# KERALA AGRICULTURAL UNIVERSITY <br> B.Tech.(Agri. Engg.) 2016 Admission <br> III Semester Final Examination-January-2018 

Lwre. 2104
Watershed Hydrology (2+1)
Marks: 50
Time: 2 hours
Fill in the blanks:
The ------------method is the simplest method of determining a real average rainfall.
2 -----------is the process of water penetrating from the ground surface into the soil
3 In Phillip's infiltration equation ------------ is the function of the soil suction potential.
4 The total volume of flow under the annual hydrograph is the ------------yield.
5 -----------is the ratio of the peak rate of direct runoff to the average intensity of rainfall in a storm.
6 -----------are lines of equal time of flow to the outlet of watershed.
7 -----------is the ratio of the total length of stream channels in a watershed to it's area.
8 Measurement of infiltration are made using a
9 A fine sprinkle of numerous water droplets of size less than 0.5 mm and intensity less than $1 \mathrm{~mm} / \mathrm{hr}$ is known as-----------
10 The recurrence interval is also known as $\qquad$

## Write Short notes on ANY FIVE of the following

$(5 \times 2=10)$
1 Classify the rainfall on the basis of intensity.
2 Describe the orographic precipitation.
3 What do you mean by coefficient of variation? Write it's mathematical form.
4 Write a short note on Intensity-Duration-Frequency relationship?
5 Enlist the different direct and in-direct methods of stream flow measurement.
6 Enlist the use and limitations of unit hydrograph.
7 Write a short note on Gumbel's distribution method.

## Answer ANY FIVE of the following

1 A small'tube with a cross sectional area of $40 \mathrm{~cm}^{2}$ is filled with soil and laid horizontally. The open end of the tube is saturated and after 15 minutes $100 \mathrm{~cm}^{3}$ of water have infiltrated into the tube. If the saturated hydraulic conductivity of the soil is $0.4 \mathrm{~cm} / \mathrm{hr}$. Determine how much infiltration would have taken place in 30 minutes if the soil column had initially been placed upright with it's upper surface saturated.
2 Define the term Hydrology. Write it's applications in short?
3 Estimate the maximum flood flow for the following catchment by using an appropriate empirical formula. Assume necessary data if required.

1. $\mathrm{A} 1=40.5 \mathrm{~km}^{2}$ for Western Ghat area, Maharashtra.
2. $\mathrm{A} 2=40.5 \mathrm{~km}^{2}$ for Gangetic plain
3. $\mathrm{A} 3=40.5 \mathrm{~km}^{2}$ for Curvery delta, Tamil Nadu
4. What is the peak discharge for $40.5 \mathrm{~km}^{2}$ by the maximum flood experience? (Dickens coefficient $=6.0$, Ryves coefficient $=6.8$.)
4 Write in brief about the guidelines adopted by CWC, India for selecting design floods.
5 What are the different measures of flood control? Explain any one structural method of flood control.
6 Write down the different types of climatic regions along with their characteristics?
7 What are the factors affecting runoff.

1 Rainfall of magnitude 3.8 cm and 2.8 cm occurring on two consecutive $4-\mathrm{hr}$ duration on a catchment of area $27 \mathrm{~km}^{2}$ produced the following hydrograph of flow at the outlet of the catchment. Estimate the rainfall excess and $\Phi$-index. Assume necessary data if required.

| Time from <br> start of <br> rainfall(hr) | -6 | 0 | 6 | 12 | 18 | 24 | 30 | 36 | 42 | 48 | 54 | 60 | 66 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Observed <br> flow $\left(\mathrm{m}^{3} / \mathrm{sec}\right)$ | 6 | 5 | 13 | 26 | 21 | 16 | 12 | 9 | 7 | 5 | 5 | 4.5 | 45 |

2. Write in details about the various effects and types of drought. Explain in detail on drought management strategies.
