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CHAPTER I 

INTRODUCTION 

 Black pepper (Pipper nigrum), known as the “king of spice”, is one of the 

most widely consumed spices in the world (Wang, et al. 2021). India is the third 

largest producer of black pepper producing 53,000 tons and largely exported from 

India. The production of the pepper in Kerala is 20,000 tons in 2019 (Anon, 2019). 

 Black pepper is perennial vine growing on supporting stakes. It can grow up 

to a height of 10 m, but plant is restricted to a height of 3m. The fruit also called as 

peppercorns or pepper spikes are having drupes of 5 mm diameter. Generally 

pepper plucking is done manually by climbing on the tree using bamboo poles, 

ladders or rope rings. This process of plucking the pepper involves high risk due to 

falling from the ladder or the bamboo pole. The conventional method results high 

risk of back pain and musculoskeletal problems to labourers due to repetitive hand 

motions and ascending and descending on ladders with heavy loads. In future, the 

labour issue is expected to become more critical in terms of both increasing cost 

and uncertain availability of skilled labourers. Another conventional method for 

harvesting is using poles attached with knife for plucking.  

 Identifying correct stage of maturity is essential to produce high quality 

pepper spikes. Existing harvesting methods cannot offer harvesting at correct 

maturity stage. Black pepper is rich in anti-oxidants and anti-inflammatory 

compounds which helps to balance the blood sugar and cholesterol level. Also it 

has cancer resisting properties and improves degenerative and damaged brain cells 

(Meixner, 2019). To ensure the quality of pepper, it should be harvested at its proper 

maturity stage. The accuracy or precision of harvesting maturity depends on the 

experience of the person doing the work.   

 Robotic harvesting is a promising option to harvest black pepper at correct 

maturity stage and to meet the increasing labour demand. The four functions of 

robotic harvesting system are i) identifying the matured pepper spike ii) plucking 

iii) depositing it to a specified location and iv) controlling all the functions. Robotic 
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arm attached with an end effector and a machine vision system can be used as an 

effective tool for identifying and harvesting matured black pepper spikes.  

KAU developed a machine vision system for identifying matured pepper 

spikes. This system mainly consists of a sensor, processor and a display unit. Two 

computer programs were developed using OpenCV – Haar Cascade platform and 

TensorFlow – faster RCNN platform. These computer programs were coded in 

python language. TensorFlow – faster RCNN platform had a sensitivity of 77 per 

cent, specificity of 72 per cent and accuracy of 75 per cent while OpenCV – Haar 

Cascade platform had a sensitivity of 41 per cent, specificity of 4 per cent and 

accuracy of 13 per cent. By considering the sensitivity, specificity and accuracy it 

was concluded that TensorFlow – faster RCNN is better than OpenCV- Haar 

Cascade platform for identifying matured black pepper spikes. 

 Hence, it is envisaged to develop a robotic black pepper harvesting system 

utilizing the developed machine vision system. 

 Considering the above, a study on the development of robotic black pepper 

harvesting system is undertaken with the following objectives: 

1. Modification of the existing computer program for a machine vision system 

to identify matured pepper spike. 

2. To develop a robotic black pepper harvesting system. 

3. Performance evaluation of the developed robotic black pepper harvesting 

system 
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CHAPTER II 

REVIEW OF LITERATURE 

A brief review of the past research work relevant to different aspects of this 

research, viz, study of physical properties of black pepper, development of robotic 

black pepper harvesting system and performance evaluation of robotic black pepper 

harvesting system are explained in this chapter. 

2.1 PHYSICAL PROPERTIES  

Agricultural robots were designed based on the features of the target crop 

(Roshanianfard and Noguchi, 2018). The machine vision system, manipulator, and 

end effector were designed based on the characteristics of the target fruit. Here 

reviewed the studies on the properties of target crops to design and develop machine 

vision systems, manipulators, and end effectors.   

Kondo et al. (2009) developed a machine vision system for identifying 

tomatoes for a robotic harvester. Physical properties such as fruit diameter, stem 

diameter, stem angle, peduncle diameter, and peduncle length are considered for 

the detection of tomatoes and also for designing the robotic harvester. The 

developed system had 65 % accuracy.  

Vale et al. (2010) conducted a study to find the shear strength and shear 

energy per unit area of saffron stem at different bevel angles and shear velocities. 

The shear strength and shear energy per unit area, and the force and energy required 

for picking flowers, are essential parameters in the design and development of 

harvesting mechanisms. A "Universal testing machine" measured the shear force 

and energy. The bevel angle of the cutting blade and shear velocity significantly 

affected shear strength and shear energy per unit stem area. It was concluded that 

the age of the plants had no significant effect on picking force and energy. 

Heidari and Chegini (2011) did a study to determine the shear strength and 

shearing energy of the rose flower stem. Instron Universal Test Machine was used 

for the testing. The average shear strength value was 1.63 MPa, and the shearing 

energy per unit area was 5.16 mJ.mm-2. The average shear strength and energy per 

unit area value decreased with increasing shear velocity. 
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Ohali (2011) developed a computer vision system for grading date fruits. 

Three grades of dates were considered, and studied their physical properties such 

as flabbiness, size, shape, intensity, and defects. For flabbiness measurement, 

colour intensity distribution at grey level images were used. The size of the fruit 

was the area covered by the fruit; the shape was the outer profile, the intensity was 

the number of wrinkles, and the defects were determined from colour intensity. The 

maximum accuracy of the system was 80%.  

Jun et al. (2012) developed a machine vision system for automatic grading by 

extracting the outer features of sweet pepper. They selected a variety of sweet 

pepper for the study, and three categories were considered for grading. The physical 

parameters studied include mass, colour, shape, and defect. Several sweet pepper 

grades were formed and considered for automatic grading based on each property. 

The overall accuracy was 95%. 

Mohammadi et al. (2015) developed a system for identifying persimmon fruit 

using an image processing technique. To identify persimmon fruit, its physical, 

mechanical, and nutritional properties were studied. The physical properties 

inspected include colour, diameter, equivalent diameter and arithmetic diameter of 

the fruit, sphericity, surface area, and aspect ratio. The system on evaluation had an 

overall accuracy of 90.24%. 

Kahandage et al. (2017) designed and developed a piece of harvesting 

equipment for pepper. They considered several factors such as height adjusting, 

weight-bearing, artificial lighting, easy cutter operation, durability, and safety for 

designing the equipment. Because the height of vines varies, spikes are at different 

vine heights, visibility problems due to higher density of leaves and uneven 

topography of cultivated areas. The maximum height of the pepper vine was 4m, as 

recommended by the Department of Agriculture. They used the average length of 

pepper spikes found in the preliminary study to determine the size of the cutter 

holder and conveying tube. 

Roshanianfard and Noguchi (2018) studied the critical parameters to design 

an end effector for a pumpkin harvester. They used three pumpkin varieties, such 
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as Hokutokou, JEJEJ, and TC2A, for a physical evaluation. Three experiments were 

conducted, including physical properties of pumpkin, compression strength test, 

and bending shear test. The result showed that the designed end-effector could 

harvest pumpkins with a weight of 6 kg, a volume of 5 ×106 mm3, and a radius of 

110 mm. And the end effector should provide a minimum cutting stress of                      

4 N mm-2 to cut the stem.   

Fashi et al. (2019) developed a pomegranate grading system based on image 

processing. Fifteen parameters of 31 monochrome channels were extracted and 

were given as input to the Artificial Neural Network (ANN) model. Physical 

properties studied include length, width, circumference, centroid, texture, area, 

aspect ratio, the diameter of the persistent calyx of the fruit, length of the persistent 

calyx, and the ratio of the diameter to length of the calyx. The system has 98% 

accuracy. 

Yang et al. (2020) developed a robot pumpkin harvester based on the physical 

dimensions of pumpkin fruit. The weight of a pumpkin fruit usually is around 3 kg 

or more. It requires a high payload robotic arm to provide enough power to pick up 

the pumpkin fruits. The hemispherical end effector radius is fixed as 15 cm based 

on the pumpkin diameter and height. The diameter and height of the pumpkin fruit 

are less than 25 cm. The torque required to handle the fruit is normally less than 10 

Nm, but it becomes 20 Nm when the pumpkin is 5 kg. So, the selected the actuator 

provides more than 20 Nm torque. 

Masood and Jaryani (2021) made a study on the viability of robotic harvesting 

in chilli pepper. They measured different parameters such as the length of chilli, the 

diameter of chilli, the diameter of the stem, and the available length of the stem for 

cutting purposes. The chilli has an average diameter of 29.4 mm, an average length 

of 113.4 mm, an average stem diameter of 5.6 mm, and an average stem length of 

22.1 mm available for cutting. For the design of the cutting mechanism, stem 

diameter was significant. Also, the distribution of the chilli pepper fruit on the plant 

is crucial to the robot’s accessible and handy space. 
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Based on these reviews, a preliminary study on the physical properties of 

matured black pepper spikes was done. The physical properties include the length 

of the spike, the diameter of the spike, length of the peduncle and diameter of the 

peduncle, colour of the berries, the diameter of the berries, shear strength of the 

peduncle, and leaf coverage of the pepper vine. 

2.2 DEVELOPMENT OF ROBOTIC BLACK PEPPER HARVESTING SYSTEM 

A robotic harvesting system usually consists of a machine vision system 

performing object detection, a manipulator, an end effector attached to the end of 

the manipulator for detaching the fruit from the plant and dropping it into the 

collecting device, and a control unit that include all the electrical components to 

control the entire harvesting system (Gharakhani et al., 2022). Previous research on 

black pepper harvesting, machine vision systems, manipulators, end effectors, and 

control units are briefly explained here. 

2.2.1 Black pepper harvesting 

The conventional way of pepper harvesting includes using bamboo poles or 

ladders for climbing and harvesting by skilled labour. Another method is using 

poles attached with knife for plucking. Harvesting black pepper by climbing on 

ladders is a tedious task. Hence, much research has carried out in developing black 

pepper harvesting equipment. 

 Rahul et al. (2012) conducted a study to design and develop a pepper plucking 

equipment. In order to overcome the usability, safety, and ergonomic issue-related 

problems, five different concepts were established and selected a final model. The 

final concept was selected based on customer preference. A wire is connected from 

the hand operating part to the cutting portion in the selected model. The braking 

mechanism of bicycles has progressed for the cutting of peppercorns. When the 

hand lever is pressed, the spring gets compressed, resulting in the cutting of 

peppercorns. The cutting portion was curve-shaped because the stalk's holding is 

easier with a curve-shaped cutter. 

 Aneeshya et al. (2013) developed and evaluated three models of pepper 

harvesters based on the efficiency of cutting action and easiness in operation. All 
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three models consisted of a mild steel cutting unit, aluminium conveying pipe, and 

a collecting basket. The main concepts adopted were impact, shear, pulling action 

for proper insertion, cutting, and collecting the spikes. The most efficient and user-

friendly model was the one with lightweight, easiness in operation, and minimum 

loss. A 2 mm thick mild steel sheet was used in the selected model to construct the 

cutting blades. The two blades were adequately aligned to get the correct cutting 

action. A hollow rectangular aluminium pipe with an appropriate length was used 

as the frame, and the cutting tool was fixed on that frame. The cutting action is 

regulated through the handle break at the bottom of the pipe. A basket was attached 

just below the cutting tool at an angle to collect and convey the harvested pepper 

spikes. 

 Kahandage et al. (2017) designed and developed harvesting equipment for 

black pepper. It consists of a scissor-type cutter, conveying tube, electric bulb, 

rechargeable battery, height-adjustable telescopic pole, and a weight bearing stand. 

The spring-loaded scissor-type cutter can be operated manually through the lever 

fixed to the telescopic pole. An LED torch was fitted at the top of the cutter holder 

to improve the visibility. A transparent polythene tube was connected with the 

cutter holder to collect the harvested spikes to the collecting bag. The adjustable 

range of the telescopic pole was 3-5 m, so the maximum reach of the equipment 

was 5 m. A locknut was provided to hold the pole at the desired height. Weight 

bearing tripod with a ball joint was given to support the pole; hence, the equipment 

can be operated in a vast range of areas without moving the equipment. For 

harvesting, the operator has to transfer the cutter holder to the spike so that the stalk 

of the spike is in between two blades and operate the cutter operating lever to 

harvest the spike. Simultaneously, the holder caught the spike and delivered it 

through the conveying tube. 

 Nishanth et al. (2020) developed a pepper harvester consisting of a motor, 

mainframe, harvesting and conveying unit, and collecting bag. The harvesting unit 

consisted of two stainless steel blades fixed on one of the two front pulleys. The dc 

motor drove these pulleys; hence these blades cut the pepper stalk by shearing 
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action. The conveying system made by a rubber belt conveys the cut stalks into the 

collecting bag. 12 V battery placed in a bag power the harvester for harvesting and 

conveying the pepper stalk. The average number of panicles harvested using this 

harvester was 784 per hour, whereas the average number harvested manually was 

744 per hour. 

2.2.2 Machine vision system  

Machine vision systems identify the desired object using machine learning 

techniques. Robotic harvesters use a machine vision system to identify and locate 

target fruit on the tree.  

Bhartiya and Ashish (2015) developed a machine vision system to identify 

red rose flowers automatically. An image processing algorithm running on OpenCV 

(Open Computer Vision) was used for the detection. The XML file needed to detect 

and identify the rose was created using a cascade trainer in MATLAB. A local 

binary pattern (LBP) featured cascade classifier was used to detect rose flowers. 

The single-board computer Raspberry Pi controlled this process by capturing live 

video through a standard USB webcam and identifying the roses. The machine 

vision system recognizes the rose flower and makes a circle around the identified 

rose; it indicates that the rose has been detected. 

Bulanon et al. (2015) developed a machine vision system to recognize apples 

from other tree parts like a branch and the leaf and to locate the center of the fruit 

and its abscission layer. Photos of Fuji apple trees were collected with a color CCD 

camera having 640×480 pixels. The photos were digitized into a 240×320×24-bit 

bitmap image using the IEEE 1394 based video capture board and processed on a 

window-based system. Chromaticity and LCD models were used for apple 

recognition. And for the segmentation process, they used decision functions derived 

from these models. Visual Basic programming language was used to write the 

algorithm. Both chromaticity and LCD models have a success rate of 80%, and the 

noise rate was below 10%. 

Sa et al. (2016) developed a unique method for fruit detection using deep 

convolutional neural networks. They implemented Faster Region-based CNN 
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(Faster R-CNN) as a classifier and used pictures acquired from two modalities such 

as colour (RGB) and Near-infrared (NIR). They combined multi-model information 

(RGB and NIR) with early and late fusion methods and developed a multi-modal 

Faster R-CNN. It involves bounding box annotation instead of pixel-level 

annotation, so this methodology is much faster to deploy for new fruits. The model 

is trained to perform the detection of seven fruits. The entire process takes four 

hours to annotate and train the new model per fruit. 

Lili et al. (2017) developed a tomato harvesting robot consisting of a four-

wheeled vehicle, a 5-DOF harvesting system, a navigation mechanism, and a 

binocular stereo vision system. To recognize ripe tomatoes, elliptic template 

method and Ostu algorithm were used. Images of ripe tomatoes were captured using 

the point greyGS3 U3-15S5C camera at a 40-100 cm distance from the target with 

a resolution of 1384×1032. The greyscale images obtained by the normalized color 

difference method were segmented into foreground and background by Ostu 

algorithm. Otsu algorithm extracts the target of interest from the picture and the 

elliptic template method segment the overlapping tomatoes into individual ones. 

The success rate in detecting ripe tomatoes was 99.3% for the binocular vision 

system. 

Ge et al. (2019) introduced a method for identification, instant segmentation, 

and localization of strawberries on the basis of deep convolutional neural network 

(DCNN). The developed DCNN model defined four classes, including three 

ripeness levels of strawberries and deformed strawberries. The ripe strawberries are 

the easiest to be recognized among the four categories. The localization accuracy 

was improved by detecting the obstructed fruits and recovering the real size of the 

fruit with the bounding box method. The width to height ratio (WHR) of final masks 

was used to detect the occlusions. Moreover, to find the hidden side of the fruit, an 

enhancement method based on the hardness of the mask profile was suggested.  

Hu et al. (2019) introduced a method to identify ripe tomatoes by combining 

an Intuitionistic fuzzy set (IFS) with the Faster R-CNN image detection method. 

Ripe tomatoes in different configurations such as separate, adjacent, overlapping, 
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and shaded were labeled in many images to train the Faster R-CNN classifier. The 

trained Faster R-CNN classifier perfectly and rapidly localize matured tomato, and 

the RGB color space for the identified tomato region transformed to the HSV color 

space. Samples were manually segmented to establish the Gaussian density function 

to remove the background from tomatoes detected by the Faster-RCNN model. 

Also carried out the morphological processing on the tomato binary map to remove 

the unnecessary subpixels and separate joined tomatoes. Finally, the IFS edge 

recognition technology is used to obtain the edge and applies a contour detection 

method to join edge breakpoints and eliminate the preventable edge points. These 

processes connect the tomato contour and help get exact values for a tomato's 

height, width, and center. The proposed method localizes the tomato center more 

precisely than the Faster R-CNN alone. 

Lin et al. (2019) developed an algorithm to detect and locate citrus in natural 

and orchard environments based on red-green-blue-depth images. To capture the 

RGB-D images, a Kinect V2 sensor with RGB and infrared camera was used. The 

infrared camera used time of flight (TOF) technology to obtain depth information 

with a precision below 2mm. The Kinect V2 sensor generates an RGB image of 

1920×1080 pixels and a depth image of 512×424 pixels simultaneously at a frame 

rate of 30 fps. A depth filter segmented RGB-D images to exclude insignificant 

points. The purpose of segmentation is to remove irrelevant points while focusing 

on the crucial points that are similar to the target fruits in colour. Bayes classifier 

was used as the classifier and trained for the RGB feature. Then to group the filtered 

RGB-D image into a set of clusters, density clustering was used. The density 

clustering algorithm discloses the cluster center by finding points with relatively 

larger density and distance. Then SVM (Support vector machine) evaluated the 

clusters and determined the 3D position and diameter of the citrus fruits. 

Peebles et al. (2019) made a study to compare Faster-RCNN and Single Shot 

Multibox Detector (SSD) for identifying asparagus. A dataset of 597 images were 

used. Out of which 447 images were selected for training, 76 images for testing and 

74 images validation purposes. Images were labelled in PASCAL VOC format 
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using LabelImg. Tensorflow’s object detection API was employed to train the 

networks. The Faster RCNN model was faster-rcnn-inception-v2-coco and the SSD 

model was ssd-inception-v2-coco. Both models utilized Inceptuion-v2 architecture 

for their convolutional layers and were pre-trained on Microsoft’s COCO dataset. 

Through the performance evaluation, true positivity (TP), false positivity (FP), false 

negativity (FN), precision and recall were measured for both models and found that 

Faster-RCNN network architecture was more suitable for the detection of 

asparagus.  

Song et al. (2019) developed a machine vision system for a kiwifruit 

harvesting robot that can work a full day. Firstly, images of kiwifruit were taken 

from an orchard at different timing, such as morning, afternoon, and night, with and 

without flash. They used an ordinary single-lens reflex camera on AUTO mode 

with a resolution of 2352×1568 to capture the images of kiwifruit. The image 

dataset comprised 2400 images having 2352×1568 pixel resolution. The labeled 

image dataset was divided into testing (960) and training (1440) groups. Many 

photographs were required to train the Faster R-CNN model, so the data 

augmentation method was applied to enlarge the number of training images. After 

that, a Faster R-CNN model executed by VGG16 was created and trained. The 

VGG16 model has an average precision of 87.61%, and correctly detected the 

kiwifruit images collected under different timing and lighting conditions.  

Williams et al. (2019) developed a novel multi-arm kiwifruit harvesting robot 

with a machine vision system algorithm. They used Fully-Convolutional Network 

(FCN) to perform semantic segmentation of the captured image for identifying 

kiwifruit. It was trained with 200×200 pixel hand labelled images that were 

collected from various orchards. Each image was hand-labeled in three classes: 

calyx (kiwifruit), cane, and wire. Caffe framework (Nvidi caffe) and the Nvidia 

Digits training system were used for training the model. The results found that 76% 

of the kiwifruit were detected in the actual situation. 

Gao et al. (2020) proposed a multi-class apple detection method in dense-

foliage fruiting-wall trees based on Faster Region-Convolutional Neural Network. 
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800 RGB images of apples with 1920 × 1080 pixels were collected under different 

conditions such as non-occluded, leaf occluded, branch/wire-occluded, and fruit-

occluded fruit. Images were annotated by hand with rectangular annotations, and 

the generated ‘xml’ files were saved. The annotated images were augmented by 

geometric transformation and image enhancement using the software MATLAB 

2018b with the Image processing Toolbox. All the photos were given as the inputs 

for training and testing the Faster R-CNN based VGG16 model. The training 

platform included a computer with an Intel Xeon E5-1650 (3.60 GHz) six-core 

CPU, and a GPU of NVidia TITAN XP 6 GB GPU (3840 CUDA cores) and 16 GB 

of memory, running on a Windows 7 64-bit system. The software tools included 

CUDA 8.1, CUDNN 7.5, Python 2.7, and Microsoft Visual Studio 12.0. Overall, 

the average precision of the model was 0.879, and an average of 0.241 s was needed 

to process an image. 

Santos et al. (2020) made an evaluation of two deep learning detection 

architectures for grape detection: Mask R-CNN, a convolutional framework, for 

instance, segmentation that is simple to train, and CUDNN 7.5, a single-stage 

network that can detect objects without a previous region-proposal stage. In this 

work, a new methodology for image annotation was employed. That is, interactive 

image segmentation was used to generate object masks, identifying background and 

occluding foreground pixels. The graph matching-based process uses letterings for 

the segmentation and transmitting the labels from the model to the input image. To 

achieve a good annotation, the user repeats the process of scribble marking and 

graph matching steps. As a final point, the pixels of grape are kept as masks for 

managed instance segmentation learning. Results showed that the Mask R-CNN 

network offered better results than YOLO networks. 

Zhou et al. (2020) designed a sugarcane cutting machine with a machine 

vision. It consists of an electrical, mechanical, and visual processing unit. The 

system uses machine vision to detect the sections of sugarcane stalks. FindContours 

function in OpenCV was used to find the contours of the sugarcane and the outline 

of the holes. The camera was installed at a height of 310 mm, and the focal length 
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was 8 mm. For the system's design, the average diameter of the sugarcane was 

considered, and it was 30 mm. The system's performance was evaluated and found 

that it has a recognition rate of 93%, and the average time taken for detection was 

0.539 seconds. 

Meera and Bhaskar (2020) developed a machine vision system for identifying 

matured black pepper spikes. They developed program in two different platform, 

one with OpenCV library and Haar cascade classifier and second with TensorFlow 

library and Faster-RCNN ANN model. TensorFlow – faster RCNN platform had a 

sensitivity of 0.77, specificity of 0.72 and accuracy of 0.75 while OpenCV – Haar 

Cascade platform had 0.41 of sensitivity, 0.04 of specificity and 0.13 accuracy. 

They concluded that TensorFlow-Faster-RCNN platform was better than OpenCV- 

Haar cascade platform by considering its specificity, sensitivity and accuracy. This 

machine vision system consist of a webcam as sensor, raspberry pi 4 model B as 

processor and Raspberry Pi LCD Display Module with a 320x240 resolution as 

display. 

2.2.3 Manipulator 

  A manipulator is a device used to handle materials without direct human 

interference. Also, it is a programmable mechanical arm with similar functions to a 

human arm. The manipulators consist of links connected by joints allowing either 

rotary motion or linear motion. A manipulator is one of the significant components 

of a robotic harvester. When the system identifies and locates the target fruit, it 

moves the end effector to the target fruit. 

Henten et al. (2002) developed an autonomous robot for harvesting 

cucumbers in greenhouses. It consists of an autonomous vehicle, a manipulator with 

seven degrees of freedom, an end-effector with a thermal cutting device, a computer 

vision system, and a control unit. It has two computer vision systems, one for 

detecting cucumbers and another for 3D imaging the fruit and the environment. The 

machine vision system and the control unit enable collision-free motions of the 

manipulator during harvesting. The field test confirmed the ability of the robot to 
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pick the cucumber with a success rate of 80%, and the robot needed 45 seconds to 

pick a single cucumber. 

 Font et al. (2014) developed a robotic fruit harvester by uniting a low-cost 

stereovision camera and a manipulator with a gripper tool at its end. They made the 

robotic arm or manipulator by joining five links and a manually interchangeable 

gripper. The manipulator joints were actuated with six low-cost DC gear motors 

and are controlled by a Cortex-M4F ARM STM32F407VGT6 microcontroller. This 

microcontroller controls the motor's speed and velocity and has different 

connectivity options. To place the gripper in a good position while harvesting, the 

motor at the base of the manipulator spins 360 º on its x-axis. Then, the motors at 

joints 2 and 3 can turn 260° on their z-axis to approximate the robotic gripper to the 

fruit. And the last joint has two degrees of freedom which spin 260° on its z-axis 

and 360° on its x-axis to enable two specified motions to the robotic gripper. 

  Roshanianfard and Noguchi (2016) proposed a newly designed robotic 

arm with 5 DOF for harvesting heavy crops like pumpkin and cabbage. Solidworks 

2014 software with JIS standards was used to design, assemble and analyze each 

harvester component. Using machine design standards, the workspace, required 

joint torque, and mass center position was calculated. Components were designed 

with different materials and mass centers to reduce the torque requirement and were 

compared together. Three models of the robotic arm were made with different servo 

motor positions and linkage materials. The first model used iron, and the remaining 

two models used aluminium (AL5202). The results showed that the change in 

material and servo motor position significantly reduces the torque values. 

Zhao et al. (2016) proposed the concept of a robotic tomato harvester with 

dual arms. It consists of a robotic manipulator with dual-arm, interchangeable 

modular type end-effector, machine vision system with stereoscope camera, 

communication and control system based on EtherCAT, and graphic user interface. 

The joints of each manipulator were actuated by direct current servo motors and 

controlled by the EtherCAT bus. 



15 

 

 Lili et al. (2017) developed a tomato harvesting robot with five degrees of 

freedom manipulator. The manipulator is composed of a mechanical arm with four 

degrees of freedom and an end effector with one degree of freedom, arranged in 

tandem. The base, shoulder joint, elbow joint, and wrist joint are the major 

components of the mechanical arm. The results showed that the robotic arm has a 

load-bearing capacity of 1.5 kg. 

 Rana and Roy (2017) developed an autonomous robotic arm with 4 DOF 

similar to a human arm. The entire system consists of a functional arm and a 

controlling unit. The controlling unit is the signal processing part. It processes the 

programming language uploaded to the microcontroller and transforms the binary 

information into voltage variations that will actuate the arm's joints. Arduino Uno 

R3 was used as the microcontroller, and servo motors actuated each joint of the 

arm. There are three input wires in a servo motor to control it; two of them are for 

powering the motor by connecting to the voltage and ground terminal of the power 

source. And the third wire for data transfer determines the rotation of the motor. 

The elbow and wrist of the arm were actuated by servo motors with stall torques 15 

kg-cm and 14 kg-cm, respectively. 

