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CHAPTER 1  

INTRODUCTION  

The ocean and climate are inseparable. The ocean plays a vital role in mitigating 

climate change because it is a crucial heat and carbon sink. The global ocean has 

been significantly affected by climate change and its related effects. Climate 

change leads to disease dynamics in the marine environment that are involved in 

the physical, chemical, and biological characteristics of ecosystems (Harvell et al., 

2002). Disease outbreaks related to mortality have resulted in widespread 

deterioration in marine realms. The climatic factors affect many pathogens in 

terrestrial and marine biota and will encourage new and altered disease dynamics 

(Brooks et al., 2019). Such a scenario has adverse effects on the health of marine 

life, leading to loss of biodiversity, catalyzing population decline, and accelerated 

extinction (Palombo, 2021). Restoring our valuable resources will help the ocean 

continue to provide the services on which all life depends.  

Climate-related effects lead to massive death in corals, shellfish, fish, humans, and 

many other vital organisms in the environment (Ricardo Cavicchioli et al., 2019). 

Coral belongs to the class Anthozoa in the animal phylum Cnidaria, which includes 

sea anemones and jellyfish. The corals associated with microscopic dinoflagellate 

algae, zooxanthellae, reflect a close evolutionary relationship between the host and 

the symbiont with temporal and spatial variability. The climatic parameters which 

control the reef ecosystem include ocean temperature, salinity, precipitation 

patterns, pH, extreme storm events. Global climate change leads to a change in the 

physical, chemical, and biological properties of the ocean and leads to a 

geographical shift in suitable coral reef habitats (Freeman et al., 2013).  

Microorganisms play a fundamental role in the health and disease of all corals. 

Diseases lead to vast coral mortality. Bacterial bleaching, aspergillosis, black band, 

white band, white plague, white pox, yellow band, brown band, and the skeletal  
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eroding band are some of the coral diseases attributed to various pathogens. Disease 

outbreaks, high susceptibility of the host coral, and changing climatic patterns 

accelerate coral reef degradation (Enochs et al., 2015).   

White pox disease (WPX), caused by a bacterial pathogen, Serratia marcescens, 

affects the Caribbean coral Acropora palmata (Sutherland et al., 2011).  Distinct and 

irregularly shaped white patches of the recently exposed skeleton are the 

characteristics of infested corals (Wijayanti et al., 2020). These patches of tissue loss 

can co-occur throughout the coral colony. The etiology of this disease i.e. S. 

marcescens, is the first reported marine invertebrate pathogen that is associated with 

the human gut. It is considered as an emerging pathogen with pathogenicity over 

multiple taxa across the Animal Kingdom (Mahlen et al., 2011; Ferreira et al., 2020). 

Currently, there is no information regarding the spatial distribution of this bacterium 

across the world. Hence, it is essential to know its global spread and the conducive 

environments it may occupy. A potential approach towards studying the global 

distribution of such pathogens is the use of predictive modeling systems (Sadeghieh 

et al., 2020).   

The species distribution model (SDM) is commonly used to estimate the potential 

geographic distribution of a species (Franklin et al., 2013). Different kinds of SDMs 

are in use, such as Generalized Dissimilarity Models (GDM), Multivariate Adaptive 

Regression Splines (MARS), Genetic Algorithms for Rule-set Prediction (GARP), 

Boosted Regression Trees (BRT), Maximum Entropy Modeling (MaxEnt). The wide 

use of MaxEnt is because it estimates the species distribution based on presence-only 

data and different environmental features (Elith et al., 2006). It is a suitable SDM 

method that can characterize the ecological distribution of various pathogens to 

predict high-risk areas (Alaniz et al., 2017; Mwakapeje et al., 2019).   

Our study aims to model the most probable areas of S. marcescens based on its 

currently known occurrence, environmental and socioeconomic variables using the 

MaxEnt model for the first time. Climate envelope modeling of S. marcescens, 

provides information about the nature of the relationship between the putative 
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pathogen to influencing predictors and can enable us to understand its current extent 

and hotspot areas. The proximity of such hotspots towards the coral reefs will help 

us to understand the disease risks and further formulate guidelines to the management 

actions.  
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                                        CHAPTER 2 

REVIEW OF LITERATURE 

2.1 Coral reefs  

Coral reefs are one of the most complex, species-rich, and productive marine ecosystems 

(Woodhead et al., 2019). They cover only less than 1% of the ocean floor (Brandl and 

Elise, 2019). Even so, they can make a significant contribution to the economies of 

countries around the world (Ban et al., 2014; Hoegh-Guldberg et al., 2015). The richness 

of biodiversity and productivity provides 25% of all known marine life (Hoegh-Guldberg 

et al., 2015). However, about 20% of the world's coral is either gone or destroyed due to 

natural or anthropogenic activities (Munday et al., 2009). The distribution of infectious 

agents and climatic parameters will directly or indirectly affect the health of marine 

ecosystems. These changes badly affect the structural and functional framework of reef 

communities and vital habitats for many other reef creatures. The dynamic climate acts as 

a hurdle to our conservation methods, affecting every coral badly (Harris et al., 2018). In 

recent times, the government formulated many rules and laws by prohibiting human 

dwellings and establishments near sea coasts for the protection and restoration of the habitat 

of the corals, and it also raised concerns among humans regarding the maintenance of coral 

ecology and reef protection (Tun et al., 2005).  

2.2 Threats  

The marine ecosystem threatened by various natural and man-made stress factors is coral 

reefs. Nearly 40-50% of coral loss has occurred in the past 30 years (Bruno and Selig, 2007). 

The global decline of reef-building corals is of particular concern. In the past 50 years, 

catastrophic mortality of coral colonies from the Great barrier reef (De'ath et al., 2009), 

Southeast Asia, and Indonesia (Johnstone et al., 1998) was reported. These stressed reefs are 

exposed to a large number of microorganisms, which 
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results in coral mortality (Reaser et al., 2000; Ritchie et al., 2001). The biological and 

nonbiological stresses were the drivers of coral diseases (Bruno et al., 2007). The first reports 

of coral tissue degradation appeared in the 1970s. Black band disease is the first coral disease 

reported in 1973, and secondly, two coral diseases were reported in 1977: white band disease 

of branching acroporid corals and the plague of massive and plate-forming corals (Sweet et 

al., 2012). Over the past thirty years, the regional breakdown of coral cover occurred over the 

Caribbean (Gardner et al., 2003) and IndoPacific region (Bruno & Selig, 2007).  

