KERALA AGRICULTURAL UNIVERSITY B.Tech (Food. Engg) 2014 Admission IIIrd Semester Final Examination-December -2015

ł

Cat. No: Basc.2108 Title: Engineering Mathematics III (2+1)	Marks: 50.00 Time: 2 hours
I Fill up the blanks	(10 x 1=10)
1. Gradient vector field of $x^2 + y^2 + z - xy + 1$ at the point (1, -1,2))
2. $\nabla x R =$	
3. The Cauchy Reimann equations are	
() $(-i)$ The general value of log $(-i)$	
5. Write down convolution theorem.	
De. Cauchy residue theorem is given by	
7 - ulinear transformation	and it preserves
of four points	1
8. What is an analytic function	
9. The poles of $\frac{1}{1-e^z}$ are	
$10.\nabla R = $	
II Write the answer of any FIVE questions	(5 x 2=10)
) What is harmonic function? Find out the harmonic conjugate of a	
real part is $x^3 - 3xy^2$	
2. A particle move along the curve $x = t^3 + 1$, $y = t^2$, $z = 2t + 3$ whe	ere t is the time
find the velocity at a 1	
3. Find out the singular point of $\frac{z^2}{(z-1)(z-2)^2}$	
4. Obtain the half range sine series of $f(x) = e^x$ in $0 < x < 1$	
State Gauss Divergence Theorem	
6. Expand tan z using maclaurin's series expansion	
7. Find the Fourier series representationary $f(x) = \begin{cases} x \text{ in } (0, \pi) \\ 2\pi - x \text{ in } (\pi, 2\pi) \end{cases}$	τ) .
• 	

III Write answer of any FIVE questions (i) Find the Fourier series of expansion of f(x) = x, $-1 \le x \le 1$ $(5 \times 4 = 20)$ 2. Expand $f(z) = \frac{1}{(z-1)(z-2)}$ in the region 1 < |z| < 23. Find the div \overline{F} and curl \overline{F} where $\overline{F} = \text{grad} (x^3 + y^3 + z^3 - 3xy)$ 4. If f(z) = u + iv is an analytic function with constant modulus, then prove the prove the prover the provement of the Find the Taylor series expansion of $\cos z$ about $z = \frac{\pi}{2}$ 6. Evaluate $\int_{c} \frac{e^{z}}{(z-1)(z-2)} dz$, where c is the circle |z| = 37. Find Fourier Sine Series and Cosine series for the function given by f(x)IV Write answer of any ONE 1. a) Define Bilinear transformation $(1 \times 10 = 1)$ b) Find bilinear transformation which maps the points z = 1, *i*, -1 in to the w=i, 0,-i Hence, find the image of |z| < 1a) State Cauchy's residue theorem b) By integrating around the a unit circle, evaluate $\int_{5-4\cos\theta}^{+} d\theta$