KERALA AGRICULTURAL UNIVERSITY B.Tech (Food.Engg) 2014 Admission Ist Semester Final Examination- February -2015

	t. No:Basc.1103 le:Engineering Physics (2+1)		Marks: 50.00 Time: 2 hours
I	Define	(10 x 1=10)	2. 2 . 1
	1. Define Superconductivity		
	2. State Curie Wess law	•	
	3. Write expression for numerical aperture of optical fiber		
	4. Brief Meissner effect		
	5. What do you mean by critical magnetic field		
State True or False			
	6. Coherent light sources produce interference	•	
	7. Light travels with constant speed in all medium		
Fill up the blanks			
Ż	8. The fundamental unit in a grating is called		
• ·	9. The tangential force acting on the surface of a liquid is k	nown as	
	10. Whenof a crystal matches with applied frequ	ency ,resonanc	
II	Write short notes on any FIVE questions		(5 x 2=10)
	1. In Newton's rings experiment the center spot is always da	rk. Why	
	2. Briefly describe any three applications of laser in the field of food engineering		
÷	3. Compare type I and Type II superconductors		
	4. The band gap of Ga As is 1.44V. Calculate weave length when it is forward biased		
	5. Briefly explain Zeeman effect and Stark effect		
	6. Explain viscosity and derive an expression for viscous for	ce	
	7. Describe stream line and turbulent flow in fluid flow		
II	Write short notes on any FIVE questions		(5 x 4=20)
	1. Derive grating law and explain white light diffraction		
	2. Describe diode laser with a neat diagram		1
	3. Discuss optical fiber communication system with the help	o of a block dia	gram. What are the
	transmission losses in OFC system		
•	4. Explain law of mass action		

- 5. Derive an expression for Fermi level in a P-type semi conductor
- 6. Explain SQIUD and its application
- 7. Derive expression for resolving and dispersive power of a grating

IV Write an essay on any ONE

- Explain the structure of OFC .What are the different modes used in the OFC system. Derive expression for numerical aperture ,acceptance angle. Explain the transmission losses in OF system
- 2. Explain the band theory of solids .Discuss with necessary theory ,Fermi level shifting of N-ty and P-type semi conductors