KERALA AGRICULTURAL UNIVERSITY
 B.Tech.(Food Engg) 2016 Admission
 IV Semester Final Examination-July 2018

Basc. 2209
Numerical Methods for Engineering Applications (1+1)
Marks: 50
Time:2hours

I Fill up the following blanks:

1 In \qquad method the values of $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots \ldots \ldots, \mathrm{x}_{\mathrm{n}}$ are obtained immediately without using back substitution.
2 Lagrange's interpolation formula is used only for \qquad intervals.
3 One dimensional heat equation is \qquad invals.
4 The positive root of $f(x)=2 x^{3}-3 x-6=0$ lies between
5. Iterative formula of Newton's Raphson method is

State True or False

6 Newton-Raphson method is quadratically convergent.
7 Solution matrix of $\mathrm{AX}=\mathrm{B}$ by Gauss-elimination method is an upper triangular matrix.
8 Newton's forward interpolation formula is suitable to estimate the interpolations near the middle of the table value.
9 Modified Euler's method is the Runge-Kutta method of fourth order.
10 Error in the trapezoidal rule is of the order h^{4}.

II Write Short notes on any FIVE of the following

1 Define interpolation and extrapolation.
2 i) Write trapezoidal rule.
ii) Write Newton's backward difference interpolation formula.

3 Classify the PDE $f_{x x}-2 f_{x y}=0$.
4 Using Gauss elimination method solve

$$
\begin{aligned}
& 2 x+y=3 \\
& 7 x-3 y=4
\end{aligned}
$$

5 Find relation between E and Δ
6 Form the divided difference table for the following data

x	1	2	4	7	12
$\mathrm{f}(\mathrm{x})$	22	30	82	106	206

7
Evaluate $\int_{0}^{1}\left(\frac{1}{1+x^{2}}\right) d x$ using Trapezoidal rule by taking interval $h=\frac{1}{2}$

III Answer any FIVE of the following.

1 Solve the equation $x^{3}-2 x-5=0$ by Newton Raphson method.
2 Using Newton's forward interpolation formula find y at $x=8$ from the table:

x	0	5	10	15	20	25
y	7	11	14	18	24	32

3 Find the value of $\int_{1}^{2}\left(\frac{1}{5+3 x}\right) \mathrm{dx}$ using Simpson's rule.
4. Obtain the values of y at $x=0.1,0.2$ using R.K method of second order.

5 Solve $\frac{d y}{d x}=x+y$, given $y(1)=0$, and get $y(1.1)$ by Taylor series method.
6 Using Crank-Nicholson's method solve $u_{x X}=16 u_{t}, 0<x<1, t>0$ given $u(x, 0)=0, u(0, t)=0, u(1, t)=100 t$.Compute u for one step in t direction taking $\mathrm{h}=\frac{1}{4}$.
7 Write short notes on classification of partial differential equation of second order.

IV Write Essay on ANY ONE

1. Explain briefly Gauss elimination and Gauss Jordan Methods.
2. The following are data from steam table.

Temp $^{\circ} \mathrm{C}$	140	150	160	170	180
Pressure $\mathrm{Kg} / \mathrm{cm}^{2}$	3.685	4.854	6.302	8.076	10.225

Using Newton's formula, find the pressure of the steam for a temperature of $142^{\circ} \mathrm{C}$.

