INFLUENCE OF APPLIED MICRONUTRIENTS ON THE AVAILA-BILITY AND UPTAKE OF ZINC, COPPER AND MANGANESE IN RICE

Micronutrients play a very important role in crop growth. In recent years the importance of these nutrients in increasing agricultural production and correcting their deficiencies in plants has been greatly realised. From the results of experiments conducted so far it was observed that the application of Zn, Cu and Mn has increased the grain yield of rice crop in certain regions but not universally. The response depends largely on several soil factors such as soil reaction, soil texture, organic matter content, microbial activity and availability of micronutrients in soil (Padhi, 1971). In this study, the influence of applied micronutrients on the availability and uptake of Zn, Cu and Mn has been investigated.

A field experiment was conducted using rice var. Jyothi in a sandy clay loam soil of Kerala during the first and second crop seasons of 1991. The initial nutrient status of the soil was as follows: Total N 0.244%, available P 118.3 kg ha⁻¹, available K 310.6 kg ha⁻¹, available Zn 3.955 ppm, available Cu 4.218 ppm, available Mn 72.73 ppm, organic carbon 0.68%, pH 5.65, specific conductance 0.086 dS m⁻¹ and CEC 30.77 cmol(+) kg⁻¹. The experiment was laid out in a randomised block design with ten treatments replicated thrice. The treatments applied were:

- T1 Control (No micronutrients; NPK and cultural practices as per the package of practices recommendations (KAU, 1989)
- T2 Zinc $(ZnSO_4, 20 \text{ kg ha}^1 \text{ in soil } + 1\% \text{ foliar})$
- T3 Manganese (Manganous sulphate, 2.5 kg ha⁻¹ in soil + 0.5% foliar)
- T4 Boron (Boric acid, 750 g ha 1 in soil + 0.1% foliar)
- T5 Copper (Cupric sulphate, 5 kg ha⁻¹ in soil + 0.1% foliar)
- T6 Molybdenum (Sodium molybdate, 1.25 kg ha¹ in soil + 0.1% foliar)
- Sulphur (Biologically activated with *Thiobacillus* sp. and *Aspergillus avomerii*, 10 kg ha⁻¹ in soil + 1% foliar)
- T8 Magnesium (MgSO₄.7H₂O, 20 kg ha⁻¹ in soil + 1% foliar)
- T9 Combination of nutrients given in the above treatments
- T10 Stanes Microfood (12.5 kg ha⁻¹ in soil + 1% foliar)

The soil application of treatments was done 15 days after transplanting and the foliar application was performed at the active physiological stage using spray solution @ 250 1 ha⁻¹. The treatments were repeated in the second crop season also. Application of N, P and K was done uniformly in all the treatments. The soil and plant samples were collected at different stages of the crop growth for chemical analysis. For the determination of available Zn, Cu and Mn, the soil samples were extracted with 0.05N HC1 + 0.025N H_2SO_4 in the ratio 1:4 for 15 minutes and the elements were estimated in an atomic absorption spectrophotometer (Perkin, 1970). The triacid extracts of the dried plant samples were made use of for the estimation of the micronutrients in the plant in the atomic absorption spectrophotometer.

Significant increase in the available Zn content of the soil was obtained by the application of Zn in both the seasons of the crop (Table 1). Both the treatments containing Zn (T2 and T9) resulted in significant increase in available Zn content of soil. Rest of the treatments were on par in this regard. Zn content of the straw also followed the same trend in both the seasons. The highest total uptake of Zn was recorded by the application of biologically activated sulphur, but it could be due to the better vegetative growth resulted by the treatment. The second highest uptake of Zn was recorded by plants applied with Zn. So it could be observed that the application of Zn resulted in increased availability of Zn in soil and thus a better uptake by the rice plant.

