KERALA AGRICULTURAL UNIVERSITY

B.Tech (Agrl.Engg.) 2015 Admission

III ${ }^{\text {rd }}$ Semester Final Examination-January-2017
Cat. No: Math. 2103.
Marks: 50.00
Time: 2 hours
(10x1=10)

1. Newton's iterative formula to find the value of \sqrt{N} is \qquad
2. The value of $\int_{0}^{1} \frac{d x}{1+x}$ by Simpson's rule is
3. Jacobi's iteration method can be used to solve a system of non-linear equations.(T/F)
4. In terms of $\mathrm{E}, \delta=$ \qquad
5. $\mu^{2}=1-\frac{\delta^{2}}{4}(\mathrm{~T} / \mathrm{F})$
6. Newton's divided difference formula is \qquad
7. Adams-Bashforth predictor formula to solve $y^{\prime}=f(x, y)$ given $y_{0}=y\left(x_{0}\right)$ is
8. The disadvantage of Picard's method is \qquad
9. Laplace transform of x is
10. $L^{-1}\left[\frac{1}{\left(s^{2}+a^{2}\right)^{2}}\right]=$ \qquad

II Write short notes on any FIVE

($5 \times 2=10$)

1. Find a root of the equation $x^{3}-4 x-9=0$ using bisection method in 3 stages.
2. Construct Newtons's forward interpolation polynomial for the following data.

x	4	6	8	10
y	1	3	8	16

3. Using Taylor's series method compute the solution of $\frac{d y}{d x}=x+y, y(0)=1$ at the point $x=0.2$ correct to 3 decimal places.
4. Using Euler's method solve for y at $x=0.1$ from $\frac{d y}{d x}=x+y+x y, y(0)=1$
5. Use Runge-Kutte method of $4^{\text {th }}$ order to find $y(0.1)$, given $\frac{d y}{d x}-y=-x, y(0)=2$
6. Find the Laplace Transform of $t e^{-t}$ cosht
7. Find the Inverse Laplace Transform of $\frac{(s+2)^{2}}{\left(s^{2}+4 s+8\right)^{2}}$

III Write short answers on any FIVE

1. Find a root of the equation $x e^{x}=\cos x$ using Regula - falsi method correct to 4 decimal places.
2. From the following table find $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ at $x=2.03$

x	1.96	1.98	2	2.02	2.04
y	0.7825	0.7739	0.7651	0.7563	0.7473

3. Calculate the value of $\int_{0}^{\frac{\pi}{2}} \sin x d x$ by Simpson's rule, using 11 ordinates.
4. Solve the difference equation $y_{n+2}-2 y_{n+1}+y_{n}=n^{2} 2^{n}$
5. Given $\frac{d y}{d x}=\frac{y-x}{y+x}$ with boundary conditions $y=1$ at $x=0$. Find approximately y when $x=0.1$ by Euler's modified method. (4 steps)
6. Evaluate (i) $\int_{0}^{\infty} t e^{-3 t} \sin 3 \operatorname{tdt}(i i) L^{-1}\left[\cot ^{-1}(s)\right]$
7. Using convolution theorem evaluate $L^{-1}\left[\frac{s^{2}}{\left(s^{2}+4\right)^{2}}\right]$

IV Write essay on any ONE

1. Solve the differential equation $y^{\prime}=x^{2}+y^{2}-2$ using Milne's predictor-corrector method for $x=0.3$, given the initial value $x=0, y=1$. The values for $x=-0.1,0.1$ and 0.2 should be computed by Taylor's series expansion.
2. Use Laplace transform method to solve $\frac{d^{2} x}{d t^{2}}+9 x=\cos 2 t$, if $x(0)=1, x\left(\frac{\pi}{2}\right)=-1$
