KERALA AGRICULTURAL UNIVERSITY
 B. Tech. (Ag. Engg.) 2017 Admission III Semester Final Examination-January-2019

Masc. 2108

Engineering Mathematics-III (2+1)

Marks: 50
Time: 2 hours

Fill in the blanks:

$(10 \times 1=10)$
If \vec{A} is solenoidal then $\operatorname{div} \vec{A}=$ \qquad
(1) The mapping $w=\frac{1}{z}$ is known as \qquad
3 The poles of $\frac{z+1}{z^{2}(z-2)}$ are \qquad
(1) If $f(x)$ is an even function then $f(-x)=$ \qquad
5 If $\vec{r}(t)$ is the position vector of a moving particle ,then velocity is given by
$6 \quad \nabla x a \vec{f}=$ \qquad (a is any scalar).
If the principal part of the Laurent's series expansion of $f(z)$ about $z=a$ has infinite number of terms then $z=a$ is \qquad
8 $\int_{-c} f(z) d z=$ \qquad
The maximum of the modulus value of the directional derivative of the scalar function is-----
$10 \nabla(\vec{f} \cdot \vec{g})=$ \qquad
Write Short notes on ANY FIVE of the following
1 Show that an analytic function is constant, if its real part is constant.
2 Evaluate $\frac{1}{2 \pi i} \int_{C} \frac{z^{2}+5}{z-3} d z$ where C is $|z|=4$
Find the Taylor series expansion of $f(z)=e^{z}$ at $\mathrm{z}=0$
4 Determine the nature of singularity of the function $f(z)=\frac{z-\operatorname{Sin} z}{z^{3}}$
5 Find ∇f where $f(x, y, z)=x^{2}+y^{2}-2 z^{2}$ at $(1,1,1)$
(v) 6 Find the velocity and acceleration at $t=1 / 2$ of a moving particle whose position at time t is given by $\vec{r}(t)=\left(t^{2}+1\right) i+(2 t-1) j$
(0) 7 Find the Fourier sine transform of $2 e^{-5 x}+5 e^{-2 x}$.
(1) Find the directional derivative of the function $x y+y z+z x$ along the direction of $i+2 j+2 k$ at the point $(1,2,0)$.
2 Show that $\vec{F}=e^{x}(2 y+3 z) i+2 e^{x} j+3 e^{x} k$ is irrotational and find its scalar potenti
3 Find the Fourier Cosine transform of $f(x)=\left\{\begin{array}{lr}\cos x, & 0<x<a \\ 0, & x>a\end{array}\right\}$.
4 Show that the function $u=x^{3}-3 x y^{2}$ is harmonic and find the analytic function whose real part is u.
5 Evaluate $\int_{C} \frac{z d z}{\left(9-z^{2}\right)(z+i)}$ where C is the circle $|z|=2$ taken in the positive sense
(1) Using residue theorem evaluate $\int_{C} \frac{z^{2} d z}{(z-2)(z+3)}$ where C is the circle $|z|=4$

IV Answer ANY ONE of the following
Discuss the transformation $w=e^{z}$

Expand $f(z)=\frac{z}{(z-1)(2-z)}$ as a Laurent's series valid for

1) $|z|<1$
2)

$|z|>2$
3) $|z-1|>1$
4) $1<|z|<2$

2
Use Gauss divergence theorem to evaluate $\iint_{S} \vec{F} \cdot \hat{n} d s$ where S is the surface of rectangular parallelepiped $0 \leq x \leq a, 0 \leq y \leq b, 0 \leq z \leq c$ and $\vec{F}=x^{2} i+y^{2} j+z^{2} k$.

