Sacs.1101

Π

III

'n

B.Tech. (Ag. Engg.) 2017 Admission I Semester Final Examination-January-2018

Engineering Mathematics I (2+1)

	Ι	Fill in the blanks: 1 $a^{x} - 1$	Marks: 50 Time: 2 hours (10x1=10)
		$\lim_{x \to 0} \frac{a^{x} - 1}{x} \text{ is } \dots$	(1021–10)
		² If $f(x, y) = xy^2 - \cos y$, then the value of the partial derivation	tive $\frac{\partial f}{\partial f}$ is
	-	The degree of the homogeneous function $f(x, y) = \frac{x^4 + y^4}{y^4}$ is	
	. 4	the functionally dependent then their Jacobian is	
	6	JJ_R ax ay represent of the region R.	×
	7	The degree of the differential equation $\frac{d^2y}{dx^2} - 3\left(\frac{dy}{dx}\right)^2 + y = 0$ is	S
		The solution of the differential equation $(D^2 - 4)y = 0$ is	
	8	The Particular integral of the differential equation $(D + 5)y = a^{2x}$	• • •
	9	If $\varphi(x, y, z) = x^2 + y^2 + z^2$, then the gradient $\nabla \omega$ is	
	10	If F is a vector field with curl $F = 0$, then the vector F is said to be	••••••
[]		Write Short notes on any FIVE of the following	
	1	Find the Maclaurin's series of $f(x) = e^x$	(5x2=10)
	2	If $u = x^2 - y$, $v = x + y$, then find the Jacobian of u and v v and y .	with respect to \boldsymbol{x}
	3		
		Show that $(x^2 - 4xy - 2y^2)dx + (y^2 - 4xy - 2x^2)dy$ is differential equation.	s an exact
	4	If $u = x^2 + y^2$, with $x = a \cos t$, $y = b \sin t$ find $\frac{du}{dt}$.	
	5	Evaluate $\int_0^1 \int_0^2 (x+3) dx dy$	
	6	State Stoke's Theorem.	
	7	If $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$, then evaluate div \vec{r} .	
	1	Answer any FIVE of the following.	(5x4=20)
	12	If $u = e^{x^3 + y^3}$, prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 3u \log u$	
~	2	Find the maxima and minima of $x^3 + y^3 + 3xy$.	
	3 C	Change the order of integration and hence evaluate $\int_0^1 \int_x^1 \frac{x}{x^2 + y^2} dy dx$	

Use imple integrals to find the volume bounded by the cynnels x + y = 2, the planes z = 1 and x + z = 5.

Solve the Bernoulli's differential equation: $x \frac{dy}{dx} + y = xy^3$.

6 Solve $\frac{d^2y}{dx^2} + y = cosec x$ using the method of variation of parameters. 7

Use Green's Theorem to evaluate $\oint_C (x - 2y)dx + (3x - y)dy$, where C is the boundary of a unit square

Write an essay on any one of the following

1 Solve the Legendre's linear equation:

5

IV

2

$$(3x+2)^2 \ \frac{d^2y}{dx^2} + 3(3x+2)\frac{dy}{dx} - 36y = 3x^2 + 4x + 1$$

(1x10=10)

Verify Gauss divergence theorem for $\vec{F} = (x + y)\hat{i} + x\hat{j} + x\hat{k}$ taken over the cube bounded by x = 0, x = 1, y = 0, y = 1, z = 0, z = 1.