Elen. 1201

KERALA AGRICULTURAL UNIVERSITY

B.Tech.(Food Engg) 2018 Admission

II Semester Final Examination- June 2019
BASIC ELECTRICAL ENGINEERING (2+1)
Marks: 50
Time: 2 hours

I A Fill up the blanks

1 Energy stored by a coil is doubled when its current is increased by \qquad percent

2 In a series RC circuit as frequency increases current \qquad .
3 The r.m.s. value of sinusoidal 100 V peak to peak is \qquad volt
4 Resistance of a wire is r ohms. The wire is stretched to double its length, then its resistance in ohms is \qquad .
5 A star circuit has each element of resistance $R / 2$. The equivalent delta elements will be
\qquad .
6 The power factor of a purely resistive circuit is \qquad .

B Answer the following.
7 Define dynamically induced emf.
8 Define form factor of an alternating quantity.
$9 \mathrm{Y}=\mathrm{BC}+\mathrm{AC}$. Draw the logic gate for this expression
10 Draw the V-I characteristics of ideal diode.
II Write Short notes on any FIVE of the following
1 Derive the ripple factor of a full- wave rectifier.
2 Kirchhoff's current law.
3 Active and passive element with an example.
4 An NPN transistor has collector current 4 mA and base current $10 \mu \mathrm{~A}$. Calculate $\boldsymbol{\alpha}$ and $\boldsymbol{\beta}$ values of the transistor, neglecting the reverse sat current $\mathbf{I}_{\text {CBO }}$
5 Convert the Boolean expression in logic gate $\mathrm{F}=\mathrm{X}+\overline{Y+Z}+\mathrm{X} . \mathrm{Y}$
6 Mutual inductance.
7 Define Demorgan's theorems.
III Answer any FIVE of the following.
1 A three phase load consists of three similar inductive coils, each of resistance 50Ω and inductance 0.3 H . The supply is $415 \mathrm{~V}, 50 \mathrm{~Hz}$. Calculate (a) line current (b) power factor when the load is connected in star.
2 Find the voltage across land 2 using nodal analysis of the circuitas shown in Fig. 1

Fig. 1
3 Solve the expression $\mathrm{X}+(\mathrm{Y} . \mathrm{Z})=(\mathrm{X}+\mathrm{Y}) .(\mathrm{X}+\mathrm{Z})$

4 Find the net impedance and total current in the parallel circuit shown below.

5 An NPN transistor used for voltage divider biasing has the following parameters $\alpha=$ $0.985, \mathrm{~V}_{\mathrm{BE}}=0.3 \mathrm{~V}, \mathrm{Vcc}=16 \mathrm{~V}$. If the operating point Q is at $\mathrm{I}_{\mathrm{C}}=2 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=6 \mathrm{~V}$, then calculate $\mathrm{R}_{1} \& \mathrm{R}_{\mathrm{C}}$ for $\mathrm{R}_{2}=20 \mathrm{k} \Omega$.
6 CB operation of transistor.
7 Difference between \mathbf{p} type and \mathbf{n} type semiconductors.
IV Answer any ONE of the following
1 With a neat sketch, explain the working principle of half-wave rectifier and derive the expression for efficiency \& output voltage
2 State and explain Thevenin's theorem with circuit diagram.