 Roshanianfard and Noguchi (2017) proposed a new design of a robotic arm 

having 5 DOF for harvesting heavy crops like cabbage and pumpkin. This robotic 

arm is composed of links and joints. The links are pinned together with revolute 

joints from the base to the end-effector. After the analysis of speed-torque 

characteristics, motor and driver were selected. In agricultural robots, the speed is 

secondary; the primary concern is torque. The servo motor’s speed is set to 15 rpm 

in joint one and 60rpm in joint five. Above these speed values, dynamic torque and 

inertia increase dramatically. The biggest dynamic torque requires a better power 

supply to control the servomotors. 

 Agbaraji et al. (2018) designed a robotic arm by estimating the joint torques 

and examining the motion characteristics. The actuators of the robotic arm joints 

were selected based on the calculated joint torques. The robot arm comprises links 

connected by joints, and every joint contains a motor and gears. The joint actuator 
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determines every possible movement of the robotic manipulator, and the 

performance of the joint is influenced by the motor torque and the total torque 

generated at that joint due to load. In the actuator selection steps, it is first necessary 

to determine the extreme torque needed for each joint. The torque can be calculated 

by multiplying the weight of the load the motor shaft has to hold with the distance 

between the load's center of gravity and the joint. The weight includes the weight 

of motors on the arm and the link arm. These servomotors are lightweight and small, 

so it helps to reduce the torque requirement of the joint farther back in the arm. The 

torque applied from the actuators determines the robot arm's operational 

characteristics, such as distance and velocity. Acceleration is needed to move the 

arm from the rest position. To find the torque due to angular acceleration, multiply 

the moment of inertia with angular acceleration at that joint. This work reveals the 

importance of actuator selection and provides the method of calculating and 

selecting the actuators properly for different joints in the robot arm.   

 Bugday and Karali (2019) found that the joint's torque requirement in 

manipulators increases with prolonging reach length and payload. They made this 

study by analyzing five robotic arms belonging to different brand. Almost 70 % of 

the motor's energy is used for lifting redundant weight while operating the robotic 

arm. So torque requirement can be reduced by reducing the arm's weight at the 

proper position. This study aims to determine appropriate locations to reduce 

material from the robot arm by ANSYS shape optimization analysis. To optimize 

the design, alternative designs were made by changing the material and geometry. 

Above these, to reduce the weight and identify the best geometric shape, holes were 

dug at different locations. Results from the precision analysis method showed that 

the hole drilled on the upper side of the manipulator greatly influences the output 

parameters like deformation, stress, and robot arm mass. Usually, the deformation 

due to load decreases with a decrease in the arm's weight. But the situation may 

reverse based on the geometry and location of the channel. The result showed that 

after optimization, the robot's weight was reduced by 10 %, stress value by 23 %, 

and deformation value by 65 %. 
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 Jadeja and Pandya (2019) designed and developed a robotic manipulator 

having 5-DOF with servo motors positioned at each joint. The joints were found in 

the base, shoulder, elbow, wrist, and slider. Cortex ARM M3 LPC1768 was chosen 

as the microcontroller. And the programming language C was used to write the 

programming code to control the servomotor. The primary function of the 

microcontroller is to control the rotation of servomotors by generating the pulse 

width modulation. A servomotor requires 2 ms of pulse duration for rotating the 

servo at full speed in the clockwise direction. 

Williams et al. (2019) developed a robotic kiwifruit harvester with multiple 

arms. It was designed to operate in pergola-style orchards. It consists of a machine 

vision for object recognition and four robotic arms with end-effectors specially 

designed for kiwifruit harvesting. The technique used to remove kiwifruit is the 

same as that done by the people. The end-effector will clasp and rotate the fruit to 

detach it from the canopy. Through the flexible tube connected to each end-effector, 

the fruit will reach the conveyor housed inside the harvesting cabinet. Results 

showed that this harvester could harvest 51% of all kiwifruit within the canopy. 

Xiong et al. (2019) developed a strawberry harvesting robot to harvest 

strawberries grown on tabletops in polytunnels. The robot consists of a gripper 

attached to an industrial arm, a mobile base, and an RGB-D camera. The robotic 

arm was mounted on the mobile base along with the RGB-D camera. The result 

showed that the harvester takes an average cycle time of 7.5 seconds for 

continuously picking single strawberry at a time. 7.5 seconds for the picking 

operation only; it takes 10.6 seconds when all the procedures are included. The 

experiments revealed that the robot could pick isolated strawberries with a success 

rate of 96.8%. But the success rate reduces when it is occluded by leaves or 

immature fruits themselves. In such situations, the average picking success rate for 

a single attempt is 53.6% without causing damage to the fruit and 59% when 

including success with damage. 

Daniyan et al. (2020) developed a lawn mowing robot. This machine is 

comprised of an infrared LED/receiver sensor, ultrasonic sensor, power supply unit, 
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Arduino microcontroller (ATmega328), Raspberry pi, memory card, camera, 

geared DC motors, and Global Positioning System (GPS). The microcontroller 

Arduino controls the geared motors alternatively to specify the directions of the 

lawnmower. The images captured were analyzed through colour algorithm to 

identify the grasses to be cut. This will helps the robot to make the decision on 

whether to cut, turn or move forward. A 9 V battery powered the microcontroller. 

The motors were powered from two 6 V batteries connected in series to get 12 V. 

The sensors were used for obstacle avoidance and path planning of the geared DC 

motors, which are powered by the microcontroller itself. The machine's chassis is 

constructed with aluminium to make the system lightweight. 

Kumar and Ashok (2020) designed and fabricated an intelligent seed sowing 

robot for sowing the seeds at the desired location. The robotic arm takes the seed 

from the container and plants it in the desired position. It was controlled through 

the mobile application; once all the positions were set, the robot would 

automatically sow the seed when the switching button was ON. The robot was 

navigated through the mobile application by controlling the robot's wheels. This 

robot consists of stepper motors, dc motors, an ultrasonic sensor, and a linear 

actuator. The linear actuator opens and closes the valve for distributing the seeds. 

The Stepper motor driver controls the movement of the motors by receiving the 

signals from the controller. The ultrasonic sensor detects the obstacles in front of 

the robot and finds the distance toward them. The ultrasonic sensor sends the signal 

to the controller, and as a result, the controller stops the robot's movement for 

further seed sowing.  

Siemasz et al. (2020) developed a robotic arm with six degrees of freedom 

that can be used with an external artificial intelligence system. The arm has six 

rotational joints actuated by stepper motors. They used an Atmega2560 

microcontroller to manage each component of the robotic arm. All the actuators of 

this system were connected to the output of the microcontroller board. And the 

sensors were connected to the inputs of the microcontroller. Seven bipolar stepper 
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motors were used to describe the motion of the robotic arm, and the working tool 

gripper was actuated through a servomotor. 

Yang et al. (2020) developed a robot pumpkin harvester to solve the lack of 

the labour force for harvesting pumpkins. This robotic harvester comprises a 

machine vision system to detect and locate the fruit, a robotic hand-arm, and a 

moving vehicle. The robotic arm with an end effector was utilized to pluck the fruit 

and move it to the desired position or container. The robot hand-arm and machine 

vision system were mounted on the moving vehicle. In the machine vision system, 

a USB camera was employed to capture the images in the field, and a deep neural 

network (DNN) based detection algorithm was used to identify the pumpkin 

position. Generally, pumpkin fruit weighs 3 kg or more; hence a high payload 

robotic arm is required to pick the pumpkin fruit.  

Yurni et al. (2020) designed a robotic harvester to identify and pluck green 

and red tomatoes. This robotic harvester consists of a manipulator, end effector, 

Arduino, raspberry pi, camera, personal computer, and a proximity sensor. The end 

effector includes a scissor-type cutter, webcam, and proximity sensor. The pictures 

of tomatoes were captured through the webcam, and the distance toward the 

identified tomato was measured using the proximity sensor. Moreover, the scissors 

on the end effector cut the peduncle of the tomato. The entire system was controlled 

by Arduino Mega 2560, and Raspberry pi 3 Model B processors and servomotors 

were used as the actuators at the joints. This robot has 4 DOF, and the servomotors 

were fixed at the base, joint 1, joint 2, and the end effector. The webcam is 

considered the robot's eye and makes it occlusion free while approaching and 

harvesting the tomatoes. The webcam captures the images with a resolution of 

320×180 pixels and sends them to the personal computer. After processing the 

images, the personal computer sends it to the Raspberry pi connected with the robot 

to locate the tomatoes. As the robot detects the tomatoes, the robotic arm moves to 

approach the tomato and cuts 3 cm above the tomato. The robot takes an average 

time of 4.932 seconds to harvest red tomatoes and 5.276 seconds for green 

tomatoes. Furthermore, the time required for the robot to return to the original 
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position after detaching the red tomato was 9.676 seconds, and that for the green 

tomato was 10.586 seconds. Variation in this time was due to varying distance 

between the robot and the tomato, not the colour of tomato. 

Agarwal et al. (2021) designed a robotic arm with 5 degrees of freedom. 

Servomotors stimulated each joint of the robotic arm, and the microcontroller 

Arduino Uno based on ATmega328P was utilized for controlling the robot. The 

base and last joint of the robotic arm were fixed, respectively, with servomotors 

having stall torque of 17 kg-cm and 4.5 kg-cm. And the other three joints were 

actuated with servomotors having a stall torque of 6.8 kg-cm. Each link of the 

robotic arm is constructed with aluminium.  

Masood and Jaryani (2021) developed a robotic harvester for chilli and 

conducted a laboratory study. This robot consists of a robotic arm with 5-DOF, 

Arduino Due board, cutting mechanism, depth camera, and MATLAB TM running 

machine. DC servo motors actuated each joint of the robotic arm. The robotic arm 

joints are named base, shoulder, elbow, wrist pitch, and wrist roll, respectively, 

from base to end-effector. The payload capacity of the arm was 150 g for an 

operating length of 329 mm and 400 g for minimum working distance. And the 

robot has a maximum reach of 400 mm. The chillies were detached from the plant 

by cutting the stem through sharp edge blades actuated with a servomotor have a 

stall torque of 2 N m. The cutter has two blades; a stationary blade mounted 

permanently on the ground of the end-effector, and the second moving blade moves 

about a hinge that lies inside the blade's body. The success rate of cutting improved 

by enhancing the torque through a set of pinion and gear as the transmission 

method.  

Sanjay et al. (2021) proposed a cotton harvester. They utilized image 

processing, digital analytics, and robotics for identification, harvesting, and storage. 

In the image processing unit, a high-resolution camera was attached to capture the 

images of the crop. And the photos were sent to the microprocessor Raspberry pi. 

The raspberry pi 4 model is stronger, faster, and sleeker than the previous versions 

of the raspberry pi. The microprocessor processes the image and identifies whether 
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the cotton balls were opened or not. If the system identifies an opened cotton ball, 

the arm will move towards the cotton ball to harvest. Otherwise, the machine will 

move to the subsequent cotton ball for identification. The L293D motor driver with 

16 pins runs two DC motors simultaneously and in the desired direction. Moisture 

sensor lines with LM393 receiver were used to measure the moisture content of the 

harvested cotton. This robot is comprised of a baler mechanism within the storage 

unit. It makes cotton bales and helps the farmers easily transport the cotton without 

wasting power and time. This machine eradicated the harvesting loss and increased 

the yield by 20–25%, thereby increasing the farmer's profit up to 20%. 

Sarkar and Raheman (2021) developed a manually operating planter. It has a 

robotic arm with two degrees of freedom. The major parts of this planter are the 

robotic arm, hopper, conveying system, furrow opener and closer, seed tube, and 

electronic circuit. The robotic arm has a revolute joint and a twisting joint. And the 

arm is composed of a base plate, supporting frame, bearing holder, and rotating 

platform. Two Tower Pro MG995 servomotors actuated two joints of the arm. The 

picking efficiency and holding capacity of the robotic arm were measured as the 

important performance parameters. Average picking efficiency was 96.84% at a 

belt speed of 0.12m s-1, and the holding capacity was 25.94 g.  

Based on the above review, a manipulator having two degrees of freedom was 

developed for robotic black pepper harvesting system. It has two joints, which are 

actuated by servo motors. And it has two links which are made of aluminium hollow 

rectangular pipe. The use of lightweight aluminium material reduce the load to be 

taken by the joints. 

2.2.4 End-effector 

End-effector is the device or tool connected to the manipulator's end to 

interact with the environment. The structure of the end effector depends on the task 

the robot will be performing. The robotic harvester has an end effector to the 

manipulator's end to harvest the target fruit. Most of the end effector consists of 

sensors, gripping, and cutting mechanisms.  
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Henten et al. (2002) introduced a robotic cucumber harvester, especially in 

greenhouse cultivation. This robot has an arm attached to an end effector. The end-

effector comprises a gripper, suction cup, and a thermal cutting device. The thermal 

cutting technique employed for harvesting consists of two electrodes carrying a 

high-frequency electrical potential. When the stalk interacts with the electrodes, it 

cuts the stem by the high-frequency current between the electrodes. While 

harvesting, the two fingers of the motorized gripper will grip the stalk of the 

cucumber, the suction cup will grasp the fruit, and the thermal cutting device will 

cut the stem of the fruit. After cutting, the suction cup immobilizes the fruit while 

transporting it to the container.   

Feng et al. (2008) introduced a robot for harvesting strawberries growing on 

the hilltop. It has a precise fruit detaching mechanism to avoid any injuries to the 

fruit while harvesting. The end effector is composed of a pneumatic scissor and 

pneumatic gripper. During harvesting, firstly, the pneumatic scissor cuts the stem, 

and then the pneumatic fingers pick the stem and transport it into the conveyor. 

Bulanon and Kataoka (2010) developed an end effector that can be mounted 

to an industrial manipulator for the robotic harvesting of apples. They designed the 

end effector as the human picks the fruit from the tree. This end-effector is 

composed of a peduncle holder equipped with two fingers and a wrist. The DC 

motor will actuate the fingers of the peduncle holder, and it has a gripping force of 

11 N and an opening width of 15 mm. This gripping force is enough to hold the 

fruit because the average weight of the apple is assessed to be less than 400 g. The 

stepper motor with a torque of 1.5 N m acts as the wrist and rotates the peduncle 

holder once it squeezes the peduncle. The performance test result showed that it has 

a success rate of 90 %.  

Font et al. (2014) developed a gripper tool for fruit harvesting. The gripper 

tool with a robotic arm and a machine vision system is employed for harvesting 

purposes. This gripper consists of four fingers; two upper moving fingers and two 

lower fixed fingers. The moving fingers grab the fruit, and the fixed fingers hold 

the fruit properly. Lower fixed fingers reduce the pressure needed to catch the fruit 
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with the moving fingers. A single DC motor was used to open and close the moving 

fingers. When the torque applied by the motor exceeds a specific value, the system 

will stop the grabbing procedure to avoid the occurrence of damage to the fruit. 

Moreover, they gave the gripping fingers a soft foam rubber coating to reduce the 

pressure applied to the fruit.  

Hayashi et al. (2014) developed a movable strawberry-harvesting robot 

comprising a cylindrical manipulator with three degrees of freedom (3-DOF), an 

end-effector, a machine vision unit, and a tray storage unit. The end-effector 

consists of a gripper and a photoelectric sensor. The gripper has two fingers, one 

attached with an interchangeable blade and the other with a stopper. Reflection type 

photoelectric sensor was used to check the presence of the harvested fruit. The 

gripper with fingers will detach the fruit, and the photoelectric sensor will confirm 

its existence. To avoid the injury of fruit while harvesting, a cushioning material 

was pasted to the finger of the gripper.  

Erlingsson et al. (2016) designed a compact, precise, and lightweight claw 

for grasping fruits. The major components of the claw are the mounting platform, 

servo motor, frame, link, slider, and gripper. The frame was made from an HDPE 

block, and the mounting platform on the frame was mounted to the robotic arm 

coupling. The servo motor was fixed on a threaded hole at the center of the frame, 

and the cut-outs were created in free spaces to reduce the mass. They used a 

servomotor with stall torque of 17 kg-cm at 6 V and weighing 63 g. Two linkages 

made of aluminium were connected to each end of the servo hub and each slider 

assembly. It is used to transform the servo's rotary motion into the slider's linear 

motion. The gripper made of HDPE was mounted on the slider through a single 

bolt. And the grippers were lined with a 2 mm thick rubber having a coefficient of 

friction on a glass surface of 2.  

Wang et al. (2016) designed a new picking end-effector to improve the 

automatic harvesting of fresh eating tomatoes. It consists of a fruit stem holder, fruit 

clamping mechanism, a separating mechanism, and a control unit. Other significant 

components are the pressure sensor, infrared sensor, sleeve, and gasbag. The 
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pressure sensor is attached to the gasbag to check the pressure while clamping the 

fruit. And the infrared sensor at the sleeve to confirm the presence of fruit. The 

infrared sensor detects the fruit and simulates the air compressor to swell the gasbag 

when the fruit enters the sleeve. Then the dc motor advised the clamping pliers to 

clamp the fruit's stem correctly. Moreover, the pressure sensor will measure the 

pressure between fruit and gasbag to guarantee no injuries to the fruit. Then drive 

the double-acting cylinder to take the sleeve to shrink to cut off and pick the fruit. 

Zhao et al. (2016) introduced a tomato harvesting robot with two robotic 

arms, each having three degrees of freedom. Both the manipulators were attached 

with end effectors to harvest the tomatoes. The manipulator's function is to position 

the end effector to the target fruit. The saw-type cutting device was chosen as the 

end effector, and a motor actuated it through belt and pulley arrangement. A 

microcontroller controlled the direction and speed of the motor. The posture of the 

cutter can be adjusted in two directions, X and Y. In the X direction, the blade 

moves from -45 degrees to 45 degrees with respect to the Y direction, and a four-

bar linkage mechanism actuated it. And the Y-direction movement was controlled 

by a motor with a microcontroller. While harvesting, a vacuum suction cup holds 

the fruit to resist the shaking of the fruit. This vacuum cup has a diameter of 100 

mm, and the vacuum power is set to handle 100 gf to 1 kgf weight. 

Lili et al. (2017) developed a robotic tomato harvester. It consists of an end 

effector having one degree of freedom. The robot detaches the tomato from the 

plant using a shear-type gripper. The gripper was designed by giving equal 

importance to the steadiness of the gripper and the complexity of the structural 

control. Grasping, cutting, and separating tomatoes are involved in the harvesting 

action.  

Birrell et al. (2019) developed a platform called vegebot. It involves a 

machine vision system, end effector, and software for the robotic harvesting of 

iceberg lettuce. They created an end effector which allows damage-free harvesting. 

A straight cut with high impact must attain enough cutting force to cut the stem. 

They tested different mechanisms such as a soft gripper with a knife-hand, belt 
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drive, pneumatic action, and rotary chopping to select the tool which provides the 

best quality cut and sufficient force. A high power-to-weight ratio was obtained 

from the pneumatic cutting mechanism, making it suitable for cutting the stem of 

iceberg lettuce. The end effector used two actuators for grasping and cutting the 

fruit. And they used a timing belt to transfer the linear motion from a single actuator 

to both sides of the blade. 

 Xiong et al. (2019) developed a robotic strawberry harvester for strawberries 

cultivated in polytunnels. The gripper of this harvester has four unique parts for 

picking, sensing, transporting, and storing. And it consists of a cutter, three active 

fingers, and three passive cover fingers. These six fingers open simultaneously to 

swallow the targeted strawberry from below. Then close the fingers to move the 

stem to the cutting area. The two curved blades of the cutter rotate to cut the stem. 

The cutter is mounted interior of the fingers to prevent the damage caused to the 

targeted and surrounding fruits. The blades of the cutter were mounted on a pair of 

gears; active driving gear and passive driving gear. Active gear is driven by a cable 

to close the cutter, and passive gear is connected to a return tension spring to open 

the cutter. Moreover, the gripper has three internal infrared (IR) sensors to identify 

the target location and move the gripper to the actual cutting position. In addition, 

the gripper has a container to collect the strawberries continuously. This container 

has a trapdoor to give out all the strawberries to the storage unit when it is filled. 

This robot has a success rate of 96.8 % for picking strawberries in a single attempt. 

Roshanianfard and Noguchi (2020) developed an end-effector for a pumpkin 

harvester. A five-fingered hand with an electric drive was chosen as the end 

effector, and it was designed based on the properties of the pumpkin. This gripper 

can support varying pumpkin sizes ranging from 76.2 mm to 265 mm in radius. 

Each finger is comprised of seven elements, and the inner surfaces of each 

component were equipped with rollers and stabilizers made up of rubber. These 

rollers and stabilizers are given to prevent crop damage during harvesting and 

provide distance between the pumpkin surface and blades. Initially, the end-effector 

is positioned on the top of the pumpkin with opened fingers to approach the target. 
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Then the end-effector rotates 72° clockwise or anticlockwise to make contact 

between the blades and the stem. After that, the fingers were moved by the electric 

actuator to hold the pumpkin and cut off its stem.  

Yang et al. (2020) developed a robotic pumpkin harvester after conducting a 

study on the physical properties of pumpkin fruits. The designed robotic hand 

comprised a base, crank, connecting rod, and a hemispherical end effector with a 

connecting frame and finger component. The crank is the active link, and 

connecting rod is the connecting link. The base is attached to the robotic arm, while 

the crank, connecting rod, and hemispherical end effector are joined by rotating 

pair. The hemispherical end effector involves three parts of the same shape and is 

held together by a connecting bracket. The finger component is fixed to the 

hemispherical end effector by a rotating pair with a torsion spring. Under this spring 

action, the finger part moves outside. A limiting slot was provided on the upper part 

of the end effector as an indicator to stop the finger. While harvesting, the finger 

rotates to a pre-set position and stops when it touches the limiting slot. It acts as a 

buffer, which prevents the finger from contacting the ground and the pumpkin 

surface.   

Based on the above review, a shear cut mechanism was chosen for harvesting 

black pepper spikes from its stem. The cutting mechanism consist of a moving blade 

made up of stainless steel and a stationary cutting edge. The moving blade was 

driven by a servo motor having a stall torque of 11 kg-cm. There is a collecting pan 

below the cutting unit to collect the harvested crop directly.  

2.2.5 Control unit 

  Every robot has a control unit to control the entire robot. Generally, the 

control unit involves microprocessors, sensors, actuators, batteries, and voltage 

regulators. The control unit continuously reads the sensors and regulates the 

actuators to achieve the desired function (Ganguly, 2019). This section explains the 

components of control units used in various works related to robotics. 

Logan et al. (2012) conducted a study to analyze whether a generator or 

battery is more suited for a robot based on power density and energy density. The 
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results showed that batteries could power robots that require a small amount of 

energy. The batteries are easily rechargeable, clean, and quiet. But the long-duration 

operations needing large amounts of energy can be powered by a generator 

weighing much less than the equivalent energy stored in batteries. 

 Pa and Wu (2012) developed a hexapod robot to collect information from the 

surroundings. This robot collects environmental information by walking and 

transmits it to the computer via Bluetooth. Servomotors were used to execute the 

robot's walking movement through 12 servomotors and connecting rods. CPLD 

(complex programmable logic device) was used to control the servomotors by 

generating desired pulse width for PWM. Through the pulse width modulation 

(PWM) technique, servos can be rotated or held at any angle. This robot uses 

servomotors with a torsion of 7.2 kg per cm at 4.8 V and 8 kg per cm at 6 V. At 4.8 

V, the rotation speed of the motor reaches 0.33 s per 60deg, and at 6 V, it reaches 

0.27 s per 60deg 

 Senthilkumar et al. (2014) proposed an image capturing technique in an 

embedded system based on the Raspberry pi board. The system is comprised of a 

camera, Raspberry pi, and a monitor. The camera will capture the image, and the 

raspberry pi board will process the image recognition programs. The monitor 

previewed the captured image and indicated it to the user. Raspberry Pi is the 

microprocessor, and its main parts are a processing chip, power supply, memory, 

USB ports, and Ethernet port. A CSI connector on the microprocessor can deliver 

1080p HD video recording at 30fp or 5 MP resolution images. So the raspberry pi 

IR camera plugs directly into this CSI port. The result showed that this system 

quickly runs the image capturing process and recognition algorithm. And the data 

flow smoothly between raspberry pi and the camera. 

 Deepan et al. (2015) developed an intelligent robotic hand that mimics human 

hand movements. To extract the human hand gesture, they used vision-based 

interaction techniques. The system has a camera to capture the motion of the human 

hand, and a Raspberry pi processor controls the entire setup. Face deduction and 
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skin color recognition are used to distinguish the hand in the video. This hand has 

five fingers, each having four degrees of freedom actuated by DC motors.  

Pannu et al. (2015) developed a prototype of an autonomous car with 

raspberry pi as the processing unit. An HD camera and an ultrasonic sensor were 

used to collect information from the real world and transfer it to the processor. Four 

servomotors actuated the wheels of the car, and the motor driver IC L293D was 

used. 8 AA batteries were used to provide power to the motors. The motor pins 

were connected to the GPIO pins of raspberry pi via jumper wires for controlling 

the servos. The frames to mount the raspberry pi, camera, and ultrasonic sensor to 

the car were made up of aluminium material. They write the programming code in 

the python language because python language allows the user to convey the 

concepts in fewer lines of code. The RPi.GPIO Python library permits reading and 

writing the General-purpose input-output pins on the raspberry pi within a Python 

script. 

Teja and Manohari (2015) developed a vehicle with stereo vision and 

raspberry pi as a processor. They used Raspberry pi model B, a 3.5 W computer 

with multiple input-output interfaces and a 700 MHz ARM1176JZF-S processor. 

Two webcams used in this assembly are connected to the USB port and the motors 

to the GPIO pins of the raspberry pi. The Raspberry Pi mainly uses Linux kernel-

based operating systems. The programming code written in python language 

controls the motors connected to the General purpose Input-Output (GPIO) pins. 

The GPIO pins can be organized as either general-purpose input or general-purpose 

output. 

Christian and Shukla (2016) proposed a method to monitor and control 

multiple servo motors through a web browser using an embedded system. 

Raspberry pi 2 was used as the microcontroller, and the software included Raspbian 

operating system, PHP, and Python language. Raspberry pi has 40 GPIO pins for 

input and outputs to control multiple servo motors. Servos are controlled by sending 

them a variable-width pulse via a control wire. When the microprocessor instructs 

the servo to move, the servo will rotate to that position and hold at that position. 
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When an external force acts on the servo motor while the servo is in the holding 

position, the servo resists moving out of that position. The torque rating is the 

maximum amount of force a servo can handle.  

Sustek et al. (2017) provided essential awareness about controlling DC 

motors and servo motors with raspberry pi 2B by developing a prototype. Raspberry 

pi 2B has one GB of RAM, 4-core 900 MHz processor, HDMI video output, four 

USB 2.0 ports, and 40 - pin GPIO header. GPIO pins are standard pins in the 

integrated circuit of Raspberry. The purpose or behavior of these GPIO pins is not 

defined, which can be programmed according to the need. Python module or library 

RPi.GPIO imported into the main control program can be used for the proper 

functioning of GPIO pins. The brain of the system Raspberry Pi 2B is sufficient to 

run and control the DC motors and servo-motors. 

Asafa et al. (2018) developed a robotic vacuum cleaner for home and office 

use. The robot is powered by three lithium-ion Polymer batteries (28.8 V DC) 

rechargeable via an embedded AC-DC adapter. These batteries are lightweight and 

have high electrochemical potential and energy density. The total current 

consumption of the system is 1102 mAh. The capacity of the selected battery is 

2200 mAh, so when fully charged, it can continuously work for two hours. They 

used an LM7805 voltage regulator to step down the voltage from 28.8 V to the 

required 5 V.  

