# KERALA AGRICULTURAL UNIVERSITY 

B.Tech (Food.Engg.) 2016 Admission

I ${ }^{\text {st }}$ Semester Final Examination-February-2017
Cat. No: Basc. 1102.
Marks: $\mathbf{5 0 . 0 0}$
Title: Engineering Mathematics I (3+0)
Time: 2 hours
I Fill in the blanks/State True or False
(10x1=10)

1. The product of the eigenvalues of a matrix $A=\left[\begin{array}{ll}2 & -3 \\ 4 & -2\end{array}\right]$ is
2. Bending of a curve at a point is termed as ---------- of a curve at that point.
3. If the rank of $A \neq$ rank of augmented matrix $K$, then the system of linear equations are $\qquad$
4. Define the chain rule for Jacobians.
5. Write the reduction formula for $\int \sin ^{n} x d x$
6. If $\mathrm{y}=0$ to 1 and $\mathrm{x}=0$ to 3 , then evaluate $\iint\left(x^{2}+3 y^{2}\right) d y d x$
7. Find the value of $\Gamma(1 / 2)$.
8. Write the parametric equation of a curve cycloid.
9. Write the condition for $f(x, y)$ to be maximum.
10.If $u=\mathrm{F}(\mathrm{x}-\mathrm{y}, \mathrm{y}-\mathrm{z}, \mathrm{z-x})$, then find the value of $\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}+\frac{\partial u}{\partial z}=\ldots-\ldots$

## II Write short notes/answers on any FIVE of the following

1. Find the $A^{-1}$ of a matrix $A=\left[\begin{array}{ll}1 & 4 \\ 2 & 3\end{array}\right]$
2. How to test the consistency of a system of equations in ' $n$ ' unknowns.
3. Using Cayley-Hamilton theorem, find the $A^{-1}$ of $A=\left[\begin{array}{ll}1 & 4 \\ 2 & 3\end{array}\right]$
4. Expand $e^{\sin x}$ by Maclaurin's series up to terms containing $x^{4}$.
5. Find the maximum and minimum values of $3 x^{4}-2 x^{3}-6 x^{2}+6 x+1$ in the interval ( 0,2 ).
6. If $u=x^{3}+y^{3}-3 a x y$, then prove that $\frac{\partial^{2} u}{\partial x \partial y}=\frac{\partial^{2} u}{\partial y \partial x}$.
7. Change the order of integration of $\iint f(x, y) d y d x$, if the limits are $\mathrm{y}=\mathrm{x}$ to a and $\mathrm{x}=0$ to a .

## III Write short answers on any FIVE

1. Test whether the following system of equations has the trivial solution or not: $x+2 y+3 z=0,3 x+4 y+4 z=0,7 x+10 y+12 z=0$.
2. Let $A$ be the square matrix of order 3 and $\lambda_{1}, \lambda_{2}, \lambda_{3}$ be its eigen values with eigen vectors $X_{1}, X_{2}, X_{3}$ respectively. Find its diagonal form $D=P^{-1} A P$.
3. Reduce the quadratic form $\mathrm{Q}=2 \mathrm{xy}+2 \mathrm{yz}+2 \mathrm{zx}$ into canonical form.
4. Expand $e^{x}$ by Taylor's series in powers of (x-1) up to $4^{\text {th }}$ term.
5. Change the order of integration of $\iint f(x, y) d y d x$, if the limits are $\mathrm{y}=\mathrm{x}$ to $\sqrt{x}$ and $\mathrm{x}=0$ to 1 .
6. Find the radius of curvature at the point $(3 a / 2,3 a / 2)$ of the Folium $x^{3}+y^{3}=3 a x y$.
7. Verify Euler's theorem for $u=x^{2} y z-4 y^{2} z^{2}+2 x z^{3}$.

IV Write essay on any ONE

1. Reduce the quadratic form $\mathrm{Q}=2 \mathrm{x}^{2}+2 \mathrm{y}^{2}+2 \mathrm{z}^{2}-2 \mathrm{zx}$ into canonical ( $1 \mathrm{x} 10=10$ ) orthogonal transformation.
2. Change the order of integration and evaluate $\iint x y d x d y$, if the limits are $y=0$ to 1 and $x=x^{2}$ to (2-x).
