KERALA AGRICULTURAL UNIVERSITY
B.Tech.(Food. Engg.) 2016 Admission

V Semester Final Examination-January-2019
Cien. 3105

Design of Structures (1+1)

Marks: 50
Time:2 hours

State True or False

1 The most economical section for a column, is tubular section.
$(10 \times 1=10)$
2 A beam is defined as a structural member subjected to axial loading.
3 Web crippling generally occurs at the point where deflection is maximum.
Fill in the Blanks
24. The ratio of shearing stress to shearing strain within elastic limit, is known as The Indian standard code which deals with steel structures, is \qquad When two plates are placed end to end and are joined by
two cover plates, the joint is known as

Define the Following

7 Neutral axis.
8 Lever arm.
9 Modular ratio.
10 Flanged beam.
II $\quad \begin{aligned} & \text { Write Short notes on any FIVE of the following } \\ & \\ & 1\end{aligned}$
2 Effective length of weld.
Web crippling in steel beam.
4 Main differences between limit state and working state methods.
5 Fe 250 , Fe 415 and Fe 500.
6 Differentiate between one way and two way slab.
7 Book value.

III Answer any FIVE of the following.

1 The two plates of 20 mm and 18 mm thickness are to be joined by a groove weld. The joint is subjected to a factored tensile force of 430 kN . Due to some reasons the effective length of the weld that could be provided was 180 mm only. Check the safety of the joint if single V groove weld is provided.
2 Show with neat diagram slab base and gusseted base plate.
3 Calculate the design shear strength of a 16 mm diameter bolt of grade 4.6 for double cover butt joint. Each of the cover plate being 8 mm thick. The main plate to be jointed are 12 mm thick.
Calculate the maximum load that can be carried by $400 \times 400 \mathrm{~mm}$ square column reinforced with 8 bars of 22 mm diameter. The effective length of column is 4 m .
5 Discuss critical section for punching shear in RCC footings.
6 An R.C.C. beam of width 450 mm and depth 750 mm is reinforced with 8 bars of 20 mm diameter. If the stresses in steel and concrete are not to exceed 230 MPa and 7 MPa respectively, determine moment of resistance considering it as over reinforced. Assefme $m=13.33$.
又 Differentiate between scrap and salvage value.

1 Design a slab over a room $4 \mathrm{~m} \times 6 \mathrm{~m}$ as per IS Code. The edge of the slab are simply supported and corners are not held down. The live load on the slab is $3000 \mathrm{~N} / \mathrm{m} 2$. The slab has bearing of 150 mm on the supporting walls. Use M20 concrete and $\mathrm{Fe}-415$ steel. Use limit state method.
2 Calculate the design compressive load for a stanchion $350 @ 710.2 \mathrm{~N} / \mathrm{m}, 3.5 \mathrm{~m}$ high. The column is restrained in direction and position at both ends. It is to be used as an uncased column in a single storey building. Use steel of grade $\mathrm{Fe}-410$.

