KERALA AGRICULTURAL UNIVERSITY
 B.Tech (Food. Engg) 2014 Admission
 III ${ }^{\text {rd }}$ Semester Final Examination-December -2015

Cat. No: Basc. 2108
Title: Engineering Mathematics III (2+1)
Marks: $\mathbf{5 0 . 0 0}$
I Fill up the blanks

1. Gradient vector field of $x^{2}+y^{2}+z-x y+1$ at the point $(1,-1,2)$
2. $\nabla x R=$ \qquad
3. The Cauchy Reimann equatio is are \qquad
(1) 4. The genomal valui, of $\log (-i)$
4. Write down convolution theorem.
5. Cauchy residue theorm is given by \qquad
7 צ. Eilinear transformation x ransforms circle in to \qquad and it preserves
\qquad of four puints
6. What is an analytic function
7. The poles of $\frac{1}{1-e^{z}}$ are \qquad
8. $\nabla \cdot R=$ \qquad

II Write the answer of any FIVE questions

What is harmonic function? Find out the harmonic conjugate of a function whes real part is $x^{3}-3 x y^{2}$
2. A particle move along the curve $\mathrm{x}=t^{3}+1, \mathrm{y}=t^{2}, \mathrm{z}=2 \mathrm{t}+3$ where t is the time . find the velocity $a t$
3. Find out the singular point of $\frac{z^{2}}{(z-1)(z-2)^{2}}$
4. Obtain the half range sine series of $\mathrm{f}(x)=e^{x}$ in $0<x<1$

I State Gauss Divergence Theorem
6. Expand tan z using maclaurin's series expansion
7. Find the Fourier series representationary $f(x)=\left\{\begin{array}{c}x \text { in }(0, \pi) \\ 2 \pi-x \text { in }(\pi, 2 \pi)\end{array}\right.$

(8)
 III Write answer of any FIVE questions

Find the Fourier series of expansion of $\mathrm{f}(\mathrm{x})=\mathrm{x},-1 \leq x \leq 1$
2. Expand $\mathrm{f}(\mathrm{z})=\frac{1}{(z-1)(z-2)}$ in the region $1<|z|<2$

Find the $\operatorname{div} \bar{F}$ and curl \bar{F} where $\bar{F}=\operatorname{grad}\left(x^{3}+y^{3}+z^{3}-3 x y\right)$
4. If $\mathrm{f}(z)=\mathrm{u}+\mathrm{iv}$ is an analytic function with constant modulus, then prove is constant

Find the Taylor series expansion of $\cos z$ about $z=\frac{\pi}{2}$
6. Evaluate $\int_{c} \frac{e^{z}}{(z-1)(z-2)} d z$, where c is che circle $|z|=3$
7. Find Fourier Sine Series and Cosine series for the function given by $\mathrm{f}(x)$

IV Write answer of any ONE

1. a) Define Bilinear transformation
b) Find bilinear transformation which maps the points $z=1, i,-1$ in to the $w=i, 0$, -i Hence, find the image of $|z|<1$
. a) State Cauchy's residue theorem
b) By integrating around the a unit circle, evaluate $\int_{0}^{2 \pi} \frac{\cos \theta}{5-4 \cos \theta} \mathrm{~d} \theta$