Climatic variables influence the structural, functional, physiological, and ecological integrity 

of reef-building corals (Munday et al., 2009); In addition, they affect biological connectivity 

in coral reef ecosystems (Munday et al., 2009). The associated effects change the structure 

and function of marine ecosystems and directly impact vertebrates, invertebrates, and plants. 

Related influences will change the structural and functional integrity of marine ecosystems, 

and directly affect vertebrates, invertebrates and plants. Coral reefs are very vulnerable to 

climate change, and the effects will be far-reaching (Hoegh-Guldberg et al., 1999). These reef-

building corals are very vulnerable to climatic factors such as rising sea temperatures, changes 

in precipitation patterns, and ocean acidification. The amount of dissolved CO2 increases, and 

the pH of the ocean decreases. Therefore, the availability of carbonate ions, which are used 

by calcifying organisms to form shells and skeletons, can also decrease (HoeghGuldberg et 

al., 2007).  

2.3 Coral disease as secondary stressors  

Coral diseases caused the widespread degradation of coral reefs over the past five decades. It 

may potentially act as a bioindicator of reef health (Harvell et al., 1999; Green & Bruckner, 

2000). The dynamic changes in the climate can decrease the resilience of the reef and increase 

susceptibility to disease. Several factors may contribute to these coral disease outbreaks, 

including temperature stress, variations in the reef fish abundance, algal interactions, and 

nutrients. The critical stress factors are driven by disease outbreaks due to microorganisms, 

overfishing, marine pollution, 
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destructive fishing practices, and fluctuations in climatic patterns (Epstein et al., 1998; Harvell 

et al., 1999; Ben-Haim et al., 2002).  

2.4 White pox disease  

A. palmata (Elkhorn coral), as a reef builder in the Caribbean, devastated by White pox disease 

(Patterson et al., 2002). In recent years, the health of Elkhorn coral colonies in the Florida 

Keys has deteriorated due to microbial fecal contamination (Holden et al., 1996). It was 

associated with S. marcescens (Patterson et al., 2002), a non-pathogenic saprophytic water 

organism. Human sewage is a source of the acroporid serratiosis pathogen. This was the first 

time a human origin bacteria transmitted diseases to a marine invertebrate (A. palmata) 

(Sutherland et al., 2011). Affected corals are characterized by irregularly shaped distinct white 

patches (Patterson et al., 2002). Accordingly, it causes more than 70% loss of Acroporid corals 

in the Florida Keys during periods of high temperature (Patterson et al., 2002). The shifts in 

the climatic patterns influence their pathogenicity, which showed that disease incidence and 

severity of white pox disease increase with rising temperatures (Harvell et al., 1999; Ritchie 

et al., 2006; Looney et al., 2010). Hence, the temperature has a strong influence on the growth 

of S. marcescens (Lin et al., 2010; Harimawan et al., 2017; Mladenovic et al., 2018).  

2.5 Emerging pathogen Serratia marcescens  

S. marcescens has emerged as an important healthcare-associated pathogen (Mahlen et al., 

2011). Over the last four decades, it emerged as a chief causative agent of nosocomial 

infections such as respiratory tract infections, Urinary Tract Infections (UTI), septicemia, 

central nervous system infections, bloodstream infections, and surgical wound infections 

(Rajamohan et al., 2018; Srinivasan et al., 2016; Fedrigo et al., 2011; Guler et al., 2009). In 

addition, they are water and soil-borne bacteria (Liu et al., 2010; Maltezou et al., 2012; Hejazi 

et al., 1997). It is a ubiquitous saprophytic water organism with an innate ability to survive 

under different conditions (Haft et al., 
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2005). It was used as a biological marker because of its easily recognized red colonies 

(Khanna et al., 2013).  

The pathogenicity over multiple taxa across the animal kingdom is contributed by its biofilm 

formation, motility, and biosurfactant production, prodigiosin, and nucleases (Chan et al., 

2013). Most of the studies related to S. marcescens isolated from soil specifically denote their 

strains (Giri et al., 2004). The effect of temperature, pH, salt concentration on the biofilm 

formation of S. marcescens is explained through their different strains. Salt concentration 

increases with an increase in biofilm density up to a level (Burmølle et al., 2006). Being an 

opportunistic pathogen, they become pathogenic only in susceptible hosts. Availability of 

biotic and abiotic variables and ecological niche models helps to estimate the potential 

geographic distribution of a species. Investigating its potential global extent and considerable 

facts on the distribution possibility, in addition to influencing environmental conditions for its 

growth, establishment, spread, and virulence factors, are needed. Given this lack of 

knowledge, we model the spatial distribution of this bacterium across the world based on its 

currently known occurrence, environmental and socio-economic variables.  

2.6 Ecological niche modeling/ SDM methods in the marine 

environment  

The techniques have evolved to estimate the spatial patterns of organisms based on 

correlations of known occurrences with environmental variables for the last twenty years 

(Peterson et al., 2012). It helps formulate the conservation strategies and forecast possible 

intrusive impacts of changing climate (Lozier et al., 2009; Warren et al., 2008; Hijmans & 

Graham, 2006;). Species distribution models predict the habitat suitability of species on the 

basis of different environmental variables (Guillera Arroita et al., 2015; Franklin et al., 2013; 

Elith et al., 2006; Elith and Leathwick, 2009).   

  

MaxEnt is one of various SDMs. The species distribution models were constructed from the 

occurrence points of the species and the environmental layers using a maximum entropy 

algorithm. A recent study determined the ecological risk for Chagas 

 

                                                                  7 



disease caused by Trypanosoma cruzi using maximum entropy algorithm. The population 

anticipated to be at threat for this disease (Schmunis et al.,1999) was calculated from the 

risk map produced from the distribution models and disease incidence data (Sarkar et al., 

2010). Another study showed that the use of niche modeling techniques helps to unveil the 

spatial occurrence of two tick-borne pathogens: Ehrlichia chaffeensis and Anaplasma 

phagocytophilum (Wimberly et al., 2008). The deer tick, Ixodes scapularis, is the primary 

vector of Borrelia burgdorferi, the agent of Lyme disease, in North America (Dennis et al., 

1998; Keirans et al., 1996). A spatially predictive logistic model was developed for I. 

scapularis in the United States to highlight areas of potential emerging disease risk 

(Brownstein et al., 2003).  

