KERALA AGRICULTURAL UNIVERSITY
 B.Tech (Food. Engg) 2013 Admission
 IV ${ }^{\text {th }}$ Semester Final Examination-June/July -2015

Catt. No: Basc. 2209
Marks: 50.00
Title: Numerical Methods for Engineering Applications (1+1)
Time: 2 hours

Answer the following
$10 \times 1=10$

In Newton-Raphson method a root of $f(x)=0$ lies between a and b, if $f(a)$ and $f(b)$ are
Newton's formula converges if \qquad

In Gauss elimination method, the coefficient matrix is transformed to the form,
The Forward operator $\Delta y_{n}=$ \qquad
Iteration method is a \qquad
Taylor's series for a function at two variable is \qquad series
The process of computing the value of the function outside the given range is called
The condition to apply Jacobi's method to solve a system of equations is \qquad
The Simpson's three-eight rules. $Y(x)$ is polynomial of degree \qquad
\qquad

Vrite short notes on any FIVE questions
0. The accuracy of the result can be improved when the number of intervals are

1. Iterative methods.
2. . Newton's divided difference formula.
3. Crout's method
4. Classification of Partial differential equations
5. Horner's method

Central difference
Liebermann's iteration process.
II Write short notes on any FIVE questions (5 x $f=20$)

1. Evaluate $\sqrt{12}$ to four decimal places by Newton's Raphson method
2. Evaluate $\Delta(\log x)$
3. Give the Runge Kutta method of order Second and Third

Write truncation error in Trapezoidal rule.
Using R.K method of fourth order, find $y(0.8)$ correct to 4 decimal places,
If $y^{\prime}=y-x^{2}, y(0.6)=1.7379$.
Solve by Gauss Seidal and Gauss Jacobi methods $8 x-y+z=18 ; 2 x+5 y-2 z=3 ; x+y$ $-3 z=-6$
Solve $x-y+z=1,-3 x+2 y-3 z=-6,2 x-5 y+4 z=5$, by Gauss elimination mehod.

Answer any ONE of the following

$$
1 \times 10=10
$$

Solve $U_{x x}+U_{y y}=0$ in over the square mesh of side 4 units satisfying the following boundary conditions,
$U(0, y)=0,0 \leq y \leq 4$
$U(4, y)=12+y, \quad 0 \leq y \leq 4$
$U(x, 0)=3 x, 0 \leq x \leq 4$,
$U(x, 4)=x^{2}, 0 \leq x \leq 4$,
(i) Evaluate $\int_{0}^{6} \frac{1}{1+x} d x$ Using (i) Trapezờidal rule (ii) Simpson's rule (both) by taking $h=1$
(i) Find y (2) from the following data

$x:$	3	4	5	6
$y:$	6	24	60	120

