 3\theta = 3\sin \theta 4\sin^3 \theta$
- ii) $\cos 2A = \cos^2 A \sin^2 A$

- iii) $\tan 2A = \frac{2 \tan A}{1 \tan^2 A}$ iv) $\tan 3A = \frac{3 \tan A \tan^3 A}{1 3 \tan^2 A}$
- Find $\frac{dy}{dx}$, when y is equal to (i) $\sec^{-1}(\tan 2x)$ ii) $\frac{\log \tan 5x}{e^x}$ iii) $\sqrt{x^2-1}$.cosec⁻¹x
- T Write four important properties of matrices.

IV Write essay on any ONE

1. i) Solve by Cramer's rule 3x + 2y + 52 = 32

$$2x + 5y + 32 = 31$$

 $5x + 3y + 22 = 32$

ii) Solve for x:
$$\begin{vmatrix} x+2 & x+6 & x-1 \\ x+6 & x-1 & x+2 \\ x-1 & x+2 & x+6 \end{vmatrix} = 0$$

iii) Prove that :
$$\begin{vmatrix} x & p & q \\ p & x & q \\ p & q & x \end{vmatrix}$$
 $\mathbf{q} = (x-p)(x-q)(x+p+q)$

- a) Find the maximum and minimum values of the function $4x^3-15x^2+12x+7$ 2.
 - b) Prove that i) $\int_a^a f(x) dx = \int_a^a f(a-x) dx$ ii) $\int_a^{2a} f(x) dx = \int_a^a f(x) dx + \int_a^a f(2a-x) dy$
 - c) If $A=30^{\circ}$, prove that i) $\cos 3A = 4\cos^{3} A 3\cos A$
 - ii) $\tan 2A = \frac{2 \tan A}{1 \tan^2 A}$ iii) $\sin 3A = 3 \sin A 4 \sin^3 A$