West Nile Virus (WNV) has emerged as a major mosquito‐borne pathogen causing animal 

diseases around the world (Hess et al., 2018).  In all these cases, the spatial predictions of 

etiological agents were done with the help of environmental data. Hence, the geospatial 

environmental data sets and disease occurrence data at specific locations can be used to 

develop disease risk maps (Peterson et al., 2012).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                8 



CHAPTER 3  

MATERIAL AND METHODS  

3.1 Study area  

The area chosen for the present study is the Northern Indian Ocean, 65⁰E, 95⁰E, 4⁰N, 

26⁰N Grid. The Indian Ocean includes nearly 20% of the water in the world (Fatima 

and Jamshed, 2015). The Indian Ocean is the smallest and warmest among the 

tropical oceans.  

  

Figure 1 Study area – Northern Indian Ocean  

  

  

  

3.2 Species occurrence data and climatic predictors  

We collected the occurrence points of S. marcescens from the global biodiversity 

information facility (Ueda et al., 2020). A total of 363 occurrence points were 
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identified and included in this study to model the current and future distribution of the species. 

Elevation and Climatic data, including 19 bioclimatic variables, were downloaded from the 

WorldClim database (http://www.worldclim.org/), available at approximately 1 km2 (30 arc-

seconds) spatial resolution. Shuttle Radar Topography Mission Digital Elevation Model 

(SRTM-DEM) was used to derive Slope data. Harmonized World Soil Database of FAO soil 

portal (Fischer et al., 2008) was used to obtain the soil parameters such as nutrient availability, 

salt concentration, and soil type. Soil Respiration Database (SRDB) was used to obtain the 

data on soil respiration (Bond-Lamberty and Thomson, 2014). The Millennium Ecosystem 

Assessment (SEDAC, 2005) was used for gathering the land cover data. Data on soil moisture 

was downloaded from the International Soil Moisture Network (Dorigo et al., 2011). Global 

livestock population density (Gilbert et al., 2010) was used to access the livestock population 

data. We also included human population density information in our study, as it may interfere 

with the distribution of S. marcescens; this data was retrieved from the Socioeconomic Data 

and Applications Center (Gridded Population of the World, version 4.0, CIESIN, 2018). We 

collected 29 predictor variables for S. marcescens distribution and suitability analysis.  

3.3 Modeling of the S. marcescens distribution  

The predictive modeling of the S. marcescens has been studied, which helps to determine the 

suitable sites where the species can grow successfully. The model was constructed using the 

MaxEnt software version 3.4.1 (Phillips et al., 2008). This model uses a presence-only 

technique (Franklin et al., 2013) to estimate the geographic information regarding species 

based on different environmental factors. It is widely used because it unveils the species 

suitability based on statistical techniques (Elith et al., 2006).   

The occurrence points of S. marcescens were used as the input dependent variable in the 

model. All the directory layers were converted to ASCII (American Standard Code for 

Information Interchange) raster grid format. Model evaluation was done using the ENMeval 

package in R (Muscarella et al., 2014), and it offers suitable regularization 
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multiplier and feature class combinations in addition to being taken into consideration as a 

building tool of model settings. It uses five attributes (linear, product, quadratic, hinge, and 

threshold) that frame the potential geographical distribution of habitat or a species. Out of the 

363-occurrence data of S. marcescens within the study area, the training used 75% of 

occurrence data and 25% for testing the model. Using the R 4.0.3 (R core team, 2020) 

software, we evaluated the normality of the data with the ShapiroWilk test; then, we 

determined the level of correlation between pairs of variables in the presence points. The 

variables selected according to their correlation index had to be low (less than ± 0.8). The 

model was generated using the subsampling technique with 15 replicates and 1000 iterations 

each, including 18 selected variables. The final model employed linear, product, quadratic, 

hinge, and threshold feature types. Potential distribution maps were built by interpolating the 

occurrence data and environmental variables.   

3.4 Model evaluation and validation  

Maxent provides output such as the AUC values, the response curve, and tables of percentage 

contribution towards environment variables. The final output was the average of all replicas 

with better prediction. The accuracy or performance of models can be viewed in the form of 

a graph of average omission and predicted area, as well as a graph of sensitivity and specificity 

(Phillips et al., 2006). The graph of average omission and predicted area will show the 

accuracy of the model, whereas the graph of sensitivity and specificity demonstrated the 

results of an evaluation of the model (Lobo et al., 2008). The Area Under Curve (AUC) value 

was used to indicate the model performance and measured its discrimination capacity (Phillips 

et al., 2006). AUC values range from 0 to 1. An AUC value of 0.5 or less than 0.5 was used 

to indicate the less predictive model, while a value closer to one was used as a better predictive 

model as per the previous recommendations (Fielding and Bell, 1997).   

Furthermore, a jackknife test was employed to quantify the significance of the bioclimatic 

variables by measuring the percentage contribution of each environmental variable and in 

order to understand evaluate the importance of environmental factors 
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in affecting the geographical distribution of species (Guillera-Arroita et al., 2011). Finally, 

the potential distribution map for S. marcescens with percentage values ranging from 0 to 

100 was generated. The values representing the suitable habitats of S. marcescens were 

further categorized (Figure 8) as follows; rare (0-1%), very low (1–20%), low (20–40%), 

moderate (40–75%), and high (75 –100%). Area calculation for the identified classes was 

carried out in the ArcGIS environment. Besides, to estimate the potential transmission risk 

among humans, we used a geographic information system (GIS) to associate the probability 

of the current occurrence of the pathogen with the world exposed population. So, both of 

these grids were multiplied using the Raster Calculator tool of ArcGIS v 10.1. The spatial 

quantification of the world population exposed to S. marcescens infection can be measured 

using spatial analyst tools in ArcGIS.  

3.5 Prediction of Future Distribution  

The study used projection grids of human population and bioclimatic predictors (19) for the 

years 2040-2060 and 2080-2100 based on the Shared Socioeconomic Pathways (SSPs): 

SSP1 and SSP5. The SSPs differ in terms of the socio-economic challenges they present for 

climate change mitigation and adaptation and describe a number of plausible trends in the 

evolution of societies in the 21st century. SSP1 stands for "sustainability" and SSP5 stands 

for "fossil fuel intensive"development.  