Lagnelov et al. (2021) conducted a cost analysis based on a simulated vehicle 

system with 50 KW self-driving battery-electric drive (BED) tractors. The study 

shows that BED systems have high timeliness cost than diesel systems. But the 

annual cost was smaller in BED tractors due to saving in operational costs. Battery 

aging had a vital effect on the cost associated with it. But the use of batteries 

superior to 50 KWh or multiple batteries significantly extends the lifetime of the 

batteries. 

Based on the above reviews, electrical components such as raspberry pi, servo 

motors and batteries were selected for the development of robotic black pepper 

harvesting system. Python module RPi.GPIO was imported to raspberry pi and used 
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for providing signals to the servo motors. Two 12 V valve regulated lead acid 

batteries connected in parallel are used for powering the system. Buck converter as 

used to step down voltage from 12 V to voltages required by each components.  

2.3 PERFORMANCE EVALUATION OF ROBOTIC BLACK PEPPER 

HARVESTING SYSTEM 

The performance of the robotic harvester should be evaluated in actual field 

conditions. The performance of the machine vision system has to be tested 

separately to find the accuracy and precision of detection. Performance parameters 

used by various researchers to evaluate the machine vision system and robotic 

harvester are explained here.  

Hayashi et al. (2014) developed a movable robotic strawberry harvester 

comprised of a machine vision system, manipulator, an end-effector, and a storage 

unit. The operational distance traveled per hour was considered as the work 

efficiency. So its working efficiency was 102.5 m h–1, and the successful harvesting 

rate was 54.4%. 

Kahandage et al. (2017) designed and developed a harvesting equipment for 

pepper. The performance of the developed equipment was compared with the 

manual harvesting by considering actual capacity, theoretical capacity, efficiency 

and damages to the spikes and leaves in both methods. Capacity was the amount of 

black pepper harvested in unit time. While calculating the theoretical capacity, time 

taken for resting, moving and other losses were not considered. But in the case of 

actual capacity, every time losses for resting, moving, and adjusting the equipment 

and the ladder were taken into account. The ratio between the actual capacity and 

theoretical capacity gives the efficiency.  The theoretical capacity, actual capacity 

and efficiency of mechanical harvesting equipment were 7.03 kg h -1, 5.2 kg h-1 and 

74% respectively while corresponding figures of manual method were 8.7 kg h-1, 

5.3 kg h-1 and 61% respectively. Damages to the vine and spikes were negligible in 

both methods. Efficiency and capacity of manual harvesting and mechanical 

method was compared by t test and found that equipment has a significant 

difference in harvesting efficiency and no significant difference in actual capacity. 



31 

 

The average actual field capacity of skilled male laborers was 5.2 kg h-1 while it 

was 5.06 kg h-1 for unskilled female laborers. This result shows that, any labour 

without considering skill or gender can operate the harvesting equipment with the 

same capacity.  

 Lili et al. (2017) developed a robotic tomato harvester consisting of an end 

effector attached to a robotic arm with five degrees of freedom, a four-wheeled 

steering system, a binocular stereo vision system, and a navigation system. The 

robotic arm has a maximum load-bearing capacity of 1.5 kg. And the success rate 

of the vision system in detecting ripe tomatoes is 99.3%. The positioning error 

becomes less than 10 mm when the distance is smaller than 600 mm. The time taken 

by the harvester to recognize and pluck a single tomato is almost 15 seconds. And 

the success rate is 86 %. 

Gan et al. (2018) conducted a study that combines color and thermal images 

for immature green citrus fruit detection. They created a new Color-Thermal 

Combined Probability (CTCP) algorithm to effectively fuse the information from 

the thermal and color pictures. Faster R-CNN was used for fruit detection in color 

images, and Multi-level Hough circle detection was applied for fruit detection in 

the thermal image. The result showed that the model with Faster R-CNN on colour 

images has a recall rate of 78.4 %, and it increased to 90.4 % when using fused 

information from colour and thermal images. But while using combined data from 

colour and thermal images, the precision decreased from 96.7 % to 95.5 %.  

Birrell et al. (2019) developed a platform called vegebot to automate iceberg 

lettuce harvesting. The vision system detected 69 matured lettuces during the field 

test, but the harvester attempted to pick only 60 lettuces. Because the remaining 

lettuces were out of range of the robotic arm, among these sixty attempts, thirty-

one attempts were successful, and twenty-nine were failures. The system takes an 

average cycle time of 31.7 seconds, but the grasping and cutting require only               

2 seconds. The cycle time can be reduced by making the strongest arm and 

lightweight end effector. The lettuce localization and detachment success rates were 

91 % and 97 %; therefore, the harvest success rate was 88%. The damage rate of 
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the harvester was 38%, which is ratio of the number of damaged lettuce harvested 

to the total number of lettuce harvested. 

 Lin et al. (2019) introduced an RGB-D image-based algorithm to detect and 

locate citrus in actual field conditions. It was developed for robotic harvesting. The 

performance of the system were evaluated using the parameters precision, recall, 

and F1 score. Precision is the ratio between the number of true positives and the 

number of detection in the images. And recall is the ratio between the number of 

true positives and the total number of fruits in the pictures. The F1 score can be 

calculated using the equation 2× (Precision × Recall) / (Precision + Recall). A 

higher F1 score indicates better performance of the detection system. The 

developed algorithm's precision, recall, and F1 scores were 0.9839, 0.8634, and 

0.9197, respectively. The result showed that the developed system is strong enough 

to detect citrus in natural field conditions. 

Williams et al. (2019) developed a robotic kiwi fruit harvester with multiple 

robotic arms. The developed harvester was evaluated by measuring its grip failure, 

obstacle, knocked-off, drop and cycle time. The harvester fails to cut off the fruit 

from the plant when attempts to pick is considered a grip failure. Leaves and 

branches are the hindrances to harvesting, so the number of times the end effector 

comes in contact with these hindrances that limit its ability to move is taken as the 

obstacle. The number of non-targeted fruits lost when the harvester collides with 

the canopy is measured as Knocked-off. The number of fruits lost while harvester 

detaching and dropping is termed as the drop. This developed robotic harvester can 

harvest 51% of the total number of fruits within a natural orchard environment. The 

average cycle time of this harvester is 5.5 seconds per fruit, and it has a capacity of 

655 fruits per hour. 

Zhang et al. (2020) developed a multi-class object detection algorithm using 

a faster R-CNN model. It is used for detecting apples, trunks, and branches in actual 

field conditions. They evaluated the system by measuring the parameters such as 

precision, recall, F1 score, and mean Average precision (mAP). The result showed 

that the computational time for the detection was 0.45 seconds per image. Also, the 
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system's mean Average Precision and accuracy were 82.4 % and 72.7 %, 

respectively.  

Masood and Jaryani (2021) studied the viability of a robotic chile pepper. 

They evaluated the harvester's performance by measuring its localization success 

rate, detachment success rate, harvesting success rate, cycle time, and damage 

success rate. The fruit localization success rate was the number of fruits correctly 

localized out of the total number of ripe fruit taken for the test. The detachment 

success rate is the number of harvested ripe fruit per total number of localized fruit. 

Number of successfully harvested ripe fruits per total number of ripe fruits taken 

for testing is the harvesting success rate. The cycle time includes the time taken for 

human identification, localization, and fruit detachment. And the damage rate was 

the number of damaged fruits per total number of localized fruit. The result showed 

that the localization success rate, detachment success rate, harvest success rate, 

damage rate and cycle time were 37.7 %, 65.5 %, 24.7%, 6.9 %, and 7 seconds 

respectively.  

Sarkar and Raheman (2021) developed a manually drawn planter with a 

manipulator having two degrees of freedom. The designed robotic arm has a higher 

picking efficiency of 96.84 % at a conveyor belt speed of 0.12 m s-1. The holding 

capacity of the arm was evaluated at different sizes of onion and found that it has a 

maximum capacity of 25.94 g. One cycle time of operation includes time for 

picking, lifting, carrying, and dropping the onion in the seed tube and returning to 

the initial position. The cycle time of the process ranges from 3 to 8 seconds. To 

determine the power consumption of robotic arm, the current consumed by all the 

servomotors while picking, carrying, and releasing the onion was measured using 

an ammeter and multiplied by the voltage (6V). The result showed that the weight 

to be carried is directly proportional to the power consumed. 25. 76 W was the 

power consumption when the weight of the onion was 25.96 g.  

From the reviews mentioned above the performance parameters selected for 

this research were; sensitivity of the system, specificity of the system, time taken 

for identification, capacity of the system, effectiveness index of the system, time 
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taken for cutting, time taken for the entire operation, harvesting loss and drying 

loss. The machine parameters such as overall dimension of the system, overall 

weight of the system and power requirement of the system should also be measured. 
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CHAPTER III 

MATERIALS AND METHODS 

This chapter explains the methodology used for the development and 

performance evaluation of robotic black pepper harvesting system. The whole 

process is explained as study of physical properties of black pepper, development 

of robotic black pepper harvesting system and performance evaluation of developed 

robotic black pepper harvesting system. 

3.1 PHYSICAL PROPERTIES  

The study of physical properties of black pepper was carried out to measure 

and analyse properties and its values that can directly or indirectly affect the design 

and development of robotic black pepper harvesting system. The physical 

properties include length of the spikes, diameter of the spikes, weight of the spike, 

colour of berries, diameter of berries, length of the peduncle, diameter of the 

peduncle, shear strength of pepper peduncle and leaf coverage of black pepper vine 

were studied. Two different varieties of black pepper, Karimunda and Panniyur 1 

were considered for the study. The samples were collected from Kattappana in 

Idukki district, Tavanur in Malappuram district, and Thannithode in Pathanamthitta 

district. These measurements were taken from 100 samples. 

3.1.1 Length of spikes 

Length of black pepper spikes were taken for the estimation of the size of a 

black pepper spike. It was measured as the total length from the top end of black 

pepper spike to its bottom tip excluding the peduncle length.  
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3.1.2 Diameter of spikes 

Diameter of the pepper spikes at three levels viz. top end, middle and bottom 

was measured for size estimation. The average of three values were recorded as 

average diameter of spikes. The diameter of spikes was measured using a vernier 

calliper.  

 
 

 

 

 

Plate 3.1 Length of spikes 

 

 

Plate 3.2 Diameter of spikes 
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3.1.3 Weight of spikes 

Weight of each pepper spikes were measured using weighing balance. It was 

measured for 100 samples in both Panniyur 1 and Karimunda variety. 

3.1.4 Colour of berries 

The colour value was measured using the RGB colour model and it was 

measured using a program code written in python language. It was measured 

separately for both Panniyur 1 and Karimunda variety. 

3.1.5 Diameter of berries 

The diameter of the berries were measured using a vernier caliper. It was 

measured for 100 samples in both Panniyur 1 and Karimunda variety. 

3.1.6 Length of the peduncle  

It is the stem attaching the fruit to the plant. Its length is measured from the 

top end of the pepper spike to the node on the stem. It was measured using a steel 

rule. 

 

 

Plate 3.3 Length of the peduncle 
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3.1.7 Diameter of the peduncle 

The diameter of the peduncle was measured for the size estimation of the 

pepper peduncle.  

 

Plate 3.4. Diameter of the peduncle 

3.1.8 Shear strength of the peduncle 

The shear strength of the peduncle was calculated from the shear force and 

cross sectional area of the peduncle. Shear force was determined using EZ-SX 

Texture Analyzer with the operation software TRAPEZIUM X. The cutting probe 

(blade) with 2.95 mm thick and 30 degree angle was used for this test. The shear 

strength of the peduncle at two different speed such as 0.1mm s-1 and 1mm s-1 were 

determined. Shear strength can be calculated using the equation, 

Shear strength (N mm-2) = 
Shear force,   N

Cross sectional area,   mm2
 

3.1.9 Leaf coverage of black pepper vine 

Leaf coverage of black pepper over the supporting element was studied. A 

sample of 50 black pepper vines were observed for conducting this study. Leaf 

coverage was measured as the horizontal distance measured from the supporting 

tree to the extreme end of the black pepper covered. The dimension from four sides 

were measured. The 95th percentile of the observed values was considered for 

further study.  

 

…… (3.1) 
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Plate 3.6 Leaf coverage of black pepper vine 

 

 

Plate 3.5 Texture analysis of peduncle of black pepper spike 
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3.2 DEVELOPMENT OF ROBOTIC BLACK PEPPER HARVESTING SYSTEM 

Robotic black pepper harvesting system consist of a machine vision system 

to identify matured black pepper spikes, manipulator, end effecter, and a control 

unit. Proposed model of robotic black pepper harvesting system was designed using 

the software SolidWorks version 2020 as shown in figure 3.1 along with name of 

each component. Each component of the robotic black pepper harvesting system 

were discussed here. 

 

 

 

Fig. 3.1 Designed robotic black pepper harvesting system. 

 

 

1. Supporting rod 

2. Buck converters 

3. Processor (Raspberry pi) with 

display 

4. Shoulder joint (Servo motor 

1) 

5. Shoulder link 

6. Elbow joint ( Servo motor 2) 

7. Sensor (Camera) 

8. Elbow link 

9. Cutting motor (Servo motor 

3) 

10. Cutting unit 

11. Collecting pan 

12. Collecting hopper 

13. Conveying unit 
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3.2.1 Machine vision system 

The machine vision system developed by Meera (2020) explained in article 

2.2 for identifying matured black pepper spikes was used in this project. The 

machine vision system consist of a sensor (a USB web camera), a processor 

(raspberry pi) and display unit. 

 

Fig. 3.2 Block diagram of machine vision system 

The system used TesnsorFlow as detection library and faster-RCNN as 

classifier. The computer assisted program was coded in python language. The 

details of each components were described here,  

3.2.1.1 Sensor 

In this system USB camera of Logitech was used as the sensor to capture the 

images of black peppers. It can capture image at a speed of 30 fps. It has a height 

of 15 cm, width of 7.5 cm and weight of 0.95 g. For the identification process, the 

maximum distance from the camera was 20 cm and minimum distance was 6 cm. 

 

Plate 3.7 Sensor 
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3.2.1.2 Processor 

In this study Raspberry pi 4 model B was used as the processing unit. This 

unit have a 64-bit quad-core processor, 4 GB RAM, 2.5 GHz and 5 GHz 

802.11b/g/n/ac wireless LAN, Bluetooth 5.0, Gigabit Ethernet port, along with 

several ports including 2 USB 3.0 ports, two micro HDMI ports enabling 4K UHD 

video, 2-lane MIPI CSI camera port for connecting a Raspberry Pi camera, 2-lane 

MIPI DSI display port for connecting a display, 4-pole stereo output and composite 

video port, micro SD port and a 5V/3A DC power input. The processor speed ranges 

from 700 MHz to 1.4 GHz. All the operations of the system was controlled by this 

processor.  

 

Plate 3.8 Raspberry Pi 4 model B 

3.2.1.3 Display unit 

 The display unit used was a Raspberry Pi LCD Display Module with a 320 × 

240 resolution display. It was of the model 3.2 LCD-V4 with 7 × 5 × 1.5 cm side 

lengths. Its signal input included SPI interface. This monitor had brighter and 

sharper images with a good resolution display. It was suitable to Raspberry Pi 

versions of B+, 2B, 3B and 3B+. This display unit was selected due to the compact 

and wireless nature, being suitable for field works. 
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Plate 3.9 Display unit 

3.2.1.4 Modification of existing computer programme for a machine vision 

system to identify matured black pepper spikes  

In the existing machine vision system for identifying matured black pepper 

spike, the program was simulated in Jupyter notebook. It was significantly slower 

the process as each cell have to run separately for the simulation. To make the 

process faster, the programing code was written and executed in python-based IDE 

(Integrated Development Environment) “Thonny”. Hence the entire program can 

be simulated by running a single command line thus making the process faster. For 

the working of machine vision system in the IDE Thonny offline, TensorFlow and 

IPython were installed separately in the Raspberry Pi. 

The prior computer code was altered in order to recognise matured black 

pepper spikes. Special codes must be provided to upload the files from Google 

Drive to the working environment of the Jupyter notebook since the codes were 

performed inside the notebook. However, the current system performed the 

detection locally, so there is no need to transfer the files from Google Drive. 

Shortening the programming code is beneficial. Additionally, the cv2 module was 

used to display the detection result in a new window in full screen mode. In earlier 

research, the system was tested utilising previously recorded movies and photos. 

As a result, the programming code was created in a way that allowed testing uploads 

of videos and photographs from the drive. However, in the current system, the code 

was changed to enable real-time webcam capture of the films and photographs. 
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Additionally, programmes were added to interact with the end effector's servomotor 

when it recognises a mature black pepper spike. 

3.2.2 Manipulator 

The developed robotic black pepper harvesting system has a manipulator with 

two degree of freedom. It has two rotational joints which rotates about its horizontal 

axis. Each joint was actuated by a servo motor. The specifications of the servo 

motors were selected based on the maximum torque required by the structure and 

possible loads. Aluminium material was chosen for the construction of manipulator 

of robotic black pepper harvesting system, because of its light weight, strength and 

easy availability. Each component of the manipulator are discussed here, 

3.2.2.1 Shoulder link 

An aluminium hollow square pipe of dimension 31.75 × 31.75 × 1.0 mm was 

used for the construction of this link. This link has a length of 300 mm and weighs 

117 g. A C clamp was riveted on the supporting rod having a height of 1.5 meter 

and outer diameter of 3.3 cm. The servomotor1 of stall torque 6.0 N m was riveted 

to this clamp. The servomotor horn was allowed to pass through the provision 

provided in the shoulder link. So that the link was powered by servo motor. Another 

C clamp was fixed on the elbow side of this link.  This C-clamp was made by 

folding an aluminium sheet having dimensions 240 × 60 × 1.0 mm and was used to 

connect shoulder link and elbow link. 
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Fig. 3.3 Shoulder link 

 

 

Fig. 3.4 Isometric view of the shoulder link 
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3.2.2.2 Elbow link 

An aluminium hollow pipe having a dimension of                                                                      

61.5 mm × 38.1 mm × 1 mm was used for the construction of this link. It has a total 

length of 135 mm to accommodate all the necessary components such as a cutting 

motor, cutting blade assembly, and camera. And it weighs 60.3 g. 

 

 

Fig. 3.5 Elbow link 

 

Fig 3.6 Isometric view of elbow link 
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3.2.2.3 Servo motors 

The servo motors were selected based on the torque required at each joint. 

The torque calculation should start from the last joint and then proceed to the first 

joint. The calculations are explained here, 

Total torque required for a servo motor =  

Torque due to force of gravity on links and payload  

    +Torque due to angular acceleration of links and payload 

(Automaticaddison, 2020) 

Torque due to force of gravity on links and payload = m × g × r  

(Khurmi, 2019) 

m = Mass the servo motor has to lift 

g = Acceleration due to gravity  

r = Distance from the center of force to the joint 

Torque due to angular acceleration of links and payload, τ = I × α  

(Khurmi, 2019) 

𝐼 = Moment of inertia 

α = Angular acceleration 

3.2.2.3.1 Torque required at elbow joint 

The values used for the torque calculations are: 

Mass of the elbow link, Mb = 0.124 kg  

Mass of the cutting blade assembly with servo motor, Me = 0.0831 kg 

Mass of the camera with stand, Mc = 0.097 kg 

Mass of the collecting pan, Mp = 0.0895 kg 

Distance from the center of gravity of elbow link to elbow joint, Lb = 0.0675 m 

Distance between cutting blade assembly and elbow joint, Le = 0.075 m 

… (3.2) 

…… (3.3) 

…… (3.4) 
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Distance between camera with stand and elbow joint, Lc = 0.055 m 

Distance between collecting pan and elbow joint, Lp = 0.0905 m 

Torque due to gravitational force =((Mb×Lb)+(Me×Le)+(Mc×Lc) +(Mp×Lp)) ×g 

     = ((0.124×0.0675)+(0.0831×0.075)+                   

(0.097×0.055)+(0.0895×0.0905))×9.8 

 =0.275 Nm 

  = 2.75 kg cm 

Torque due to angular acceleration = I×α 

I= Moment of inertia 

α= Angular acceleration 

Angular acceleration will be same for both the motor and link, since they are 

connected to each other. Assume that the motor should move 20 degree (
π

9
 radian) 

in 1 second. Figure 3.7 shows the graph of angular velocity ω (radians/second) vs 

time t (seconds). Acceleration is the slope of the velocity curve. 

 

Fig. 3.7 Graph between angular velocity and time 

 

Angular acceleration = 
Change in angular velocity

Change in time
 

The area of the curve is equal to the distance the servo motor needs to move. 

…… (3.5) 

…... (3.6) 
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Area underneath the curve (Area of triangle) =( 1
2⁄ )×(base)×(height) 

The distance the servo motor needs to move is 20º, which is equal to               

π
9⁄  radians. 

π
9⁄ = ( 1

2⁄ )×(1.0)× (ωmax) 

ωmax =  π 4.5⁄  rad s-1 

Since α is the slope of the curve,  

α = (
Change in y

Change in x
) 

                                    = (

π

4.5
0.5

⁄ ) 

                                    = π
2.25⁄ rad s-2 

 

Moment of inertia, I=m×k2 

m = Mass 

k = Radius of gyration or effective radius 

Assume that the rotational inertia of the motor is negligible as compared to 

the link. Therefore moment of inertia of motor equal to 0 kg m2 

Moment of inertia of cutting blade assembly with motor, Ie = Me ×Le2 

                                                                     = 0.0831 × 0.0752 

                                                                                                     = 0.00047 kg m2 

Moment of inertia of camera with stand, Ic = Mc × Lc 2 

                                              = 0.097×0.0552 

                                               = 0.0003 kg m2 

Moment of inertia of collecting pan, Ip = Mp × Lp2 

                                        = 0.0895×0.09052 

……… (3.7) 
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                                       =0.00073 kg m2 

Moment of inertia of the elbow link about the edge,  

Ib = ((
1

12
) ×Mb×(a2+b

2)) + (Mb×h
2
) 

a = 0.0381 m (breadth of the link)  

b = 0.135 m (Length of the link) 

h = 0.0435 m (Distance from the central axis to the edge) 

Ib = ((
1

12
) ×0.124 ×(0.0381

2
+0.135

2)) +(0.124×0.0435
2) 

             =0.0019 kg m2  

Torque due to angular acceleration = I×α 

                                             = ( Ib+ Ie+ Ic+ Ip ) × α 

           = (0.0019+0.00047+0.0003+0.00073)×  (
π

2.25
) 

           = 0.00475 kg m2 s-2 

           = 0.00475 N m 

           = 0.0475 kg cm 

Total torque at elbow joint = 2.75 kg cm + 0.0475 kg cm 

                        = 2.8 kg cm 

                        = 0.28 N m 

 

Elbow joint is between shoulder link and elbow link, it rotates about its axis 

at a fixed limit of 90 to 180 degree. 

TowerPro MG996R digital high torque servo motor was selected as elbow 

joint. It has a stall torque of 0.94 N m at a voltage of 4.8 V and 1.1 N m at a voltage 

of 6.6 V. At 4.5 V its operating speed is 0.19sec/60 degree (53 rpm) and at 6.6 V 

……... (3.8) 
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its operating speed is 0.15sec/60 degree (54 rpm). It has metal gear with 25 number 

of teeth. Its length is 40.7 mm, width is 19.7 mm and height is 42.9 mm. It weighs 

55 g. 

3.2.2.3.2 Torque required at shoulder joint 

Shoulder joint was mounted on the C clamp 1of shoulder link and this C 

clamp was fixed to the supporting rod. 

Thus, the values used for the torque calculations are: 

Mass of link 1, Ma = 0.163 kg 

Mass of elbow joint, Mj = 0.055 kg 

Distance from shoulder joint to the centre of gravity of the link 1, La =0.15 m 

Distance between cutting blade assembly and shoulder joint, Le1 = 0.435 m 

Distance between the camera and shoulder joint, Lc1 = 0.415 m 

Distance between collecting pan and shoulder joint, Lp1 = 0.4505 m 

Distance between elbow joint and shoulder joint, Lj = 0.216 m 

Torque due to gravitational force = ((Ma × La) + (Mj × Lj)+(Me × Le1)  

                                         + (Mc × Lc1) + (Mp  × Lp1)) × g 

                   = (
(0.163×0.15)+(0.055×0.216)+(0.0831×0.435)+

(0.097×0.415)+ (0.0895×0.4505)
) ×9.8 

                  =1.5 N m 

                    =15 kg cm  

Torque due to angular acceleration = I×α 

Moment of inertia of shoulder link about the edge, Ia  

                                                                  = ((1/12) × Ma × (a1
2
+b1

2
)) + (Ma×h1

2
) 

a1= 0.03175 m (Breadth of shoulder link) 

b1=0.3 m (Length of shoulder link) 
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h1=0.12 m (Distance from the central axis to the edge) 

Ia = ((1
12⁄ )×0.163×(0.03175

2
+0.36

2)) +(0.163×0.12
2
) 

    = 0.0036 kg m2 

Moment of inertia of cutting blade assembly with motor, Ie1 = Me × Le1 

                                                                                  = 0.0831 × 0.435
2
  

                                                                                  = 0.016 kg m2 

Moment of inertia of camera with stand, Ic      =   Mc × Lc1
2
 

                                                  = 0.097 ×0.415 
2
 

                                                  = 0.017 kg m2 

Moment of inertia of collecting pan, Ip             =    Mp × Lp1
2
 

                                                   =     0.0895 ×0.4505
2
 

                                                   =     0.02 kg m2 

Moment of inertia of elbow joint,  Ij                   = Mj × Lj 

                                                        =  0.055 × 0.216
2
 

                                                        =  0.0026 kg m2 

The angular acceleration about shoulder joint is same as that of the elbow joint. 

Therefore, angular acceleration, α = π
2.25⁄  

Torque due to angular acceleration = (Ia+Ie1+Ic+Ip+Ij)×α 

                                                        = (0.0036 + 0.016 + 0.017 + 

                                           0.02 + 0.0026) × (𝜋
2.25⁄ )  

                 = 0.083 N m 

                = 0.83 kg cm 

Total torque at shoulder joint           =  15 kg cm+0.83 kg cm 



53 

 

                                         = 15.83 kg cm = 1.583 N m 

Ultra torque quarter scale 60 kg cm metal gear servo motor was selected as 

shoulder joint. It has a stall torque of 6 N m at a voltage of 8.4 v and 5.8 N m at a 

voltage of 6 V. At 8.4 V its operating speed was 0.13 sec/60 degree (77 rpm) and 

at 6 V its speed was 0.17sec/60 degree (59 rpm). This selected servo motor has a 

length of 65 mm, width of 30 mm and a height of 48 mm. And it weighs 0.17 kg 

and operating voltage is 6 V to 8.4 V. 

3.2.3 End effector 

   Robotic black pepper harvesting system used shear type cutting 

mechanism with a collecting pan as the end effecter. The details of each component 

of the end-effector is discussed below. 

 

Fig. 3.8 End effector 
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Fig. 3.9 Isometric view of end effector 

3.2.3.1 Cutting unit 

 The shear cut mechanism was selected as the best method for harvesting 

matured black pepper spikes, following the procedure used for the pepper harvester 

by Aneeshya et al. (2013) as in article 2.2.1.  

