KERALA AGRICULTURAL UNIVERSITY
 B.Tech.(Food Engg.) 2017 Admission
 III Semester Final Examination-Janauary-2019

Fluid Mechanics (2+1)

Marks: 50
Time: 2 hours

Fill in the blanks:

1 The unit of coefficient of viscosity in SI unit is
2 The specific gravity of oil, having specific weight of $7.848 \mathrm{kN} / \mathrm{m}^{3}$, is
3 Current meter is a device used to measure
4 The laminar flow between parallel flat plates, when one plate is moving at uniform velocity and the other one is at rest is known as flow.
5 The side slope ($\mathrm{H}: \mathrm{V}$) of Cipoletti weir is

Choose the Correct answer

6 The dimension of pressure is:
a $\mathrm{M}^{1} \mathrm{~L}^{1} \mathrm{~T}^{-1}$
b $\mathrm{M}^{1} \mathrm{~L}^{-1} \mathrm{~T}^{-1}$
c $\quad \mathrm{M}^{1} \mathrm{~L}^{-1} \mathrm{~T}^{-2}$
d $\quad M^{1} L^{-2} \mathrm{~T}^{-1}$

7 Inter-molecular attraction between the molecules of the same liquid is known as:
a surface tension
b cohesion
c adhesion
d capillarity

8 Whenever a body, floating in a liquid, is given a small angular displacement, it starts oscillating about some point, which is known as:
a centre of buoyancy b metacentre
c centre of pressure d centre of gravity

9 The two dimensional equation of an equipotential line is given by:
a $v d y+u d x=0$
b udy-vdx $=0$
c $\quad u d y+v d x=0$
d vdy-udx $=0$

10 The square root of Cauchy number is known as:
a Newton number b Weber number c Mach number d Euler number

Write Short notes on ANY FIVE of the following

1 Differentiate between ideal fluid and real fluid.
2 A rectangular tank 5 m long, 2 m wide contains water up to a depth of 2.5 m . Calculate the total pressure on the base of the tank.
3 Buoyancy and floatation.
4 A differential manometer connected at two points at the same level in a pipe containing oil of specific gravity 0.8 shows a difference in mercury level as 100 mm . Determine the difference in pressure between the two points.
5 Differentiate between Lagrangian method and Eulerian method
6 Show that the two dimensional flow represented by velocity components $u=8 x y$ and $v=4 x^{2}-4 y^{2}$, satisfies the equation of continuity.
7 Differentiate between linear and angular deformation of a fluid particle.

1 A wooden block of rectangular section 1.25 m wide, 2 m deep and 4 m long floats horizontally in sea water. If the specific gravity of wood is 0.64 and sea water weighs $10.05 \mathrm{kN} / \mathrm{m}^{3}$, find the volume of water displaced and the position of the centre of buoyancy.
2 Define streamline. Prove that at any point of intersection it is orthogonal to an equipotential line.
3 . The diameter of a pipe changes from 200 mm at a section 5 m above datum to 50 mm at a section 3 m above datum. The pressure of water at the first section is $500 \mathrm{kN} / \mathrm{m}^{2}$. If the velocity of flow at the first section is $1 \mathrm{~m} / \mathrm{s}$, determine the intensity of pressure at the second section.
4 Derive Darcy-Weisbach equation for flow through a long.pipeline running full of water.
5 Define vortex motion. Classify and discuss about various types of vortex motions.
6 Water flows at the rate of $0.147 \mathrm{~m}^{3} / \mathrm{s}$ through a 15 cm diameter orifice inserted in a 30 cm diameter pipe. If the pressure gauge fitted upstream and downstream of the orifice plate have shown readings of $176.58 \mathrm{kN} / \mathrm{m}^{2}$ and $88.29 \mathrm{kN} / \mathrm{m}^{2}$, respectively, find the coefficient of discharge of the orifice meter.
7 With neat sketch derive the expression for total pressure acting on a vertical plane surface submerged in water.

IV Answer ANY ONE of the following

1 Rayleigh method to establish the expression for coefficient of discharge of an orifice of diameter d. Consider that water is flowing at a rate of Q through the orifice under a constant head of H . Take ρ as the mass density and μ as the dynamic viscosity of water.
2 Principle of conservation of mass to derive the three dimensional continuity equations in cartesiar co-ordinates for steady flow of an incompressible fluid.