The study used an ensemble forecasting approach (Araújo & New, 2007) to predict future 

habitat suitability under climate change scenarios. BIOMOD (BIOdiversity modeling, 

Thuiller et al., 2009) enables the species distributions using R software (4.0.3; R Core 

Development Team) with several techniques (Zhang et al., 2019). Hence, the future 

distribution of S. marcescens was modeled with the help of the biomod2 package (Thuiller 

et al., 2016) in R. Furthermore, it enables testing models with a wide range of approaches, 

project species distributions into different environmental conditions and dispersal functions. 

It also assesses the species temporal turnover, plots species response curves, and tests the 

strength of species interactions with predictor variables. As in an ensemble framework, we 

used regression methods 
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 such as generalized linear models (GLM); machine‐learning methods maximum entropy 

(MaxEnt), surface range envelop (SRE), generalized boosting method (GBM/BRT), random 

forest (RF), and two classification methods; classification tree analysis (CTA) and factorial 

discriminant analysis (FDA).  

3.6 Estimating the Disease risk of corals   

A. palmata is a major reef‐building coral in the Caribbean, providing essential habitat for 

multiple reef organisms (Sutherland et al., 2004; Patterson et al., 2002). It is characterized by 

parallel, obliquely inclined, very thick, tapered branches, thus its common name, Elkhorn 

coral. White pox disease exclusively affects A. palmata (Sutherland et al., 2004), caused by 

S. marcescens (Patterson et al., 2002).  

  

The occurrence records of A. palmata were collected from the Global Biodiversity 

Information Facility (GBIF, 2021) during May 2021. A total of 445 valid records from distinct 

locations were used to model the current distribution of A. palmata.  The Biooracle v2.0 was 

used for obtaining the environmental predictors (Assis et al., 2017). The study used 17 

potential predictors that are capable of influencing the occurrence of A. palmata. These 

include Mean Sea Surface Temperature, Minimum Sea Surface Temperature, Maximum Sea 

Surface Temperature, Mean Sea Surface Salinity (SSS),  

Minimum Sea Surface Salinity, Maximum Sea Surface Salinity, Chlorophyll-a,  

Phytoplankton, Primary productivity, Mean Current Velocity, Maximum Current Velocity, 

Minimum Current Velocity, Phosphate, Nitrate, Iron, Silicate and Dissolved oxygen. The 

spatial modeling of A. palmata was done with the help of the biomod2 package in R software. 

Geographic Information System (GIS) is a tool for visualizing and analyzing the entire process 

of epidemiological management and analysis. It is possible to access the spatial relations 

between the disease and other information such as distance of the possible pollution sources, 

vectors, and the presence of clusters, through the GIS tools (Cromley et al., 2019). So, this 

valuable information contributes to the designing of epidemiological analysis.  
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CHAPTER 4  

RESULTS  

4.1 Serratia marcescens  

4.1.1 Prediction of the current distribution  

4.1.1.1 The Model Performance and variable contributions  

The model performance is assessed by using the average test AUC value for 15 

replicates was 0.918 with a standard deviation of 0.028. The sensitivity vs. 

1specificity graph shows the area under the Receiver Operating Characteristic (ROC) 

curve or AUC. AUC is a common metric for assessing the predictive ability and 

hence utility of a habitat suitability model. A close relationship between the presence 

data and the prediction results is shown by the average omission and predicted area 

of the model (Figure 3). The red line shows the average value of the AUC, and the 

blue line shows the average value of the standard deviation. The closer the red line 

to the left (values approaching 1), the smaller the standard deviation value, and the 

performance of the model can be shown in Figure 2.  
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Figure 2 Results of the area under the receiver operating characteristics curve  

(AUC) analysis  

  

Figure 3 Omission rates versus predicted area for S. marcescens  
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The Red line indicates the mean area, the black line indicates the predicted omission 

rate, and the light blue line indicates the omission rates of the model training samples. 

In the model, the lines of omission from the training data were close to predicted 

omission rates.  

4.1.1.2 Contribution of predictor variables  

Sn  Variable  Percent 

Contribution  

Permutation 

importance  

1  Human Population  

Density  

43.6  28.8  

2  Bio 1  9.8  9.7  

3  Land cover  6.7  1.2  

4  Bio 14  6.5  6.9  

5  Bio 4  5.7  13.3  

6  Bio 12  5  1.3  

7  Livestock  4.6  5.8  

8  Soil type  4.3  4.7  

9  Soil respiration  3.5  7.1  

10  Bio 2  2.4  2.8  

11  Bio 18  1.4  0.8  

12  Soil moisture  1.3  2.4  

13  Nut  1.2  3.3  

14  Slope  1.1  1.1  

15  Elevation  1  2.5  

16  Bio 15  0.9  1.5  

17  Bio 5  0.8  1.2  

18  Salt  0.2  5.5  

   

 Table 1 Percent contribution and permutation importance of all environmental variables to 

the model for S. marcescens  
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MaxEnt output gives the relative contribution of each predictor variable, as shown in 

Table 1. Our analysis showed that the occurrence of the S. marcescens is mainly 

associated with human population density. Among all the variables, the human 

population and mean annual temperature were the major biotic and abiotic 

contributors that influenced S. marcescens distribution, respectively (Table 1). 

Further, five variables viz., annual mean temperature (bio1), land cover, precipitation 

of driest month (bio14), temperature seasonality (bio4), and annual precipitation 

(bio12) are found to be significant contributors. The individual contribution of the 

parameters was more compared to their performance when considered together.    

4.1.1.3 Jackknife analysis of AUC for the S. marcescens using all the variables   

  

  

Figure 4 Jackknife analysis of AUC for the S. marcescens using all the variables  
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The Jackknife of AUC for S. marcescens shows environmental variables with the 

highest gain when used in isolation is human population density itself. The Jackknife 

of regularized training graphs indicates each variable's gain when used in isolation.  

  

4.1.1.4 Response curves  

          
   

Figure 5 The response curves for the S. marcescens model  
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It shows the change in predicted probability when the corresponding variable is used 

in isolation and averaged for 15 replicates. These plots demonstrate the dependence 

of predicted suitability on the selected variables and the dependencies induced by 

correlations between each variable and other variable.  