 The cutting unit consists of two components, a movable cutting blade and a 

stationary counter cutting edge. The cutting blade is controlled by TowerPro 

MG996R digital high torque servo motor having a stall torque of 1.1 Nm. The 

maximum torque is applied when the motor is operated at 6 V. A slot was provided 

in the counter cutting edge and the cutting blade is allowed to pass through that slot. 

Movable cutting blade and counter cutting edge was made with stainless steel and 

aluminium sheet respectively. The counter cutting edge and servo motor were fixed 

to the space provided in elbow link, and the cutting blade was fixed on the servo 

motor. The cutting blade has a length of 14 cm, width of 1cm and thickness of      

0.05 cm on sharp edge and 0.1 cm on other edge. The counter cutting edge has a 

length of 15 cm, height of 3 cm, and width of 0.1 cm.  
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Fig. 3.10 Cutting blade 

 

Fig. 3.11 Isometric view of cutting blade 

 

 

Fig. 3.12 Counter cutting edge 



56 

 

 

Fig. 3.13 Isometric view of counter cutting edge  

 

3.2.3.2 Collecting pan 

 It is used to collect the harvested black pepper spikes immediately after the 

cut. This pan was made up of plastic material and attached to elbow link at an angle 

of 30 degrees to safely convey the harvested black pepper to the collecting hopper. 

 

Fig. 3.14 Collecting pan 
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3.2.4 Control unit 

The control unit include all the electrical components such as sensor, 

processor, servo motors, battery, and buck converters. The specifications of sensor, 

processor and servo motors were already explained. The details of buck converters 

and battery were discussed here, 

3.2.4.1 Buck converter 

It is used for converting main supply voltage such as 12 V, down to lower 

voltages needed by servo motors and raspberry pi. Shoulder joint requires 8 V, 

elbow joint requires 6 V, cutting motor requires 6 V, and raspberry pi with display 

unit requires 5 V input voltages. Two kind of buck converters were used in this 

work. 

 24V/12V to 5V 5A Power Module DC-DC XY-3606 power converter was 

used to step down voltage from 12 V to 5 V, for giving power to raspberry pi with 

the display unit. Only because of the presence of USB output, it was selected for 

powering raspberry pi. Its maximum working voltages ranges from 9 to 36 V and 

the output voltage was 5.2 V.  

 LM2596S DC-DC buck converter power supply was used for giving power 

supply to servo motors. It converts voltage from 12 V to 6 V and 8V required by 

the servo motors. Its input voltage ranges from 3 to 40 V and output voltage range 

from 1.5V to 35 V with an output current range of 2-3 A.  

 

Plate 3.10 Buck converter 
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3.2.4.2 Battery 

The battery for powering the robotic black pepper harvesting system was 

selected based on different criteria such as voltage rating, current rating and type of 

battery. The steps involved in selecting the battery is discussed here. 

Current consumption of each and every electrical component were noted and 

was calculated the total current consumption. Here the electrical components are 

Raspberry pi 4 model B, 4.3 inch DSI LCD, USB camera, servo motors, and USB 

extension hub. Current consumption of each component is detailed below, 

Raspberry pi with LCD display                        = 3 A 

USB camera                                                      = 0.216 A 

Servo motor (Shoulder joint)                            = 1 A 

Servo motors (Elbow joint and cutting motor) = 1.2 A 

Total current consumption                                = 5.416 A 

Total time the robot have to work                     = 3 h 

Assume that the robotic black pepper harvesting system need to run 

continuously for 3 h.  

Total Battery supply (Ah) = Time (h)×Total current consumption (A)  

Total Battery supply            =  3×5.416 

            = 16.248 Ah 

As per the calculations, the total battery supply should be 16.248 Ah. Based 

on the criteria described above two lead acid battery with voltage 12 V and current 

9 Ah was selected. These batteries are connected in parallel to get an output of 18 

Ah and 12 V. So the system can work continuously for 3.3 h. 

The circuit diagram of robotic black pepper harvesting system is shown in 

figure 3.15. 

…… (3.9) 
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Fig. 3.15 Circuit diagram of robotic black pepper harvesting system 

5
9
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Servo motors have three input and two of them supply power to the motor 

and the third input controls how much the servo turns. To control the servo motor 

with Raspberry pi, connect the voltage and ground line of the servo to the external 

power supply and the remaining data wire to one of the GPIO pin of raspberry pi as 

shown in figure 3.16. The ground pin of every external power supply should be 

connected to the GND pin of Raspberry pi. In the selected servo motors, the red 

wire was the positive terminal, brown wire was the negative (ground) terminal and 

yellow wire was the data pin.   

 

Fig 3.16 The pin configuration of Raspberry Pi 4 model B 

There are three servo motors in the developed robotic black pepper harvesting 

system. Data pin of first servo motor (shoulder joint) was connected to the GPIO 

pin 11, second motor (Elbow joint) to the GPIO pin 12, and that of third motor 

(Cutting motor) to the GPIO pin 13. All the servo motors were controlled using the 

library RPi.GPIO installed on Raspberry pi. 

Each servo motors were powered from two batteries connected in parallel 

having a voltage of 12 v and current of 18 Ah. But the voltage requirement for each 

servo motor was different. To step down the voltage from 12 v, different buck 

converters were used. The negative terminal of all the buck converters powering 

the servo motors were connected to the GND (Ground) pins 6, 9 and 14 of 

Raspberry Pi. 
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3.3 PERFORMANCE EVALUATION OF ROBOTIC BLACK PEPPER 

HARVESTING SYSTEM 

The performance evaluation of the developed robotic black pepper harvesting 

system was carried out using the selected performance parameters. The developed 

system was evaluated for both the Panniyur 1 and Karimunda variety of black 

pepper. This section has been subdivided in to two subheadings, performance 

evaluation of machine vision system and performance evaluation of robotic black 

pepper harvesting system. The performance of robotic black pepper harvesting 

system is also compared with existing method of harvesting. 

3.3.1 Performance evaluation of machine vision system 

The performance of machine vision system was evaluated by measuring 

sensitivity, specificity, and accuracy of the system and time taken for identification. 

3.3.1.1 Sensitivity of the system 

It is a statistical measure for the performance of a detection model. It 

measures the proportion of actual positives that are detected as such. It is also the 

rate of true positive. The maximum value of sensitivity for a good model is unity. 

It is calculated using following equation 

Sensitivity = 
Total true positives

Total true positives + Total false negative
 

 

True Positive is when the object is present in the frame and the model detects 

it correctly. In this study, true positive is correctly identifying the matured pepper 

spike. 

False negative is when the model incorrectly identifies the negative class in 

the frame. In this study, false negative is showing no detection when, there are 

positive objects in the frame. 

 

 

… (3.10) 
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3.3.1.2 Specificity of the system 

It is another statistical measure for evaluating performance of a detection 

model. It measures the proportion of actual negatives that are correctly detected as 

such. It is also the true negative rate. The maximum value of specificity for a good 

model is unity. It is calculated as following equation 

Specificity = 
Total true negatives

Total true negatives + Total false positives
 

True negative is when the model correctly identifies the negative class. In this 

study, true negative is identifying the negative objects in the frame.  

False Positive is when the model incorrectly detects the positive class. In this 

study, false positive is incorrectly identifying the matured pepper spike in its 

absence. 

3.3.1.3 Accuracy of the system 

It is a statistical measure for consistency of the performance of developed 

model. It is the ratio of total number of true positives and true negatives to the total 

number of observations. It is calculated as following equation 

Accuracy =  
True positive + True negatives

True positives +True negatives + 
False positives +False negatives 

 

3.3.1.4 Time taken for identification 

The time taken by the developed machine vision system for the detection of 

matured black pepper was calculated. The time taken for detection was measured 

using the written programming code. 

3.3.2 Performance evaluation of robotic black pepper harvesting system 

To evaluate the performance of robotic black pepper harvesting system in the 

field, capacity of the system, effectiveness index, time taken for cutting, time taken 

for the entire operation, harvesting loss and drying loss were measured. 

  

… (3.11) 

… (3.12) 
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3.3.2.1 Capacity  

The capacity of the system is the amount of black pepper harvested per unit 

time. It is measured in kilogram per hour and number of spikes per hour. The time 

taken for one cycle of operation and the amount of black pepper spikes harvested 

in one cycle were measured. One cycle of operation include moving up of robotic 

arm, harvesting process and moving down of robotic arm. Time taken for 

transporting the system from one black pepper spike to the next black pepper spike 

was also include in one cycle time. Capacity of the developed system can be 

calculated using the equation, 

Capacity (kg h
−1)= 

Amount of black pepper spikes harvested during one cycle of operation 

Time taken for one cycle of operation
 

 

Capacity (spikes h-1
) = 

Number of black pepper spikes harvested in one cycle of operation

Time taken for one cycle of operation
 

 

3.3.2.2 Effectiveness index  

It is the measure of percentage of matured pepper spikes harvested correctly. 

Select 10 black pepper spikes and operate the system for harvesting, then count the 

number of spikes harvested correctly. The effectiveness index is the ratio of number 

of matured black pepper spikes harvested correctly to the total number of selected 

black pepper spikes. It was expressed in percentage. Effectiveness index can be 

calculated using the equation, 

Effectiveness index of the system 

= 
Number of black pepper spikes harvested at correct maturity

Total number of selected black pepper spikes
×100 

 

… (3.13) 

… (3.14) 

.. (3.15) 
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3.3.2.3 Time taken for cutting 

Time taken by the system for cutting and separating the identified matured 

black pepper spike from the plant was measured during the field test. The time taken 

by the servo motor to move the blade and make the cut was 0.18 seconds, it is fixed 

in the program. The blade take 36 degrees of rotation for making the cut. 

3.3.2.4 Time taken for the entire operation 

Time taken for both detection and harvesting of a single black pepper spike 

was measured during the field test. The test was carried out for 150 black pepper 

spikes. This time of operation include time for holding the system in proper 

position, time for detection and time for making the cut. 

3.3.2.5 Harvesting loss  

Harvesting loss include the amount of immature black pepper berries 

harvested. The harvesting loss can be calculated using the equation, 

Harvesting loss = 
Amount of under matured black pepper berries 

Total amount of black pepper berries harvested
×100 

Harvesting loss was calculated immediately after the harvest of pepper berries.  

3.3.2.6 Drying loss  

It can be expressed as the weight loss in percentage of moisture escaped from 

the sample after drying. The moisture content of the samples of black pepper berries 

were measured immediately after harvesting and after sun drying. The Infrared 

moisture meter was used to measure the moisture content of the sample. The 

moisture content of the samples were occasionally measured to reduce it to 10 %, 

which is the safe moisture content for storage. Drying loss can be calculated using 

the equations,  

Drying loss  = 
Initial weight - Weight after drying

 Initial Weight
×100 

Initial weight – Weight after drying = Bone dry matter × (Initial moisture content 

(db) - Final moisture content (db))  

.. (3.16) 

… (3.17) 

… (3.18) 

(Sahay and Singh, 2001) 



65 

 

3.3.2.7 Statistical analysis 

The t-test (Welch unpaired t-test) was carried out to find out the significant 

difference between existing method of harvesting and robotic black pepper 

harvester in terms of the capacity, effectiveness index, harvesting loss and drying 

loss at 5% level of significance. The statistical analysis was carried out with the 

help of KAU-GRAPES software. 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

Results and Discussion 
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CHAPTER IV 

RESULTS AND DISCUSSION 

The physical properties of black pepper, development of robotic black pepper 

harvesting system and performance evaluation of robotic black pepper harvesting 

system are explained in detail and the results are discussed in the chapter.  

4.1 PHYSICAL PROPERTIES  

The physical properties of black pepper were studied in two varieties of 

pepper such as Karimunda and Panniyur 1. The studied properties include length 

of spikes, diameter of spikes, weight of spikes, colour of berries, diameter of berries, 

length of the peduncle, diameter of the peduncle, shear strength of pepper peduncle, 

and leaf coverage of black pepper vine. The result obtained in the study is shown in 

the Table 4.1 

Table 4.1 Physical properties of black pepper 

Sl. 

no 

Property Karimunda Panniyur 1 

Range Aver

age 

Standard 

deviation 

Range Aver

age 

Standard 

deviation 

1 Length of 

spikes, cm 

4.5-13.8 10.4 1.9 7.0-18.0 12.8 2.4 

2 Diameter 

of spikes, 

cm 

0.77-1.3 1.1 0.13 0.86-1.7 1.3 0.17 

3 Weight of 

spikes, g 

2.1– 13.6 7.8 2.6 3.8- 17.1 10.1 3.1 

4 Colour of 

berries 

(20, 39, 3) - (255, 224, 111) (35, 54, 10)–(255, 240, 100) 

5 Diameter 

of berries, 

cm 

0.3– 0.5 0.42 0.07 0.45– 0.7 0.59 0.09 
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Table 4.1 Continued 

Sl. 

no 
Property Karimunda Panniyur 1 

  Range Aver

age 

Standard 

deviation 

Range Aver

age 

Standard 

deviation 

6 Length of 

the  

peduncle, 

cm 

0.4-2.1 1.2 0.37 0.8 -30 1.3 0.34 

7 Diameter 

of the 

peduncle, 

cm 

0.1 - 0.20 0.17 0.03 0.1 - 0.15 0.17 0.14 

8 Shear strength of pepper peduncle, N mm-2 

Cutting 

speed,  

0.1 mm s -1 

1098-

3987 

1718.6 647 1090-

3313 

1671.0 515 

Cutting 

speed,  

1 mm s -1 

981-3664 1535.1 
589 

998-3809 1544.5 606 

9 Leaf coverage of black pepper vine, cm 

Leaf coverage 10.00 - 91.00 45.3 15.3 

95th percentile of data 76.00 

4.1.1 Length of spikes 

From the data as shown in Table 4.1, the Karimunda variety was having a 

length of about 4.5-13.8 cm and Panniyur 1 was having a length of 7.0-18.0 cm 

excluding the peduncle. For Karimunda variety, an average length (without 

peduncle) of 10.4 cm was obtained and in Panniyur 1 variety, an average length 

(without peduncle) of 12.8 cm was obtained. Panniyur 1 variety was having more 

length than Karimunda. Appendix VIII shows all the replications of the length of 

the spikes. 
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4.1.2 Diameter of spikes 

From the Table 4.1, it is observed that, in the Karimunda variety, minimum 

diameter was 0.77 cm and maximum diameter was 1.30 cm. In case of Panniyur 1 

variety the minimum diameter found was 0.86 cm and maximum diameter was   

1.70 cm. The average diameter of the Karimunda variety was obtained as 1.10 cm 

and Panniyur 1 variety had 1.30 cm. From the results, it was found that in case of 

diameter of spikes Panniyur 1 variety is larger than Karimunda. All the replications 

are depicted in the appendix IX.  

4.1.3 Weight of spikes 

In Karimunda variety, minimum weight of the pepper spike was 2.1 g and 

maximum weight was 13.6 g.  In case of Panniyur 1 variety, weight of the spike 

ranges from 3.8 g to 17.1 g. From the Table 4.1, it is observed that, the average 

weight of spike in Karimunda variety was 7.8 g and Panniyur 1 variety was 10.1 g. 

The result showed that, the spike’s weight of Panniyur 1 is higher than that of 

Karimunda variety. All the replications are depicted in the appendix X 

4.1.4 Colour of berries 

The colour of the matured black pepper was measured using the RGB value. 

The RGB value of colour image ranges from [0, 0, 0] to [255, 255, 255]. From the 

observations, it was found that the RGB values for Karimunda variety ranged from 

(20, 39, 3) and (255, 224, 111) and in Panniyur 1 variety, value ranged from (35, 

54, 10) - (255, 240, 100).  On evaluating using a python module, it was found that 

RGB value of matured black pepper spikes is ranging from (20, 39, 3) to (255, 240, 

100). All the readings are shown in the appendix XI.  

4.1.5 Diameter of berries 

For Karimunda variety, minimum diameter of berry was 0.30 cm and 

maximum diameter was 0.50 cm. In case of Panniyur 1 variety, minimum was    

0.45 cm and maximum was 0.70 cm. The average diameter of Karimunda was     

0.42 cm and Panniyur 1 was 0.59 cm. The diameter of berries of Panniyur 1 variety 
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was larger than Karimunda. Appendix XII shows all the replications of the diameter 

of berries.  

4.1.6 Length of the peduncle 

For Karimunda variety, minimum peduncle length was 0.40 cm and 

maximum peduncle length was 2.10 cm. In case of Panniyur 1 variety the minimum 

peduncle length was 0.80 cm and maximum peduncle length was 3.00 cm. The 

average peduncle length of Karimunda variety was obtained as 1.20 cm and 

Panniyur 1 variety was 1.30 cm. From the results, it was found that Panniyur 1 

variety having more peduncle length than Karimunda variety. Appendix XIII shows 

the length of the peduncle data.  

4.1.7 Diameter of the peduncle 

In the Karimunda variety, minimum diameter of peduncle was 0.10 cm and 

maximum diameter of peduncle was 0.20 cm. In case of Panniyur 1 variety the 

minimum peduncle diameter was 0.10 cm and maximum peduncle diameter was 

0.15 cm. The average peduncle diameter of Karimunda variety was obtained as   

0.17 cm and Panniyur 1 variety as 0.17 cm. From the results, it was found that both 

Karimunda and Panniyur1 variety having same peduncle diameter. Appendix XIV 

provides all the replications of the peduncle diameter. 

4.1.8 Shear strength of the peduncle 

The shear strength of the peduncle of black pepper spike was obtained from 

the texture analyzer data. The shear strength of the peduncle at a cutting speed 

(shear velocity) of 0.1 mm s-1 obtained as 1718.58 N mm-2 for Karimunda variety 

and 1671 N mm-2 for Panniyur 1 variety. At a cutting speed (shear velocity) of 1 

mm s-1, shear strength obtained as 1535.06 N mm-2 for Karimunda variety and 

1544.50 N mm-2 for Panniyur 1 variety as shown in Table 4.1.  And the appendix 

XV shows all the replications of shear strength calculation. 
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4.1.10 Leaf coverage of black pepper vine 

From the Table 4.1, it is observed that, the maximum leaf coverage of black 

pepper vine ranges from 10 cm to 91 cm. The 95th percentile of the data was 76cm. 

All the replications of leaf coverage of black pepper and calculations are depicted 

in the appendix XVI.   

From the result it was observed that, the Panniyur 1 variety is having higher 

spike length, spike diameter, spike weight, peduncle length and berry diameter than 

the Karimunda variety. Peduncle diameter is almost same for both the varieties. 

Shear strength of both the varieties are almost same, resulting in no change in the 

force requirement for cutting the peduncle of the pepper spike.  

4.2 DEVELOPMENT OF ROBOTIC BLACK PEPPER HARVESTING 

SYSTEM 

Based on the data obtained for the properties of black pepper, a robotic black 

pepper harvesting system was developed. The system comprised of a machine 

vision system, manipulator, end-effector and a control unit. 

4.2.1 Machine vision system 

The machine vision system consist of a USB webcam as  sensor, Raspberry 

pi 4 model B as processor and Raspberry pi LCD module as display unit as shown 

in plate 4.1. The detection was made in TensorFlow-Faster RCNN platform and the 

program was written in python language. Python IDE “Thonny” was used for 

writing and executing the program. 

 

Plate 4.1 Machine vision system 
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Modification were done in the computer program of machine vision system 

to identify matured black pepper spikes. The modified programming code is given 

below, 

import tensorflow as tf 

import os 

import cv2 

tf.gfile = tf.io.gfile 

import time 

# Enable Eager Execution for Tensorflow Version < 2 

tf.compat.v1.enable_eager_execution() 

from object_detection.utils import ops as utils_ops 

from object_detection.utils import label_map_util 

from object_detction.utils import visualization_utils as 

vis_util 

import pathlib 

import numpy as np 

from IPyton.display import clear_output 

import time 

import pil.Image 

from io import BytesIO 

import IPython.display 

from matpltlib import pyplot as plt 

os.environ['PYTHONPATH']='/home/pi/Desktop/pepper_detec

tion/models-master/research' 
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MODEL_PATH='/home/pi/Desktop/pepper_detection/mobile_sa

ved_model' 

LABEL_PATH='/home/pi/Desktop/pepper_detection/saved_mod

el/label_map.pbtxt' 

def load_model(model_name): 

model_dir = model_name 

model_dir = pathlib.Path(model_dir) 

print(model_dir) 

model=tf.compat.v2.saved_model.load(str(model_dir)) 

model = model.signatures['serving_default'] 

return model 

t1 = time.time() 

model = load_model(MODEL_PATH) 

PATH_TO_LABELS = LABEL_PATH 

category_index=label_map_util.create_category_index_fro

m_labelmap(PATH_TO_LABELS, use_display_name=True) 

t2 = time.time() 

time_taken = t2 - t1 

print(f"Time taken to load model : {time_taken} sec") 

def run_inference_for_single_image(model, image): 

image = np.asarray(image) 

# The input needs to be a tensor, convert it using 

`tf.convert_to_tensor`. 

input_tensor = tf.cnvert_to_tensor(image) 

# The model expects a batch of images, so add an 

axis with `tf.newaxis`. 
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input_tensor = input_tensor[tf.newaxis,...] 

# Run inference 

output_dict = model(input_tensor) 

 

# All outputs are batches tensors. 

# Convert to numpy arrays, and take index [0] to 

remove the batch dimension. 

# We're only interested in the first num_detections. 

num_detections=int(output_dict.pop('num_detections'

)) 

output_dict={key value[0, :num_detections].numpy()  

for key,value in output_dict.items()} 

output_dict['num_detections'] = num_detections 

# detection_classes should be ints. 

output_dict['detection_classes']=output_dict['detec

tion_classes'].astype(np.int64) 

#pdb.set_trace() 

# Handle models with masks: 

if 'detection_masks' in output_dict: 

# Reframe the the bbox mask to the image size. 

detectionmasks_reframed=utils_ops.reframe_box_m

asksto_image_masks(out_dict['detection_masks'],

output_dict['detection_boxes'],image.shape[0], 

image.shape[1]) 

detection_masksreframed=tf.cast(detection_masks    

_reframed > 0.6, tf.uint8) 
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output_dict['detection_masks_reframed']=detecti

on_masks_reframed.numpy() 

return output_dict 

#Use 'jpeg' instead of 'png' (~5 times faster) 

def array_to_image(a, fmt='jpeg'): 

#Create binary stream object 

f = BytesIO() 

#Convert array to binary stream object 

PIL.Image.fromarray(a).save(f, fmt) 

return IPython.display.Image(data=f.getvalue()) 

VIDEO_PATH='/home/pi/Downloads/PEPPER RED_0001.mpg' 

cam = cv2.VideoCapture(0) 

#d = IPython.display("",display_id=3) 

#d2 = IPthon.display.display("",display_id=4) 

import matpltlib.pyplot as plt 

time_per_frame = [] 

while True: 

try: 

t1 = time.time() 

ret, frame = cam.read() 

frame=cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) 

output_dict= run_inference_for_single_image(model, 

frame)    

vis_util.visualize_boxes_and_labels_on_image_array 

output_dict['detection_boxes'], 
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output_dict['detection_classes'], 

output_dict['detection_scores'], 

category_index,                

instance_masks=output_dict.get('detection_masks

_reframed', None), 

use_normalized_coordinates=True, 

line_thickness=7, 

min_score_thresh=0.55) 

im = array_to_image(frame) 

p1 = plt.imshow(frame) 

 cv2.imshow('bklah',cv2.cvtColor(frame,cv2.COLOR_RGB

2BGR)) 

boxes = output_dict['detection_boxes'] 

max_boxes_to_draw = boxes.shape[0] 

scores = output_dict['detection_scores'] 

min_score_thresh=.55 

classes = output_dict['detection_classes'] 

if cv2.waitKey(1) & 0xFF == ord('q'): 

break 

t2 = time.time() 

time_taken = t2-t1 

time_per_frame.append(time_taken) 

s = f"""{int(1/(time_taken))} FPS""" 

except KeyboardInterrupt: 

print() 
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cam.release() 

IPython.display.clear_output() 

print ("Stream stopped") 

print(f"Average time taken: {round  

(np.mean(time_per_frame), 2)}seconds”) 

break 

The plate 4.2 represents the real time detection of matured black pepper spike 

by the modified machine vision system.  

 

Plate 4.2 Real time detection of matured black pepper spike 

4.2.2 Manipulator 

The developed manipulator has 2 DOF and the joints are actuated by servo 

motors. From the Table 4.2, it is observed that, the torque required for the elbow 

joint is 0.28 N m, so TowerPro MG996R digital high torque servomotor with a stall 

torque of 1.1 N m is used to actuate elbow joint. And the torque required for 

shoulder joint is 1.583 N m, so Ultra torque quarter scale servo motor with a stall 

torque of 6 N m is used to actuate shoulder joint. The servo motors actuate the links 
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at an angular velocity of 20 degree per second. For moving up the manipulator to 

action position, shoulder link rotates from 162 degree to 90 degree for lifting the 

shoulder link 72 degree up and elbow joint hold elbow link in 90 degree. For 

moving down the manipulator to the home position, the shoulder joint rotates from 

90 degree to 162 degree for moving down the shoulder link. For moving down the 

elbow link, the elbow joint rotates from 90 degree to 18 degree. And for dropping 

the harvested pepper spike directly to the collecting hopper and conveying system, 

the elbow rotates again from 18 degree to 144 degree because the collecting pan 

was attached to elbow link. The Fig. 4.1 represents the direction of motion of 

shoulder and elbow joints in the manipulator. The shoulder and elbow joint take 69 

seconds to move from the home position to the action position. And the joints take 

80 seconds to return to the home position after dropping the spike into the collecting 

unit.  

 

Fig. 4.1 Line diagram representing the movements of joints in the 

manipulator 
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Table 4.2 Joints specifications 

Sl. 

No. 

Joint Speed, 

(rpm) 

Static 

torque, N m 

Dynamic 

torque, N m 

Torque, N m 

1 Shoulder 

joint 

3.33 1.5 0.083 1.583 

2 Elbow joint 3.33 0.275 0.00475 0.28 

Table 4.3 Link specifications 

Sl. No. Link Dimension (cm) 

Length× Width ×Height 

Weight, g Material 

1 Shoulder link 300 × 31.75 × 31.75 117 Aluminium 

2 Elbow link 135 × 61.5× 38.1 60.3 Aluminium 

4.2.3 End effector 

The end-effector consist of cutting unit, and collecting pan. The specification 

of the components are shown in Table 4.4. Shear cut of the blade is actuated by a 

TowerPro MG996R servo motor having a stall torque of 1.1 N m. The cutting blade 

cut the peduncle at a speed of 17.5 mm s-1. The servo motor actuating the cutting 

blade was capable for providing necessary force to cut the peduncle of black pepper 

spikes at a speed of 17.5 mm s-1. Fig. 4.2 shows the direction of motion of the 

cutting blade in the end effector.   

 

Fig. 4. 2 Line diagram represents the direction of motion of cutting 

blade in the end effector. 
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Table 4.4 Specification of cutting unit and collecting pan 

Sl. No. Parameter Specification 

1 Cutting blade 

 Length × Width × Thickness, cm 14 × 1×0.1 

2 Counter cutting edge 

 Length× Width × Height, cm 13 ×0.1 × 3 

3 Collecting pan  

 Length × Width × Height 20 × 18.5 × 12 

 

 

Plate 4.3 End-effector 

The specification of developed robotic black pepper harvesting system is 

shown in the Table 4.5 
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Table 4.5 Specification of robotic black pepper harvesting system 

Sl. 

