

n. 2103

KERALA AGRICULTURAL UNIVERSITY B.Tech.(Food Engg.) 2017 Admission III Semester Final Examination-Janauary-2019

Fluid Mechanics (2+1)

Time: 2 hours Fill in the blanks: (10x1=10)The unit of coefficient of viscosity in SI unit is 1 The specific gravity of oil, having specific weight of 7.848 kN/m³, is 2 3 Current meter is a device used to measure 4 The laminar flow between parallel flat plates, when one plate is moving at uniform velocity and the other one is at rest is known as flow. The side slope (H:V) of Cipoletti weir is 5 Choose the Correct answer The dimension of pressure is: 6 $M^{1}L^{1}T^{-1}$ b $M^{1}L^{-1}T^{-1}$ а $M^{1}L^{-1}T^{-2}$ с d $M^{1}L^{-2}T^{-1}$ Inter-molecular attraction between the molecules of the same liquid is known as: 7 a surface tension b cohesion adhesion С d capillarity Whenever a body, floating in a liquid, is given a small angular displacement, it starts oscillating 8 about some point, which is known as: a centre of buoyancy b metacentre centre of pressure d С centre of gravity The two dimensional equation of an equipotential line is given by: 9 a vdy + udx = 0udy-vdx = 0b udy + vdx = 0С d vdy-udx = 0The square root of Cauchy number is known as: 10 a Newton number b Weber number с Mach number d Euler number

Write Short notes on ANY FIVE of the following

- 1 Differentiate between ideal fluid and real fluid.
- 2 A rectangular tank 5 m long, 2 m wide contains water up to a depth of 2.5 m. Calculate the total pressure on the base of the tank.
- 3 Buoyancy and floatation.
- 4 A differential manometer connected at two points at the same level in a pipe containing oil of specific gravity 0.8 shows a difference in mercury level as 100 mm. Determine the difference in pressure between the two points.
- 5 Differentiate between Lagrangian method and Eulerian method
- 6 Show that the two dimensional flow represented by velocity components u = 8xy and $v = 4x^2-4y^2$, satisfies the equation of continuity.
- 7 Differentiate between linear and angular deformation of a fluid particle.

(5x2=10)

Marks: 50

Answer ANY FIVE of the following

1 A wooden block of rectangular section 1.25 m wide, 2 m deep and 4 m long floats horizontally in sea water. If the specific gravity of wood is 0.64 and sea water weighs 10.05 kN/m³, find the volume of water displaced and the position of the centre of buoyancy.

- 2 Define streamline. Prove that at any point of intersection it is orthogonal to an equipotential line.
- 3 The diameter of a pipe changes from 200 mm at a section 5 m above datum to 50 mm at a section 3 m above datum. The pressure of water at the first section is 500 kN/m². If the velocity of flow at the first section is 1 m/s, determine the intensity of pressure at the second section.
- 4 Derive Darcy-Weisbach equation for flow through a long pipeline running full of water.
- 5 Define vortex motion. Classify and discuss about various types of vortex motions.
- 6 Water flows at the rate of 0.147 m³/s through a 15 cm diameter orifice inserted in a 30 cm diameter pipe. If the pressure gauge fitted upstream and downstream of the orifice plate have shown readings of 176.58 kN/m² and 88.29 kN/m², respectively, find the coefficient of discharge of the orifice meter.
- With neat sketch derive the expression for total pressure acting on a vertical plane surface submerged in water.

IV Answer ANY ONE of the following

- 1 Rayleigh method to establish the expression for coefficient of discharge of an orifice of diameter d. Consider that water is flowing at a rate of Q through the orifice under a constant head of H. Take ρ as the mass density and μ as the dynamic viscosity of water.
- Principle of conservation of mass to derive the three dimensional continuity equations in cartesiar co-ordinates for steady flow of an incompressible fluid.

III

(5x4=20)