KERALA AGRICULTURAL UNIVERSITY

B.Tech (Food.Engg) 2013 Admission
 III ${ }^{\text {rd }}$ Semester Final Examination- December -2014

Marks: 50.00
tle: Engineering Mathematics -III
Time: 2 hours

Ht-I (answer all questions)

If $\bar{r}=x i+y j+z k$, prove that $\nabla(\bar{a} \cdot \bar{r})=\bar{a}$, where \bar{a} is a constant vector.
Find the divergence and curl of the vector $\bar{F}=x y z i+3 x^{2} y j+\left(x z^{2}-y^{2} z\right) k$ at the int $(2,-1,1)$.

Obtain the Fourier series of $\mathrm{f}(\mathrm{x})=\mathrm{x}$ in the interval $(0,2 \pi)$.
Determine whether or not the function $x^{3}-3 x y^{2}+3 x^{2}-3 y^{2}+1$ harmonic.
Evaluate $\int_{c} \frac{d z}{z-a}$ when (i) a is inside c (ii) a is outside c.

III (answer any five)

Ind the angle between the surfaces $x^{2}+y^{2}+z^{2}=9$ and $x^{2}+y^{2}-z=3$ at the point $(2,-1,2)$.
etermine the analytic function whose real part is $x^{2}-y^{2}-2 x y-2 x+3 y$.
竞 pand $\cos z$ in a Taylor series about $z=\pi / 4$.
Hond the half range sine series of $\mathrm{f}(\mathrm{x})=(\mathrm{x}-1)^{2}$ in the interval $(0,1)$.
aluate $\int_{c} \frac{\mathrm{e}^{2} \mathrm{~d} z}{(z+1)^{2}}$ where c is $|z-3|=3$.
ind the bilinear transformation which maps the points $z=1, i,-1$ into $w=i, 0,-i$.
ind the Fourier integral of $f(x)=\left\{\begin{array}{c}1 \text { for }|x| \leq 1 \\ 0 \text { for }|x|>1\end{array}\right.$.

IIII (answer any one)
$f(x)=\left\{\begin{array}{c}0 \text { in }(-\pi, 0) \\ \sin x \text { in }(0, \pi)\end{array}\right.$, prove that $f(x)=\frac{1}{\pi}+\frac{\sin x}{2}-\frac{2}{\pi} \sum \frac{\cos 2 n x}{4 n^{2}-1}$.
Se Green's theorem in a plane to evaluate the integral $\int_{c}\left[\left(2 x^{2}-y^{2}\right) d x+\left(x^{2}+y^{2}\right) d y\right]$ where c is boundary in the $x y$ plane of the area enclosed by the X-axis and the semicircle $x^{2}+y^{2}=1$ in upper half of $x y$ - plane.