No. 

Particulars Dimensions 

1 Overall dimensions 

 Length × width × height, cm 59 × 18 × 162 

 Weight of the system, kg 2.1 

 Power requirement of the system, watt 32.4 

 Degree of freedom (DOF) (2-DOF manipulator + 1-

DOF end-effector) 

 Power supply 12 V, 18 Ah lead acid 

battery 

 Material Aluminium, PVC, steel, 

plastic 

2 Specification of manipulator 

 Reach, cm 51.5 

 Number of links 2 

 Degree of freedom (DOF) 2 

 Type of joints Revolute joints 

 Material Aluminium 

3 Specification of end-effector 

 Degree of freedom (DOF) 1 

 Type of cutting mechanism Shear cut 

 Length × width × height, cm 20 × 18 × 19 

4 Specification of collecting hopper and conveying unit 

 Upper diameter of collecting hopper, cm 21 

 Bottom diameter of collecting hopper, cm 15 

 Height of collecting hopper, cm 10 

 Diameter of conveying unit, cm 15 

 Length of conveying unit, cm 100 

 Material of conveying unit Fabric 

5 Specification of supporting rod 

 Height of the supporting rod, cm 1500 

 Inner diameter of supporting rod, cm 2.43 

 Outer diameter of supporting rod, cm 3.34 

 Material PVC 
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Plate 4.4 Developed robotic black pepper harvesting system: (A) Home 

position, (B) Action position 

 

 

 

(A) (B) 
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4.2.4 Control unit 

The program for actuating the servo motors at shoulder joint, elbow joint and 

end effector were written in python language. The program was written and 

executed in python IDE “Thonny”. The computer program for controlling the 

manipulator and end effector by actuating the servo motors are discussed here, 

4.2.4.1 Computer program for moving up the manipulator  

The computer program for moving the manipulator up by controlling the 

servo motors at shoulder joint and elbow joint is given below. 

import RPi.GPIO as GPIO 

import time 

f=0 

s=0 

fServoPin = 11 

sServoPin = 12 

GPIO.setmode(GPIO.BOARD) 

GPIO.setup(fServoPin,GPIO.OUT) 

GPIO.setup(sServoPin,GPIO.OUT) 

fpwm = GPIO.PWM(fservoPin,50) 

spwm = GPIO.PWM(sservoPin,50) 

fpwm.start(11) 

spwm.start(7) 

for i in range(162,90,-1): 

positionf=1./18.*(i)+1 

fpwm.Changedutycycle(positionf) 

time.sleep(0.1) 

fpwm.stop() 

4.2.4.2 Computer program for moving down the manipulator 

The computer program for moving the manipulator down by controlling the 

shoulder joint and elbow joint is shown below. 
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import RPi.GPIO as GPIO 

import time 

f=0 

s=0 

fServoPin = 11 

sServoPin = 12 

GPIO.setmode(GPIO.BOARD) 

GPIO.setup(fservoPin,GPIO.OUT) 

GPIO.setup(sservoPin,GPIO.OUT) 

fpwm = GPIO.PWM(fServoPin,50) 

spwm = GPIO.PWM(sServoPin,50) 

fpwm.start(7) 

spwm.start(7) 

for i in range(90,108,+1): 

positionf=1./18.*(i)+1 

fpwm.Changedutycycle(positionf) 

time.sleep(0.05) 

for i in range(90,72,-1): 

positions=1./18.*(i)+1 

spwm.ChangeDutyCycle(positions) 

time.sleep(0.05) 

for i in range(108,126,+1): 

positionf=1./18.*(i)+1 

fpwm.Changedutycycle(positionf) 

time.sleep(0.05) 

for i in range(72,54,-1): 

positions=1./18.*(i)+1 

spwm.Changedutycycle(positions) 

time.sleep(0.05) 
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for i in range(126,144,+1): 

positionf=1./18.*(i)+1 

fpwm.Changedutycycle(positionf) 

time.sleep(0.05) 

for i in range(54,36,-1): 

positions=1./18.*(i)+1 

spwm.Changedutycycle(positions) 

time.sleep(0.05) 

for i in range(144,162,+1): 

positionf=1./18.*(i)+1 

fpwm.Changedutycycle(positionf) 

time.sleep(0.05) 

for i in range(36,18,-1): 

positions=1./18.*(i)+1 

spwm.Changedutycycle(positions) 

time.sleep(0.05) 

for i in range(18,144,+1): 

positions=1./18.*(i)+1 

spwm.Changedutycycle(positions) 

time.sleep(0.05) 

fpwm.stop() 

spwm.stop() 

4.2.4.3 Computer program for controlling end-effector 

Computer program for controlling the servomotor connected to the cutting 

blade while identifying matured black pepper spikes is shown below.  

import tensorflow as tf 

import os 

import cv2 
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tf.gfile = tf.io.gfile 

import RPi.GPIO as GPIO 

import time 

# Enable Eager Execution for Tensorflow Version < 2 

tf.compat.v1.enable_eager_execution() 

from object_detection.utils import ops as utils_ops 

from object_detection.utils import label_map_util 

from object_detection.utils import visualization_utils 

as vis_util 

import pathlib 

import numpy as np 

from IPython.display import clear_output 

import time 

import PIL.Image 

from io import BytesIO 

import IPython.display 

from matpltlib import pyplt as plt 

# Function to control the servomotor attached to the 

cutting unit. 

def actuate_servo(): 

GPIO.setmode(GPIO.BOARD) 

servopin=13 

GPIO.setup(servopin,GPIO.OUT) 

pwm=GPIO.PWM(servopin,50) 

pwm.start(6) 
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for i in range(72,36,-1): 

position=(1./18.)*i + 1 

pwm.Changedutycycle(position) 

time.sleep(0.005) 

for i in range(36,72,+1): 

position=(1./18.)*i + 1 

pwm.Changedutycycle(position) 

time.sleep(0.005) 

pwm.stop() 

os.environ['PYTHONPATH']='/home/pi/Desktop/pepper_detec

tion/models-master/research' 

MODEL_PATH='/home/pi/Desktop/pepper_detection/mobile_sa

ved_model' 

LABEL_PATH='/home/pi/Desktop/pepper_detection/saved_mod

el/label_map.pbtxt' 

def load_model(model_name): 

model_dir = model_name 

model_dir = pathlib.Path(model_dir) 

print(model_dir) 

model=tf.compat.v2.saved_model.load(str(model_dir)) 

model = model.signatures['serving_default'] 

return model 

t1 = time.time() 

model = load_model(MODEL_PATH) 

#warm up 
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#input_tensor = tf.convert_to_tensor(np.ones((500, 500, 

3), dtype='uint8')) 

# model(input_tensor) 

PATH_TO_LABELS = LABEL_PATH 

category_index=label_map_util.create_category_index_fro

m_labelmap(PATH_TO_LABELS, use_display_name=True) 

t2 = time.time() 

time_taken = t2 - t1 

print(f"Time taken to load model : {time_taken} sec") 

def run_inference_for_single_image(model, image): 

image = np.asarray(image) 

# The input needs to be a tensor, convert it using 

`tf.convert_to_tensor`. 

input_tensor = tf.convert_to_tensor(image) 

# The model expects a batch of images, so add an axis 

with `tf.newaxis`. 

input_tensor = input_tensor[tf.newaxis,...] 

# Run inference 

output_dict = model(input_tensor) 

# All outputs are batches tensors. 

# Convert to numpy arrays, and take index [0] to remove 

the batch dimension. 

# We're only interested in the first num_detections. 

num_detections=int(output_dict.pop('num_detections'

)) 
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output_dict={key:value[0,:num_detections].numpy()fo 

r key,value in output_dict.items()} 

output_dict['num_detections'] = num_detections 

# detection_classes should be ints. 

output_dict['detection_classes']=output_dict['detec

tion_classes'].astype(np.int64) 

#pdb.set_trace() 

# Handle models with masks: 

if 'detection_masks' in output_dict: 

# Reframe the the bbox mask to the image size. 

detection_masks_reframed=utils_ops.reframe_box_

masks 

to_image_masks(output_dict['detection_masks'],    

output_dict['detection_boxes'],image.shape[0], 

image.shape[1]) 

detection_masks_reframed=tf.cast(detection_mask

s_reframed > 0.6, tf.uint8) 

output_dict['detection_masks_reframed']=detecti

on_masks_reframed.numpy() 

return output_dict 

#Use 'jpeg' instead of 'png' (~5 times faster) 

def array_to_image(a, fmt='jpeg'): 

#Create binary stream object 

f = BytesIO() 

#Convert array to binary stream object 

PIL.Image.fromarray(a).save(f, fmt) 
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return IPython.display.Image(data=f.getvalue()) 

VIDEO_PATH='/home/pi/Downloads/PEPPER RED_0001.mpg' 

cam = cv2.VideoCapture(0) 

#d = IPython.display("",display_id=3) 

#d2 = IPthon.display.display("",display_id=4) 

import matpltlib.pyplt as plt 

time_per_frame = [] 

while True: 

try: 

t1 = time.time() 

ret, frame = cam.read() 

frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) 

output_dict=run_inference_for_single_image(mod

el,frame)  

vis_util.visualize_boxes_and_labels_on_image_a

rray( frame,output_dict['detection_boxes'], 

output_dict['detection_classes'], 

output_dict['detection_scores'], 

 category_index,             

instance_masks=output_dict.get('detection_masks

_reframed', None), 

use_normalized_coordinates=True, 

line_thickness=7, 

min_score_thresh=0.55) 

im = array_to_image(frame) 
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p1=plt.imshow(frame)       

cv2.imshow('bklah',cv2.cvtColor(frame,cv2.COLOR

_RGB2BGR)) 

boxes = output_dict['detection_boxes'] 

max_boxes_to_draw = boxes.shape[0] 

scores = output_dict['detection_scores'] 

min_score_thresh=.55 

classes = output_dict['detection_classes'] 

# classes_size = 1 

# Servomotor get actuated when it detect a matured black 

pepper spike. 

for i in range(classes.size): 

 if(classes[i]==1and 

scotes[i]>min_score_thresh): 

actuate_servo() 

else: 

print('Move to next position')        

if cv2.waitKey(1) & 0xFF == ord('q'): 

break 

t2 = time.time() 

time_taken = t2-t1 

time_per_frame.append(time_taken) 

s = f"""{int(1/(time_taken))} FPS""" 

#d2.update(Ipython.display.HTML(s)) 

except KeyboardInterrupt: 
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print() 

cam.release() 

IPython.display.clear_output() 

print ("Stream stopped") 

print(f"Average time 

taken:{round(np.mean(time_per_frame), 2)} seconds") 

break 

GPIO.cleanup()  

4.2.5 Working 

The main components of robotic black pepper harvesting system are, machine 

vision system for the identification of matured black pepper spikes, manipulator 

with 2 DOF, end-effector to make the harvesting, and a control unit. 

Switch on the battery for starting the system. Initially the system take almost 

2 minutes for booting the raspberry pi. Then open a terminal and execute the code 

for running the program. It has three programming code. First code for the detection 

of matured black pepper spike and also to actuate the servo motor connected to the 

cutting blade assembly. The cutting action of the end-effector occurs automatically 

when it detects a matured black pepper spike. The second program was for actuating 

the shoulder joint and elbow joint together to move the arm upwards. The third 

program for moving down the arm and dropping the harvested pepper spike to the 

conveying unit by actuating shoulder joint and elbow joint together.  

Code to execute first program (To actuate machine vision system and end-effector) 

cd Desktop/pepper_detection/models-master/research 

python3 machine_vision.py 

Code to execute second program (To moving the arm upward) 

cd Desktop/pepper_detection/models-master/research 

sudo python servo12up.py 
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Code to execute third program (To moving down the arm and dropping the 

harvested pepper spikes to the conveying unit) 

cd Desktop/pepper_detection/models-master/research 

sudo python servo12down.py 

First run the code of machine vision system, then a new window will appear. 

Through which the cutting blade and pepper spikes can be monitored from the 

ground itself. It take almost one minute to execute this program. Then run the code 

for lifting the robotic arm upward. The arm move at a speed of 20º per second. Then 

hold the entire system in front of each black pepper spikes manually. The system 

will identify whether the black pepper spike is matured or not. If it identify a 

matured black pepper spike, the servo motor connected to the cutting blade 

assembly will actuate and move the blade from its 0º to 36º and return back to 0º. 

The angle between the cutting blade and counter cutting edge was 36º. If the system 

identifies a green black pepper, the message “move to the next position” will be 

displayed on the screen as shown in plate 4.5. After continuously harvesting almost 

25 spikes, run the third code to move down the robotic arm to the home position 

and drop it to the conveying unit. Then the harvested black pepper spikes can be 

directly collecting in a sack or container held below the conveying unit. This is the 

one cycle of harvesting. Repeat this same procedure for continuing the harvesting 

process. But from the second cycle onwards the program can be run simply by 

pressing the up arrow key and the enter key on the keyboard. After completing the 

harvesting process, shutdown the Raspberry pi and switch off the power supply. 
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Plate 4.5 Display showing the message to change the position 

The developed robotic black pepper harvesting system has a machine vision 

system with TensorFlow-faster RCNN as a detection platform, a camera as a sensor, 

raspberry pi as processor and a display unit, a manipulator with two degrees of 

freedom, an end effector with a cutting unit and collecting pan, and a control unit. 

The processor raspberry pi controlled the whole system through programming 

codes written in python language, and the system was powered by a 12 V, 18 Ah 

battery power supply.  

4.3 PERFORMANCE EVALUATION OF ROBOTIC BLACK PEPPER 

HARVESTING SYSTEM 

The developed robotic black pepper harvesting system was evaluated for their 

performance are discussed below and the sample calculations are shown in 

appendices. 

4.3.1 Performance evaluation of machine vision system 

The modified machine vision system for the identification of matured black 

pepper spike was evaluated for their performance in two varieties of black pepper 

such as Karimunda and Panniyur1, are discussed here. The performance of machine 

vision system is shown in Table 4.6 and the sample calculations are shown in 

appendix XVII.  
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Table 4.6. Performance evaluation of machine vision system 

Sl. No. Parameter Varieties 

Karimunda Panniyur 1 

1 True positives (TP) 55 59 

2 True negatives (TN) 27 23 

3 False positives (FP) 8 7 

4 False negatives (FN) 10 11 

5 Sensitivity, % 85 84 

6 Specificity, % 77 77 

7 Accuracy, % 82 82 

8 Time taken for identification, 

seconds 

0.43 0.43 

 

    

 

     

 

Plate 4.6 Performance evaluation of machine vision system to identify 

matured black pepper spikes: (A) True positive, (B) True negative,              

(C) False positive, (D) False negative 

(A) 

(D)  (C)  

(B)  
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4.3.1.1 Sensitivity of the system 

The performance evaluation of modified machine vision system for 

identifying matured black pepper spikes in TensorFlow-FasterRCNN platform, 

with two varieties of black pepper such as Karimunda and Panniyur 1 is shown in 

Table 4.6. The sensitivity of the system in Karimunda variety was 85 % and in 

Panniyur 1 variety was 84 %. The result showed that there is no significant 

difference between the sensitivity of machine vision system in both Karimunda and 

Panniyur 1 variety. In the study conducted by Meera (2020) explained in article 

2.2, the sensitivity of the developed machine vision system for identifying matured 

black pepper spike obtained as 78 %. The modified machine vision system has 

higher sensitivity than the system developed by Meera (2020). Also the modified 

machine vision system has high sensitivity than the work done by Gan et al. (2018). 

4.3.1.2 Specificity of the system 

 The system were evaluated with two varieties of black pepper such as 

Karimunda and       Panniyur 1. Table 4.6 showed that the specificity of the system 

in both Karimunda variety and Panniyur 1 variety was 77 %. In the similar study 

conducted by Meera (2020) explained in article 2.2, specificity of the developed 

machine vision system to identify matured black pepper spikes obtained as 71 %. 

The modified machine vision system has higher specificity than the previous work 

done by Meera (2020), so the robotic black pepper harvesting system based on this 

system will be able to have less harvesting loss.  

4.3.1.3 Accuracy of the system 

 The system was evaluated for two varieties of black pepper such as 

Karimunda and Panniyur 1. From the Table 4.7 it was clear that the accuracy of the 

system in both Karimunda and Panniyur 1 variety was 82 %. In the study done by 

Meera (2020, the accuracy of the developed machine vision system to identify 

matured black pepper spikes obtained as 75 %. Modified machine vision shows 

higher accuracy as compared to the previous system developed by Meera (2020). 

The modified machine vision system has higher accuracy than the work done by 

Zhang et al., (2020). 
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4.3.1.4 Time taken for identification 

 For the performance evaluation of modified machine vision system, the time 

taken for detection was also measured for both Karimunda and Panniyur 1 variety. 

For Karimunda variety time for detection ranged from 0.41 to 0.46 seconds, and 

the average time taken was 0.43 seconds. In the case of Panniyur1 variety, time for 

detection ranged from 0.41 to 0.46 seconds, and the average time for detection was 

0.43 seconds. It indicated that the time for detection does not vary with the variety 

of black pepper. In the study done by Meera (2020, the time taken for the detection 

of matured black pepper spikes obtained as 0.42 seconds. The modified machine 

vision system takes lesser time for detection than the work done by Zhang et al., 

(2020). 

The performance evaluation of the machine vision showed that the sensitivity, 

specificity, accuracy, and time taken for identification are almost the same for the 

Karimunda and Panniyur 1 variety. Also, the sensitivity, specificity, and accuracy 

values of the modified machine vision system were higher than that of the previous 

system.    

4.3.2 Performance evaluation of robotic black pepper harvesting system 

 The developed robotic black pepper harvesting system evaluated for its 

performance is discussed below and the sample calculations are shown in the 

appendices. The result obtained in this study is shown in Table 4.7. 

Table 4.7 Performance evaluation of robotic black pepper harvesting system 

Sl. 

No. 

Parameter Observed value 

Karimunda Panniyur1 

1 Capacity of the system, kg h-1 3.5 4.6 

Capacity of the system, Spikes h-1 562 683 

2 Effectiveness index of the system, 

% 

81 82 

3 Time taken for single cut, seconds 0.18 0.18 
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Table 4.7 Continued 

Sl. 

No. 

Parameter Observed value 

Karimunda Panniyur1 

4 Time taken for the Entire 

Operation, seconds 

6.6 6.3 

5 Harvesting loss, % 4.9 7 

6 Drying loss, % 39 66 

 

  

Plate 4.7 Performance evaluation of robotic black pepper harvesting system 

4.3.2.1 Capacity  

The capacity of the system in terms of kg h -1 ranged from 2.4 to 4.6 kg h -1 

for Karimunda variety and from 3.7 to 5.8 kg h -1 in Panniyur 1 variety. In 

Karimunda variety, the capacity in terms of spikes h-1 ranged from 507 to                 

632 spikes h-1, and in Panniyur 1, it ranged from 522 to 667 spikes h-1. The result 

from Table 4.7 showed that the robotic black pepper harvesting system has an 

average capacity of 3.5 kg h-1 and 562 spikes h -1 for Karimunda variety and            

4.6 kg h-1 and 583 spikes h-1 for Panniyur 1 variety. The developed robotic black 

pepper harvesting system has less capacity than the work done by                      

Williams et al. (2019).  The decrease in capacity was due to higher operating time, 
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as major portion of it was allotted for holding the system in proper position and also 

for transporting the system manually from one position to another. Wind was 

another factor which affect the harvesting of black pepper spikes, it increases the 

time taken for harvesting.    

4.3.2.2 Effectiveness index  

The result showed that, the effectiveness index of the system ranged from     

70 % to 100 % in Karimunda variety and from 70 % to 90 % in Panniyur 1 variety. 

The robotic black pepper harvesting system has an average effectiveness index of 

81 % for Karimunda and 82 % for Panniyur 1 as shown in Table 4.7. The developed 

robotic black pepper harvesting system has higher effectiveness index than the work 

done by Hayashi et al. (2014) explained in article 2.4 and lesser effectiveness index 

than the work done by Birrell et al. (2019) explained in article 2.4. The effectiveness 

index of developed robotic black pepper harvesting system is in the acceptable 

range.  

4.3.2.3 Time taken for cutting 

The time taken by the servo motor to move the blade and make the cut was 

0.18 seconds, it was fixed in the program.  

4.3.2.4 Time taken for the entire operation  

The minimum time taken for the entire operation was 5.4 seconds in    

Panniyur 1 variety and 5.9 seconds in Karimunda variety. The maximum time taken 

was 7.4 seconds in Panniyur 1 variety and 7.8 seconds in Karimunda variety. The 

result showed that the average time taken for the entire operation was 6.3 seconds 

in Panniyur1 variety and 6.6 seconds in Karimunda variety. Because Panniyur 1 

variety's pepper spikes are more closely spaced than karimunda's. The time for 

entire operation taken by the developed robotic black pepper harvesting system is 

higher than the work done by Williams et al., (2019) explained in article 2.4 and 

lesser than the work done by Masood and Jaryani (2021) explained in article 2.4. 

The time taken by the developed robotic black pepper harvesting system was within 

the range.  
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4.3.2.5 Harvesting loss  

In Panniyur 1 variety, the minimum harvesting loss was 6.5 % and maximum 

harvesting loss was 7.8 %. Whereas in Karimunda variety, the minimum harvesting 

loss was 3.6 % and maximum was 6 %. Result in Table 4.7 showed that the average 

harvesting loss of robotic black pepper harvesting system was 7.0 % in Panniyur 1 

variety and 4.9 % in Karimunda variety. The developed robotic black pepper 

harvesting system has less harvesting loss than the work done Birrell et al. (2019) 

explained in article 2.4. 

4.3.2.6 Drying loss  

The drying loss in Panniyur 1 variety ranged from 61 % to 70 %, and in 

Karimunda variety it ranged from 34 % to 44 %. The result from Table 4.7 showed 

that the average drying loss was 66 % in Panniyur 1 and 39 % in Karimunda. 

The performance evaluation of the robotic black pepper harvesting system in 

two varieties showed that the system has a higher capacity with Pannyur 1 than the 

Karimunda variety. Also, the harvesting loss and drying loss were more significant 

in Panniyur 1 variety as compared to the Karimunda variety. But the effectiveness 

index, time taken for a single cut, and time taken for the entire operation were 

almost the same for both the varieties. 

4.3.2.7 Comparison between manual harvesting and robotic black pepper 

harvesting system. 

The developed robotic black pepper harvesting system was compared with 

the manual harvesting method for their performance, are discussed below. Table 

4.8 shows the comparative performance of black pepper harvesting by two methods 

in Karimunda and Panniyur 1 variety.  
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Table. 4.8 Black pepper harvesting by manual method and developed robotic black 

pepper harvesting system 

Sl. 

No. 

Parameter Karimunda Panniyur 1 

Manual 

harvesting 

Robotic 

harvesting 

Manual 

harvesting 

Robotic 

harvesting 

1 Capacity, spikes h -1 1052 562 1654 583 

Capacity, kg h -1 6.3 3.5 10.8 4.6 

2 Effectiveness index, 

% 

40 81 38 82 

3 Harvesting loss, % 15.3 4.9 17.5 7.0 

4 Drying loss, % 56 39 81 66 

4.3.2.7.1 Capacity  

The result from Table 4.8 showed that, in Karimunda variety the average 

capacity of developed robotic black pepper harvesting system was 562 spikes h -1 

and 3.5 kg h -1and that of manual harvesting was 1052 spikes h -1 and 6.3 kg h -1. 

From the results, it is found that the capacity of robotic black pepper harvesting 

system was lesser than the manual harvesting in both the varieties.  

Statistical analysis using t-test (Welch unpaired t-test) showed that there is a 

significant difference between the capacities of developed robotic black pepper 

harvesting system as compared to the manual method in both varieties. Table 4.9 

and 4.10 shows the result of statistical analysis and the details are depicted in the 

appendix XXVIII.  
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Table 4.9 Statistical analysis of capacity (spikes h -1) using t test 

Parameter Panniyur 1 Karimunda 

Manual 

harvesting 

Robotic 

harvesting 

Manual 

harvesting 

Robotic 

harvesting 

Mean 1654 583 1052 562 

Standard 

deviation 

403.5 40.3 408.13 35.6 

Observations 15 15 15 15 

Level of 

significance 

5 % 5 % 

Degree of 

freedom 

14.28 14.21 

P value (two 

tailed) 

0 0.000369 

t value 10.238 4.639 

Significance Significant Significant 

Table 4.10 Statistical analysis of capacity (kg h -1) using t test 

Parameter Panniyur 1 Karimunda 

Manual 

harvesting 

Robotic 

harvesting 

Manual 

harvesting 

Robotic 

harvesting 

Mean 10.84 4.6 6.3 3.5 

Standard 

deviation 

1.635 0.612 2.6 0.716 

Observations 15 15 15 15 

Level of 

significance 

5 % 5 % 

Degree of 

freedom 

17.85 16.1 
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Table 4.10 Continued 

Parameter Panniyur 1 Karimunda 

Manual 

harvesting 

Robotic 

harvesting 

Manual 

harvesting 

Robotic 

harvesting 

P value (two 

tailed) 
0 0.000874 

t value 13.785 4.074 

Significance Significant Significant 

 

The capacity of the developed robotic black pepper harvesting system is less 

as compared to manual harvesting in both Panniyur 1 and Kariunda variety.  

4.3.2.7.2 Effectiveness index  

The result from Table 4.8 showed that the average value of effectiveness 

index of developed robotic black pepper harvesting system was 81 % in Karimunda 

variety and 82 % in Panniyur 1 variety. Whereas the effectiveness index of manual 

harvesting in Karimunda was 40 % and Panniyur 1 was 38 %. It is found that 

effectiveness index of robotic black pepper harvesting system was higher than the 

manual harvesting in both varieties.  

Statistical analysis using t-test (Welch unpaired t-test) showed that there is a 

significant difference between the effectiveness indexes of developed robotic black 

pepper harvesting system and manual harvesting in both the varieties. Table 4.11 

shows the result of statistical analysis and the details are depicted in the appendix 

XXIX. 
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Table 4.11 Statistical analysis of effectiveness index using t test 

Parameter Panniyur 1 Karimunda 

Manual 

harvesting 

Robotic 

harvesting 

Manual 

harvesting 

Robotic 

harvesting 

Mean 38 82 40 81 

Standard 

deviation 

14.736 6.761 21.38 9.2 

Observations 15 15 15 15 

Level of 

significance 

5 % 5 % 

Degree of 

freedom 

19.64 18.97 

P value (two 

tailed) 

0 0.000001 

t value -10.511 -6.883 

Significance Significant Significant 

The effectiveness index of developed robotic black pepper harvesting system 

is higher as compared to manual harvesting in both Panniyur 1 and Karimunda 

variety. 

4.3.2.7.3 Harvesting loss 

The result from Table 4.8 showed that the average harvesting loss of 

developed robotic black pepper harvesting system was 7.0 % in Panniyur 1 variety 

and 4.9 % in Karimunda variety. And the harvesting loss in manual harvesting was 

17.5 % in Panniyur 1 and 15.3 % Karimunda.  