  

4.1.1.5 Prediction of the current distribution of the S. marcescens   

  

Figure 6 The predicted distribution of S. marcescens  
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4.1.1.6 Global distribution of S. marcescens   

  

Figure 7 Global distribution model of S. marcescens  
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4.1.1.7 Suitability model of an opportunistic pathogen, S. marcescens   

  

   

Figure 8 Global distribution pattern of S. marcescens based on suitability  
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The distribution map of S. marcescens illustrates several potential sites of S. marcescens along 

the tropical and subtropical regions of the world. The predicted current distribution is mainly 

concentrated at the Indian side of the Himalayan ranges, islands of Indonesia and Hanoi 

Province of Vietnam in Asia; Ecuador, Columbia in South America; Mexico, Belize, 

Nicaragua, Panama in North America; Northern  

Europe, South Australia, and North New Zealand with a probability greater than 75%.  The 

arid areas such as central and north Asia, North America, Sahara, and Antarctica show minor 

occurrences.   

4.1.2 The Future distribution of S. marcescens under different Climate Scenarios  

4.1.2.1 Future distribution of S. marcescens under SSP1 and SSP5 for the years 2040- 

2060 and 2080-2100  

Years  SSP1  SSP5  

  

2040-2060  

    

  

  

2080-2100  

    

          

Table 2 Prediction of future habitat suitability of S. marcescens under SSP1 and SSP5 for 

the years 2040-2060 and 2080-2100  
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4.2 Acropora palmata  

4.2.1 Prediction of the current distribution  

   

Figure 9 Prediction of the current distribution of A. palmata  
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CHAPTER 5  

DISCUSSION  

Infectious diseases caused by S. marcescens over multiple taxa have reached dire conditions, 

and it has a great potential to impact human health, global economies, and biodiversity. It has 

been concluded from extensive literature and field surveys that the species has an innate ability 

to survive under various conditions (Haft et al., 2005). Investigating its potential global extent 

needs knowledge about the occurrence status and the governing factors of pathogens essential 

for the proper allocation of resources, preventive and control measures against the disease. 

Accordingly, the present study modeled the climatic envelope of the S. marcescens for the 

current years and identified the potential areas of its distribution based on its currently known 

occurrence, environmental and socioeconomic variables using MaxEnt (Tarkesh and Jetschke, 

2012).   

A total of biotic and abiotic factors from multiple sources were used for the present study. 

Historical reports suggested that the survival ability of S. marcescens is influenced by diverse 

biotic and abiotic factors (Haft et al., 2005). The model tried using various settings in MaxEnt 

software by changing feature types, no of iterations, and regularization multiplier. To 

minimize difficulties caused by multicollinearity, we excluded one predictor from a set of 

highly correlated (≥0.80) predictors. Hence, Karl Pearson’s correlation coefficients between 

these 29 predictors were calculated, and a set of 18 variables (two biotic and sixteen abiotic) 

was selected as input independent variables in the final model. The 18 variables such as annual 

mean temperature (Bio 1), mean diurnal range (Bio 2), temperature seasonality (Bio 4), a 

maximum temperature of the warmest month (Bio 5), annual precipitation (Bio 12), 

precipitation of the driest month (Bio 14), precipitation seasonality (Bio 15), precipitation of 

the warmest quarter (Bio 18), elevation, slope, nutrient availability, excess salts, land cover, 

soil respiration, soil type, soil moisture, human population density and animal population 

density used in the final species distribution analysis. 75% of data were  
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used for training, and 25% were used as test data to evaluate models. The final model 

employed attributes such as linear, product, quadratic, hinge, and threshold. ENMeval 

package in R frames the model settings, and it was allowed to run 15 times repeatedly.  

The information regarding the prediction of species suitability is obtained from the external 

output such as the AUC values, the response curve, and the table of percentage contribution 

towards environment variables. These predictor variables are based on the rankings of its 

contribution and its importance accessed via jackknife analysis. The accurate measurement of 

the final output is analyzed through AUC values of the receiver operator characteristic (ROC) 

plot analysis within MaxEnt (Phillips and Dudík, 2008). The evaluation index, such as training 

gain, test gain, and AUC, was contained in the Jackknife test on models. The AUC value close 

to 1 implies the best predictive model. The relationship between the probability of S. 

marcescens with environment variables can be seen in the response curve.  

The final model of the present study had an AUC value of 0.918 土 0.028, implying that the 

model had high predictability. The high predictive capacity of this model is interpreted based 

on the AUC value. Our analysis showed that the occurrence of the S. marcescens is mainly 

associated with human population density. Among all the variables, the human population and 

mean annual temperature (Bio1) were the major biotic and abiotic contributors that influenced 

S. marcescens distribution, respectively (Table 1). Further, five variables viz., land cover, 

precipitation of driest month (bio14), temperature seasonality (bio4), and annual precipitation 

(bio12) were found to be other significant contributors shown by the percentage contribution 

table (Table 1). The Jackknife test further demonstrated that annual temperature, annual 

precipitation, precipitation of warmest month, temperature seasonality, land cover, population 

density, soil respiration, and soil type were the most significant variables having scores of > 

0.7. The environmental variable with the highest gain is human population density. The 

species response to the influential factors located above 0.5 in the response curve is considered 

to be nonlinear. The response of the human population  
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density factor was above 0.5 and was a powerful predictor of species suitability. Its pattern 

shows a sharp increase and then follows a steady path.   

The spatial model of S. marcescens was successfully predicted through the present study. The 

resultant map could classify the whole world into five categories based on the probable 

distribution of S. marcescens as unsuitable, extremely low suitable, low suitable, moderately 

suitable, and highly suitable. This criterion supports the study conducted by Lugito et al. 

(2016) that S. marcescens infections varied among different geographic areas of the world. 

The transmission risk is not homogeneous throughout the tropics. The predicted distribution 

showed higher proportions over Himalayan ranges, islands of Indonesia, and Hanoi Province 

of Vietnam in Asia. The Indian side of the Himalayan ranges has one of the fertile regions in 

the world supplied by the Gangetic and Brahmaputra Rivers and their tributaries. The fertile 

soil, presence of many rivers, favorable climate, and the availability of flat terrain have made 

this region one of the most densely populated areas of the world (Ray et al., 2014). The 

population density may be the reason for the observed higher suitability of S. marcescens in 

the thickly populated regions of the world. In parallel to our findings, Lugito et al. (2016) 

suggested that S. marcescens infections vary among different geographic areas of the world. 

