KERALAAGRICULTURAL UNIVERSITY

B.Tech.(Food Engg.) 2015 Admission
 IV Semester Final Examination - August - 2017

Cat. No: Basc. 2209
Title: Numerical Methods for Engineering Applications (1+1)
Marks: 50
Time : 2 hours

Part I Answer all the questions

1. The bisection method for finding the root of an equation $f(x)=0$ is .-.-.
2. The order of convergence in Newton-Raphson method is 2 . State true or false.
3. Milne's predictor formula is ----.
4. State true or false. The Runge-Kutta method is self-starting method.
5. The order of the difference equation $y_{n+2}-2 y_{n+1}+y_{n}=0$ is \ldots.
6. In ----- method, we approximate the curve of solution by the tangent in each interval.
7. Simpson's Rule is used for numerical ----.
8. In the Gauss elimination method for solving a system of linear algebraic equations, triangularization leads to ----- triangular matrix.
9. The number of significant digits in the number 204.020050 is .---.
10. ----- is üsed to denote the process of finding the values outside the interval $\left(x_{0}, x_{n}\right)$.

Part II Answer any five questions

[5 $\times 2=10$]

1. If the temperature of a room is $25^{\circ} \mathrm{C} \pm 0.5^{\circ} \mathrm{C}$, find the percentage error.
2. Evaluate $\int_{0}^{6} \frac{d x}{1+x^{2}}$ using Trapezoidal rule.
3. Find the value of $\int_{2}^{6} \frac{d x}{x}$ using simpson's rule.
4. Find the P.I of $y_{n+2}-4 y_{n+1}+3 y_{n}=5^{n}$
5. Find by Taylor's series method the value of $y(0.1)$ from $\frac{d y}{d x}=x^{2} y-1, y(0)=1$.
6. Write Lagrange's interpolation formula.
7. What are the classifications of the partial differential equations?

Part III Answer any five questions

[5 X $4=20$]

1. Find the positive root of $f(x)=2 x^{3}-3 x-6=0$ by Newton - Raphson method correct to five decimal places.
2. Prove that $E \nabla=\Delta=\nabla E$.
3. Given $y_{3}=2, y_{4}=-6, y_{5}=8, y_{6}=9$ and $y_{7}=17$, calculate $\Delta^{4} y_{3}$.
4. Find the value of y at $x=21$ from the following data

x	20	23	26	29
y	0.3420	0.3907	0.4384	0.4848

5. Using Lagrange's formula of interpolation find $y(9.5)$ given

x	7	8	9	10
y	3	1	1	9

6. Using Newton's divided difference formula, find the values of $f(2), \bar{f}(8)$ and $f(15)$ given the following table.

x	4	5	7	10	11	13
$f(x)$	48	100	294	900	1210	2028

7. Solve the difference equation $y_{x+3}-2 y_{x+2}-y_{x+1}-2 y_{x}=0$.

Part IV Answer any one question

1. Using Taylor series method, find, correct to four decimal places, the $[1 \times 10=10]$ given $\frac{d y}{d x}=x^{2}+y^{2}$ and $y(0)=1$.
2. Apply the fourth order $\mathrm{R}-\mathrm{K}$ method to find $y(0.2)$ given that $y^{\prime}=x+y, y(0)=1$.