The data on the available Cu content of the soil as influenced by the application of different micronutrients showed significant difference only in the second crop season (Table 2). The highest availability of Cu was resulted by the treatments containing Cu (T5 and T9). The plant content of Cu did not vary significantly among the treatments. The total Cu uptake by the crop was found to be considerably affected by the application of Zn

Treatment		First crop		Second crop			
	Available Zn, ppm	Content of straw, ppm	Total uptake, kg ha ¹	Available Zn, ppm	Content of straw, ppm	Total uptake kg ha ¹	
T1	4.699	89.6	0.532	5.036	42.6	0.205	
T2	5.981	125.0	0.666 8.505 78.7		0.349		
T3	4.503	80.3	0.428	5.031	47.3	0.216	
T4	3.393	78.2	0.421	4.944	38.1	0.223	
T5	4.721	88.7	0.503	5.272	47.3	0.278	
T6	4.613	78.9	0.338			0.212	
T7	4.524	114.6			47.6	0.232	
T8	4.543	82.9	0.341	4.956	45.2	0.176	
Т9	5.157 124.5		0.545	7.472	75.4	0.329	
T10	4.724	93.8	0.647	5.184	56.9	0.250	
CD (0.05)	0.697**	NS	1	1.439**	23.06*		

Table 1. Available zinc in soil after treatment application and total uptake in rice

* Significant at 5% level

** Significant at 1% level

Table 2. Available copper in soil after treatment application and total uptake in rice

Treatmen		First crop		Second crop			
	Available Cu, ppm	Content in straw, ppm	Total uptake kg ha ¹	Available Cu, ppm	Content in straw, ppm	Total uptake kg ha ¹	
Tl	5.167	12.7	0.050	5.237	8.0	0.050	
T2	5.109 30.7 5.100 9.8			5.371	71 8.6	0.053 0.052	
T3				5.144	8.0		
T4	5.030	20.3	0.170	5.292	7.8	0.066	
T5	5.276 10.8		0.044	5.929	7.1	0.060	
T6	5.135	13.7	0.044 5.329 7.11		0.057		
T7	4.996	11.4 0.067 5.351 7.7		0.056			
T8	F8 4.992 11.4		0.044	5.205	7.9	0.043	
Т9	4.976	15.7	0.100	5.988	8.1	0.057	
T10	4.976	10.8	0.044	5.309	8.5	0.055	
CD (0.05)	NS	NS		0.407**	NS		

** Significant at 1% level

in the first crop season. The highest total Cu uptake of 0.265 kg ha^{-1} was recorded by the application of Zn. Similar observations indicating a positive correlation between Zn and Cu was earlier reported by Nair (1970).

Considerable increase has been noted in the available Mn content of the soil from 72.73 ppm in the initial soil to a mean content of

170.1 ppm during the crop period (Table 3). This may be attributed to the increased availability of the nutrient on submergence. Significant difference in the available Mn content of the soil or uptake by the crop was not observed in both the seasons. Thus the lack of a consistent influence of applied Mn on the availability in soil and uptake by rice was revealed.

Treatment		First crop		Second crop			
Treatment	Available Content in Mn, ppm straw, %		Total uptake kg ha ¹	Available Mn, ppm	Content in straw, %	Total uptake kg ha ¹	
T1	170.1	0.094	3.451	166.3	0.113	2.841	
T2	156.2	0.111	5.037	143.5	0.082	2.880	
T3	134.2	0.117	5.119	136.5	0.121	2.945	
T4	132.1	0.110	4.727	147.6	0.117	3.272	
T5	133.4	0.106	3.878	128.7	0.094	2.421	
T6	147.3	0.097	3.102	138.3	0.074	3.134	
T7	134.1	0.102	4.540	157.2	0.126	4.101	
T8	124.7	0.092	2.591	144.6	0.120	3.299	
Т9	120.9 0.094		3.616	146.7	0.100	3.090	
T10	123.6	0.112	4.410	146.6	0.126	3.850	
CD (0.05)	NS	NS		NS	NS		

T 11 0			• • •	C.		1	1	
Table 3	A vailable	manganese	in coil	atter	treatment	annlication	and tota	untake in rice
rable 5.	<i>I</i> vanabic	manganese	in son	arter	treatment	application	and tota	uptake in rice

College of Horticulture Vellanikkara 680 654, Trichur, India P. Mm alidharan A. I. Jose

REFERENCES

- KAU, 1989. Package of Practices Recommendations. Kerala Agric. Univ., Directorate of Extension, Mannuthy, Kerala, p. 1-40
- Nair, C.B. 1970. Studies on copper and zinc status of Kerala rice soils and the response to these elements by 1R 8. M.Sc.(Ag) thesis, Univ. of Kerala, Trivandrum

Padhi, S.C. 1971. Response of rice to micronutrients - A review. Indian J. Agron. 16: 108-111

Perkin, A.F. 1970. Analytical Methods for Atomic Absorption Spectrophotometry. Perkin Elmer Corporation, USA