Basc. 2108
KERALA AGRICULTURAL UNIVERSITY
B.Tech.(Food Engg.) 2016 Admission

III Semester Final Examination-Janauary-2018
Engineering Mathematics-III (2+1)
Marks: 50
Time: 2 hours
(10x1=10)
I \quad Fill in the blanks:
Gradient of a scalar function is a scalar and the divergence of a constant is

Choose the Correct answer

2 $\operatorname{div}(\operatorname{grad} \phi)=$ \qquad
a 0
$\mathrm{b} \operatorname{div}(\phi) \quad \mathrm{c} \operatorname{grad} \phi \mathrm{d} \nabla^{2} \phi$

3 If $\phi=2 x^{3} y^{2} z^{4}$ then $\left(\nabla^{2} \phi\right)_{(1,1,1)}=$ \qquad $\begin{array}{lllllll}\text { a } & 24 & \text { b } & 12 & \text { c } 40 & \text { d } 36\end{array}$
4 If $f(x)$ is an odd function defined in (-L,L), what is the value of a_{0}
a 1
b 2
c 0
d 5

5 A certain function $u(x, y)$ can be the real part of an analytic function if
a u satisfies $C-R$ equation
c u is harmonic
$b u$ is a continuous function
d None of these

6
The value of the integral $\int_{C} \frac{d z}{z^{2}}=0$ where C is,
a $|z|=1 \quad$ b $|z-1|=2$ c $|z|=2$ d $|z-2|=1$

State True or False

7 The vector function is the gradient of a scalar function, then the function is conservative
8 If $\mathrm{f}(\mathrm{x})=1,0<\mathrm{x}<\infty$ can be represent as a Fourier integral.
9 If $\mathrm{f}(\mathrm{z})$ is analytic function, then $\mathrm{kf}(\mathrm{z})$ is also analytic function where k is a constant.

Define the following

10 Write Parseval's identity for Fourier Sine Transform

Show that the function $x^{4}-6 x^{2} y^{2}+y^{4}$ is harmonic.
Verify whether $w=\sin (x) \cosh (y)+i \cos (x) \sinh (y)$ is analytic or not.
The Laurent's series expansion of $\frac{1}{\mathbf{z (z - 1)}}$ valid in $|z|>1$ is \qquad
4 Find the Fourier cosine transform of e^{-x}.
5 Find the constant term in the Fourier series corresponding to $f(x)=\cos ^{2}(x)$ expressed in the interval $(-\pi, \pi)$.
If $\overline{\mathbf{r}}=\overline{\mathrm{x}}+\mathbf{y} \overline{\mathbf{j}}+\mathbf{z} \overline{\mathbf{k}}$, then find $\nabla\left(\frac{1}{\mathbf{r}}\right)$?
7 If $\overline{\mathbf{F}}=(\mathbf{x}-3 \mathbf{y}) \overline{\mathbf{i}}+(\mathbf{y}-2 \mathbf{x}) \overline{\mathbf{j}}$ and C is the line segment from $(0,0)$ to $(3,1)$ then find $\int_{\mathbf{C}} \overline{\mathbf{F}} \mathrm{d} \overline{\mathbf{r}}$

1 Find the directional derivative of $\phi=\mathbf{x y}+\mathbf{y z}+\mathbf{z x}$ in the direction of the vector $\overline{\mathbf{i}}+2 \overline{\mathbf{j}}+2 \overline{\mathbf{k}}$ at $(1,2$, 2 Evaluate $\int(x d y-y d x)$ around the circle $x^{2}+y^{2}=1$.
3 Evaluate $\int\left\{\left(x y+x^{2}\right) d x+\left(x^{2}+y^{2}\right) d y\right\}$, where C is the square formed by the lines $x=-1$ to 1 and $y=-1$ tolusing Green's theorem.
4
If for $0<x<L$, the function $f(x)$ has the expansion $f(x)=\sum_{n=1}^{\infty} b_{n} \sin \left(\frac{n \pi x}{L}\right)$ then find $\int_{0}^{L}[f(x)]^{2} d x$.
5 Find the Fourier Transform of $f(x)=\left\{\begin{array}{ll}1 ; & |\mathbf{x}|<\mathbf{a} \\ 0 ; & |\mathbf{x}|>\mathbf{a}\end{array}\right.$.
6 Find the Fourier transform of $\mathrm{e}^{-|x|}$, then find $\int_{0}^{\infty} \frac{\mathrm{dx}}{\left(\mathrm{x}^{2}+1\right)^{2}}$.
Find the image of the circle $|z|=2$ by the transformation $w=z+3+2 i$
IV Write an essay on ANY ONE of the following
1
Evaluate $\int_{0}^{\infty} \frac{d x}{\left(x^{2}+a^{2}\right)\left(\mathbf{x}^{2}+\mathbf{b}^{2}\right)}$ using Fourier Transform.
2 Use divergence theorem to evaluate $\iint_{\mathbf{S}} \overline{\mathbf{F}} \bullet \hat{\mathrm{n} d s}$ where $\overline{\mathbf{F}}=\mathbf{x}^{\mathbf{3}} \overline{\mathbf{i}}+\mathbf{y}^{\mathbf{3}} \overline{\mathbf{j}}+\mathbf{z}^{\mathbf{3}} \overline{\mathbf{k}}$ and S is the surface of the sphere $\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}=\mathbf{a}^{2}$.