Bhattarai et al. (2021) observed that its occurrence frequency is higher in North America and 

Europe than in other parts. Besides, its infections have been reported from Middle Eastern 

countries (Israel, Iran), Mexico, South and East Asia, and certain North African countries due 

to the subtropical climatic patterns. The least occurrence of this microbe was found in Central 

and North Asia, north of North America, and Sahara. Therefore, socioeconomic conditions 

and climatic patterns may be related to the occurrence of this pathogen. According to the 

MaxEnt results, the human population density is a powerful predictor of habitat suitability.   

Model output has shown human population density as the most prominent contributor to the 

occurrence of S. marcescens. There is evidence that these bacteria are frequently seen in the 

human and animal gut (Escribano et al., 2019). The results can be presumed that the areas 

with higher human or livestock density will have a reasonable occurrence probability of these 

bacteria. The probability of occurrence of these bacteria explains 
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 the higher suitability of habitats in the thickly populated regions in the world, such as Asian 

countries. Our results signify that the regions with higher population density identified by the 

modeling have greater chances of various disease outbreaks mediated by this opportunistic 

pathogen.   

Based on area calculation, the total area of high occurrence (probability >75%) was  

7,86,039 km2, occupying around 0.52% of the world’s land area. The moderately suitable sites 

(probability ranging from 40 to 75%) were mainly distributed along the northwest of Europe 

and southeast coast of Australia, certain parts of the Indian side of the Himalayas, and northern 

Africa occupying a total area of 18,90,964 km2. Altogether, total suitable sites, including 

highly and moderately suitable, were found to occupy an area of 26,77,003 km2, accounting 

for 17.9% of the total global land area.  

The total area of highly suitable sites in different continents viz., Asia, North America,  

South America, Europe, Africa and Australia were estimated as 3,30,257 km2, 1,46,023 km2, 

1,29,900 km2, 1,24,280 km2, 34,541 km2, 21,038 km2 respectively. In short, the order of 

different continents in the probability of having incidences of S. marcescens related infections 

was found as Asia > North America > South America > Europe > Africa > Australia.  

According to the spatial quantification of the world human population with potential 

transmission risk, the zones of medium and above transmission risk represent 0.20% of the 

global human population. Around 0.15%, the world population has a moderate risk of S. 

marcescens infection. The 0.05% population is at high risk. About 1.22 billion people, 

representing moderate transmission risk due to S. marcescens. The world population under 

medium and above risk levels includes 1.61 billion people. Estimating human transmission 

risk helps to monitor the frequency of infestation and formulate the guidelines for management 

actions.  

Temperature-based predictors such as annual mean temperature, temperature seasonality 

contributed 15.5%, and precipitation-based variables contributed 11.5%. The environmental 

factors might have a pivotal role in producing various pigments by  

S. marcescens (Hardjito et al., 2002; Mahlen et al., 2011). Notably, temperature affects 
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 the pathogenicity and virulence of S. marcescens (Mladenovic et al., 2018). Previous reports 

were consistent with these findings; high temperatures can reduce the virulence and infectivity 

of S. marcescens (Lin et al., 2010). Hence, significant temperature variation restricts suitable 

climatic space for the pathogen.   

Spatial-temporal distribution, sensitivity, and vulnerability to future climatic conditions were 

analyzed based on climate scenarios through an ensemble forecasting approach. The future 

distribution maps of S. marcescens showed higher proportions occur over the Southeast Asian 

region. Based on MaxEnt, the modeling of the current investigation implies the influence of 

biotic and abiotic variables for the occurrence of microbes. The prevalence of this species in 

future scenarios needs to be examined. Because climate change due to natural or 

anthropogenic impacts might alter the overall sensitivity of pathogens to the environment in 

the future. Temperature and precipitation-based predictors mainly influence the current 

occurrence. Considering the previous studies showed that S. marcescens ability to produce 

virulence factors over a wide temperature range is a reflection of infestation in both vertebrate 

and invertebrate animals. The pivotal role of various climatic variables on the growth of this 

pathogen was identified by Mahlen et al. (2011). In parallel with our observation, previous 

laboratory experiments on Serratia species showed the virulence properties to infect a host 

and, in some cases, showed temperature-dependent responses (Petersen et al., 2012). Another 

fact is that wetting activities of S. marcescens on different surfaces in nature have been 

investigated in historical studies (Matsuyama et al., 2010). Water is a major contributor to 

microbes. Most of the bacteria require a moderately moist surface to grow and reproduce. The 

growth source of S. marcescens is environmental dust, moist surfaces, and fomites, according 

to Mahlen et al.(2011). Hence, it may explain that the moist surface can stimulate or sedate 

the pathogenicity in S. marcescens. Abiotic factors influence the current spatial epidemiology 

of S. marcescens, contributing 27% according to the MaxEnt model. The precise information 

on the influence of environmental variables on the growth of this bacterial spread is hitherto 

unclarified. According to the United States Environmental Protection Agency, Future climate 

change causes a warmer atmosphere, a warmer and more acidic ocean, higher sea levels, and 

heavy precipitation events. The production of  
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virulence-associated substances by S. marcescens depends upon environmental conditions 

based on previous experiments. These premises suggest that bioclimatic variables may 

enhance the probability for increased S. marcescens associated infections under climate 

change scenarios, and profound evidence can be seen in the future.  

The current global risk map shows that the Indian side of the Himalayas, the Indonesian 

islands, and the Asian provinces of Hanoi, Vietnam; South American countries; Belgium, the 

Netherlands, and the United Kingdom in Europe; Mexico, Belize, Nicaragua, Panama; 

Victoria in South Australia and some parts of Africa have a 75% probability. Human 

population density is the main factor behind the existence of this bacteria based on predictive 

models. A spectacular current abundance can be observed in Asian countries. According to 

the 2020 World Population Analysis, more than half of the world's population lives in Asia, 

around 3.7 billion, only a fifth of the world's land surface. From this presumption, the presence 

of fertile soil, extensive river systems, an abundance of water resources, favorable climate, 

and availability of flat terrain have made it one of the most densely populated areas of the 

world (Ray et al., 2014), which might be the reason for the higher probable distribution in the 

Asian regions.  

