KERALA AGRICULTURAL UNIVERSITY

B.Tech (Food. Engg) 2014 Admission IIIrd Semester Final Examination-January -2016

Cat. No: Cien.2105	Marks: 50.00
Tale: Fluid mechanics (2+1)	Time: 2 hours
Fill up the blanks	(10 x 1=10)
1. Surface tension is caused by force in	
2is the ratio of actual velocity at vena contract	
3. The vertical distance between the centre line of the pum	p and the water surface in the
tank to which water is delivered is called	
4. Specific volume is the reciprocal of	·
5. A device used for measuring pressure at a point in a fluid	
6. The pressure at any point in a fluid is defined as the	per unit area
7. The SI unit of surface tension is	
State True or False	
8. Laminar flow is that type of flow in which the fluid partic	cles move in a zig zag way
9. Two streamlines cannot cross each other	
10. Drag acts parallel to the surface	
II Write short notes on any five questions	(5 x 2=10)
1. State Darcy's formula	
2. State Chezy's formula	
3. State Von Karman equation	
4. Define drag coefficient	
5. Define meta centre	•
6. Define vapour pressure	
7. Define a real fluid	
III Write short essay on any FIVE questions	(5 x 4=20)
1. Describe the working principle of a pitot tube with a neat	diagram
2. Find the discharge through a rectangular orifice 2 m w	
water tank. The water level in the tank is 3 m above the t	top edge of the orifice .Take C_d
=0. 62	· ·
3. State Bernoulli's theorem. Mention the assumption n	nade. List out its engineering
application	

- 4. Discuss briefly about boundary layer theory for laminar boundary
- 5. Discuss the concept of the boundary layer with reference to fluid motion over a flat plate
- 6. Explain the fluidization phenomenon with basic principles and conditions of fluidization
- 7. Write short note on Newton's law of viscosity

IV Write essay on any ONE

 $(1 \times 10=10)$

1. Water under a constant head of 4.5 m discharge through a cylindrical mouthpiece 50 mm diameter and 150 mm long . If C_c for the orifice is 0.60, find (i) the discharge in litres per second; (b) the coefficient of discharge

2. Discuss in detail about construction and working of a centrifugal pump with a neat sketch . What are the important aspects to be considered in the design of pumps?