B．Tech．（Ag．Engg．） 2017 Admission
 I Semester Final Examination－January－2018

Engineering Mathematics I（2＋1）

Marks： 50

1 Fill in the blanks：
$\lim _{x \rightarrow 0} \frac{a^{x}-1}{x}$ is \qquad
\qquad
If $f(x, y)=x y^{2}-\cos y$ ，then the value of the partial derivative $\frac{\partial f}{\partial x}$ is
The degree of the homogeneous function $f(x, y)=\frac{x^{4}+y^{4}}{x+y}$ is
4 If two functions are functionally dependent then their Jacobian is
\qquad $\iint_{R} d x d y$ represent ．．．．．．．．．．．．．of the region R ．

The degree of the differential equation $\frac{d^{2} y}{d x^{2}}-3\left(\frac{d y}{d x}\right)^{2}+y=0$ is
The solution of the differential equation $\left(D^{2}-4\right) y=0$ is \qquad
The Particular integral of the differential equation $(D+5) y=e^{2 x}$ is If $\varphi(x, y, z)=x^{2}+y^{2}+z^{2}$ ，then the gradient $\nabla \varphi$ is
10 If \boldsymbol{F} is a vector field with $\operatorname{curl} \boldsymbol{F}=0$ ，then the vector \boldsymbol{F} is said to be
\qquad
\qquad

II Write Short notes on any FIVE of the following

If $u=x^{2}-y, v=x+y$ ，then find the Jacobian of u and v with respect to x and y ．
Show that $\left(x^{2}-4 x y-2 y^{2}\right) d x+\left(y^{2}-4 x y-2 x^{2}\right) d y$ is an exact differential equation．

If $u=x^{2}+y^{2}$ ，with $x=a \operatorname{cost}, y=b \operatorname{sint}$ find $\frac{d u}{d t}$ ．
Evaluate $\int_{0}^{1} \int_{0}^{2}(x+3) d x d y$
6 State Stoke＇s Theorem．
7
If $\vec{r}=x \hat{\imath}+y \hat{\jmath}+z \hat{k}$ ，then evaluate $\operatorname{div} \vec{r}$ ．
Answer any FIVE of the following．
$(5 \times 4=20)$
If $u=e^{x^{3}+y^{3}}$ ，prove that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=3 u \log u$
Find the maxima and minima of $x^{3}+y^{3}+3 x y$ ．
Change the order of integration and hence evaluate $\int_{0}^{1} \int_{x}^{1} \frac{x}{x^{2}+y^{2}} d y d x$
 planes $Z=1$ and $x+z=5$.

IV Write an essay on any one of the following
1 Solve the Legendre's linear equation:

$$
(3 x+2)^{2} \frac{d^{2} y}{d x^{2}}+3(3 x+2) \frac{d y}{d x}-36 y=3 x^{2}+4 x+1
$$

Verify Gauss divergence theorem for $\vec{F}=(x+y) \hat{\imath}+x \hat{\jmath}+x \hat{k}$ taken over the cube bounded by $x=0, x=1, y=0, y=1, z=0, z=1$.

