

Sacs.1101

٠I

II

**** KERALA AGRICULTURAL UNIVERSITY** B.Tech.(Ag. Engg) 2018 Admission I Semester Final Examination-January 2019

Engineering Mathematics I (2+1)

Marks:50 Time:2hours

Fill in the blanks: 1 Find the asymptote to the curve $y^2(a+x) = x^2(b-x)$, parallel to y axis. (10x1=10)State Euler's theorem on homogeneous functions. 2 $x^3 + y^3 - 3axy = 0$ find $\frac{ay}{dr}$ 3 If 4 Find a differential Equation representing the family of curves $y = Ae^x$ Find the general solution of the differential Equation 5 $(D^2 - 3D + 2) y = 0$ $D=\frac{d}{dx}$ where 6 What is the general form of a Cauchy's Linear Differential Equation and write the transformation needed to convert it in to a linear differential equation with constant coefficients. 7 Find the unit vector normal to the surface $x^2 + y^2 + z^2 = a^2$ at (x,y,z). Define Curl of a vector valued function. 8 9 Calculate $\nabla^2 f$ where $f = 4x^2 + 9y^2 + z^2$ State the formula in Green's theorem. 10 Write Short notes on ANY FIVE of the following (5x2=10)1 What is the maximum value of the function $y = x(1 - x)^2$ in the interval (0,1) Find the Taylor series expansion of the function y = Sin x about x=02 $x\frac{dy}{dx} + y = xy^3$ 3 Solve Solve $y = p \sin p + \cos p$ 4 Solve $\frac{d^2y}{d^2x} - 12\frac{dy}{dx} + 36y = e^{6x}$ 5 6 Evaluate $\int \vec{F} \cdot d\vec{r}$ along the parabola $y^2 = x$ between the points (0,0) and (1,1) $\vec{F} = x^2 \vec{i} + xy \vec{j}$ where 7 Use Gauss divergence theorem to evaluate $\iint (yz \ \vec{i} + zx \ \vec{j} + xy \ \vec{k}) dS$ where S is the surface of the sphere in the first octant.

P.T.O

Answer ANY FIVE of the following

- Prove that $\lim_{x\to 0} \sin x \log x = 0$
- 2 If $u = \sin^{-1}\left(\frac{x^2 + y^2}{x + y}\right)$ prove that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = \tan u$

3 Solve by the method of variation parameters, $\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + y = e^x \log x$ 4 Solve $\frac{dx}{dt} - 7x + y = 0; \frac{dy}{dt} - 2x - 5y = 0$

- 5 Prove that $J_{\frac{5}{2}}(x) = \sqrt{\frac{2}{\pi x}} \left\{ \frac{3 x^2}{x^2} \sin x \frac{3}{x} \cos x \right\}$
- 6 Find CurlCurl \vec{A} where $\vec{A} = x^2 yi 2xzj + 2yzk$ at the point (1,0,2) 7 Evaluate by Stoke's theorem $\oint_C (e^x dx + 2y dy - dz)$ where C is the curve $x^2 + y^2 = 4, z = 2$

ĮV

Answer ANY ONE of the following
1 Evaluate
$$\iiint x^2 yz dx dy dz$$
 over the region bounded by the planes
 $x=0, y=0, z=0, x+y+z=1$
2. (ALC $\vec{4}$ = $2 \vec{5}$ = $0 + 3 + 2 \vec{5}$ = $0 + \vec{5}$

(a) If
$$A = x^2 z i - 2y^3 z^2 \overline{j} + xy^2 z \overline{k}$$
 find $\nabla . \overline{A}$ at the point (1,-1,1)
(b) Solve $(D^2 - 2D + 2)y = e^x x^3$

III

(5x4=20)