KERALA AGRICULTURAL UNIVERSITY

B.Tech.Food Engg. 2016 Admission

II Semester Final Examination – July - 2017

Cat. No: Meen 1203	Marks: 50 Time : 2 hours
I. Fill up the blanks:	(10 x 1=10)
 A thermodynamic system remains practically in equilibrium at all times in a process. 	
2. For steam at 1 MPa, the saturation temperature is	° C and latent heat is
3. The ratio of mass of vapor to the mass of liquid in a liqu	id vapour mixture is called

4. Stirling cycle consists of two reversible ------ and two reversible ------ processes.

State True or False:

- 5. Enthalpy of an ideal gas depends only on temperature.
- 6. The cyclic integral of a thermodynamic property is always greater than zero.
- 7. A process always occurs in such a direction as to cause a decrease in the entropy of the

universe.

Define:

- 8. PMM2.
- 9. Compression ratio.
- 10. Triple point of water.

II. Write short notes on ANY FIVE:

- 1. What is meant by thermodynamic system? How it is classified?
 - 2. Differentiate between intensive and extensive properties.
 - 3. State Zeroth law of Thermodynamics. What is it application?
 - 4. What is meant by a reversible process?
 - 5. Sketch the PV and TS diagrams of a Carnot cycle and identify the various processes.
 - A gas has C_p =1.9 and C_v =1.5 kJ/kg-K. Compute the molecular weight and characteristic gas constant of this gas.
 - 1 kg of water at 0 °C is heated and completely converted to superheated steam at 150.°C at 1 atmospheric pressure. Show the phase change process on a TS diagram.

III Write answers on ANY FIVE:

- 1. Derive the expression for pdV work, when an ideal gas of mass m undergoes a reversible isothermal process from state 1 to state 2.
- 2. Write the Van der Waals equation of state and explain the terms. How does it is different from Ideal gas equation of state?
- 3. Write down Clausius-Clapeyron equation and explain its significance.

(5x 2=10)

(5 x 4=20)

- Air is compressed reversibly according to the law pv⁻¹²⁶ =const. from an Initial . 1 bar and volume of 0.9 m³ to a final volume of 0.6 m³. Determine the final pressure 4. the change in entropy per kg or air.
- 5. Explain the P-V-T surface of a pure substance with a neat sketch.
- What are the important assumptions used in the analysis of air-standard cycles? 6.
- Steam at 30 bar and 400 ° C is expanded isentropically in a steam turbine to 0.06 bar. Find 7.
 - the enthalpy and dryness fraction of steam at the end of expansion.

IV. Write essay on any ONE

(1 x 10=10

- 1. State the Kelvin-Plank and Clausius statement of second law of thermodynamics. Establis the equivalence of both statements.
- 2. Explain Ericsson cycle. Using an ideal gas as the working fluid, show that the therm efficiency of an Ericsson cycle is identical to the efficiency of a Carnot cycle operation between the same temperature limits.