Statistical analysis using t-test (Welch unpaired t-test) showed that there is a 

significant difference between the harvesting loss in developed robotic black pepper 

harvesting system and manual harvesting for both varieties. Table 4.12 shows the 

result of statistical analysis and the details are depicted in the appendix XXX. 
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Table 4.12 Statistical analysis of harvesting loss using t test 

Parameter Panniyur 1 Karimunda 

Manual 

harvesting 

Robotic 

harvesting 

Manual 

harvesting 

Robotic 

harvesting 

Mean 17.5 7.0 15.28 5.0 

Standard 

deviation 

6.217 0.518 3.2 1.2 

Observations 5 5 5 5 

Level of 

significance 

5 % 5 % 

Degree of 

freedom 

4.06 5.02 

P value (two 

tailed) 

0.019107 0.000989 

t value 3.771 6.858 

Significance Significant Significant 

The result showed that harvesting loss in manual harvesting was higher than 

in robotic harvesting for both the Panniyur 1 and Karimunda variety. 

4.3.2.7.4 Drying loss 

The result from Table 4.8 showed that the average drying loss of developed 

robotic black pepper harvesting system was 66 % in Panniyur 1 variety and 39 % 

in Karimunda variety. And the drying loss in manual harvesting was 81 % in 

Panniyur 1 and 56 % Karimunda. It is found that drying loss for both varieties in 

robotic black pepper harvesting system was lesser than manual harvesting. 
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Table 4.13 Statistical analysis of drying loss using t test 

Parameter Panniyur 1 Karimunda 

Manual 

harvesting 

Robotic 

harvesting 

Manual 

harvesting 

Robotic 

harvesting 

Mean 81 66 56 39 

Standard 

deviation 
5.805 3.362 6.834 4.438 

Observations 5 5 5 5 

Level of 

significance 
5 % 5 % 

Degree of 

freedom 
6.41 6.86 

P value (two 

tailed) 
0.002172 0.002423 

t value 4.933 4.665 

Significance Significant Significant 

Statistical analysis using t-test (Welch unpaired t-test) showed that there is a 

significant difference between the drying loss in developed robotic black pepper 

harvesting system and manual harvesting for both varieties. The amount of moisture 

content is higher in under matured black pepper berries.  So drying loss will be high 

for under matured berries. Hence the result indicates that, the amount of under 

matured berries harvested was higher in manual harvesting than robotic harvesting. 

Table 4.13 shows the result of statistical analysis and the details are depicted in the 

appendix XXXI. 

  The comparison between manual and robotic harvesting showed that the 

capacity of manual harvesting is higher than that of the robotic black pepper 

harvesting system because manual harvesting takes less harvesting time than 

robotic harvesting. However, the effectiveness index is higher for the robotic 

harvesting system in Karimunda and Panniyur 1. Also, the harvesting and drying 

losses in manual harvesting are higher than that of robotic harvesting for both 

varieties. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Summary and Conclusion 
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CHAPTER V 

SUMMARY AND CONCLUSION 

One of the most popular spices in the world is black pepper, also known as 

the "King of Spices." India is where it is primarily produced and shipped from. 

Typically, peppers are picked by hand. Man must ascend the supporting tree using 

ladders or bamboo poles. Harvesting was occasionally also done with poles that had 

knives attached to the ends of them. However, the current harvesting techniques are 

exceedingly dangerous and unable to provide precision harvesting. Only the 

individual doing the work has any control over how precisely and accurately 

harvesting is done. 

The most promising solution to the problems farmers encounter when 

harvesting black pepper is robotic harvesting. A robotic harvester's main tasks 

include identification, plucking, depositing, and controlling. KAU developed a 

machine vision system using fasterRCNN as the classifier and Tensorflow as a 

library to identify matured black pepper spikes. The program was coded in python 

language. The developed machine vision system consists of a display unit, a 

Raspberry Pi 4 model B as the processor, and a USB web camera as the sensor. 

In order to collect black pepper spikes at the proper stage of maturity, an effort 

was made to build a robotic black pepper harvesting system. The development 

process and programming portion were completed at NCRAI, Govt. Engg. College, 

Thrissur, and KCAET, Tavanur. At the Instructional Farm, KCAET, Tavanur, 

performance evaluation of upgraded machine vision system and developed robotic 

black pepper harvesting system were also completed. 

The physical characteristics of black pepper, such as the length, diameter and  

weight of the spike, colour and diameter of the berries, as well as the length, 

diameter, shear strength of the peduncle, and leaf coverage of the pepper vine, were 

investigated in order to build a robotic black pepper harvesting system.  

According to the study, the average pepper spike measured 10.4 cm for the 

Karimunda variety and 12.8 cm for the Panniyur 1 type. The spike's diameter was 
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1.1 cm for the Karimunda variety and 1.3 cm for the Panniyur 1 variety. In the 

Karimunda variety, the average spike weighed 7.8 g, whereas the Panniyur 1 

variety's spike weighed 10.1 g. The colour value range for Karimunda was (20, 39, 

3) - (255, 224, 111) and in Panniyur 1 value range was (35, 54, 10) - (255, 240, 

100). Berries had an average diameter of 0.42 cm in Karimunda and 0.59 cm in 

Panniyur 1. For the Karimunda variety, the average peduncle length was 1.2 cm, 

whereas it was 1.3 cm for the Panniyur 1 variety. Both the Karimunda and   

Panniyur 1 varieties' peduncle diameters were measured as 0.17 cm. The shear 

strength of the peduncle in the Karimunda variety was 1718.58 N mm-2 at                

0.1 mm s-1 cutting speed and 1535.06 N mm-2 at 1 mm s-1 cutting speed. Shear 

strengths of 1671 N mm-2 at 0.1 mm s-1 and 1544.50 N mm-2 at 1 mm s-1 were 

measured in the Panniyur 1 variety. The pepper vine's leaf coverage was found to 

be 76 cm at the 95th percentile. 

The machine vision system created by KAU was adapted to operate quickly 

and without internet access. To speed up the process, Python-based IDE (Integrated 

Development Environment) "Thonny" was used to write and run the programming 

code. Tensorflow and Python were installed independently on the Raspberry Pi in 

order to function the machine vision system without internet connection. 

Machine vision system, manipulator, end effector, and control unit are 

the components of the newly developed robotic black pepper harvesting system. 

The manipulator's joints and the end effector's blade are operated by servomotors. 

The system is under total control of the Raspberry Pi microcontroller. Python was 

used to create the computer programs that controlled the servo motors. The pepper 

spikes were detached from the pepper vine using a shear-type tool. The manipulator 

was moved from the home position to the action position, and the machine vision 

system was activated, through the use of programming codes. After that, manually 

hold the apparatus in front of each pepper spike. The cutting blade's servo motor 

will actuate and make the cut when the machine vision system detects a matured 

black pepper spike.” Move to the next position” message will be indicated on the 

screen if the pepper spike is not matured. To lower the manipulator to its home 
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position and drop the harvested pepper spike into the conveying unit, another code 

needs to be executed. The robotic black pepper harvesting system is 162 cm tall, 18 

cm wide, and 59 cm long. The system weighed 2.1 kg, and it needed 32.4 W of 

electricity. The system was powered by a parallel connection of two lead-acid 

batteries, each with a voltage and current of 12 V and 9 Ah, respectively. 

At the KCAET Instructional Farm, the developed robotic black pepper 

harvesting system's performance was assessed. For the study, both the Karimunda 

and Panniyur 1 varieties were taken into account. In the Karimunda variety, the 

system's capacity was 3.5 kg h -1 and 562 spikes h -1, effectiveness index was 81%, 

harvesting loss was 4.9%, and drying loss was 39 %. The entire process, including 

detection and detachment, was completed by the machine in 6.6 seconds. Similarly, 

in Panniyur 1 variety, the system's capacity was 4.6 kg h -1 and 683 spikes h -1, 

effectiveness index was 82 %, harvesting loss was 7.0 %, and drying loss was          

66 %. The system takes 6.3 seconds for the entire operation, including detection 

and detachment. The mechanism takes 0.18 seconds for a single cut in both 

varieties; this was programmed in. The improved machine vision system's 

performance evaluation results show that the system has a sensitivity of 85 % in the 

Karimunda variety and 84 % in the Panniyur 1 variety, a specificity of 77% in both 

varieties, and an accuracy of 82 % in both. In both cases, the detection time is 0.43 

seconds. 

At a 5% level of significance, the t-test (Welch unpaired t-test) was used to 

determine whether there was a significant difference between manual and robotic 

black pepper harvesting in terms of capacity, effectiveness index, harvesting loss, 

and drying loss. The results revealed a considerable difference in capacity between 

manual and robotic black pepper harvesting system. Manual harvesting has a 

capacity of 1052 spikes h-1 and 6.3 kg h -1 in the Karimunda variety and                  

1654 spikes h -1 and 10.8 kg h -1 in the Panniyur 1 variety. The capacity of robotic 

harvesting is lower than that of manual harvesting. The decrease in capacity was 

caused by increased operating time, as a large portion of it was allocated for holding 

the system in the appropriate position and manually transporting the system from 
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one location to another. Another factor influencing black pepper spike harvesting 

was the wind, which extended harvesting time. The effectiveness index for manual 

harvesting was 40% in Karimunda and 38% in Panniyur 1, which is lower than the 

effectiveness index for robotic harvesting. It demonstrates that robotic harvesting 

outperforms manual harvesting. In manual harvesting, the harvesting loss was     

15.3 % for Karimunda and 17.5 % for Panniyur 1. Manual harvesting resulted in a 

56% drying loss for Karimunda and an 81% drying loss for Panniyur 1. According 

to the findings, hand harvesting has larger harvesting and drying losses than robotic 

harvesting. 

Future Scope 

To make the system truly robotic, a travelling platform for moving around the 

supporting tree and a telescopic supporting rod for height modification can be built 

and developed. Locate matured pepper spikes with the RGB-D camera and a 

localization algorithm to autonomously approach the end effector to the target fruit. 

In addition, the proposed detection algorithm and end effector can be utilized in 

conjunction with a drone to enable pepper harvesting. Another future possibility for 

the enhancement of robotic harvesting of black pepper is the creation of a soft 

gripper for black pepper. 
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Appendix I 

Cost Analysis 

Software Development 

Total working hours             = 50 hours 

Cost per hour                        = Rs. 500 

Total Cost                             = 500× 50 

                     = 25,000 

Hardware Development 

USB Camera                         = Rs. 2000 

Raspberry Pi                         = Rs. 5500 

DSI display                           = Rs. 3500 

Servo motors                        = Rs. 6000 

Battery                              = Rs. 7000 

Buck converters                    = Rs. 1000 

Materials for the fabrication = Rs, 1000 

Labour charge                        = Rs. 5000 

Total cost                               = 31000 

Total cost of development   = Rs. 56, 000 
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  Appendix II 

Specification of the sensor 

Particulars Specification 

Brand Logitech 

Colour Black and silver 

Item height 15 cm 

Item width 7.5 cm 

Item weight 0.95 gm 

Item model number Logitech C170 Webcam-1 

 

Appendix III 

Specifications of processor 

Particulars Specification 

Brand Raspberry Pi 

Series Pi 4, 4 GB 

Colour Green 

Pi Dimensions 9.6×7.3×3.2 cm; 80 Grams 

RAM size 4 GB 

Maximum memory supported 4 GB 

Connectivity Type Wi-Fi, Bluetooth 

Operating System Chrome OS, Windows 10 
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Appendix IV 

Specifications of display unit 

Particulars Specification 

Brand 
Raspberry Pi LCD Display 

Module 3 

Manufacturer WaveShare 

Touchscreen TFT 

Resolution 320×240 

Dimensions 7×5×1.5 

Hardware Interface SPI 

Backlight current TBD 

Backlight 
LED 
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Appendix V 

Specification of servomotors 

1. Servo motor at shoulder joint 

Particulars Specifications 

Name 
Ultra Torque Quarter scale 60 kgcm metal 

Gear Servo Motor 

Operating Voltage (VDC) 6 to 8.4 

Operating angle 180 degree 

Operating Temperature Range -15ºC to 70ºC 

Storage Temperature Range -30ºC to 80 ºC 

Operating Speed (at 6 V) 0.17 sec/60 degree 

Operating Speed (at 7.4 V) 0.15 sec/60 degree 

Operating Speed (at 8.4 V) 0.13 sec/60 degree 

Stall torque (at 6 V) 58 kg.cm 

Stall torque (at 7.4 V) 65 kg.cm 

Stall torque (8.4 V) 70 kg.cm 

Servo wire length 32 cm 

Gear Type Metal 

Required Pulse 500us-2500us 

Length (mm) 65 

Width (mm) 30 

Height (mm) 48 

Weight (gm) 160 
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2. Servo motor at elbow joint and cutting unit 

Particulars Specification 

Name 
TowerPro MG996R Digital High Torque 

Servo Motor 

Operating Voltage (VDC) 4.8 to 6.6 

Temperature Range 0 to 55 ºC 

Stall Torque (at 4.8 V) 9.4 kg cm 

Stall Torque (at 6.6 V) 11 kg cm 

Operating Speed (at 4.8 V) 0.19 sec/60 º 

Operating speed (at 6.6 V) 0.15 sec/60 º 

Dead Band width 1 uS 

Gear Type Metal 

No. of teeth 25 

Length 40.7 mm 

Width 19.7 mm 

Height 42.9 mm 

Weight 55 gm 

Wire length 32 cm 
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Appendix VI 

Specification of Battery 

Particulars Specification 

Brand EXIDE 

Model Number 
Xplore 12XL9-B Motorcycle 

VRL 12V 

Battery type 
VRLA (Valve regulated lead 

acid) 

Battery capacity 9 Ah 

Voltage output 12 V 

Maintenance free Yes 

With Electrolyte Yes 

Factory charged Yes 

Acid level indicator Yes 

Number of terminals 2 

Weight 2.5 kg 
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Appendix VII 

Specification of Buck converters 

Particulars Specifications 

Name 

24V/12V to 5V 5A Power 

Module DC-DC XY-3606 Power 

Converter 

Maximum working voltage 9-36 V 

Output voltage 5.2 V 

Length 63 mm 

Width 27 mm 

Height 10 mm 

Weight 22 g 

 

Particulars Specifications 

Name 
LM2596S DC-DC Buck Converter 

Power Supply 

Input voltage 3-40 V 

Output voltage 1.5-3.5 V (Adjustable) 

Output current 2-3 A 

Switching frequency 150 KHz 

Conversion efficiency 92 % (Highest) 

Load regulation ± 0.5% 

Voltage regulation ± 0.5 % 

Dimension 45×20×14 mm 
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Appendix VIII 

Length of pepper spike 

Sl. 

No. 

Length of pepper spike (cm) 

With peduncle 
Without 

peduncle 
With peduncle 

Without 

peduncle 

Karimunda Panniyur 1 

1 9 8.5 18.5 17 

2 9.5 8 12.5 11.5 

3 9.5 8.5 17.5 16 

4 6 4.5 16 15 

5 11 10 18 16.5 

6 12 10 9 7 

7 11 10 19.5 18 

8 12 10.5 17 16 

9 9.5 8 16.5 15 

10 9 8 16 15 

11 11 9 9 8 

12 12.5 11 9.5 8.5 

13 8 6.5 9.5 8.5 

14 13.5 12.5 10.5 9 

15 12.5 12 14 12 

16 11.5 10.5 9.3 8.3 

17 14.5 13 12 10.5 

18 13.5 12.5 13 12 

19 8.5 8 12.5 11.5 

20 12.5 11 13 12 

21 11.5 10.3 15.4 13.5 

22 11.1 9.8 14.5 13.5 

23 12 10.6 14.9 13.5 
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Sl. No 

Length of pepper spike (cm) 

With peduncle 
Without 

peduncle 
With peduncle 

Without 

peduncle 

Karimunda Panniyur 1 

24 12.8 11.2 16 14.7 

25 13 12 16.4 15 

26 13 11.5 15.7 14.7 

27 9 8 17 15.7 

28 8.8 7.5 17.8 16.6 

29 9 8 16.7 15.5 

30 11 10 17.8 16.4 

31 9.4 8.3 16 15 

32 9 7.5 16.5 15.5 

33 7 5.5 13.4 12.1 

34 12 11 11.4 9.7 

35 11 9 9.8 8.9 

36 12.5 11 11.3 8.3 

37 9.6 8.1 17.3 16.3 

38 9.3 8.7 14 12 

39 9.7 8.6 13.6 12.4 

40 9.2 8.2 12.8 11.8 

41 11.5 9.4 11.9 9.9 

42 13.4 11.9 12.7 11.2 

43 12.8 12.3 16.4 15.1 

44 11.9 10.9 9.7 8.7 

45 12.6 11.1 10.3 9.1 

46 8.4 6.9 13.5 12.4 

47 13.6 12.5 16.5 14.2 

48 11.9 11.1 17.3 15.9 

49 11.5 10.5 18.1 17.2 
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Sl. 

No. 

Length of pepper spike (cm) 

With peduncle 
Without 

peduncle 
With peduncle 

Without 

peduncle 

Karimunda Panniyur 1 

50 14 12.5 11.9 10.6 

51 13.6 12.7 14.6 13.5 

52 8.4 7.9 12.3 11.1 

53 12.3 10.8 11.7 10.4 

54 13.5 12.9 13.7 12.5 

55 11 10.6 14.7 13.3 

56 14 12.9 12.8 11.3 

57 14.9 13.5 13.6 12.4 

58 11.7 10.6 18.5 16.6 

59 13.9 12.7 17 15.7 

60 9 7.6 13.2 12.2 

61 12 10.8 12.3 11 

62 14 13.1 11.2 9.8 

63 15 13.8 13 12 

64 13.9 12.4 12.9 11.7 

65 12.9 11.7 13.4 12.1 

66 13 11.5 14.2 12.5 

67 10 9 15.1 13.8 

68 12 11.5 14 12.6 

69 14.6 13 13.9 12.6 

70 13.5 12 12.9 11.4 

71 11.9 11 12.8 11.2 

72 14.6 12.7 13.6 12.2 

73 13.8 12.1 16 14.8 

74 9.4 8.2 15.1 14 

75 9 8 16 14.1 

76 7.5 6.9 12.9 11.5 
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Sl. 

No. 

Length of pepper spike (cm) 

With peduncle 
Without 

peduncle 
With peduncle 

Without 

peduncle 

Karimunda Panniyur 1 

77 9.8 7.9 13.5 12.4 

78 10.4 9.3 14.3 13 

79 15 13.6 13.6 12.4 

80 11.2 10.3 17 15.6 

81 10.7 10 16.3 15.4 

82 12.5 11.5 11.7 9.8 

83 13 11.5 13.6 11.9 

84 12.9 11.7 11.9 10.9 

85 14.1 13 11.6 10.6 

86 12.9 11 13.2 11.9 

87 13 11.7 13.7 12.9 

88 11.3 10 16.6 15.1 

89 11.7 10.9 17.3 16 

90 13.3 12 12.8 11.5 

91 13 12 18.1 16.9 

92 11 10.1 14.1 12.8 

93 12.3 11.2 13.8 12.3 

94 13 11.6 17 16 

95 10 9 13.5 12.6 

96 14 12.8 16.2 14.7 

97 11.9 10.6 14.6 13.1 

98 12 11 13.7 12.4 

99 11.3 10 13.6 12 

100 12 10.9 14.7 13.3 

 

Average 

 

11.6 10.4 14.2 12.8 

Standard 

deviation 
2.0    1.9       2.4      2.4 
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Appendix IX 

Diameter of pepper spikes 

Sl. No. 
Diameter of spike (cm) 

 

Sl. No 
Diameter of spike (cm) 

Karimunda Panniyur 1 Karimunda Panniyur 1 

1 0.77 1.7 27 1.23 1.6 

2 1.17 1.7 28 1.2 1.7 

3 0.8 1.47 29 1.2 1.5 

4 1.17 0.87 30 1.1 0.88 

5 1.27 1.37 31 1.05 1.4 

6 1.1 1.33 32 0.97 1.3 

7 1.23 1.5 33 0.97 1.51 

8 0.83 1.27 34 0.87 1.28 

9 1.2 1.27 35 1 1.44 

10 1.1 1.43 36 1.28 1.34 

11 1.2 1.33 37 1.12 1.11 

12 1.1 1.1 38 0.86 1.12 

13 1.2 1.1 39 1.3 1.21 

14 1.03 1.2 40 1.1 1.11 

15 1 1.1 41 1.05 1.21 

16 1.03 1.2 42 1.1 1.31 

17 0.87 1.3 43 1.14 1.28 

18 1.27 1.27 44 1.12 1.46 

19 1.1 1.45 45 1.05 1.36 

20 1.2 1.35 46 1.23 1.6 

21 1.17 1.32 47 1.21 1.4 

22 1.1 1.49 48 1 1.28 

23 1.2 1.26 49 1.07 1.31 

24 1.09 1.42 50 1.12 1.18 

25 1.24 1.32 51 1.1 1.2 

26 1.1 1.09 52 1.14 1.19 
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Sl. No. 

Diameter of spike (cm) 

 

Sl. 

No. 

Diameter of spike (cm) 

Karimunda Panniyur 1 Karimunda Panniyur 1 

53 1.2 1.1 77 1.1 1.3 

54 1.12 1.19 78 0.97 1.29 

55 1.1 1.29 79 0.87 1.22 

56 1 1.26 80 1.17 1.3 

57 0.9 1.44 81 1.27 1.27 

58 0.97 1.42 82 1.24 1.28 

59 0.83 1.32 83 1 1.45 

60 0.97 1.09 84 0.96 1.44 

61 1.15 1.07 85 0.89 1.32 

62 1.2 1.19 86 1.09 1.25 

63 1.09 1.2 87 1.11 1.44 

64 1.04 1.28 88 1.08 1.37 

65 1.21 1.43 89 1.2 1.33 

66 1.1 1.3 90 1.13 1.43 

67 0.83 1.32 91 1.21 1.21 

68 0.95 1.49 92 1.1 1.2 

69 0.87 1.26 93 1 1.32 

70 1.11 1.42 94 0.95 1.27 

71 1.25 1.3  95 1.24 1.33 

72 1.13 1.33  96 1.08 1.24 

73 1.3 1.1  97 1.1 1.28 

74 1.22 1.4  98 1.25 1.4 

75 1.2 1.2  99 1.13 0.97 

76 1.21 1.34  100 1.3 0.87 

 

Average 
1.1 1.3 

 

Standard deviation 
0.13 0.17 
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Appendix X 

Weight of the spike 

Sl. No. 
Weight of the spike (g) 

 

Sl. No 
Weight of the spike (g) 

Karimunda Panniyur 1 Karimunda Panniyur 1 

1 5 9.9 27 7.1 5.7 

2 3 17.1 28 4.9 6.4 

3 3.7 8.1 29 6.8 11.5 

4 5.1 9.2 30 11.1 10.6 

5 4.8 8.8 31 12.4 6.8 

6 4.3 11.1 32 11.8 12.7 

7 2.6 7.3 33 9.1 13.5 

8 2.1 7.1 34 13.4 6.9 

9 2.8 3.8 35 12.6 8.9 

10 2.9 6.9 36 9.4 9.3 

11 4.1 3.9 37 8.9 15.3 

12 2.5 10.7 38 7.6 11.8 

13 2.9 5.3 39 9.1 15.8 

14 4.4 5.6 40 5.9 16.1 

15 9 7.5 41 7.8 17 

16 8.7 8.2 42 9.4 14.3 

17 7.6 6.1 43 6.9 9.7 

18 9.3 6 44 7.3 11.8 

19 10.1 7.5 45 7.2 13.5 

20 9.6 7.7 46 6.8 12.1 

21 4.9 8.1 47 6.9 9.4 

22 5.8 8.4 48 4.7 8.7 

23 6.7 15.3 49 8.3 12.1 

24 9.1 9.87 50 10.5 9.7 

25 10.1 13.2 51 10.7 9.8 

26 6.9 8.9 52 11.8 7.89 
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Sl. No. 

Diameter of spike (cm) 

 

Sl. 

No. 

Diameter of spike (cm) 

Karimunda Panniyur 1 Karimunda Panniyur 1 

53 10.6 8.43 77 6.9 11.75 

54 13.6 7.95 78 9.9 8.95 

55 9.5 5.89 79 10.1 6.58 

56 7.9 5.98 80 10.8 7.39 

57 7.3 6.79 81 11.3 8.99 

58 4.9 11.89 82 10.1 7.89 

59 6.8 12.04 83 12.1 6.98 

60 10.6 8.98 84 9.78 12.09 

61 5.8 13.78 85 8.58 6.98 

62 9.8 14.76 86 7.68 9.78 

63 3.9 5.78 87 6.43 8.95 

64 5.9 9.62 88 4.9 8.08 

65 9.4 8.99 89 6.85 7.93 

66 10.4 7.98 90 7.77 12.09 

67 11.7 12.95 91 6.97 11.78 

68 8.1 11.78 92 5.98 13.04 

69 7.62 15.29 93 9.3 14.01 

70 6.17 16.1 94 6.9 11.79 

71 8.65 11.73  95 9.1 10.98 

72 9.5 12.98  96 5.98 8.09 

73 10.11 11.79  97 6.9 6.97 

74 7.8 10.97  98 7.4 11.78 

75 9.1 16.74  99 7.7 12.94 

76 8.7 14.21  100 8.2 7.98 

 

Average 
17.8 10.1 

 

Standard deviation 
2.6 3.1 
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Appendix XI 

Colour of berries 

Sl. No. 
RGB Value (Range) 

Karimunda Panniyur 1 

1 (24, 46, 19) - (251, 174, 172) (93, 34, 9) – (218, 180, 111) 

2 (26, 33, 2) - (255, 193, 174) (93, 70, 13) - (255, 240, 100) 

3 (46, 68, 19) - (255, 224,196) (94, 119, 29) - (251, 255, 110) 

4 (79, 53, 26)  - (255, 199, 169) (94, 120, 38) - (252, 205, 110) 

5 (47, 39, 3) - (255, 230, 202) (94, 130, 60) - (255, 205, 101) 

6 (52, 25, 0) - (255, 184, 192) (94, 131, 63) - (255, 135, 101) 

7 (69, 75, 40) - (255, 195, 186) (94, 49, 40) - (255, 135, 125) 

8 (105, 128, 79) -(255, 183, 175) (94, 91, 21) - (255, 156, 110) 

9 (40, 76, 32) - (255,225,254) (95, 120, 19) - (255, 220, 110) 

10 (28, 30, 0) - (255, 198, 185) (95, 123, 28) - (255, 223, 130) 

11 (37, 19, 6)  - (255, 195, 186) (97, 136, 39) - (253, 210, 130) 

12 (66, 89, 5) - (255, 179, 187) (98, 121, 19) - (254, 203, 130) 

13 (65, 70, 16) - (255, 182, 173) (35, 54, 1) - (255, 200, 150) 

14 (82, 124, 59) - (253, 163, 138) (44, 52, 7) - (255, 196, 150) 

15 (26, 8, 2) - (255, 237, 187) (45, 52, 15) - (255, 230, 150) 

16 (20, 39, 3) - (255, 191, 185) (52, 61, 7) - (255, 224, 130) 

17 (44, 28, 6) - (255, 213, 206) (57, 72, 15) - (255, 210, 130) 

18 (27, 15, 15) - (255, 188, 230) (64, 85, 23) - (255, 209, 150) 

19 (75, 4, 1)  - (255, 198, 111) (66, 84, 11) - (255, 219, 160) 

20 (35, 54, 1) - (255, 241, 199) (93, 34, 9) - (218, 180, 111) 
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Appendix XII 

Diameter of berries 

Diameter of berries, cm 

 

Diameter of berries, cm 

Sl. 

