KERALA AGRICULTURAL UNIVERSITY
 B. Tech (Agrl.Engg) Degree programme 2015 Admission
 II ${ }^{\text {nd }}$ Semester Final Examination- June/July-2016

Cat. No: Math. 1202
Title: Engineering Mathematics-II (3+0)
Marks: 50
Time: 2 hours

I Answer the Following

$10 \times 1=10$
If a sequence $\left(a_{n}\right)$ has a finite limit, it is called \qquad
2. Fourier expansion of an odd function has only \qquad terms.
3. Fourier cosine transform of $f(t)$ is \qquad
By eliminating a and b from $z=a(x+y)+b$, the partial differential equation formed is
5. The partial differential equation of the transverse vibration of a string is \qquad
6. The only function that is analytic from the following is \qquad
(a) $f(z)=\sin z$
(b) $\mathrm{f}(\mathrm{z})=\overline{\boldsymbol{z}}$
(c) $f(z)=\operatorname{Img}(z)$
(d) Real
(ia)
7. The value of $\int_{c} \frac{3 z^{2}+7 z+1}{z+1} d z$ where c is $|z|=\frac{1}{2}$ is \qquad
a) $2 \pi i$
b) 0
c) πi
d) $\pi i / 2$
8. The critical point of the transformation $w^{2}=(z-a)(z-b)$ is \qquad
9. If $|z|<1$ then Taylor's series expansion of $\log (1+z)$ about $z=0$ is \qquad
10. If $<u_{n}$ is converges, then $\lim _{n \rightarrow \infty} U_{n} \geq O(T / F)$

Answer Any Five Questions

1. Test for convergence $\sum(\log n)^{-2 n}$
(2.) State Euler's formulae in Fourier Series.
2. Derive a partial differential equation (by eliminating the constants) from the equation $2 z=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}$
Solve $p(1+q)=q z$
3. State one dimensional heat and wave equation.
4. Define Analytic function
(7.) Define Cauchy's Residue theorem

Answer Any Five Questions

1. Discuss the convergence of the series $\sum_{n=1}^{\infty} \frac{n!}{\left(n^{n}\right)^{2}}$
2. Define even and odd functions.

Solve $\left(p^{2}+q^{2}\right) y=q z$
(4.) Find the deflection of a vibrating string of unit length having fixed ends with initial velocity zero and initial deflection $f(x)=k(\sin x-\sin 2 x)$
(5.) Discuss the transformation $\mathrm{w}=\operatorname{coshz}$.
6. State and prove Cauchy's Integral formula.
7. Explain singularities of an analytic function

Answer Any One Question points and other edges are at zero temperature. Determine the temperature at any point of
the plate in the steady state.
2. By integrating around a unit circle, evaluate $\int_{0}^{2 \pi} \frac{\cos 3 \theta}{5-4 \cos \theta} d \theta$.