Future risk map of S. marcescens using projection grids of climatic predictors and human 

population clearly shows the probability of higher occurrences along the Asian countries 

especially in Indian regions. Table 2 shows that more probability of occurrence along India 

are noticed under the 2100 SSP5 scenario. Considering 2020 World Population statistics, the 

world population will grow from 7.8 billion in 2020 to 9.9 billion in 2050. Consequently, the 

future trend shows rapid population growth in many countries in Asia, making it the most 

vulnerable area for S. marcescens affected by socio-economic factors in the future. These 

findings suggest that the invasion of S. marcescens may affect global society, demographics, 

and economics over the next century.  
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Acroporid corals exhibited white pox disease caused by S. marcescens (William et al., 2005; 

Sutherland et al., 2011).  The spatial modeling of A. palmata is highly influenced by a diverse 

array of marine layers. A total of seventeen marine environmental variables were obtained 

from the Bio-oracle v2.0 (Assis et al., 2017) used for the prediction of current coral 

occurrence. The current spatial distribution of A. palmata towards various environmental 

parameters was modeled with the aid of the biomod2 package in R. It employed seven models 

such as generalized linear models (GLM); machine‐learning methods maximum entropy 

(MaxEnt), surface range envelop (SRE), generalized boosting method (GBM/BRT), random 

forest (RF) and two classification methods classification tree analysis (CTA) and factorial 

discriminant analysis (FDA). The resulting distribution pattern in the Bahamas and the 

Caribbean (Figure 9). The marine layers that influence the spatial occurrence of A. palmata 

were extracted from this model. In this case, coral distribution models indicate that nutrients 

like phosphate, iron, silicates, dissolved oxygen, and mean temperature hold the place of 

contributors. It was reinforced by Ames et al. (2016); it shows that most Acropora reef species 

are affected by various factors such as nutrients, temperature, light availability, wave 

movement, water depth. The mean temperature has a profound impact on the physiology of 

elkhorn coral, as demonstrated by Randall et al. (2009).   

Since the late 1990s, a white pox disease has affected the health of A. palmata in the Florida 

Keys and other parts of the Caribbean (Joyner et al., 2014). S. marcescens mainly exist in the 

mucus layer of Acropora sp. Human pathogens spread diseases to marine invertebrates 

through land-based sources, chemicals, wastewater, and sewage effluent. According to NOAA 

Fisheries, the habitat suitability of the threatened Elkhorn coral A. palmata is observed from 

south Florida south to the north coast of Venezuela, and its native population is notable 

primarily in the Bahamas and the Caribbean. Similar observations are found through spatial 

modeling of the widespread and conspicuous coral reef builder A. palmata in the Gulf of 

Mexico, Belize, El Salvador, Honduras, Nicaragua, and Panama, in the north of Central and 

South America. The global distribution of etiological agent S. marcescens was marked in 

northeast parts of India and Southeast Asian regions; Ecuador and Columbia in South  
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America; Belgium, Netherlands, and the UK in Europe; Mexico, Belize, Nicaragua, Panama; 

Victoria province in South Australia and Kenya, Uganda and Nigeria in Africa. Therefore, the 

habitat modeling of A. palmata and S. marcescens presents their occupancy and the nature of 

the spread of putative pathogens into the coral species via sewage, chemicals, nutrients, and 

agricultural runoff. The loss of Caribbean corals is linked to declining water quality, fecal 

contaminants, chemicals, the release of landbased pollutants such as significant changes in the 

drainage basins due to agriculture, deforestation, and urbanization into adjacent reef systems, 

bleaching associated with heat stress, sewage, an infestation of microorganisms, and diseases. 

It could be one of the reasons for the severe occurrence of acroporid serratiosis in the coral 

reefs of the Caribbean.   

Previous reports showing white pox disease incidence of Acroporid corals increase with rising 

temperatures (Harvell et al., 1999; Ritchie et al., 2006; Looney et al., 2010). Therefore, 

suitable bioclimatic space for this pathogen may be changed by the significant variation in 

temperature, which further raises the infectious diseases of marine invertebrates in future 

scenarios. The nature of the future appearance of A. palmata is unknown due to the 

unavailability of SSP data. However, the current modeling of S. marcescens and A. palmata 

presents a habitat pattern near Caribbean waters. It gives information about the proximity of 

reefs and pathogen appearance.   

The profound influence of temperature on the growth of S. marcescens (Lin et al., 2010; 

Harimawan et al., 2017; Mladenovic et al., 2018) has been confirmed by early laboratory 

experiments. Consistent with previous reports, the incidence and severity of white pox disease 

of corals rising with rising temperatures (Harvell et al., 1999; Ritchie et al., 2006; Looney et 

al., 2010). The infectivity in Acroporid corals due to this microbe via human fecal 

contamination of near-shore and off-shore waters. In addition, with changing climate 

scenarios, rising temperatures are exacerbating infectious diseases of marine invertebrates. 

Hence, the formulation of the coastal water resources helps to prevent the future spread of this 

opportunistic bacteria.  
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The policy decision-makers design suitable preventive measures, especially in the predicted 

high-risk areas of this pathogen, based on the categorization of risk areas (Mwakapeje et al., 

2019). The spatial assessment of S. marcescens based on biotic and abiotic variables leads to 

risk maps. There was a major limitation due to the scattered information both on the spatial 

occurrence of this bacteria worldwide and on the detailed environmental predictors 

influencing the occurrence points. The results unveil the importance of quality assurance of 

coastal and marine waters in areas where the risk of S. marcescens has been identified to 

increase in order to protect the health and biodiversity of coral reef ecosystems.  

In conclusion, the study forms the first global risk assessment of S. marcescens, an emerging 

human and coral pathogen, warranting the enhancement of epidemiological surveillance 

systems in the identified risk regions. The analysis showed that around 18.42% of the total 

global land area is found to have a high or moderately high risk for the pathogen. Further, the 

order of different continents in terms of current S. marcescens related infections was found as 

Asia > North America > South America > Europe > Africa > Australia. Human population 

density and temperature as the major influencing factors on the spatial epidemiology of S. 

marcescens. The study also needs additional physical, chemical, biological factors that 

significantly affect pathogen transmission. Generally, the risk areas identified in this study 

and the estimation of biological and non-biological factors help to take adequate precautions 

against the future invasion of this emerging pathogen.  
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CHAPTER 6  

SUMMARY  

Global climate change creates novel challenges for coastal and marine ecosystems. Significant 

variation in the climatic factors contributes to disease dynamics in the marine environment. It 

was documented in corals, shellfish, and finfish. For the last ten years, it is causing widespread 

mortality among reef-building corals. The increase is related to deteriorating water quality 

associated with human-made pollutants and climate change impacts. These factors may allow 

for the proliferation and colonization of microbes. The onset of most diseases is likely a 

response to multiple factors.  

