

KERALA AGRICULTURAL UNIVERSITY B. Tech.(Agri. Engg) 2017 Admission II Semester Final Examination-July 2018

Sacs 1206

Engineering Mathematics II (2+1)

Marks: 50 Time: 2 hours

(10x1=10)

I Define the following in one Sentence.

- 1 Analytic function.
- 2 Absolute convergence.
- 3 Even and odd functions.
- 4 Maclaurin's series of f(x).
- 5 Convergent and divergent series.
- 6 Cauchy's root test.
- 7 Cauchy Riemann equations in polar term
- 8 One dimensional heat flow equation
- ⁹ Fourier series for the function f(x) in the interval $(\alpha, \alpha + 2\pi)$
- 10 D' Alembert's ratio test.

Π

Answer any FIVE of the following

- 1 Show that $f(z) = \sin z$ is analytic and hence find f'(z)
- ² Using Maclaurin's series, expand log(1 + x) and hence deduce that

$$\log \left[\sqrt{\left(\frac{1+x}{1-x}\right)} \right] = x + \frac{x^3}{3} + \frac{x^5}{5} + \dots \dots$$

³ Solve : pyz + qzx = xy

- 4 Test the series for absolute convergence: $1 \frac{1}{2} + \frac{1}{3} \frac{1}{4} + \cdots$
- 5 Express f(x) = x as Fourier series in the interval $-\pi < x < \pi$
- 6 Apply the Cauchy's root test to test the convergence for the series $1 + \frac{x}{2} + \frac{x^2}{3^2} + \frac{x^3}{4^3} + \cdots$ 7 Apply the Cauchy's root test to test the convergence for the series $1 + \frac{2^b}{2!} + \frac{3^b}{3!} + \frac{4^b}{4!} + \cdots$ P.T.O

(5x2=10)

Ш

IV

Answer any FIVE of the following.

1 Test the series
$$\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{3}} + \frac{1}{\sqrt{4}} - \frac{1}{\sqrt{5}} + \cdots$$
 for conditional convergence
Expand the function
2 $f(x) = \left\{ \begin{array}{cc} 1+2x, & -3 \le x \le 0\\ 1-2x, & 0 \le x \le 3 \end{array} \right\}$ as Fourier series and deduce that $\frac{\pi^2}{8} = \sum \frac{1}{(2n-1)^2}$
3 Evaluate $\int \frac{dz}{(z^2+4)^2}$, where $c: |z+i| = 2$, by Cauchy's integral formula.
4 Solve $x(y^2-z^2) p + y(z^2-x^2) q = z(x^2-y^2)$
5 Solve $4\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} = 3u$, given $u = 3e^{-y} - e^{-5y}$ when $x = 0$ by the method e
separation of variables.
6 Find a half range cosine and sine series for
 $f(x) = \begin{cases} x, & 0 \le x \le \frac{\pi}{2} \\ \pi - x, & \frac{\pi}{2} \le x \le \pi \end{cases}$
7 By Cauchy's root test, discuss the convergence of the series
 $1 + \frac{2}{3}x + \left(\frac{3}{4}\right)^2 x^2 + \left(\frac{4}{5}\right)^3 x^3 + \dots$
Answer any ONE of the following (1x10=1)
1 Prove that the real and imaginary parts of an analytical function are harmonic.

over the following curves $\int_{C} \frac{1}{z^2 - 4}$ Evaluate

C: |z| = 1a.

C: |z| = 3

C: |z + 2| = 1

c.

b.