No 
Karimunda Panniyur 1 Sl. No Karimunda Panniyur 1 

1 0.45 0.5 26 0.45 0.6 

2 0.42 0.65 27 0.42 0.45 

3 0.45 0.55 28 0.4 0.5 

4 0.5 0.45 29 0.35 0.6 

5 0.5 0.7 30 0.3 0.5 

6 0.5 0.6 31 0.42 0.7 

7 0.45 0.7 32 0.45 0.5 

8 0.3 0.7 33 0.5 0.45 

9 0.45 0.6 34 0.35 0.6 

10 0.5 0.65 35 0.5 0.7 

11 0.3 0.7 36 0.3 0.45 

12 0.4 0.45 37 0.35 0.5 

13 0.35 0.6 38 0.5 0.6 

14 0.5 0.6 39 0.45 0.7 

15 0.35 0.7 40 0.35 0.45 

16 0.3 0.5 41 0.4 0.5 

17 0.5 0.6 42 0.42 0.6 

18 0.45 0.5 43 0.5 0.65 

19 0.3 0.6 44 0.5 0.5 

20 0.45 0.45 45 0.45 0.6 

21 0.3 0.5 46 0.5 0.7 

22 0.35 0.6 47 0.4 0.5 

23 0.3 0.7 48 0.3 0.55 

24 0.35 0.65 49 0.35 0.65 

25 0.45 0.6 50 0.4 0.7 
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Sl. 

No 

Diameter of berries, cm 

 

Sl. 

No. 

Diameter of berries, cm 

Karimunda Panniyur 1 Karimunda Panniyur 1 

51 0.5 0.6 76 0.35 0.65 

52 0.3 0.65 77 0.3 0.5 

53 0.5 0.7 78 0.4 0.55 

54 0.4 0.5 79 0.35 0.5 

55 0.42 0.6 80 0.45 0.65 

56 0.4 0.5 81 0.3 0.7 

57 0.5 0.45 82 0.5 0.45 

58 0.45 0.55 83 0.5 0.55 

59 0.3 0.65 84 0.35 0.6 

60 0.5 0.6 85 0.5 0.65 

61 0.45 0.7 86 0.5 0.45 

62 0.3 0.45 87 0.4 0.7 

63 0.35 0.55 88 0.45 0.55 

64 0.4 0.55 90 0.45 0.55 

65 0.5 0.6 91 0.5 0.7 

66 0.43 0.45 92 0.4 0.6 

67 0.45 0.5 93 0.35 0.55 

68 0.5 0.65 94 0.5 0.65 

69 0.5 0.45  95 0.35 0.45 

70 0.4 0.55  96 0.5 0.65 

71 0.4 0.65  97 0.4 0.65 

72 0.45 0.6  98 0.5 0.7 

73 0.5 0.65  99 0.4 0.7 

74 0.5 0.6  100 0.4 0.65 

75 0.3 0.65     

Average 0.42 0.59 

Standard deviation 0.07 0.09 
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Appendix XIII 

Length of the peduncle 

Length of peduncle, cm 

 

Length of peduncle, cm 

Sl. 

No. 
Karimunda Panniyur 1 

Sl. 

No. 
Karimunda Panniyur 1 

1 0.5 1.5 25 1.5 1 

2 1.5 1 26 1.2 1.9 

3 1 1.5 27 1.3 1 

4 1.5 1 28 1.4 1.4 

5 1 1.5 29 1.6 1.3 

6 2 2 30 1 1.4 

7 1 1.5 31 1.5 1 

8 1.5 1 32 1 1.3 

9 1.5 1.5 33 1.3 1.2 

10 1 1 34 1 1.2 

11 2 1 35 1 1.4 

12 1.5 1 36 1.1 1 

13 1.5 1 37 1.5 1 

14 1 1.5 38 1.5 1.3 

15 0.5 2 39 1 1.7 

16 1 1 40 2 0.9 

17 1.5 1.5 41 1.5 3 

18 1 1 42 1.5 1 

19 0.5 1 43 0.6 2 

20 1.1 1.2 44 1.2 1 

21 1 1 45 1.5 1.2 

22 2.1 2 46 1.2 1.3 

23 1.5 1.5 47 1.5 1.7 

24 0.5 1.3 48 1 1.3 
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Sl. 

No. 

Length of peduncle, cm 

 

Sl. 

No 

Length of peduncle, cm 

Karimunda Panniyur 1 Karimunda Panniyur 1 

49 1 1 75 1 1.9 

50 1.5 1.2 76 0.6 1.4 

51 1.5 1.1 77 1.9 1.1 

52 1.1 2.3 78 1.1 1.3 

53 0.8 1.4 79 1.4 1.2 

54 1 0.9 80 0.9 1.4 

55 1.5 1.3 81 0.7 0.9 

56 0.9 1.1 82 1 1.9 

57 0.5 1.2 83 1.5 1.7 

58 1.5 1.3 84 1.2 1 

59 0.6 1.2 85 1.1 1 

60 0.4 1.4 86 1.9 1.3 

61 1.1 1.5 87 1.3 0.8 

62 1.4 1.2 88 1.3 1.5 

63 1.1 1.9 89 0.8 1.3 

64 1.2 1.3 90 1.3 1.3 

65 1.4 1 91 1 1.2 

66 1.2 1.3 92 0.9 1.3 

67 0.9 1.4 93 1.1 1.5 

68 0.5 1.4  94 1.4 1 

69 1.6 1.3  95 1 0.9 

70 1.5 1.5  96 1.2 1.5 

71 0.9 1.6  97 1.3 1.5 

72 1.9 1.4  98 1 1.3 

73 1.7 1.2  99 1.3 1.6 

74 1.2 1.1  100 1.1 1.4 

Average 1.2 1.3 

Standard deviation 0.37 0.34 

 



139 

 

Appendix XIV 

Diameter of the peduncle 

Diameter of the peduncle, cm 

 

Diameter of the peduncle, cm 

Sl. 

No. 
Karimunda Panniyur 1 

Sl. 

No. 
Karimunda Panniyur 1 

1 0.15 0.15 25 0.15 0.2 

2 0.15 0.15 26 0.16 0.1 

3 0.2 0.2 27 0.15 0.1 

4 0.2 0.2 28 0.15 0.15 

5 0.16 0.1 29 0.14 0.16 

6 0.14 0.2 30 0.1 0.15 

7 0.2 0.16 31 0.15 0.15 

8 0.2 0.15 32 0.16 0.2 

9 0.15 0.1 33 0.2 0.16 

10 0.15 0.1 34 0.16 0.15 

11 0.2 0.15 35 0.15 0.15 

12 0.16 0.1 36 0.2 0.16 

13 0.15 0.2 37 0.2 0.15 

14 0.2 0.2 38 0.19 0.15 

15 0.2 0.15 39 0.16 0.2 

16 0.15 0.1 40 0.14 0.2 

17 0.1 0.15 41 0.15 0.2 

18 0.15 0.2 42 0.19 0.15 

19 0.19 0.15 43 0.2 0.14 

20 0.16 0.15 44 0.15 0.2 

21 0.15 0.15 45 0.15 0.15 

22 0.14 0.2 46 0.2 0.16 

23 0.2 0.14 47 0.2 0.15 

24 0.19 0.16 48 0.15 0.15 
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Diameter of the peduncle, cm 

 

Diameter of the peduncle, cm 

Sl. 

No. 
Karimunda Panniyur 1 

Sl. 

No. 
Karimunda Panniyur 1 

49 0.15 0.15 75 0.15 0.14 

50 0.14 0.15 76 0.15 0.16 

51 0.15 0.16 77 0.15 0.14 

52 0.2 0.14 78 0.19 0.15 

53 0.2 0.15 79 0.16 0.15 

54 0.15 0.16 80 0.15 0.2 

55 0.15 0.15 81 0.14 0.15 

56 0.14 0.2 82 0.2 0.19 

57 0.16 0.2 83 0.2 0.2 

58 0.2 0.15 84 0.15 0.2 

59 0.14 0.1 85 0.16 0.2 

60 0.15 0.15 86 0.2 0.15 

61 0.15 0.1 87 0.2 0.15 

62 0.2 0.16 88 0.15 0.16 

63 0.2 0.1 89 0.15 0.2 

64 0.15 0.16 90 0.16 0.2 

65 0.16 0.14 91 0.19 0.15 

66 0.19 0.19 92 0.2 0.15 

67 0.16 0.2 93 0.15 0.16 

68 0.2 0.2  94 0.15 0.16 

69 0.16 0.16  95 0.14 0.19 

70 0.15 0.19  96 0.15 0.2 

71 0.14 0.2  97 0.16 0.15 

72 0.2 0.2  98 0.15 1.5 

73 0.2 0.15  99 0.2 0.1 

74 0.16 0.16  100 0.15 0.1 

Average 0.17 0.17 

Standard deviation 0.03 0.14 
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Appendix XV 

Shear strength of the peduncle 

Cutting speed = 0.1 mm s-1 

Karimunda Panniyur 1 

Sl. 

No. 

Shear 

force, 

N 

Diameter 

of the 

peduncle, 

mm 

Cross sectional 

area of the 

peduncle, mm2 

Shear 

strength of the 

peduncle, N 

mm-2 

Shear 

force, N 

Diameter of 

the peduncle, 

mm 

Cross sectional 

area of the 

peduncle, mm2 

Shear 

strength 

of the 

peduncle, 

N mm-2 

1 34.60 0.15 0.02 1958.95 36.00 0.2 0.03 1146 

2 35.00 0.15 0.02 1981.60 26.01 0.1 0.01 3313 

3 36.01 0.20 0.03 1146.70 36.01 0.2 0.03 1147 

4 36.84 0.20 0.03 1173.20 36.84 0.2 0.03 1173 

5 33.10 0.16 0.02 1647.09 33.50 0.15 0.02 1896 

6 32.40 0.14 0.02 2105.81 36.10 0.2 0.03 1150 

7 35.50 0.20 0.03 1130.57 35.76 0.16 0.02 1780 

8 36.34 0.20 0.03 1157.32 36.05 0.15 0.02 2041 

9 34.43 0.15 0.02 1949.44 35.43 0.16 0.02 1763 

10 34.65 0.15 0.02 1961.90 33.65 0.15 0.02 1905 

11 33.43 0.16 0.02 1663.27 33.43 0.15 0.02 1892 



 

 

 

1
4
2
 

 

 

Karimunda Panniyur 1 

Sl. 

No. 

Shear 

force, 

N 

Diameter 

of the 

peduncle, 

mm 

Cross sectional 

area of the 

peduncle, mm2 

Shear 

strength of the 

peduncle, N 

mm-2 

Shear 

force, N 

Diameter of 

the peduncle, 

mm 

Cross sectional 

area of the 

peduncle, mm2 

Shear 

strength 

of the 

peduncle, 

N mm-2 

12 34.22 0.16 0.02 1702.58 34.22 0.2 0.03 1090 

13 33.41 0.15 0.02 1891.58 36.10 0.2 0.03 1150 

14 34.49 0.20 0.03 1098.31 34.49 0.18 0.03 1356 

15 35.00 0.20 0.03 1114.65 35.00 0.15 0.02 1982 

16 34.20 0.15 0.02 1936.31 34.20 0.15 0.02 1936 

17 31.30 0.10 0.01 3987.26 36.42 0.2 0.03 1160 

18 31.60 0.15 0.02 1789.10 31.60 0.15 0.02 1789 

19 33.48 0.19 0.03 1181.26 32.48 0.15 0.02 1839 

20 31.70 0.15 0.02 1794.76 33.70 0.15 0.02 1908 

Average 1718.58 N mm-2 1671 N mm-2 

Standard deviation 647 515 
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Cutting speed = 1 mm s-1 

Karimunda Panniyur 1 

         

Sl. 

No. 

Shear 

force, 

N 

Diameter 

of the 

peduncle, 

mm 

Cross sectional 

area of the 

peduncle, mm2 

Shear 

strength of the 

peduncle, N 

mm-2 

Shear 

force, N 

Diameter of 

the peduncle, 

mm 

Cross sectional 

area of the 

peduncle, mm2 

Shear 

strength 

of the 

peduncle, 

N mm-2 

1 30.3 0.16 0.02 1507.76 32.00 0.2 0.03 1019.11 

2 31.9 0.2 0.03 1015.92 29.90 0.1 0.01 3808.92 

3 32.14 0.2 0.03 1023.57 32.14 0.2 0.03 1023.57 

4 29.34 0.14 0.02 1906.93 31.34 0.2 0.03 998.09 

5 28.76 0.1 0.01 3663.69 30.90 0.15 0.02 1749.47 

6 29.38 0.15 0.02 1663.41 33.11 0.2 0.03 1054.46 

7 29.54 0.16 0.02 1469.94 31.40 0.16 0.02 1562.50 

8 31.1 0.15 0.02 1760.79 32.26 0.15 0.02 1826.30 

9 30.56 0.16 0.02 1520.70 31.56 0.16 0.02 1570.46 

10 29.75 0.15 0.02 1684.36 29.65 0.15 0.02 1678.70 

11 30.76 0.15 0.02 1741.54 29.76 0.15 0.02 1684.93 

         



 

 

 

1
4
4
 

 

Karimunda 

 

 

Panniyur 1 

 

Sl. 

No. 

Shear 

force, 

N 

Diameter 

of the 

peduncle, 

mm 

Cross sectional 

area of the 

peduncle, mm2 

Shear 

strength of the 

peduncle, N 

mm-2 

Shear 

force, N 

Diameter of 

the peduncle, 

mm 

Cross sectional 

area of the 

peduncle, mm2 

Shear 

strength 

of the 

peduncle, 

N mm-2 

12 32.3 0.2 0.03 1028.66 31.35 0.2 0.03 998.41 

13 31.76 0.19 0.03 1120.74 30.76 0.16 0.02 1530.65 

14 31.12 0.16 0.02 1548.57 31.12 0.15 0.02 1761.92 

15 29.55 0.15 0.02 1673.04 28.35 0.15 0.02 1605.10 

16 30.1 0.15 0.02 1704.18 30.10 0.15 0.02 1704.18 

17 31.97 0.16 0.02 1590.86 31.97 0.2 0.03 1018.15 

18 32.4 0.2 0.03 1031.85 28.40 0.15 0.02 1607.93 

19 30.8 0.2 0.03 980.89 29.80 0.15 0.02 1687.19 

20 33.4 0.2 0.03 1063.69 31.40 0.2 0.03 1000.00 

Average 1535.06 N mm-2 1544.5 N mm-2 

Standard deviation 589 606 
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Appendix XVI 

Leaf coverage of black pepper vine 

Plant Number 
Maximum coverage of plant on each side, cm 

I II III IV 

1 85 43 28 10 

2 39 48 50 30 

3 58 50 59 43 

4 61 38 65 72 

5 83 43 48 70 

6 43 29 39 47 

7 67 40 65 74 

8 56 47 45 59 

9 70 57 48 60 

10 60 87 91 40 

11 88 80 30 35 

12 61 52 33 43 

13 63 24 50 47 

14 40 44 46 44 

15 38 38 43 32 

16 68 36 45 40 

17 66 44 59 65 

18 42 53 48 41 

19 55 46 29 37 

20 49 42 56 40 

21 32 45 36 31 

22 50 44 46 56 

23 48 43 31 45 

24 36 53 33 14 

25 51 29 34 38 

26 47 57 54 60 

     

Average 45.3  

Standard deviation 15.3  
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Plant Number 
Maximum coverage of plant on each side, cm 

I II III IV 

27 76 43 37 68 

28 41 42 65 57 

29 33 23 34 24 

30 57 34 39 41 

31 42 32 40 91 

32 53 55 57 48 

33 37 42 23 28 

34 37 36 39 29 

35 56 31 65 44 

36 69 59 45 53 

37 32 31 22 32 

38 42 44 30 17 

39 38 27 33 48 

40 39 52 51 52 

41 24 27 30 22 

42 59 54 37 31 

43 39 45 42 30 

44 62 27 29 35 

45 81 45 39 37 

46 53 48 45 35 

47 35 28 21 16 

48 30 24 29 38 

49 37 29 64 28 

50 59 55 67 52 
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Cumulative frequency distribution table 

Sl. No. Class interval Frequency 
Cumulative 

Frequency 

1 10-20 4 4 

2 20-30 23 27 

3 30-40 52 79 

4 40-50 53 132 

5 50-60 38 170 

6 60-70 17 187 

7 70-80 5 192 

8 80-90 6 198 

9 90-100 2 200 

 

95th Percentile =l+

95N

100
-m

f
×C 

l= Lower limit of 95th class 

m= Cumulative frequency just before the 95th class 

f= Frequency of 95th class 

C= Class interval 

N= Total number of observations 

95th class is the class contain 
95N

100
 th observation. That is 190th observation. So the 

95th class was 70-80.  

l= 70; m= 187; f= 5; C= 10 

95th Percentile = l+

95N

100
-m

f
×C = 70+

95×200

100
-187

5
×10    = 76 cm 
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Appendix XVII 

Performance evaluation of machine vision system 

Parameter Karimunda Panniyur 1 

True positives (TP) 55 59 

True negatives(TN) 27 23 

False positives (FP) 8 7 

False negatives (FN) 10 11 

Sensitivity, % 85 84 

Specificity, % 77 77 

Accuracy, % 82 82 

Sample calculation 

1. Sensitivity 

Total true positives     = 55 

Total false negatives   = 10 

Sensitivity  =  
Toatl true positives

Total true positives + Total false negative
×100 

   = (55 / (55+10)) × 100 = 85 % 

2. Specificity 

Total true negatives    = 27 

Total false positives    = 8 

Specificity                 =  
Total true negatives

Total true negatives + Total false positives
×100 

             = (27 / (27+8)) × 100   = 77 % 

3. Accuracy 

Total true positives     = 55 

Total true negatives    = 27 

Total TP, TN, FP, FN = 100 
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Accuracy     =  
True positives + True negatives

(True positives + True negatives+

False positives+False negatives)

×100 

      Accuracy        = ((55+27)/100) × 100 

                                   = 82 % 

Appendix XVIII 

Time taken for identification 

Sl. 

No. 

Time taken for identification, sec Sl. 

No. 

Time taken for identification, sec 

Karimunda Panniyur 1 Karimunda     Panniyur 1 

1 0.43 0.43 23 0.42 0.43 

2 0.42 0.42 24 0.43 0.42 

3 0.46 0.41 25 0.44 0.42 

4 0.43 0.43 26 0.43 0.43 

5 0.44 0.46 27 0.44 0.43 

6 0.43 0.44 28 0.46 0.44 

7 0.42 0.42 29 0.42 0.42 

8 0.42 0.42 30 0.42 0.41 

9 0.42 0.43 31 0.43 0.46 

10 0.43 0.43 32 0.44 0.43 

11 0.43 0.46 33 0.46 0.43 

12 0.44 0.42 34 0.43 0.42 

13 0.43 0.43 35 0.42 0.44 

14 0.42 0.41 36 0.42 0.43 

15 0.46 0.44 37 0.43 0.45 

16 0.43 0.46 38 0.46 0.46 

17 0.44 0.42 39 0.42 0.42 

18 0.43 0.42 40 0.42 0.43 

19 0.45 0.43 41 0.43 0.44 

20 0.46 0.43 42 0.44 0.43 

21 0.43 0.42 43 0.43 0.42 

22 0.43 0.44 44 0.46 0.44 
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Sl. 

No.  

Time taken for identification, sec Sl. 

No. 

Time taken for identification, sec 

Karimunda Panniyur 1 Karimunda Panniyur 1 

45 0.44 0.42 73 0.43 0.41 

46 0.46 0.42 74 0.44 0.46 

47 0.43 0.43 75 0.42 0.45 

48 0.46 0.43 76 0.46 0.46 

49 0.44 0.46 77 0.43 0.44 

50 0.46 0.42 78 0.42 0.43 

51 0.42 0.43 79 0.41 0.42 

52 0.42 0.46 80 0.45 0.44 

53 0.42 0.42 81 0.46 0.46 

54 0.42 0.41 82 0.43 0.44 

55 0.43 0.42 83 0.42 0.42 

56 0.43 0.43 84 0.44 0.41 

57 0.42 0.41 85 0.42 0.46 

58 0.42 0.42 86 0.42 0.44 

59 0.43 0.44 87 0.42 0.46 

60 0.42 0.42 88 0.43 0.42 

61 0.46 0.43 89 0.43 0.43 

62 0.43 0.46 90 0.44 0.41 

63 0.42 0.42 91 0.42 0.44 

64 0.43 0.42 92 0.46 0.46 

65 0.42 0.43 93 0.46 0.43 

66 0.43 0.44 94 0.43 0.43 

67 0.44 0.43 95 0.42 0.42 

68 0.43 0.42 96 0.43 0.44 

69 0.42 0.43 97 0.44 0.45 

70 0.41 0.46 98 0.46 0.46 

71 0.43 0.41 99 0.45 0.43 

72 0.43 0.42 100 0.46 0.42 
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Average time taken for identification, Karimunda = 0.43 seconds 

Average time taken for identification, Panniyur 1 = 0.43 seconds 

 

Appendix XIX 

Capacity of the system 

Karimunda 

Cycle 

number 

Time taken 

for cycle of 

operation 

(h) 

No. of 

black 

pepper 

spikes 

harvested in 

cycle of 

operation 

Weight of 

black 

pepper 

spikes 

harvested in 

one cycle of 

operation 

(kg) 

Capacity of 

the system 

(kg h -1) 

Capacity of 

the system 

(number of 

spikes h -1) 

1 0.0175 10 0.045 2.55 571 

2 0.0186 10 0.082 4.41 537 

3 0.0169 10 0.047 2.77 590 

4 0.0181 10 0.061 3.38 554 

5 0.0158 10 0.038 2.40 632 

6 0.0161 10 0.043 2.67 621 

7 0.0183 10 0.051 2.78 545 

8 0.0194 10 0.069 3.55 514 

9 0.0175 10 0.072 4.11 571 

10 0.0189 10 0.057 3.02 529 

11 0.0172 10 0.070 4.06 581 

12 0.0197 10 0.074 3.76 507 

13 0.0175 10 0.067 3.83 571 

14 0.0186 10 0.086 4.63 537 

15 0.0178 10 0.072 4.07 563 
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Panniyur1 

Cycle 

number 

Time taken 

for cycle of 

operation 

(h) 

No. of 

black 

pepper 

spikes 

harvested in 

cycle of 

operation 

Weight of 

black 

pepper 

spikes 

harvested in 

one cycle of 

operation 

(kg) 

Capacity of 

the system 

(kg h -1) 

Capacity of 

the system 

(number of 

spikes h -1) 

1 0.0175 10 0.077 4.4 571 

2 0.0178 10 0.081 4.6 563 

3 0.0169 10 0.084 5.0 590 

4 0.0181 10 0.078 4.3 554 

5 0.0158 10 0.061 3.8 632 

6 0.0161 10 0.060 3.7 621 

7 0.0181 10 0.083 4.6 554 

8 0.0164 10 0.095 5.8 610 

9 0.0175 10 0.085 4.9 571 

10 0.0172 10 0.078 4.5 581 

11 0.0186 10 0.073 3.9 537 

12 0.0192 10 0.091 4.7 522 

13 0.0183 10 0.088 4.8 545 

14 0.0161 10 0.075 4.6 621 

15 0.0150 10 0.088 5.8 667 

 

 

 

 

 



 

 

 

153 

Sample Calculation 

Amount of black pepper spikes harvested in one cycle of operation = 0.045 kg 

Time taken for one cycle of operation = 0.0175 h 

Numer of black pepper spikes harvested in one cycle of operation = 10 

Capacity of the system (kg h-1)  

  =  
Amount of black pepper spikes harvested in one cycle of operation

Time taken for one cycle of operation
   

           =
0.045

0.0175
 

   = 2.55 kg h-1 

Capacity of the system (spikes h-1)   

             = 

Number of black pepper spikes harvested in one cycle 

of operation

Time taken for one cycle of operation
 

                 = 
10

0.0175
 

              = 571 spikes h-1 

Panniyur 1 

Average capacity of the system = 4.6 kg h-1 

Average capacity of the system = 583 spikes h-1 

Karimunda  

Average capacity of the system = 3.5 kg h-1 

Average capacity of the system = 562 spikes h-1 
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Appendix XX 

Effectiveness index of the system 

Karimunda 

Trial 

No. 

Number 

of spikes 

selected 

No. of 

matured 

pepper 

spikes 

harvested 

No. of 

matured  

pepper 

spikes not 

harvested 

No. of 

green  

pepper 

spikes 

harvested 

No. of 

green 

pepper 

spikes not 

harvested 

Effectiv

eness 

index of 

the 

system 

(%) 

1 10 7 1 1 1 80 

2 10 9 0 1 0 90 

3 10 10 0 0 0 100 

4 10 7 0 3 0 70 

5 10 7 0 2 1 80 

6 10 7 0 3 0 70 

7 10 8 0 0 0 80 

8 10 8 1 0 1 90 

9 10 6 0 3 1 70 

10 10 7 0 3 0 70 

11 10 8 0 2 0 80 

12 10 9 0 1 0 90 

13 10 8 1 1 0 80 

14 10 8 0 2 0 80 

15 10 8 0 2 1 90 
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Panniyur 1 

Trial 

No. 

Number 

of spikes 

selected 

No. of 

matured 

pepper 

spikes 

harvested 

No. of 

matured  

pepper 

spikes not 

harvested 

No. of 

green  

pepper 

spikes 

harvested 

No. of 

green 

pepper 

spikes not 

harvested 

Effectiv

eness 

index of 

the 

system 

(%) 

1 10 8 1 1 0 80 

2 10 9 1 0 0 90 

3 10 6 1 1 2 80 

4 10 7 1 1 1 80 

5 10 4 2 1 3 70 

6 10 8 0 1 1 90 

7 10 7 1 1 1 80 

8 10 5 1 1 3 80 

9 10 6 0 1 3 90 

10 10 8 0 1 1 90 

11 10 7 1 0 2 90 

12 10 8 0 1 0 80 

13 10 6 1 2 1 70 

14 10 8 1 1 0 80 

15 10 8 1 1 0 80 

 

Sample Calculation 

Number of black pepper spikes detected correctly and  harvested at correct maturity= 

Number of matured pepper spikes harvested +Number of green pepper spikes not harvested  

Total number of black pepper spikes detected correctly and harvested at correct 

maturity = 7+1   = 8 

Total number of selected black pepper spikes = 10 
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Effectiveness index of the system =

Number of  black pepper spikes detected correctly

 and harvested at correct maturity

Total number of selected black pepper spikes
×100              

                                                 = 
8

10
×100 

                         = 80 % 

Karimunda 

Average effectiveness index of the system = 81 % 

Panniyur 1 

Average effectiveness index of the system = 81 % 

 

Appendix XXI 

Time taken for the entire operation 

Karimunda 

Sl. 

No. 

Time taken for 

the entire 

operation 

(seconds) 

Sl. 

No. 

Time taken 

for the entire 

operation 

(Seconds) 

Sl. 

No. 

Time taken 

for the entire 

operation 

(seconds) 

1 7.5 11 6.3 21 6 

2 6.6 12 6.1 22 6.6 

3 7.3 13 6.2 23 6.6 

4 7.2 14 6.1 24 6.1 

5 7 15 6.7 25 6.3 

6 6.3 16 6.1 26 6.6 

7 6.1 17 5.9 27 6.3 

8 6.3 18 6.3 28 6.7 

9 6.2 19 6.3 29 7.2 

10 6.2 20 6 30 7.1 
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Sl. 

