KERALA AGRICULTURAL UNIVERSITY B.Tech (Agrl.Engg) 2014 Admission IInd Semester Final Examination-June/July -2015

Cat. No: Iden.1203 <u>Title: Strength of Materials (2+1)</u>	Marks: 50.00
1 Fill up the blanks	<u>Time: 2 hours</u> (10 x 1=10)
1. Change in length per unit length is called	
2. The resistance per unit area to deformation is called	
3. The maximum strain energy stored at elastic limit per	unit volume is called
4. The load required to produce a unit deflection in a spr	ring is called
5. A structural member, subjected to an axial compressiv	
Write true or False	· · · · · · · · · · · · · · · · · · ·
6. 1 N/m ² is equal to 1 Pascal	
7. A beam of uniform strength is one in which the stiffne	ess is same at every section
8. At the point of contraflexure the bending moment is z	
9. For short column ,slenderness ratio should be greater t	
10. Macaulay's methods is used to determine the deflectio	
II Write short notes on any FIVE questions	(5 x 2=10)
1. Differentiate between Fixed beam and simply supported	· · · ·
2. Define Hooke's law and Modulus of elasticity	
3. Distinguish between thin cylinder and thick cylinder	
4. Differentiate between circumferential stress and longitud	linal stress
5. Distinguish between column and strut	
6. Mohr's theorem and it's use	
7. SFD of a simply supported beam with central point load	
III Write short essays on any FIVE questions	(5 x 4=20)
1. Derive the relationship between Bulk modulus . Young's	
2. A 2 m long cantilever is loaded with a point load of 5	
rectangular 80 mm(wide) x 160 mm(deep) and $E=10$ G	
at the free end of the cantilever	
3. Derive the following relationship	
M/I=f/v=E/R where	
M=Bending moment, I= Moment of Inertia. E=Young'	s modulus R= Radius of curvature f=

Bending stress in the fiber, at a distance y from the neutral axis

4. An I section , with rectangular ends, has the following dimensions;

flanges -150 mm x 20 mm

web-300mm x10 mm

Find the maximum shearing stress developed in the beam for a shearing force of 50kN

- 5. A steel shaft 8 cm diameter and 800 cm in length is to transmit certain twisting moment such that affgle of twist is not to exceed 2.1°. Determine the value of the twisting moment and maximum shear stress. Given N = $0.8 \times 10^4 \text{ kN/cm}^2$
- 6. Calculate the minimum wall thickness of a thin cylinder 1 m in diameter, if it is to withstand and internal pressure of 200 N/cm² and the longitudinal and hoop stress not to exceed 3000 N/cm² and 4000 N/cm² respectively
- 7. A steel rod 5 cm long and of 4 cm diameter is used as a column, with one end fixed and the other free. Determine the crippling load using Euler's formula .Take E as 20 GN/m²

IV Write an essay on any ONE

$(1 \times 10 = 10)$

- 1. A cube of 60mm side is subjected to a force of 5 kN (Tension) .7 kN (Compressive) and 4 kN (Tension) along x,y and Z directions respectively .Determine the stresses and strains in x,y and z directions .Also find the change in volume of the block. Take E as 200 GPa and poissson's ratio as (3/10)
- 2. A fixed beam AB of span 6 metres carriers point loads 20 t and 15 t at distances 2 m and 4 m from the left end A. Find the fixed end moments and the reactions at the supports. Draw BM and SF diagrams