  

One of the coral diseases is White pox disease. It causes irregular white patches on the coral 

A. palmata due to disease outbreaks by S. marcescens. The source of this pathogen is mostly 

terrestrial where it is found in the guts of animals, and soil. It is an emerging pathogen for 

human health, causing frequent hospital infections with 0 to 45% mortality rates. Elkhorn 

coral (A. palmata) is an essential reef-building coral in the Caribbean. The precise information 

regarding the S. marcescens across the world is currently absent. This study forms the first 

assessment of the global distribution modeling of this critical human and coral pathogen. For 

analyzing the spatial occurrence of S. marcescens, the maximum entropy model, which is a 

prominent species distribution modeling tool, was used.  

  

The occurrence points of S. marcescens from the GBIF, and the influencing variables acquired 

from the WorldClim, SEDAC, SRDB, Harmonized World Soil Database of FAO soil portal. 

A total of 29 biotic and abiotic factors were used in the study. Using the R 4.0.3 (R core team, 

2020) software, we evaluated the normality of the data with the Shapiro-Wilk test; then, we 

determined the level of correlation between pairs of variables in the presence points. The 

variables were selected according to their correlation index and had to be low (< ±0.8). Among 

the total 29 predictor variables, 18 variables viz., annual mean temperature, mean diurnal 

range, temperature 
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 seasonality, the maximum temperature of the warmest month, annual precipitation, 

precipitation of the driest month, precipitation seasonality, precipitation of the warmest 

quarter, elevation, slope, nutrient availability, excess salts, land cover, soil respiration, soil 

type, soil moisture, human population density and animal population density were selected as 

independent variables. Only these eighteen variables were used in the final species distribution 

analysis. The potential areas of S. marcescens mapped using maximum entropy model with 

MaxEnt Software v.3.4.1). The model was generated using the subsampling technique with 

15 replicates and 1000 iterations each, including 18 selected variables.   

  

An AUC value for the predicted model was 0.918, which implied high predictability. Human 

population density showed the highest contribution of 43.6%, averaged over all replicates. 

Further, five variables viz; annual temperature (bio1), land cover, precipitation of driest month 

(bio14), temperature seasonality (bio4), and annual precipitation (bio12) were found to be 

other influencing predictors based on percentage contribution analysis. Human population 

density and temperature were the most influencing factors on S. marcescens distribution. The 

distribution map of S. marcescens implied its occurrence along the tropical and subtropical 

regions of the world. The entire world was then classified into five categories based on the 

risk level. The risk model indicates that highly suitable areas with greater than 75% of 

probability of occurrence along the Indian side of the Himalayan ranges, islands of Indonesia 

and Hanoi Province of Vietnam in Asia; Ecuador, Columbia in South America; Mexico, 

Belize, Nicaragua, Panama; Belgium, Netherlands, Denmark, and the UK; Victoria province 

in South Australia and Kenya, Uganda and Nigeria in Africa. The less occurrence was 

observed over the arid areas such as central and north Asia, North of North America, and 

Sahara. The probability of having incidences of S. marcescens related infections was in the 

order of Asia > North America > South America > Europe > Africa > Australia.   

  

The prediction of future habitat suitability under changing climate scenarios was made with 

the help of the biomod2 package in R software using an ensemble 
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 forecasting approach. The future distribution maps of S. marcescens unveil excess abundance 

that can be observed in Asian countries due to socio-economic and bioclimatic factors. Due 

to the impact of climate change and socio-economic factors, S. marcescens distribution can 

be seen along the study area in future scenarios. It also causes white pox disease of many 

critically endangered and vulnerable coral species, A. palmata. The prediction of A. palmata 

with regards to various marine environmental parameters was modeled. The study of spatial 

analysis of threatened coral, A. palmata, and opportunistic pathogen, S. marcescens offers 

new insights on the disease outbreaks and risk maps, which can be used to plan strategic and 

specific control measures against future expansion.  
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ABSTRACT  

The global ocean is severely affected by climate change and its associated effects. The 

climatic fluctuations change the physical, chemical, and biological properties of the 

oceans and lead to a geographical change in suitable coral reef habitats, one of the 

most productive, biodiverse, and productive marine ecosystems. To study the precise 

information about disease outbreaks of coral reefs, knowledge of the current 

distribution of the etiological agents is necessary. This study aims to assess the risk of 

an emerging pathogen Serratia marcescens, the etiology of white pox disease affecting 

Acropora palmata. The required species and environmental data were taken from 

different open-source databases. The prepared habitat suitability model showed the 

higher occurrence of the pathogen along the Indian side of the Himalayan ranges, 

islands of Indonesia and Hanoi Province of Vietnam in Asia; Ecuador and Columbia 

in South America; Belgium, Netherlands, and the UK in Europe; Mexico, Belize, 

Nicaragua, Panama; South Australia, and North New Zealand with a probability 

greater than 75%. The highly suitable and moderately suitable areas of S. marcescens 

occupied around 0.52% and 17.9% of the total global land area. The prevalence of S. 

marcescens in the future was predicted based on the projection grids of the human 

population and bioclimatic variables using IPCC shared socio-economic scenarios, 

SSP1 and SSP5 for the period of 2040-60 and 2080-2100. The spatial distribution 

modeling of the endangered coral, A. palmata, was constructed by ensemble modeling 

using the biomod2 package of R software. The predicted current distribution of A. 

palmata vis-a-vis the predicted distribution of its pathogen S. marcescens gives an idea 

about the reef which are more in the proximity of the pathogen occurrence. The high 

probability of S. marcescens occurrence near the Caribbean waters (Florida, Bahamas, 

Cuba, etc.) throws light into the vulnerability of A. palmata in the Caribbean reefs. The 

knowledge of additional small-scale epidemiological studies in the identified areas, 

the inclusion of more variables such as the number of people with weakened immune 

functions, the abundance of host coral species, the land-based pollution to the sea, etc. 

are warranted in the future and will help to improve the disease prediction and to make 

a better decision for decreasing the disease incidences.  




