KÆRALA AGRICULTURAL UNIVERSITY

B.Tech (Agrl.Engg.) 2015 Admission

IIIrd Semester Final Examination-January-2017

Title: Engineering Mathematics-III(2+1)	Marks: 50.00 Time: 2 hours
I Fill up the blanks/True or False	(10x1=10)
1. Newton's iterative formula to find the value of \sqrt{N} is	
1 dm	

- 2. The value of $\int_0^1 \frac{dx}{1+x}$ by Simpson's rule is -----
- 3. Jacobi's iteration method can be used to solve a system of non-linear equations.(T/F)
- 4. In terms of E, $\delta =$ ------

5.
$$\mu^2 = 1 - \frac{\delta^2}{4}$$
 (T/F)

NALL STOP

- 6. Newton's divided difference formula is ------
- 7. Adams-Bashforth predictor formula to solve y' = f(x, y) given $y_0 = y(x_0)$ is ------
- 8. The disadvantage of Picard's method is ------
- 9. Laplace transform of x is -----

$$10. L^{-1} \left[\frac{1}{(s^2 + a^2)^{-2}} \right] = \dots$$

II Write short notes on any FIVE

- 1. Find a root of the equation $x^3 4x 9 = 0$ using bisection method in 3 stages.
- 2. Construct Newtons's forward interpolation polynomial for the following data.

x	4	6	8	10	
у	1	3	8	16	

3. Using Taylor's series method compute the solution of $\frac{dy}{dx} = x + y$, y(0) = 1 at the point x = 0.2 correct to 3 decimal places.

- 4. Using Euler's method solve for y at x = 0.1 from $\frac{dy}{dx} = x + y + xy$, y(0) = 1
- 5. Use Runge-Kutte method of 4th order to find y(0.1), given $\frac{dy}{dx} y = -x$, y(0) = 2
- 6. Find the Laplace Transform of te^{-t} cosht
- 7. Find the Inverse Laplace Transform of $\frac{(s+2)^2}{(s^2+4s+8)^2}$

III Write short answers on any FIVE

(5x4=20)

(5x2=10)

- 1. Find a root of the equation $xe^x = \cos x$ using Regula falsi method correct to 4 decimal places.
- 2. From the following table find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at x = 2.03

x	1.96	1.98	2	2.02	2.04
У	0.7825	0.7739	0.7651	0.7563	0.7473

- 3. Calculate the value of $\int_0^{\frac{\pi}{2}} \sin x dx$ by Simpson's rule, using 11 ordinates.
- 4. Solve the difference equation $y_{n+2}-2y_{n+1}+y_n = n^2 2^n$

- 5. Given $\frac{dy}{dx} = \frac{y-x}{y+x}$ with boundary conditions y=1 at x=0. Find approximately y when x = 0.1 by Euler's modified method. (4 steps)
- 6. Evaluate (i) $\int_0^{\infty} t e^{-3t} \sin 3t dt$ (ii) $L^{-1} [cot^{-1} (s)]$
- 7. Using convolution theorem evaluate $L^{-1}\left[\frac{s^2}{(s^2+4)}\right]$

IV Write essay on any ONE

(1x10=10)

1. Solve the differential equation $y' = x^2 + y^2 - 2$ using Milne's predictor-corrector method for x=0.3, given the initial value x=0, y=1. The values for x = -0.1, 0.1 and 0.2 should be computed by Taylor's series expansion.

2. Use Laplace transform method to solve $\frac{d^2x}{dt^2} + 9x = \cos 2t$, if x(0)=1, $x\left(\frac{\pi}{2}\right) = -1$