KERALA AGRICULTURAL UNIVERSITY
 B.Tech.(Ag. Engg) 2018 Admission
 I Semester Final Examination-January 2019

Sacs. 1101

Engineering Mathematics I (2+1)

Marks:50
Time:2hours
-I Fill in the blanks:
1
Find the asymptote to the curve $y^{2}(a+x)=x^{2}(b-x)$, parallel to y axis. State Euler's theorem on homogeneous functions.
If $x^{3}+y^{3}-3 a x y=0$ find $\frac{d y}{d x}$
Find a differential Equation representing the family of curves $y=A e^{x}$ Find the general solution of the differential Equation $\quad\left(D^{2}-3 D+2\right) y=0$
where $\quad D=\frac{d}{d x}$
6 What is the general form of a Cauchy's Linear Differential Equation and write the transformation needed to convert it in to a linear differential equation with constant coefficients.
7 Find the unit vector normal to the surface $x^{2}+y^{2}+z^{2}=a^{2}$ at ($\mathrm{x}, \mathrm{y}, \mathrm{z}$).
8 Define Curl of a vector valued function.
9 Calculate $\nabla^{2} f$ where $f=4 x^{2}+9 y^{2}+z^{2}$
10 State the formula in Green's theorem.
II Write Short notes on ANY FIVE of the following
2 What is the maximum value of the function $y=x(1-x)^{2}$ in the interval $(0,1)$
2 Find the Taylor series expansion of the function $y=\operatorname{Sin} x$ about $\mathrm{x}=0$
3 Solve $x \frac{d y}{d x}+y=x y^{3}$
4 Solve $y=p \sin p+\cos p$
5 Solve $\frac{d^{2} y}{d^{2} x}-12 \frac{d y}{d x}+36 y=e^{6 x}$
6
Evaluate $\int_{C} \vec{F} . d \vec{r}$ along the parabola $y^{2}=x$ between the points $(0,0)$ and $(1,1)$
where $\quad \vec{F}=x^{2} \vec{i}+x y \vec{j}$
7 Use Gauss divergence theorem to evaluate $\iint_{S}(y z \vec{i}+z x \vec{j}+x y \vec{k}) \cdot d S$ where S is the surface of the sphere in the first octant.

Answer ANY FIVE of the following

1 Prove that $\lim _{x \rightarrow 0} \sin x \log x=0$
2 If $u=\sin ^{-1}\left(\frac{x^{2}+y^{2}}{x+y}\right)$ prove that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=\tan u$
3 Solve by the method of variation parameters, $\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+y=e^{x} \log x$
4 Solve $\frac{d x}{d t}-7 x+y=0 ; \frac{d y}{d t}-2 x-5 y=0$
5 Prove that $J_{\frac{5}{2}}(x)=\sqrt{\frac{2}{\pi x}}\left\{\frac{3-x^{2}}{x^{2}} \sin x-\frac{3}{x} \cos x\right\}$
6 Find CurlCurl \vec{A} where $\vec{A}=x^{2} y i-2 x z j+2 y z k$ at the point $(1,0,2)$
7 Evaluate by Stoke's theorem $\oint_{C}\left(e^{x} d x+2 y d y-d z\right)$ where C is the curve $x^{2}+y^{2}=4, z=2$

IV Answer ANY ONE of the following

1. Evaluate $\iiint x^{2} y z d x d y d z \quad$ over the region bounded by the planes

$$
x=0, y=0, z=0, x+y+z=1
$$

2.

(a) If $\vec{A}=x^{2} z \vec{i}-2 y^{3} z^{2} \vec{j}+x y^{2} z \vec{k}$ find $\nabla . \vec{A}$ at the point $(1,-1,1)$
(b) Solve $\left(D^{2}-2 D+2\right) y=e^{x} x^{3}$