No. 

Time taken for 

the entire 

operation 

(seconds) 

Sl. 

No. 

Time taken for 

the entire 

operation 

(Seconds) 

Sl. 

No. 

Time taken for 

the entire 

operation 

(seconds) 

31 6.6 46 7.8 61 6.8 

32 6.8 47 7.2 62 6.8 

33 6.3 48 7 63 6.7 

34 6.2 49 6.6 64 6.3 

35 6 50 7.5 65 6.5 

36 6.7 51 6.9 66 6.4 

37 6.7 52 7.2 67 6.2 

38 6.7 53 7.1 68 6.4 

39 6.9 54 6.9 69 6.4 

40 6.6 55 6.8 70 6.3 

41 6.7 56 6.3 71 6.8 

42 6.8 57 6.3 72 6.3 

43 6.7 58 6.4 73 6.5 

44 6.8 59 6.3 74 6.4 

45 7.4 60 6.1 75 6.3 

 

Average time taken for the entire operation = 6.6 seconds 
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Panniyur 1 

Sl. 

No. 

Time taken for 

the entire 

operation 

(seconds) 

Sl. 

No. 

Time taken 

for the entire 

operation 

(Seconds) 

Sl. 

No. 

Time taken 

for the entire 

operation 

(seconds) 

1 6.3 26 6.3 51 5.4 

2 6.3 27 6 52 5.7 

3 6.1 28 6.1 53 5.8 

4 6.5 29 6.3 54 6.1 

5 5.7 30 6 55 6.2 

6 5.8 31 6.9 56 6 

7 6.5 32 6.7 57 5.7 

8 7 33 6.3 58 5.8 

9 6.3 34 6.4 59 5.9 

10 6.8 35 6.3 60 5.4 

11 6.7 36 6.4 61 7.1 

12 7.3 37 6.7 62 6.9 

13 6.6 38 6.6 63 6.3 

14 6.7 39 6.3 64 6.5 

15 6.5 40 6.4 65 6.3 

16 6.6 41 5.9 66 6.8 

17 6.3 42 5.6 67 6.3 

18 6.9 43 5.7 68 6.9 

19 6.6 44 5.7 69 6.5 

20 6.8 45 5.6 70 6.4 

21 6.1 46 5.9 71 6.6 

22 5.9 47 5.4 72 7 

23 6.3 48 6 73 7.4 

24 6.4 49 5.8 74 7.1 

25 5.6 50 5.4 75 6.3 

Average time taken for the entire operation = 6.3 seconds 
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Appendix XXII 

Harvesting loss of robotic black pepper harvesting system 

Karimunda Panniyur 1 

 

 

Sample 

Weight 

of 

matured 

berries 

(kg) 

Weight 

of under 

matured 

berries 

(kg) 

Harvesting 

loss (%) 

Weight 

of 

matured 

berries 

(kg) 

Weight 

of under 

matured 

berries 

(kg) 

Harvesting 

loss (%) 

1 0.0676 0.004 5.6 0.1146 0.008 6.5 

2 0.0796 0.003 3.6 0.0898 0.0076 7.8 

3 0.0822 0.005 5.7 0.0818 0.0058 6.6 

4 0.094 0.006 6.0 0.0856 0.0064 7.0 

5 0.076 0.003 3.8 0.1088 0.008 6.8 

 

Sample calculation 

Weight of under matured berries = 0.004 kg 

Weight of matured berries = 0.0676 kg 

Harvesting loss = 
Weight of under matured berries

Weight of matured berries + Weight of under matured berries
× 100 

                 = 
0.004

(0.0676 + 0.004)
×100 

                   = 5.6 % 

 

Average harvesting loss ( Karimunda ) =
 (5.6 + 3.6 + 5.7 + 6.0 + 3.8)

5
 

     = 4.9 % 

Average harvesting loss (Panniyur 1) =   
(6.5 + 7.8 +6.6 +7.0 +6.8 )

5
 

                                            = 7.0 % 
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Appendix XXIII 

Drying loss of robotic black pepper harvesting system 

Karimunda 

Sa

m

pl

e 

Initia

l 

Weig

ht, 

Kg 

Weigh

t after 

drying

, Kg 

Initial 

moist

ure 

conten

t (wb), 

% 

Final 

moist

ure 

conten

t (wb), 

% 

Initial 

moist

ure 

conten

t (db), 

% 

Final 

moistur

e 

content 

(db), % 

Bone 

dry 

matt

er, 

Kg 

Wate

r 

evap

orate

d, 

Kg 

Dryi

ng 

loss, 

% 

1 0.07 0.04 49 10 96 11 0.04 0.03 43 

2 0.08 0.05 50 10 100 11 0.04 0.04 44 

3 0.09 0.06 43 10 75 11 0.05 0.03 37 

4 0.10 0.07 41 10 69 11 0.06 0.03 34 

5 0.08 0.05 42 10 72 11 0.05 0.03 36 

Panniyur 1 

Sa

mp

le 

Initi

al 

Wei

ght, 

Kg 

Weig

ht 

after 

drying

, Kg 

Initial 

moist

ure 

conte

nt 

(wb), 

% 

Final 

moist

ure 

conte

nt 

(wb), 

% 

Initial 

moist

ure 

conte

nt 

(db), 

% 

Final 

moist

ure 

conte

nt 

(db), 

% 

Bon

e dry 

matt

er, 

Kg 

Water 

evapo

rated, 

Kg 

Dryin

g loss, 

% 

1 0.12 0.05 71 10 245 11 0.04 0.08 68 

2 0.10 0.04 69 10 223 11 0.03 0.06 66 

3 0.09 0.03 65 10 186 11 0.03 0.05 61 

4 0.09 0.05 73 10 270 11 0.02 0.06 70 

5 0.12 0.07 70 10 233 11 0.04 0.08 67 
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Sample calculation 

Initial weight = 0.07 Kg 

Weight after drying = 0.04 Kg 

Initial moisture content (wb) = 49% 

Final moisture content (wb) = 10 % 

Initial moisture content (db) =  
Moisture content  (wb)

100- Moisture content  (wb)
×100 

          = 
49

100-49
×100    = 96 % 

Final moisture content (db) = 
Moisture content  (wb)

100- Moisture content  (wb)
×100 

          = 
10

100-10
×100 = 11 % 

Bone dry matter = Initial weight – Initial weight × Moisture content in decimal (wb) 

            = 0.07- (0.07×0.49) 

        = 0.04 Kg 

Initial weight – Weight after drying    = Water evaporated during drying  

                = Bone dry matter × (Initial moisture content 

in decimal (db) – Final moisture content in decimal (db)) 

               = 0.04 × (0.96 – 0.11) 

              = 0.03 Kg 

Drying loss =  
Initial Weight-Weight after drying

Initial weight
×100 

    = 
0.03

0.07
× 100 = 43% 

Average drying loss in Karimunda = 
43+44+37+34+36

5
 = 39 % 

Average drying loss in Panniyur 1 = 
68+66+61+70+67

5
 = 66 % 
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Appendix XXIV 

Capacity of manual harvesting 

Karimunda 

Sl. No Time taken 

(Minute) 

No. of 

black 

pepper 

spikes 

harvested 

Total 

amount of 

black 

pepper 

spikes  

harvested 

(kg)  

Capacity 

of manual 

harvesting 

(Spikes h -

1) 

Capacity 

of manual 

harvesting 

(kg h -1) 

1 0.083 110 0.71 1320 8.52 

2 0.083 150 0.89 1800 10.68 

3 0.083 92 0.83 1104 9.96 

4 0.083 29 0.21 348 2.52 

5 0.083 82 0.42 984 5 

6 0.083 130 0.56 1560 6.7 

7 0.083 86 0.42 1032 5 

8 0.083 105 0.53 1260 6.4 

9 0.083 36 0.16 432 1.9 

10 0.083 98 0.5 735 6 

11 0.083 74 0.47 888 5.6 

12 0.083 101 0.6 1212 7.2 

13 0.083 126 0.8 1500 9.6 

14 0.083 56 0.3 672 3.6 

15 0.083 78 0.5 936 6 
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Panniyur 1 

Sl. No Time taken 

(Minute) 

No. of 

black 

pepper 

spikes 

harvested 

Total 

amount of 

black 

pepper 

spikes  

harvested 

(kg)  

Capacity 

of manual 

harvesting 

(Spikes      

h -1) 

Capacity 

of manual 

harvesting 

(kg h -1) 

1 0.083 159 0.91 1908 10.9 

2 0.083 160 1.03 1920 12.4 

3 0.083 154 0.89 1848 10.7 

4 0.083 149 0.93 1788 11.1 

5 0.083 115 0.70 1380 8.4 

6 0.083 106 0.64 1272 7.7 

7 0.083 96 0.80 1152 9.6 

8 0.083 89 0.85 1068 10.1 

9 0.083 92 0.78 1104 9.4 

10 0.083 173 0.97 2076 11.6 

11 0.083 194 1.16 2328 13.9 

12 0.083 184 1.07 2208 12.8 

13 0.083 134 0.91 1608 10.9 

14 0.083 124 0.98 1488 11.8 

15 0.083 139 0.94 1668 11.3 

Sample Calculation 

Time taken = 0.083hr 

Number of black pepper spikes harvested = 110 spikes 

Total weight of black pepper spikes harvested = 0.71 kg 

Capacity, Spikes h-1
= 

Number of black pepper spikes harvested 

Time taken
 

                               = 
110

0.083
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                               = 1320 spikes h-1 

 

Capacity, kg h-1
= 

Total amount of black pepper spikes harvested

Time taken
 

                            = 
0.71

0.083
 

                          = 8.52 kg h-1 

Karimunda 

Average capacity of manual harvesting, spikes h-1 = 1052 spikes h-1 

Average capacity of manual harvesting, kg h-1 = 6.3 kg h-1 

Panniyur 1 

Average capacity of manual harvesting, spikes h-1 = 1654 spikes h-1 

Average capacity of manual harvesting, kg h-1 = 10.8 kg h-1 
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Appendix XXV 

Effectiveness index of manual harvesting 

Karimunda 

Replication Total number 

of black 

pepper spikes  

No. of 

matured 

pepper spikes 

harvested 

No. of green 

pepper spikes 

harvested 

Effectiveness 

index 

1 10 2 8 20 

2 10 3 7 30 

3 10 5 5 50 

4 10 4 6 40 

5 10 1 9 10 

6 10 6 4 60 

7 10 2 8 20 

8 10 6 4 60 

9 10 3 7 30 

10 10 5 5 50 

11 10 3 7 30 

12 10 4 6 40 

13 10 1 9 10 

14 10 7 3 70 

15 10 8 2 80 
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Panniyur 1 

Replication Total number 

of black 

pepper spikes  

No. of 

matured 

pepper spikes 

harvested 

No. of green 

pepper spikes 

harvested 

Effectiveness 

index 

1 10 3 7 30 

2 10 4 6 40 

3 10 3 7 30 

4 10 2 8 20 

5 10 5 5 50 

6 10 3 7 30 

7 10 6 4 60 

8 10 7 3 70 

9 10 5 5 50 

10 10 2 8 20 

11 10 4 6 40 

12 10 4 6 40 

13 10 3 7 30 

14 10 2 8 20 

15 10 4 6 40 

 

Sample Calculation 

Total number of black pepper spikes = 10 

Number of matured black pepper spikes harvested = 2 

Number of green pepper spikes harvested = 8 

Effectiveness index = 
Number of matured black pepper spikes harvested

Total number of black pepper spikes
 

                             = 
2

10
 

                            = 20 % 

Karimunda 

Average effectiveness index of manual harvesting = 40% 

Panniyur 1 

Average effectiveness index of manual harvesting = 38 % 



 

 

 

167 

 

Appendix XXVI 

Harvesting loss of manual harvesting 

Karimunda Panniyur 1 

Sample Weight 

of 

matured 

berries 

(kg) 

Weight 

of under 

matured 

berries 

(kg)  

Harvesting 

loss (%) 

Weight 

of 

matured 

berries 

(kg) 

Weight 

of under 

matured 

berries 

(kg) 

Harvesting 

loss (%) 

1 0.0785 0.015 16.0 0.1235 0.0118 8.7 

2 0.0823 0.019 18.8 0.1227 0.021 14.6 

3 0.143 0.016 10.1 0.1134 0.0377 25.0 

4 0.132 0.025 15.9 0.1128 0.03 21.0 

5 0.0976 0.018 15.6 0.1256 0.0275 18.0 

 

Sample Calculation 

Weight of under matured berries = 0.015 kg 

Weight of matured berries = 0.0785 kg 

 

Harvesting loss      = 
Weight of under matured berries

(Weight of under matured berries+

Weight of matured berries)

  

                               = 
0.015

(0.015+0.0875)
 = 16.0 % 

 

Karimunda 

Average harvesting loss = 
(16 + 18.8 +10.1 + 15.9 +15.6)

5
 

                                           = 15.3 % 
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Panniyur 1 

Average harvesting loss = 
(8.7 + 14.6 + 25 + 21 +18)

5
 

                                             = 17.5 % 

 

Appendix XXVII 

Drying loss of manual harvesting 

Karimunda 

Sa

m

pl

e 

Initia

l 

Weig

ht, 

Kg 

Weigh

t after 

drying

, Kg 

Initial 

moist

ure 

conten

t (wb), 

% 

Final 

moist

ure 

conten

t (wb), 

% 

Initial 

moist

ure 

conten

t (db), 

% 

Final 

moistur

e 

content 

(db), % 

Bone 

dry 

matt

er, 

Kg 

Wate

r 

evap

orate

d, Kg 

Dryi

ng 

loss, 

% 

1 0.09 0.05 52 10 108 11 0.04 0.04 47 

2 0.10 0.04 65 10 186 11 0.04 0.06 61 

3 0.16 0.07 55 10 122 11 0.07 0.08 50 

4 0.16 0.06 63 10 170 11 0.06 0.09 59 

5 0.12 0.04 66 10 194 11 0.04 0.07 62 
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Panniyur 1 

Sa

m

pl

e 

Initia

l 

Weig

ht, 

Kg 

Weigh

t after 

drying

, Kg 

Initial 

moist

ure 

conten

t (wb), 

% 

Final 

moist

ure 

conten

t (wb), 

% 

Initial 

moist

ure 

conten

t (db), 

% 

Final 

moistur

e 

content 

(db), % 

Bone 

dry 

matt

er, 

Kg 

Wate

r 

evap

orate

d, Kg 

Dryi

ng 

loss, 

% 

1 0.14 0.03 79 10 376 11 0.03 0.10 77 

2 0.14 0.04 80 10 400 11 0.03 0.11 78 

3 0.15 0.02 88 10 733 11 0.02 0.13 87 

4 0.14 0.02 89 10 809 11 0.02 0.13 88 

5 0.15 0.04 78 10 355 11 0.03 0.12 76 

 

Sample calculation 

Initial weight = 0.09 Kg 

Weight after drying = 0.05 Kg 

Initial moisture content (wb) = 52 % 

Final moisture content (wb) = 10 % 

Initial moisture content (db) =  
Moisture content  (wb)

100- Moisture content  (wb)
×100 

      = 
52

100−52
×100    = 108 % 

Final moisture content (db) = 
Moisture content  (wb)

100- Moisture content  (wb)
×100 

       = 
10

100-10
×100 = 11 % 

Bone dry matter = Initial weight – Initial weight × Moisture content in decimal (wb) 
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      = 0.09- (0.09×0.52) = 0.04 Kg 

Initial weight – Weight after drying   = Water evaporated during drying  

         = Bone dry matter × (Initial moisture content 

in decimal (db) – Final moisture content in decimal (db)) 

         = 0.04 × (1.08 – 0.11) 

            = 0.04 Kg 

Drying loss =  
Initial Weight-Weight after drying

Initial weight
×100 

= 
0.04

0.09
× 100 = 47 % 

Average drying loss in Karimunda = 
47+61+50+59+62

5
 = 56 % 

Average drying loss in Panniyur 1 = 
77+78+87+88+76

5
 = 81 % 
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Appendix XXVIII 

Statistical analysis (Welch unpaired t-test) for comparing the capacity of 

manual harvesting and robotic harvesting 

(i) Capacity (Kg h -1) 

Parameter Panniyur 1 Karimunda 

Manual 

harvesting 

Robotic 

harvesting 

Manual 

harvesting 

Robotic 

harvesting 

Number of 

observations 
15 15 15 15 

Minimum 7.7 3.7 1.9 2.4 

Maximum 13.9 5.8 10.7 4.6 

Range 6.2 2.1 8.8 2.2 

Sum 162.6 69.4 94.7 52.1 

Median 10.9 4.6 6.0 3.5 

Mean 10.84 4.627 6.313 3.473 

Standard error 

mean 

0.422 0.158 0.672 0.185 

Confidence 

intervals mean. 

.95 

0.905 0.339 1.442 0.396 

Variance 2.673 0.375 6.778 0.512 

Standard 

deviation 

1.635 0.612 2.604 0.716 

Coefficient of 

variation 

0.151 0.132 0.412 0.206 

  

t_value  13.785 4.074 
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Parameter Panniyur 1 Karimunda 

Manual 

harvesting 

Robotic 

harvesting 

Manual 

harvesting 

Robotic 

harvesting 

Degree of 

freedom 
17.85 16.1 

P value 0 0.000874 

Level of 

significance 
5 % 5 % 

Significance Significant Significant 

 

(ii) Capacity (spikes h -1) 

Parameter Panniyur 1 Karimunda 

Manual 

harvesting 

Robotic 

harvesting 

Manual 

harvesting 

Robotic 

harvesting 

Number of 

observations 
15 15 15 15 

Minimum 1068 522 348 507 

Maximum 2328 667 1800 632 

Range 1260 145 1452 125 

Sum 24816 8739 15783 8423 

Median 1668 571 1032 563 

Mean 1654.4 582.6 1052.2 561.5 

Standard error 

mean 

104.2 10.4 105.4 9.2 
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Parameter Panniyur 1 Karimunda 

Manual 

harvesting 

Robotic 

harvesting 

Manual 

harvesting 

Robotic 

harvesting 

Confidence 

intervals mean. 

.95 

223.4 22.3 226 19.7 

Variance 162779 1626.8 166567.5 1270.5 

Standard 

deviation 

403.5 40.3 408.1 35.6 

Coefficient of 

variation 

0.244 0.069 0.388 0.063 

  

t_value  10.238 4.639 

Degree of 

freedom 

14.28 14.21 

P value 0 0.000369 

Level of 

significance 

5 % 5 % 

Significance Significant Significant 

 

Since P-value is <0.05, reject the null hypothesis at 5% level of significance. 

Here the null hypothesis is: Average capacity of manual harvesting = Average 

capacity of robotic harvesting system. It shows that there is a significant difference 

between the capacity of manual harvesting and robotic black pepper harvesting 

system in both variety. 
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Appendix XXIX 

Statistical analysis (Welch unpaired t-test) for comparing the effectiveness 

index of robotic black pepper harvesting system and manual harvesting 

Parameter Panniyur 1 Karimunda 

Manual 

harvesting 

Robotic 

harvesting 

Manual 

harvesting 

Robotic 

harvesting 

Number of 

observations 
15 15 15 15 

Minimum 20 70 10 70 

Maximum 70 90 80 100 

Range 50 20 70 30 

Sum 570 1230 600 1220 

Median 40 80 40 80 

Mean 38 82 40 81.3 

Standard error 

mean 

3.8 1.7 5.5 2.4 

Confidence 

intervals mean. 

.95 

8.2 3.7 11.8 5.07 

Variance 217.1 45.7 457.1 83.8 

Standard 

deviation 

14.7 6.8 21.4 9.2 

Coefficient of 

variation 

0.388 0.082 0.535 0.113 

  

t_value  -10.511 -6.883 
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Parameter Panniyur 1 Karimunda 

Manual 

harvesting 

Robotic 

harvesting 

Manual 

harvesting 

Robotic 

harvesting 

Degree of 

freedom 

19.64 18.97 

P value 0 0.000001 

Level of 

significance 

5 % 5 % 

Significance Significant Significant 

Since P-value is <0.05, reject the null hypothesis at 5% level of significance. Here 

the null hypothesis is: Average effectiveness index of manual harvesting = Average 

effectiveness index of robotic harvesting system. Result showed that, there is 

significant difference between the effectiveness index of manual harvesting and 

robotic black pepper harvesting system in both variety.  

 

Appendix XXX 

Statistical analysis (Welch unpaired t-test) for comparing the harvesting loss 

in robotic black pepper harvesting system and manual harvesting 

Parameter Panniyur 1 Karimunda 

Manual 

harvesting 

Robotic 

harvesting 

Manual 

harvesting 

Robotic 

harvesting 

Number of 

observations 

5 5 5 5 

Minimum 8.7 6.5 10.1 3.6 

Maximum 25 7.8 18.8 6 

Range 16.3 1.3 8.7 2.4 
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Parameter Panniyur 1 Karimunda 

Manual 

harvesting 

Robotic 

harvesting 

Manual 

harvesting 

Robotic 

harvesting 

Sum 87.3 34.7 76.4 24.7 

Median 18 6.8 15.9 5.6 

Mean 17.4 6.9 15.3 4.94 

Standard error 

mean 

2.8 0.23 1.4 0.51 

Confidence 

intervals mean. 

.95 

7.7 0.64 3.9 1.42 

Variance 38.6 0.26 10.05 1.30 

Standard 

deviation 

6.2 0.5 3.17 1.14 

Coefficient of 

variation 

0.356 0.075 0.208 0.232 

  

t_value  3.771 6.858 

Degree of 

freedom 

4.06 5.02 

P value 0.019107 0.000989 

Level of 

significance 

5 % 5 % 

Significance Significant Significant 

The P-value is <0.05, so reject the null hypothesis at 5% level of significance. 

Null hypothesis is: Average harvesting loss of manual harvesting = Average 

harvesting loss of robotic harvesting system. It shows that there is a significant 

difference between the harvesting loss of manual harvesting and robotic black 

pepper harvesting system in both variety.  
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Appendix XXXI 

Statistical analysis (Welch unpaired t-test) for comparing the drying loss in 

robotic black pepper harvesting system and manual harvesting 

Parameter Panniyur 1 Karimunda 

Manual 

harvesting 

Robotic 

harvesting 

Manual 

harvesting 

Robotic 

harvesting 

Number of 

observations 

5 5 5 5 

Minimum 76 61 47 34 

Maximum 88 70 62 44 

Range 12 9 15 10 

Sum 406 332 279 194 

Median 78 67 59 37 

Mean 81 66 56 39 

Standard error 

mean 

2.596 1.503 3.056 1.985 

Confidence 

intervals mean. 

.95 

7.208 4.174 8.485 5.511 

Variance 33.7 11.3 46.7 19.7 

Standard 

deviation 

5.805 3.362 6.834 4.438 

Coefficient of 

variation 

0.071 0.051 0.122 0.114 
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Parameter Panniyur 1 Karimunda 

Manual 

harvesting 

Robotic 

harvesting 

Manual 

harvesting 

Robotic 

harvesting 

t_value  4.933 4.665 

Degree of 

freedom 

6.41 6.86 

P value 0.002172 0.002423 

Level of 

significance 

5 % 5 % 

Significance Significant Significant 

The P-value is <0.05, so reject the null hypothesis at 5% level of significance. 

Null hypothesis is: Average drying loss of manual harvesting = Average drying loss 

of robotic harvesting system. It shows that there is a significant difference between 

the drying loss of manual harvesting and robotic black pepper harvesting system in 

both Panniyur 1 and Karimunda variety. 
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Abstract 

  Black pepper is a perennial crop and one of India's most economically 

significant spices. It has a high commercial value in the market all around the world. 

Its fruit is harvested, dried, and powdered for many cuisines and processed for many 

value-added products. Black pepper is a flowering vine growing on supporting 

stakes. The berries turn from green to red on maturity and are harvested when it 

starts to turn red. For achieving good quality and good-sized pepper, it should be 

harvested at its correct maturity stage. Generally, black pepper spikes were 

harvested manually by climbing on supporting trees using bamboo poles. It is a 

tedious task because there are chances of falling from ladders while harvesting and 

also causes some musculoskeletal diseases to the labours. For their time saving and 

heavy work intensity, farmers harvest almost all the fruits in a range of maturity 

along with the real matured ones. This practice eventually affects the crop yield and 

quality. Through robotic harvesting, black pepper spikes can be harvested at correct 

maturity and also helps to overcome the difficulties faced by the labours. The main 

functions of robotic harvesting are identification, plucking, depositing, and 

controlling. KAU developed a machine vision system with the camera as sensor, 

Raspberry pi 4 model B as the processor, and LCD as the display unit to identify 

matured black pepper spikes. The programing code was written in python language, 

and the Tensorflow-faster RCNN platform was used for the detection. Hence, a 

robotic black pepper harvesting system was developed in the present study, and its 

performance evaluation was carried out.   

 The physical properties of black pepper relevant to design and develop a 

robotic black pepper harvesting system were determined. The developed robotic 

black pepper harvesting system consists of a machine vision system to identify 

matured black pepper spikes, a manipulator with 2 DOF, an end-effector with 1 

DOF, and a control unit. Servo motors actuated the shoulder and elbow joints of the 

manipulator and the cutting blades. Shear-type cutting was employed for detaching 

pepper spikes from the pepper vine. The entire system was controlled by the 

microprocessor Raspberry pi 4 Model B. For controlling the servo motors, the 

library RPi.GPIO was installed on raspberry pi, and the programming code was 
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written in python language. Two lead-acid batteries with a voltage of 12 V and a 

current 9Ah were connected in parallel to power the entire system. The overall 

dimension of the developed unit was 59 × 18 × 162 cm, and it weighs 2.1 kg. 

The performance evaluation parameters of the machine vision system viz., 

sensitivity, specificity, and accuracy were respectively as 85 %, 77 %, and 82 % in 

Karimunda variety and 84 %, 77 %, and 82 % in Panniyur 1 variety. Time taken 

for detection is 0.43 seconds. Also, the capacity of the developed robotic black 

pepper harvesting system is 3.5 kg h-1 and 562 spikes h-1 in the Karimunda variety, 

whereas 4.6 kg h -1 and 683 spikes h -1 in Panniyur 1 variety. The effectiveness 

index, time taken for the entire operation, harvesting loss, and drying loss was 81%, 

6.6 seconds, 4.9 %, and 39 % in the Karimunda variety and 82 %, 6.3 seconds, 7%, 

and 66 % in Panniyur 1 variety respectively. The system takes 0.18 seconds for a 

single cut for both varieties; it was fixed in the program. 

 A study was also carried out for manual harvesting and found that manual 

harvesting has a capacity of 1052 spikes h-1 and 6.3 kg h -1 in the Karimunda variety 

and 1654 spikes h -1 and 10.8 kg h -1 in the Panniyur 1 variety, which is higher than 

robotic harvesting. The effectiveness index of the manual harvesting was 40% in 

Karimunda and 38 % in Panniyur 1, which is lower than robotic harvesting. The 

harvesting loss and drying loss of manual harvesting are 15.3 % and 56 % in 

Karimunda and 17.5 % and 81 % in Panniyur 1, which is higher than robotic 

harvesting. It was statistically verified and found a significant difference between 

manual and robotic harvesting in terms of capacity, effectiveness index, harvesting 

loss, and drying loss at a 5 % level of significance. 

   




