

KERALA AGRICULTURAL UNIVERSITY B.Tech.(Food Engg) 2017 Admission

II Semester Final Examination-July 2018

Basc. 1205

II

Engineering Mathematics II (3+0)

Marks: 50 Time:2 hours

I Answer the following

(10x1=10)

- 1 Discuss the nature of the series $\frac{1}{4} + \frac{3}{7} + \frac{5}{10} + \cdots$
- 2 State Raabe's test.
- $\int_{0}^{3} \left[y \left(1 + \frac{1}{x} \right) + \cos y \right] dx + \left[x + \log x x \sin y \right] dy = 0 \text{ is an example of differential equation.}$
- 4 Solve $\frac{d^3y}{dx^3} + y = 0.$
- Find the particular solution for the differential equation $(D^2 + 5D + 6)v = 4^x$
- Find A' for the differential equation $y'' + a^2y = sec(ax)$, by using the method of variation of parameters.
- Obtain the complementary function for the differential equation $x^2y'' + xy' + 9y = 3x^2 + \sin(3\log x)$.
- Form the partial differential equation from the function $z = f(x^2 + y^2)$.
- 9 Solve zxp + yzq = xy.
- State the formula to solve the equation of the form f(x, y, z, p, q) using Charpit's method.

Write Short notes on any FIVE of the following

(5x2=10)

- 1 Show that $J_{1/2}(x) = \sqrt{\frac{2}{\pi x} \sin x}$.
- 2 Solve $[D^4 18D^2 + 81] y = 36 e^{3x}$
- 3 Find the nature of the series $\frac{1}{\sqrt{2}} + \frac{2}{\sqrt{9}} + \frac{3}{\sqrt{28}} + \frac{4}{\sqrt{68}} + \cdots$
- 4 Form a partial differential equation for the function

$$z = f(x + ay) + g(x - ay)$$
, by the method of elimination of arbitrary functions.

- 5 Solve $x^2 \frac{\partial z}{\partial x} + y^2 \frac{\partial z}{\partial y} = (x + y)z$.
- 6 Solve $\frac{d^2y}{dx^2} + 3\frac{dy}{dx} + 2y = 4\cos^2 x$.
- 7 Solve $\left[2 + 2x^2\sqrt{y}\right]y \, dx + \left[x^2\sqrt{y} + 2\right]x \, dy = 0.$

1 a. Discuss the convergence of
$$\frac{1^2}{4^2} + \frac{1^2.5^2}{4^2.8^2} + \frac{1^2.5^2.9^2}{4^2.8^2.12^2} + \cdots$$

b. Using Cauchy's root test, discuss the convergence of the series
$$\sum_{n=1}^{\infty} \frac{(n+1)^n}{n^n+1} \cdot X$$

2 a. Solve
$$(xy + 2x^2y^2)dx + x(xy - x^2y^2)dy = 0$$
.

b. Solve
$$xy(1 + xy^2) \frac{dy}{dx} = 1$$
.

a.
$$\frac{d^2y}{dt^2} - 4\frac{dy}{dt} + 13y = e^{3t}\cosh 2t + 2^t$$

b
$$[D^3 + 6D^2 + 11D + 6]y = 0$$

4 Solve for p, if
$$p^2 + 2py \cot x = y^2$$

5 Solve
$$\frac{dy}{dx} + y = z + e^x$$
.

6 Solve
$$x^4 \frac{d^3y}{dx^3} + 2x^3 \frac{d^2y}{dx^2} - x^2 \frac{dy}{dx} + xy = \sin(\log x)$$
.

7 a. Solve
$$x^2(y-z)p + y^2(z-x)q = z^2(x-y)$$
.

b. Solve
$$p^2 + pqy = z$$
 by Charpit's method.

IV Write an essay on any ONE of the following

(1x10=

1 a Solve by the method of variation of parameters
$$(D^2 - 3D + 2)y = \cos(e^{-x})$$

b Find the complete integral of pxy + pq + qy = yz by Charpit's method.

c
$$Solve zxp + yzq = xy$$
.

2 a Solve
$$\left[1 + e^{x/y}\right] dx + e^{1/y} \left[1 - \frac{x}{y}\right] dy = 0.$$

b Solve
$$y'' + 4y' - 12y = e^{2x} - 3\sin 2x$$
.

Discuss the convergence of the series
$$\frac{p}{q} + \frac{p(p+a)}{q(q+b)} + \frac{p(p+a)(p+2a)}{q(q+b)(q+2b)} + \cdots$$
