KERALA AGRICULTURAL UNIVERSITY
 FIRST SEMESTER B.TECH (Agrl.Engg) EXAMINATION
 COURSE CODE: Sacs. 1101
 COURSE NAME: ENGINEERING MATHEMATICS - 1

Max. Marks:50
Time: 2Hours

PART - A

Answer all questions. Each question carries 1 mark. (10×1=10)

1. If $z=\operatorname{Cos}\left(2 x+3 y^{2}\right)$ find $\frac{\partial z}{\partial y}$
2. Necessary and sufficient condition for the differential equation $M d x+N d y=0$ to be exact is
3. $\int_{1}^{2} \int_{0}^{1} 12 x y d x d y$ is
4. Complementary function of $\left(D^{2}+3 D+2\right) y=0$ is \qquad
5. The total derivative of the function $z=f(x, y)$ is \qquad
6. $\mathrm{J}_{-1 / 2}(\mathrm{x})=$ \qquad
7. A vector with zero divergence is called \qquad
8. For a scalar function F , Curl $(\operatorname{grad} F)=$ \qquad
9. The function $f(x, y)=\frac{x y^{2}-y^{3}}{y x^{2}+x y^{2}}$ is a homogeneous function. (TRUE OR FALSE)
10. Rodrigue's formula for $P_{n}(x)$ is \qquad

PART-B

Answer any five questions. Each question carries 2 marks (5×2=10)
11. Expand $(1+x)^{m_{i n}}$ ascending powers of x.
12. Verify Euler's theorem if $f=(a x+b y)^{\frac{1}{3}}$
13. Solve $(x-2 y+3) d x-(2 x-y+5) d y=0$
14. Express $3 x^{3}-x^{2}+5 x-2$ in terms of Legendre polynomial
15. Solve $\left(D^{2}-4\right) y=\operatorname{Cos} 3 x$
16. Find Curl f if $\mathrm{f}=\mathrm{y}^{\mathbf{3}} \vec{\imath}-z^{2} \vec{j}+2 \mathrm{x}^{2} \vec{k}$ at $(1,1,1)$
17. Show that for any vector function F, div curl $F=0$

PART-C

Answer any five questions. Each question carries 4 marks (5×4=20)
18. Find $J\left(\frac{u, v, w}{x, y, z}\right)$ if $u=\frac{x}{y-z}, v=\frac{y}{z-x}$ and $w=\frac{z}{x-y}$
19. Find the maximum and minimum value of $f(x, y)=x^{3}+3 x y^{2}-15 x^{2}-15 y^{2}+72 x$
20. Solve $\left(x y^{3}+y\right) d x+2\left(x^{2} y^{2}+x+y^{4}\right) d y=0$
21. Solve $\frac{d y}{d x}+2 x y=x^{3}$
22. Solve $\mathrm{x}^{2} \frac{d^{2} y}{d x^{2}}+\mathrm{x} \frac{d y}{d x}+\mathrm{y}=\mathrm{x}^{2} \log \mathrm{x}$
23. Prove that $J_{-n}(x)=(-1)^{n} J_{n}(x)$ where n is a positive integer
24. Use Green's theorem to evaluate $\oint x^{2} y d x+y^{3} d y$ where C is the closed path formed by $y=x \& y=x^{3}$ from $(0,0)$ to $(1,1)$

PART-D

Answer any one question. Each carries 10 marks ($1 \times 10=10$)
25. Verify Stoke's theorem for $f=(2 x-y) \vec{i}-y z^{2} \vec{j}-y^{2} z \vec{k}$ where S is the upper half of the sphere $x^{2}+y^{2}+z^{2}=1 \& C$ is its boundary.
26. Solve by the method of variation of parameters $\frac{d^{2} y}{d x^{2}}-4 \frac{d y}{d x}+5 y=\frac{e^{2 x}}{\operatorname{Sin} x}$

